WO2012032643A1 - 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴 - Google Patents

亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴 Download PDF

Info

Publication number
WO2012032643A1
WO2012032643A1 PCT/JP2010/065567 JP2010065567W WO2012032643A1 WO 2012032643 A1 WO2012032643 A1 WO 2012032643A1 JP 2010065567 W JP2010065567 W JP 2010065567W WO 2012032643 A1 WO2012032643 A1 WO 2012032643A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
galvanizing bath
integer
cyan
additive
Prior art date
Application number
PCT/JP2010/065567
Other languages
English (en)
French (fr)
Inventor
和生 伊藤
友里 巴山
Original Assignee
ユケン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユケン工業株式会社 filed Critical ユケン工業株式会社
Priority to PCT/JP2010/065567 priority Critical patent/WO2012032643A1/ja
Priority to EP10846304.3A priority patent/EP2489762B1/en
Priority to JP2011506531A priority patent/JP5245059B2/ja
Priority to US13/146,734 priority patent/US20120138473A1/en
Publication of WO2012032643A1 publication Critical patent/WO2012032643A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • C08G73/0293Quaternisation of polyamidoamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins

Definitions

  • the present invention relates to a galvanizing bath additive added to a galvanizing bath used for electroplating and a non-cyan alkaline galvanizing bath.
  • Zinc plating is used for metal parts to prevent corrosion due to rust. And when metal parts are galvanized, an electroplating method is used.
  • the electroplating method is a method in which a metal to be galvanized (hereinafter referred to as an object) is immersed in a galvanizing bath and the object is energized in this state. By this energization, zinc dissolved in the galvanizing bath is deposited at various points on the surface of the object. And the zinc membrane
  • the above additive suppresses zinc deposition not only at a location where the amount of deposited zinc is excessive, but also at a location where the amount of deposited zinc is originally small. Therefore, the problem that the formation speed
  • an object of the present invention is to provide a zinc plating bath additive and a non-cyan which make it possible to quickly form a zinc film with a small width of variation in film thickness at each location on the surface of an object.
  • An alkaline galvanizing bath is provided.
  • the present invention has been completed in order to solve the above problems. Specifically, the zinc plating bath additive and the non-cyanic alkaline zinc plating bath described below.
  • the structural unit (a) and the structural unit (b) are the structural unit with respect to the sum of the mass of the structural unit (a) and the mass of the structural unit (b).
  • the structural units (a), the structural units (b), or the structural units (a) and (b) are represented by the following formula (3) and / or Or the zinc plating bath additive as described in said [1] or [2] connected through the coupling group shown by following formula (4).
  • a represents an integer of 1 to 5
  • b represents an integer of 1 to 5
  • d represents an integer of 1 to 5
  • e represents an integer of 1 to 5
  • m represents an integer of 0 to 5.
  • f represents an integer of 1 to 5
  • g represents an integer of 1 to 5
  • h represents an integer of 1 to 5
  • i represents an integer of 1 to 5
  • n represents an integer of 0 to 5.
  • R 1 , R 2 and R 3 are —H, —OH or —OCH 3 , and R 1 to R 3 may be the same or different.
  • the aromatic aldehyde compound is selected from 4-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 3,4-dimethoxybenzaldehyde, 3,4-methylenedioxybenzaldehyde, 2-hydroxybenzaldehyde and 4-hydroxybenzaldehyde.
  • p is an integer of 1 to 3
  • R 4 and R 5 are the same or different, and —H, —CH 2 COOH, —CH 2 CH 2 OH, or Represents —CH 2 CH (OH) CH 2 Cl.
  • the galvanizing bath additive of the present invention makes it possible to quickly form a zinc film having a small width of variation in film thickness at each location on the surface of the object. Moreover, according to the non-cyanic alkaline zinc plating bath of the present invention, a zinc film having a small width of variation in film thickness at each location on the surface of the object can be quickly formed.
  • 6 is a graph showing the film thickness of the zinc coating at each location on the cathode plates of Examples 1 to 4 and Comparative Examples 1 and 2.
  • 10 is a graph showing the film thickness of a zinc coating for each part in the cathode plate of Comparative Example 3.
  • the galvanizing bath additive of the present invention contains a water-soluble copolymer containing a structural unit (a) represented by the following formula (1) and a structural unit (b) represented by the following formula (2).
  • the water-soluble copolymer preferably has a weight average molecular weight (Mw) of 2,000 to 50,000 from the viewpoint of functional properties.
  • the functional characteristics are the characteristics that make the appearance of the zinc film good (prevention of galling of the zinc film, prevention of uneven glossy appearance), and the characteristics that quickly form the zinc film (increase the amount of zinc deposited per hour) Characteristic) and a characteristic (characteristic for forming a zinc film with a more uniform film thickness) that reduces the width of variation in film thickness at each location on the surface of the object.
  • the weight average molecular weight of the water-soluble copolymer is more preferably 2000 to 30000. This weight average molecular weight can be measured using a calibration curve of a cubic approximate curve using polyethylene oxide (PEO) as a standard sample.
  • the zinc plating bath additive of the present invention has an action of suppressing excessive precipitation of zinc by containing a water-soluble copolymer containing the structural unit (a) and the structural unit (b). By this action, it is possible to suppress an excessive amount of zinc from being deposited only at a part of the surface of the object, and as a result, it is possible to suppress a variation in the film thickness of the zinc film for each part of the surface of the object. .
  • the current density on the surface of the object may vary from place to place.
  • the amount of zinc deposited per hour increases at locations where the current density on the surface of the object is high, and the amount of zinc deposited per hour decreases at locations where the current density on the surface of the object is low. Therefore, if the current density on the surface of the object varies from place to place, the film thickness of the zinc film varies from place to place on the surface of the object.
  • the zinc plating bath additive of the present invention can strongly suppress the precipitation of zinc at a location having a high current density by containing a water-soluble copolymer containing the structural unit (a) and the structural unit (b). .
  • the zinc plating bath additive of the present invention contains a water-soluble copolymer containing the structural unit (a) and the structural unit (b), thereby suppressing the precipitation of zinc at a location where the current density is low. It is weak. Therefore, even if the galvanizing bath additive of the present invention is added to the galvanizing bath, the amount of zinc deposited per hour at a low current density is unlikely to decrease.
  • the galvanizing bath additive of the present invention by adding the galvanizing bath additive of the present invention to the galvanizing bath, the amount of zinc deposited at the location where the current density is high is reduced, while the amount of zinc deposited at the location where the current density is low is kept as it is. Can be maintained. For this reason, the amount of zinc deposited at a location where the current density is high approaches the amount of zinc deposited at a location where the current density is low, and as a result, the width of the variation in the thickness of the zinc film at each location on the surface of the object. Becomes smaller. In addition, since zinc precipitation is not excessively suppressed at locations where the amount of deposited zinc is originally low and where the current density is low, a zinc coating can be formed quickly.
  • the galvanizing bath additive of the present invention includes a structural unit (included in the aqueous soluble copolymer with respect to the sum of the mass of the structural unit (a) and the mass of the structural unit (b) included in the water-soluble copolymer ( As the percentage by mass of a) (hereinafter referred to as “ratio of structural units (a) and (b)”) increases, the amount of zinc deposited per hour tends to increase. Therefore, the galvanizing bath additive of the present invention can adjust the ratio of the structural units (a) and (b) in the water-soluble copolymer without changing the zinc concentration of the bath and the temperature of the bath. The amount of zinc per hit can be increased or decreased.
  • the formation rate of the zinc film can be adjusted without changing the zinc ion concentration of the bath or the bath temperature.
  • the galvanizing bath additive of the present invention to the galvanizing bath, the problem that has occurred at the time of adjusting the formation rate of the zinc film in the conventional method can be solved.
  • the ratio of the structural units (a) and (b) in the water-soluble copolymer is preferably 10 to 60%.
  • the proportion of the structural units (a) and (b) is 10 to 60%
  • each aspect of the electroplating method barrel plating, a method of hanging a target object on a jig and galvanizing, etc.
  • the formation rate of the zinc film can be adjusted by increasing or decreasing the ratio of the structural units (a) and (b).
  • the ratio of the structural units (a) and (b) in the water-soluble copolymer is 10 to 60%, the smaller the ratio of the structural units (a) and (b), the higher the current density. There is a tendency for the difference in the amount of zinc deposited per hour to be reduced with respect to the location where the current density is low. Therefore, when it is desired to form a zinc film having a more uniform film thickness, a water-soluble copolymer having a small ratio of the structural units (a) and (b) may be contained in the galvanizing bath additive.
  • the water-soluble copolymer is composed of the structural units (a), the structural units (b), or the structural units (a) and (b) represented by the following formula (3) and Even when linked via a linking group represented by the following formula (4), the above-described action can be exhibited.
  • a represents an integer of 1 to 5
  • b represents an integer of 1 to 5
  • d represents an integer of 1 to 5
  • e represents an integer of 1 to 5
  • m represents an integer of 0 to 5.
  • f represents an integer of 1 to 5
  • g represents an integer of 1 to 5
  • h represents an integer of 1 to 5
  • i represents an integer of 1 to 5
  • n represents an integer of 0 to 5.
  • the linking group represented by the above formula (3) is bis (2-chloromethyl) ether, bis (2-chloroethyl) ether, bis (2-chloropropyl) ether, or a self-polymerized product thereof in an aqueous solution reaction. It can be inserted into the water-soluble copolymer by linking.
  • the linking group represented by the above formula (4) is formed by linking with epichlorohydrin, 1,3-dichloro-2-propanol, 1,4-dichloro-2-butanol, or a self-polymerized product thereof in an aqueous solution reaction. It can be inserted into a water-soluble copolymer.
  • the urea derivative having the structural unit (a) and the urea derivative having the structural unit (b) are mixed and dissolved at an arbitrary molar ratio, and then the liquid temperature is maintained at 60 ° C. or lower with stirring. Add the required amount of epichlorohydrin in small portions. Subsequently, the structural groups (a), the structural units (b), or the structural unit (a) and the structural unit (b) have the linking group shown in (4) by refluxing for 2 hours for condensation polymerization. A water-soluble polymer that is connected to each other can be produced.
  • Examples of the zinc plating bath using the zinc plating bath additive of the present invention include a non-cyan alkaline zinc plating bath described below (hereinafter referred to as “the non-cyan alkaline zinc plating bath of the present invention”). Can do.
  • Non-cyanic alkaline galvanizing bath includes a zinc plating bath additive containing a water-soluble copolymer containing the structural unit (a) and the structural unit (b), a zinc ion, and a hydroxide ion. Containing.
  • a water-soluble copolymer when referred to as a water-soluble copolymer, it refers to a water-soluble copolymer containing the structural unit (a) and the structural unit (b) unless otherwise specified.
  • a galvanizing bath additive containing a water-soluble copolymer containing the structural unit (a) and the structural unit (b) (of the present invention described above).
  • Zinc plating additive a galvanizing bath additive containing a water-soluble copolymer containing the structural unit (a) and the structural unit (b) (of the present invention described above).
  • a zinc film can be formed quickly.
  • coat has a small width
  • the non-cyan alkaline galvanizing bath of the present invention when the ratio of the structural units (a) and (b) in the water-soluble copolymer is higher, the amount of zinc deposited per hour becomes larger.
  • the non-cyan alkaline zinc plating bath of the present invention it is only necessary to replace the water-soluble copolymer with a higher ratio of the structural units (a) and (b). it can. That is, the formation rate of the zinc film can be changed by an easy operation of re-preparing a bath in which only the water-soluble copolymer is changed.
  • the formation rate of the zinc film can be adjusted without changing the zinc ion concentration of the bath or the bath temperature.
  • the non-cyanic alkaline galvanizing bath of the present invention can solve the problems that occurred when adjusting the formation rate of the zinc film in the conventional method.
  • the amount of zinc deposited at the location where the current density is high approaches the amount of zinc deposited at the location where the current density is low. Therefore, by adjusting the ratio of the structural units (a) and (b) of the water-soluble copolymer, the amount of zinc deposited at the location where the current density is high and the amount of zinc deposited at the location where the current density is low are made substantially the same.
  • the non-cyanic alkaline galvanizing bath of the present invention preferably contains 0.1 to 50 g / L of a water-soluble copolymer containing the structural unit (a) and the structural unit (b).
  • a water-soluble copolymer containing the structural unit (a) and the structural unit (b).
  • the non-cyan alkaline galvanizing bath of the present invention makes it easy to attach zinc deposited on the object in terms of enhancing the gloss of the zinc film (so-called glossiness) and in places where the current density is low (enhancing throwing power). ) From the viewpoint, it is preferable to contain N-benzylpyrimidinium-3-carbonate.
  • the non-cyan alkaline galvanizing bath of the present invention is a hydrogen sulfite addition in which hydrogen sulfite is added to the aldehyde group of the aromatic aldehyde compound represented by the following formula (5) from the viewpoint of enhancing glossiness and improving throwing power. It is preferable to contain a product.
  • R 1 , R 2 and R 3 are —H, —OH or —OCH 3 , and R 1 to R 3 may be the same or different.
  • the aromatic aldehyde compound includes 4-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 3,4-dimethoxybenzaldehyde, 3,4-methylenedioxybenzaldehyde, 2-hydroxybenzaldehyde and 4-hydroxybenzaldehyde. What consists of 1 or more types chosen from a group can be used.
  • non-cyan alkaline galvanizing bath of the present invention preferably contains 0.005 to 1.0 g / L of the above-mentioned bisulfite adduct.
  • non-cyan alkaline galvanizing bath of the present invention preferably contains 5 to 25 g / L of zinc ions.
  • the non-cyanic alkaline zinc plating bath of the present invention can also be applied to a zincate-type zinc plating bath containing zincate zinc ([Zn (OH) 4 ] 2 ⁇ ).
  • zincate zinc a technique that can be usually used by those skilled in the art of plating technology can be appropriately employed.
  • zincate zinc is prepared by dissolving zinc oxide (ZnO) in an alkaline aqueous solution such as a sodium hydroxide (NaOH) aqueous solution in the same manner as conventionally known methods. Good.
  • the non-cyanic alkaline galvanizing bath of the present invention contains a silicon compound, sodium ethylenediaminetetraacetate for the purpose of detoxifying harmful metal ions when they contain harmful metal ions, and for the purpose of softening water quality. It is preferable to contain at least one selected from the group consisting of trisodium hydroxyethylenediamine triacetate.
  • the non-cyanic alkaline zinc plating bath of the present invention contains a heterocyclic compound and / or a derivative of a heterocyclic compound represented by the following formula (6) from the viewpoint of increasing the amount of zinc deposited per hour. It is preferable.
  • the inclusion of these heterocyclic compounds or derivatives of heterocyclic compounds increases the amount of zinc deposited per hour at locations where the current density is low, so that there are locations where the current density is high and locations where the current density is low. The difference in zinc output per hour is reduced. That is, by containing a heterocyclic compound or a derivative of a heterocyclic compound, a zinc film having a uniform film thickness can be formed more quickly.
  • p is an integer of 1 to 3
  • R 4 and R 5 are the same or different, and —H, —CH 2 COOH, —CH 2 CH 2 OH, or Represents —CH 2 CH (OH) CH 2 Cl.
  • Zinc plating bath additive 19.3 g (0.084 mol) of N, N′-bis [3- (dimethylamino) propyl] urea, 12.2 g (0.084 mol) of [3- (dimethylamino) propyl] urea, sodium hydroxide 3 .3 g (0.084 mol) and 62.4 g of water are put into a 300 ml three-necked flask, and 15.4 g (0.17 mol) of epichlorohydrin is gradually added at 60 ° C. or lower with stirring, and then heated at reflux for 2 hours.
  • the additive A was obtained by polycondensation reaction.
  • additive D 38.6 g (0.168 mol) of N, N′-bis [3- (dimethylamino) propyl] urea and 62.4 g of water were put into a 300 ml three-necked flask, and 15.4 g of epichlorohydrin was stirred at 60 ° C. or lower. (0.17 mol) was gradually added, and then the product obtained by polycondensation reaction by heating for 2 hours under reflux was used as additive D.
  • a polycondensate (trade name Product, product number J-138M) obtained by charging dimethylaminopropylamine and epichlorohydrin in a molar ratio of 1: 1 and subjecting them to a polycondensation reaction was obtained from URSA Corporation and used as additive E.
  • additives A to E a high-speed GPC apparatus, HLC-8320GPC, Eco SEC (manufactured by Tosoh Corporation) was used, and the molecular weight was measured using a calibration curve of a cubic approximation curve using polyethylene oxide (PEO) as a standard sample ( The GPC measurement conditions are as follows). As a result, it was found that additive A had Mw of 3900, additive B had Mw of 4600, additive C had Mw of 5700, additive D had Mw of 7200, and additive E had Mw of 16000.
  • GPC is a method of separating a target substance by molecular size.
  • a GPC apparatus is an apparatus that separates substances by using a chromatograph using a column that can be sorted according to the size of molecules. GPC is particularly excellent in the separation and analysis of polymer substances.
  • Aqueous GPC is a kind of size exclusion chromatography and is also called abbreviated SEC.
  • ⁇ GPC measurement common conditions> Water-based GPC equipment: HLC-8320GPC, EcoSEC (manufactured by Tosoh Technosystem Corporation) Column: TSKgel G6000PWXL-CP + TSKgel G3000PWXL-CP (7.8 mm ID X 30 cm) Detector: Differential refractometer (RI detector) Eluent: 0.1M NaNO 3 aqueous solution Column temperature: 40 ° C
  • Ratio of structural units (a) and (b) for the polymers contained in additives A to D [mass of structural unit (a) / (mass of structural unit (a) + mass of structural unit (b)) ⁇ 100] is shown in Table 1.
  • Example 2 A non-cyanic alkaline galvanizing bath containing 12 g / L of zinc ions, 120 g / L of sodium hydroxide, 2.50 g / L of additive B, and 0.05 g / L of gloss imparting agent (I) was prepared (Table 2).
  • Example 3 A non-cyan alkaline galvanizing bath containing 12 g / L of zinc ions, 120 g / L of sodium hydroxide, additive C2.50 g / L, and gloss imparting agent (I) 0.05 g / L was prepared (Table 2).
  • Example 4 Zinc ion 12 g / L, sodium hydroxide 120 g / L, additive B 2.50 g / L, an aqueous solution of anisaldehyde bisulfite Na adduct as a gloss imparting agent (the content of anisaldehyde bisulfite Na adduct is in terms of anisaldehyde) 40 g / L) [hereinafter, gloss imparting agent (II)] A non-cyan alkaline galvanizing bath containing 0.03 g / L was prepared (Table 2).
  • FIG. 1 is a schematic view of the front surface of the cathode plate after the hull cell plating test (a surface plated with zinc, so-called “plated surface”).
  • the cathode plate was bent so that a crease was formed from the high power end to the low power end at a position corresponding to the middle depth when installed in the plating tank.
  • the cathode plate was bent 180 degrees so that the back surfaces (surfaces opposite to the plating surface) of the cathode plates were in contact with each other, and then the cathode plate was opened until the bent plating surface became flat.
  • it was determined whether or not the zinc film peeled off at the fold around the high-electric part end of the plated surface in a range within 20 mm from the high-electric part end). The results are shown in Table 2.
  • Examples 1 to 4 were found to have high throwing power and a thick zinc coating.
  • the zinc film having a uniform film thickness was formed by uniformly reducing the film thickness from a location having a high current density to a location having a low current density.
  • the film thickness of the zinc film was excessively increased at the location where the current density was high, while the thickness of the zinc film was decreased at the location where the current density was low. That is, when the additive E is contained as in Comparative Example 2, the zinc film is formed at a part of the surface of the object under the condition that the zinc ion concentration is 12 g / L and the temperature of the zinc plating bath is 25 ° C. Turned out to be excessively thick.
  • Example 3 it was found that the zinc film could be formed thick with a uniform film thickness.
  • Comparative Example 1 was found to be thin although the thickness of the zinc coating was uniform (the thickness of the zinc coating of Comparative Example 1 was about 3 minutes of the thickness of the zinc coating of Example 3). 1).
  • Comparative Example 3 does not contain any of Additives A to E. As shown in FIG. 3, when the galvanizing bath does not contain an additive having a function of suppressing the precipitation of zinc, it was confirmed that the film thickness of the zinc film varies depending on the location of the surface of the object. . Moreover, in Comparative Example 3, regardless of the current density, there were places where the film thickness was locally excessive in some places (an uneven zinc film was formed).
  • the present invention can be used as a zinc plating bath additive to be added to a zinc plating bath used in an electroplating method and a non-cyan alkaline zinc plating bath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 対象物の表面の箇所ごとでの膜厚のばらつきの幅が小さい亜鉛皮膜を速やかに形成することを可能にする亜鉛めっき浴添加剤を提供する。2種類のアミン化合物を構成単位として含んだ水溶性共重合体を含有する亜鉛めっき浴添加剤。

Description

亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
 本発明は、電気めっき法に用いる亜鉛めっき浴に添加する亜鉛めっき浴添加剤、および非シアン系アルカリ性亜鉛めっき浴に関する。
 亜鉛めっきは、錆によって腐食することを防止するために金属部品に用いられている。そして、金属部品を亜鉛めっきする際には、電気めっき法を用いている。電気めっき法は、亜鉛めっきの対象となる金属(以下、対象物という)を亜鉛めっき浴に浸漬した状態にし、この状態で対象物を通電する方法である。この通電により、亜鉛めっき浴中に溶解していた亜鉛が対象物の表面の各所で析出する。そして、この析出した亜鉛が対象物の表面を覆っていくことにより亜鉛皮膜が形成されていく。
 電気めっき法では、亜鉛の析出量が、対象物の表面の箇所ごとにばらついてしまうことが問題となっている。亜鉛析出量が対象物の表面の箇所ごとにばらつくと、対象物の表面には膜厚のばらついた亜鉛皮膜が形成されてしまう。また、亜鉛皮膜の膜厚がばらついてしまうことにより、亜鉛皮膜の光沢外観なども悪化しがちになる。そこで、亜鉛析出量のばらつきの幅を小さくするため、亜鉛の析出を抑制する働きを持った添加剤を亜鉛めっき浴に加えている(例えば、特許文献1)。この添加剤の働きによって対象物の各箇所で亜鉛析出量を略同じにすることにより、対象物の表面の箇所ごとでの膜厚のばらつきの幅が小さな亜鉛皮膜を形成できるようになる。
特開昭51-135837号公報
 ところが、上記の添加剤は、亜鉛析出量が過剰になってしまう箇所だけでなく、もともと亜鉛析出量が少ない箇所でも亜鉛の析出を抑制してしまう。そのために、亜鉛皮膜の形成速度が低下してしまうという問題が生じている。
 上記の問題に鑑みて、本発明の目的は、対象物の表面の箇所ごとでの膜厚のばらつきの幅が小さい亜鉛皮膜を速やかに形成することを可能にする亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴を提供することにある。
 本発明は、上記課題を解決するため完成するに至ったものでる。詳しくは、以下に示す亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴である。
[1] 下記式(1)で示される構成単位(a)および下記式(2)で示される構成単位(b)を含む水溶性共重合体を含有する亜鉛めっき浴添加剤。
Figure JPOXMLDOC01-appb-C000005
[2] 前記水溶性共重合体において、前記構成単位(a)および前記構成単位(b)は、前記構成単位(a)の質量と前記構成単位(b)の質量との和に対する前記構成単位(a)の質量の百分率比が10~60%にて含まれている前記[1]に記載の亜鉛めっき浴添加剤。
[3] 前記水溶性共重合体は、前記構成単位(a)同士、前記構成単位(b)同士、または前記構成単位(a)と前記構成単位(b)とが下記式(3)および/または下記式(4)で示される連結基を介して連結している前記[1]または[2]に記載の亜鉛めっき浴添加剤。
Figure JPOXMLDOC01-appb-C000006
 (式(3)中において、aは1~5の整数、bは1~5の整数、dは1~5の整数、eは1~5の整数、mは0~5の整数を表す。式(4)中において、fは1~5の整数、gは1~5の整数、hは1~5の整数、iは1~5の整数、nは0~5の整数を表す。)
[4] 前記[1]~[3]のいずれかに記載の亜鉛めっき浴添加剤と、亜鉛イオンと、水酸化物イオンと、を含有する非シアン系アルカリ性亜鉛めっき浴。
[5] 前記水溶性共重合体を0.1~50g/L含有する前記[4]に記載の非シアン系アルカリ性亜鉛めっき浴。
[6] N-ベンジルピリミジウム-3-カルボネートを含有する前記[4]または[5]に記載の非シアン系アルカリ性亜鉛めっき浴。
[7] 下記式(5)で示される芳香族アルデヒド化合物のアルデヒド基に亜硫酸水素を付加した亜硫酸水素付加物を含有する前記[4]~[6]のいずれかに記載の非シアン系アルカリ性亜鉛めっき浴。
Figure JPOXMLDOC01-appb-C000007
 (式(5)中において、R、R、Rは、-H、-OH、または-OCHであり、R~Rが同一であっても異なっていてもよい。)
[8] 前記芳香族アルデヒド化合物が、4-メトキシベンズアルデヒド、4-ヒドロキシ-3-メトキシベンズアルデヒド、3,4-ジメトキシベンズアルデヒド、3,4-メチレンジオキシベンズアルデヒド、2-ヒドロキシベンズアルデヒドおよび4-ヒドロキシベンズアルデヒドからなる群より選ばれる1種以上からなる前記[7]に記載の非シアン系アルカリ性亜鉛めっき浴。
[9] 前記亜硫酸水素付加物を0.005~1.0g/L含有する前記[7]または[8]に記載の非シアン系アルカリ性亜鉛めっき浴。
[10] 前記亜鉛イオンを5~25g/L含有する前記[4]~[9]のいずれかに記載の非シアン系アルカリ性亜鉛めっき浴。
[11] 珪素化合物、エチレンジアミン四酢酸ナトリウム、ヒドロキシエチレンジアミン三酢酸三ナトリウムからなる群より選ばれる1種以上を含有する前記[4]~[10]のいずれかに記載の非シアン系アルカリ性亜鉛めっき浴。
[12] 下記式(6)で示される複素環式化合物および/または前記複素環式化合物の誘導体を含有する前記[4]~[11]のいずれかに記載の非シアン系アルカリ性亜鉛めっき浴。
Figure JPOXMLDOC01-appb-C000008
 (式(6)中、pは、1~3の整数、RとRは、同じものか、または異なったものであり、-H、-CHCOOH、-CHCHOH、または-CHCH(OH)CHClを表す。)
 本発明の亜鉛めっき浴添加剤は、対象物の表面の箇所ごとでの膜厚のばらつきの幅が小さい亜鉛皮膜を速やかに形成することを可能にする。また、本発明の非シアン系アルカリ性亜鉛めっき浴によれば、対象物の表面の箇所ごとでの膜厚のばらつきの幅が小さい亜鉛皮膜を速やかに形成することができる。
ハルセルめっき試験後の陰極板の模式図である。 実施例1~4および比較例1~2の陰極板における箇所ごとの亜鉛皮膜の膜厚を示したグラフである。 比較例3の陰極板における箇所ごとの亜鉛皮膜の膜厚を示したグラフである。
 以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
1.亜鉛めっき浴添加剤:
 本発明の亜鉛めっき浴添加剤は、下記式(1)で示される構成単位(a)および下記式(2)で示される構成単位(b)を含む水溶性共重合体を含有する。
Figure JPOXMLDOC01-appb-C000009
 水溶性共重合体は、機能特性の観点から、重量平均分子量(Mw)が2000~50000であることが望ましい。ここで機能特性とは、亜鉛皮膜の外観を良好にする特性(亜鉛皮膜のコゲの防止、光沢外観ムラの防止)や、亜鉛皮膜を速やかに形成する特性(時間当たりの亜鉛析出量を多くする特性)や、対象物の表面の箇所ごとでの膜厚のばらつきの幅を小さくする特性(亜鉛皮膜をより均一な膜厚で形成する特性)のことである。また、上記の機能特性をより高める観点から、水溶性共重合体の重量平均分子量は、2000~30000であることがより好ましい。この重量平均分子量は、ポリエチレンオキシド(PEO)を標準試料とした3次近似曲線の検量線を用いて測定することができる。
 また、本発明の亜鉛めっき浴添加剤は、構成単位(a)および構成単位(b)を含む水溶性共重合体を含有することにより、亜鉛が過剰に析出することを抑える作用を有する。この作用により、対象物の表面の一部の箇所のみで過剰量の亜鉛が析出することが抑えられ、その結果として、対象物の表面の箇所ごとに亜鉛皮膜の膜厚がばらつくことが抑えられる。
 電気めっき法では、対象物の表面の電流密度が箇所ごとにばらつくときがある。このとき、対象物の表面の電流密度の高い箇所では時間あたりの亜鉛析出量が多くなり、対象物の表面の電流密度の低い箇所では時間あたりの亜鉛析出量が少なくなる。そのため、対象物の表面の電流密度が箇所ごとにばらつくと、対象物の表面の箇所ごとに亜鉛皮膜の膜厚がばらついてしまう。
 本発明の亜鉛めっき浴添加剤は、構成単位(a)および構成単位(b)を含む水溶性共重合体を含有することにより、電流密度の高い箇所での亜鉛の析出を強く抑えることができる。一方で、本発明の亜鉛めっき浴添加剤は、構成単位(a)および構成単位(b)を含む水溶性共重合体を含有することにより、電流密度の低い箇所で亜鉛の析出を抑える作用が弱くなっている。そのため、本発明の亜鉛めっき浴添加剤を亜鉛めっき浴に添加しても、電流密度の低い箇所での時間あたりの亜鉛析出量が低下しにくい。したがって、本発明の亜鉛めっき浴添加剤を亜鉛めっき浴に添加することにより、電流密度の高い箇所での亜鉛の析出量を少なくし、一方で電流密度の低い箇所での亜鉛の析出量をそのまま維持することができる。そのため、電流密度の高い箇所での亜鉛析出量が電流密度の低い箇所での亜鉛析出量に近づいていき、その結果として、対象物の表面の箇所ごとでの亜鉛皮膜の膜厚のばらつきの幅が小さくなる。加えて、もともと亜鉛析出量が少ない箇所である、電流密度の低い箇所での亜鉛の析出を抑え過ぎないため、亜鉛皮膜を速やかに形成できる。
 また、本発明の亜鉛めっき浴添加剤は、水溶性共重合体に含まれる構成単位(a)の質量と構成単位(b)の質量との和に対する水性溶性共重合体に含まれる構成単位(a)の質量の百分率比(以下、「構成単位(a)・(b)の比率」という)が大きくなるにつれて、時間あたりの亜鉛析出量が増加する傾向がある。したがって、本発明の亜鉛めっき浴添加剤は、水溶性共重合体における構成単位(a)・(b)の比率を調整することにより、浴の亜鉛濃度や浴の温度を変化させることなく、時間あたりの亜鉛析出量を多くしたり少なくしたりすることができる。すなわち、本発明の亜鉛めっき浴添加剤を亜鉛めっき浴に加えることにより、浴の亜鉛イオン濃度や浴の温度を変化させることなく、亜鉛皮膜の形成速度を調整することができる。その結果として、亜鉛皮膜の膜厚が対象物の表面の一部の箇所で過剰に厚くなるといった、浴中の亜鉛濃度の増加させた時や浴の温度を高めた時に発生していた問題が生じることがなくなる。すなわち、本発明の亜鉛めっき浴添加剤を亜鉛めっき浴に加えることにより、従来法では亜鉛皮膜の形成速度の調整時に生じていた問題が解消できる。
 本発明の亜鉛めっき浴添加剤では、水溶性共重合体における構成単位(a)・(b)の比率が10~60%であることが好ましい。構成単位(a)・(b)の比率が10~60%である場合には、電気めっき法の各態様(バレルめっき、治具に対象となる対象物を吊るして亜鉛めっきする方法など)のいずれに対しても、構成単位(a)・(b)の比率の増減による亜鉛皮膜の形成速度の調整が可能になる。
 また、水溶性共重合体における構成単位(a)・(b)の比率が10~60%の場合には、構成単位(a)・(b)の比率が小さくなるほど、電流密度の高い箇所と電流密度の低い箇所との間で時間あたりの亜鉛析出量の差が小さくなる傾向がある。したがって、より均一な膜厚の亜鉛皮膜を形成したい場合には、構成単位(a)・(b)の比率が小さい水溶性共重合体を亜鉛めっき浴添加剤に含有させるとよい。
 本発明の亜鉛めっき浴添加剤は、水溶性共重合体が構成単位(a)同士、構成単位(b)同士、または構成単位(a)と構成単位(b)とが下記式(3)および/または下記式(4)で示される連結基を介して連結している場合においても、上記した作用を発揮することができる。
Figure JPOXMLDOC01-appb-C000010
 (式(3)中において、aは1~5の整数、bは1~5の整数、dは1~5の整数、eは1~5の整数、mは0~5の整数を表す。式(4)中において、fは1~5の整数、gは1~5の整数、hは1~5の整数、iは1~5の整数、nは0~5の整数を表す。)
 上記式(3)に示した連結基は、ビス(2-クロロメチル)エーテル、ビス(2-クロロエチル)エーテル、ビス(2-クロロプロピル)エーテル、それらの水溶液反応に於ける自己重合物での連結によって水溶性共重合体内に挿入することができる。また、上記式(4)に示した連結基は、エピクロルヒドリン、1,3-ジクロロ-2-プロパノール、1,4-ジクロロ-2-ブタノール、それらの水溶液反応に於ける自己重合物での連結によって水溶性共重合体内に挿入することができる。例えば、溶剤として水を用いて、構成単位(a)を有する尿素誘導体および構成単位(b)を有する尿素誘導体を任意のモル比で混合溶解した後、攪拌下、液温度60℃以下を保ちつつ必要量のエピクロルヒドリンを少量ずつ添加する。その後、2時間環流させて縮重合させることにより、構成単位(a)同士、構成単位(b)同士、または構成単位(a)と構成単位(b)とが(4)に示した連結基を介して連結している水溶性重合体を製造することができる。
 本発明の亜鉛めっき浴添加剤を用いた亜鉛めっき浴としては、例えば、以下に説明する非シアン系アルカリ性亜鉛めっき浴(以下、「本発明の非シアン系アルカリ性亜鉛めっき浴」という)を挙げることができる。
2.非シアン系アルカリ性亜鉛めっき浴:
 本発明の非シアン系アルカリ性亜鉛めっき浴は、上記の構成単位(a)および構成単位(b)を含む水溶性共重合体を含んだ亜鉛めっき浴添加剤と、亜鉛イオンと、水酸化物イオンとを含有する。以後、水溶性共重合体と称したとき、特に言及のない限り、構成単位(a)および構成単位(b)を含む水溶性共重合体のことを指すものとする。また、亜鉛めっき浴添加剤と称したとき、特に言及のない限り、構成単位(a)および構成単位(b)を含む水溶性共重合体を含んだ亜鉛めっき浴添加剤(上述の本発明の亜鉛めっき添加剤)を指すものとする。
 本発明の非シアン系アルカリ性亜鉛めっき浴を用いて電気めっき法を行った場合、亜鉛皮膜を速く形成することができる。そして、亜鉛皮膜は、対象物の表面の箇所ごとでの膜厚のばらつきの幅が小さい。また、電気めっき法を行った際に対象物の表面で電流密度の大きさがばらついた場合でも、膜厚のばらつきの幅の小さな亜鉛皮膜を形成できる。
 さらに、本発明の非シアン系アルカリ性亜鉛めっき浴では、水溶性共重合体における構成単位(a)・(b)の比率がより高い場合に時間あたりの亜鉛析出量がより多くなる。本発明の非シアン系アルカリ性亜鉛めっき浴の使用時に亜鉛皮膜をより速く形成する必要が生じたときには、水溶性共重合体の構成単位(a)・(b)の比率が高いものに替えるだけ対処できる。すなわち、水溶性共重合体のみを替えた浴を再調製するという容易な作業によって亜鉛皮膜の形成速度を変更できる。また、本発明の非シアン系アルカリ性亜鉛めっき浴では、浴の亜鉛イオン濃度や浴の温度を変化させることなく、亜鉛皮膜の形成速度を調整することが可能になる。その結果として、亜鉛皮膜の膜厚が対象物の表面の一部の箇所で過剰に厚くなるといった、浴中の亜鉛濃度の増加させた時や浴の温度を高めた時に発生していた問題が生じることがなくなる。すなわち、本発明の非シアン系アルカリ性亜鉛めっき浴は、従来法では亜鉛皮膜の形成速度の調整時に生じていた問題が解消できる。
 また、本発明の非シアン系アルカリ性亜鉛めっき浴では、水溶性共重合体の構成単位(a)・(b)の比率を低くしていくと電流密度の高い箇所での時間あたりの亜鉛析出量が少なくなってゆき、その結果として、電流密度の高い箇所の亜鉛析出量が電流密度の低い箇所の亜鉛析出量により近づいていく。そのため、水溶性共重合体の構成単位(a)・(b)の比率を調整することにより、電流密度の高い箇所での亜鉛析出量と電流密度の低い箇所での亜鉛析出量を略同じにして、より均一な膜厚の亜鉛皮膜を形成することも可能になる。
 本発明の非シアン系アルカリ性亜鉛めっき浴は、構成単位(a)および構成単位(b)を含む水溶性共重合体を0.1~50g/L含有していることが好ましい。本発明の非シアン系アルカリ性亜鉛めっき浴に0.1~50g/Lの水溶性重合体が含まれていることにより、上述したような構成単位(a)・(b)の比率の増減が時間あたりの亜鉛析出量の増減に反映されやすくなる。
 本発明の非シアン系アルカリ性亜鉛めっき浴は、亜鉛皮膜の光沢を高める(いわゆる光沢性を高める)観点や、電流密度の低い箇所において析出した亜鉛を対象物に付きやすくする(つきまわり性を高める)観点から、N-ベンジルピリミジウム-3-カルボネートを含有することが好ましい。
 本発明の非シアン系アルカリ性亜鉛めっき浴は、光沢性を高める観点やつきまわり性を高める観点から、下記式(5)で示される芳香族アルデヒド化合物のアルデヒド基に亜硫酸水素を付加した亜硫酸水素付加物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
 (式(5)中において、R、R、Rは、-H、-OH、または-OCHであり、R~Rが同一であっても異なっていてもよい。)
 上記の芳香族アルデヒド化合物としては、4-メトキシベンズアルデヒド、4-ヒドロキシ-3-メトキシベンズアルデヒド、3,4-ジメトキシベンズアルデヒド、3,4-メチレンジオキシベンズアルデヒド、2-ヒドロキシベンズアルデヒドおよび4-ヒドロキシベンズアルデヒドからなる群より選ばれる1種以上からなるものを用いることができる。
 また、本発明の非シアン系アルカリ性亜鉛めっき浴は、上記の亜硫酸水素付加物を0.005~1.0g/L含有することが望ましい。
 また、本発明の非シアン系アルカリ性亜鉛めっき浴は、亜鉛イオンを5~25g/L含有することが望ましい。
 本発明の非シアン系アルカリ性亜鉛めっき浴は、ジンケート亜鉛([Zn(OH)2-)を含有したジンケート型亜鉛めっき浴に適用することも可能である。ジンケート亜鉛の調製は、めっき技術の当業者が通常用いうる手法を適宜採用できる。例えば、ジンケート亜鉛を溶解させためっき浴とするため、従来公知の方法と同様に、酸化亜鉛(ZnO)を、水酸化ナトリウム(NaOH)水溶液などのアルカリ水溶液に溶解することにより、ジンケート亜鉛を調製するとよい。
 また、本発明の非シアン系アルカリ性亜鉛めっき浴は、有害な金属イオンを含んだ場合にこの有害な金属イオンを無害化する目的や、水質を軟化させる目的のため、珪素化合物、エチレンジアミン四酢酸ナトリウム、ヒドロキシエチレンジアミン三酢酸三ナトリウムからなる群より選ばれる1種以上を含有することが好ましい。
 また、本発明の非シアン系アルカリ性亜鉛めっき浴は、時間あたりの亜鉛析出量を多くする観点から、下記式(6)で示される複素環式化合物および/または複素環式化合物の誘導体を含有することが好ましい。特に、これらの複素環式化合物または複素環式化合物の誘導体を含有することにより、電流密度の低い箇所での時間あたりの亜鉛析出量が増え、電流密度の高い箇所と電流密度の低い箇所との間で時間あたりの亜鉛性出量の差が小さくなる。すなわち、複素環式化合物または複素環式化合物の誘導体を含有することにより、均一な膜厚の亜鉛皮膜をさらに速く形成することができるようになる。
Figure JPOXMLDOC01-appb-C000012
 (式(6)中、pは、1~3の整数、RとRは、同じものか、または異なったものであり、-H、-CHCOOH、-CHCHOH、または-CHCH(OH)CHClを表す。)
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(1)亜鉛めっき浴添加剤
(添加剤A)
 N,N’-ビス[3-(ジメチルアミノ)プロピル]尿素19.3g(0.084モル)と[3-(ジメチルアミノ)プロピル]尿素12.2g(0.084モル)、水酸化ナトリウム3.3g (0.084モル)、および水62.4gを300ml三口フラスコに投入し、攪拌下、60℃以下でエピクロルヒドリン15.4g(0.17モル)を徐々に加え、その後2時間環流加熱して重縮合反応させて得たものを添加剤Aとした。
(添加剤B)
 N,N’-ビス[3-(ジメチルアミノ)プロピル]尿素25.7g(0.112モル)と[3-(ジメチルアミノ)プロピル]尿素8.1g(0.056モル)、水酸化ナトリウム2.2g (0.056モル)、および水62.4gを300ml三口フラスコに投入し、攪拌下、60℃以下でエピクロルヒドリン15.4g(0.17モル)を徐々に加え、その後2時間環流加熱して重縮合反応させて得たものを添加剤Bとした。
(添加剤C)
 N,N’-ビス[3-(ジメチルアミノ)プロピル]尿素30.9g(0.134モル)と[3-(ジメチルアミノ)プロピル]尿素4.9g(0.034モル)、水酸化ナトリウム1.3g (0.034モル)、および水62.4gを300ml三口フラスコに投入し、攪拌下、60℃以下でエピクロルヒドリン15.4g(0.17モル)を徐々に加え、その後2時間環流加熱して重縮合反応させて得たものを添加剤Cとした。
(添加剤D)
 N,N’-ビス[3-(ジメチルアミノ)プロピル]尿素38.6g(0.168モル)、および水62.4gを300ml三口フラスコに投入し、攪拌下、60℃以下でエピクロルヒドリン15.4g(0.17モル)を徐々に加え、その後2時間環流加熱して重縮合反応させて得たものを添加剤Dとした。
(添加剤E)
 ジメチルアミノプロピルアミンとエピクロルヒドリンをモル比1:1にて仕込んで重縮合反応させて得られる重縮合物(商品名Product、品番J-138M)をURSA社より入手し、添加剤Eとした。
 添加剤A~Eについて、高速GPC装置、HLC-8320GPC、 Eco SEC(東ソー製)を使用し、ポリエチレンオキシド(PEO)を標準試料とした3次近似曲線の検量線を用いて分子量を測定した(GPC測定条件については下記)。その結果、添加剤AはMwが3900、添加剤BはMwが4600、添加剤CはMwが5700、添加剤DはMwが7200、添加剤EはMwが16000であることが判明した。GPCは、目的物質を分子サイズによって分離を行う方法である。GPC装置は、分子の大きさで振り分けができるカラムを用いたクロマトグラフを用いることで物質を分離する装置である。GPCは、特に高分子物質の分離・分析に優れている。水系GPCはサイズ排除クロマトグラフィーの一種で、略称SECとも言われている。
<GPC測定共通条件>
水系GPC装置:HLC-8320GPC、EcoSEC(東ソー・テクノシステム株式会社製)
カラム  :TSKgel G6000PWXL-CP + TSKgel G3000PWXL-CP(7.8mmI.D.X30cm)
検出器  :示差屈折計(RI検出器)
溶離液  :0.1M NaNO水溶液
カラム温度:40℃
 添加剤A~Dに含まれるポリマーの構成単位(a)、(b)の質量比を求めるために13C-NMR(DMSO-d6、400MHz)を使用した。それぞれの質量の算出は、構成単位(a)については162ppm近くにある、構成単位(b)については159ppm近くにあるそれぞれのカルボニル炭素ピークの強度比に基づいて算出した。
 添加剤A~Dに含まれるポリマーについての、構成単位(a)・(b)の比率[構成単位(a)の質量/(構成単位(a)の質量+構成単位(b)の質量)×100]を表1に示す。
Figure JPOXMLDOC01-appb-T000013
(2)非シアン系アルカリ性亜鉛めっき浴の調製
(実施例1)
 亜鉛イオン12g/L、水酸化ナトリウム120g/L、添加剤A2.50g/L、ベンジルピリジニウムカルボキシレートの48%水溶液[BASF社製、Lugalvan BPC-48、以下、光沢付与剤(I)]0.05g/Lを含む非シアン系アルカリ性亜鉛めっき浴を調製した(表2)。
(実施例2)
 亜鉛イオン12g/L、水酸化ナトリウム120g/L、添加剤B2.50g/L、光沢付与剤(I)0.05g/Lを含む非シアン系アルカリ性亜鉛めっき浴を調製した(表2)。
(実施例3)
 亜鉛イオン12g/L、水酸化ナトリウム120g/L、添加剤C2.50g/L、光沢付与剤(I)0.05g/Lを含む非シアン系アルカリ性亜鉛めっき浴を調製した(表2)。
(実施例4)
 亜鉛イオン12g/L、水酸化ナトリウム120g/L、添加剤B2.50g/L、光沢付与剤としてアニスアルデヒド重亜硫酸Na付加物の水溶液(アニスアルデヒド重亜硫酸Na付加物の含有量がアニスアルデヒド換算で40g/L)[以下、光沢付与剤(II)]0.03g/Lを含む非シアン系アルカリ性亜鉛めっき浴を調製した(表2)。
(比較例1)
 亜鉛イオン12g/L、水酸化ナトリウム120g/L、添加剤D2.50g/L、光沢付与剤(I)0.05g/Lを含む非シアン系アルカリ性亜鉛めっき浴を調製した(表2)。
(比較例2)
 亜鉛イオン12g/L、水酸化ナトリウム120g/L、添加剤E1.60g/L、光沢付与剤として光沢付与剤(I)0.05g/Lを含む非シアン系アルカリ性亜鉛めっき浴を調製した(表2)。
(比較例3)
 亜鉛イオン12g/L、水酸化ナトリウム120g/Lを含む非シアン系アルカリ性亜鉛めっき浴を調製した(表2)。
Figure JPOXMLDOC01-appb-T000014
(3)ハルセルめっき試験
 実施例1~4および比較例1~3のうちのいずれか1つの非シアン系アルカリ性亜鉛めっき浴を入れためっき槽(267mlハルセル槽、株式会社山本鍍金試験機社製、品番:B-50並型水槽)に、陽極板として鉄板(縦45mm×横45mm×厚さ1mm)を、陰極板として冷却圧延鋼板(SPCC)(縦65mm×横100mm×厚さ1.5mm)を設置した。めっき条件は2.0Aで10分、亜鉛めっき浴の温度25℃にて実施した。
(4)光沢性と外観の評価
 上記のハルセルめっき試験後、陰極板の表面に形成された亜鉛皮膜の光沢性を目視で判定した。その結果を表2に示す。なお、表2にいう「全面光沢」とは、均一な鏡面に近いものをいう。また、「半光沢」とは、光沢性が鈍いものをいう。「粗雑結晶」とは、粒子の大きさがまちまちで粗い結晶のことをいう。
(5)高電部折り曲げ試験
 図1は、ハルセルめっき試験後の陰極板のおもて面(亜鉛めっきを施した面、いわゆる「めっき面」)の模式図である。図1を参照し説明すると、めっき槽に設置した際にちょうど真ん中の深さに相当する位置で高電部端から低電部端に沿った折れ目ができるように陰極板を折り曲げた。具体的には、陰極板の裏面(めっき面と反対側の面)同士が接触するように陰極板を180度折り曲げ、次いで折れ曲がっためっき面が平らな状態となるまで陰極板を開いた。この状態で、めっき面の高電部端周辺(高電部端から20mm以内の範囲)の折れ目に亜鉛皮膜の剥離が生じたか否かを判定した。結果を表2に示す。
(6)亜鉛皮膜の膜厚測定
 亜鉛皮膜の膜厚について、蛍光X線膜厚計(SII社製、SFT-9200)を用いて測定した。図1を参照し説明すると、膜厚の測定は、陰極板をめっき槽に設置した際にちょうど真ん中の深さに相当する位置(上記の高電部折り曲げ試験で折れ目ができる位置と同じ)で、高電部端から低電部端に向かって、10mm、20mm、30mm、40mm、50mm、60mm、70mm、80mm、90mmの合計9つ箇所について行った。実施例1~実施例4、比較例1、比較例2の結果を図2のグラフに示す。また、比較例3の結果を図3のグラフに示す。
(7)均一電着性の評価
 上記の亜鉛皮膜の膜厚測定における高電部端から20mmの箇所の膜厚(HCD)と高電部端から80mmの箇所の膜厚(LCD)との比(HCD/LCD)を算出し、均一電着性を評価した。その結果を表2に示す。
 実施例1~4は、均一電着性が高く、かつ亜鉛皮膜を厚く形成できることが判明した。対して、比較例1は、電流密度の高い箇所から電流密度の低い箇所まで一様に膜厚が薄くなることにより、均一な膜厚の亜鉛皮膜が形成されていた。また、比較例2は、電流密度の高い箇所で亜鉛皮膜の膜厚が過剰に厚くなり、一方で、電流密度の低い箇所で亜鉛皮膜の膜厚が薄くなっていた。すなわち、比較例2のように添加剤Eを含有する場合には、亜鉛イオン濃度が12g/L、亜鉛めっき浴の温度25℃という条件下において、対象物の表面の一部の箇所で亜鉛皮膜が過剰に厚くなってしまうことが判明した。
 また、実施例1~3の結果から、水溶性共重合体の濃度を一定のままで水溶性共重合体の構成単位(a)・(b)の比率を増減することにより、亜鉛皮膜の形成を速めたり遅くしたりできることが判明した。
 実施例3は、亜鉛皮膜が均一な膜厚で厚く形成できることが判明した。これに対して、比較例1は、亜鉛皮膜の膜厚が均一であるものの薄いことが判明した(比較例1の亜鉛皮膜の膜厚は、実施例3の亜鉛皮膜の膜厚の約3分の1であった。)。
 比較例3は、添加剤A~Eのいずれも含んでいない。図3に示されるように、亜鉛めっき浴が亜鉛の析出を抑える働きを持った添加剤を含んでいない場合、対象物の表面の箇所ごとで亜鉛皮膜の膜厚がばらついてしまうことを確認した。また、比較例3では、電流密度の高低に関係なく、局所的に過剰な膜厚となる箇所が所々で生じていた(凸凹な亜鉛皮膜が形成された)。
 本発明は、電気めっき法に用いる亜鉛めっき浴に添加する亜鉛めっき浴添加剤、および非シアン系アルカリ性亜鉛めっき浴として利用できる。

Claims (12)

  1.  下記式(1)で示される構成単位(a)および下記式(2)で示される構成単位(b)を含む水溶性共重合体を含有する亜鉛めっき浴添加剤。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記水溶性共重合体において、前記構成単位(a)および前記構成単位(b)は、前記構成単位(a)の質量と前記構成単位(b)の質量との和に対する前記構成単位(a)の質量の百分率比が10~60%にて含まれている請求項1に記載の亜鉛めっき浴添加剤。
  3.  前記水溶性共重合体は、前記構成単位(a)同士、前記構成単位(b)同士、または前記構成単位(a)と前記構成単位(b)とが下記式(3)および/または下記式(4)で示される連結基を介して連結している請求項1または2に記載の亜鉛めっき浴添加剤。
    Figure JPOXMLDOC01-appb-C000002
     (式(3)中において、aは1~5の整数、bは1~5の整数、dは1~5の整数、eは1~5の整数、mは0~5の整数を表す。式(4)中において、fは1~5の整数、gは1~5の整数、hは1~5の整数、iは1~5の整数、nは0~5の整数を表す。)
  4.  請求項1~3のいずれか一項に記載の亜鉛めっき浴添加剤と、亜鉛イオンと、水酸化物イオンと、を含有する非シアン系アルカリ性亜鉛めっき浴。
  5.  前記水溶性共重合体を0.1~50g/L含有する請求項4に記載の非シアン系アルカリ性亜鉛めっき浴。
  6.  N-ベンジルピリミジウム-3-カルボネートを含有する請求項4または5に記載の非シアン系アルカリ性亜鉛めっき浴。
  7.  下記式(5)で示される芳香族アルデヒド化合物のアルデヒド基に亜硫酸水素を付加した亜硫酸水素付加物を含有する請求項4~6のいずれか一項に記載の非シアン系アルカリ性亜鉛めっき浴。
    Figure JPOXMLDOC01-appb-C000003
     (式(5)中において、R、R、Rは、-H、-OH、または-OCHであり、R~Rが同一であっても異なっていてもよい。)
  8.  前記芳香族アルデヒド化合物が、4-メトキシベンズアルデヒド、4-ヒドロキシ-3-メトキシベンズアルデヒド、3,4-ジメトキシベンズアルデヒド、3,4-メチレンジオキシベンズアルデヒド、2-ヒドロキシベンズアルデヒドおよび4-ヒドロキシベンズアルデヒドからなる群より選ばれる1種以上からなる請求項7に記載の非シアン系アルカリ性亜鉛めっき浴。
  9.  前記亜硫酸水素付加物を0.005~1.0g/L含有する請求項7または8に記載の非シアン系アルカリ性亜鉛めっき浴。
  10.  前記亜鉛イオンを5~25g/L含有する請求項4~9のいずれか一項に記載の非シアン系アルカリ性亜鉛めっき浴。
  11.  珪素化合物、エチレンジアミン四酢酸ナトリウム、ヒドロキシエチレンジアミン三酢酸三ナトリウムからなる群より選ばれる1種以上を含有する請求項4~10のいずれか一項に記載の非シアン系アルカリ性亜鉛めっき浴。
  12.  下記式(6)で示される複素環式化合物および/または前記複素環式化合物の誘導体を含有する請求項4~11のいずれか一項に記載の非シアン系アルカリ性亜鉛めっき浴。
    Figure JPOXMLDOC01-appb-C000004
     (式(6)中、pは、1~3の整数、RとRは、同じものか、または異なったものであり、-H、-CHCOOH、-CHCHOH、または-CHCH(OH)CHClを表す。)
PCT/JP2010/065567 2010-09-09 2010-09-09 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴 WO2012032643A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/065567 WO2012032643A1 (ja) 2010-09-09 2010-09-09 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
EP10846304.3A EP2489762B1 (en) 2010-09-09 2010-09-09 Additive for zinc plating baths and non-cyanide alkaline zinc plating baths
JP2011506531A JP5245059B2 (ja) 2010-09-09 2010-09-09 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
US13/146,734 US20120138473A1 (en) 2010-09-09 2010-09-09 Zinc plating bath additive and alkaline non-cyanide zinc plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065567 WO2012032643A1 (ja) 2010-09-09 2010-09-09 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴

Publications (1)

Publication Number Publication Date
WO2012032643A1 true WO2012032643A1 (ja) 2012-03-15

Family

ID=45810264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065567 WO2012032643A1 (ja) 2010-09-09 2010-09-09 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴

Country Status (4)

Country Link
US (1) US20120138473A1 (ja)
EP (1) EP2489762B1 (ja)
JP (1) JP5245059B2 (ja)
WO (1) WO2012032643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030866A (ja) * 2013-07-31 2015-02-16 ユケン工業株式会社 ジンケート型亜鉛系めっき浴用添加剤、ジンケート型亜鉛系めっき浴および亜鉛系めっき部材の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055825A1 (ja) * 2008-11-11 2010-05-20 ユケン工業株式会社 ジンケート型亜鉛めっき浴
CN106471161B (zh) 2014-07-04 2020-05-12 巴斯夫欧洲公司 用于碱性镀锌的添加剂
CN107709627B (zh) 2015-06-25 2020-07-28 巴斯夫欧洲公司 用于碱性镀锌的添加剂
EP3508620B1 (en) 2018-01-09 2021-05-19 ATOTECH Deutschland GmbH Ureylene additive, its use and a preparation method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209379A (ja) * 1994-10-25 1996-08-13 Enthone Omi Inc アルカリ亜鉛および亜鉛合金電気めっき浴およびプロセス
JPH11193488A (ja) * 1997-12-29 1999-07-21 Nippon Hyomen Kagaku Kk アルカリ性亜鉛又は亜鉛合金用めっき浴及びめっきプロセス
JP2001214293A (ja) * 2000-01-31 2001-08-07 Dipsol Chem Co Ltd アルカリ性亜鉛及び亜鉛合金めっき浴
WO2010055825A1 (ja) * 2008-11-11 2010-05-20 ユケン工業株式会社 ジンケート型亜鉛めっき浴

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL110592C (ja) * 1956-06-15
DE2740592C2 (de) * 1977-09-09 1981-11-19 Basf Ag, 6700 Ludwigshafen Galvanisches Zinkbad
DE59710645D1 (de) * 1996-08-15 2003-10-02 Clariant Finance Bvi Ltd Wasserlösliche Harnstoffderivat-Polymere mit quaternären Ammonium-Gruppen und deren Verwendung
GB9806539D0 (en) * 1998-03-27 1998-05-27 Wm Canning Limited Electroplating solution
DE19840019C1 (de) * 1998-09-02 2000-03-16 Atotech Deutschland Gmbh Wäßriges alkalisches cyanidfreies Bad zur galvanischen Abscheidung von Zink- oder Zinklegierungsüberzügen sowie Verfahren
CZ2005456A3 (cs) * 2005-07-14 2007-01-31 Atotech Deutschland Gmbh Dusíkatá polymerní přísada pro elektrolytické vylučování zinku a slitin zinku, způsob její výroby a její použití

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209379A (ja) * 1994-10-25 1996-08-13 Enthone Omi Inc アルカリ亜鉛および亜鉛合金電気めっき浴およびプロセス
JPH11193488A (ja) * 1997-12-29 1999-07-21 Nippon Hyomen Kagaku Kk アルカリ性亜鉛又は亜鉛合金用めっき浴及びめっきプロセス
JP2001214293A (ja) * 2000-01-31 2001-08-07 Dipsol Chem Co Ltd アルカリ性亜鉛及び亜鉛合金めっき浴
WO2010055825A1 (ja) * 2008-11-11 2010-05-20 ユケン工業株式会社 ジンケート型亜鉛めっき浴

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030866A (ja) * 2013-07-31 2015-02-16 ユケン工業株式会社 ジンケート型亜鉛系めっき浴用添加剤、ジンケート型亜鉛系めっき浴および亜鉛系めっき部材の製造方法

Also Published As

Publication number Publication date
US20120138473A1 (en) 2012-06-07
EP2489762A1 (en) 2012-08-22
JPWO2012032643A1 (ja) 2013-12-12
EP2489762B1 (en) 2014-12-17
JP5245059B2 (ja) 2013-07-24
EP2489762A4 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5245059B2 (ja) 亜鉛めっき浴添加剤および非シアン系アルカリ性亜鉛めっき浴
TWI378156B (en) Metal plating compositions
JP5048003B2 (ja) スズめっき
US20060201820A1 (en) Alkaline zinc-nickel alloy plating compositions, processes and articles therefrom
KR20060129512A (ko) 아연-니켈 3원계의 또는 그 이상의 계의 합금을 전기도금하기 위한 배스, 시스템 및 공정과 이렇게 전기 도금된물품
JP2009541581A (ja) 亜鉛合金被覆の電気的析出のための、シアン化物を含有しない水性アルカリ性の浴
JP6062010B2 (ja) 銅(i)イオンに基づくホワイトブロンズ用のシアン化物非含有電気めっき浴
KR102332676B1 (ko) 시아나이드를 함유하지 않는 산성 무광택 은 전기도금 조성물 및 방법
TW201006966A (en) Electrolytic tin plating solution and electrolytic tin plating method
JP3946957B2 (ja) 亜鉛および亜鉛合金電気めっき添加剤および電気めっき方法
JP6836016B2 (ja) 電解銅析出用のめっき組成物、その使用、および基材の少なくとも1つの表面上に銅層または銅合金層を電解析出させる方法
JPH0693491A (ja) 亜鉛および亜鉛合金を電着するための添加組成物、酸性亜鉛および亜鉛合金のメッキ浴、および方法
JP5419021B2 (ja) ジンケート型亜鉛めっき浴
CN109642337B (zh) 三元锌-镍-铁合金和用于电镀这种合金的碱性电解液
US5656148A (en) High current density zinc chloride electrogalvanizing process and composition
TW396214B (en) High current density zinc sulfate electrogalvanizing process and composition
GB2367825A (en) Zinc and zinc alloy electroplating additives and electroplating methods
JP3348963B2 (ja) 亜鉛−コバルト合金アルカリ性めっき浴及び該めっき浴を用いためっき方法
JP2013014833A (ja) 亜鉛−ニッケル合金めっき液及びめっき方法
JP2014088608A (ja) ジンケート型亜鉛系めっき浴、ジンケート型亜鉛系めっき浴用添加剤および亜鉛系めっき部材の製造方法
JP5747359B2 (ja) ジンケート型亜鉛系めっき浴、ジンケート型亜鉛系めっき浴用添加剤および亜鉛系めっき部材の製造方法
JPH11193488A (ja) アルカリ性亜鉛又は亜鉛合金用めっき浴及びめっきプロセス
JP5728711B2 (ja) ジンケート型亜鉛系めっき浴用添加剤、ジンケート型亜鉛系めっき浴および亜鉛系めっき部材の製造方法
JP2021521347A (ja) 亜鉛層又は亜鉛−ニッケル合金層を析出させるための酸性の亜鉛又は亜鉛−ニッケル合金電気めっき浴
WO2022186183A1 (ja) 酸性亜鉛合金めっき浴用添加剤、酸性亜鉛合金めっき浴、および亜鉛合金めっき皮膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011506531

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13146734

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3248/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010846304

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE