WO2010055808A1 - 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法 - Google Patents

不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法 Download PDF

Info

Publication number
WO2010055808A1
WO2010055808A1 PCT/JP2009/068967 JP2009068967W WO2010055808A1 WO 2010055808 A1 WO2010055808 A1 WO 2010055808A1 JP 2009068967 W JP2009068967 W JP 2009068967W WO 2010055808 A1 WO2010055808 A1 WO 2010055808A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxygen
unsaturated hydrocarbon
pore diameter
average pore
Prior art date
Application number
PCT/JP2009/068967
Other languages
English (en)
French (fr)
Inventor
範立 椿
冬樹 相田
Original Assignee
新日本石油株式会社
国立大学法人富山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社, 国立大学法人富山大学 filed Critical 新日本石油株式会社
Priority to AU2009315025A priority Critical patent/AU2009315025A1/en
Priority to EP09826058A priority patent/EP2366681A1/en
Priority to RU2011123736/04A priority patent/RU2011123736A/ru
Priority to CN2009801449176A priority patent/CN102209699A/zh
Priority to US13/127,304 priority patent/US20110213041A1/en
Publication of WO2010055808A1 publication Critical patent/WO2010055808A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing unsaturated hydrocarbons and oxygen-containing compounds, a catalyst, and a method for producing the same.
  • Fischer-Tropsch synthesis is known as a method for synthesizing hydrocarbons from synthesis gas (a mixture of carbon monoxide and hydrogen).
  • unsaturated hydrocarbons that is, oxygenated compounds typified by olefins and alcohols are useful as chemical raw materials. Therefore, there is a method for producing unsaturated hydrocarbons and oxygenated compounds as target products from synthesis gas. It is being considered.
  • Patent Documents 1 and 2 disclose an FT reaction for the purpose of producing an olefin in a high yield using an iron-based catalyst using a manganese-based compound as a carrier.
  • Patent Document 3 discloses an FT reaction using a catalyst in which iron, copper, and potassium are supported on a silica porous support.
  • Patent Documents 4 and 5 disclose a method for producing olefins from synthesis gas using a manganese compound as a carrier and a catalyst supporting ruthenium.
  • Patent Documents 1 to 5 are not necessarily sufficient in terms of the conversion rate of carbon monoxide (CO conversion rate) in the synthesis gas, the selectivity of unsaturated hydrocarbons and oxygen-containing compounds, and the like. However, there is room for improvement in order to be put to practical use.
  • CO conversion rate carbon monoxide
  • the present invention has been made in view of such circumstances, and the object thereof is a method capable of achieving high CO conversion and high selectivity of unsaturated hydrocarbons and oxygen-containing compounds in the FT reaction. And a catalyst used in the method and a method for producing the catalyst.
  • the present inventors have conducted a FT reaction under specific conditions using a catalyst containing manganese and supporting iron on a specific average pore diameter. It has been found that it provides a significantly higher CO conversion and has a significantly higher olefin and alcohol selectivity, resulting in a significantly higher total olefin and alcohol selectivity, thus completing the present invention.
  • the present invention relates to a method for producing unsaturated hydrocarbons and oxygen-containing compounds described in (1) to (4) below, a catalyst described in (5) to (7) below, and a catalyst described in (8) below.
  • a manufacturing method is provided.
  • “syngas” refers to a mixed gas of carbon monoxide and hydrogen.
  • a catalyst prepared by supporting iron on a support containing manganese and having an average pore diameter of 2 to 100 nm is dispersed in poly ⁇ -olefin and contains carbon monoxide or carbon monoxide and hydrogen.
  • the first step of reducing the catalyst with the synthesis gas, the catalyst after the reduction in the first step and the synthesis gas are brought into contact under the conditions of a reaction temperature of 100 to 600 ° C.
  • a second step of obtaining a reaction product containing a saturated hydrocarbon and an oxygen-containing compound A method for producing an unsaturated hydrocarbon and an oxygen-containing compound.
  • the unsaturated hydrocarbon and oxygen-containing compound according to (1) or (2), wherein the catalyst is a catalyst prepared by further supporting copper and / or potassium on the carrier Manufacturing method.
  • the method for producing unsaturated hydrocarbons and oxygenated compounds of the present invention and the catalyst of the present invention it is possible to achieve high CO conversion and high selectivity of unsaturated hydrocarbons and oxygenated compounds in the FT reaction. It becomes. Further, according to the method for producing a catalyst of the present invention, the catalyst of the present invention having excellent characteristics as described above can be obtained effectively.
  • the catalyst of the present invention is prepared by supporting iron on a support containing manganese and having an average pore diameter of 2 to 100 nm.
  • the carrier constituting the catalyst of the present invention contains manganese (Mn) as an essential element, but further contains an element selected from the elements of Group IA, IIA, IIIB, IVB, IIIA, and IVA in addition to Mn. Also good.
  • the average pore diameter of the carrier is 2 to 100 nm, preferably 2 to 50 nm as described above. If the average pore diameter is less than 2 nm, pores are likely to be blocked during FT synthesis, and a suitable catalytic reaction cannot be maintained. On the other hand, if the average pore diameter exceeds 100 nm, the surface area per unit weight becomes remarkably small, and a sufficient amount of supported metal such as iron cannot be secured.
  • the “average pore diameter” in the present invention refers to a value measured by a nitrogen adsorption method using a Quanta Chrome Autosorb-1 manufactured by Yuasa Ionics, which is an adsorption measuring device.
  • the specific surface area of the carrier used in the present invention is not particularly limited, but the specific surface area by the BET method is preferably in the range of 100 to 1000 m 2 / g.
  • the pore volume of the carrier is not particularly limited, but is preferably in the range of 0.2 to 2.0 ml / g.
  • the shape of the carrier is not particularly limited, and for example, a shape suitable for the process to be used can be appropriately selected from shapes such as a spherical shape, a crushed product, and a cylindrical shape.
  • a carrier not containing Mn such as silica, silica alumina, alumina and titania can be used in combination.
  • any compound such as an inorganic salt of Fe or an organic complex can be used.
  • sulfates, nitrates, organic acid salts, and chlorides are preferably used.
  • the catalyst of the present invention may further contain a metal other than Fe as a supported metal.
  • a metal other than Fe it is preferable in terms of catalytic activity that copper (Cu) and / or potassium (K) is supported on the carrier in addition to Fe.
  • the compound used for supporting Cu and K is not particularly limited.
  • any Cu compound such as an inorganic salt of Cu or an organic complex can be used.
  • sulfates, nitrates, organic acid salts, and chlorides are preferably used. Specific examples include copper sulfate, copper nitrate, copper chloride, and copper acetate.
  • the amount of the metal supported on the carrier is not particularly limited, but the amount of Fe supported is preferably 3 to 50% by weight, more preferably 5 to 40% by weight, still more preferably 10 to 10% by weight based on the carrier. It is preferably 30% by weight, particularly preferably 15 to 25% by weight.
  • the amount of Cu supported is 0.5 to 6% by weight, more preferably 1 to 4% by weight, based on the carrier.
  • a commonly used method such as an impregnation method or an ion exchange method can be appropriately selected.
  • a particularly preferred method is an impregnation method, and an especially preferred method among the impregnation methods is an Incipient Wetness method.
  • simultaneous impregnation or sequential impregnation can be selected, but simultaneous impregnation is preferred.
  • the catalyst of this invention can be suitably obtained by the manufacturing method of the catalyst of this invention provided with the following 3 processes.
  • A-1) a step of mixing a support containing Mn and having an average pore diameter of 2 to 100 nm and a solution containing Fe;
  • A-2) A step of depressurizing and drying the mixture obtained in the step (A-1), and depositing iron in the pores of the support to obtain a catalyst precursor,
  • A-3) A step of firing the catalyst precursor obtained in the step (A-2).
  • a solvent can be used.
  • the solvent is not particularly limited as long as it can disperse a carrier containing Mn and dissolve at least the Fe compound. Specific examples include water, ketone compounds such as acetone, and alcohol solvents such as methanol, ethanol, and isopropyl alcohol.
  • the treatment temperature in step (A-1) is usually sufficient at normal temperature, but it is preferable to heat to about 60 ° C. and use ultrasonic vibration.
  • these metals may be added to a solution containing Fe.
  • the pressure during the pressure reduction / drying in the step (A-2) is 100 kPa or less and the temperature is 40 ° C. or more.
  • the pressure during the pressure reduction / drying in the step (A-2) is 100 kPa or less and the temperature is 40 ° C. or more.
  • metal components such as Fe, adhere uniformly in a pore, it is preferable to stir.
  • the firing temperature in the step (A-3) is preferably 100 ° C. or higher, and the atmosphere is preferably an air atmosphere. More preferably, baking is performed at 120 ° C. for 12 hours or more in an air atmosphere.
  • the manufacturing method of the unsaturated hydrocarbon and oxygen-containing compound of the present invention uses the catalyst of the present invention, and includes the following two steps.
  • B-1 The catalyst of the present invention is dispersed in poly ⁇ -olefin (PAO), and the catalyst is synthesized with synthesis gas containing carbon monoxide or carbon monoxide and hydrogen (hereinafter simply referred to as “synthesis gas”).
  • synthesis gas synthesis gas containing carbon monoxide or carbon monoxide and hydrogen
  • Reducing step, (B-2) The catalyst after reduction in the step (B-1) and the synthesis gas are brought into contact under the conditions of a reaction temperature of 100 to 600 ° C. and a reaction pressure of 0.1 to 10 MPa, and unsaturated hydrocarbons and A step of obtaining a reaction product containing an oxygen-containing compound.
  • the catalyst of the present invention in the step (B-1), it is preferable to introduce the catalyst of the present invention into a reactor and disperse it in PAO to adopt a slurry format.
  • the catalyst of the present invention can be further enhanced by reducing the catalyst within the reactive group with synthesis gas (mixture of carbon monoxide and hydrogen, in any ratio) or with carbon monoxide. it can.
  • the ratio of catalyst to PAO is basically arbitrary, but preferably 1 ml to 10 L of PAO is used per 1 g of catalyst.
  • the reduction temperature is preferably in the range of 100 to 400 ° C.
  • PAO to be used those having a boiling point of 300 ° C. or more are suitable.
  • the production ratio of oxygen-containing compounds to unsaturated hydrocarbons in the step (B-2) is remarkably increased.
  • unsaturated hydrocarbon / containing There is a tendency for the ratio of oxygen compounds to be significantly reduced.
  • Step (B-1) is an in-situ reduction method in which the catalyst is activated in the system.
  • FT synthesis is performed in step (B-2).
  • the reaction temperature in the step (B-2) is selected from 100 to 600 ° C. If the reaction temperature is less than 100 ° C, the activity becomes insufficient and the conversion rate becomes extremely low. If the reaction temperature exceeds 600 ° C, decomposition of the reaction product and PAO tends to occur.
  • a more preferred reaction temperature is in the range of 220 to 340 ° C., more preferably 280 ° C. plus or minus 20 ° C.
  • the total value of the unsaturated hydrocarbon and the oxygen-containing compound is 25% or more, and the ratio of unsaturated hydrocarbon / oxygen-containing compound is within the range of 0.1 to 3.0.
  • Olefin or alcohol useful as chemicals can be produced separately.
  • the reaction pressure in the step (B-2) is selected from 0.1 to 10 MPa, preferably 0.5 to 5 MPa.
  • the reaction pressure is less than 0.1 MPa, the contact probability between the catalyst dispersed in PAO and the synthesis gas becomes low, and the reactivity becomes insufficient.
  • pressurization exceeding 10 MPa is not preferable because it is excessive pressurization and requires excessive equipment.
  • the method for producing an unsaturated hydrocarbon and oxygen-containing compound of the present invention is most preferably applied to a slurry bed process advantageous for industrialization because wax precipitation hardly occurs on the catalyst surface and reaction heat is easily removed. It can also be used for conventionally known fixed bed processes and fluidized bed processes.
  • the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
  • the unit “%” for CO conversion, yield and selectivity means mol%.
  • Example 1 Manganese oxide carrier having a K content of 8% by weight (manufactured by Zude Chemie Catalysts, trade name N-190, BET specific surface area 398 m 2 / g, pore volume 0.70 ml / g, average pore diameter 10.1 nm) was divided into 20-40 meshes.
  • This manganese oxide carrier 5g an aqueous solution containing an amount of Fe (NO 3) 3 ⁇ 9H 2 O , which corresponds to 20% by weight of manganese oxide as a metal iron was impregnated by Incipient Wettness method while using ultrasonic vibration. Vacuum drying was performed at 65 ° C. for 6 hours, drying at 120 ° C.
  • the thus prepared catalyst 1g was introduced into the slurry-type reaction group vessel was added PAO (poly ⁇ - olefins) of 20 ml.
  • PAO poly ⁇ - olefins
  • the FT reaction was performed under the same conditions as the reduction, and a sample was taken 10 hours later, and the product was quantified by GC using transdecalin and 1-octanol as standard substances.
  • the CO conversion was 80%, and the yields were CO 2 (47%), methane (3%), oxygenate (8%), olefin (24%), and paraffin (8%), respectively. Further, the total yield of unsaturated hydrocarbon and oxygen-containing compound was 32%, and the ratio of unsaturated hydrocarbon / oxygen-containing compound was 2.9.
  • the olefin / paraffin ratio (hereinafter referred to as O / P) at C 2 -C 4 is 5, O / P at C 5 -C 11 is 3, and O at C 12 or higher. / P was 1.
  • the selectivity of each component is methane (9%), C 2 -C 4 (38%), C 5 -C 11 (47%), C 12 or more (6% )Met.
  • the main compound selectivity was methanol (12%), ethanol (49%), 1-propanol (13%), 1-butanol (7%).
  • Example 2 Example 1 except that in addition to Fe (NO 3 ) 3 ⁇ 9H 2 O as a supported metal, Cu (NO 3 ) 2 ⁇ 3H 2 O in an amount corresponding to 3% by weight of manganese oxide was used as metallic copper. Thus, a catalyst was prepared, and an FT reaction was performed using the obtained catalyst. The CO conversion was 89%, and the yields were CO 2 (44%), methane (6%), oxygenate (15%), olefin (25%), and paraffin (10%), respectively. The total value of unsaturated hydrocarbon and oxygen-containing compound was 40%, and the ratio of unsaturated hydrocarbon / oxygen-containing compound was 1.7.
  • the O / P at C 2 -C 4 was 5
  • the O / P at C 5 -C 11 was 4, and the O / P at C 12 or higher was 1.
  • the selectivity of each component is methane (9%), C 2 -C 4 (38%), C 5 -C 11 (39%), C 12 or more (15% )Met.
  • the main compound selectivity was methanol (7%), ethanol (57%), 1-propanol (15%), 1-butanol (7%).
  • Example 3 The FT reaction was carried out in the same manner as in Example 2 except that the reaction temperature was 300 ° C. The CO conversion was 93%, and the yield was CO 2 (44%), methane (1%), oxygenated compound (41%), olefin (6%), and paraffin (7%). The total yield of unsaturated hydrocarbon and oxygenated compound was 47%, and the ratio of unsaturated hydrocarbon / oxygenated compound was 0.1. Further, in the hydrocarbon not containing an oxygen-containing compound, the O / P at C 2 -C 4 was 5, the O / P at C 5 -C 11 was 4, and the O / P at C 12 or more was 3. . In hydrocarbons not containing oxygen-containing compounds, the selectivity of each component is methane (9%), C 2 -C 4 (37%), C 5 -C 11 (40%), C 12 or more (15% )Met.
  • Example 4 The FT reaction was carried out in the same manner as in Example 2 except that the reaction temperature was 260 ° C.
  • the CO conversion was 60%, and the yield was CO 2 (45%), methane (2%), oxygenated compound (7%), olefin (19%), and paraffin (6%).
  • the total yield of unsaturated hydrocarbon and oxygenated compound was 25%, and the ratio of unsaturated hydrocarbon / oxygenated compound was 2.7.
  • the O / P at C 2 -C 4 was 5, the O / P at C 5 -C 11 was 3, and the O / P at C 12 or more was 1.
  • the selectivity of each component is methane (8%), C 2 -C 4 (34%), C 5 -C 11 (43%), C 12 or more (16% )Met.
  • Manganese oxide carrier having a K content of 3% by weight (manufactured by Zude Chemie Catalysts, trade name MN-280, BET specific surface area 381 m 2 / g, pore volume 0.55 ml / g, average pore diameter 4.7 nm) was divided into 20-40 meshes.
  • This manganese oxide carrier 5g the amount corresponding to 3 wt% of the amount of Fe (NO 3) 3 ⁇ 9H 2 O and metal copper as manganese oxide corresponding to 20% by weight of manganese oxide as a metal iron Cu (NO 3 ) an aqueous solution containing 2 ⁇ 3H 2 O, was impregnated simultaneously by I nc i p i ent Wettness method while using ultrasonic vibration. Vacuum drying was performed at 65 ° C. for 6 hours, drying at 120 ° C. for 12 hours, and the temperature was raised from room temperature to 400 ° C. at 2 ° C./min. Further, it was calcined at 400 ° C. for 2 hours.
  • the total yield of unsaturated hydrocarbon and oxygenated compound was 37%, and the ratio of unsaturated hydrocarbon / oxygenated compound was 0.9.
  • the olefin / paraffin ratio (hereinafter referred to as O / P) at C 2 -C 4 is 4, O / P at C 5 -C 11 is 2, and O at C 12 or higher.
  • / P was 1.
  • the selectivity of each component is methane (8%), C 2 -C 4 (37%), C 5 -C 11 (45%), C 12 or more (10% )Met.
  • the main compound selectivity was methanol (8%), ethanol (57%), 1-propanol (16%), 1-butanol (7%). .
  • Example 1 A catalyst was prepared in the same manner as in Example 2 except that a manganese oxide support having a K content of 8% by weight and an average pore diameter of 1 nm was used, and an FT reaction was performed using the obtained catalyst. . However, the activity disappeared 1 hour after the start of the reaction.
  • the FT reaction was performed under the same conditions as the reduction, and a sample was taken 10 hours later, and the product was quantified by GC using transdecalin and 1-octanol as standard substances.
  • the CO conversion was 41%, and the yields were CO 2 (39%), methane (1%), oxygenate (1%), olefin (16%), and paraffin (7%), respectively.
  • the total yield of unsaturated hydrocarbons and oxygenated compounds was 17%, and the ratio of unsaturated hydrocarbons / oxygenated compounds was 12.1.
  • O / P at C 2 -C 4 is 3
  • O / P at C 5 -C 11 is 3
  • O / P at C 12 or more is 0.5. there were.
  • the selectivity of each component is methane (5%), C 2 -C 4 (21%), C 5 -C 11 (62%), C 12 or more (12% )Met.
  • the main compound selectivity was methanol (17%), ethanol (43%), 1-propanol (17%), 1-butanol (9%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明の不飽和炭化水素および含酸素化合物の製造方法は、マンガンを含有しかつ平均細孔径が2~100nmである担体に鉄を担持して調製された触媒を、ポリα-オレフィンに分散させ、一酸化炭素または合成ガスにより触媒を還元する第1の工程と、第1の工程における還元後の触媒と、合成ガスとを、反応温度100~600℃、反応圧力0.1~10MPaの条件下で接触させ、不飽和炭化水素および含酸素化合物を含有する反応生成物を得る第2の工程と、を備える。

Description

不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法
 本発明は、不飽和炭化水素および含酸素化合物の製造方法、ならびに、触媒およびその製造方法に関する。
 合成ガス(一酸化炭素と水素の混合物)から炭化水素を合成する方法として、フィッシャー・トロプシュ合成(FT合成)が知られている。
 従来、合成ガスからの炭化水素合成は、GTL(Gas to Liquids)に代表されるように飽和炭化水素を目的とするものがほとんどであった。そのような飽和炭化水素は、水素化分解・異性化などさまざまな工程を経て、燃料や潤滑油として使用される。なお、この場合、飽和炭化水素が生成すると同時に不飽和炭化水素や含酸素化合物も生成し得るが、それらの選択性は非常に低い。そのため、不飽和炭化水素および含酸素化合物は水素化などして飽和炭化水素として使用されるのが一般的である。
 その一方で、不飽和炭化水素、すなわちオレフィンや、アルコールに代表される含酸素化合物は化学品原料として有用であるため、合成ガスから不飽和炭化水素や含酸素化合物を目的物として製造する方法が検討されている。
 例えば、特許文献1、2は、マンガン系化合物を担体と使用した鉄系触媒による、高収率でのオレフィン製造を目的としたFT反応について開示している。
 また、特許文献3は、シリカ多孔質担体に鉄、銅、カリウムを担持した触媒によるFT反応について開示している。
 また、特許文献4、5は、マンガン系化合物を担体とし、ルテニウムを担持した触媒を用いた、合成ガスからのオレフィン類の製造方法を開示している。
特公昭56-48491号公報 米国特許4177203号公報 特開2006-297286号公報 米国特許4206134号公報 特公平3-70691号公報
 しかし、上記特許文献1~5に開示された触媒または方法は、合成ガス中の一酸化炭素の転化率(CO転化率)、不飽和炭化水素および含酸素化合物の選択率などの点で必ずしも十分とはいえず、実用化に供し得るためには改善の余地がある。
 本発明は、このような実情に鑑みてなされたものであり、その目的は、FT反応において、高いCO転化率ならびに不飽和炭化水素および含酸素化合物の高い選択率を達成することが可能な方法、ならびに当該方法に使用される触媒およびその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究した結果、マンガンを含有しかつ特定の平均細孔径を有する担体に鉄を担持した触媒を用い、特定条件下でFT反応を行うことによって、著しく高いCO転化率を与えかつ著しく高いオレフィンおよびアルコール選択性を有し、その結果オレフィンとアルコールの選択率の合計が著しく高くなることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記(1)~(4)に記載の不飽和炭化水素および含酸素化合物の製造方法、下記(5)~(7)に記載の触媒、下記(8)に記載の触媒の製造方法を提供する。なお、本発明でいう「合成ガス」とは、一酸化炭素と水素の混合ガスをいう。
(1)マンガンを含有しかつ平均細孔径が2~100nmである担体に鉄を担持して調製された触媒を、ポリα-オレフィンに分散させ、一酸化炭素または一酸化炭素および水素を含有する合成ガスにより触媒を還元する第1の工程と、第1の工程における還元後の触媒と合成ガスとを、反応温度100~600℃、反応圧力0.1~10MPaの条件下で接触させ、不飽和炭化水素および含酸素化合物を含有する反応生成物を得る第2の工程と、を備えることを特徴とする、不飽和炭化水素および含酸素化合物の製造方法。
(2)上記第2の工程において、反応温度を280℃プラスマイナス20℃の範囲内に保持することを特徴とする、(1)に記載の不飽和炭化水素および含酸素化合物の製造方法。
(3)上記触媒が、前記担体に銅および/またはカリウムを更に担持して調製された触媒であることを特徴とする、(1)または(2)に記載の不飽和炭化水素および含酸素化合物の製造方法。
(4)上記担体の平均細孔径が2~50nmであることを特徴とする、(1)~(3)のいずれかに記載の不飽和炭化水素および含酸素化合物の製造方法。
(5)マンガンを含有しかつ平均細孔径が2~100nmである担体に鉄を担持して調製されたことを特徴とする触媒。
(6)上記担体に銅およびカリウムを更に担持して調製されたことを特徴とする、(5)に記載の触媒。
(7)上記担体の平均細孔径が2~50nmであることを特徴とする、(5)または(6)に記載の触媒。
(8)マンガンを含有しかつ平均細孔径が2~100nmである担体と、鉄を含む溶液と、を混合する第3の工程と、第3の工程で得られた混合物を減圧・乾燥し、鉄を担体の細孔内に付着させて触媒前駆体を得る第4の工程と、第4の工程で得られた触媒前駆体を焼成する第5の工程と、を備えることを特徴とする、触媒の製造方法。
 本発明の不飽和炭化水素および含酸素化合物の製造方法および本発明の触媒によれば、FT反応において、高いCO転化率ならびに不飽和炭化水素および含酸素化合物の高い選択率を達成することが可能となる。また、本発明の触媒の製造方法によれば、上記のように優れた特性を有する本発明の触媒を有効に得ることができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 本発明の触媒は、マンガンを含有しかつ平均細孔径が2~100nmである担体に鉄を担持して調製されたものである。
 本発明の触媒を構成する担体は、必須元素としてマンガン(Mn)を含有するが、Mn以外に周期表IA、IIA、IIIB、IVB、IIIA、IVA族の元素から選ばれる元素を更に含有してもよい。
 また、担体の平均細孔径は、上述の通り2~100nmであり、好ましくは2~50nmである。平均細孔径が2nm未満では、FT合成中に細孔の閉塞が起こりやすくなり、好適な触媒反応を維持できなくなる。また、平均細孔径が100nmを超えると、単位重量当たりの表面積が著しく小さくなり、鉄等の担持金属量を十分に確保できなくなる。
 なお、本発明でいう「平均細孔径」は、吸着測定装置であるYuasa Ionics社製のQuanta Chrome Autosorb-1を用いて、窒素吸着法により測定した値をいう。
 本発明で使用する担体の比表面積は特に制限されないが、BET法による比表面積が100~1000m/gの範囲にあることが好ましい。また、担体の細孔容積は特に限定されないが、0.2~2.0ml/gの範囲にあることが好ましい。
 また、担体の形状は特に制限されず、例えば球状、破砕品、円柱状等の形状の中から使用するプロセスに適合した形状を適宜選択することが出来る。
 本発明の触媒においては、上記の担体の他に、シリカ、シリカアルミナ、アルミナ、チタニアなどMnを含有していない担体も併用することができる。
 また、上記担体に鉄(Fe)を担持する際に使用されるFe化合物としては、Feの無機塩、有機錯体など、いかなるものも使用できる。中でも硫酸塩、硝酸塩、有機酸塩、塩化物が好適に使用される。具体的には硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄、塩化第一鉄、塩化第二鉄、鉄カルボニル、フェロシアン化カリウム、フェリシアン化カリウム、鉄アセチルアセトナート塩(Fe(acac)、Fe(acac))などが挙げられる。
 本発明の触媒は、担持金属としてFe以外の金属を更に含有してもよい。特に、Feに加えて銅(Cu)および/またはカリウム(K)を上記担体に担持すると、触媒活性の点で好ましい。CuおよびKの担持に使用される化合物は特に制限されない。例えば、Cu化合物としては、Cuの無機塩、有機錯体など、いかなるものも使用できる。中でも硫酸塩、硝酸塩、有機酸塩、塩化物が好適に使用される。具体的には例えば硫酸銅、硝酸銅、塩化銅、酢酸銅などが挙げられる。
 本発明において担体に担持する金属の量は特に制限がないが、Feの担持量は、担体に対して、好ましくは3~50重量%、より好ましくは5~40重量%、更に好ましくは10~30重量%、特に好ましくは15~25重量%であることが好ましい。また、Cuを担持する場合、Cu担持量は、担体に対して0.5~6重量%、より好ましくは1~4重量%である。
 Fe等の担体への担持方法としては、含浸法、イオン交換法等の通常用いられる方法を適宜選択できる。特に好ましい方法としては含浸法を挙げることができ、含浸法の中でも特に好ましい方法としてはIncipient Wetness法を挙げることが出来る。複数の金属を含浸する際は、同時含浸・逐次含浸のいずれも選べるが、同時含浸が好ましい。
 本発明の触媒は、以下の3工程を備える本発明の触媒の製造方法によって好適に得ることができる。
(A-1)Mnを含有しかつ平均細孔径が2~100nmである担体と、Feを含む溶液と、を混合する工程、
(A-2)上記(A-1)工程で得られた混合物を減圧・乾燥し、鉄を担体の細孔内に付着させて触媒前駆体を得る工程、
(A-3)上記(A-2)工程で得られた触媒前駆体を焼成する工程。
 (A-1)工程においては、溶媒を使用することが出来る。溶媒としては、Mnを含有する担体を分散させ、また少なくともFe化合物を溶解することができるものであれば、何ら制限はない。具体的には水、アセトンなどのケトン系化合物、メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒が挙げられる。(A-1)工程の処理温度は通常常温で充分であるが、60℃程度に加温し、超音波振動を利用することが好ましい。なお、Fe以外にCu、K等を担持させる際には、これらの金属をFeを含む溶液に添加すればよい。
 また、(A-2)工程における減圧・乾燥の際の圧力は100kPa以下、温度は40℃以上であることが好ましい。また、Fe等の金属成分を細孔内に均一に付着させるため、攪拌をすることが好ましい。
 また、(A-3)工程における焼成温度は100℃以上、雰囲気は空気雰囲気下とすることが好ましい。更に好ましくは、空気雰囲気下で12時間以上、120℃で焼成することが好ましい。
 また、本発明の不飽和炭化水素および含酸素化合物の製造方法は、上記本発明の触媒を用いたものであり、以下の2工程を備える。
(B-1)本発明の触媒を、ポリα-オレフィン(PAO)に分散させ、一酸化炭素または一酸化炭素および水素を含有する合成ガス(以下、単に「合成ガス」という。)により触媒を還元する工程、
(B-2)上記(B-1)工程における還元後の触媒と、合成ガスとを、反応温度100~600℃、反応圧力0.1~10MPaの条件下で接触させ、不飽和炭化水素および含酸素化合物を含有する反応生成物を得る工程。
 (B-1)工程においては、本発明の触媒を反応器に導入し、PAOに分散してスラリー形式を採用することが好ましい。そのような形式を採用し、合成ガス(一酸化炭素と水素の混合物、比は任意)あるいは一酸化炭素で触媒を反応基内で還元することによって、本発明の触媒の活性を一層高めることができる。
 触媒とPAOとの割合は基本的には任意であるが、好ましくは、触媒1gに対してPAOが1ml~10Lである。また、還元温度は100~400℃の範囲とすることが好ましい。
 また、使用するPAOとしては、その沸点が300℃以上のものが好適である。このようなPAOを用いる場合、特に、一酸化炭素で還元すると、(B-2)工程における不飽和炭化水素に対する含酸素化合物の生成比率が著しく高くなる、換言すれば、不飽和炭化水素/含酸素化合物の比が著しく小さくなる傾向がある。
 (B-1)工程は系内で触媒を活性化させる、In-situ還元法であり、この工程に引き続き、(B-2)工程においてFT合成を行う。(B-2)工程における反応温度は100~600℃から選択される。反応温度が100℃未満では活性が不十分となって転化率が極端に低くなり、また、600℃を超える場合は反応生成物やPAOの分解が起こりやすくなる。より好ましい反応温度は220~340℃、更に好ましくは280℃プラスマイナス20℃の範囲内である。当該好ましい反応温度を採用することで、不飽和炭化水素と含酸素化合物の合計値が25%以上で、かつ不飽和炭化水素/含酸素化合物の比を0.1~3.0の範囲内で選択して製造することができ、化学品として有用なオレフィンあるいはアルコールを作り分けることが出来る。
 また、(B-2)工程における反応圧力は、0.1~10MPaから選択され、好ましくは0.5~5MPaである。反応圧力が0.1MPa未満の場合には、PAOに分散した触媒と合成ガスとの接触確率が低くなり、反応性が不十分となる。また、10MPaを超える加圧は、過度の加圧となり、過剰設備が必要となるので好ましくない。
 上記本発明の不飽和炭化水素および含酸素化合物の製造方法は、触媒表面へワックス析出が起こり難く、かつ反応熱の除去が容易な為工業化に有利なスラリー床プロセスに最も好ましく適用されるが、従来知られている固定床プロセス、流動床プロセスにも利用できる。
 なお、スラリー床プロセスにおいては、反応原料の触媒表面への拡散が重要な因子であり、その一方で、反応器内で触媒同士または触媒と反応器壁とが擦れ合うため、機械強度も要求される。本発明の触媒によれば、これらの要求性能を高水準で達成することができる。
 以下、実施例および比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。なお、以下の実施例におけるCO転化率、収率および選択率の単位「%」はモル%を意味する。
(実施例1)
 K含有量が8重量%の酸化マンガン担体(ズードケミー触媒社製、商品名N-190、BET比表面積398m/g、細孔容積0.70ml/g、平均細孔径10.1nm)の破砕品を20-40メッシュに分球した。この酸化マンガン担体5gに、金属鉄として酸化マンガンの20重量%に相当する量のFe(NO)・9HOを含む水溶液を、超音波振動を使いながらIncipient Wettness法により含浸させた。65℃で真空乾燥を6時間行い、120℃で12時間乾燥し、2℃/minで室温から400℃まで昇温した。さらに400℃で2時間焼成した。
 このように調製した触媒1gをスラリー型反応基に導入し、20mlのPAO(ポリα-オレフィン)を添加した。温度280℃、圧力1.0MPaとし、10gh/molでH/CO=1/1の合成ガスを6時間流して、触媒を還元した。還元と同じ条件でFT反応を行い、10時間後にサンプルを採取し、トランスデカリンと1-オクタノールを標準物質として、生成物をGCで定量した。
 CO転化率は80%、収率はそれぞれ、CO(47%)、メタン(3%)、含酸素化合物(8%)、オレフィン(24%)、パラフィン(8%)であった。また、不飽和炭化水素と含酸素化合物の収率の合計値が32%であり、不飽和炭化水素/含酸素化合物の比は2.9であった。
 また含酸素化合物を含まない炭化水素において、C-Cでのオレフィン/パラフィン比(以下O/P)は5、C-C11でのO/Pは3、C12以上でのO/Pは1であった。
 また含酸素化合物を含まない炭化水素において、各成分の選択率は、メタン(9%)、C-C(38%)、C-C11(47%)、C12以上(6%)であった。
 また全含酸素化合物を100とした時の、主な化合物の選択率は、メタノール(12%)、エタノール(49%)、1-プロパノール(13%)、1-ブタノール(7%)であった。
(実施例2)
 担持金属にFe(NO)・9HOに加えて、金属銅として酸化マンガンの3重量%に相当する量のCu(NO)・3HOを用いる以外は実施例1と同様にして、触媒を調製し、得られた触媒を用いてFT反応を実施した。
 CO転化率は89%、収率はそれぞれ、CO(44%)、メタン(6%)、含酸素化合物(15%)、オレフィン(25%)、パラフィン(10%)であった。これは、不飽和炭化水素と含酸素化合物の合計値が40%であり、不飽和炭化水素/含酸素化合物の比は1.7であった。
 また含酸素化合物を含まない炭化水素において、C-CでのO/Pは5、C-C11でのO/Pは4、C12以上でのO/Pは1であった。
 また含酸素化合物を含まない炭化水素において、各成分の選択率は、メタン(9%)、C-C(38%)、C-C11(39%)、C12以上(15%)であった。
 また全含酸素化合物を100とした時の、主な化合物の選択率は、メタノール(7%)、エタノール(57%)、1-プロパノール(15%)、 1-ブタノール(7%)であった。
(実施例3)
 反応温度を300℃としたこと以外は実施例2と同様にして、FT反応を実施した。
 CO転化率は93%、収率はCO(44%)、メタン(1%)、含酸素化合物(41%)、オレフィン(6%)、パラフィン(7%)であった。また、不飽和炭化水素と含酸素化合物の収率の合計値は47%であり、不飽和炭化水素/含酸素化合物の比は0.1であった。
 また含酸素化合物を含まない炭化水素において、C-CでのO/Pは5、C-C11でのO/Pは4、C12以上でのO/Pは3であった。
 また含酸素化合物を含まない炭化水素において、各成分の選択率は、メタン(9%)、C-C(37%)、C-C11(40%)、C12以上(15%)であった。
(実施例4)
 反応温度を260℃としたこと以外は実施例2と同様にして、FT反応を実施した。
 CO転化率は60%、収率はCO(45%)、メタン(2%)、含酸素化合物(7%)、オレフィン(19%)、パラフィン(6%)であった。また、不飽和炭化水素と含酸素化合物の収率の合計値は25%であり、不飽和炭化水素/含酸素化合物の比は2.7であった。
 また含酸素化合物を含まない炭化水素において、C-CでのO/Pは5、C-C11でのO/Pは3、C12以上でのO/Pは1であった。
 また含酸素化合物を含まない炭化水素において、各成分の選択率は、メタン(8%)、C-C(34%)、C-C11(43%)、C12以上(16%)であった。
(実施例5)
 K含有量が3重量%の酸化マンガン担体(ズードケミー触媒社製、商品名MN-280、BET比表面積381m/g、細孔容積0.55ml/g、平均細孔径4.7nm)の破砕品を20-40メッシュに分球した。この酸化マンガン担体5gに、金属鉄として酸化マンガンの20重量%に相当する量のFe(NO)・9HOおよび金属銅として酸化マンガンの3重量%に相当する量のCu(NO)・3HOを含む水溶液を、超音波振動を使いながらncent Wettness法により同時に含浸させた。65℃で真空乾燥を6時間行い、120℃で12時間乾燥し、2℃/minで室温から400℃まで昇温した。さらに400℃で2時間焼成した。
 このように調製した触媒1gをスラリー型反応器に導入し、20mlのPAO(ポリα-オレフィン)を添加した。温度280℃、圧力1.0MPaとし、10gh/molでH/CO=1/1の合成ガスを6時間流して、触媒を還元した。還元と同じ条件でFT反応を行い、10時間後にサンプルを採取し、トランスデカリンと1-オクタノールを標準物質として、生成物をGCで定量した。
 CO転化率は85%、収率はそれぞれ、CO(49%)、メタン(2%)、含酸素化合物(18%)、オレフィン(17%)、パラフィン(7%)であった。また、不飽和炭化水素と含酸素化合物の収率の合計値は37%であり、不飽和炭化水素/含酸素化合物の比は0.9であった。
 また含酸素化合物を含まない炭化水素において、C-Cでのオレフィン/パラフィン比(以下O/P)は4、C-C11でのO/Pは2、C12以上でのO/Pは1であった。
 また含酸素化合物を含まない炭化水素において、各成分の選択率は、メタン(8%)、C-C(37%)、C-C11(45%)、C12以上(10%)であった。
 また全含酸素化合物を100とした時の、主な化合物の選択率は、メタノール(8%)、エタノール(57%)、1-プロパノール(16%)、 1-ブタノール(7%)であった。
(比較例1)
 K含有量が8重量%であり平均細孔径が1nmである酸化マンガン担体を使用すること以外は実施例2と同様にして、触媒を調製し、得られた触媒を用いてFT反応を実施した。しかし、反応開始後1時間で活性がなくなった。
(比較例2)
 富士シリシア製シリカCariact Q-50担体(BET比表面積76m/g、細孔容積1.30ml/g、平均細孔径58nm、ペレットサイズ75-500μm)5gに、金属鉄として酸化マンガンの20重量%に相当する量のFe(NO)・9HOおよび金属銅として酸化マンガンの3重量%に相当する量のCu(NO)・3HOを含む水溶液を、超音波振動を使いながらIncipient Wettness法により同時に含浸させた。65℃で真空乾燥を6時間行い、120℃で12時間乾燥し、2℃/minで室温から400℃まで昇温した。さらに400℃で2時間焼成した。
 このように調製した触媒1gをスラリー型反応器に導入し、20mlのPAO(ポリα-オレフィン)を添加した。温度280℃、圧力1.0MPaとし、10gh/molでH/CO=1/1の合成ガスを6時間流して、触媒を還元した。還元と同じ条件でFT反応を行い、10時間後にサンプルを採取し、トランスデカリンと1-オクタノールを標準物質として、生成物をGCで定量した。
 CO転化率は41%、収率はそれぞれ、CO(39%)、メタン(1%)、含酸素化合物(1%)、オレフィン(16%)、パラフィン(7%)であった。また、不飽和炭化水素と含酸素化合物の収率の合計値は17%であり、不飽和炭化水素/含酸素化合物の比は12.1であった。
 また含酸素化合物を含まない炭化水素において、C-CでのO/Pは3、C-C11でのO/Pは3、C12以上でのO/Pは0.5であった。
 また含酸素化合物を含まない炭化水素において、各成分の選択率は、メタン(5%)、C-C(21%)、C-C11(62%)、C12以上(12%)であった。
 また全含酸素化合物を100とした時の、主な化合物の選択率は、メタノール(17%)、エタノール(43%)、1-プロパノール(17%)、1-ブタノール(9%)であった。

Claims (8)

  1.  マンガンを含有しかつ平均細孔径が2~100nmである担体に鉄を担持して調製された触媒を、ポリα-オレフィンに分散させ、一酸化炭素または合成ガスにより前記触媒を還元する第1の工程と、
     前記第1の工程における還元後の前記触媒と、合成ガスとを、反応温度100~600℃、反応圧力0.1~10MPaの条件下で接触させ、不飽和炭化水素および含酸素化合物を含有する反応生成物を得る第2の工程と、
    を備えることを特徴とする、不飽和炭化水素および含酸素化合物の製造方法。
  2.  前記第2の工程において、反応温度を280℃プラスマイナス20℃の範囲内に保持することを特徴とする、請求項1に記載の不飽和炭化水素および含酸素化合物の製造方法。
  3.  前記触媒は、前記担体に銅および/またはカリウムを更に担持して調製された触媒であることを特徴とする、請求項1または2に記載の不飽和炭化水素および含酸素化合物の製造方法。
  4.  前記担体の平均細孔径が2~50nmであることを特徴とする、請求項1~3のいずれか一項に記載の不飽和炭化水素および含酸素化合物の製造方法。
  5.  マンガンを含有しかつ平均細孔径が2~100nmである担体に鉄を担持して調製されたことを特徴とする触媒。
  6.  前記担体に銅および/またはカリウムを更に担持して調製されたことを特徴とする、請求項5に記載の触媒。
  7.  前記担体の平均細孔径が2~50nmであることを特徴とする、請求項5または6に記載の触媒。
  8.  マンガンを含有しかつ平均細孔径が2~100nmである担体と、鉄を含む溶液と、を混合する第3の工程と、
     前記第3の工程で得られた混合物を減圧・乾燥し、前記鉄を前記担体の細孔内に付着させて触媒前駆体を得る第4の工程と、
     前記第4の工程で得られた前記触媒前駆体を焼成する第5の工程と、
    を備えることを特徴とする、触媒の製造方法。
PCT/JP2009/068967 2008-11-11 2009-11-06 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法 WO2010055808A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2009315025A AU2009315025A1 (en) 2008-11-11 2009-11-06 Method for manufacturing unsaturated hydrocarbon and oxygenated compound, catalyst, and manufacturing method therefor
EP09826058A EP2366681A1 (en) 2008-11-11 2009-11-06 Method for manufacturing unsaturated hydrocarbon and oxygenated compound, catalyst, and manufacturing method therefor
RU2011123736/04A RU2011123736A (ru) 2008-11-11 2009-11-06 Cпособ производства ненасыщенного углеводорода и оксигенированного соединения, катализатор и способ его производства
CN2009801449176A CN102209699A (zh) 2008-11-11 2009-11-06 不饱和烃和含氧化合物的制造方法、催化剂及其制造方法
US13/127,304 US20110213041A1 (en) 2008-11-11 2009-11-06 Method for manufacturing unsaturated hydrocarbon and oxygenated compound, catalyst, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-288797 2008-11-11
JP2008288797A JP2010116328A (ja) 2008-11-11 2008-11-11 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法

Publications (1)

Publication Number Publication Date
WO2010055808A1 true WO2010055808A1 (ja) 2010-05-20

Family

ID=42169943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068967 WO2010055808A1 (ja) 2008-11-11 2009-11-06 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法

Country Status (7)

Country Link
US (1) US20110213041A1 (ja)
EP (1) EP2366681A1 (ja)
JP (1) JP2010116328A (ja)
CN (1) CN102209699A (ja)
AU (1) AU2009315025A1 (ja)
RU (1) RU2011123736A (ja)
WO (1) WO2010055808A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586112B1 (ja) * 2010-06-14 2010-11-24 株式会社東産商 フィッシャー・トロプシュ合成用触媒およびその製造方法ならびに炭化水素の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473652B (zh) 2008-12-26 2015-02-21 Nippon Oil Corp Hydrogenated isomerization catalyst, method for producing the same, dewaxing method for hydrocarbon oil and method for producing lubricating base oil
JPWO2014024774A1 (ja) * 2012-08-10 2016-07-25 住友化学株式会社 炭素原子数2〜4のオレフィンの製造方法及びプロピレンの製造方法
JP2014055126A (ja) * 2012-08-10 2014-03-27 Sumitomo Chemical Co Ltd フィッシャー・トロプシュ反応による炭素原子数2〜4のオレフィンの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359604A (en) * 1976-11-10 1978-05-29 Shell Int Research Process for preparing hydrocarbon
US4177203A (en) 1976-02-12 1979-12-04 Schering Aktiengesellschaft Process for the production of hydrocarbons and oxygen-containing compounds and catalysts therefor
US4206134A (en) 1979-03-12 1980-06-03 Exxon Research & Engineering Co. Ruthenium supported on manganese oxide as hydrocarbon synthesis catalysts in CO/H2 reactions
JPS5648491B2 (ja) 1975-04-29 1981-11-16
JPH0370691B2 (ja) 1983-12-29 1991-11-08 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
JP2003024786A (ja) * 2001-07-13 2003-01-28 Nippon Oil Corp フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
JP2004528176A (ja) * 2001-05-08 2004-09-16 サド ケミー インコーポレーテッド フィッシャー−トロプシュ合成用大表面積、小結晶径触媒
JP2006297286A (ja) 2005-04-20 2006-11-02 Electric Power Dev Co Ltd ヘテロなバイモダル構造を有する触媒
JP2008503440A (ja) * 2004-06-23 2008-02-07 ビーピー ピー・エル・シー・ 微孔質シリカゲルの合成および合成ガスからのc2酸素化物合成のための触媒の製造に対するその適用
WO2008114597A1 (ja) * 2007-03-19 2008-09-25 Ube Industries, Ltd. シリカ基複合酸化物繊維及びそれを用いた触媒繊維並びにその製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140249A (en) * 1960-07-12 1964-07-07 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US4544672A (en) * 1983-12-14 1985-10-01 Exxon Research And Engineering Co. Cobalt-promoted catalysts for use in Fischer-Tropsch slurry process
US4544674A (en) * 1983-12-14 1985-10-01 Exxon Research And Engineering Co. Cobalt-promoted fischer-tropsch catalysts
US4544671A (en) * 1983-12-14 1985-10-01 Exxon Research And Engineering Co. Process for preparing high surface area iron/cobalt Fischer-Tropsch slurry catalysts
US4683214A (en) * 1984-09-06 1987-07-28 Mobil Oil Corporation Noble metal-containing catalysts
JPS6191139A (ja) * 1984-10-08 1986-05-09 Res Assoc Petroleum Alternat Dev<Rapad> オレフイン類の製造法
JPH062232B2 (ja) * 1985-02-25 1994-01-12 エクソン リサ−チ アンド エンヂニアリング コムパニ− コバルトにより促進されたフイツシヤ−−トロプシユ触媒
JPH0825911B2 (ja) * 1987-12-23 1996-03-13 エクソン リサーチ アンド エンヂニアリング コムパニー フィッシャー・トロプシュ反応においてメタン生成を減じ液体収率を増加させる方法
US5282958A (en) * 1990-07-20 1994-02-01 Chevron Research And Technology Company Use of modified 5-7 a pore molecular sieves for isomerization of hydrocarbons
US5143879A (en) * 1991-07-18 1992-09-01 Mobil Oil Corporation Method to recover organic templates from freshly synthesized molecular sieves
GB9203959D0 (en) * 1992-02-25 1992-04-08 Norske Stats Oljeselskap Method of conducting catalytic converter multi-phase reaction
JPH08215576A (ja) * 1995-02-16 1996-08-27 Ykk Kk 複合超微粒子及びその製造方法並びにメタノールの合成・改質用触媒
US6162530A (en) * 1996-11-18 2000-12-19 University Of Connecticut Nanostructured oxides and hydroxides and methods of synthesis therefor
FR2760385B1 (fr) * 1997-03-05 1999-04-16 Inst Francais Du Petrole Catalyseur a base de tamis moleculaire et procede d'hydroisomerisation selective de paraffines longues lineaires et/ou peu ramifiees avec ce catalyseur
AR013002A1 (es) * 1997-06-18 2000-11-22 Exxonmobil Chem Patents Inc Metodo para incorporar catalizadores para la conversion de un gas de sintesis en tamices moleculares y tamiz molecular modificado.
US6156283A (en) * 1998-03-23 2000-12-05 Engelhard Corporation Hydrophobic catalytic materials and method of forming the same
AU6643600A (en) * 1999-08-17 2001-03-13 Battelle Memorial Institute Catalyst structure and method of fischer-tropsch synthesis
US6709570B1 (en) * 1999-09-27 2004-03-23 Shell Oil Company Method for preparing a catalyst
FR2805255B1 (fr) * 2000-02-21 2002-04-12 Inst Francais Du Petrole Zeolithe mtt comprenant des cristaux et des agregats de cristaux de granulometries specifiques et son utilisation comme catalyseur d'isomerisation des paraffines lineaires
US7319178B2 (en) * 2002-02-28 2008-01-15 Exxonmobil Chemical Patents Inc. Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
CN1203920C (zh) * 2002-06-12 2005-06-01 中国科学院山西煤炭化学研究所 一种用于费托合成的铁/锰催化剂及其制备方法
FI118516B (fi) * 2003-03-14 2007-12-14 Neste Oil Oyj Menetelmä katalyytin valmistamiseksi
US7141529B2 (en) * 2003-03-21 2006-11-28 Chevron U.S.A. Inc. Metal loaded microporous material for hydrocarbon isomerization processes
FR2852865B1 (fr) * 2003-03-24 2007-02-23 Inst Francais Du Petrole Catalyseur et son utilisation pour l'amelioration du point d'ecoulement de charges hydrocarbonnees
US7390763B2 (en) * 2003-10-31 2008-06-24 Chevron U.S.A. Inc. Preparing small crystal SSZ-32 and its use in a hydrocarbon conversion process
US7368620B2 (en) * 2005-06-30 2008-05-06 Uop Llc Two-stage aromatics isomerization process
JP4551835B2 (ja) * 2005-07-28 2010-09-29 キヤノン株式会社 情報処理装置及び情報処理方法及び印刷制御プログラム
US7393876B2 (en) * 2005-12-16 2008-07-01 Eltron Research, Inc. Fischer-tropsch catalysts
JP4769085B2 (ja) * 2006-01-13 2011-09-07 Jx日鉱日石エネルギー株式会社 ワックスの水素化処理方法
US20080083657A1 (en) * 2006-10-04 2008-04-10 Zones Stacey I Isomerization process using metal-modified small crystallite mtt molecular sieve
AU2008268777B2 (en) * 2007-06-27 2011-12-08 Nippon Oil Corporation Hydroisomerization catalyst, method of dewaxing hydrocarbon oil, process for producing base oil, and process for producing lube base oil
EP2165997A1 (en) * 2008-09-18 2010-03-24 Rohm and Haas Company Improved process for the oxidative dehydrogenation of ethane

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648491B2 (ja) 1975-04-29 1981-11-16
US4177203A (en) 1976-02-12 1979-12-04 Schering Aktiengesellschaft Process for the production of hydrocarbons and oxygen-containing compounds and catalysts therefor
JPS5359604A (en) * 1976-11-10 1978-05-29 Shell Int Research Process for preparing hydrocarbon
US4206134A (en) 1979-03-12 1980-06-03 Exxon Research & Engineering Co. Ruthenium supported on manganese oxide as hydrocarbon synthesis catalysts in CO/H2 reactions
JPH0370691B2 (ja) 1983-12-29 1991-11-08 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
JP2004528176A (ja) * 2001-05-08 2004-09-16 サド ケミー インコーポレーテッド フィッシャー−トロプシュ合成用大表面積、小結晶径触媒
JP2003024786A (ja) * 2001-07-13 2003-01-28 Nippon Oil Corp フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
JP2008503440A (ja) * 2004-06-23 2008-02-07 ビーピー ピー・エル・シー・ 微孔質シリカゲルの合成および合成ガスからのc2酸素化物合成のための触媒の製造に対するその適用
JP2006297286A (ja) 2005-04-20 2006-11-02 Electric Power Dev Co Ltd ヘテロなバイモダル構造を有する触媒
WO2008114597A1 (ja) * 2007-03-19 2008-09-25 Ube Industries, Ltd. シリカ基複合酸化物繊維及びそれを用いた触媒繊維並びにその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEISUKE FUKUMOTO ET AL.: "Sen'i Kinzoku Genso o Gan'yu suru Meso-saiko Kozo Manganese Sankabutsu no Sol-Gel-ho ni yoru Chosei to Kino Hyoka", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 98TH, 2006, pages 57 *
TAO, Z. ET AL.: "Effect of calcium promoter on a precipitated iron-manganese catalyst for Fischer-Tropsch synthesis", CATALYSIS COMMUNICATIONS, vol. 7, 2006, pages 1061 - 1066 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586112B1 (ja) * 2010-06-14 2010-11-24 株式会社東産商 フィッシャー・トロプシュ合成用触媒およびその製造方法ならびに炭化水素の製造方法
JP2013128861A (ja) * 2010-06-14 2013-07-04 Azuma Sansho:Kk フィッシャー・トロプシュ合成用触媒およびその製造方法ならびに炭化水素の製造方法

Also Published As

Publication number Publication date
AU2009315025A1 (en) 2010-05-20
US20110213041A1 (en) 2011-09-01
JP2010116328A (ja) 2010-05-27
CN102209699A (zh) 2011-10-05
RU2011123736A (ru) 2012-12-20
EP2366681A1 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
EP2490989B1 (en) Production of lower olefins from synthesis gas
Inui et al. Methanation of CO 2 and CO on supported nickel-based composite catalysts
RU2516467C2 (ru) Способ получения нитрата металла на подложке
SG173637A1 (en) Process for the preparation of fischer - tropsch catalysts and their use
US9114378B2 (en) Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
CN101511475B (zh) 金属硝酸盐转化法
KR101816787B1 (ko) 활성화된 피셔-트롭시 합성용 촉매의 저장방법
WO2017009427A1 (en) Extruded titania-based material comprising mesopores and macropores
BR112019016319A2 (pt) Processo para produzir um catalisador de síntese de fischer-tropsch
WO2010055808A1 (ja) 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法
CN110871075B (zh) 负载铁钴钾的二氧化锆催化剂、制备方法及其应用
JP2010116328A5 (ja)
JP2018504477A (ja) 還元活性化コバルト触媒を用いるフィッシャー−トロプシュ法
Winter et al. Single-stage liquid-phase synthesis of methyl isobutyl ketone under mild conditions
KR102221053B1 (ko) 고성능 철/알루미나 지지체 촉매의 제조 방법 및 이를 이용한 합성 액체연료 제조 방법
KR101468204B1 (ko) 합성가스로부터 함산소탄소화합물 제조용 촉매의 제조방법 및 이에 따라 제조되는 촉매를 이용한 함산소탄소화합물의 제조방법
RU2610523C1 (ru) Способ приготовления катализатора получения углеводородов из синтез-газа и способ его использования
AU2019239617B2 (en) A supported cobalt-containing Fischer-Tropsch catalyst, process for preparing the same and uses thereof
RU2672269C1 (ru) Катализатор гидрирования олефинов в процессе получения синтетической нефти и способ его синтеза (варианты)
Ji et al. Effect of nanostructured supports on catalytic methane decomposition
JP4267482B2 (ja) 炭化水素類製造用触媒およびその触媒を用いた炭化水素類の製造方法
劉蟈蟈 New Catalysts Development for Gas-To-Liquid Technology
JP2024502262A (ja) メタンの製造方法
JP2023554069A (ja) 改良された生成物選択性を有するフィッシャー・トロプシュ法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144917.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009315025

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13127304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009315025

Country of ref document: AU

Date of ref document: 20091106

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009826058

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011123736

Country of ref document: RU