WO2010057262A1 - Heart valve prosthesis and method - Google Patents

Heart valve prosthesis and method Download PDF

Info

Publication number
WO2010057262A1
WO2010057262A1 PCT/AU2009/001513 AU2009001513W WO2010057262A1 WO 2010057262 A1 WO2010057262 A1 WO 2010057262A1 AU 2009001513 W AU2009001513 W AU 2009001513W WO 2010057262 A1 WO2010057262 A1 WO 2010057262A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
housing
prosthesis
component
heart
Prior art date
Application number
PCT/AU2009/001513
Other languages
English (en)
French (fr)
Other versions
WO2010057262A8 (en
Inventor
Suku Thambar
Martin Christopher Cook
Stefan Schreck
Stayajit Rohan Jayasinghe
Original Assignee
Percutaneous Cardiovascular Solutions Pty Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008906045A external-priority patent/AU2008906045A0/en
Priority to AU2009317876A priority Critical patent/AU2009317876B2/en
Priority to EP19195458.5A priority patent/EP3613383B1/de
Priority to US13/130,180 priority patent/US10166014B2/en
Priority to CN200980155165.3A priority patent/CN102438546B/zh
Priority to EP09827051.5A priority patent/EP2358297B1/de
Application filed by Percutaneous Cardiovascular Solutions Pty Limited filed Critical Percutaneous Cardiovascular Solutions Pty Limited
Priority to EP23193735.0A priority patent/EP4321134A3/de
Publication of WO2010057262A1 publication Critical patent/WO2010057262A1/en
Publication of WO2010057262A8 publication Critical patent/WO2010057262A8/en
Priority to US16/226,185 priority patent/US10856858B2/en
Priority to US16/226,986 priority patent/US10842476B2/en
Priority to US17/247,022 priority patent/US20210077083A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/0061Implements located only on one side of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • A61F2/2457Chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • A61F2002/8486Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs provided on at least one of the ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/008Quadric-shaped paraboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular

Definitions

  • the present invention relates to a heart valve prosthesis and associated method of treating a failed or failing heart valve.
  • the invention is particularly related to a two- component heart valve prosthesis that is implantable by a two-step approach.
  • Heart valve regurgitation is a condition whereby the heart valve does not seal completely as a result of disease or injury, and may have fatal consequences.
  • Valve stenosis is a condition where the valve is narrowed and cannot open normally. Whilst valve stenosis can be treated by valvuloplasty (by balloon dilatation), this often results in the valve leaking and may require valve replacement.
  • Aortic valvuloplasty is generally not a very effective or durable treatment for aortic stenosis.
  • Mitral valve replacement is firstly made difficult as a result of the anatomy of the mitral valve, and particularly that of the mitral valve annulus in which the mitral valve leaflets are located.
  • the mitral valve annulus is typically very distorted, and of unpredictable and non-uniform geometries, as compared to the relatively uniform aortic valve annulus. This unpredictable anatomy makes it difficult to design a pre-constructed mitral valve prosthesis that would fit the mitral valve annulus in a satisfactory manner for safe, stable and meticulous deployment.
  • the mitral valve annulus is bounded by muscular tissue on the outer wall only, with the inner side of the mitral valve annulus being bounded by a thin vessel wall which separates the mitral valve annulus and the aortic outflow tract.
  • the mitral valve annulus cannot be subjected to any significant radial forces, as would be typical with an expanding stent type of valve prosthesis, as such radial forces would tend to collapse the aortic outflow tract, resulting in circulatory collapse with likely fatal consequences.
  • stent type valve prostheses are presently generally not suitable for use as a replacement mitral valve.
  • Mitral valve replacement techniques have also generally advocated removal of the native valve prior to location of the replacement mitral valve prosthesis. This is a technically extremely challenging task associated with the potentially fatal complication of profound mitral regurgitation that may not be adequately addressed by the subsequent valve replacement. The lack of an effective mitral valve may lead to overwhelming hemodynamic instability that may not be tolerated by the already compromised left ventricle and overwhelming pulmonary oedema may rapidly result.
  • Known stent based aortic valves are also not generally repositionable and therefore precise placement is difficult. This could result in important structures such as the coronary arteries being compromised as a result. Moreover, post-stenotic dilatation of the aorta may result in imprecise apposition of current stent based aortic valves, resulting in significant paravalvular leaks. For the same reason, current stent based aortic valves are typically not recommended for the treatment of pure aortic regurgitation. Current stent based aortic valves are also typically subject to fatigue and resultant fracture.
  • the present invention provides a heart valve prosthesis comprising a housing component and a valve component; wherein said housing component comprises a housing body having a housing passage extending therethrough; said housing body being configured to be located in, or adjacent to and communicating with, a native valve orifice of a heart; said housing component being configurable between a housing collapsed state for delivery to the native valve orifice via catheter and a housing expanded state to engage structure of the heart to fix said housing body in relation to the native valve orifice; further wherein said valve component comprises: a valve body having a valve passage extending therethrough; said valve body being configured to be located at least partially within said housing passage with said valve passage extending along said housing passage; and one or more flexible valve elements secured to said valve body and extending across said valve passage for blocking blood flow in a first direction through said valve passage whilst allowing blood flow in an opposing second direction through said valve passage; said valve component being configurable between a valve collapsed state for delivery to said housing passage via catheter, when said housing body is in said
  • the valve body is typically configured to be located and fixed wholly within the housing passage.
  • the housing body comprises a housing body frame formed of one or more elongate elastic housing body frame elements.
  • the housing body may further comprise a flexible housing wall fixed to the housing body frame and extending about the housing passage.
  • the housing body is substantially cylindrical, whilst in other embodiments the housing body is tapered.
  • the housing passage is double- tapered, defining a housing passage neck portion located between opposing ends of the housing passage.
  • the valve body is typically also double-tapered, defining a valve body neck portion adapted to co-operate with the housing passage neck portion to secure the valve body within the housing passage.
  • the valve body may comprise a valve body frame formed of one or more elongate elastic valve body frame elements.
  • the valve component may comprise a stent valve, the valve body being configured to be fixed at least partially within the housing passage by expansion of the valve body.
  • the housing component may further comprise one or more flexible temporary valve elements secured to the housing body and extending across the housing passage for inhibiting blood flow in a first direction through the housing passage whilst allowing blood flow in an opposing second direction through the housing passage prior to delivery of the valve component.
  • the prosthesis is an atrioventricular valve prosthesis for replacing an atrioventricular valve (that is, a mitral valve or tricuspid valve).
  • the prosthesis may be a mitral valve prosthesis for replacing a mitral valve.
  • the housing component further comprises a skirt extending about a periphery of the housing body for inhibiting blood flow in the first direction between the housing body and a wall of the native valve orifice.
  • the housing body may be configured to be located with an end of the housing adjacent to and communicating with the native valve orifice and the skirt is located adjacent to the end of the housing body.
  • the housing component preferably includes an anchoring mechanism secured to the housing body and configured to engage native tissue of the heart.
  • the anchoring mechanism is configured to engage native tissue of the heart outside of the native valve orifice.
  • the anchoring mechanism may be configured to engage a wall of a ventricle of the heart communicating with the native valve orifice. Alternatively or additionally, the anchoring mechanism is configured to engage a wall of an atrium of the heart communicating with the native valve orifice.
  • the anchoring mechanism includes a plurality of primary prongs secured to and spaced about the housing body.
  • the primary prongs are typically configured to engage native tissue of the heart outside of the native valve orifice.
  • the primary prongs may each be secured to the housing body by one or more legs extending from an end of the housing body.
  • the legs typically extend into a ventricle of the heart communicating with the valve orifice, the primary prongs being configured to engage a wall of the ventricle and/or sub-valvular tissue, such as papillary tissue or the chordae tendineae, of the heart.
  • sub-valvular tissue such as papillary tissue or the chordae tendineae
  • the anchoring mechanism may further comprise a plurality of secondary prongs secured to and spaced about the housing body.
  • the secondary prongs may be located such that, in use, the secondary prongs are located on an opposing side of the native valve orifice to the primary prongs.
  • the valve component includes a collapsible anchor device for anchoring the valve body to a septum of the heart and a flexible anchor line extending between the valve body and the anchor device, the anchor device being collapsible for delivery via catheter with the valve body.
  • the prosthesis is a semilunar valve prosthesis for replacing a semilunar valve (that is, an aortic valve or pulmonary valve).
  • the prosthesis may be an aortic valve prosthesis for replacing an aortic valve.
  • the housing component is typically configured to engage a wall of the native valve orifice to fix the housing body in relation to the native valve orifice.
  • the housing component may comprise a generally tubular housing body formed of an elastically compressible material.
  • the housing body may be integrally formed of a polymeric material.
  • the present invention provides a method of replacing a failing or failed heart valve of a patient, said method comprising the steps of: a) delivering a housing component of a heart valve prosthesis into, or adjacent to and in communication with, the native valve orifice of the heart valve to be replaced; b) securing said housing component to structure of the heart so as to fix said housing component in relation to the native valve orifice; c) delivering a valve component of said heart valve prosthesis at least partially into a housing passage defined by said housing component; and d) securing said valve component at least partially into said housing passage.
  • the valve component is delivered and secured wholly within the housing passage.
  • the housing component is delivered via catheter in a collapsed state and expanded into an expanded state within, or adjacent to and in communication with, the native valve orifice, thereby engaging structure of the heart to fix said housing component in relation to the native valve orifice.
  • the valve component is delivered via catheter in a collapsed state and expanded into an expanded state within the housing passage, thereby engaging the housing body and/or structure of the heart to fix the valve body within the housing passage.
  • the housing component may be secured to structure of the heart outside of the native valve orifice.
  • the heart valve may be an atrioventricular valve, typically a mitral valve.
  • the method may further comprise the step of creating a septal puncture in the inter-atrial septum of the heart, the housing component and the valve component each being delivered percutaneously via catheter through the venous system of the patient and through the septal puncture.
  • the method may further comprise the step of creating an apex puncture in the apex of the left ventricle of the heart, the housing component and the valve component each being delivered via catheter through the apex puncture.
  • the heart valve may be a semilunar valve, typically an aortic valve.
  • the housing component and the valve component may each be delivered percutaneously via catheter through the arterial system of the patient.
  • Figure 1 is a perspective view of a heart valve prosthesis according to a first embodiment in a disassembled state
  • Figure 2 is a front elevation view of the heart valve prosthesis of Figure 1 in the disassembled state
  • Figure 3 is a schematic representation of the housing body and valve body of the heart valve prosthesis of Figure 1 in a partly assembled state;
  • Figure 4 is a schematic representation of the housing body and valve body of Figure 3 in an assembled state
  • Figure 5 is a schematic cross-sectional front elevation view of a heart depicting a catheter and guide wire advanced into the right atrium with a puncture formed in the inter-atrial septum;
  • Figure 6 is a cross-sectional fragmentary view of a catheter with the housing component of the heart valve prosthesis of Figure 1 loaded therein;
  • Figure 7 is a schematic cross-sectional front elevation view of the heart of Figure 5 with the housing component advanced to the end of the catheter;
  • Figure 8 is a schematic cross-sectional front elevation view of the heart of Figure 5 with the housing in the expanded state adjacent the mitral valve orifice;
  • Figure 9 is a schematic cross-sectional front elevation view of the heart of Figure 5 with the guide wire withdrawn from the housing component;
  • Figure 10 is a schematic cross-sectional front elevation view of the heart of Figure 5 with the valve component of the heart valve prosthesis of Figure 1 advanced toward the end of the catheter;
  • Figure 11 is a cross-sectional front elevation view of the heart of Figure 5 with the heart valve prosthesis of Figure 1 fully implanted;
  • Figure 12 is a schematic cross-sectional front elevation view of a heart depicting a catheter and guide wire advanced into the left ventricle through a puncture formed in the apex of the left ventricle;
  • Figure 13 is a schematic cross-sectional front elevation view of the heart of Figure 12 with the housing component advanced to the end of the catheter;
  • Figure 14 is a schematic cross-sectional front elevation view of the heart to Figure 12 with the housing component in a partially expanded state adjacent the mitral valve orifice;
  • Figure 15 is a schematic cross-sectional front elevation view of the heart of Figure 12 with the guide wire withdrawn from the housing component;
  • Figure 16 is a schematic cross-sectional front elevation view of the heart of Figure 12 with the valve component of the heart valve prosthesis of Figure 1 advanced towards the end of the catheter;
  • Figure 17 is a schematic cross-sectional front elevation view of the heart of Figure 12 with the heart valve prosthesis of Figure 1 fully implanted;
  • Figure 18 is a perspective view of a heart valve prosthesis according to a second embodiment in a disassembled state
  • Figure 19 is a front elevation view of the heart valve prosthesis of Figure 18 in the disassembled state
  • Figure 20 is a perspective view of a heart valve prosthesis according to a third embodiment in a disassembled state
  • Figure 21 is a perspective view of a heart valve prosthesis according to a fourth embodiment in the disassembled state
  • Figure 22 is a perspective view of a heart valve prosthesis according to a fifth embodiment installed in a heart
  • Figure 23 is a perspective view of a heart valve prosthesis according to a sixth embodiment in a disassembled state
  • Figure 24 is a perspective view of the housing component of a heart valve prosthesis according to a seventh embodiment
  • Figure 25 is a cross-sectional front elevation view of the housing component of Figure 24;
  • Figure 26 is a schematic cross-sectional front elevation view of a heart depicting the housing component of Figure 24 advanced beyond the end of a catheter located in the ascending aorta;
  • Figure 27 is a schematic cross-sectional front elevation view of the heart of Figure 26 with the housing in the expanded state in the ascending aorta;
  • Figure 28 is a schematic cross-sectional front elevation view of the heart of Figure 26 with the valve component of the heart prosthesis of the sixth embodiment advanced beyond the end of the catheter;
  • Figure 29 is a schematic cross-sectional front elevation view of the heart of Figure 26 with the heart valve prosthesis of the sixth embodiment fully implanted.
  • a first embodiment of a heart valve prosthesis 100 is a two-component assembly, comprising a housing component 110 and a valve component 130.
  • the heart valve prosthesis 100 is described here in terms of a mitral valve prosthesis for replacing a failed or failing mitral valve, however the heart valve prosthesis is also applicable to other heart valves including, in particular, the tricuspid valve.
  • the housing component 110 includes a housing body 111 that has a housing body first end 11 Ia, a housing body second end 11 Ib, and a housing passage 112 extending between the housing body first and second ends I l ia, 11 Ib along a longitudinal housing axis 113.
  • the housing body 111 is configured to be located adjacent to and communicating with the native mitral valve orifice of the heart with the housing body second end 11 Ib located within the left ventricle and the housing body first end 11 Ia located adjacent to and communicating with the mitral valve orifice, still located on the left ventricular side of the mitral valve orifice, but adjacent the left atrium.
  • the housing body is configured to be located in the native mitral valve orifice with the housing body first end located in the left atrium with the housing body extending through the mitral valve orifice.
  • the housing body may be configured to be located on the left atrial side, adjacent to the native mitral valve orifice. Accordingly, the first end will hereinafter be referred to as the atrial end and the second end referred to as the ventricular end, although alternate terminology would be appropriate for applications in replacement of heart valves other than the mitral valve.
  • the housing body 111 is here formed of a generally annular housing body frame 114 formed of a single elongate elastic housing body frame element 115 configured in a sinusoidal or concertina type configuration extending annularly about the housing passage 112. Rather than being formed as a single element, the housing body frame 114 could be formed of several elements joined together by welding, clips or other suitable means.
  • the housing body frame element 115 is typically in the form of a wire formed of a super elastic shape memory material.
  • a particularly suitable material is nitinol, a nickel- titanium alloy that is known for use in catheter delivered prosthesis applications.
  • Other suitable elastic metallic materials include stainless steel, other titanium alloys and cobalt chromium molybdenum. Other suitable relatively rigid yet elastic metal alloys or non- metallic materials may be utilised as desired.
  • the housing body frame 114 could be cut from a cylindrical tube of material, typically a super elastic shape memory alloy such as nitinol.
  • the tube could be cut by laser to provide a largely open unitary frame structure which could be subsequently heat shaped to tailor the cross- section of the housing body along its length.
  • the housing body 111 also has a flexible housing wall 116 that is fixed to the housing body frame 114 and extends about the housing passage 112.
  • the housing wall 116 is fixed to the housing body frame 114 and extends about the housing passage 112.
  • the housing wall 116 may be formed of a suitable flexible biological material, such as pericardial material.
  • the housing wall 116 may be formed of any suitable flexible non-biological material, such as, for example, silicone, polyester or dacron.
  • the housing wall 116 will typically be fixed to the housing body frame 114 by suturing.
  • the housing wall 116 serves to enclose the housing passage 112, inhibiting leakage through the housing body frame 114.
  • the housing component 110 further preferably includes a flexible skirt 117 extending about a periphery of the housing body 111 for inhibiting blood flow in a first direction from the left ventricle into the left atrium.
  • the flexible skirt 117 is located at the housing body atrial (i.e., first) end I l ia such that, in use, it will engage and seal with tissue surrounding the valve orifice on the ventricular side, as will be discussed below.
  • the flexible skirt In configurations where the housing body 111 is intended to be located on the atrial side of the native mitral valve orifice, the flexible skirt will generally be located at the housing body ventricular (i.e., second) end 111b such that, in use, it will engage and seal with tissue surrounding the valve orifice on the atrial side.
  • the flexible skirt may be located on either side of the native valve orifice in use.
  • the flexible skirt 117 will typically be formed of the same material as the housing wall 116.
  • the flexible skirt 117 and housing wall 116 will also typically be sutured to one another. It is also envisaged that the flexible skirt may be reinforced with wire or any of various other forms of reinforcement so as to provide the skirt with some degree of stiffness.
  • the housing component 110 also includes an anchoring mechanism secured to the housing body 111.
  • the anchoring mechanism includes a plurality of primary prongs 118 secured to and spaced about the housing body 111.
  • the primary prongs 118 are here each secured to the housing body 111 by one or more legs 119 extending from the housing body ventricular (i.e. second) end.
  • the primary prongs 118 are thus hereinafter described as ventricular prongs 118.
  • the ventricular prongs 118 are here arranged in two sets of three individual prongs 118 formed by bending the ends of each of the legs 119 so as to project radially outwardly and longitudinally back toward the housing body 111.
  • the ventricular prongs 118 are thus configured to engage native tissue structure of the heart outside of the native valve orifice, rather than relying on fixation to the delicate, thin tissue constituting the mitral valve orifice wall.
  • the legs 119 longitudinally offset the ventricular prongs 118 from the housing body 111 such that, in use, the ventricular prongs engage the wall of the left ventricle and/or subvalvular tissue, such as papillary muscle tissue or the chordae tendineae, as will be discussed below.
  • the ventricular prongs 118 and legs 119 are formed of a super elastic shape memory material in wire form, typically the same as the housing body frame element 115.
  • the prongs might be configured to engage the mitral valve orifice wall. Whilst the mitral valve orifice wall is generally not capable of sustaining any significant radial forces as might be applied by a stent, it generally will be capable of sustaining point anchor loads as may be applied by the prongs.
  • the ventricular prongs 118 may be in the form of hooks or barbs.
  • the anchoring mechanism may be in any of various alternate forms including clips, clamps, staples or adhesives.
  • the housing body might be in a radially expandible stent form that directly engages the native orifice wall to fix the housing component in relation to the valve orifice.
  • the entire housing component 110 is elastically collapsible from a stable expanded state, as depicted in Figures 1 and 2, into an unstable collapsed state extending along the housing longitudinal axis 113 to allow delivery of the housing component 110, typically percutaneously, by catheter.
  • the entire surface of the housing component 110 would typically be coated with a suitable coating to inhibit, or at least reduce the effect of, thrombus formation.
  • suitable coatings for application to the housing body frame 114 include polyester coatings, textured metallic coatings, heparin based coatings, diamond-like carbon coatings, parylene coatings and fluoropolymer coatings such as polytetrafluoroethylene.
  • Textured metallic coatings may be applied in the form of sintered nitinol or titanium and serve to add texture to the surface, helping to ensure any thrombus formed does not break free into the bloodstream. Such textured surfaces also promote tissue ingrowth to the foreign housing body frame 114.
  • the same coating may be applied to the ventricular prongs 118 and legs 119.
  • Coatings that would be particularly suitable for application to the housing wall 116 and flexible skirt 117 to inhibit thrombus formation include heparin based coatings, parylene coatings and fluoropolymer based coatings such as polytetrafluoroethylene.
  • the valve component 130 includes a valve body 131 that has a valve body atrial (i.e., first) end 131a, a valve body ventricular (i.e., second) end 131b and a valve passage 132 extending between the valve body atrial and ventricular ends 131a, 131b along a longitudinal valve axis 133.
  • the valve body 131 is formed of a valve body frame 134 formed of three elongate elastic valve body frame elements 135.
  • Each of the valve body frame elements 135 is in the general form of an arch formed of a wire of super elastic shape memory material, typically the same as that of the housing body frame element 115.
  • Each valve body frame element 135 has its opposing ends 135b located at the valve body ventricular end 13 Ib and its vertex 135a located at the valve body atrial end 131a.
  • the ends 135b of each valve body frame element are secured to each other, typically by welding or crimping, however other suitable metals are also envisaged.
  • the valve body frame could be formed of a single valve body frame element, such that only the opposing ends of the single valve body frame element would be sewed to each other.
  • a flexible valve element 136 is secured to each of the valve body frame elements 135, typically by suturing.
  • the valve elements 136 may be formed of a suitable flexible biological material, such as pericardial material including bovine pericardium or kangaroo pericardium.
  • the valve elements 136 may alternatively be formed of a suitable flexible non-biological material.
  • the valve elements 136 are secured to the valve body frame elements 135 and configured such that they extend across the valve passage 132 in a manner that they block blood flow in a first direction through the valve passage 132 from the valve body ventricular end 131b toward the valve body atrial end 131a, whilst allowing blood flow in an opposing second direction.
  • valve elements 136 each extend laterally beyond their respective valve body frame element 135 toward the valve body atrial end 131a, with adjacent valve elements 136 overlapping or being sutured to form a continuous valve leaflet structure about the circumference of the valve body 131 at the valve body atrial end 131a.
  • the entire valve component 130 is elastically collapsible from a stable elastically expanded state, as depicted in Figures 1 and 2, into an unstable collapsed state extending along the valve longitudinal axis 133 to allow delivery of the valve component 130, typically percutaneously, by catheter.
  • Forming the heart valve prosthesis 100 as two separate percutaneously deliverable components allows for use of a smaller catheter than would otherwise be possible if the housing and valve were formed as a single component.
  • Forming the heart valve prosthesis as two separate components also enables provision of a relatively simple (and thereby inexpensive) valve component which can be discarded if biological material forming the valve elements has reached its shelf life, whilst retaining the housing component, which might employ non-biological material for the flexible housing wall 116 and flexible skirt 117, thereby providing it with a longer shelf life.
  • the two component prosthesis also enables utilisation of commonly known stent based aortic valves as the valve component for a mitral valve prosthesis.
  • Handling and preservation of the simpler valve component 130 and securing of the valve elements to the valve body by the bedside may also be simplified.
  • the two component prosthesis potentially allows for the placement of the prosthesis in different locations of the heart, including different sized heart valve orifices, by altering the size or configuration of the housing component only, using a common valve component.
  • both the housing body 111 and the valve body 131 are double-tapered providing an asymmetric hourglass-type shape.
  • the double-tapered shape of the housing body 111 provides a double-tapered housing passage 112.
  • the housing passage 112 has a reduced neck portion 120 located between the housing body atrial end I l ia and housing body ventricular end 111b.
  • the valve body 131 also has a neck portion 140 located between the valve body atrial end 131a and valve body ventricular end 13 Ib.
  • the housing passage 112 and valve body 131 are sized such that the double-taper acts to secure the valve body 131 within the housing passage 112, with the valve passage neck portion 140 co-operating with the housing body neck portion 120.
  • the housing passage 112 and valve body 131 could be substantially cylindrical or singularly tapered, and be provided with alternate means for securing the valve body 131 within the housing body 111, such as connectors, prongs or other suitable fastening means.
  • the venous system of the patient to be treated is firstly accessed by a puncture, typically in the groin area, accessing the femoral vein. Access to the venous system might alternatively be made via other large peripheral veins such as the sub-clavian or jugular veins.
  • the femoral vein is, however, preferred given the compressibility of the femoral vein once a catheter is removed from the patient to achieve haemostasis.
  • a guide wire 1 typically having a diameter of approximately 0.85mm to 1.7mm, is inserted through the puncture and along the femoral vein and via the inferior vena cava 11 to the right atrium 12 of the patient's heart 10.
  • a snare may be introduced to the heart 10 through an arterial approach from the left or right femoral artery, aorta and aortic valve. The snare will then engage a J-tip on the end of the guide wire 1 and draw the end of the guide wire 1 through the arterial system to the exterior of the patient so that opposing ends of the guide wire 1 may be steadied.
  • a catheter 2 typically having a diameter of about 20 to 24 French (6.7mm to 8.0mm) is then advanced over the guide wire 1 and into the right atrium 12.
  • a puncture 13 is then made in the inter-atrial septum 14 using conventional equipment advanced by the catheter 2 in a known manner.
  • the guide wire 1 and catheter 2 are then further advanced through the septal puncture 13 and into the left atrium 15.
  • the housing component 110 of the mitral valve prosthesis 100 is collapsed and fed into the catheter 2 with the housing body atrial end I l ia trailing the housing body ventricular end 11 Ib.
  • the housing component 110 is then delivered percutaneously by first being advanced along the guide wire 1 to the leading end 2a of the catheter as depicted in Figure 7.
  • the leading end 2a of the catheter 2 extends through the native mitral valve orifice 16 and into the left ventricle 17, carefully positioning the housing component 110 (that remains collapsed inside the catheter 2) in the left ventricle 17 adjacent the mitral valve orifice 16.
  • the failed or failing native mitral valve leaflets will typically be left in place.
  • the catheter 2 is then withdrawn whilst leaving the guide wire 1 and housing component 110 in place, such that the housing component 110 is allowed to expand into the left ventricle 17, as depicted in Figure 8.
  • the ventricular prongs 118 engage the papillary muscles 18 within the left ventricle 17 and/or the wall of the left ventricle 17, thereby securing the housing body 111 in relation to the mitral valve orifice 16.
  • the ventricular prongs 118 may alternatively or additionally engage other subvalvular tissue of the heart, particularly the chordae tendineae.
  • the ventricular prongs 118 and legs 119 may also assist in preventing complete collapse of the left ventricle, where opposing walls make contact in what is termed "obliteration", as the ventricular prongs 118 will act to prop the left ventricle 17 open to some extent in a stent-like manner. This may be beneficial to patients suffering diastolic heart failure. To achieve this effect, the legs 119 should be of sufficient structural stiffness to provide the desired supporting effect.
  • the housing component 110 remains attached to the guide wire 1 by way of a tether 3 that allows for some re-positioning of the housing body 111 in relation to the mitral valve orifice 16 and, if greater adjustment is required, allows the catheter 2 to be advanced back over the housing component 110, re-collapsing the housing component 110 into the catheter 2, for further re-positioning as required.
  • the tether 3 is detached from the housing component 110 and the guide wire 1 withdrawn back into the catheter 2, as depicted in Figure 9.
  • valve component 130 of the heart valve prosthesis 100 is next collapsed and loaded into the catheter 2, with the valve body atrial end 131a trailing the valve body ventricular end 131b.
  • the valve component 130 is advanced along the guide wire 1 toward the second end 2a of the catheter which itself is advanced to the atrial end of the housing passage 112 within the housing component 110, ready for deployment of the valve component 130.
  • the catheter 2 is withdrawn, allowing the valve component 130 to elastically expand into engagement with the housing body frame 114 of the housing body 111, securing the valve component 130 to the housing body 111 with the valve passage 132 extending along the housing passage 112.
  • the catheter 2 and guide wire 1 are then withdrawn from the patient, leaving the assembled heart valve prosthesis 100 in position as depicted in Figure 11 effectively replacing the native mitral valve.
  • the (ineffective) native mitral valve would typically be left in place, with the native valve leaflets retained on the outside of the housing component 110 where they may assist in preventing paravalvular leakage during ventricular systole.
  • Blood flow from the left atrium into the left ventricle during atrial systole is provided for through the valve elements 136, whilst the same valve elements 136 prevent back flow from the left ventricle 17 into the left atrium 15 during ventricular systole.
  • the entire procedure may be performed under the guidance of fluoroscopy transthoracic and transesophageal echocardiography in a known manner.
  • a larger first catheter (typically about 24 French) is first advanced over the guide wire 1 to a position extending through the native mitral valve orifice 16, displacing the native mitral valve leaflets.
  • a smaller catheter 2 (typically 20-21 French) is then advanced through the first catheter, delivering the housing component 110. Once the second catheter 2 is in position ready for release of the housing component 120, the first catheter is withdrawn slightly, allowing the housing component 110 to be expanded into position.
  • the valve component 130 is then delivered either through the same second catheter 2 or another catheter, again advancing through the first catheter.
  • This method provides more direct access to the left ventricle 17 of the patient's heart 10 via the apex 19 of the left ventricle 17.
  • Access to the apex 19 of the left ventricle 17 may be provided either surgically or percutaneously.
  • a limited surgical incision may be first made in the precordial region of the thorax, providing direct and visual access to the exterior of the apex 19 of the left ventricle 17.
  • a needle puncture of the precordial region of the thorax may be made and the region is then dilated by way of a balloon catheter so as to provide access to the exterior of the apex 19 of the left ventricle 17.
  • the left ventricle 17 is then accessed by creating a puncture 20 in the apex 19 of the left ventricle 17.
  • the puncture 20 may be created by way of direct surgical incision.
  • the puncture 20 may be created by way of conventional cutting equipment advanced by catheter.
  • a catheter 2 typically having a diameter of about 20 to 24 F (6.7 mm to 8.0 mm) is then advanced over the guide wire 1 and into the left ventricle 17 through the puncture 20, as depicted in Figure 12.
  • the housing component 110 of the mitral valve prosthesis 100 is collapsed and fed into the catheter 2 with the housing body ventricular end 11 Ib trailing the housing body atrial end I lia.
  • the housing component is delivered to the left ventricle 17 by being advanced along the guide wire 1 to the leading end 2a of the catheter 2.
  • the leading end 2a of the catheter 2 is carefully positioned within the left ventricle 17 adjacent the mitral valve orifice 16, ready for deployment of the housing component 110.
  • the failed or failing native mitral valve leaflets would typically be left in place and may be displaced from a position extending across the mitral valve orifice 16 by balloon dilation prior to delivery of the housing component 110 if desired.
  • the catheter 2 is then partly withdrawn whilst leaving the guide wire 1 and the housing component 110 in place, allowing the housing body 111 of the housing component 110 to expand as depicted in Figure 14.
  • the ventricular prongs 118 are constrained by a restraining device 4 that is advanced with the housing component 110 alongside the guide wire 1.
  • the restraining device 4 may be in the form of a wire clamp, wire lasso or similar formed on the end of an auxiliary wire 4a.
  • the position of the housing component 110 is then fine tuned as required to position the housing body atrial end I l ia adjacent the mitral valve orifice 16 providing communication with the housing passage 112.
  • the catheter 2 is then further withdrawn and the restraining device 4 released, as depicted in Figure 15, thereby allowing the housing component 110 to fully expand such that the ventricular prongs 118 engage the wall of the left ventricle 17 and/or papillary muscles 18 and/or other sub valvular tissue such as the chordae tendineae of the heart.
  • valve component 130 of the heart valve prosthesis 100 is next collapsed and loaded into the catheter 2, with the valve body ventricular end 131b trailing the atrial end 131a.
  • the valve component 130 is advanced along the guide wire 1 towards the leading end 2a of the catheter 2 which itself is advanced to the ventricular end of the housing passage 112 within the housing component 110, ready for deployment of the valve component 130.
  • the catheter 2 is withdrawn, allowing the valve component 130 to elastically expand into engagement with the housing body frame 114 of the housing body 111, securing the valve component 130 to the housing body 111.
  • the catheter 2 and guide wire 1 are then withdrawn from the left ventricle 17. Referring to Figure 17, the puncture 20 in the apex 19 is then sealed by deploying a plug 150 in a known manner.
  • the plug 150 will typically be deployed from the catheter 2 and may be in the form of a collapsible body formed of nitinol or any other suitable material.
  • the catheter 2 and guide wire 1 are then fully withdrawn from the patient, leaving the assembled heart valve prosthesis 100 in position as depicted in Figure 17, replacing the native mitral valve.
  • the trans-apical approach described allows for more direct access to the mitral valve orifice than the venous approach described above in relation to Figures 6 to 11 which may provide access problems as a result of the tortuous nature of the access path through the venous system.
  • FIG. 18 a second embodiment of a percutaneous heart valve prosthesis 200 is depicted.
  • the valve component 130 is identical to that of the heart valve prosthesis 100 of the first embodiment described above.
  • the housing component 210 is similar to the housing component 110 of the first embodiment. Accordingly like or equivalent features adopt the same reference numerals as the housing component 110 of the first embodiment, increased by 100. A similar reference numeral system is applied for each of the hereinafter described embodiments.
  • the housing component 210 has a housing body 211 that is intended to be located within the native mitral valve orifice 16 with the housing body atrial end 21 Ia located within the left atrium 15 and the housing body ventricular end 21 Ib located within the left ventricle 16. Accordingly, the flexible skirt 217 is located between the housing body atrial and ventricular ends 211a, 211b such that, in use, the flexible skirt 217 engages the native tissue surrounding the valve orifice 16 on the ventricular side.
  • the anchoring mechanism further comprises a plurality of secondary or atrial prongs 221 secured to and spaced about the housing body atrial end 211a.
  • the atrial prongs 221 are each secured to the housing body frame 214 by way of arms 222 that are each formed as a bent extension of individual housing body frame elements 215 of the housing body frame 214.
  • the atrial prongs 221 extend over the delicate thin tissue immediately surrounding the valve orifice 16 so as to engage the muscular walls of the left atrium outside the valve orifice 16.
  • the ends of the atrial prongs 221 are bent back to form generally radially inwardly directed hooks.
  • the atrial prongs 222 assist in securing the housing body 211 in relation to the valve orifice, and particularly assist in preventing the housing body 211 from migrating into the left ventricle 17.
  • the housing component 210 is otherwise substantially identical to the housing component 110 of the first embodiment.
  • a third embodiment of a percutaneous heart valve prosthesis 300 is depicted, hi this embodiment, the housing component 110 is identical to that of the heart valve prosthesis 100 of the first embodiment, whilst the valve element
  • valve body 330 is in the form of a percutaneously deliverable expandible stent valve.
  • the valve body 330 is in the form of a percutaneously deliverable expandible stent valve.
  • valve component 330 may be either self-expanding or balloon expandible.
  • the radial load applied to the housing body frame 114 when the valve body 331 is expanded within the housing passage 112 of the housing component 110 secures the valve body 331 to the housing body.
  • the radial load is carried by the housing body 111 rather than the thin, delicate wall of the mitral valve orifice 16 as is the case with stent valves implanted directly into the mitral valve orifice 16.
  • the valve body 331 is configured such that the valve body atrial end 331a protrudes beyond the housing body atrial end I l ia and into the left atrium.
  • the valve body 331 is of a generally tapered shape, with the valve body atrial end 33 Ia being broader than the valve body ventricular end 33 Ib such that the enlarged diameter of the valve body atrial end 331a expands into the left atrium 15, assisting in preventing movement of the heart valve prosthesis 380 downwards into the left ventricle.
  • One or more flexible valve elements are secured to the valve body 331 and extend across the valve passage 332 for blocking blood flow to the valve passage 332 from the valve body ventricular end 331b toward the valve body atrial end 331a
  • a fourth embodiment of a heart valve prosthesis 400 again has the same housing component 110 as the heart valve prosthesis 100 of the first embodiment, hi this embodiment, the valve component 430 is in the form of a percutaneously deliverable cylindrical stent valve.
  • the valve body 431 is configured to be located substantially wholly within the housing passage 112 of the housing component 110 and may be secured to the housing body 111 solely by radial pressure following either balloon or self-expansion of the valve body 431.
  • both the stent valve body 431 and housing body 111 could be provided with a double-taper in the same manner as depicted in Figures 3 and 4 to secure the valve body 431 within the housing passage 112.
  • valve body 431 could be secured to the housing body 111 by clips or other suitable fasteners.
  • One or more flexible valve elements are secured to the valve body 431 and extend across the valve passage 432 for blocking blood flow through the valve passage 432 from the valve body ventricular end 431b toward the valve body atrial end 431a.
  • a fifth embodiment of a percutaneous heart valve prosthesis 500 is depicted in an assembled state installed in a heart 10.
  • the heart valve prosthesis 500 has a housing component 110 identical to the housing component of the heart valve prosthesis 100 of the first embodiment, and the housing component 110 is thus implanted in the same manner as described above.
  • the valve component 530 is also identical to the valve component 130 of the first embodiment, with the addition of an anchor device 541 and flexible anchor line 542.
  • the anchor line 542 connects the anchor device 541 to the valve body frame of the valve component 530.
  • the anchor device 541 comprises an elastically collapsible anchor frame formed of elongate anchor frame elements, typically formed of the same material as the frame elements of the housing body and valve body.
  • the anchor device 541 is elastically collapsible from a stable substantially flat plate-like configuration (as shown in Figure 22) to an unstable elongate configuration for location within the catheter 2 during percutaneous delivery of the valve component 530.
  • the anchor device 541 may conveniently be of the general form of the anchor device disclosed in International PCT Publication No. WO 2005/087140 to the present applicant, the entire contents of which are incorporated herein by cross-reference.
  • the anchor device 541 is released from the end of the catheter 2 after release of the valve body 531 with the end of the catheter 2 retracted in the right atrium 12 adjacent the inter-atrial septum 14.
  • the anchor device 541 expands and acts as an anchor against the inter-atrial septum 14, anchoring the valve component 530 (and by virtue of the valve component's 530 fixation to the housing component 110, the entire heart valve prosthesis 500) against migration deeper into the left ventricle 17.
  • the anchor device might alternately be permanently attached to the housing component 110, however, this would result in a significantly more complicated delivery procedure, given that the anchor device would tend to block the septal puncture 13, preventing delivery of the valve component through the same septal puncture.
  • the anchor device 541 might be separate to both the housing component and valve component, being percutaneously delivered to the heart separately and following delivery of the valve component. The anchor device would then be secured to either the housing component or valve component within the heart.
  • the anchor line 542 could either be delivered with the anchor device 541 and subsequently secured to the housing element/valve element or alternately the anchor line 542 could be delivered with the housing element/valve element and subsequently secured to the anchor device 541.
  • FIG. 23 a sixth embodiment of a percutaneous heart valve prosthesis 100' is depicted in a disassembled state.
  • the heart valve prosthesis 100' is identical to that of the first embodiment described above and depicted in Figure 1 apart from the inclusion of a plurality of flexible temporary valve elements 122 in the housing component 110' secured to the housing body frame elements 115 so as to extend across the housing passage 112.
  • the temporary valve elements 122 are configured to inhibit blood flow in the first direction through the housing passage 112 from the housing body ventricular end 11 Ib towards the housing body atrial end I l ia, whilst allowing blood flow in the opposing second direction.
  • the temporary valve elements 122 serve to inhibit regurgitation of blood from the left ventricle 17 back into the left atrium 15 during the implantation procedure, following location of the housing component 110' until subsequent delivery of the valve component 130. Given that the temporary valve leaflets 122 are thus only operative for a relatively short time, they may be quite simple in configuration and be made from simple flexible synthetic materials.
  • the prosthesis 100' may be implanted utilising any of the procedures discussed above, with the valve component 130 simply pushing aside the temporary valve leaflets 122 when expanded into position within the housing passage 112. The temporary valve leaflets 122 remain sandwiched between the valve component 130 and the housing wall 116.
  • the housing component of the percutaneous heart valve prosthesis has a housing body in the form of an expandable stent structure having a central portion configured to be located within the native mitral valve orifice, an atrial end portion configured to be located within the left atrium and an opposing ventricular portion configured to be located within the left ventricle.
  • the central portion of the housing body is only partly expanded to a diameter not exceeding that of the native mitral valve orifice, so as not to place any significant radial pressure loads on the wall of the valve orifice.
  • the opposing atrial and ventricular portions of the housing body are further expanded beyond the diameter of the valve orifice so as to effectively "sandwich" the wall of the native mitral valve orifice between the atrial and ventricular portions of the housing body, thereby fixing the housing body in relation to the valve orifice. Any of various forms of the valve component could then be fixed within the housing passage defined by the housing body.
  • valve component may be configured with ventricular or atrial prongs to assist in directly fixing the valve component to the structure of the heart.
  • the valve body and housing body may also be tapered so as to act as a plug that cannot migrate through the heart valve orifice, with an anchoring mechanism being located on that side of the valve orifice through which the narrower end of the housing body and valve body protrude.
  • the atrial end of both the valve body and housing body could be narrower than the valve orifice and the ventricular end of the valve body and housing body, with the anchor device 541 and anchor line 542 acting to retain the heart valve prosthesis partly within the heart valve orifice in a plugged state.
  • the flexible skirt 117 of the housing component would be located partway between the atrial and ventricular ends of the housing body.
  • the valve component may also be provided with a flexible skirt similar, and additional to or in place of, the flexible skirt 117 of the housing component 110.
  • the various two component heart valve prosthesis described above each relate to a mitral valve prosthesis
  • the two component prosthesis concept is also applicable to each of the remaining heart valves, being the tricuspid valve and the semilunar valves (that is, the pulmonary valve and the aortic valve).
  • a seventh embodiment of a two component heart valve prosthesis in the form of an aortic heart valve prosthesis 600, and an associated aortic heart valve replacement procedure will now be described with reference to Figures 24 through 29.
  • the housing component 610 of the aortic valve prosthesis 600 comprises a generally tubular housing body 611 that has a housing body first end 61 Ia, a housing body second end 61 Ib and a housing passage 612 extending between the housing body first and second ends 611a, 61 Ib along a longitudinal housing axis 613.
  • the housing passage 612 is double tapered, with the housing passage 612 being wider at the housing body first and second ends 611a, 61 Ib than in the central neck region 620 of the housing passage 612. This double tapering of the housing passage 612 assists in positioning and retaining the valve component 630 as will be discussed further below.
  • the housing component 610 is sized and shaped to be located within the ascending aorta 22 of the patient's heart 10 in the position of the native aortic valve.
  • the housing body 611 is here in the form of an elastically compressible, flexible biocompatible material. Particularly preferred materials for construction of the housing body 611 include silicone and other bio-stable polymers. Alternatively, the housing body 611 could be in the form of a covered wire mesh stent. Persons skilled in the art will appreciate that many other suitable materials may alternatively be utilised.
  • the housing component 610 is elastically collapsible from a stable expanded state, as depicted in Figures 24 and 25, into an unstable collapsed state extending along the housing longitudinal axis 613 to allow delivery of the housing component 610, typically percutaneously, by catheter. The housing component 610 may be forced into the unstable collapsed state for delivery by the application of radial compressive force.
  • the housing component 610 may include a marker 623, in the form of a small metallic ring.
  • the marker 623 may be integrally moulded with the housing body 612 or otherwise inserted into the housing passage 611 prior to implantation.
  • the marker 623 extends about the housing passage 612 and is adapted to be visible on fluoroscopic or X-ray imaging equipment so as to facilitate doctors and surgeons identifying the position, orientation and location of the housing component 610, which may be otherwise invisible to these imaging techniques when the housing body 611 is formed of a polymeric material.
  • the valve component 630 comprises a tubular valve body 631 that has a valve body first end 631 a, a valve body second end 63 Ib, and a valve passage 632 extending between the valve body first and second ends 631 a, 63 Ib along a longitudinal valve axis.
  • the valve body 631 is formed of a valve body frame 534 that has a stent structure formed of elongate elastic valve body frame elements 635.
  • the valve body frame elements 635 are each typically formed of a wire of super elastic shape memory material such as nitinol, stainless steel, other titanium alloys and/or cobalt, chromium, molybdenum. Other suitable relatively rigid yet elastic metal alloys or non-metallic materials may alternatively be utilised as desired.
  • the valve body frame elements 635 are generally formed with a diamond pattern as is typical with stent structures.
  • valve elements 636 are secured to the valve body frame elements 635, typically by suturing.
  • the valve elements 636 may be secured to a sub-frame of the valve body frame 634 formed of three elongate elastic elements that are each formed into an arch and formed of a wire of superelastic shape memory material, typically being the same as that of the valve body frame elements 635.
  • the sub-frame may be generally of the same form as the housing body frame 134 of the valve component 130 of the mitral valve prosthesis 100 of the first embodiment. The sub-frame in this case would be secured to the valve body frame 634, typically by suturing.
  • the valve elements 636 may again be formed of a suitable flexible biological material, such as pericardial material including bovine pericardium or kangaroo pericardium. Alternatively the valve elements 636 may be formed of a suitable flexible non-biological material.
  • the valve elements 636 are configured such that they extend across the valve passage 632 in a manner that they block blood flow in a first direction to the valve passage 632 from the valve body second end 63 Ib towards the valve body first end 63 Ia, whilst allowing blood flow in an opposing second direction.
  • the entire valve component 630 is collapsible from a stable expanded state into a collapsed state extending along the valve longitudinal axis 633 to allow delivery of the valve component 630, typically percutaneously by catheter.
  • the stent structure of the valve body frame 634 may be elastically collapsible, such that it is self-expanding when released, or may otherwise be expandable by balloon.
  • valve component 630 may alternatively be of the same construction as the valve component 130 described above in relation to the first embodiment depicted in Figures 1 and 2, or may take any of various other forms including that of the valve component 430 of the heart valve prosthesis 400 of the fourth embodiment described above in relation to Figure 15.
  • a guide wire 1 typically having a diameter of approximately 0.85 mm to 1.7 mm, is inserted through the puncture and advanced along the femoral artery to the descending aorta, through the aortic arch 21 and into the ascending aorta 22.
  • a catheter 2 typically having a diameter of about 20 to 24 F (6.77 mm to 8.0 mm) is then advanced over the guide wire 1 and into the ascending aorta 22.
  • the housing component 610 of the aortic valve prosthesis 600 is radially compressed into its collapsed state and fed into the catheter 2 with the housing body second end 61 Ib trailing the housing body first end 611a.
  • the housing component 610 is then delivered percutaneously by being advanced along the guide wire 1 through the catheter 2.
  • a restraining device 5 at the leading end of the guide wire 1 restrains the housing component 610 in its radially compressed and collapsed state as the guide wire 1 is further advanced beyond the leading end 2a of the catheter towards the lower end of the ascending aorta 22 which forms the native aortic valve orifice 23.
  • the restraining device 5 is released once the housing component 610 is in position with the housing body first end 611a located adjacent the lower end of the ascending aorta 22 and the housing body second end 61 Ib extending towards the aortic arch 21.
  • the marker 623 assists in ensuring correct placement.
  • the housing component 610 Once the housing component 610 is released, it elastically expands into its expanded state, engaging the walls of the ascending aorta 22 so as to secure the housing component 610 within the ascending aorta 22 as depicted in Figure 27. Radial expansion of the housing component 610 opens the housing passage 612. The radial expansion of the housing component 610 also presses the native valve leaflets against the wall of the ascending aorta 22.
  • the elastic nature of the housing body 611 provides for an effective seal between the housing body 611 and the wall of the ascending aorta 22, thereby eliminating paravalvular leaks.
  • valve component 630 is next collapsed into its collapsed state and fed into the catheter 2 with the valve body second end 631b trailing the valve body first end 631a.
  • the valve component 630 is advanced along the guide wire 1 towards the leading end 2a of the catheter 2.
  • the valve component 630 is again restrained by the restraining device 5 as the valve component 630 is advanced beyond the leading end 2a of the catheter and into the housing passage 612 of the housing component 610.
  • the valve component 630 is advanced into its appropriate position within the housing passage 612. This position may be conveniently determined utilising the marker 623 of the housing component 610.
  • a further marker may be provided on the valve component 630 if desired, although the valve body 631 will generally already be visible on fluoroscopic or X-ray imaging equipment, given that it is formed of metallic wire.
  • the valve component 630 is expanded into its expanded state with the valve body first end 631 a being located towards the housing body first end 611a and the valve body second end 63 Ib located towards the housing body second end 61 Ib.
  • valve body 631 is of a self-expanding form, release from the restraining device 3 will result in the valve component self-expanding into engagement with the wall of the housing body 611.
  • the valve body 631 may be expanded by balloon catheterisation if the valve body is of a non-self-expanding configuration. It is also envisaged that, in configurations where the shape memory characteristics of the nitinol wire forming the valve body frame 634 have been utilised to collapse the valve body 631 for delivery by catheter, the restraining device 5 may apply heat to the valve body frame 634 so as to heat the valve body frame elements 635 and thereby radially expand the valve body 631 into its stable expanded state.
  • the double-tapered configuration of the housing passage 612 acts to secure the valve component 630 within the housing passage 612.
  • Biocompatible adhesives could additionally or alternatively be utilised to secure the valve body 631 to the housing body 611.
  • the housing body 611 could also be further secured to the wall of the ascending aorta 23 with biocompatible adhesives. Such adhesives could also be utilised in the various other embodiments described.
  • the catheter 2 and guide wire 1 are then withdrawn from the patient, leaving the assembled heart valve prosthesis 610 in position as depicted n Figure 29. Blood flow from the left ventricle 17 into the ascending aorta 22 is provided for through the valve elements 636 whilst the same valve elements 636 prevent back flow from the ascending aorta 22 into the left ventricle 17.
  • aortic valve prosthesis 600 of the sixth embodiment may be implanted using a surgical or percutaneous trans-apical approach equivalent to the mitral valve replacement trans-apical approach described above in relation to Figures 12 through 17.
  • access would again be provided to the left ventricle (and ascending aorta) via a puncture in the apex of the left ventricle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Transplantation (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Prostheses (AREA)
  • External Artificial Organs (AREA)
PCT/AU2009/001513 2008-11-21 2009-11-20 Heart valve prosthesis and method WO2010057262A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP23193735.0A EP4321134A3 (de) 2008-11-21 2009-11-20 Herzklappenprothese und verfahren
EP19195458.5A EP3613383B1 (de) 2008-11-21 2009-11-20 Herzklappenprothese
US13/130,180 US10166014B2 (en) 2008-11-21 2009-11-20 Heart valve prosthesis and method
CN200980155165.3A CN102438546B (zh) 2008-11-21 2009-11-20 人工心脏瓣膜
EP09827051.5A EP2358297B1 (de) 2008-11-21 2009-11-20 Herzklappenprothese
AU2009317876A AU2009317876B2 (en) 2008-11-21 2009-11-20 Heart valve prosthesis and method
US16/226,185 US10856858B2 (en) 2008-11-21 2018-12-19 Heart valve prosthesis and method
US16/226,986 US10842476B2 (en) 2008-11-21 2018-12-20 Heart valve prosthesis and method
US17/247,022 US20210077083A1 (en) 2008-11-21 2020-11-24 Heart valve prosthesis and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2008906045A AU2008906045A0 (en) 2008-11-21 Percutaneous heart valve prosthess and method
AU2008906045 2008-11-21
AU2009900460 2009-02-09
AU2009900460A AU2009900460A0 (en) 2009-02-09 Replacement prosthetic heart valves and methods of implantation

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/130,180 A-371-Of-International US10166014B2 (en) 2008-11-21 2009-11-20 Heart valve prosthesis and method
US16/226,185 Continuation US10856858B2 (en) 2008-11-21 2018-12-19 Heart valve prosthesis and method
US16/226,986 Continuation US10842476B2 (en) 2008-11-21 2018-12-20 Heart valve prosthesis and method

Publications (2)

Publication Number Publication Date
WO2010057262A1 true WO2010057262A1 (en) 2010-05-27
WO2010057262A8 WO2010057262A8 (en) 2010-07-22

Family

ID=42197756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2009/001513 WO2010057262A1 (en) 2008-11-21 2009-11-20 Heart valve prosthesis and method

Country Status (5)

Country Link
US (4) US10166014B2 (de)
EP (3) EP4321134A3 (de)
CN (1) CN102438546B (de)
AU (1) AU2009317876B2 (de)
WO (1) WO2010057262A1 (de)

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972177A (zh) * 2010-11-30 2011-02-16 孔祥清 带瓣膜定位功能的经皮主动脉瓣置换手术用输送装置
WO2012035279A1 (fr) * 2010-09-17 2012-03-22 Centre Hospitalier Régional Universitaire D'amiens Implant destine a être place dans un passage sanguin auriculo-ventriculaire
WO2012094406A1 (en) * 2011-01-04 2012-07-12 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
WO2012095116A1 (de) * 2011-01-11 2012-07-19 Hans Reiner Figulla Klappenprothese zum ersatz einer atrioventricularklappe des herzens
CN103476362A (zh) * 2011-01-11 2013-12-25 汉斯·赖纳·菲古拉 用于替换心脏动脉心室瓣膜的瓣膜假体
US20140031927A1 (en) * 2012-07-27 2014-01-30 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
CN103917194A (zh) * 2011-09-12 2014-07-09 高品质生活简化股份公司 经导管瓣膜假体
CN103987341A (zh) * 2011-01-04 2014-08-13 克利夫兰临床基金会 治疗心脏瓣膜返流的装置和方法
US9034033B2 (en) 2011-10-19 2015-05-19 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9125740B2 (en) 2011-06-21 2015-09-08 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US9241790B2 (en) 2010-05-05 2016-01-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9333074B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9364354B2 (en) 2000-03-27 2016-06-14 Neovasc Medical Ltd Methods for treating abnormal growths in the body using a flow reducing implant
US9375312B2 (en) 2010-07-09 2016-06-28 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US9421098B2 (en) 2010-12-23 2016-08-23 Twelve, Inc. System for mitral valve repair and replacement
US9456896B2 (en) 2008-09-29 2016-10-04 Edwards Lifesciences Cardiaq Llc Body cavity prosthesis
US9480560B2 (en) 2009-09-29 2016-11-01 Edwards Lifesciences Cardiaq Llc Method of securing an intralumenal frame assembly
WO2016183526A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US9744059B2 (en) 2003-11-19 2017-08-29 Neovasc Medical Ltd. Vascular implant
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9827089B2 (en) 2012-12-19 2017-11-28 W. L. Gore & Associates, Inc. Methods for improved prosthetic heart valve with leaflet shelving
US9901443B2 (en) 2011-10-19 2018-02-27 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
US9949827B2 (en) 2009-09-29 2018-04-24 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
US9974669B2 (en) 2005-11-10 2018-05-22 Edwards Lifesciences Cardiaq Llc Percutaneous heart valve
EP2741711B1 (de) 2011-08-11 2018-05-30 Tendyne Holdings, Inc. Verbesserungen für prothesenklappen und damit zusammenhängende erfindungen
US10004599B2 (en) 2014-02-21 2018-06-26 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
US10010414B2 (en) 2014-06-06 2018-07-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US10052199B2 (en) 2014-02-21 2018-08-21 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
AU2014211978B2 (en) * 2013-02-04 2018-11-08 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US10166014B2 (en) 2008-11-21 2019-01-01 Percutaneous Cardiovascular Solutions Pty Ltd Heart valve prosthesis and method
US10179044B2 (en) 2014-05-19 2019-01-15 Edwards Lifesciences Cardiaq Llc Replacement mitral valve
US20190015093A1 (en) * 2010-07-21 2019-01-17 Mitraltech Ltd. Valve prosthesis configured for deployment in annular spacer
US10226330B2 (en) 2013-08-14 2019-03-12 Mitral Valve Technologies Sarl Replacement heart valve apparatus and methods
US10226339B2 (en) 2012-01-31 2019-03-12 Mitral Valve Technologies Sarl Mitral valve docking devices, systems and methods
US10226335B2 (en) 2015-06-22 2019-03-12 Edwards Lifesciences Cardiaq Llc Actively controllable heart valve implant and method of controlling same
US10238490B2 (en) 2015-08-21 2019-03-26 Twelve, Inc. Implant heart valve devices, mitral valve repair devices and associated systems and methods
EP2484309B1 (de) 2011-02-02 2019-04-10 Shlomo Gabbay Herzklappenprothese
US10265172B2 (en) 2016-04-29 2019-04-23 Medtronic Vascular, Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
US10321986B2 (en) 2012-12-19 2019-06-18 W. L. Gore & Associates, Inc. Multi-frame prosthetic heart valve
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10357360B2 (en) 2015-02-05 2019-07-23 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
EP2861186B1 (de) 2012-06-19 2019-07-24 Boston Scientific Scimed, Inc. Herzklappenersatz
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
US10376361B2 (en) 2011-08-05 2019-08-13 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10390952B2 (en) 2015-02-05 2019-08-27 Cardiovalve Ltd. Prosthetic valve with flexible tissue anchor portions
US10426614B2 (en) 2016-08-01 2019-10-01 Cardiovalve Ltd. Minimally-invasive delivery systems
US10433953B2 (en) 2014-12-09 2019-10-08 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10456255B2 (en) 2011-03-21 2019-10-29 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US10463478B2 (en) 2012-12-19 2019-11-05 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US10485660B2 (en) 2010-06-21 2019-11-26 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US10492908B2 (en) 2014-07-30 2019-12-03 Cardiovalve Ltd. Anchoring of a prosthetic valve
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10548726B2 (en) 2009-12-08 2020-02-04 Cardiovalve Ltd. Rotation-based anchoring of an implant
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US10583000B2 (en) 2013-03-14 2020-03-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10588742B2 (en) 2013-08-14 2020-03-17 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US10624742B2 (en) 2013-07-17 2020-04-21 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10631982B2 (en) 2013-01-24 2020-04-28 Cardiovale Ltd. Prosthetic valve and upstream support therefor
US10639143B2 (en) 2016-08-26 2020-05-05 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US10639144B2 (en) 2012-12-19 2020-05-05 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10646340B2 (en) 2016-08-19 2020-05-12 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10702380B2 (en) 2011-10-19 2020-07-07 Twelve, Inc. Devices, systems and methods for heart valve replacement
US10702385B2 (en) 2011-08-05 2020-07-07 Cardiovalve Ltd. Implant for heart valve
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10779946B2 (en) 2018-09-17 2020-09-22 Cardiovalve Ltd. Leaflet-testing apparatus
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10799345B2 (en) 2017-09-19 2020-10-13 Cardiovalve Ltd. Prosthetic valve with protective fabric covering around tissue anchor bases
US10813757B2 (en) 2017-07-06 2020-10-27 Edwards Lifesciences Corporation Steerable rail delivery system
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10959842B2 (en) 2017-09-12 2021-03-30 W. L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US10987218B2 (en) 2017-10-31 2021-04-27 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
EP3178445B1 (de) 2010-01-12 2021-05-05 Valve Medical Ltd. Selbstmontierende modulare perkutane klappe
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
US11065112B2 (en) 2014-08-18 2021-07-20 W. L. Gore & Associates, Inc. Frame with integral sewing cuff for prosthetic valves
US11065122B2 (en) 2017-10-19 2021-07-20 Cardiovalve Ltd. Techniques for use with prosthetic valve leaflets
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
US11090153B2 (en) 2017-10-13 2021-08-17 W. L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
US11109964B2 (en) 2010-03-10 2021-09-07 Cardiovalve Ltd. Axially-shortening prosthetic valve
US11109963B2 (en) 2017-09-27 2021-09-07 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US11123183B2 (en) 2017-10-31 2021-09-21 W. L. Gore & Associates, Inc. Prosthetic heart valve
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
DE102020209823A1 (de) 2020-08-04 2022-02-10 EPflex Feinwerktechnik GmbH. Rohrinstrument mit selbstexpandierender Drahtstruktur
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11291546B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11382746B2 (en) 2017-12-13 2022-07-12 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11471276B2 (en) 2014-09-15 2022-10-18 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
EP2967859B1 (de) 2013-03-15 2023-01-04 Navigate Cardiac Structures, Inc. Kathetergeführte vorrichtung und verfahren für klappenprothesen
US11633277B2 (en) 2018-01-10 2023-04-25 Cardiovalve Ltd. Temperature-control during crimping of an implant
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11723783B2 (en) 2019-01-23 2023-08-15 Neovasc Medical Ltd. Covered flow modifying apparatus
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US11890187B2 (en) 2010-03-05 2024-02-06 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US12029646B2 (en) 2023-06-29 2024-07-09 Cardiovalve Ltd. Prosthetic heart valve

Families Citing this family (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003632A1 (de) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katheter für die transvaskuläre Implantation von Herzklappenprothesen
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
WO2009024859A2 (en) 2007-08-21 2009-02-26 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
DE102007043830A1 (de) * 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Herzklappenstent
US8647381B2 (en) 2007-10-25 2014-02-11 Symetis Sa Stents, valved-stents, and methods and systems for delivery thereof
HUE048270T4 (hu) 2007-12-14 2022-02-28 Edwards Lifesciences Corp Billentyûprotézis
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
ES2903231T3 (es) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent para el posicionamiento y anclaje de una prótesis valvular en un sitio de implantación en el corazón de un paciente
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
DK3501455T3 (da) 2008-06-06 2020-03-02 Edwards Lifesciences Corp Transkateterhjerteklap med lav profil
US8337541B2 (en) 2008-10-01 2012-12-25 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
EP2379008B1 (de) 2008-12-22 2021-02-17 Valtech Cardio, Ltd. Einstellbare annuloplastievorrichtungen
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
EP3269332B1 (de) 2009-11-02 2024-04-17 Boston Scientific Medical Device Limited Aortenbioprothese
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
AU2010328106A1 (en) 2009-12-08 2012-07-05 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US9072603B2 (en) * 2010-02-24 2015-07-07 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
BR112012029896A2 (pt) 2010-05-25 2017-06-20 Jenavalve Tech Inc válcula cardíaca protética para endoprótese e endoprótese
US9579193B2 (en) * 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
CA3063561C (en) 2010-10-05 2023-02-07 Edwards Lifesciences Corporation Prosthetic heart valve
US9005279B2 (en) * 2010-11-12 2015-04-14 Shlomo Gabbay Beating heart buttress and implantation method to prevent prolapse of a heart valve
EP2658480B1 (de) * 2010-12-29 2017-11-01 Neochord Inc. Austauschbares system für minimal invasive reparatur von herzklappenblättchen bei schlagendem herzen
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US10500038B1 (en) 2011-05-20 2019-12-10 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve, and methods and devices for deploying the prosthetic mitral valve
US20140324164A1 (en) * 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2775896B1 (de) 2011-11-08 2020-01-01 Valtech Cardio, Ltd. Gesteuerte lenkfunktionalität für ein implantatabgabewerkzeug
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US20130274873A1 (en) 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
EP2886083B2 (de) 2012-03-23 2024-06-19 Corcym S.r.l. Zusammenklappbare Klappenprothese
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
AU2013264730B2 (en) * 2012-05-20 2018-02-01 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
EP2695586B1 (de) 2012-08-10 2019-05-08 Sorin Group Italia S.r.l. Klappenprothese und Kit
EP3730084A1 (de) 2012-10-23 2020-10-28 Valtech Cardio, Ltd. Gesteuerte lenkfunktionalität für ein implantateinführungswerkzeug
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9398952B2 (en) 2012-12-19 2016-07-26 W. L. Gore & Associates, Inc. Planar zone in prosthetic heart valve leaflet
US9066801B2 (en) 2013-01-08 2015-06-30 Medtronic, Inc. Valve prosthesis and method for delivery
JP6430404B2 (ja) 2013-01-25 2018-11-28 メドテンチア インターナショナル エルティーディ オーワイ 天然の心臓内弁膜の機能代行、および/または、天然の心臓内弁膜の一時的または部分的支援に用いる短期型置換用弁、並びに、この弁の送達方法
WO2014127641A1 (zh) * 2013-02-19 2014-08-28 湖南埃普特医疗器械有限公司 一种左心耳封堵装置以及一种输送系统
EP2967853B1 (de) * 2013-03-12 2019-11-06 Medtronic Inc. Herzklappenprothese
WO2014164364A1 (en) 2013-03-13 2014-10-09 Aortic Innovations, Llc Dual frame stent and valve devices and implantation
ES2940104T3 (es) * 2013-03-15 2023-05-03 Twelve Inc Dispositivos de válvula cardíaca protésica, válvulas mitrales protésicas y sistemas asociados
WO2014144020A1 (en) * 2013-03-15 2014-09-18 Hlt, Inc. Low-profile prosthetic valve structure
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US20140358224A1 (en) * 2013-05-30 2014-12-04 Tendyne Holdlings, Inc. Six cell inner stent device for prosthetic mitral valves
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
WO2014210124A1 (en) 2013-06-25 2014-12-31 Mark Christianson Thrombus management and structural compliance features for prosthetic heart valves
CN105555231B (zh) 2013-08-01 2018-02-09 坦迪尼控股股份有限公司 心外膜锚固装置和方法
EP2835112B1 (de) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Herzklappenprothese
EP4299036A3 (de) 2013-08-12 2024-03-27 Mitral Valve Technologies Sàrl Vorrichtung zur implantation einer herzklappenprothese
CN105491978A (zh) 2013-08-30 2016-04-13 耶拿阀门科技股份有限公司 用于假体瓣膜的径向可折叠框架及其制造方法
JP2016536048A (ja) 2013-10-08 2016-11-24 メディカル リサーチ, インフラストラクチュア アンド ヘルス サービシーズ ファンド オブ ザ テル アビブ メディカル センター 心臓プロテーゼおよびその留置
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US9050188B2 (en) * 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
CN108403261B (zh) 2013-10-28 2021-02-12 坦迪尼控股股份有限公司 假体心脏瓣膜以及用于输送假体心脏瓣膜的系统和方法
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10478290B2 (en) 2013-11-26 2019-11-19 Children's Medical Center Corporation Expandable stent valve
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP2896387A1 (de) * 2014-01-20 2015-07-22 Mitricares Herzklappenverankerungsvorrichtung
WO2015120122A2 (en) * 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
WO2016126942A2 (en) 2015-02-05 2016-08-11 Vidlund Robert M Expandable epicardial pads and devices and methods for delivery of same
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
AU2015229708B2 (en) 2014-03-10 2019-08-15 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
CN106456321B (zh) 2014-05-14 2019-08-27 索林集团意大利有限责任公司 植入设备与植入套件
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
AU2015335808B2 (en) * 2014-10-23 2020-08-06 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
CA2972966C (en) 2015-01-07 2023-01-10 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
CN107613908B (zh) 2015-03-19 2020-03-10 凯森因特万逊奈尔有限公司 用于心脏瓣膜疗法的系统和方法
WO2016168609A1 (en) 2015-04-16 2016-10-20 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
EP3288495B1 (de) 2015-05-01 2019-09-25 JenaValve Technology, Inc. Vorrichtung mit reduzierter herzschrittmacherrate bei herzklappenersatz
CN107920894B (zh) * 2015-07-02 2020-04-28 爱德华兹生命科学公司 整合的混合心脏瓣膜
US10034747B2 (en) 2015-08-27 2018-07-31 Medtronic Vascular, Inc. Prosthetic valve system having a docking component and a prosthetic valve component
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US20170112620A1 (en) * 2015-10-22 2017-04-27 Medtronic Vascular, Inc. Systems and methods of sealing a deployed valve component
CN108992208B (zh) * 2015-11-06 2021-10-26 麦克尔有限公司 二尖瓣假体
CA3005908A1 (en) 2015-12-03 2017-06-08 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US10159568B2 (en) * 2015-12-14 2018-12-25 Medtronic, Inc. Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis
US10500046B2 (en) 2015-12-14 2019-12-10 Medtronic, Inc. Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis
CN108366859B (zh) 2015-12-28 2021-02-05 坦迪尼控股股份有限公司 用于假体心脏瓣膜的心房囊袋闭合件
WO2017117388A1 (en) 2015-12-30 2017-07-06 Caisson Interventional, LLC Systems and methods for heart valve therapy
JP7006940B2 (ja) 2016-01-29 2022-01-24 ニオバスク ティアラ インコーポレイテッド 流出の閉塞を回避するための人工弁
US10363130B2 (en) 2016-02-05 2019-07-30 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
CA3216740A1 (en) 2016-03-24 2017-09-28 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
CN105852916B (zh) * 2016-04-14 2018-02-06 上海甲悦医疗器械有限公司 一种经心尖植入的二尖瓣柔性闭合板阻塞体及植入方法
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
EP3791828B1 (de) * 2016-06-02 2022-10-26 Medtronic Vascular Inc. Transkatheterfreisetzungssystem für herzklappe mit spitzenanordnung für septumöffnungsverschluss
WO2017218375A1 (en) * 2016-06-13 2017-12-21 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US10588745B2 (en) 2016-06-20 2020-03-17 Medtronic Vascular, Inc. Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis
JP6968113B2 (ja) 2016-06-30 2021-11-17 テンダイン ホールディングス,インコーポレイテッド 人工心臓弁の経心尖送達装置
EP3481338A4 (de) * 2016-07-06 2019-12-25 The Methodist Hospital Prothetische mitralklappe mit einem ringförmigen ventrikulären kopplungsmechanismus
EP3484411A1 (de) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Vorrichtung und verfahren für transseptale rückholung von herzklappenprothesen
CN106420114B (zh) * 2016-10-24 2018-06-08 宁波健世生物科技有限公司 一种心脏瓣膜假体
CN106618798B (zh) * 2016-10-24 2019-10-11 宁波健世生物科技有限公司 一种通过室间隔固定的心脏瓣膜假体及其输送和释放方法
CN106344213B (zh) * 2016-10-24 2020-04-17 宁波健世生物科技有限公司 一种非对称的心脏瓣膜假体
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
CN113893064A (zh) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 用于快速收回经导管心脏瓣膜递送系统的方法和系统
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
CN110290764B (zh) 2016-12-21 2022-04-29 特里弗洛心血管公司 心脏瓣膜支撑装置及用于制造和使用该装置的方法
US10653523B2 (en) 2017-01-19 2020-05-19 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
USD867595S1 (en) 2017-02-01 2019-11-19 Edwards Lifesciences Corporation Stent
US10213306B2 (en) 2017-03-31 2019-02-26 Neochord, Inc. Minimally invasive heart valve repair in a beating heart
BR112019020867B1 (pt) * 2017-04-05 2021-08-31 Opus Medical Therapies, Llc. Conjunto médico para implantar minimamente invasivamente uma válvula no coração
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11224511B2 (en) * 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10973633B2 (en) * 2017-05-14 2021-04-13 Navigate Cardiac Structures, Inc. Valved stent for orthotopic replacement of dysfunctional cardiac valve and delivery system
CN114631913A (zh) 2017-05-22 2022-06-17 爱德华兹生命科学公司 瓣膜锚定件和安装方法
US20210401571A9 (en) 2017-05-31 2021-12-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11154399B2 (en) 2017-07-13 2021-10-26 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
ES2959773T3 (es) 2017-08-11 2024-02-28 Edwards Lifesciences Corp Elemento de sellado para válvula cardiaca protésica
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10973628B2 (en) 2017-08-18 2021-04-13 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
WO2019036810A1 (en) 2017-08-25 2019-02-28 Neovasc Tiara Inc. TRANSCATHETER MITRAL VALVULE PROSTHESIS WITH SEQUENTIAL DEPLOYMENT
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
JP2021503341A (ja) * 2017-11-16 2021-02-12 ザ チルドレンズ メディカル センター コーポレーション 幾何学形態対応型心臓弁置換装置
CN109966023A (zh) 2017-12-28 2019-07-05 上海微创心通医疗科技有限公司 心脏瓣膜假体及其支架
CN117481869A (zh) 2018-01-25 2024-02-02 爱德华兹生命科学公司 在部署后用于辅助置换瓣膜重新捕获和重新定位的递送系统
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
WO2019226803A1 (en) 2018-05-22 2019-11-28 Boston Scientific Scimed, Inc. Percutaneous papillary muscle relocation
CA3101165A1 (en) 2018-05-23 2019-11-28 Sorin Group Italia S.R.L. A cardiac valve prosthesis
MX2020013973A (es) 2018-07-12 2021-06-15 Valtech Cardio Ltd Sistemas de anuloplastia y herramientas de bloqueo para ello.
CN112423673A (zh) * 2018-07-18 2021-02-26 W.L.戈尔及同仁股份有限公司 用于分流器、闭塞器、开窗部的医疗设备以及相关的系统和方法
US11357628B2 (en) 2018-08-06 2022-06-14 Thubrikar Aortic Valve, Inc. Apparatus and method for delivery of a prosthetic valve device
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
CN112867468A (zh) 2018-10-19 2021-05-28 爱德华兹生命科学公司 具有非圆柱形框架的假体心脏瓣膜
JP7260930B2 (ja) 2018-11-08 2023-04-19 ニオバスク ティアラ インコーポレイテッド 経カテーテル僧帽弁人工補綴物の心室展開
US11998447B2 (en) 2019-03-08 2024-06-04 Neovasc Tiara Inc. Retrievable prosthesis delivery system
CN113873973B (zh) 2019-03-26 2023-12-22 爱德华兹生命科学公司 假体心脏瓣膜
CN113811265A (zh) 2019-04-01 2021-12-17 内奥瓦斯克迪亚拉公司 能够以可控的方式部署的假体瓣膜
US11491006B2 (en) 2019-04-10 2022-11-08 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
CN114025813B (zh) 2019-05-20 2024-05-14 内奥瓦斯克迪亚拉公司 具有止血机构的引入器
CN113873971A (zh) 2019-05-22 2021-12-31 特里弗洛心血管公司 心脏瓣膜支撑设备
JP2022537559A (ja) 2019-06-20 2022-08-26 ニオバスク ティアラ インコーポレイテッド 薄型人工補綴僧帽弁
CN110279495B (zh) * 2019-06-25 2022-08-26 陈翔 一种自膨胀心脏瓣膜假体
US11944536B2 (en) * 2019-08-13 2024-04-02 The Chinese University Of Hong Kong Transcatheter self-expandable tricuspid valve replacement system
EP3831343B1 (de) 2019-12-05 2024-01-31 Tendyne Holdings, Inc. Geflochtener anker für mitralklappe
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US11992403B2 (en) 2020-03-06 2024-05-28 4C Medical Technologies, Inc. Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells
EP4122401A4 (de) * 2020-03-15 2024-03-27 Shanghai Shape Memory Alloy Co., Ltd. Biologisch abbaubarer verschluss einer fallschirmkonstruktion
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US20210330455A1 (en) * 2020-04-24 2021-10-28 ReValve Solutions Inc. Devices, systems, and methods for a collapsible replacement heart valve
CN111643223B (zh) * 2020-05-13 2023-04-14 中国人民解放军海军军医大学第一附属医院 用于修复或替换心脏的自体瓣膜的移植物
US11707355B2 (en) 2020-05-28 2023-07-25 Medtronic, Inc. Modular heart valve prosthesis
EP4167911A1 (de) 2020-06-18 2023-04-26 Edwards Lifesciences Corporation Crimpverfahren
WO2022039853A1 (en) 2020-08-19 2022-02-24 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US20220304806A1 (en) * 2020-08-25 2022-09-29 Jiangsu Trulive Medtech Co., Ltd. Tricuspid valve prosthesis
US20230263626A1 (en) * 2020-11-23 2023-08-24 Jiangsu Trulive Medtech Co., Ltd. Transseptal mitral valve apparatus and implantation method using the same
BR112023014192A2 (pt) 2021-01-20 2023-10-03 Edwards Lifesciences Corp Saia de conexão para anexar um folheto a uma estrutura de uma válvula cardíaca protética
EP4059793B1 (de) 2021-03-17 2023-09-06 Sherpa Autodiagnostik GmbH Bremsprüfeinrichtung für ein fahrzeug mit mindestens einer antreibbaren achse und verfahren
CN113288518A (zh) * 2021-06-25 2021-08-24 上海臻亿医疗科技有限公司 一种人工心脏瓣膜及其输送系统
EP4316426A1 (de) * 2021-06-25 2024-02-07 Shanghai Trulive Medtech Co., Ltd Künstliche herzklappe und freisetzungssystem dafür
US20240074853A1 (en) * 2021-10-12 2024-03-07 Laguna Tech Usa, Inc. Prosthetic heart valve device, delivery system, interventional system and related method
US20230255634A1 (en) * 2022-02-11 2023-08-17 Boston Scientific Scimed, Inc. Implantable medical device with opposing barbs for bi-directional stability
US11969342B2 (en) 2022-08-03 2024-04-30 The Children's Medical Center Corporation Geometrically-accommodating heart valve replacement device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454799B1 (en) * 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6569196B1 (en) * 1997-12-29 2003-05-27 The Cleveland Clinic Foundation System for minimally invasive insertion of a bioprosthetic heart valve
US20040210307A1 (en) * 2003-04-18 2004-10-21 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
WO2005062980A2 (en) * 2003-12-23 2005-07-14 Sadra Medical, Inc. Repositionable heart valve
WO2006127756A2 (en) * 2005-05-24 2006-11-30 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US20070016288A1 (en) * 2005-07-13 2007-01-18 Gurskis Donnell W Two-piece percutaneous prosthetic heart valves and methods for making and using them
WO2007100410A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
WO2007130537A1 (en) * 2006-05-05 2007-11-15 Children's Medical Center Corporation Transcatheter heart valve prostheses
WO2007149933A2 (en) * 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
WO2009045331A1 (en) * 2007-09-28 2009-04-09 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
WO2009052188A1 (en) * 2007-10-15 2009-04-23 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3739402A (en) 1970-10-15 1973-06-19 Cutter Lab Bicuspid fascia lata valve
US3898701A (en) 1974-01-17 1975-08-12 Russa Joseph Implantable heart valve
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
GB1603634A (en) 1977-05-05 1981-11-25 Nat Res Dev Prosthetic valves
DE2742681C3 (de) 1977-09-22 1980-07-31 Dr. Eduard Fresenius, Chemisch- Pharmazeutische Industrie Kg, 6380 Bad Homburg Prothetisches Verschlußelement zum Ersatz der Mitral- und Tricuspldalklappe im menschlichen Herzen
ES465824A1 (es) 1978-01-07 1978-11-01 Ramos Martinez Wilson Protesis metalica valvular cardiaca.
US4274437A (en) 1980-02-28 1981-06-23 Watts Len S Heart valve
US4407271A (en) 1980-07-28 1983-10-04 Peter Schiff Apparatus for left heart assist
IT1208326B (it) 1984-03-16 1989-06-12 Sorin Biomedica Spa Protesi valvolare cardiaca provvista di lembi valvolari di tessuto biologico
JPS6137235A (ja) 1984-07-31 1986-02-22 テルモ株式会社 人工弁
US4960424A (en) 1988-06-30 1990-10-02 Grooters Ronald K Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
DK124690D0 (da) 1990-05-18 1990-05-18 Henning Rud Andersen Klapprotes til implantering i kroppen for erstatning af naturlig klap samt kateter til brug ved implantering af en saadan klapprotese
FR2663533B1 (fr) 1990-06-22 1997-10-24 Implants Instr Ch Fab Valve cardiaque artificielle.
US5078739A (en) 1990-07-20 1992-01-07 Janus Biomedical, Inc. Bileaflet heart valve with external leaflets
SE500406C2 (sv) 1990-08-09 1994-06-20 Christian Olin Hjärtklaffprotes
RU1767723C (ru) 1990-08-14 1995-01-27 Кирово-Чепецкий химический комбинат Протез клапана сердца
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5207707A (en) 1992-01-16 1993-05-04 Carbomedics, Inc. Tri-leaflet all carbon heart valve
US5628792A (en) 1992-03-13 1997-05-13 Jcl Technic Ab Cardiac valve with recessed valve flap hinges
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US6346074B1 (en) 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
DE69330003T2 (de) 1993-12-14 2001-10-04 Sante Camilli Perkutan implantierbares Ventil für Blutgefässe
US5554184A (en) 1994-07-27 1996-09-10 Machiraju; Venkat R. Heart valve
US5554186A (en) 1994-12-22 1996-09-10 Baxter International Inc. Bileaflet mechanical heart valve having cropped slot pivot configuration and method for preventing blood stagnation therein
WO1996029957A1 (en) 1995-03-29 1996-10-03 CV DYNAMICS, INC., doing business as MEDICAL INCORPORATED Bileaflet heart valve
US6296663B1 (en) 1995-03-29 2001-10-02 Medical Cv, Inc. Bileaflet heart valve having open channel and swivel pivots
US5772694A (en) 1995-05-16 1998-06-30 Medical Carbon Research Institute L.L.C. Prosthetic heart valve with improved blood flow
EP0830112B1 (de) 1995-06-07 2005-11-23 St. Jude Medical, Inc. Prothetische herzklappe mit vergrössertem lumen
CA2227048A1 (en) 1995-08-07 1997-02-20 George Guo Bileaflet mechanical heart valve having arrowhead slot hinge configuration
US5861029A (en) 1996-02-14 1999-01-19 Evdokimov; Sergey V. Heart valve prosthesis
DE19625202A1 (de) 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prothetische Mitral-Herzklappe
NL1004827C2 (nl) 1996-12-18 1998-06-19 Surgical Innovations Vof Inrichting voor het reguleren van de bloedsomloop.
EP0850607A1 (de) 1996-12-31 1998-07-01 Cordis Corporation Klappenprothese zur Implantation in Körperkanälen
EP0930845B1 (de) 1997-06-27 2009-10-14 The Trustees Of Columbia University In The City Of New York Vorrichtung zum Reparieren von Kreislaufklappen
US5908451A (en) 1997-11-25 1999-06-01 Cardiotech International Corporation Prosthetic heart valve
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6096075A (en) 1998-01-22 2000-08-01 Medical Carbon Research Institute, Llc Prosthetic heart valve
US6165183A (en) 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6051022A (en) 1998-12-30 2000-04-18 St. Jude Medical, Inc. Bileaflet valve having non-parallel pivot axes
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
DE60045429D1 (de) 1999-04-09 2011-02-03 Evalve Inc Vorrichtung zur Herzklappenoperation
US6312464B1 (en) 1999-04-28 2001-11-06 NAVIA JOSé L. Method of implanting a stentless cardiac valve prosthesis
EP1057460A1 (de) 1999-06-01 2000-12-06 Numed, Inc. Ersatzventileinrichtung und Verfahren zu ihrer Implantierung
SE514718C2 (sv) 1999-06-29 2001-04-09 Jan Otto Solem Anordning för behandling av bristande tillslutningsförmåga hos mitralisklaffapparaten
US7192442B2 (en) 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
AU6786400A (en) 1999-08-16 2001-03-13 Citron Limited Autologous tissue suture ring used in heart valve implantation
US6485489B2 (en) 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US6312447B1 (en) 1999-10-13 2001-11-06 The General Hospital Corporation Devices and methods for percutaneous mitral valve repair
US6723123B1 (en) 1999-11-10 2004-04-20 Impsa International Incorporated Prosthetic heart valve
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US20020128708A1 (en) 1999-12-09 2002-09-12 Northrup William F. Annuloplasty system
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US20050070999A1 (en) 2000-02-02 2005-03-31 Spence Paul A. Heart valve repair apparatus and methods
BR0108055B1 (pt) 2000-02-02 2011-02-08 válvula artificial e combinação de uma válvula artificial e um instrumento para inserir a válvula artificial.
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
DE10014388A1 (de) 2000-03-23 2001-10-04 Infineon Technologies Ag Verfahren zur Durchführung eines Burn-in-Prozesses eines Speichers
US6569198B1 (en) 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US6840246B2 (en) 2000-06-20 2005-01-11 University Of Maryland, Baltimore Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart
US6358277B1 (en) 2000-06-21 2002-03-19 The International Heart Institute Of Montana Foundation Atrio-ventricular valvular device
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
SE0002878D0 (sv) 2000-08-11 2000-08-11 Kimblad Ola Device and method for treatment of atrioventricular regurgitation
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
WO2004030568A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6616684B1 (en) 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
CA2437824C (en) 2001-02-05 2008-09-23 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
FR2826863B1 (fr) 2001-07-04 2003-09-26 Jacques Seguin Ensemble permettant la mise en place d'une valve prothetique dans un conduit corporel
FR2828091B1 (fr) 2001-07-31 2003-11-21 Seguin Jacques Ensemble permettant la mise en place d'une valve prothetique dans un conduit corporel
FR2828263B1 (fr) 2001-08-03 2007-05-11 Philipp Bonhoeffer Dispositif d'implantation d'un implant et procede d'implantation du dispositif
US20030078654A1 (en) 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
CN101108144A (zh) 2001-10-01 2008-01-23 安普尔医药公司 心脏瓣膜治疗的方法和装置
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US6908478B2 (en) 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US7004958B2 (en) 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
WO2003088873A1 (en) 2002-04-16 2003-10-30 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
AU2003247526A1 (en) 2002-06-12 2003-12-31 Mitral Interventions, Inc. Method and apparatus for tissue connection
US8348963B2 (en) 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
US8172856B2 (en) 2002-08-02 2012-05-08 Cedars-Sinai Medical Center Methods and apparatus for atrioventricular valve repair
ATE384479T1 (de) 2002-08-13 2008-02-15 Gen Hospital Corp Herzvorrichtungen für die perkutane reparatur von atrioventrikulären klappen
US20040092858A1 (en) 2002-08-28 2004-05-13 Heart Leaflet Technologies, Inc. Leaflet valve
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US20040193259A1 (en) 2003-03-25 2004-09-30 Shlomo Gabbay Sizing apparatus for cardiac prostheses and method of using same
DE602004023350D1 (de) 2003-04-30 2009-11-12 Medtronic Vascular Inc Perkutaneingesetzte provisorische Klappe
WO2005002424A2 (en) 2003-07-02 2005-01-13 Flexcor, Inc. Annuloplasty rings and methods for repairing cardiac valves
EP1653888B1 (de) 2003-07-21 2009-09-09 The Trustees of The University of Pennsylvania Perkutane herzklappe
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US20050038509A1 (en) 2003-08-14 2005-02-17 Ashe Kassem Ali Valve prosthesis including a prosthetic leaflet
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US20050096738A1 (en) 2003-10-06 2005-05-05 Cali Douglas S. Minimally invasive valve replacement system
EP2308425B2 (de) 2004-03-11 2023-10-18 Percutaneous Cardiovascular Solutions Pty Limited Perkutane Herzklappenprothese
US7445630B2 (en) 2004-05-05 2008-11-04 Direct Flow Medical, Inc. Method of in situ formation of translumenally deployable heart valve support
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
KR20070094888A (ko) 2004-11-19 2007-09-27 메드트로닉 인코포레이티드 심장판막 치료방법 및 치료장치
SE531468C2 (sv) 2005-04-21 2009-04-14 Edwards Lifesciences Ag En anordning för styrning av blodflöde
US7854762B2 (en) 2005-05-20 2010-12-21 Mayo Foundation For Medical Education And Research Devices and methods for reducing cardiac valve regurgitation
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US20080057007A1 (en) 2006-03-01 2008-03-06 Dentech, Inc. Oral hygiene products containing ascorbic acid and method of using the same
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
WO2007140470A2 (en) 2006-06-01 2007-12-06 Edwards Lifesciences Corporation Prosthetic insert for improving heart valve function
US7556145B2 (en) 2006-12-08 2009-07-07 Habasit Ag Gapless side guard
US20080262593A1 (en) 2007-02-15 2008-10-23 Ryan Timothy R Multi-layered stents and methods of implanting
WO2008103295A2 (en) 2007-02-16 2008-08-28 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
EP4321134A3 (de) 2008-11-21 2024-05-01 Percutaneous Cardiovascular Solutions Pty Limited Herzklappenprothese und verfahren
JP2011215563A (ja) 2009-07-01 2011-10-27 Ricoh Co Ltd 定着液、定着方法、定着装置、画像形成方法及び画像形成装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569196B1 (en) * 1997-12-29 2003-05-27 The Cleveland Clinic Foundation System for minimally invasive insertion of a bioprosthetic heart valve
US6454799B1 (en) * 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US20040210307A1 (en) * 2003-04-18 2004-10-21 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
WO2005062980A2 (en) * 2003-12-23 2005-07-14 Sadra Medical, Inc. Repositionable heart valve
WO2006127756A2 (en) * 2005-05-24 2006-11-30 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US20070016288A1 (en) * 2005-07-13 2007-01-18 Gurskis Donnell W Two-piece percutaneous prosthetic heart valves and methods for making and using them
WO2007100410A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
WO2007130537A1 (en) * 2006-05-05 2007-11-15 Children's Medical Center Corporation Transcatheter heart valve prostheses
WO2007149933A2 (en) * 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
WO2009045331A1 (en) * 2007-09-28 2009-04-09 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
WO2009052188A1 (en) * 2007-10-15 2009-04-23 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2358297A4

Cited By (378)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9364354B2 (en) 2000-03-27 2016-06-14 Neovasc Medical Ltd Methods for treating abnormal growths in the body using a flow reducing implant
US10542994B2 (en) 2000-03-27 2020-01-28 Neovasc Medical Ltd. Methods for treating abnormal growths in the body using a flow reducing implant
US11497503B2 (en) 2000-03-27 2022-11-15 Neovasc Medical Ltd. Methods for treating abnormal growths in the body using a flow reducing implant
US11564818B2 (en) 2003-11-19 2023-01-31 Neovase Medical Ltd. Vascular implant
US9744059B2 (en) 2003-11-19 2017-08-29 Neovasc Medical Ltd. Vascular implant
US9974669B2 (en) 2005-11-10 2018-05-22 Edwards Lifesciences Cardiaq Llc Percutaneous heart valve
US10456277B2 (en) 2005-11-10 2019-10-29 Edwards Lifesciences Cardiaq Llc Percutaneous heart valve
US8784483B2 (en) 2007-11-19 2014-07-22 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US11819404B2 (en) 2008-09-29 2023-11-21 Edwards Lifesciences Cardiaq Llc Heart valve
US10646334B2 (en) 2008-09-29 2020-05-12 Edwards Lifesciences Cardiaq Llc Heart valve
US10149756B2 (en) 2008-09-29 2018-12-11 Edwards Lifesciences Cardiaq Llc Heart valve
US9456896B2 (en) 2008-09-29 2016-10-04 Edwards Lifesciences Cardiaq Llc Body cavity prosthesis
US11589983B2 (en) 2008-09-29 2023-02-28 Edwards Lifesciences Cardiaq Llc Heart valve
US10842476B2 (en) 2008-11-21 2020-11-24 Percutaneous Cardiovascular Solutions Pty Ltd Heart valve prosthesis and method
US10166014B2 (en) 2008-11-21 2019-01-01 Percutaneous Cardiovascular Solutions Pty Ltd Heart valve prosthesis and method
US10856858B2 (en) 2008-11-21 2020-12-08 Percutaneous Cardiovascular Solutions Pty Ltd Heart valve prosthesis and method
US9339380B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant
US11376119B2 (en) 2009-04-15 2022-07-05 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9339378B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9333073B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery method
US9339379B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US10441412B2 (en) 2009-04-15 2019-10-15 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9333074B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9585747B2 (en) 2009-04-15 2017-03-07 Edwards Lifesciences Cardiaq Llc Vascular implant
US9949827B2 (en) 2009-09-29 2018-04-24 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US10524901B2 (en) 2009-09-29 2020-01-07 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US10166097B2 (en) 2009-09-29 2019-01-01 Edwards Lifesciences Cardiaq Llc Replacement heart valve and method
US9480560B2 (en) 2009-09-29 2016-11-01 Edwards Lifesciences Cardiaq Llc Method of securing an intralumenal frame assembly
US10610359B2 (en) 2009-12-08 2020-04-07 Cardiovalve Ltd. Folding ring prosthetic heart valve
US11351026B2 (en) 2009-12-08 2022-06-07 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US10548726B2 (en) 2009-12-08 2020-02-04 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11839541B2 (en) 2009-12-08 2023-12-12 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
EP3178445B1 (de) 2010-01-12 2021-05-05 Valve Medical Ltd. Selbstmontierende modulare perkutane klappe
US11890187B2 (en) 2010-03-05 2024-02-06 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US11918461B2 (en) 2010-03-05 2024-03-05 Edwards Lifesciences Corporation Methods for treating a deficient native mitral valve
US11109964B2 (en) 2010-03-10 2021-09-07 Cardiovalve Ltd. Axially-shortening prosthetic valve
US10449042B2 (en) 2010-05-05 2019-10-22 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US11419720B2 (en) 2010-05-05 2022-08-23 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US11432924B2 (en) 2010-05-05 2022-09-06 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9241790B2 (en) 2010-05-05 2016-01-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9248014B2 (en) 2010-05-05 2016-02-02 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9770329B2 (en) 2010-05-05 2017-09-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US10485660B2 (en) 2010-06-21 2019-11-26 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US11452597B2 (en) 2010-06-21 2022-09-27 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US10639146B2 (en) 2010-06-21 2020-05-05 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US11311377B2 (en) 2010-07-09 2022-04-26 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US11446140B2 (en) 2010-07-09 2022-09-20 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US9375312B2 (en) 2010-07-09 2016-06-28 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US11259921B2 (en) 2010-07-09 2022-03-01 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US11883283B2 (en) 2010-07-09 2024-01-30 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US11259922B2 (en) 2010-07-09 2022-03-01 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US9931206B2 (en) 2010-07-09 2018-04-03 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US10512456B2 (en) 2010-07-21 2019-12-24 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10531872B2 (en) * 2010-07-21 2020-01-14 Cardiovalve Ltd. Valve prosthesis configured for deployment in annular spacer
US20190015093A1 (en) * 2010-07-21 2019-01-17 Mitraltech Ltd. Valve prosthesis configured for deployment in annular spacer
US11426155B2 (en) 2010-07-21 2022-08-30 Cardiovalve Ltd. Helical anchor implantation
WO2012035279A1 (fr) * 2010-09-17 2012-03-22 Centre Hospitalier Régional Universitaire D'amiens Implant destine a être place dans un passage sanguin auriculo-ventriculaire
FR2964855A1 (fr) * 2010-09-17 2012-03-23 Ct Hospitalier Regional Universitaire D Amiens Implant destine a etre place dans un passage sanguin auriculo-ventriculaire
US10610362B2 (en) 2010-09-23 2020-04-07 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
US10881510B2 (en) 2010-09-23 2021-01-05 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
WO2012071754A1 (zh) * 2010-11-30 2012-06-07 Kong Xiangqing 带瓣膜定位功能的经皮主动脉瓣置换手术用输送装置
CN101972177A (zh) * 2010-11-30 2011-02-16 孔祥清 带瓣膜定位功能的经皮主动脉瓣置换手术用输送装置
US11571303B2 (en) 2010-12-23 2023-02-07 Twelve, Inc. System for mitral valve repair and replacement
US9770331B2 (en) 2010-12-23 2017-09-26 Twelve, Inc. System for mitral valve repair and replacement
US9421098B2 (en) 2010-12-23 2016-08-23 Twelve, Inc. System for mitral valve repair and replacement
US10517725B2 (en) 2010-12-23 2019-12-31 Twelve, Inc. System for mitral valve repair and replacement
AU2012204392B2 (en) * 2011-01-04 2015-06-11 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
WO2012094406A1 (en) * 2011-01-04 2012-07-12 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
CN103987341A (zh) * 2011-01-04 2014-08-13 克利夫兰临床基金会 治疗心脏瓣膜返流的装置和方法
CN103476362A (zh) * 2011-01-11 2013-12-25 汉斯·赖纳·菲古拉 用于替换心脏动脉心室瓣膜的瓣膜假体
CN103517688A (zh) * 2011-01-11 2014-01-15 汉斯·赖纳·菲古拉 用来替代心脏房室瓣的瓣膜假体
US9687342B2 (en) 2011-01-11 2017-06-27 Hans Reiner Figulla Valve prosthesis for replacing an atrioventricular valve of the heart with anchoring element
WO2012095116A1 (de) * 2011-01-11 2012-07-19 Hans Reiner Figulla Klappenprothese zum ersatz einer atrioventricularklappe des herzens
EP2484309B1 (de) 2011-02-02 2019-04-10 Shlomo Gabbay Herzklappenprothese
US10779938B2 (en) 2011-02-23 2020-09-22 Edwards Lifesciences Cardiaq Llc Replacement heart valve and method
US11903825B2 (en) 2011-02-23 2024-02-20 Edwards Lifesciences Cardiaq Llc Replacement heart valve and method
US10456255B2 (en) 2011-03-21 2019-10-29 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US11931252B2 (en) 2011-03-21 2024-03-19 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9713529B2 (en) 2011-04-28 2017-07-25 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9579196B2 (en) 2011-06-21 2017-02-28 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10028827B2 (en) 2011-06-21 2018-07-24 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10034750B2 (en) 2011-06-21 2018-07-31 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11712334B2 (en) 2011-06-21 2023-08-01 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11523900B2 (en) 2011-06-21 2022-12-13 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US9585751B2 (en) 2011-06-21 2017-03-07 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10751173B2 (en) 2011-06-21 2020-08-25 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US9125740B2 (en) 2011-06-21 2015-09-08 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US9572662B2 (en) 2011-06-21 2017-02-21 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11951005B2 (en) 2011-08-05 2024-04-09 Cardiovalve Ltd. Implant for heart valve
US11864995B2 (en) 2011-08-05 2024-01-09 Cardiovalve Ltd. Implant for heart valve
US11291547B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US11291546B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US11291545B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Implant for heart valve
US11690712B2 (en) 2011-08-05 2023-07-04 Cardiovalve Ltd. Clip-secured implant for heart valve
US11344410B2 (en) 2011-08-05 2022-05-31 Cardiovalve Ltd. Implant for heart valve
US11369469B2 (en) 2011-08-05 2022-06-28 Cardiovalve Ltd. Method for use at a heart valve
US10376361B2 (en) 2011-08-05 2019-08-13 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10702385B2 (en) 2011-08-05 2020-07-07 Cardiovalve Ltd. Implant for heart valve
US11517429B2 (en) 2011-08-05 2022-12-06 Cardiovalve Ltd. Apparatus for use at a heart valve
US11517436B2 (en) 2011-08-05 2022-12-06 Cardiovalve Ltd. Implant for heart valve
US10695173B2 (en) 2011-08-05 2020-06-30 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11484404B2 (en) 2011-08-11 2022-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11364116B2 (en) 2011-08-11 2022-06-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US10639145B2 (en) 2011-08-11 2020-05-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11311374B2 (en) 2011-08-11 2022-04-26 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US10617519B2 (en) 2011-08-11 2020-04-14 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123181B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123180B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
EP2741711B1 (de) 2011-08-11 2018-05-30 Tendyne Holdings, Inc. Verbesserungen für prothesenklappen und damit zusammenhängende erfindungen
US11135055B2 (en) 2011-08-11 2021-10-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11382737B2 (en) 2011-08-11 2022-07-12 Tendyne Holdings, Inc. Prosthetic valves and related inventions
CN103917194A (zh) * 2011-09-12 2014-07-09 高品质生活简化股份公司 经导管瓣膜假体
CN103917194B (zh) * 2011-09-12 2017-02-15 高品质生活简化股份公司 经导管瓣膜假体
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10299927B2 (en) 2011-10-19 2019-05-28 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
EP2750630B1 (de) 2011-10-19 2021-06-30 Twelve, Inc. Vorrichtung für den ersatz einer herzklappe
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10052204B2 (en) 2011-10-19 2018-08-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11197758B2 (en) 2011-10-19 2021-12-14 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10016271B2 (en) 2011-10-19 2018-07-10 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10945835B2 (en) 2011-10-19 2021-03-16 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9034033B2 (en) 2011-10-19 2015-05-19 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10702380B2 (en) 2011-10-19 2020-07-07 Twelve, Inc. Devices, systems and methods for heart valve replacement
US10299917B2 (en) 2011-10-19 2019-05-28 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11617648B2 (en) 2011-10-19 2023-04-04 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9901443B2 (en) 2011-10-19 2018-02-27 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10335278B2 (en) 2011-10-19 2019-07-02 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11628063B2 (en) 2011-10-19 2023-04-18 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9295552B2 (en) 2011-10-19 2016-03-29 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11826249B2 (en) 2011-10-19 2023-11-28 Twelve, Inc. Devices, systems and methods for heart valve replacement
US11497603B2 (en) 2011-10-19 2022-11-15 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9034032B2 (en) 2011-10-19 2015-05-19 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11413139B2 (en) 2011-11-23 2022-08-16 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US10537422B2 (en) 2011-11-23 2020-01-21 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US11376124B2 (en) 2012-01-31 2022-07-05 Mitral Valve Technologies Sarl Valve docking devices, systems and methods
US11925553B2 (en) 2012-01-31 2024-03-12 Mitral Valve Technologies Sarl Valve docking devices, systems and methods
US10226339B2 (en) 2012-01-31 2019-03-12 Mitral Valve Technologies Sarl Mitral valve docking devices, systems and methods
US11166812B2 (en) 2012-01-31 2021-11-09 Mitral Valve Technologies Sari Valve docking devices, systems and methods
US11497602B2 (en) 2012-02-14 2022-11-15 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US10363133B2 (en) 2012-02-14 2019-07-30 Neovac Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US11129714B2 (en) 2012-03-01 2021-09-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US10258468B2 (en) 2012-03-01 2019-04-16 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US10016275B2 (en) 2012-05-30 2018-07-10 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US11389294B2 (en) 2012-05-30 2022-07-19 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US11617650B2 (en) 2012-05-30 2023-04-04 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US10940001B2 (en) 2012-05-30 2021-03-09 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US10314705B2 (en) 2012-05-30 2019-06-11 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
EP2861186B1 (de) 2012-06-19 2019-07-24 Boston Scientific Scimed, Inc. Herzklappenersatz
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US11950999B2 (en) 2012-07-25 2024-04-09 Edwards Lifesciences Corporation Everting transcatheter valve and methods
JP2020049266A (ja) * 2012-07-27 2020-04-02 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated マルチフレーム人工弁装置及び方法
US20140031927A1 (en) * 2012-07-27 2014-01-30 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
JP7044752B2 (ja) 2012-07-27 2022-03-30 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド マルチフレーム人工弁装置
US10376360B2 (en) * 2012-07-27 2019-08-13 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US10639144B2 (en) 2012-12-19 2020-05-05 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11872122B2 (en) 2012-12-19 2024-01-16 Edwards Lifesciences Corporation Methods for improved prosthetic heart valve with leaflet shelving
US10463478B2 (en) 2012-12-19 2019-11-05 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US10881507B2 (en) 2012-12-19 2021-01-05 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US9827089B2 (en) 2012-12-19 2017-11-28 W. L. Gore & Associates, Inc. Methods for improved prosthetic heart valve with leaflet shelving
US10660745B2 (en) 2012-12-19 2020-05-26 W. L. Gore & Associates, Inc. Methods for improved prosthetic heart valve with leaflet shelving
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves
US10321986B2 (en) 2012-12-19 2019-06-18 W. L. Gore & Associates, Inc. Multi-frame prosthetic heart valve
US11039917B2 (en) 2012-12-19 2021-06-22 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US10631982B2 (en) 2013-01-24 2020-04-28 Cardiovale Ltd. Prosthetic valve and upstream support therefor
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
EP2948103B1 (de) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventrikulär verankerte klappenprothesen
US11135059B2 (en) 2013-01-24 2021-10-05 Cardiovalve Ltd. Prosthetic valve and upstream support therefor
US10835377B2 (en) 2013-01-24 2020-11-17 Cardiovalve Ltd. Rolled prosthetic valve support
US10799347B1 (en) 2013-02-04 2020-10-13 Edwards Lifesciences Corporation Prosthetic heart valve with atrial sealing member
US10463481B2 (en) 2013-02-04 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
AU2014211978B2 (en) * 2013-02-04 2018-11-08 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US11951001B2 (en) 2013-03-14 2024-04-09 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grapsing intralumenal tissue and methods of delivery
US11324591B2 (en) 2013-03-14 2022-05-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10583000B2 (en) 2013-03-14 2020-03-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10716664B2 (en) 2013-03-14 2020-07-21 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
EP2967859B1 (de) 2013-03-15 2023-01-04 Navigate Cardiac Structures, Inc. Kathetergeführte vorrichtung und verfahren für klappenprothesen
US11389291B2 (en) 2013-04-04 2022-07-19 Neovase Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10383728B2 (en) 2013-04-04 2019-08-20 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US11234821B2 (en) 2013-05-20 2022-02-01 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10624742B2 (en) 2013-07-17 2020-04-21 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US11234811B2 (en) 2013-08-14 2022-02-01 Mitral Valve Technologies Sarl Replacement heart valve systems and methods
US10588742B2 (en) 2013-08-14 2020-03-17 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US11523899B2 (en) 2013-08-14 2022-12-13 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US11229515B2 (en) 2013-08-14 2022-01-25 Mitral Valve Technologies Sarl Replacement heart valve systems and methods
US11304797B2 (en) 2013-08-14 2022-04-19 Mitral Valve Technologies Sarl Replacement heart valve methods
US12011348B2 (en) 2013-08-14 2024-06-18 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US10226330B2 (en) 2013-08-14 2019-03-12 Mitral Valve Technologies Sarl Replacement heart valve apparatus and methods
US11633279B2 (en) 2014-02-21 2023-04-25 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
US10052199B2 (en) 2014-02-21 2018-08-21 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US10952849B2 (en) 2014-02-21 2021-03-23 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
US10004599B2 (en) 2014-02-21 2018-06-26 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
US10898320B2 (en) 2014-02-21 2021-01-26 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US11974914B2 (en) 2014-02-21 2024-05-07 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US11045313B2 (en) 2014-05-19 2021-06-29 Edwards Lifesciences Cardiaq Llc Replacement mitral valve
US10179044B2 (en) 2014-05-19 2019-01-15 Edwards Lifesciences Cardiaq Llc Replacement mitral valve
US10010414B2 (en) 2014-06-06 2018-07-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US10687939B2 (en) 2014-06-06 2020-06-23 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US11684471B2 (en) 2014-06-06 2023-06-27 Edwards Lifesciences Corporation Prosthetic valve for replacing a native mitral or tricuspid valve
US11872130B2 (en) 2014-07-30 2024-01-16 Cardiovalve Ltd. Prosthetic heart valve implant
US11701225B2 (en) 2014-07-30 2023-07-18 Cardiovalve Ltd. Delivery of a prosthetic valve
US10524910B2 (en) 2014-07-30 2020-01-07 Mitraltech Ltd. 3 Ariel Sharon Avenue Articulatable prosthetic valve
US10492908B2 (en) 2014-07-30 2019-12-03 Cardiovalve Ltd. Anchoring of a prosthetic valve
US11065112B2 (en) 2014-08-18 2021-07-20 W. L. Gore & Associates, Inc. Frame with integral sewing cuff for prosthetic valves
US11951000B2 (en) 2014-09-12 2024-04-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US10653519B2 (en) 2014-09-12 2020-05-19 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US11406493B2 (en) 2014-09-12 2022-08-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US11471276B2 (en) 2014-09-15 2022-10-18 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10869755B2 (en) 2014-12-09 2020-12-22 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US11147665B2 (en) 2014-12-09 2021-10-19 Cepha Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10548721B2 (en) 2014-12-09 2020-02-04 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10433953B2 (en) 2014-12-09 2019-10-08 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10888422B2 (en) 2015-02-05 2021-01-12 Cardiovalve Ltd. Prosthetic valve with flexible tissue anchor portions
US10973636B2 (en) 2015-02-05 2021-04-13 Cardiovalve Ltd. Prosthetic valve with tissue anchors free from lateral interconnections
US10507105B2 (en) 2015-02-05 2019-12-17 Cardiovalve Ltd. Prosthetic valve with tissue anchors free from lateral interconnections
US10849748B2 (en) 2015-02-05 2020-12-01 Cardiovalve Ltd. Prosthetic valve delivery system with independently-movable capsule portions
US10524903B2 (en) 2015-02-05 2020-01-07 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US11793635B2 (en) 2015-02-05 2023-10-24 Cardiovalve Ltd. Prosthetic valve with angularly offset frames
US10463487B2 (en) 2015-02-05 2019-11-05 Cardiovalve Ltd. Prosthetic valve delivery system with independently-movable capsule portions
US11534298B2 (en) 2015-02-05 2022-12-27 Cardiovalve Ltd. Prosthetic valve with s-shaped tissue anchors
US10864078B2 (en) 2015-02-05 2020-12-15 Cardiovalve Ltd. Prosthetic valve with separably-deployable valve body and tissue anchors
US10357360B2 (en) 2015-02-05 2019-07-23 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US11793638B2 (en) 2015-02-05 2023-10-24 Cardiovalve Ltd. Prosthetic valve with pivoting tissue anchor portions
US10463488B2 (en) 2015-02-05 2019-11-05 Cardiovalve Ltd. Prosthetic valve with separably-deployable valve body and tissue anchors
US10758344B2 (en) 2015-02-05 2020-09-01 Cardiovalve Ltd. Prosthetic valve with angularly offset frames
US11672658B2 (en) 2015-02-05 2023-06-13 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US10449047B2 (en) 2015-02-05 2019-10-22 Cardiovalve Ltd. Prosthetic heart valve with compressible frames
US10918481B2 (en) 2015-02-05 2021-02-16 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US10390952B2 (en) 2015-02-05 2019-08-27 Cardiovalve Ltd. Prosthetic valve with flexible tissue anchor portions
US10736742B2 (en) 2015-02-05 2020-08-11 Cardiovalve Ltd. Prosthetic valve with atrial arms
US10722360B2 (en) 2015-02-05 2020-07-28 Cardiovalve Ltd. Prosthetic valve with radially-deflectable tissue anchors
US10426610B2 (en) 2015-02-05 2019-10-01 Cardiovalve Ltd. Prosthetic valve with radially-deflectable tissue anchors
US10695177B2 (en) 2015-02-05 2020-06-30 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US10667908B2 (en) 2015-02-05 2020-06-02 Cardiovalve Ltd. Prosthetic valve with S-shaped tissue anchors
US10682227B2 (en) 2015-02-05 2020-06-16 Cardiovalve Ltd. Prosthetic valve with pivoting tissue anchor portions
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
EP3285690B1 (de) 2015-04-21 2020-09-02 Edwards Lifesciences Corporation Perkutane mitralklappenersatzvorrichtung
US11850147B2 (en) 2015-04-21 2023-12-26 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US11389292B2 (en) 2015-04-30 2022-07-19 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP3294221A4 (de) * 2015-05-14 2019-01-16 Cephea Valve Technologies, Inc. Ersatz von mitralklappen
US10555808B2 (en) 2015-05-14 2020-02-11 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016183526A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US11617646B2 (en) 2015-05-14 2023-04-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US20180000580A1 (en) * 2015-05-14 2018-01-04 Dan Wallace Replacement mitral valves
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US11786373B2 (en) 2015-05-14 2023-10-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
AU2016262564B2 (en) * 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
US11083576B2 (en) 2015-06-22 2021-08-10 Edwards Lifesciences Cardiaq Llc Actively controllable heart valve implant and method of controlling same
US10226335B2 (en) 2015-06-22 2019-03-12 Edwards Lifesciences Cardiaq Llc Actively controllable heart valve implant and method of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US10842620B2 (en) 2015-06-23 2020-11-24 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US11844690B2 (en) 2015-06-23 2023-12-19 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US11576782B2 (en) 2015-08-21 2023-02-14 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10820996B2 (en) 2015-08-21 2020-11-03 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10238490B2 (en) 2015-08-21 2019-03-26 Twelve, Inc. Implant heart valve devices, mitral valve repair devices and associated systems and methods
US10758345B2 (en) 2015-08-26 2020-09-01 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US12023245B2 (en) 2015-08-26 2024-07-02 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement valve
US12004949B2 (en) 2015-08-26 2024-06-11 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US11278405B2 (en) 2015-08-26 2022-03-22 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement valve
US11253364B2 (en) 2015-08-28 2022-02-22 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US11298117B2 (en) 2016-02-16 2022-04-12 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
US11033390B2 (en) 2016-04-29 2021-06-15 Medtronic Vascular, Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
US10265172B2 (en) 2016-04-29 2019-04-23 Medtronic Vascular, Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11224507B2 (en) 2016-07-21 2022-01-18 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US10952850B2 (en) 2016-08-01 2021-03-23 Cardiovalve Ltd. Minimally-invasive delivery systems
US10426614B2 (en) 2016-08-01 2019-10-01 Cardiovalve Ltd. Minimally-invasive delivery systems
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US10646340B2 (en) 2016-08-19 2020-05-12 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve
US11931258B2 (en) 2016-08-19 2024-03-19 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve and methods of use
US10639143B2 (en) 2016-08-26 2020-05-05 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US11504229B2 (en) 2016-08-26 2022-11-22 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US11510778B2 (en) 2016-11-02 2022-11-29 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US11090158B2 (en) 2017-01-23 2021-08-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US10828153B2 (en) 2017-01-23 2020-11-10 Cephea Valve Technologies, Inc. Replacement mitral valves
US10568737B2 (en) 2017-01-23 2020-02-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US11633278B2 (en) 2017-01-23 2023-04-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US11058535B2 (en) 2017-01-23 2021-07-13 Cephea Valve Technologies, Inc. Replacement mitral valves
US11737873B2 (en) 2017-04-18 2023-08-29 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US11389295B2 (en) 2017-04-18 2022-07-19 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US11654021B2 (en) 2017-04-18 2023-05-23 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US11786370B2 (en) 2017-05-11 2023-10-17 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US11559398B2 (en) 2017-06-02 2023-01-24 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US11464659B2 (en) 2017-06-06 2022-10-11 Twelve, Inc. Crimping device for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11123186B2 (en) 2017-07-06 2021-09-21 Edwards Lifesciences Corporation Steerable delivery system and components
US11883287B2 (en) 2017-07-06 2024-01-30 Edwards Lifesciences Corporation Steerable rail delivery system
US11877926B2 (en) 2017-07-06 2024-01-23 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10813757B2 (en) 2017-07-06 2020-10-27 Edwards Lifesciences Corporation Steerable rail delivery system
US12016772B2 (en) 2017-07-06 2024-06-25 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US11571298B2 (en) 2017-08-03 2023-02-07 Cardiovalve Ltd. Prosthetic valve with appendages
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10959842B2 (en) 2017-09-12 2021-03-30 W. L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
US10881511B2 (en) 2017-09-19 2021-01-05 Cardiovalve Ltd. Prosthetic valve with tissue anchors configured to exert opposing clamping forces on native valve tissue
US12023243B2 (en) 2017-09-19 2024-07-02 Cardiovalve Ltd. Prosthetic valve with protective fabric covering around tissue anchor bases
US10905548B2 (en) 2017-09-19 2021-02-02 Cardio Valve Ltd. Prosthetic valve with protective sleeve around an outlet rim
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US11819405B2 (en) 2017-09-19 2023-11-21 Cardiovalve Ltd. Prosthetic valve with inflatable cuff configured for radial extension
US11337804B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Prosthetic valve with radially-deformable tissue anchors configured to restrict axial valve migration
US11337803B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Prosthetic valve with inner and outer frames connected at a location of tissue anchor portion
US10856972B2 (en) 2017-09-19 2020-12-08 Cardiovalve Ltd. Prosthetic valve with angularly offset atrial anchoring arms and ventricular anchoring legs
US11304806B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with atrial tissue anchors having variable flexibility and ventricular tissue anchors having constant flexibility
US11304804B2 (en) 2017-09-19 2022-04-19 Cardiovalve, Ltd. Prosthetic valve with connecting struts of variable size and tissue anchoring legs of variable size that extend from junctions
US11318015B2 (en) 2017-09-19 2022-05-03 Cardiovalve Ltd. Prosthetic valve configured to fill a volume between tissue anchors with native valve tissue
US10799345B2 (en) 2017-09-19 2020-10-13 Cardiovalve Ltd. Prosthetic valve with protective fabric covering around tissue anchor bases
US10905549B2 (en) 2017-09-19 2021-02-02 Cardiovalve Ltd. Prosthetic valve with overlapping atrial tissue anchors and ventricular tissue anchors
US11337802B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Heart valve delivery systems and methods
US11864996B2 (en) 2017-09-19 2024-01-09 Cardiovalve Ltd. Prosthetic valve with protective sleeve around an outlet rim
US11318014B2 (en) 2017-09-19 2022-05-03 Cardiovalve Ltd. Prosthetic valve delivery system with multi-planar steering
US11304805B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors
US11857412B2 (en) 2017-09-27 2024-01-02 Edwards Lifesciences Corporation Prosthetic valve with expandable frame and associated systems and methods
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
US11109963B2 (en) 2017-09-27 2021-09-07 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US11986387B2 (en) 2017-09-27 2024-05-21 Edwards Lifesciences Corporation Prosthetic valves with mechanically coupled leaflets
US11090153B2 (en) 2017-10-13 2021-08-17 W. L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
US11980547B2 (en) 2017-10-19 2024-05-14 Cardiovalve Ltd. Techniques for use with prosthetic valve leaflets
US11648122B2 (en) 2017-10-19 2023-05-16 Cardiovalve Ltd. Techniques for use with prosthetic valve leaflets
US11065122B2 (en) 2017-10-19 2021-07-20 Cardiovalve Ltd. Techniques for use with prosthetic valve leaflets
US11974916B2 (en) 2017-10-31 2024-05-07 Edwards Lifesciences Corporation Jacket for surgical heart valve
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11123183B2 (en) 2017-10-31 2021-09-21 W. L. Gore & Associates, Inc. Prosthetic heart valve
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US10987218B2 (en) 2017-10-31 2021-04-27 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
US11872131B2 (en) 2017-12-13 2024-01-16 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11382746B2 (en) 2017-12-13 2022-07-12 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11872124B2 (en) 2018-01-10 2024-01-16 Cardiovalve Ltd. Temperature-control during crimping of an implant
US11633277B2 (en) 2018-01-10 2023-04-25 Cardiovalve Ltd. Temperature-control during crimping of an implant
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
US11491011B2 (en) 2018-09-17 2022-11-08 Cardiovalve Ltd. Leaflet-grouping system
US10779946B2 (en) 2018-09-17 2020-09-22 Cardiovalve Ltd. Leaflet-testing apparatus
US11883293B2 (en) 2018-09-17 2024-01-30 Cardiovalve Ltd. Leaflet-grouping system
US11026792B2 (en) 2018-09-17 2021-06-08 Cardiovalve Ltd. Leaflet-grouping system
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
US11723783B2 (en) 2019-01-23 2023-08-15 Neovasc Medical Ltd. Covered flow modifying apparatus
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
WO2022029111A1 (en) 2020-08-04 2022-02-10 Epflex Feinwerktechnik Gmbh Tubular instrument with self-expanding wire structure
DE102020209823A1 (de) 2020-08-04 2022-02-10 EPflex Feinwerktechnik GmbH. Rohrinstrument mit selbstexpandierender Drahtstruktur
US12029646B2 (en) 2023-06-29 2024-07-09 Cardiovalve Ltd. Prosthetic heart valve

Also Published As

Publication number Publication date
AU2009317876B2 (en) 2014-01-16
EP2358297A1 (de) 2011-08-24
AU2009317876A1 (en) 2011-07-07
US10856858B2 (en) 2020-12-08
US20210077083A1 (en) 2021-03-18
EP2358297A4 (de) 2014-10-29
EP4321134A2 (de) 2024-02-14
CN102438546A (zh) 2012-05-02
EP2358297B1 (de) 2019-09-11
CN102438546B (zh) 2015-07-15
US20190117206A1 (en) 2019-04-25
US20190125323A1 (en) 2019-05-02
EP4321134A3 (de) 2024-05-01
US10842476B2 (en) 2020-11-24
WO2010057262A8 (en) 2010-07-22
EP3613383B1 (de) 2023-08-30
US10166014B2 (en) 2019-01-01
EP3613383A1 (de) 2020-02-26
US20120101571A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US10856858B2 (en) Heart valve prosthesis and method
US20200360138A1 (en) Method and Design for a Mitral Regurgitation Treatment Device
KR102393787B1 (ko) 심장 판막 회복 장치 및 이를 임플란트하는 방법
US8870949B2 (en) Transcatheter heart valve with micro-anchors
US8408214B2 (en) Method for implanting prosthetic valve
EP2999433B1 (de) Transkatheter-herzklappe für mitral- oder trikuspidklappenersatz
US20160120643A1 (en) Transcatheter cardiac valve prosthetic
EP3184082B1 (de) Stent für ein chirurgisches ventil
US20200138573A1 (en) Transcatheter pulmonic regenerative valve
US20210386547A1 (en) Device for cardiac valve repair and method of implanting the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155165.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827051

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009317876

Country of ref document: AU

Ref document number: 2009827051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009317876

Country of ref document: AU

Date of ref document: 20091120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130180

Country of ref document: US