WO2010055825A1 - ジンケート型亜鉛めっき浴 - Google Patents

ジンケート型亜鉛めっき浴 Download PDF

Info

Publication number
WO2010055825A1
WO2010055825A1 PCT/JP2009/069108 JP2009069108W WO2010055825A1 WO 2010055825 A1 WO2010055825 A1 WO 2010055825A1 JP 2009069108 W JP2009069108 W JP 2009069108W WO 2010055825 A1 WO2010055825 A1 WO 2010055825A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
zincate
zinc
galvanizing bath
compound
Prior art date
Application number
PCT/JP2009/069108
Other languages
English (en)
French (fr)
Inventor
和生 伊藤
智子 石川
Original Assignee
ユケン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユケン工業株式会社 filed Critical ユケン工業株式会社
Priority to US13/126,888 priority Critical patent/US20110210007A1/en
Priority to JP2010537773A priority patent/JP5419021B2/ja
Priority to EP09826073A priority patent/EP2357268A4/en
Publication of WO2010055825A1 publication Critical patent/WO2010055825A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc

Definitions

  • the present invention relates to a zincate-type galvanizing bath used for forming a galvanized film by electroplating on automobile steel plates, bolts, nuts and the like.
  • Zinc plating films are widely used for objects around us, from the purpose of improving corrosion resistance to mechanical parts made of steel plates such as automobile steel plates and bolts and nuts. Also, zinc alloy plating films such as zinc-nickel alloy, zinc-iron alloy, tin-zinc alloy are widely used in response to demands for improving heat resistance and salt water resistance.
  • the galvanized film is formed by electroplating performed by passing a current in a state where the object to be plated is immersed in a plating bath and energizing the object to be plated.
  • Plating baths for forming galvanized films are broadly divided into alkaline baths and acidic baths. Alkali baths include cyanide baths and zincate zinc plating baths, and acidic baths include zinc chloride baths and zinc sulfate baths. . These plating baths are appropriately selected according to desired conditions such as the hardness and gloss of the galvanized film, the shape and size of the object to be plated, and the working environment.
  • zincate galvanizing baths are preferred because they do not use cyanide, which imposes a burden on wastewater treatment, and the bath composition is simple and easy to manage, and can be applied to small press items, bolts, nuts, etc.
  • Industrial implementation has been made.
  • the galvanized film obtained using a zincate-type galvanizing bath also has drawbacks such as poor electrodeposition and covering power when compared with a cyanide bath of the same alkaline bath.
  • the zincate-type galvanizing bath is very effective for forming a galvanized film in an industrial environment, and many improved types have been developed so far (for example, Patent Document 1). reference).
  • Patent Document 1 discloses a zincate-type galvanizing bath containing a bath-soluble quaternary ammonium polymer, and this zincate-type galvanizing bath is one of the excellent ones improved in recent years.
  • a galvanized film having a high uniform electrodeposition and a high gloss can be formed even on a complex shape or length having a difference in current density.
  • the zincate-type zinc plating bath disclosed in Patent Document 1 has a high current portion and a low current by suppressing the plating efficiency in the high current portion when performing electroplating in which a wide current density distribution occurs.
  • the difference in the thickness of the galvanized film at the part is reduced, and the throwing power is improved. Therefore, in this zincate type galvanizing bath, a thin galvanized film having a uniform film thickness is formed. Therefore, an effect not seen in the above-mentioned conventionally known zincate-type zinc plating baths, that is, in the electroplating in which a wide range of current density distribution occurs, the main factor is improvement of plating efficiency at a low current density.
  • an object of the present invention is to provide a zincate-type galvanizing bath capable of efficiently forming a galvanized film even by performing electroplating at a low current density. Specifically, it is to provide a zincate-type galvanizing bath having high plating efficiency and high throwing power in performing electroplating at a low current density. In electroplating, where a wide current density distribution including a low current density (0.05 to 1.0 A / dm 2 ) occurs, the main factor is an improvement in plating efficiency at a low current density.
  • An object of the present invention is to provide a zincate-type galvanizing bath that forms a galvanized film having a thick film thickness and exhibits high throwing power. Another object of the present invention is to provide a zincate-type galvanizing bath capable of forming a high-quality galvanized film having high glossiness.
  • the present inventors have intensively studied various compounds that can be contained in the primary brightener, the plating accelerator, and the secondary brightener. As a result, the present inventors have completed the present invention. That is, according to the present invention, the following zincate galvanizing bath is provided.
  • a zincate zinc plating bath for depositing a metal containing at least zinc by electroplating to form a zinc plating film, which has a function of refining the deposited crystal of the metal.
  • a zincate-type galvanizing bath containing an agent and a plating accelerator containing a heterocyclic compound represented by the following chemical formula (I) and / or a derivative of the heterocyclic compound.
  • n is a natural number of 1 to 3
  • R 1 and R 2 are the same or different, and hydrogen, CH 2 COOH, CH 2 CH 2 OH, or CH 2 CH (Represents (OH) CH 2 Cl.)
  • n is a natural number of 1 or more.
  • R 1 , R 2 , R 3 , and R 4 are the same or different, and are hydrogen, methyl, ethyl, isopropyl, 2 -Hydroxyethyl-CH 2 CH 2 (OCH 2 CH 2 ) X OH (X is a natural number of 0-6) or 2-hydroxyethyl-CH 2 CH 2 (OCCH 2 CH 2 ) X OH (X is 0-6)
  • R 5 represents (CH 2 ) 2 —O— (CH 2 ) 2 , (CH 2 ) 2 —O— (CH 2 ) 2 —O— (CH 2 ) 2 , or CH 2 —CHOH. Represents —CH 2 —O—CH 2 —CHOH—CH 2 , Y represents S or O.
  • the zincate-type galvanizing bath of the present invention makes it possible to form a galvanized film efficiently. Specifically, high electroplating efficiency and high throwing power are exhibited in the implementation of electroplating at a low current density. In addition, when electroplating is performed in a wide current density range including a low current density (0.05 to 1.0 A / dm 2 ), the main factor is an improvement in plating efficiency at a low current density. It exhibits high throwing power and forms a thick galvanized film.
  • the zincate-type galvanizing bath of the present invention contains a water-soluble cationic polymer compound having a specific structure (represented by the following chemical formula (III)) and a secondary brightener as a primary brightener, It is possible to form a high-quality galvanized film.
  • Zincate-type galvanizing bath 1-1. Summary of the zincate zinc plating bath of the present invention:
  • the zincate-type zinc plating bath of the present invention deposits a metal containing at least zinc by electroplating to form a galvanized film.
  • the composition of the plating bath of the present invention will be described.
  • the plating bath of the present invention can also contain a secondary brightener having a function of smoothing the galvanized film.
  • n is a natural number of 1 to 3
  • R 1 and R 2 are the same or different, and hydrogen, CH 2 COOH, CH 2 CH 2 OH, or CH 2 CH (Represents (OH) CH 2 Cl.)
  • the plating bath of the present invention contains zincate zinc ([Zn (OH) 4 ] 2 ⁇ ) in the same manner as a conventionally known zincate type zinc plating bath.
  • the term “primary brightener” as used herein is the same as what a person skilled in the art of plating refers to as a primary brightener, a carrier, a stress suppressor, and the like. And has a function of relaxing internal stress of the galvanized film.
  • the term “secondary brightener” as used herein is the same as those used by those skilled in the plating field as secondary brighteners, levelers, and the like. When forming a galvanized film by electroplating, a galvanized film is used. It is responsible for the smoothing action.
  • These primary brighteners and secondary brighteners literally have a function of forming a glossy galvanized film.
  • a primary brightener and a secondary brightener in combination, the refinement of the deposited metal is further promoted, and the galvanized film can be given a specular gloss.
  • compounds contained in the primary brightener and the secondary brightener can be employed according to the appearance of the galvanized film, such as matte plating, semi-gloss plating, and bright plating (details will be described later).
  • the “plating accelerator” used herein is an additive having a precipitation promoting action used by those skilled in the plating field in plating processing, and is a substance that accelerates the electrode reaction of plating to increase the current density.
  • the name of the plating film is generically referred to as a “zinc plating film”, which includes zinc as a main metal component, and in particular, a plating film containing an alloy of zinc and another metal as a component. When it is necessary to refer to them separately, they will be referred to as “zinc alloy plating film” (for example, Zn—Ni alloy plating film).
  • the plating bath of the present invention it is possible to efficiently form a galvanized film even when electroplating is performed in a low current region, and furthermore, high-quality galvanizing with high glossiness under predetermined conditions. It is possible to form a film.
  • the plating bath of the present invention has high throwing power, throwing power, and plating efficiency even when electroplating is performed in a low current region. Therefore, the plating bath of the present invention can also be effectively applied to barrel plating in which electroplating in a low current region is normally performed (details will be described later).
  • the plating bath of the present invention contains zincate zinc ([Zn (OH) 4 ] 2 ⁇ ) in the same manner as the conventionally known zincate-type zinc plating bath, and zincate zinc is usually used by those skilled in the plating art. Can be adopted as appropriate.
  • zincate zinc (ZnO) is dissolved in an alkaline aqueous solution such as a sodium hydroxide (NaOH) aqueous solution in the same manner as in a conventionally known method. It may be prepared.
  • the plating bath of the present invention preferably contains 5 g / L or more and 20 g / L or less of zinc ions from the viewpoint of practicality regarding the quality (appearance, film thickness, post-treatment property, corrosion resistance) of the galvanized film. If the zinc ion contained in the plating bath is less than 5 g / L, the corrosion resistance is deteriorated due to a decrease in the appearance of the zinc plating film and a decrease in the thickness of the zinc plating film. Further, if the zinc contained in the plating bath exceeds 20 g / L, it is not preferable because the appearance of the galvanized film is poor and the throwing power is lowered.
  • the amount of zinc ions contained in the plating bath here can be the amount of zinc ions (Zn 2+ ) calculated in terms of molecular weight from the mass of raw materials such as zinc oxide (ZnO).
  • sodium hydroxide NaOH
  • the concentration of sodium hydroxide is too high and it is not practical.
  • Plating accelerator The plating accelerator contained in the plating bath of the present invention is characterized by containing a heterocyclic compound represented by the above chemical formula (I) and / or a derivative of this heterocyclic compound.
  • the “derivative of the heterocyclic compound represented by the above chemical formula (I)” here means a derivative of 1,3,4-thiadiazole.
  • Specific examples of the compound represented by the chemical formula (I) and derivatives thereof include 2,5-dimercapto-1,3,4-thiadiazole, 2-thioacetic acid-5-mercapto-1,3,4- Thiadiazole, 2,5-dithioacetic acid-1,3,4-thiadiazole, 2-hydroxyethylthio-5-mercapto-1,3,4-thiadiazole, 2,5-dihydroxyethylthio-1,3,4-thiadiazole And epichlorohydrin modified 2,5-dimercapto-1,3,4-thiadiazole.
  • FIG. 1 shows 2,5-dimercapto-1,3,4-thiadiazole as an example of the heterocyclic compound represented by the above chemical formula (I) and its derivative, and this 2,5-dimercapto-1,3 It schematically shows what is assumed as a state where 4-thiadiazole is adsorbed on the surface to be plated.
  • two substituents and sulfur constituting a 5-membered ring are chemically adsorbed to the surface to be plated.
  • the space between the surface of the plating surface and the sulfur constituting the two substituents represented by polka dots in FIG. 1 and the five-membered ring is likely to cause a reduction reaction. Presumably, precipitation is promoted.
  • the heterocyclic compound represented by the chemical formula (I) and / or its derivative is contained in an amount of 0.01 g / L or more and 1.0 g / L or less. It is preferred that
  • heterocyclic compound represented by the above formula (I) described above, derivatives thereof, and compounds produced based on these compounds are subjected to plating efficiency when performing electroplating using the plating bath of the present invention. Contributes greatly to the improvement.
  • These heterocyclic compounds and derivatives thereof have a function of imparting high gloss to the galvanized film formed in the plating bath of the present invention, in other words, imparting high gloss.
  • the plating bath of the present invention contains a primary brightener.
  • a primary brightener As the primary brightener contained in the plating bath of the present invention, water-soluble highly-soluble surfactants such as anionic surfactants, nonionic surfactants, and polyalkylene polyamines that are generally used as primary brighteners in various zinc plating baths. Examples thereof include molecular organic compounds.
  • the primary brightener preferably contains a water-soluble cationic polymer compound.
  • water-soluble cationic polymer compound examples include polyallylamine, polyamide polyamine, polyepoxy polyamine, and polyalkylene polyamine.
  • polyallylamine examples include copolymers of polydiallyldimethylammonium chloride sulfur dioxide.
  • polyepoxypolyamines include condensation polymers of ethylenediamine and epichlorohydrin, condensation polymers of dimethylaminopropylamine and epichlorohydrin, condensation polymers of imidazole and epichlorohydrin, and imidazole derivatives such as 1-methylimidazole and 2-methylimidazole.
  • condensation polymers of epichlorohydrin and condensation polymers of heterocyclic amines including triazine derivatives such as acetoguanamine and benzoguanamine and epichlorohydrin examples thereof include condensation polymers of epichlorohydrin and condensation polymers of heterocyclic amines including triazine derivatives such as acetoguanamine and benzoguanamine and epichlorohydrin.
  • Polyamide polyamines include polyamine polyurea resins having specific examples of condensation polymers of 3-dimethylaminopropylurea and epichlorohydrin, condensation polymers of bis (N, N-dimethylaminopropyl) urea and epichlorohydrin, and N Specific examples include water-soluble nylon resins such as a condensation polymer of N, dimethylaminopropylamine, alkylenedicarboxylic acid and epichlorohydrin.
  • polyalkylene polyamine examples include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenepentamine, a condensation polymer of dimethylaminopropylamine and 2,2′-dichlorodiethyl ether, dimethylaminopropylamine and 1 , 3-dichloropropane condensation polymer, N, N, N ′, N′-tetramethyl-1,3-diaminopropane and 2,2′-dichlorodiethyl ether, N, N , N ′, N′-tetramethyl-1,3-diaminopropane and 1,4-dichlorobutane, and N, N, N ′, N′-tetramethyl-1,3-diaminopropane and 1 And a condensation polymer with 3-dichloropropan-2-ol.
  • the above-mentioned water-soluble cationic polymer compound has the following chemical formula (II) from the viewpoint of improving the throwing power and throwing power. It is more preferable to contain the compound represented.
  • n is a natural number of 1 or more.
  • R 1 , R 2 , R 3 , and R 4 are the same or different, and are hydrogen, methyl, ethyl, isopropyl, 2 -Hydroxyethyl-CH 2 CH 2 (OCH 2 CH 2 ) X OH (X is a natural number of 0-6) or 2-hydroxyethyl-CH 2 CH 2 (OCCH 2 CH 2 ) X OH (X is 0-6)
  • R 5 represents (CH 2 ) 2 —O— (CH 2 ) 2 , (CH 2 ) 2 —O— (CH 2 ) 2 —O— (CH 2 ) 2 , or CH 2 —CHOH. Represents —CH 2 —O—CH 2 —CHOH—CH 2 , Y represents S or O.
  • Secondary brightener The plating bath of the present invention optionally contains a secondary brightener.
  • Examples of the secondary brightener include those containing organic aldehydes and / or heterocyclic compounds.
  • the secondary brightener used in the plating bath of the present invention preferably contains at least one of an aromatic aldehyde and a pyridinium compound.
  • aromatic aldehyde preferably contained as the secondary brightener in the plating bath of the present invention examples include anisaldehyde, veratraldehyde, salicylaldehyde, vanillin, piperonal, and p-hydroxybenzaldehyde.
  • the aromatic aldehyde contained as the secondary brightener used in the plating bath of the present invention is verataldehyde and vanillin. Is more preferable.
  • Examples of the pyridinium compound that is preferably contained as a secondary brightener in the plating bath of the present invention include benzylpyridinium carboxylate (3-carboxybenzylpyridinium chloride) and 3-carbamoylbenzylpyridinium chloride.
  • the plating bath of the present invention is not limited to a zinc plating film containing only zinc as a main component, but also a zinc-nickel alloy (hereinafter referred to as “Zn—Ni alloy”), a zinc-iron alloy (hereinafter referred to as “Zn—Fe alloy”).
  • Zn—Ni alloy zinc-nickel alloy
  • Zn—Fe—Fe alloy zinc-iron alloy
  • the present invention can also be applied to applications in which a zinc alloy plating film such as zinc-iron-nickel alloy (hereinafter referred to as “Zn—Fe—Ni alloy”) is formed by electroplating.
  • a zinc plating film Zn- Ni alloy film or Zn—Fe—Ni alloy film
  • the plating bath of the present invention can be used for forming Zn-Ni alloy plating film, nickel ion, for forming Zn-Fe alloy plating film, for iron ion, and for forming Zn-Fe-Ni alloy.
  • nickel ions are contained in the plating bath of the present invention, for example, NiSO 4 .6H 2 O, NiCl 2 .6H 2 O, Ni (OH) 2 and the like can be dissolved in the plating bath.
  • iron ions are contained in the plating bath of the present invention, for example, Fe 2 (SO 4 ) 3 ⁇ 7H 2 O, FeSO 4 ⁇ 7H 2 O, Fe (OH) 3 , FeCl 3 ⁇ 6H 2 O, FeCl it can be dissolved and 2 ⁇ 4H 2 O.
  • nickel ions when nickel ions are contained, nickel ions are contained in an amount of 100 mg / L or more and 4000 mg / L or less from the viewpoint of improving the quality (appearance, film thickness, post-treatment property, corrosion resistance) of the galvanized film. It is preferable to do.
  • the nickel ion contained in the plating bath is less than 100 mg / L or more than 4000 mg / L, it is not possible to obtain a satisfactory one in required appearance, post-processability, chemical conversion treatment, corrosion resistance, heat resistance, and the like.
  • iron ions when iron ions are contained, iron ions are contained in an amount of 10 mg / L or more and 150 mg / L or less from the viewpoint of improving the quality (appearance, film thickness, post-processing property, corrosion resistance) of the galvanized film. It is preferable to do.
  • the iron ion contained in the plating bath is less than 10 mg / L or more than 150 mg / L, it is not possible to obtain a satisfactory one in required appearance, post-processability, chemical conversion property, corrosion resistance, heat resistance, and the like.
  • the plating bath of the present invention includes, for example, tartaric acid, citric acid, gluconic acid, ethylenediamine, hexamine, 1,2-diamino as a chelating agent.
  • NTA nitrilotriacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • T HA triethylenetetramine hexaacetic acid
  • FIG. 2 shows a conventional zincate-type zinc plating bath (including a known improvement type prior to the filing of the present application) and the zincate-type zinc plating bath of the present invention when electroplating that causes a wide current density distribution is performed.
  • the plating efficiency is high at a high current density, and the plating efficiency is low at a low current density (dashed line A in FIG. 2).
  • Such variation in plating efficiency due to the difference in current density is caused by the fact that zinc deposition is limitedly promoted at a high current density.
  • the plating efficiency at a low current density is enhanced (see the solid line C in FIG. 2, for details, see the evaluation test 4 in the examples described later).
  • the main factor of the improvement of the plating efficiency at this low current density is that the throwing power is improved in the plating bath of the present invention. Therefore, in the plating bath of the present invention, a uniform galvanized film having a high average plating efficiency and a large film thickness can be formed (for details, refer to Evaluation Test 3 in Examples described later).
  • Example 1 As shown in Table 1, the composition of zinc ion 8 g / L, sodium hydroxide 100 g / L, dimethylaminopropylamine and epichlorohydrin as a primary brightener in a molar ratio of 1: 1 (compound A in Table 1, Verataldehyde sodium sulfite adduct (manufactured by Wako Pure Chemical Industries, Ltd.) obtained by reacting and dissolving URSA CHEMIE GMBH, product number: Product J 138 M) in a sodium hydrogen sulfite solution as a secondary brightener, 0.4 g / L.
  • Example 2 As shown in Table 1, zinc ion 6 g / L, sodium hydroxide 100 g / L, water-soluble cationic polymer compound represented by the following chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL TM WT, manufactured by Rhodia (formerly Rhone-Poulenc), CAS No.
  • Example 3 As shown in Table 1, zinc ion 9 g / L, sodium hydroxide 120 g / L, water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL TM WT, manufactured by Rhodia, CAS No. 68555-36-2) 0.6 g / L, secondary brightener verataldehyde 0.025 g / L, plating accelerator 2, A zincate type galvanizing bath containing 0.075 g / L of 5-dimercapto-1,3,4-thiadiazole (Compound J in Table 1) was prepared.
  • a primary brightener Compound B in Table 1, trade name
  • MIRAPOL TM WT manufactured by Rhodia, CAS No. 68555-36-2
  • Example 4 As shown in Table 1, zinc ion 12g / L, sodium hydroxide 120g / L, water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL (trademark) WT, manufactured by Rhodia, CAS No. 68555-36-2) 1.0 g / L, anisaldehyde sodium sulfite adduct 0.025 g / L as a secondary brightener, plating accelerator A zincate-type galvanizing bath containing 2,00-dimercapto-1,3,4-thiadiazole (Compound J in Table 1) as 0.100 g / L was prepared.
  • a primary brightener Compound B in Table 1, trade name
  • MIRAPOL (trademark) WT manufactured by Rhodia, CAS No. 68555-36-2
  • Example 5 As shown in Table 1, zinc ion 15 g / L, sodium hydroxide 135 g / L, water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL TM WT, manufactured by Rhodia, CAS No. 68555-36-2) 1.5 g / L, anisaldehyde sodium sulfite adduct 0.050 g / L as a secondary brightener, plating accelerator A zincate-type galvanizing bath containing 2,5-dimercapto-1,3,4-thiadiazole (compound J in Table 1) as 0.200 g / L was prepared.
  • a primary brightener Compound B in Table 1, trade name
  • MIRAPOL TM WT manufactured by Rhodia, CAS No. 68555-36-2
  • Example 6 As shown in Table 1, zinc ion 12 g / L, sodium hydroxide 125 g / L, polydiallyldimethylammonium chloride sulfur dioxide copolymer as the primary brightener (compound C in Table 1, trade name: diallyldimethylammonium 0.4 g / L of chloride / sulfur dioxide copolymer [quaternary amine / SO 2 ], manufactured by Nittobo Co., Ltd., product number: PAS-A-5, benzylpyridinium carboxylate aqueous solution (manufactured by BASF Corp., Lugalvan BPC-48) ) Containing 0.06 g / L of benzylpyridinium carboxylate as a secondary brightener and 0.050 g / L of 2,5-dimercapto-1,3,4-thiadiazole (compound J in Table 1) as a plating accelerator.
  • a zincate-type galvanizing bath was prepared.
  • Example 7 As shown in Table 1, a condensation polymer obtained by reacting zinc ion 13 g / L, sodium hydroxide 130 g / L, and ethylenediamine and epichlorohydrin as a primary brightener in a molar ratio 1: 2 (compounds in Table 1 D, manufactured by URSA CHEMIE GMBH, product number: Product JF 220) 1.5 g / L, veratraldehyde sodium sulfite adduct 0.03 g / L as a secondary brightener, 2,5-dimercapto-1 as a plating accelerator , 3,4-thiadiazole (Compound J in Table 1) 0.100 g / L was prepared.
  • Example 9 As shown in Table 1, zinc ion 10 g / L, sodium hydroxide 100 g / L, a water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL (trademark) WT, manufactured by Rhodia, CAS No. 68555-36-2) 1.0 g / L, anisaldehyde sodium sulfite adduct 0.03 g / L as a secondary brightener, plating accelerator A zincate-type galvanizing bath containing 0.060 g / L of 2,5-dimercapto-1,3,4-thiadiazole (Compound J in Table 1) was prepared.
  • a primary brightener Compound B in Table 1, trade name
  • MIRAPOL (trademark) WT manufactured by Rhodia, CAS No. 68555-36-2
  • Example 10 As shown in Table 1, zinc ion 18 g / L, sodium hydroxide 140 g / L, water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL TM WT, manufactured by Rhodia, CAS No.
  • Example 11 As shown in Table 1, 16 g / L of zinc ions, 140 g / L of sodium hydroxide, a water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B of Table 1, trade name) : MIRAPOL TM WT, manufactured by Rhodia, CAS No.
  • Example 12 As shown in Table 1, zinc ion 13 g / L, sodium hydroxide 130 g / L, a water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL TM WT, Rhodia, CAS No.
  • Example 13 As shown in Table 1, zinc ion 12g / L, sodium hydroxide 120g / L, water-soluble cationic polymer compound represented by the above chemical formula (III) as a primary brightener (Compound B in Table 1, trade name) : MIRAPOL (TM) WT, Rhodia, CAS No.
  • Example 8 For zinc-nickel alloy plating film: (Example 8) As shown in Table 1, zinc ion 11 g / L, nickel ion 2.25 g / L, sodium hydroxide 120 g / L, tetraethylenepentamine 30 g / L as a primary brightener (compound E in Table 1), A zincate type zinc plating bath containing 0.080 g / L of a plating accelerator 2,5-dimercapto-1,3,4-thiadiazole (Compound J in Table 1) was prepared.
  • Evaluation test of zincate type zinc plating bath With respect to the zincate type zinc plating baths of Examples 1 to 13 and Comparative Examples 1 to 3, electroplating was performed according to each evaluation item described below, and the formed zinc plating film was inspected.
  • Electroplating The plating baths of Examples 1 to 13 and Comparative Examples 1 to 3 are accommodated in a liquid circulation type hull cell (trade name: Smart Hull Cell, manufactured by Yamamoto Plating Tester Co., Ltd., product number: B-53-SM) with a stirrer speed of 1000 rpm. Then, electroplating was performed.
  • a liquid circulation type hull cell (trade name: Smart Hull Cell, manufactured by Yamamoto Plating Tester Co., Ltd., product number: B-53-SM) with a stirrer speed of 1000 rpm. Then, electroplating was performed.
  • the electroplating conditions were a current of 0.5 A (current density of 0.05 to 2.5 A / dm 2 ), an energization time of 60 minutes, and a plating bath temperature of 25 ° C.
  • Table 2 shows the results of evaluation tests for visually judging the gloss of the galvanized film with respect to the zincate type zinc plating baths of Examples 1 to 13 and Comparative Examples 1 to 3.
  • Table 2 shows the results of evaluation tests for visually judging the gloss of the galvanized film with respect to the zincate type zinc plating baths of Examples 1 to 13 and Comparative Examples 1 to 3.
  • the galvanized film formed in No. 2 was glossy on the whole surface, whereas the galvanized film formed in Comparative Example 2 was semi-glossy. Therefore, it has been found that 2,5-dimercapto-1,3,4-thiadiazole contained as a plating accelerator has an effect of improving the gloss of the galvanized film.
  • Example 11 2-hydroxyethylthio-5-mercapto-1,3 containing 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole (Compound K in Table 1) as the plating accelerator.
  • Example 12 containing 1,4-thiadiazole (Compound L in Table 1) and Example 13 containing Epichlorohydrin-modified 2,5-dimercapto-1,3,4-thiadiazole (Compound M in Table 1) were also galvanized. It was found to have an effect of improving the gloss of the film.
  • the “whole surface gloss” in Table 2 refers to a surface that is close to a uniform mirror surface.
  • glosss in Table 2 means that the surface is glossy but slightly dull.
  • “Semi-gloss” refers to a material that is less glossy.
  • “Whole white surface” means a uniform matte surface.
  • a trivalent chromium black chemical conversion treatment agent (trade name: METASU YFB-SA / SB, manufactured by Yuken Kogyo Co., Ltd.) Chemical conversion treatment was performed at 35 ° C. for 45 seconds under the condition of pH 2.2. Next, the plated product was subjected to a finishing treatment with a finishing agent (trade name: Metas CR-U3 / I2, manufactured by Yuken Kogyo Co., Ltd.), and then dried at 80 ° C. for 20 minutes.
  • a finishing treatment (trade name: Metas CR-U3 / I2, manufactured by Yuken Kogyo Co., Ltd.), and then dried at 80 ° C. for 20 minutes.
  • barrel plating is performed using the zincate-type zinc plating baths of Examples 1 to 13 and Comparative Examples 1 to 3, respectively, and then a chemical conversion treatment is performed to form a zinc plating film (hereinafter referred to as “chemical conversion treatment zinc plating film”). ) was formed.
  • Table 2 shows the results of evaluation tests in which the zincate-type zinc plating baths of Examples 1 to 13 and Comparative Examples 1 to 3 were visually confirmed for blackness and gloss with respect to the chemical conversion-treated zinc plating film.
  • the chemical conversion-treated galvanized films formed in Examples 1 to 5 and Examples 8 to 13 had good blackness and glossiness.
  • the chemical conversion treatment galvanized films formed in Examples 6 and 7 had good blackness and slightly good gloss (the definition of “slightly good” is described later).
  • the formation formed in Comparative Example 1 which is a contrast to Example 1 with or without 2,5-dimercapto-1,3,4-thiadiazole (compound J in Table 1) contained as a plating accelerator.
  • Electroplating The plating bath of Example 9 was accommodated in a liquid circulation type hull cell (trade name: Smart Hull Cell, manufactured by Yamamoto Plating Tester Co., Ltd., product number: B-53-SM) with a stirrer rotation speed of 1000 rpm, and electroplating was performed.
  • a liquid circulation type hull cell (trade name: Smart Hull Cell, manufactured by Yamamoto Plating Tester Co., Ltd., product number: B-53-SM) with a stirrer rotation speed of 1000 rpm, and electroplating was performed.
  • an iron plate having a length x width x thickness of 45 x 45 x 1 mm is used as an anode for forming a galvanized film
  • an iron plate having a length x width x thickness of 67 x 100 x 0.3 mm manufactured by Yamamoto Metal Tester is used as a cathode.
  • the electroplating conditions were a current of 1.0 A, an energization time of 15 minutes, and a plating bath temperature of 30 ° C.
  • FIG. 3 shows the relationship between the current density distribution and the film thickness of the galvanized film.
  • the theoretically derived current density distribution is indicated by white circles ( ⁇ )
  • the thickness of the galvanized film theoretically derived from the current density of this theoretical value is indicated by white triangles ( ⁇ ). Show.
  • the solid line indicates the film thickness
  • the broken line indicates the current density.
  • the actual measured values of the thickness of the galvanized film in this test using the plating bath of Example 9 are plotted with filled triangle marks.
  • Electroplating By electroplating using the zincate type zinc plating baths of Examples 1 to 7, 9 to 13, and Comparative Examples 1 to 3, cold rolled steel sheets (SPCC) having a length ⁇ width ⁇ thickness of 50 ⁇ 25 ⁇ 0.5 mm were obtained. A galvanized film was formed on both sides to a total of 0.25 dm 2 . The electroplating conditions were an average current density of 1.0 A / dm 2 and an energization time of 20 minutes at a plating bath temperature of 25 ° C.
  • Table 2 shows the results of evaluation tests on plating efficiency and the ratio (percentage) of the plating efficiency values of Comparative Example 1 for the plating baths of Examples 1 to 7, 9 to 13, and Comparative Examples 1 to 3.
  • Examples 1, 2, and 9 containing 2,5-dimercapto-1,3,4-thiadiazole as a plating accelerator were examined.
  • Examples 1 to 7 and 9 to 13 containing compounds J, K, L, and M shown in Table 1 as plating accelerators showed a high numerical value of plating efficiency of 84 or more. Therefore, it was found that 2,5-dimercapto-1,3,4-thiadiazole contained as a plating accelerator has an effect of increasing plating efficiency at a current density of 1.5 A / dm 2 or less.
  • the plating efficiency of Comparative Example 1 was 16 to 31%. There was a significant increase in plating efficiency.
  • the plating bath containing the water-soluble cationic polymer compound (MIRAPOL TM WT) represented by the above chemical formula (III) also belongs to the prior art. Compared to the increase in plating efficiency of 7% and 13% in the plating baths of Comparative Examples 2 and 3, respectively, the increase in plating efficiency of 16 to 31% in the plating baths of Examples 1 to 7 and 9 to 13 is It is very significant.
  • Electroplating Plating of Examples 1 to 7, 9 to 13 and Comparative Examples 1 to 3 on a liquid circulation type hull cell (trade name: Smart Hull Cell, manufactured by Yamamoto Plating Tester Co., Ltd., product number: B-53-SM) with a stirrer speed of 1000 rpm Each bath was housed and electroplated. In addition, an iron plate having a length ⁇ width ⁇ thickness of 67 ⁇ 100 ⁇ 0.3 mm manufactured by Yamamoto Metal Tester Co., Ltd. was used as the cathode. The electroplating conditions were a current of 0.5 A (current density of 0.05 to 2.5 A / dm 2 ), an energization time of 60 minutes, and a plating bath temperature of 25 ° C.
  • the film thickness of the galvanized film was measured at the following two measurement points for the above-described iron plate as a cathode. At the position in the center of the plating surface in the depth direction of the plating tank when it is placed in the hull cell (plating tank) on the surface of the iron plate, the position of 10 mm is measured from the high current density end toward the low current density end side. Point A was designated. In addition, a position of 85 mm from the high current density end toward the low current density end side at the same depth as the measurement point A on the same surface of the same iron plate was defined as the measurement point B.
  • the film thickness of the galvanized film at measurement points A and B was measured with a fluorescent X-ray film thickness meter (SFT-9200, manufactured by SII).
  • the uniform electrodeposition was calculated by the ratio (percentage) of the film thickness at point B to the film thickness at point A of the galvanized film.
  • Table 2 shows the results of evaluation tests on the throwing power of the zincate galvanizing baths of Examples 1 to 7, 9 to 13, and Comparative Examples 1 to 3.
  • Example 1 and Comparative Example 1 as a control with and without 2,5-dimercapto-1,3,4-thiadiazole (compound J in Table 1) contained in the plating accelerator, and Example 2 Each pair with Comparative Example 2 is verified.
  • the throwing power value obtained by the above calculation method was 47.9 in Example 1, but 30.7 in Comparative Example 1.
  • the value of throwing power was 66.3 in Example 2 and 60.8 in Comparative Example 2. From these comparisons, it has been shown that the addition of 2,5-dimercapto-1,3,4-thiadiazole to the plating accelerator improves the throwing power exhibited by the zincate zinc plating bath.
  • the plating baths of Examples 2 to 5, 9 to 13 and Comparative Example 2 contain a water-soluble cationic polymer compound (MIRAPOL TM WT) represented by the above chemical formula (III) as a primary brightener, and uniform electrodeposition The property was as high as 60 or higher. From this result, it was found that the water-soluble cationic polymer compound (MIRAPOL TM WT) represented by the above chemical formula (III) contained as the primary brightener significantly affects the improvement of the throwing power. . Further, the plating baths of Examples 2 to 5 and 9 to 13 containing any one of the compounds J to M in Table 1 exhibited higher values of the throwing power. Therefore, it has been found that the plating accelerator has an effect of further improving the throwing power.
  • MIRAPOL TM WT water-soluble cationic polymer compound represented by the above chemical formula (III) represented by the primary brightener
  • Compound F to I) was used in combination and any one of compounds J to M in Table 1 was used as a plating accelerator, and the throwing power of 67 to 80 was very high.
  • the plating baths of Examples 1 to 13 that is, the plating bath of the present invention, exhibited high plating even in electroplating at a low average current density (0.05 to 1.0 A / dm 2 ). It has been experimentally shown that it is possible to form a galvanized film having high glossiness with high efficiency.
  • the zincate-type zinc plating baths of Examples 2 to 5 and 9 to 13 are at least one of the compounds J to M in Table 1 corresponding to the heterocyclic compound represented by the above chemical formula (I) as a plating accelerator.
  • the plating bath of the present invention containing any one and a water-soluble cationic polymer compound (MIRAPOL TM WT) represented by the above chemical formula (III) as a primary brightener, and has a low average current density
  • MIRAPOL TM WT water-soluble cationic polymer compound represented by the above chemical formula (III)
  • the zincate-type zinc plating baths of Examples 1 to 5 and 8 to 13 have quality (appearance and post-treatment properties) even in a practical embodiment in which barrel plating with a current application time of 60 minutes is combined with chemical conversion treatment. It has been experimentally shown that an excellent galvanized film can be formed.
  • the present invention can be used as a zincate-type galvanizing bath used for forming a galvanized film by electroplating on automobile steel plates, bolts, nuts and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 低電流密度でも効率良く亜鉛めっき皮膜を形成させること可能とし、光沢度の高い高品質の亜鉛めっき皮膜を形成させることを可能とする、ジンケート型亜鉛めっき浴を提供する。電気めっきにて、亜鉛を少なくとも含む金属を析出させて、亜鉛めっき皮膜を形成させるためのジンケート型亜鉛めっき浴であって、析出する金属の結晶を微細化する機能を有する一次光沢剤と、例えば2,5-ジメルカプト-1,3,4-チアジアゾールなどの所定の構造を有する複素環式化合物を含むめっき促進剤と、を含有するジンケート型亜鉛めっき浴とする。

Description

ジンケート型亜鉛めっき浴
 本発明は、自動車用の鋼板、ボルト、ナットなどに対して、電気めっきによって亜鉛めっき皮膜を形成させるのに使用するジンケート型亜鉛めっき浴に関する。
 亜鉛めっき皮膜は、耐食性を向上させる目的から、自動車用の鋼板やボルトやナットなどの鋼材からなる機械部品にいたるまで、我々の身の回りの物に対して広汎に用いられている。また、耐熱性や耐塩水性の向上などの要求に応じ、亜鉛‐ニッケル合金、亜鉛‐鉄合金、すず‐亜鉛合金など、亜鉛合金めっき皮膜も広く利用されている。
 亜鉛めっき皮膜は、めっき浴に被めっき物を浸漬した状態にて電流を流し、被めっき物を通電させることにより実施される電気めっきにて形成される。亜鉛めっき皮膜を形成するためのめっき浴は、アルカリ浴と酸性浴とに大別され、アルカリ浴にはシアン化物浴やジンケート型亜鉛めっき浴、酸性浴には塩化亜鉛浴や硫酸亜鉛浴がある。これらのめっき浴は、亜鉛めっき皮膜の硬度や光沢性、被めっき物の形状や大きさ、作業環境などの所望の条件に応じて適宜選択されている。
 中でも、ジンケート型亜鉛めっき浴は、排水処理に負担がかかるシアン化物を使用しない上、浴組成が単純で管理しやすく、プレス小物、ボルト、ナットなどにも適用できる利点があるため、好まれて工業的な実施がなされている。ただし、ジンケート型亜鉛めっき浴を用いて得られる亜鉛めっき皮膜は、同じアルカリ浴のシアン化物浴と比較した場合、均一電着性や被覆力には劣るなどの欠点もある。それでも、ジンケート型亜鉛めっき浴は、亜鉛めっき皮膜の形成を工業的環境にて実施するためには非常に有効なものであり、これまで多くの改良型が開発されてきた(例えば、特許文献1参照)。
 特許文献1では、浴可溶性の第四級アンモニウムポリマーを含有するジンケート型亜鉛めっき浴が開示され、このジンケート型亜鉛めっき浴は近年改良された優れたものの中の1つに挙げられる。このジンケート型亜鉛めっき浴では、電流密度に高低の差がある複雑な形状や長さを有する物にも、均一電着性が高く光沢度が高い亜鉛めっき皮膜を形成できる。
特開平8-209379号公報
 しかしながら、特許文献1にて開示されたジンケート型亜鉛めっき浴は、広範囲の電流密度の分布が生じる電気めっきを実施した際、高電流部でのめっき効率を抑えることにより、高電流部と低電流部での亜鉛めっき皮膜の膜厚の差を小さくし、均一電着性を向上させている。そのため、このジンケート型亜鉛めっき浴では、膜厚が均一で薄い亜鉛めっき皮膜を形成することになる。そこで、上述の従来公知のジンケート型亜鉛めっき浴には見られない効果、すなわち、広範囲の電流密度の分布が生じる電気めっきの実施において、低電流密度でのめっき効率の向上を主な要因とすることにより、全体として厚い膜厚で、均一電着性の高く、高い光沢度の亜鉛めっき皮膜の形成が可能なジンケート型亜鉛めっき浴が求められている。また、従来公知のジンケート型亜鉛めっき浴では、めっき効率を高めると、均一電着性及びつきまわり性が低下する問題がある。
 上記の問題に鑑みて、本発明の課題は、低電流密度での電気めっきの実施によっても、効率良く亜鉛めっき皮膜の形成を可能とするジンケート型亜鉛めっき浴を提供することにある。具体的に述べると、低電流密度での電気めっきの実施において、めっき効率及びつきまわり性の高いジンケート型亜鉛めっき浴を提供することにある。また、低電流密度(0.05~1.0A/dm)を含む広範囲の電流密度の分布が生じる電気めっきの実施において、低電流密度でのめっき効率の向上を主な要因とすることにより、厚い膜厚の亜鉛めっき皮膜を形成させ、高い均一電着性を発揮するジンケート型亜鉛めっき浴を提供することにある。また、本発明の別の課題としては、光沢度の高い高品質の亜鉛めっき皮膜を形成させることを可能とするジンケート型亜鉛めっき浴を提供することにある。
 上記課題を解決するため、本発明者等は、一次光沢剤、及びめっき促進剤、さらに二次光沢剤に含有されうる多種の化合物を鋭意検討した結果、本発明を完成するに至った。すなわち、本発明によれば、以下に示すジンケート型亜鉛めっき浴が提供される。
[1] 電気めっきにて、亜鉛を少なくとも含む金属を析出させて、亜鉛めっき皮膜を形成させるためのジンケート型亜鉛めっき浴であって、析出する前記金属の結晶を微細化する機能を有する一次光沢剤と、下記化学式(I)にて表される複素環式化合物及び/又は前記複素環式化合物の誘導体を含むめっき促進剤と、を含有するジンケート型亜鉛めっき浴。
Figure JPOXMLDOC01-appb-C000003
 (化学式(I)中、nは、1~3の自然数、RとRは、同じものか、又は異なったものであり、水素、CHCOOH、CHCHOH、又はCHCH(OH)CHClを表す。)
[2] 前記複素環式化合物及び/又は前記複素環式化合物の誘導体を0.01g/L以上1.0g/L以下含有する、前記[1]に記載のジンケート型亜鉛めっき浴。
[3] 前記一次光沢剤として、水溶性カチオン高分子化合物を含有する、前記[1]又は[2]に記載のジンケート型亜鉛めっき浴。
[4] 前記水溶性カチオン高分子化合物として、下記化学式(II)にて表される化合物を含む、前記[3]に記載のジンケート型亜鉛めっき浴。
 (化学式(II)において、nは1以上の自然数である。R、R、R、及びRは、同じものか、又は異なったものであり、水素、メチル、エチル、イソプロピル、2‐ヒドロキシルエチル‐CHCH(OCHCHOH(Xは0~6の自然数)又は2‐ヒドロキシエチル‐CHCH(OCCHCHOH(Xは0~6の自然数)を表す。Rは、(CH‐O‐(CH、(CH‐O‐(CH‐O‐(CH、又はCH‐CHOH‐CH‐O‐CH‐CHOH‐CHを表す。Yは、S又はOを表す。)
[5] 前記亜鉛めっき皮膜を平滑化する機能を有する二次光沢剤を含有する前記[1]~[4]のいずれかに記載のジンケート型亜鉛めっき浴。
[6] 前記二次光沢剤として、有機アルデヒド類、及び複素環式化合物よりなる群から選択される1種以上を含有する、前記[5]に記載のジンケート型亜鉛めっき浴。
[7] 前記二次光沢剤として、芳香族アルデヒド及びピリジニウム化合物のうち少なくともいずれかを含有する、前記[6]に記載のジンケート型亜鉛めっき浴。
[8] 亜鉛イオンを5g/L以上20g/L以下含有する、前記[1]~[7]のいずれかに記載のジンケート型亜鉛めっき浴。
[9] 水酸化ナトリウムを80g/L以上250g/L以下含有する、前記[1]~[8]のいずれかに記載のジンケート型亜鉛めっき浴。
[10] ニッケルイオン又は鉄イオンのうち少なくともいずれかを含有する、前記[1]~[9]のいずれかに記載のジンケート型亜鉛めっき浴。
[11] 前記ニッケルイオンを100mg/L以上4000mg/L以下含有する、前記[10]に記載のジンケート型亜鉛めっき浴。
[12] 前記鉄イオンを10mg/L以上150mg/L以下含有する、前記[10]又は[11]に記載のジンケート型亜鉛めっき浴。
 本発明のジンケート型亜鉛めっき浴は、効率良く亜鉛めっき皮膜を形成させることを可能とする。具体的に述べると、低電流密度での電気めっきの実施において、高いめっき効率及び高いつきまわり性を発揮する。また、低電流密度(0.05~1.0A/dm)を含む広い電流密度の範囲にて電気めっきを実施した際、低電流密度でのめっき効率の向上を主な要因とすることにより、高い均一電着性を発揮し、厚い膜厚の亜鉛めっき皮膜を形成させる。さらに、本発明のジンケート型亜鉛めっき浴は、一次光沢剤として特定の構造を有する水溶性カチオン高分子化合物(下記化学式(III)に表す)及び二次光沢剤を含有させた場合、光沢度の高い高品質の亜鉛めっき皮膜を形成させることを可能とする。
めっき促進剤として含有される複素環式化合物が被めっき面に吸着している様子を表した模式図である。 本発明及び従来公知のジンケート型亜鉛めっき浴について、電流密度とめっき効率との関係を表した図である。 本発明のジンケート型亜鉛めっき浴(実施例9)における電流密度と亜鉛めっき皮膜の膜厚との関係を表した図である。
 以下、本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
1.ジンケート型亜鉛めっき浴:
1-1.本発明のジンケート型亜鉛めっき浴の概要:
 本発明のジンケート型亜鉛めっき浴(以下、「本発明のめっき浴」)は、電気めっきにて、亜鉛を少なくとも含む金属を析出させて、亜鉛めっき皮膜を形成させる。本発明のめっき浴の構成を述べると、析出する金属の結晶を微細化する機能を有する一次光沢剤と、下記化学式(I)にて表される複素環式化合物及び/又は前記複素環式化合物の誘導体を含むめっき促進剤と、を含有するジンケート型亜鉛めっき浴である。さらに、本発明のめっき浴は、亜鉛めっき皮膜を平滑化する機能を有する二次光沢剤を含有することもできる。
Figure JPOXMLDOC01-appb-C000005
 (化学式(I)中、nは、1~3の自然数、RとRは、同じものか、又は異なったものであり、水素、CHCOOH、CHCHOH、又はCHCH(OH)CHClを表す。)
 本発明のめっき浴は、従来公知のジンケート型亜鉛めっき浴と同様に、ジンケート亜鉛([Zn(OH)2-)を含有するものである。ここでいう「一次光沢剤」とは、めっき分野の当業者が一次光沢剤、キャリヤ、応力抑制剤などと称するものと同じものであり、析出する金属の結晶を微細化して平滑な亜鉛めっき皮膜を形成させる機能を有し、亜鉛めっき皮膜の内部応力を緩和する機能を有するものである。ここでいう「二次光沢剤」とは、めっき分野の当業者が二次光沢剤、レベラーなどと称するものと同じものであり、電気めっきにて亜鉛めっき皮膜を形成する際に、亜鉛めっき皮膜の平滑化作用を担うものである。
 これら一次光沢剤及び二次光沢剤は、字義通り、光沢のある亜鉛めっき皮膜を形成させる機能を有する。特に一次光沢剤と二次光沢剤を併用することにより、析出する金属の微細化がさらに促進され、亜鉛めっき皮膜に鏡面光沢を与えることもできる。本発明のめっき浴では、無光沢めっき、半光沢めっき、光沢めっきなど、亜鉛めっき皮膜の外観に応じて、一次光沢剤及び二次光沢剤に含有される化合物を採用できる(詳しくは後述)。
 ここでいう「めっき促進剤」とは、めっき分野の当業者がめっき加工において用いる析出促進作用を有する添加剤のことであり、めっきの電極反応を促進して電流密度を増加させる物質である。なお、本明細書ではめっき皮膜の名称について、主要な金属成分として亜鉛を含むめっき皮膜を総称して「亜鉛めっき皮膜」とし、特に亜鉛と他の金属との合金を成分とするめっき皮膜を区別して称する必要がある場合には「亜鉛合金めっき皮膜」(例えば、Zn‐Ni合金めっき皮膜など)と称して説明する。
 上述の本発明のめっき浴では、低電流域にて電気めっきを実施した際にも効率良く亜鉛めっき皮膜を形成させることを可能とし、さらに所定条件下においては光沢度の高い高品質の亜鉛めっき皮膜を形成させることを可能とする。また、本発明のめっき浴は、低電流域にて電気めっきを実施した際にも、均一電着性、つきまわり性、及びめっき効率が高い。そのため、本発明のめっき浴は、低電流域での電気めっきが通常において実施されるバレルめっきにも有効に適用できる(詳しくは後述)。
 以下、本発明のめっき浴の成分について説明する。まず、「基本成分」として亜鉛、アルカリについて説明し、次いで「めっき促進剤」、「一次光沢剤」及び「二次光沢剤」について順次詳しく説明する。
1-2.本発明のめっき浴の基本成分:
 本発明のめっき浴は、従来公知のジンケート型亜鉛めっき浴と同様に、ジンケート亜鉛([Zn(OH)2-)を含有し、ジンケート亜鉛の調製は、めっき技術の当業者が通常用いうる手法を適宜採用できる。例えば、このジンケート亜鉛を溶解させためっき浴とするため、従来公知の方法と同様に、酸化亜鉛(ZnO)を、水酸化ナトリウム(NaOH)水溶液などのアルカリ水溶液に溶解することにより、ジンケート亜鉛を調製するとよい。
 本発明のめっき浴では、亜鉛めっき皮膜の品質(外観、膜厚、後処理性、耐食性)に関する実用性の観点からは、亜鉛イオンを5g/L以上20g/L以下含有することが好ましい。めっき浴に含有される亜鉛イオンが5g/L未満では、亜鉛めっき皮膜の外観低下、及び亜鉛めっき皮膜の厚みの低下により耐食性を悪くするため好ましくない。また、めっき浴に含有される亜鉛が20g/L超では、亜鉛めっき皮膜の外観不良やつきまわり性の低下などが生じるため好ましくない。なお、ここでいうめっき浴に含有される亜鉛イオンの量は、酸化亜鉛(ZnO)などの原材料の質量から分子量換算で算出される亜鉛イオン(Zn2+)の量を適用できる。
 本発明のめっき浴では、めっき浴の安定性及び亜鉛めっき皮膜の品質(外観、膜厚、後処理性、耐食性)に関する実用性の観点からは、水酸化ナトリウム(NaOH)を80g/L以上250g/L以下含有することが好ましい。めっき浴に含有される水酸化ナトリウムが80g/L未満では、めっき浴の安定性が不安定になり亜鉛めっき皮膜の外観不良やつきまわり性の低下などが生じるため好ましくない。また、めっき浴に含有される水酸化ナトリウムが250g/L超では、水酸化ナトリウムの濃度が高すぎて実用性に欠けるため好ましくない。
1-3.めっき促進剤:
 本発明のめっき浴が含有するめっき促進剤は、上記化学式(I)にて表される複素環式化合物及び/又はこの複素環式化合物の誘導体を含有することを特徴としている。ここでいう「上記化学式(I)にて表される複素環式化合物の誘導体」とは、1,3,4-チアジアゾールの誘導体のことを意味する。上記化学式(I)にて表される化合物及びその誘導体を具体的に挙げると、2,5‐ジメルカプト‐1,3,4‐チアジアゾール、2-チオ酢酸-5-メルカプト-1,3,4-チアジアゾール、2,5-ジチオ酢酸-1,3,4-チアジアゾール、2-ヒドロキシエチルチオ-5-メルカプト-1,3,4-チアジアゾール、2,5-ジヒドロキシエチルチオ-1,3,4-チアジアゾール、エピクロルヒドリン改質2,5‐ジメルカプト‐1,3,4‐チアジアゾールなどがある。
 図1は、上記化学式(I)にて表される複素環式化合物及びその誘導体の一例として2,5‐ジメルカプト‐1,3,4‐チアジアゾールを挙げ、この2,5‐ジメルカプト‐1,3、4‐チアジアゾールが被めっき面に吸着している状態として想定されるものを模式的に示している。図1にて示すように、2つの置換基及び5員環を構成する硫黄が、被めっき面と化学吸着する。図1中で水玉模様にて表されている2つの置換基の硫黄及び5員環を構成する硫黄と被めっき面との間の空間は、還元反応が生じやすくなるため、亜鉛等の金属の析出が促進されると推察される。そこで、上述に説明した上記化学式(I)にて表される複素環式化合物の誘導体には、図1にて模式的に表されるような化学吸着が生じうると想定される化合物の分子構造であり、めっき技術又は有機化学の分野の当業者が通常設計しうる範囲において上記化学式(I)にて表される複素環式化合物に基づき置換基の付加あるいは骨格変更をして得られる化合物をも包含するものとする。
 本発明のめっき浴では、めっき効率を向上させる観点からは、上記化学式(I)にて表される複素環式化合物及び/又はその誘導体は、0.01g/L以上1.0g/L以下含有されることが好ましい。
 以上に説明した上記式(I)にて表される複素環式化合物、その誘導体、及びこれら化合物に基づき生成された化合物は、本発明のめっき浴を用いて電気めっきを実施する際、めっき効率の向上に多大に寄与する。また、これら複素環式化合物及びその誘導体は、本発明のめっき浴にて形成される亜鉛めっき皮膜に対して高い光沢性の付与、換言すると、高い光沢度を付与する働きをもつ。
1-4.一次光沢剤:
 本発明のめっき浴は、一次光沢剤を含む。本発明のめっき浴に含有される一次光沢剤としては、一般に一次光沢剤として各種亜鉛めっき浴に使用されるアニオン系界面活性剤、ノニオン系界面活性剤及びポリアルキレンポリアミン類などの水溶性の高分子有機化合物などを挙げることができる。特に、本発明のめっき浴において、一次光沢剤は、水溶性カチオン高分子化合物を含有するものが好ましい。
 この水溶性カチオン高分子化合物としては、例えば、ポリアリルアミン、ポリアミドポリアミン、ポリエポキシポリアミン、及びポリアルキレンポリアミン、などを挙げることができる。ポリアリルアミンとしては、ポリジアリルジメチルアンモニウムクロライド二酸化硫黄の共重合体などを挙げることができる。ポリエポキシポリアミンとしては、エチレンジアミンとエピクロルヒドリンとの縮合重合体、ジメチルアミノプロピルアミンとエピクロルヒドリンとの縮合重合体、イミダゾールとエピクロルヒドリンとの縮合重合体、1-メチルイミダゾールや2-メチルイミダゾールなどのイミダゾール誘導体とエピクロルヒドリンとの縮合重合体、及びアセトグアナミン、ベンゾグアナミンなどのトリアジン誘導体などを含む複素環状アミンとエピクロルヒドリンとの縮合重合体を挙げることができる。ポリアミドポリアミンとしては、3-ジメチルアミノプロピル尿素とエピクロルヒドリンとの縮合重合体、ビス(N,N-ジメチルアミノプロピル)尿素とエピクロルヒドリンとの縮合重合体などを具体例とするポリアミンポリ尿素樹脂、及びN,N-ジメチルアミノプロピルアミンとアルキレンジカルボン酸とエピクロルヒドリンとの縮合重合体などを具体例とする水溶性ナイロン樹脂を挙げることができる。また、ポリアルキレンポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンペンタミン、ジメチルアミノプロピルアミンと2,2’-ジクロルジエチルエーテルとの縮合重合体、ジメチルアミノプロピルアミンと1,3-ジクロルプロパンとの縮合重合体、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパンと2,2’-ジクロルジエチルエーテルとの縮合重合体、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパンと1,4-ジクロルブタンとの縮合重合体、及びN,N,N’,N’-テトラメチル-1,3-ジアミノプロパンと1,3-ジクロルプロパン-2-オールとの縮合重合体などを挙げることができる。
 特に、本発明のめっき浴に含まれる一次光沢剤において、上述の水溶性カチオン高分子化合物としては、均一電着性やつきまわり性を向上させることができる観点からは、下記化学式(II)にて表される化合物を含有することがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 (化学式(II)において、nは1以上の自然数である。R、R、R、及びRは、同じものか、又は異なったものであり、水素、メチル、エチル、イソプロピル、2‐ヒドロキシルエチル‐CHCH(OCHCHOH(Xは0~6の自然数)又は2‐ヒドロキシエチル‐CHCH(OCCHCHOH(Xは0~6の自然数)を表す。Rは、(CH‐O‐(CH、(CH‐O‐(CH‐O‐(CH、又はCH‐CHOH‐CH‐O‐CH‐CHOH‐CHを表す。Yは、S又はOを表す。)
1-5.二次光沢剤:
 本発明のめっき浴は、二次光沢剤を任意で含有する。この二次光沢剤としては、有機アルデヒド類及び/又は複素環式化合物を含有するものを挙げることができる。
 特に、光沢性の向上とつきまわり性の向上の観点からは、本発明のめっき浴に用いられる二次光沢剤は、芳香族アルデヒド及びピリジニウム化合物のうち少なくともいずれかを含有することが好ましい。
 本発明のめっき浴において、二次光沢剤として含有することが好ましい芳香族アルデヒドとしては、アニスアルデヒド、ベラトルアルデヒド、サリチルアルデヒド、バニリン、ピペロナール、及びp-ヒドロキシベンズアルデヒドなどを挙げることができる。特に、光沢性の向上と亜鉛めっき浴に含有される化合物の安定性の観点からは、本発明のめっき浴に用いられる二次光沢剤として含有される芳香族アルデヒドは、ベラトルアルデヒド、及びバニリンがより好ましい。
 本発明のめっき浴において、二次光沢剤として含有することが好ましいピリジニウム化合物としては、ベンジルピリジニウムカルボキシレート(塩化3-カルボキシベンジルピリジニウム)、及び塩化3-カルバモイルベンジルピリジニウムなどを挙げることができる。
2.亜鉛合金めっき皮膜の形成のための実施形態:
 本発明のめっき浴は、亜鉛のみを主成分とする亜鉛めっき皮膜に限らず、亜鉛‐ニッケル合金(以下、「Zn‐Ni合金」)、亜鉛‐鉄合金(以下、「Zn‐Fe合金」)、亜鉛‐鉄‐ニッケル合金(以下、「Zn‐Fe‐Ni合金」)などの亜鉛合金めっき皮膜を電気めっきにて形成する用途にも適用できる。なお、本発明のめっき浴において、金属光沢剤としても機能しうるニッケルイオンを含有させる場合、上述の二次光沢剤を含有しないときであっても、良好な光沢外観の亜鉛めっき皮膜(Zn‐Ni合金皮膜又はZn‐Fe‐Ni合金皮膜)を形成し得ることがある(後述の実施例8参照)。
 本発明のめっき浴は、Zn‐Ni合金めっき皮膜を形成する用途にはニッケルイオンを、Zn‐Fe合金めっき皮膜を形成する用途には鉄イオンを、Zn‐Fe‐Ni合金を形成する用途には鉄イオン及びニッケルイオンを含有させることができる。本発明のめっき浴にニッケルイオンを含有させる場合には、例えば、NiSO・6HO、NiCl・6HO,Ni(OH)などをめっき浴中に溶解させることができる。本発明のめっき浴に鉄イオンを含有させる場合には、例えば、Fe(SO・7HO、FeSO・7HO、Fe(OH)、FeCl・6HO、FeCl・4HOなどを溶解させることができる。
 本発明のめっき浴では、ニッケルイオンを含有する場合、亜鉛めっき皮膜の品質(外観、膜厚、後処理性、耐食性)を向上させる観点からは、ニッケルイオンを100mg/L以上4000mg/L以下含有することが好ましい。めっき浴に含有されるニッケルイオンが、100mg/L未満又は4000mg/L超では、要求外観、後加工性、化成処理性、耐食性、耐熱性などで良好なものを得られない。
 本発明のめっき浴では、鉄イオンを含有する場合、亜鉛めっき皮膜の品質(外観、膜厚、後処理性、耐食性)を向上させる観点からは、鉄イオンを10mg/L以上150mg/L以下含有することが好ましい。めっき浴に含有される鉄イオンが、10mg/L未満、又は150 mg/L超では、要求外観、後加工性、化成処理性、耐食性、耐熱性などで良好なものを得られない。
 さらに、亜鉛合金めっき皮膜を形成するための実施形態では、本発明のめっき浴にキレート剤を含有させることが好ましい。なお、このキレート剤は、例えばジエチレントリアミンやトリエチレンテトラミンなどのように、キレート剤としての機能も有する一次光沢剤を用いてもよい。ニッケル又は鉄、もしくは両者を成分に含む亜鉛合金めっき皮膜を形成させる実施形態では、本発明のめっき浴は、例えば、キレート剤として酒石酸、クエン酸、グルコン酸、エチレンジアミン、ヘキサミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,4-ジアミノブタン、トリアミノトリエチルアミン、メチルアミノプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエタノールアミノプロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、1,3-ビス-(3-アミノプロポキシ)エタン、ニトリロトリ酢酸(NTA)、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)などを含むことが好ましい。
3.本発明のジンケート型亜鉛めっき浴の作用・効果:
 図2は、従来公知のジンケート型亜鉛めっき浴(本願出願前に公知の改良型も含む)、及び本発明のジンケート型亜鉛めっき浴について、広範囲の電流密度の分布が生じる電気めっきを実施した際の電流密度とめっき効率との関係を表す。まず、従来型のジンケート型亜鉛めっき浴では、高電流密度ではめっき効率が高く、低電流密度ではめっき効率が低い(図2中の破線A)。このような電流密度の高低差によるめっき効率のバラツキは、高電流密度にて限定的に亜鉛の析出が促進されるために生じる。加えて、高電流密度の箇所で亜鉛イオンが消費され、低電流密度の箇所では析出に十分な亜鉛イオンを確保できないことによって、電流密度の高低差によるめっき効率のバラツキが助長される。一次光沢剤として下記化学式(III)に表す水溶性カチオン高分子化合物を含有する本願出願前に公知の改良型のジンケート型亜鉛めっき浴では、高電流密度での電流効率を低下させることにより、高電流密度でのめっき効率を低く抑えている。そのため、上述の改良型のジンケート型亜鉛めっき浴では、高電流密度と低電流密度でのめっき効率の差が小さくなり均一電着性が向上するが、平均のめっき効率は低く、形成される亜鉛めっき皮膜は薄い(図2中の破線B)。本発明のめっき浴では、低電流密度でのめっき効率が高められている(図2中の実線C、詳しくは後述の実施例の評価試験4を参照)。この低電流密度でのめっき効率の向上の主な要因は、本発明のめっき浴で均一電着性が向上している点にある。よって、本発明のめっき浴では、平均のめっき効率も高く、膜厚が厚く均一な亜鉛めっき皮膜を形成することができる(詳しくは後述の実施例の評価試験3を参照)。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
4.ジンケート型亜鉛めっき浴の調製:
4-1.亜鉛のみを金属成分とする亜鉛めっき皮膜用:
(実施例1)
 表1にて組成を示すように、亜鉛イオン8g/L、水酸化ナトリウム100g/L、一次光沢剤としてジメチルアミノプロピルアミンとエピクロルヒドリンのモル比1:1の縮合重合物(表1の化合物A、URSA CHEMIE GMBH社製、品番:Product J 138 M)を0.4g/L、二次光沢剤として亜硫酸水素ナトリウム溶液に反応溶解させたベラトルアルデヒド亜硫酸Na付加体(和光純薬工業株式会社製、以下同じ)を0.03g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J、東洋化成工業株式会社製、MTD)0.05g/L、を含むジンケート型亜鉛めっき浴を調製した。なお、上述の化合物(重合体も含む)の濃度は、入手した各化合物の市販品の純度(含有率)と分子量に基づき換算して調製した(以下、他の市販品の化合物の濃度を規定する場合も同じ)。
Figure JPOXMLDOC01-appb-T000007
(実施例2)
 表1にて組成を示すように、亜鉛イオン6g/L、水酸化ナトリウム100g/L、一次光沢剤として下記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製[旧ローヌプーラン(Rhone‐Poulenc)社製]、CAS No.68555‐36‐2)を1.0g/L、二次光沢剤として亜硫酸水素ナトリウム溶液に反応溶解させたアニスアルデヒド亜硫酸Na付加体(和光純薬工業株式会社製、以下同じ)を0.025g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.02g/L、を含むジンケート型亜鉛めっき浴を調製した。
Figure JPOXMLDOC01-appb-C000008
(実施例3)
 表1にて組成を示すように、亜鉛イオン9g/L、水酸化ナトリウム120g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を0.6g/L、二次光沢剤としてベラトルアルデヒド0.025g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.075g/L、を含むジンケート型亜鉛めっき浴を調製した。
(実施例4)
 表1にて組成を示すように、亜鉛イオン12g/L、水酸化ナトリウム120g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.0g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.025g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.100g/L、を含むジンケート型亜鉛めっき浴を調製した。
(実施例5)
 表1にて組成を示すように、亜鉛イオン15g/L、水酸化ナトリウム135g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.5g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.050g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.200g/L、を含むジンケート型亜鉛めっき浴を調製した。
(実施例6)
 表1にて組成を示すように、亜鉛イオン12g/L、水酸化ナトリウム125g/L、一次光沢剤としてポリジアリルジメチルアンモニウムクロライド二酸化硫黄共重合体(表1の化合物C、商品名:ジアリルジメチルアンモニウムクロリド・二酸化イオウ共重合体[4級アミン/SO]、日東紡社製、品番:PAS-A-5)を0.4g/L、ベンジルピリジニウムカルボキシレート水溶液(BASF社製、Lugalvan BPC-48)より二次光沢剤としてベンジルピリジニウムカルボキシレートを0.06g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.050g/L、を含むジンケート型亜鉛めっき浴を調製した。
(実施例7)
 表1にて組成を示すように、亜鉛イオン13g/L、水酸化ナトリウム130g/L、一次光沢剤としてエチレンジアミンとエピクロルヒドリンとをモル比1:2にて反応させた縮合重合体(表1の化合物D、URSA CHEMIE GMBH社製、品番:Product JF 220)を1.5g/L、二次光沢剤としてベラトルアルデヒド亜硫酸Na付加体0.03g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.100g/L、を含むジンケート型亜鉛めっき浴を調製した。
(実施例9)
 表1にて組成を示すように、亜鉛イオン10g/L、水酸化ナトリウム100g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.0g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.03g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.060g/L、を含むジンケート型亜鉛めっき浴を調製した。
(実施例10)
 表1にて組成を示すように、亜鉛イオン18g/L、水酸化ナトリウム140g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.2g/L、及びイミダゾールとエピクロルヒドリンとをモル比1:0.73にて反応させた縮合重合体(イミダゾール成分約18%含有)(表1の化合物F)を固形分で1.0g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.09g/L、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.050g/Lを含むジンケート型亜鉛めっき浴を調製した。
(実施例11)
 表1にて組成を示すように、亜鉛イオン16g/L、水酸化ナトリウム140g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を0.6g/L、及びイミダゾールとエピクロルヒドリンとをモル比1:1にて反応させた縮合重合体(イミダゾール成分約18%含有)(表1の化合物G)を1.5g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.03g/L、めっき促進剤として2-チオ酢酸-5-メルカプト-1,3,4-チアジアゾール(表1の化合物K)0.100g/Lを含むジンケート型亜鉛めっき浴を調製した。
(実施例12)
 表1にて組成を示すように、亜鉛イオン13g/L、水酸化ナトリウム130g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.2g/L、及び1-メチルイミダゾール(日本合成化学工業製、1MI)とエピクロルヒドリンとをモル比1:0.73にて反応させた縮合重合体(1-メチルイミダゾール成分約21%含有)(表1の化合物H)を0.15g/L、二次光沢剤としてベンジルピリジニウムカルボキシレート水溶液(BASF社製、Lugalvan BPC-48)0.03g/L、めっき促進剤として2-ヒドロキシエチルチオ-5-メルカプト-1,3,4-チアジアゾール(表1の化合物L)0.075g/Lを含むジンケート型亜鉛めっき浴を調製した。
(実施例13)
 表1にて組成を示すように、亜鉛イオン12g/L、水酸化ナトリウム120g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.2g/L、及び2-メチルイミダゾール(日本合成化学工業製、2MI)とエピクロルヒドリンとをモル比1:1にて反応させた縮合重合体(2-メチルイミダゾール成分約21%含有)((表1の化合物I))を0.5g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.09g/L、めっき促進剤としてエピクロルヒドリン改質2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物M)0.20g/Lを含むジンケート型亜鉛めっき浴を調製した。
(比較例1)
 表1にて組成を示すように、亜鉛イオン8g/L、水酸化ナトリウム100g/L、一次光沢剤としてジメチルアミノプロピルアミンとエピクロルヒドリンのモル比1:1の縮合重合物(表1の化合物A、URSA CHEMIE GMBH社製 、品番:Product J 138 M)1.0g/L、二次光沢剤としてベラトルアルデヒド亜硫酸Na付加体0.03g/L、を含むジンケート型亜鉛めっき浴を調製した。
(比較例2)
 表1にて組成を示すように、亜鉛イオン10g/L、水酸化ナトリウム100g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.0g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.03g/L、を含むジンケート型亜鉛めっき浴を調製した。
(比較例3)
 表1にて組成を示すように、亜鉛イオン14g/L、水酸化ナトリウム140g/L、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(表1の化合物B、商品名:MIRAPOL(商標)WT、ローディア(Rhodia)社製、CAS No.68555‐36‐2)を1.2g/L、及びイミダゾールとエピクロルヒドリンとをモル比1:0.73にて反応させた縮合重合体(イミダゾール成分約18%含有)(表1の化合物F)を0.75g/L、二次光沢剤としてアニスアルデヒド亜硫酸Na付加体0.03g/Lを含むジンケート型亜鉛めっき浴を調製した。
4-2.亜鉛‐ニッケル合金めっき皮膜用:
(実施例8)
 表1にて組成を示すように、亜鉛イオン11g/L、ニッケルイオン2.25g/L、水酸化ナトリウム120g/L、一次光沢剤としてテトラエチレンペンタミン30g/L(表1の化合物E)、めっき促進剤2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)0.080g/L、を含むジンケート型亜鉛めっき浴を調製した。
5.ジンケート型亜鉛めっき浴の評価試験:
 実施例1~13、比較例1~3のジンケート型亜鉛めっき浴に関し、以下に記述する各評価項目に応じた電気めっきを実施し、形成された亜鉛めっき皮膜について検査を行った。
5-1.電流密度域(0.05~2.5A/dm)を含む広範囲の電流密度の分布が生じる電気めっきにより形成された亜鉛めっき皮膜の光沢外観、はがれ、及びふくれに関する評価試験(評価試験1):
5-1-1.電気めっき:
 スターラー回転数1000rpmの液循環型ハルセル(商品名:スマートハルセル、山本めっき試験器社製、品番:B‐53‐SM)に、実施例1~13、比較例1~3のめっき浴をそれぞれ収容して電気めっきを実施した。また、亜鉛めっき皮膜を形成させる陽極としては縦×横×厚さが45×45×1mmの鉄板、陰極としては山本鍍金試験器製の縦×横×厚さが67×100×0.3mmの鉄板を用いた。電気めっきの条件は、電流0.5A(電流密度0.05~2.5A/dm)、通電時間60分、めっき浴温度25℃とした。
5-1-2.光沢外観の評価試験の結果及び評価:
 実施例1~13、比較例1~3のジンケート型亜鉛めっき浴について、目視により亜鉛めっき皮膜の光沢性を判定する評価試験の結果を表2に示す。めっき促進剤として含有される2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)の有無にて対照となる実施例2と比較例2との組を比較すると、実施例2にて形成された亜鉛めっき皮膜は全面光沢であったのに対し、比較例2にて形成された亜鉛めっき皮膜は半光沢であった。したがって、めっき促進剤として含有される2,5-ジメルカプト-1,3,4-チアジアゾールは、亜鉛めっき皮膜の光沢性を向上させる作用を有することが判明した。同様に、めっき促進剤として、2-チオ酢酸-5-メルカプト-1,3,4-チアジアゾール(表1の化合物K)を含む実施例11、2-ヒドロキシエチルチオ-5-メルカプト-1,3,4-チアジアゾール(表1の化合物L)を含む実施例12、エピクロルヒドリン改質2,5-ジメルカプト-1,3,4-チアジアゾールを含む実施例13(表1の化合物M)についても、亜鉛めっき皮膜の光沢性を向上させる作用を有することが判明した。なお、表2にいう「全面光沢」とは、均一な鏡面に近いものをいう。また、表2にいう「光沢」とは、全面光沢ではあるが少し鈍いものをいう。「半光沢」とは、光沢性がより鈍いものをいう。「全面白色」とは、均一な無光沢のものをいう。
Figure JPOXMLDOC01-appb-T000009
5-1-3.はがれ及びふくれの評価試験の結果及び評価:
 亜鉛めっき皮膜のはがれ及びふくれの評価試験のため、上述の液循環型ハルセルを使用した電気めっき直後、さらに、各実施例及び各比較例のめっき浴を用いて得られためっき物に対して60℃で72時間の加熱処理を行った。実施例1~13、比較例1~3のジンケート型亜鉛めっき浴を用いて形成された亜鉛めっき皮膜について、上述の加熱処理後のはがれやふくれの有無を目視により確認した評価試験の結果を表2に示す。全ての実施例及び比較例について、加熱処理後の亜鉛めっき皮膜では、はがれやふくれは観察されなかった。
 なお、実施例1~13のジンケート型亜鉛めっき浴にて電気めっきを実施した陰極の鉄板では、陽極と対面した側とは反対側の面においても亜鉛めっき皮膜が形成されていた。よって、実施例1~13のジンケート型亜鉛めっき浴では、陰極の鉄板の裏側に漏れた非常に微弱な電流によっても亜鉛めっき皮膜を形成できる程度の優れたつきまわり性を備えることが明らかになった。
5-2.バレルめっきにて形成した亜鉛めっき皮膜をさらに化成処理した場合の光沢性等に関する評価試験(評価試験2):
5-2-1.バレルめっき及び化成処理:
 実施例1~13、比較例1~3のジンケート型亜鉛めっき浴をそれぞれミニバレル(ドラム直径[φ]×長さ[L]:110mm×150mm)に収容し、JIS規格による寸法がM10の鉄製六角ボルト1kgに対して電流5A、通電時間50分間のバレルめっきを実施した。このバレルめっき後、めっき物を200℃で3時間の加熱処理をして放冷後、3価クロム黒色化成処理剤(商品名:メタスYFB-SA/SB、ユケン工業社製)を用いて、pH2.2の条件下において、35℃、45秒間の化成処理を行った。次いで、めっき物を仕上げ処理剤(商品名:メタスCR-U3/I2、ユケン工業社製)にて仕上げ処理を行った後、80℃で20分間乾燥した。以上により、実施例1~13、比較例1~3のジンケート型亜鉛めっき浴をそれぞれ用いてバレルめっきを実施し、さらに化成処理を施すことで亜鉛めっき皮膜(以下、「化成処理亜鉛めっき皮膜」)を形成させた。
5-2-2.結果及び評価:
 実施例1~13、比較例1~3のジンケート型亜鉛めっき浴について、化成処理亜鉛めっき皮膜に対して、目視にて黒味と光沢性を確認した評価試験の結果を表2に示す。実施例1~5及び実施例8~13にて形成された化成処理亜鉛めっき皮膜は、黒味と光沢性がともに良好であった。実施例6、7にて形成された化成処理亜鉛めっき皮膜は、黒味は良好であり、光沢はやや良好であった(「光沢がやや良好」の定義については後述)。対して、めっき促進剤として含有される2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)の有無にて実施例1に対照となる比較例1にて形成された化成処理亜鉛めっき皮膜は、ガス跡不良が生じた。同じくめっき促進剤について実施例2に対照となる比較例2にて形成された化成処理亜鉛めっき皮膜は、黒味は良好なものの、光沢が不足していた。よって、めっき促進剤として表1の化合物J、K,L、Mを含有するジンケート型亜鉛めっき浴は、実施例1~5、8~13の結果にみられるように、バレルめっきと化成処理の併用実施という実用的な実施形態においても、亜鉛めっき皮膜の品質(外観、後処理性)を高める作用を有することが判明した。なお、本評価試験のいう「黒味が良好」とは、亜鉛めっき皮膜が漆黒の状態のことをいう。本評価試験のいう「光沢性が良好」とは、亜鉛めっき皮膜がつやのある状態のことをいう。本評価試験のいう「光沢性がやや良好」とは、亜鉛めっき皮膜が光沢性に乏しく煤けた状態のことをいう。本評価試験のいう「ガス跡不良」とは、亜鉛めっき皮膜に水素ガス発生による白色の流れ跡があることをいう。
5-3.電流密度の分布と亜鉛めっき皮膜の膜厚との関係に関する評価試験(評価試験3):
5-3-1.電気めっき:
 スターラー回転数1000rpmの液循環型ハルセル(商品名:スマートハルセル、山本めっき試験器社製、品番:B‐53‐SM)に、実施例9のめっき浴を収容して電気めっきを実施した。また、亜鉛めっき皮膜を形成させる陽極として縦×横×厚さが45×45×1mmの鉄板、陰極として山本鍍金試験器製の縦×横×厚さが67×100×0.3mmの鉄板を用いた。電気めっきの条件は、電流1.0A、通電時間15分、めっき浴温度30℃とした。
5-3-2.亜鉛めっき皮膜の膜厚の測定:
 上述のハルセルの形状で電流1.0Aの電気めっきの条件から理論的に導きだされた一次電流分布において、5.0A/dm、2.0A/dm、1.0A/dm、0.33A/dm、0.1A/dmにそれぞれ相当する、ハルセル陰極板のめっき面中央部の高電部端から低電部端に向かって、10mm、40mm、60mm、80mm、90mmの5箇所における亜鉛めっき皮膜の膜厚を、蛍光X線膜厚計(SII社製、SFT-9200)により測定した。
5-3-3.結果及び評価:
 電流密度の分布と亜鉛めっき皮膜の膜厚との関係を図3に示す。図3において、理論的に導かれた電流密度の分布を白抜き丸印(○)、この理論値の電流密度から理論的に導かれる亜鉛めっき皮膜の膜厚を白抜き三角印(△)にて示す。図3において、実線は膜厚、破線は電流密度を示している。図3では、実施例9のめっき浴を用いた本試験における亜鉛めっき皮膜の膜厚の実測値は、塗りつぶした三角印にてプロットした。理論値の電流密度が0.5A/dm、2.0A/dm、1.0A/dm、0.33/dm、0.1A/dmの各地点における亜鉛めっき皮膜の膜厚は、全て6μm前後であった。すなわち、実施例9のめっき浴では、理論値において0.1~5.0A/dmという広範囲の電流密度分布が生じる電気めっきの実施においても、均一で厚い膜厚の亜鉛めっき皮膜が形成されることが示された。さらに、実施例9のめっき浴では、15分間という短い通電時間にて電気めっきを実施しても、均一で厚い膜厚の亜鉛めっき皮膜が形成されることが示された。なお、従来公知のジンケート型亜鉛めっき浴では、通電時間を長くしても平均膜厚が最大3~4μm程度の亜鉛めっき皮膜しか形成できない(データ示さず)。実施例9のめっき浴を用いた本試験において、膜厚の実測値から算出される平均電流密度は、1.5A/dmと、低い値であった(図3中の四角印(■)にてプロット、なお、平均電流密度(1.0A/dm)でのめっき効率の評価は評価試験4を参照)。
5-4.平均電流密度(1.0A/dm)におけるめっき効率に関する評価試験(評価試験4):
5-4-1.電気めっき:
 実施例1~7、9~13、比較例1~3のジンケート型亜鉛めっき浴を用いた電気めっきにより、縦×横×厚さが50×25×0.5mmの冷却圧延鋼板(SPCC)の両面で合計0.25dmに亜鉛めっき皮膜を形成させた。電気めっきの条件は、平均電流密度1.0A/dmで通電時間20分間、めっき浴温度25℃にて実施した。
5-4-2.めっき効率の算出:
 実施例1~7、9~13、比較例1~3のジンケート型亜鉛めっき浴を用いて形成された亜鉛めっき皮膜を希塩酸に完全に溶解させて分析試料を調製した。この分析試料についてIPC分析を行い、分析試料中の亜鉛濃度を計測した。この分析試料の亜鉛濃度に基づき、亜鉛めっき皮膜の亜鉛含有量、すなわち電気めっきによる亜鉛析出量を算出した。実施例1~7、9~13、比較例1~3のめっき浴を用いて形成された亜鉛めっき皮膜の亜鉛析出量を、電気めっきでの電流及び通電時間で除することにより、めっき効率(mg/A・min)を算出した。
5-4-3.結果及び評価:
 実施例1~7、9~13、比較例1~3のめっき浴について、めっき効率に関する評価試験の結果及び比較例1のめっき効率の値に対する比(百分率)を表2に示す。めっき促進剤に含有される2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)の有無にて対照となる実施例1と比較例1との組、実施例2、9と比較例2との組、及び実施例10と比較例3との組を検証すると、2,5-ジメルカプト-1,3,4-チアジアゾールをめっき促進剤として含有する実施例1、2、9、10の方が、これらと対照となる比較例1~3よりめっき効率が良いことが判明した。特に、めっき促進剤として表1に示す化合物J、K、L、Mを含有する実施例1~7、9~13では、めっき効率が84以上と高い数値を示した。よって、めっき促進剤として含有されている2,5-ジメルカプト-1,3,4-チアジアゾールは、電流密度が1.5A/dm以下において、めっき効率を高める作用があることが判明した。
 また、めっき促進剤として2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)を含有させた実施例1~7、9、10や、2-チオ酢酸-5-メルカプト-1,3,4-チアジアゾール(表1の化合物K)を含有させた実施例11、2-ヒドロキシエチルチオ-5-メルカプト-1,3,4-チアジアゾール(表1の化合物L)を含有させた実施例12、及びエピクロルヒドリン改質2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物M)を含有させた実施例13では、比較例1のめっき効率に対して16~31%のめっき効率の有意な増加がみられた。
 さらに、低い平均電流密度1.0A/dmでの実施において、上記化学式(III)にて表す水溶性カチオン高分子化合物(MIRAPOL(商標)WT)を含有するめっき浴においても、従来技術に属する比較例2、3のめっき浴でのそれぞれ7%、13%のめっき効率の増加と比較し、実施例1~7、9~13のめっき浴での16~31%のめっき効率の増加は、非常に有意なものである。
5-5.均一電着性に関する評価試験(評価試験5):
5-5-1.電気めっき:
 スターラー回転数1000rpmの液循環型ハルセル(商品名:スマートハルセル、山本めっき試験器社製、品番:B‐53‐SM)に、実施例1~7、9~13、比較例1~3のめっき浴をそれぞれ収容して電気めっきを実施した。また、陰極として山本鍍金試験器社製の縦×横×厚さが67×100×0.3mmの鉄板を用いた。電気めっきの条件は、電流0.5A(電流密度0.05~2.5A/dm)で通電時間60分、めっき浴温度25℃とした。
5-5-2.亜鉛めっき皮膜の膜厚の測定:
 まず、亜鉛めっき皮膜の膜厚は、陰極とした上述の鉄板について、以下の2つの測定地点にて測定した。鉄板の表面で、ハルセル(めっき槽)に配置した際のめっき槽の深さ方向でのめっき面の中央にある位置において、高電流密度端から低電流密度端側へ向かって10mmの位置を測定地点Aとした。また、同一の鉄板の同一表面で、測定地点Aと同じ深さの位置において、高電流密度端から低電流密度端側へ向かって85mmの位置を測定地点Bとした。測定地点A及びBでの亜鉛めっき皮膜の膜厚は、蛍光X線膜厚計(SII社製、SFT-9200)により測定した。均一電着性は、亜鉛めっき皮膜のA地点の膜厚に対するB地点の膜厚の比率(百分率)にて算出した。
5-5-3.結果及び評価:
 実施例1~7、9~13、比較例1~3のジンケート型亜鉛めっき浴ついて、均一電着性に関する評価試験の結果を表2に示す。めっき促進剤に含有される2,5-ジメルカプト-1,3,4-チアジアゾール(表1の化合物J)の有無にて対照となる実施例1と比較例1との組、及び実施例2と比較例2との組をそれぞれ検証する。上述の算出法より得られた均一電着性の値が、実施例1では47.9であったのに対し、比較例1では30.7であった。同様に、均一電着性の値が、実施例2では66.3であったのに対し、比較例2では60.8であった。これらの比較から、めっき促進剤に2,5-ジメルカプト-1,3,4-チアジアゾールを含有させることにより、ジンケート型亜鉛めっき浴が発揮する均一電着性が向上することが示された。
 実施例2~5、9~13及び比較例2のめっき浴では、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(MIRAPOL(商標)WT)を含有し、均一電着性が60以上と高い数値を示した。この結果から、一次光沢剤として含有されている上記化学式(III)にて表す水溶性カチオン高分子化合物(MIRAPOL(商標)WT)は、均一電着性の向上に有意に作用することが判明した。さらに、めっき促進剤として表1の化合物J~Mのいずれかを含む実施例2~5、9~13のめっき浴では、より高い値の均一電着性を示した。よって、上記めっき促進剤が、均一電着性をより一層高める作用を有すると判明した。特に、実施例10~13のめっき浴では、一次光沢剤として上記化学式(III)にて表す水溶性カチオン高分子化合物(MIRAPOL(商標)WT)とイミダゾールとエピクロヒドリンとの縮合重合体(表1の化合物F~I)とを併用し且つめっき促進剤として表1の化合物J~Mのいずれかを含み、均一電着性が67~80と非常に高い数値を示した。
5-6.総合評価:
 以上の評価試験から、実施例1~13のめっき浴、すなわち本発明のめっき浴は、低い平均電流密度(0.05~1.0A/dm)での電気めっきの実施においても、高いめっき効率にて光沢度の高い亜鉛めっき皮膜を形成させることが可能であると実験的に示された。また、実施例2~5、9~13のジンケート型亜鉛めっき浴は、めっき促進剤として上記化学式(I)にて表される複素環式化合物に該当する表1の化合物J~Mの少なくもいずれか1つ及び一次光沢剤として上記化学式(III)にて表される水溶性カチオン高分子化合物(MIRAPOL(商標)WT)を含有する本発明のめっき浴の実施形態であり、低い平均電流密度での高いめっき効率に加えて、高い均一電着性を発揮することが実験的に示された。また、実施例1~5、8~13のジンケート型亜鉛めっき浴は、通電時間60分間のバレルめっきと化成処理の併用実施という実用的な実施形態においても、品質(外観、後処理性)の優れた亜鉛めっき皮膜を形成できる効果を奏することが実験的に示された。
 本発明は、自動車用の鋼板、ボルト、ナットなどに対して、電気めっきによって亜鉛めっき皮膜を形成させるのに使用するジンケート型亜鉛めっき浴として利用できる。

Claims (12)

  1.  電気めっきにて、亜鉛を少なくとも含む金属を析出させて、亜鉛めっき皮膜を形成させるためのジンケート型亜鉛めっき浴であって、
     析出する前記金属の結晶を微細化する機能を有する一次光沢剤と、
     下記化学式(I)にて表される複素環式化合物及び/又は前記複素環式化合物の誘導体を含むめっき促進剤と、を含有するジンケート型亜鉛めっき浴。
    Figure JPOXMLDOC01-appb-C000001
     (化学式(I)中、nは、1~3の自然数、RとRは、同じものか、又は異なったものであり、水素、CHCOOH、CHCHOH、又はCHCH(OH)CHClを表す。)
  2.  前記複素環式化合物及び/又は前記複素環式化合物の誘導体を0.01g/L以上1.0g/L以下含有する、請求項1に記載のジンケート型亜鉛めっき浴。
  3.  前記一次光沢剤として、水溶性カチオン高分子化合物を含有する、請求項1又は2に記載のジンケート型亜鉛めっき浴。
  4.  前記水溶性カチオン高分子化合物として、下記化学式(II)にて表される化合物を含む、請求項3に記載のジンケート型亜鉛めっき浴。
    Figure JPOXMLDOC01-appb-C000002
     (化学式(II)において、nは1以上の自然数である。R、R、R、及びRは、同じものか、又は異なったものであり、水素、メチル、エチル、イソプロピル、2‐ヒドロキシルエチル‐CHCH(OCHCHOH(Xは0~6の自然数)又は2‐ヒドロキシエチル‐CHCH(OCCHCHOH(Xは0~6の自然数)を表す。Rは、(CH‐O‐(CH、(CH‐O‐(CH‐O‐(CH、又はCH‐CHOH‐CH‐O‐CH‐CHOH‐CHを表す。Yは、S又はOを表す。)
  5.  前記亜鉛めっき皮膜を平滑化する機能を有する二次光沢剤を含有する請求項1~4のいずれか一項に記載のジンケート型亜鉛めっき浴。
  6.  前記二次光沢剤として、有機アルデヒド類、及び複素環式化合物よりなる群から選択される1種以上を含有する、請求項5に記載のジンケート型亜鉛めっき浴。
  7.  前記二次光沢剤として、芳香族アルデヒド及びピリジニウム化合物のうち少なくともいずれかを含有する、請求項6に記載のジンケート型亜鉛めっき浴。
  8.  亜鉛イオンを5g/L以上20g/L以下含有する、請求項1~7のいずれか一項に記載のジンケート型亜鉛めっき浴。
  9.  水酸化ナトリウムを80g/L以上250g/L以下含有する、請求項1~8のいずれか一項に記載のジンケート型亜鉛めっき浴。
  10.  ニッケルイオン又は鉄イオンのうち少なくともいずれかを含有する、請求項1~9のいずれか一項に記載のジンケート型亜鉛めっき浴。
  11.  前記ニッケルイオンを100mg/L以上4000mg/L以下含有する、請求項10に記載のジンケート型亜鉛めっき浴。
  12.  前記鉄イオンを10mg/L以上150mg/L以下含有する、請求項10又は11に記載のジンケート型亜鉛めっき浴。
PCT/JP2009/069108 2008-11-11 2009-11-10 ジンケート型亜鉛めっき浴 WO2010055825A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/126,888 US20110210007A1 (en) 2008-11-11 2009-11-10 Zincate zinc plating bath
JP2010537773A JP5419021B2 (ja) 2008-11-11 2009-11-10 ジンケート型亜鉛めっき浴
EP09826073A EP2357268A4 (en) 2008-11-11 2009-11-10 ZINCAT BASED SPRAYING BATH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008289115 2008-11-11
JP2008-289115 2008-11-11

Publications (1)

Publication Number Publication Date
WO2010055825A1 true WO2010055825A1 (ja) 2010-05-20

Family

ID=42169960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069108 WO2010055825A1 (ja) 2008-11-11 2009-11-10 ジンケート型亜鉛めっき浴

Country Status (4)

Country Link
US (1) US20110210007A1 (ja)
EP (1) EP2357268A4 (ja)
JP (1) JP5419021B2 (ja)
WO (1) WO2010055825A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032643A1 (ja) * 2010-09-09 2012-03-15 ユケン工業株式会社 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
WO2012053283A1 (ja) * 2010-10-20 2012-04-26 ユケン工業株式会社 電気めっき浴および電気めっき皮膜の形成方法並びに電気めっき製品
JP2013144852A (ja) * 2013-03-18 2013-07-25 Yuken Industry Co Ltd 電気めっき浴および電気めっき皮膜の形成方法並びに電気めっき製品
JP6048712B2 (ja) * 2014-08-08 2016-12-21 奥野製薬工業株式会社 銅−スズ合金めっき浴

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160108254A1 (en) * 2014-10-17 2016-04-21 Meltex Inc. Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353285A (ja) * 1986-08-22 1988-03-07 Nippon Hyomen Kagaku Kk 亜鉛−ニツケル合金めつき液
JP2003073882A (ja) * 2001-08-31 2003-03-12 Nippon Hyomen Kagaku Kk アルカリ性電気亜鉛めっき浴およびめっき方法
JP2004068153A (ja) * 2002-07-23 2004-03-04 Nippon Hyomen Kagaku Kk ジンケート浴亜鉛めっき方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1235101A (en) * 1967-05-01 1971-06-09 Albright & Wilson Mfg Ltd Improvements relating to electrodeposition of copper
US5435898A (en) * 1994-10-25 1995-07-25 Enthone-Omi Inc. Alkaline zinc and zinc alloy electroplating baths and processes
GB9806539D0 (en) * 1998-03-27 1998-05-27 Wm Canning Limited Electroplating solution
JP5245059B2 (ja) * 2010-09-09 2013-07-24 ユケン工業株式会社 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353285A (ja) * 1986-08-22 1988-03-07 Nippon Hyomen Kagaku Kk 亜鉛−ニツケル合金めつき液
JP2003073882A (ja) * 2001-08-31 2003-03-12 Nippon Hyomen Kagaku Kk アルカリ性電気亜鉛めっき浴およびめっき方法
JP2004068153A (ja) * 2002-07-23 2004-03-04 Nippon Hyomen Kagaku Kk ジンケート浴亜鉛めっき方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032643A1 (ja) * 2010-09-09 2012-03-15 ユケン工業株式会社 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
EP2489762A1 (en) * 2010-09-09 2012-08-22 Yuken Industry Co., Ltd. Additive for zinc plating baths and non-cyanide alkaline zinc plating baths
EP2489762A4 (en) * 2010-09-09 2012-12-05 Yuken Kogyo Co Ltd ADDITIVE FOR ZINCIAL BATHS AND ALKALINE ZINCIAL BATHS WITHOUT CYANIDE
JP5245059B2 (ja) * 2010-09-09 2013-07-24 ユケン工業株式会社 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
JPWO2012032643A1 (ja) * 2010-09-09 2013-12-12 ユケン工業株式会社 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
WO2012053283A1 (ja) * 2010-10-20 2012-04-26 ユケン工業株式会社 電気めっき浴および電気めっき皮膜の形成方法並びに電気めっき製品
JP2012087380A (ja) * 2010-10-20 2012-05-10 Yuken Industry Co Ltd 電気めっき浴および電気めっき皮膜の形成方法並びに電気めっき製品
JP2013144852A (ja) * 2013-03-18 2013-07-25 Yuken Industry Co Ltd 電気めっき浴および電気めっき皮膜の形成方法並びに電気めっき製品
JP6048712B2 (ja) * 2014-08-08 2016-12-21 奥野製薬工業株式会社 銅−スズ合金めっき浴

Also Published As

Publication number Publication date
EP2357268A4 (en) 2012-12-05
JP5419021B2 (ja) 2014-02-19
JPWO2010055825A1 (ja) 2012-04-12
EP2357268A1 (en) 2011-08-17
US20110210007A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP3354767B2 (ja) アルカリ亜鉛および亜鉛合金電気めっき浴およびプロセス
JPS6362595B2 (ja)
JPH02141596A (ja) ジンケート型亜鉛合金メッキ浴
JP5419021B2 (ja) ジンケート型亜鉛めっき浴
JPH0312157B2 (ja)
JP7349427B2 (ja) 3価クロムメッキ液およびこれを用いたクロムメッキ方法
JPH0338351B2 (ja)
CN109642337B (zh) 三元锌-镍-铁合金和用于电镀这种合金的碱性电解液
US20100096274A1 (en) Zinc alloy electroplating baths and processes
JP3348963B2 (ja) 亜鉛−コバルト合金アルカリ性めっき浴及び該めっき浴を用いためっき方法
JP5517164B2 (ja) バレルめっきによる3価クロムめっき方法
JPH01298192A (ja) 亜鉛−ニッケル合金めっき液
WO2009103567A1 (en) Process for the preparation of corrosion resistant zinc and zinc-nickel plated linear or complex shaped parts
JP3486087B2 (ja) アルカリ性亜鉛又は亜鉛合金用めっき浴及びめっきプロセス
JP2769614B2 (ja) 亜鉛−ニツケル合金用めつき浴
JP5728711B2 (ja) ジンケート型亜鉛系めっき浴用添加剤、ジンケート型亜鉛系めっき浴および亜鉛系めっき部材の製造方法
JP5747359B2 (ja) ジンケート型亜鉛系めっき浴、ジンケート型亜鉛系めっき浴用添加剤および亜鉛系めっき部材の製造方法
JPH07278875A (ja) 亜鉛−マンガン合金アルカリ性めっき浴及び該めっき浴を用いためっき方法
JP2014088608A (ja) ジンケート型亜鉛系めっき浴、ジンケート型亜鉛系めっき浴用添加剤および亜鉛系めっき部材の製造方法
JPH05112889A (ja) ジンケート型亜鉛−鉄合金メツキ浴
JPH11193487A (ja) アルカリ性亜鉛又は亜鉛合金用めっき液及びめっきプロセス
JP2997072B2 (ja) 亜鉛−ニッケル合金めっき浴及び被めっき物上の黒色析出を防止する方法
KR20200012351A (ko) 자동차 부품용 아연-니켈 합금도금액
WO2021131340A1 (ja) 亜鉛ニッケルめっき浴及び該浴を用いるめっき方法
JP2014037621A (ja) ジンケート型亜鉛系めっき浴、ジンケート型亜鉛系めっき浴用添加剤および亜鉛系めっき部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010537773

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13126888

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2354/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009826073

Country of ref document: EP