WO2010055601A1 - ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法 - Google Patents

ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法 Download PDF

Info

Publication number
WO2010055601A1
WO2010055601A1 PCT/JP2009/004217 JP2009004217W WO2010055601A1 WO 2010055601 A1 WO2010055601 A1 WO 2010055601A1 JP 2009004217 W JP2009004217 W JP 2009004217W WO 2010055601 A1 WO2010055601 A1 WO 2010055601A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
self
film
pattern
forming
Prior art date
Application number
PCT/JP2009/004217
Other languages
English (en)
French (fr)
Inventor
遠藤政孝
笹子勝
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010055601A1 publication Critical patent/WO2010055601A1/ja
Priority to US13/085,954 priority Critical patent/US20110186544A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic

Definitions

  • the present invention relates to a method for promoting self-organization of a block copolymer used for pattern formation such as a manufacturing process of a semiconductor device and a method for forming a self-organized pattern of a block copolymer using the same.
  • Patent Document 1 a method of forming a pattern from the bottom up rather than from the bottom down has been proposed (see, for example, Patent Document 1). Specifically, an ultrafine pattern by self-organization using a block copolymer obtained by copolymerizing a polymer chain having one property with a monomer unit and another polymer chain (monomer unit) having different properties. It is a forming method. According to this method, by annealing the block copolymer film, the monomer units having different properties repel each other and the monomer units having the same properties are patterned in a self-aligned manner (directed self-assembly). ).
  • a block copolymer film 2 having the following composition and a film thickness of 0.07 ⁇ m is formed on a substrate 1.
  • the formed block copolymer film 2 is annealed in an oven at a temperature of 180 ° C. for 24 hours, and the line width shown in FIG. 7C is 16 nm.
  • the first pattern 2a and the second pattern 2b having a self-assembled lamellar structure (layer structure) are obtained.
  • the block copolymer film 2 is formed inside the guide pattern, but the guide pattern is omitted here.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to improve the throughput of pattern formation by self-organization of a block copolymer.
  • the present inventors have conducted the following method during annealing of one of the monomer units constituting the block copolymer, for example, a hydrophilic or hydrophobic monomer unit. Has gained the knowledge that it is easier to self-assemble.
  • the outside (mainly upward) of the block copolymer film becomes non-polar, so that, for example, a monomer unit having hydrophobicity (hydrophobic unit) is formed in the film. Because it is strongly attracted to the outside, self-organization is promoted.
  • the block copolymer film when the block copolymer film is annealed under humidification, the outside of the block copolymer film (mainly upward) becomes hydrophilic.
  • a hydrophilic monomer unit hydrophilic unit
  • a method of applying humidification a method of introducing water vapor into the oven can be mentioned.
  • a water-soluble polymer film is formed on the block copolymer film
  • a water-soluble polymer is formed on the upper surface of the block copolymer film.
  • hydrophilic monomer units are strongly attracted to the outside (upper) of the film. So self-organization is promoted.
  • An exposure method in which a water-soluble polymer film is formed on a resist film and exposed is conventionally known, but the present invention is different from the conventional method in that a pattern can be formed without exposure.
  • the water-soluble polymer film is removed by water or the like after annealing, but when cured by annealing, it can be removed by ashing of oxygen-based plasma.
  • Annealing of the block copolymer film according to the present invention may be performed, for example, in an oven at a temperature of about 150 ° C. or higher. According to the present invention, the annealing time can be greatly shortened, for example, about 2 to 6 hours. However, the present invention is not limited to this range.
  • the present invention has been made based on the above findings, and when annealing the block copolymer film, the atmosphere mainly contacting the upper surface of the annealed block copolymer film is made hydrophilic or hydrophobic, or is in contact with the upper surface.
  • the other film is made hydrophilic or hydrophobic, and is specifically realized by the following method.
  • a method for promoting self-assembly of a first block copolymer according to the present invention includes a step of forming a first film made of a block copolymer on a substrate, and a step of annealing the first film in an inert gas atmosphere. It is characterized by having.
  • the method for promoting self-assembly of the first block copolymer since the first film made of the block copolymer is annealed in an inert gas atmosphere, the outside (mainly above) of the first film is in a state of no polarity. Become. Thereby, for example, the monomer unit having hydrophobicity is strongly attracted to the outside of the first film, and thus self-assembly is promoted. Therefore, the throughput of pattern formation by the self-assembly of the block copolymer is improved.
  • helium, neon, argon, krypton, or xenon can be used as the inert gas.
  • the second block copolymer self-assembly promotion method includes a step of forming a first film made of a block copolymer on a substrate, and a step of annealing the first film under humidification. It is characterized by.
  • the first film made of the block copolymer is annealed under humidification, so that the outside (mainly upper) of the first film is in a hydrophilic state. Accordingly, for example, the monomer unit having hydrophilicity is strongly attracted to the outside of the first film, so that self-organization is promoted. Therefore, the throughput of pattern formation by the self-assembly of the block copolymer is improved.
  • the annealing under humidification is preferably performed in a humidified atmosphere having a humidity of 30% or more.
  • the third method for promoting self-assembly of a block copolymer according to the present invention includes a step of forming a first film made of a block copolymer on a substrate, and a second process made of a water-soluble polymer on the first film. And a step of annealing the first film and the second film.
  • the second film made of the water-soluble polymer is formed on the first film made of the block copolymer, the upper surface of the first film is water-soluble. A polymer is formed. For this reason, for example, the monomer unit having hydrophilicity is strongly attracted above the first film, so that self-organization is promoted. Therefore, the throughput of pattern formation by the self-assembly of the block copolymer is improved.
  • polyvinyl alcohol polyvinyl pyrrolidone, polyacrylic acid or polystyrene sulfonic acid can be used as the water-soluble polymer.
  • the film thickness of the second film made of the water-soluble polymer is preferably about 50 nm or less.
  • the block copolymer is preferably composed of a hydrophilic unit and a hydrophobic unit.
  • methacrylate, butadiene, vinyl acetate, acrylate, acrylamide, acrylonitrile, acrylic acid, vinyl alcohol, ethylene glycol or propylene glycol can be used for the hydrophilic unit.
  • styrene, xylene or ethylene can be used for the hydrophobic unit.
  • the copolymerization ratio of the block copolymer containing two types of monomer units is about 50 to 50, the self-assembled pattern has a lamellar structure. As the ratio of any one of the monomer units decreases from this ratio, a cylinder structure and further a dot structure are obtained.
  • a first block copolymer self-assembly pattern forming method includes a step of forming a guide pattern having hydrophilicity or hydrophobicity and an opening on a substrate, and a guide pattern on the substrate.
  • the first film made of the block copolymer is formed in the opening of the guide pattern having hydrophilicity or hydrophobicity and having the opening, and then Since the first film is annealed in the inert gas atmosphere, the self-organization of the first film is promoted as described above. For this reason, it is possible to improve the throughput of the self-assembled pattern made of the block copolymer.
  • helium, neon, argon, krypton, or xenon can be used as the inert gas.
  • the second block copolymer self-organized pattern forming method includes a step of forming a hydrophilic or hydrophobic guide pattern having an opening on a substrate, and a guide pattern on the substrate. Forming a first film made of a block copolymer in the opening of the first film; annealing the first film under humidification to self-assemble the first film; and And a step of forming a self-assembled pattern from one film.
  • the first film made of the block copolymer is formed in the opening of the guide pattern having hydrophilicity or hydrophobicity and having the opening, Since the first film is annealed under humidification, self-organization of the first film is promoted as described above. For this reason, it is possible to improve the throughput of the self-assembled pattern made of the block copolymer.
  • the annealing under humidification is performed in a humidified atmosphere having a humidity of 30% or more.
  • the third method for forming a self-organized pattern of a block copolymer according to the present invention includes a step of forming a hydrophilic or hydrophobic guide pattern having an opening on a substrate, and a guide pattern on the substrate. Forming a first film made of a block copolymer in the opening, a step of forming a second film made of a water-soluble polymer on the first film, a first film and a second film A step of self-organizing the first film by annealing the film; and a step of forming a self-assembled pattern from the first film that has been self-assembled after removing the second film. It is characterized by.
  • the first film made of the block copolymer is formed in the opening of the guide pattern having hydrophilicity or hydrophobicity and having the opening, Since annealing is performed with the second film made of the water-soluble polymer formed on the first film, the second film made of the water-soluble polymer promotes self-organization of the first film as described above. Is done. For this reason, it is possible to improve the throughput of the self-assembled pattern made of the block copolymer.
  • polyvinyl alcohol polyvinyl pyrrolidone
  • polyacrylic acid polystyrene sulfonic acid
  • the block copolymer is preferably composed of a hydrophilic unit and a hydrophobic unit.
  • methacrylate, butadiene, vinyl acetate, acrylate, acrylamide, acrylonitrile, acrylic acid, vinyl alcohol, ethylene glycol or propylene glycol can be used for the hydrophilic unit.
  • styrene, xylene or ethylene can be used for the hydrophobic unit.
  • the self-assembled pattern may be formed by etching the first pattern including the hydrophilic unit or the second pattern including the hydrophobic unit. it can.
  • the block copolymer self-assembly promotion method and the block copolymer self-assembly pattern formation method using the block copolymer according to the present invention can improve the throughput in pattern formation by block copolymer self-assembly.
  • FIG. 1A to FIG. 1D are cross-sectional views showing respective steps of the pattern forming method according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing one step of the pattern forming method according to the first embodiment of the present invention.
  • FIG. 3A to FIG. 3D are cross-sectional views showing respective steps of the pattern forming method according to the second embodiment of the present invention.
  • FIG. 4 is a sectional view showing one step of the pattern forming method according to the second embodiment of the present invention.
  • FIG. 5A to FIG. 5D are cross-sectional views showing respective steps of the pattern forming method according to the third embodiment of the present invention.
  • FIG. 6A and FIG. 6B are cross-sectional views showing each step of the pattern forming method according to the third embodiment of the present invention.
  • FIG. 7A to FIG. 7C are cross-sectional views showing respective steps of a conventional pattern forming method using a block copolymer.
  • a solution obtained by dissolving hydrophilic hydrogenated silsesquioxane in methyl isobutyl ketone is spin-coated on a substrate 101, and subsequently the temperature is set to 110 by a hot plate.
  • a hydrogenated silsesquioxane film having a thickness of 40 nm is formed by baking at 60 ° C. for 60 seconds. Thereafter, the formed hydrogenated silsesquioxane film is selectively irradiated with an electron beam exposure having a voltage of 100 kV, and subsequently developed with an aqueous tetramethylammonium hydroxide solution having a concentration of 2.3 wt%.
  • a guide pattern 102 having an opening 102a having a width of 30 nm is formed from the hydrogenated silsesquioxane film.
  • a block copolymer film 103 having the following composition and a thickness of 30 nm is formed in the opening 102a of the guide pattern 102.
  • the block copolymer film 103 is annealed in an oven for about 3 hours at a temperature of 180 ° C. in an atmosphere of neon (Ne) as an inert gas.
  • Ne neon
  • a first pattern 103a and a second pattern 103b having a lamellar structure with a line width of 16 nm and self-organized perpendicularly to the substrate 101 are obtained.
  • the guide pattern 102 is made of hydrogenated silsesquioxane having hydrophilicity
  • the first pattern 103a in contact with the side surface of the guide pattern 102 is mainly composed of polymethylmethacrylate having hydrophilicity
  • the second pattern 103b inside the pattern 103a is mainly composed of polystyrene having hydrophobicity.
  • the first pattern 103a is formed with oxygen-based gas.
  • the second pattern 103b made of polystyrene can be formed by annealing for about 3 hours. Therefore, pattern formation using a block copolymer can be applied to a semiconductor device manufacturing process.
  • neon (Ne) is used as the inert gas, but instead of neon, helium (He), argon (Ar), krypton (Kr), xenon (Xe), or any of these Two or more gas mixtures can be used.
  • a solution in which hydrogenated silsesquioxane having hydrophilicity is dissolved in methyl isobutyl ketone is spin-coated on a substrate 201, and subsequently, the temperature is set to 110 by a hot plate.
  • a hydrogenated silsesquioxane film having a thickness of 40 nm is formed by baking at 60 ° C. for 60 seconds. Thereafter, the formed hydrogenated silsesquioxane film is selectively irradiated with an electron beam exposure having a voltage of 100 kV, and subsequently developed with an aqueous tetramethylammonium hydroxide solution having a concentration of 2.3 wt%.
  • a guide pattern 202 having an opening 202a having a width of 30 nm is formed from the hydrogenated silsesquioxane film.
  • a block copolymer film 203 having the following composition and a thickness of 30 nm is formed in the opening 202a of the guide pattern 202.
  • water vapor is introduced around the block copolymer film 203, the humidity is about 40% relative to the block copolymer film 203, the temperature is set to 190 ° C., and about 2%. Annealing with oven for hours. As a result, as shown in FIG.
  • a first pattern 203a and a second pattern 203b having a lamellar structure with a line width of 16 nm and self-organized perpendicularly to the substrate 201 are obtained.
  • the guide pattern 202 is made of hydrogenated silsesquioxane having hydrophilicity
  • the first pattern 203a in contact with the side surface of the guide pattern 202 is mainly composed of polymethylmethacrylate having hydrophilicity
  • the second pattern 203b inside the pattern 203a is mainly composed of polystyrene having hydrophobicity.
  • the first pattern 203a and the second pattern 203b are etched with an oxygen-based gas, as shown in FIG. 4, the first pattern 203a having a large etching rate is etched, and polystyrene is used.
  • the second pattern 203b can be formed by annealing for about 2 hours. Therefore, pattern formation using a block copolymer can be applied to a semiconductor device manufacturing process.
  • the humidity at the time of annealing is set to about 40%, but the humidity may be 30% or more.
  • FIGS. 5 (a) to 5 (d), FIG. 6 (a) and FIG. 6 (b). a pattern forming method using the block copolymer according to the third embodiment of the present invention will be described with reference to FIGS. 5 (a) to 5 (d), FIG. 6 (a) and FIG. 6 (b). .
  • a solution obtained by dissolving hydrophilic hydrogenated silsesquioxane in methyl isobutyl ketone is spin-coated on a substrate 301, and subsequently the temperature is set to 110 by a hot plate.
  • a hydrogenated silsesquioxane film having a thickness of 40 nm is formed by baking at 60 ° C. for 60 seconds. Thereafter, the formed hydrogenated silsesquioxane film is selectively irradiated with an electron beam exposure having a voltage of 100 kV, and subsequently developed with an aqueous tetramethylammonium hydroxide solution having a concentration of 2.3 wt%.
  • a guide pattern 302 having an opening 302a having a width of 30 nm is formed from the hydrogenated silsesquioxane film.
  • a block copolymer film 303 having the following composition and a thickness of 30 nm is formed in the opening 302a of the guide pattern 302.
  • a water-soluble polymer film 304 made of polyvinyl alcohol having a thickness of 20 nm is formed on the block copolymer film 303.
  • the water-soluble polymer film 304 and the block copolymer film 303 are annealed in an oven at a temperature of 180 ° C. for about 3 hours.
  • the water-soluble polymer film 304 is removed with water or the like, or ashed with an oxygen-based gas, and self-organized perpendicularly to the substrate 301 as shown in FIG.
  • a first pattern 303a and a second pattern 303b having a structure are obtained.
  • the guide pattern 302 is made of hydrogenated silsesquioxane having hydrophilicity
  • the first pattern 303a in contact with the side surface of the guide pattern 302 is mainly composed of polymethylmethacrylate having hydrophilicity
  • the second pattern 303b inside the pattern 303a has hydrophobic polystyrene as a main component.
  • the first pattern 303a and the second pattern 303b are etched with an oxygen-based gas, as shown in FIG. 6B, the first pattern 303a having a high etching rate is etched.
  • the second pattern 303b made of polystyrene can be formed by annealing for about 3 hours. Therefore, pattern formation using a block copolymer can be applied to a semiconductor device manufacturing process.
  • polyvinyl alcohol is used for the water-soluble polymer film 304, but polyvinyl pyrrolidone, polyacrylic acid, or polystyrene sulfonic acid can be used instead.
  • the water-soluble polymer film 304 is also formed on the guide pattern 302.
  • the guide pattern 302 It may be formed only on the block copolymer film 303 without covering the top of 302.
  • methacrylate is used as the hydrophilic unit constituting the block copolymer film and styrene is used as the hydrophobic unit.
  • the present invention is not limited to this.
  • butadiene, vinyl acetate, acrylate, acrylamide, acrylonitrile, acrylic acid, vinyl alcohol, ethylene glycol or propylene glycol can be used for the hydrophilic unit instead of methacrylate, and styrene is used for the hydrophobic unit.
  • xylene or ethylene can be used.
  • the monomer constituting the monomer unit does not have to be a single monomer, and a polymer chain obtained by mixing a plurality of monomers may be used as the monomer unit.
  • silsesquioxane hydride is used as a material constituting the guide pattern, tetraalkoxysilane or the like can be used instead.
  • a lamellar structure in a direction perpendicular to the substrate is formed by a hydrophilic guide pattern. Therefore, the inert gas atmosphere at the time of annealing in the first embodiment, the humidified atmosphere at the time of annealing in the second embodiment, and the use of the water-soluble polymer film in the third embodiment has a lamella structure perpendicular to the substrate. It is limited to the extent to promote and does not impair the lamellar structure.
  • the block copolymer self-assembly promotion method and the block copolymer self-assembly pattern formation method using the block copolymer self-assembly pattern formation method according to the present invention can improve the throughput in pattern formation by block copolymer self-assembly, and manufacture a semiconductor device. This is useful for forming a fine pattern in a process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

 基板(101)の上に、ブロックコポリマー膜(102)を形成する。続いて、ブロックコポリマー膜(102)を不活性ガス雰囲気、例えばネオン雰囲気でアニーリングする。これにより、ブロックコポリマー膜(102)の外部(主に上方)が極性のない状態となるため、例えば疎水性を持つモノマーユニットがブロックコポリマー膜(102)の外部に強く引き寄せられるので、自己組織化が促進される。その結果、ブロックコポリマー膜(102)の自己組織化によるパターン形成のスループットが向上する。

Description

ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
 本発明は、半導体装置の製造プロセス等のパターン形成に用いられるブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法に関する。
 半導体集積回路の大集積化及び半導体素子のダウンサイジングに伴って、リソグラフィ技術の開発の加速が望まれている。現在のところ、露光光としては、水銀ランプ、KrFエキシマレーザ又はArFエキシマレーザ等を用いる光リソグラフィによりパターン形成が行われている。
 最近、従来の露光波長を用いてパターンのより一層の微細化を進めるべく、液浸リソグラフィ(immersion lithography)が提案されている。また、より短波長化した露光光として極紫外線を用いることも検討されている。
 さらに微細化したパターン形成方法を目指す候補として、パターンをボトムダウンで形成するのではなく、ボトムアップで形成する方法が提案されている(例えば、特許文献1を参照。)。具体的には、一の性質を有するポリマー鎖をモノマーユニットして、それと性質が異なる他のポリマー鎖(モノマーユニット)とが共重合してなるブロックコポリマーを用いた自己組織化による超微細パターンの形成方法である。この方法によると、ブロックコポリマー膜をアニーリングすることにより、性質が異なるモノマーユニットは反発して、同じ性質を持つモノマーユニット同士が集まろうとするために自己整合的にパターン化する(方向性自己集合)。
 以下、ブロックコポリマーを用いた従来のパターン形成方法について図面を参照しながら説明する。
 まず、図7(a)に示すように、基板1の上に以下の組成を有し、膜厚が0.07μmのブロックコポリマー膜2を形成する。
 ポリ(スチレン(50mol%)-メチルメタクリレート(50mol%))(ブロックコポリマー)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2g
 プロピレングリコールモノメチルエーテルアセテート(溶媒)・・・・・・・・10g
 次に、図7(b)に示すように、形成されたブロックコポリマー膜2に対して、温度が180℃で24時間のオーブンによるアニーリングを行って、図7(c)に示すライン幅が16nmの自己組織化したラメラ構造(層構造)を有する第1のパターン2a及び第2のパターン2bを得る。なお、図7において、ブロックコポリマー膜2はガイドパターンの内側に形成されるが、ここではガイドパターンを省略している。
特開2008-149447号公報
 しかしながら、前記従来のブロックコポリマーを用いたパターン形成方法は、ブロックコポリマー膜に対する自己組織化のためのアニーリングが24時間程度と長大な時間を要するため、これが半導体製造プロセスにおける量産技術への障壁となり、工業的に適用が難しいという問題がある。
 本発明は、前記従来の問題に鑑み、ブロックコポリマーの自己組織化によるパターン形成のスループットを向上できるようにすることを目的とする。
 本願発明者らは、ブロックコポリマーの自己組織化について、種々の検討を重ねた結果、ブロックコポリマーを構成するモノマーユニットのいずれか、例えば親水性又は疎水性のモノマーユニットをアニーリング中に、以下の方法により自己集合しやすくなるという知見を得ている。
 まず、ブロックコポリマー膜のアニーリングを不活性ガス雰囲気で行うと、該ブロックコポリマー膜の外部(主に上方)が極性のない状態となるため、例えば疎水性を持つモノマーユニット(疎水性ユニット)が膜の外部に強く引き寄せられるので、自己組織化が促進される。
 また、ブロックコポリマー膜のアニーリングを加湿下で行うと、該ブロックコポリマー膜の外部(主に上方)が親水性の状態となるため、例えば親水性を持つモノマーユニット(親水性ユニット)が膜の外部に強く引き寄せられるので、自己組織化が促進される。ここで、加湿の与え方には、オーブン中に水蒸気を導入する方法が挙げられる。
 また、ブロックコポリマー膜の上に水溶性ポリマー膜を形成すると、該ブロックコポリマー膜の上面に水溶性ポリマーが形成されるため、例えば親水性を持つモノマーユニットが膜の外部(上方)に強く引き寄せられるので、自己組織化が促進される。なお、水溶性ポリマー膜をレジスト膜の上に形成して露光する露光方法は従来より知られているが、本発明は、露光することなくパターンを形成できる点で従来の方法とは異なる。また、水溶性ポリマー膜はアニーリングの後に水等により除去されるが、アニーリングにより硬化した場合は、酸素系プラズマのアッシングにより除去できる。
 本発明に係るブロックコポリマー膜に対するアニーリングは、例えばオーブン中で150℃程度以上の温度で行うことが挙げられる。アニーリング時間は、本発明によれば大幅な時間短縮が可能となり、例えば2時間から6時間程度となる。但し、本発明はこの範囲に限られない。
 本発明は、前記の知見に基づいてなされ、ブロックコポリマー膜をアニーリングする際に、アニーリングされるブロックコポリマー膜の主に上面と接触する雰囲気を親水性若しくは疎水性とするか、又は該上面と接触する他の膜に親水性若しくは疎水性を持たせるものであって、具体的には以下の方法によって実現される。
 本発明に係る第1のブロックコポリマーの自己組織化促進方法は、基板の上に、ブロックコポリマーからなる第1の膜を形成する工程と、第1の膜を不活性ガス雰囲気でアニーリングする工程とを備えていることを特徴とする。
 第1のブロックコポリマーの自己組織化促進方法によると、ブロックコポリマーからなる第1の膜を不活性ガス雰囲気でアニーリングするため、該第1の膜の外部(主に上方)が極性のない状態となる。これにより、例えば疎水性を持つモノマーユニットが第1の膜の外部に強く引き寄せられるので、自己組織化が促進される。従って、ブロックコポリマーの自己組織化によるパターン形成のスループットが向上する。
 第1のブロックコポリマーの自己組織化促進方法において、不活性ガスには、ヘリウム、ネオン、アルゴン、クリプトン又はキセノンを用いることができる。
 本発明に係る第2のブロックコポリマーの自己組織化促進方法は、基板の上に、ブロックコポリマーからなる第1の膜を形成する工程と、第1の膜を加湿下でアニーリングする工程とを備えていることを特徴とする。
 第2のブロックコポリマーの自己組織化促進方法によると、ブロックコポリマーからなる第1の膜を加湿下でアニーリングするため、該第1の膜の外部(主に上方)が親水性の状態となる。これにより、例えば親水性を持つモノマーユニットが第1の膜の外部に強く引き寄せられるので、自己組織化が促進される。従って、ブロックコポリマーの自己組織化によるパターン形成のスループットが向上する。
 第2のブロックコポリマーの自己組織化促進方法において、加湿下のアニーリングは、湿度が30%以上の加湿雰囲気で行うことが好ましい。
 本発明に係る第3のブロックコポリマーの自己組織化促進方法は、基板の上に、ブロックコポリマーからなる第1の膜を形成する工程と、第1の膜の上に水溶性ポリマーからなる第2の膜を形成する工程と、第1の膜と第2の膜とをアニーリングする工程とを備えていることを特徴とする。
 第3のブロックコポリマーの自己組織化促進方法によると、ブロックコポリマーからなる第1の膜の上に水溶性ポリマーからなる第2の膜を形成するため、該第1の膜の上面には水溶性ポリマーが形成される。このため、例えば親水性を持つモノマーユニットが第1の膜の上方に強く引き寄せられるので、自己組織化が促進される。従って、ブロックコポリマーの自己組織化によるパターン形成のスループットが向上する。
 第3のブロックコポリマーの自己組織化促進方法において、水溶性ポリマーには、ポリビニールアルコール、ポリビニールピロリドン、ポリアクリル酸又はポリスチレンスルフォン酸を用いることができる。なお、水溶性ポリマーからなる第2の膜の膜厚は50nm程度以下が好ましい。
 第1~第3のブロックコポリマーの自己組織化促進方法において、ブロックコポリマーは、親水性ユニットと疎水性ユニットから構成されていることが好ましい。
 この場合に、親水性ユニットには、メタクリレート、ブタジエン、ビニールアセテート、アクリレート、アクリルアミド、アクリロニトリル、アクリル酸、ビニールアルコール、エチレングリコール又はプロピレングリコールを用いることができる。
 また、この場合に、疎水性ユニットには、スチレン、キシリエン又はエチレンを用いることができる。
 なお、2種類のモノマーユニットを含むブロックコポリマーの共重合比を50対50程度とすると、自己組織化パターンはラメラ構造となる。この比率からいずれか一方のモノマーユニットの比率が下がるにつれて、シリンダー構造、さらにはドット構造となる。
 本発明に係る第1のブロックコポリマーの自己組織化パターン形成方法は、基板の上に、親水性又は疎水性を有し且つ開口部を有するガイドパターンを形成する工程と、基板の上におけるガイドパターンの開口部に、ブロックコポリマーからなる第1の膜を形成する工程と、第1の膜を不活性ガス雰囲気でアニーリングすることにより、第1の膜を自己組織化する工程と、自己組織化された第1の膜から自己組織化パターンを形成する工程とを備えていることを特徴とする。
 第1のブロックコポリマーの自己組織化パターン形成方法によると、親水性又は疎水性を有し且つ開口部を有するガイドパターンの開口部に、ブロックコポリマーからなる第1の膜を形成し、その後、第1の膜を不活性ガス雰囲気でアニーリングするため、上述したように、第1の膜の自己組織化が促進される。このため、ブロックコポリマーからなる自己組織化パターンのスループットを向上することができる。
 第1のブロックコポリマーの自己組織化パターン形成方法において、不活性ガスには、ヘリウム、ネオン、アルゴン、クリプトン又はキセノンを用いることができる。
 本発明に係る第2のブロックコポリマーの自己組織化パターン形成方法は、基板の上に、親水性又は疎水性を有し且つ開口部を有するガイドパターンを形成する工程と、基板の上におけるガイドパターンの開口部に、ブロックコポリマーからなる第1の膜を形成する工程と、第1の膜を加湿下でアニーリングすることにより、第1の膜を自己組織化する工程と、自己組織化された第1の膜から自己組織化パターンを形成する工程とを備えていることを特徴とする。
 第2のブロックコポリマーの自己組織化パターン形成方法によると、親水性又は疎水性を有し且つ開口部を有するガイドパターンの開口部に、ブロックコポリマーからなる第1の膜を形成し、その後、第1の膜を加湿下でアニーリングするため、上述したように、第1の膜の自己組織化が促進される。このため、ブロックコポリマーからなる自己組織化パターンのスループットを向上することができる。
 第2のブロックコポリマーの自己組織化パターン形成方法において、加湿下のアニーリングは、湿度が30%以上の加湿雰囲気で行うことが好ましい。
 本発明に係る第3のブロックコポリマーの自己組織化パターン形成方法は、基板の上に、親水性又は疎水性を有し且つ開口部を有するガイドパターンを形成する工程と、基板の上におけるガイドパターンの開口部に、ブロックコポリマーからなる第1の膜を形成する工程と、第1の膜の上に、水溶性ポリマーからなる第2の膜を形成する工程と、第1の膜と第2の膜とをアニーリングすることにより、第1の膜を自己組織化する工程と、第2の膜を除去した後、自己組織化された第1の膜から自己組織化パターンを形成する工程とを備えていることを特徴とする。
 第3のブロックコポリマーの自己組織化パターン形成方法によると、親水性又は疎水性を有し且つ開口部を有するガイドパターンの開口部に、ブロックコポリマーからなる第1の膜を形成し、続いて、第1の膜の上に水溶性ポリマーからなる第2の膜を形成した状態でアニーリングするため、水溶性ポリマーからなる第2の膜により、上述したように第1の膜の自己組織化が促進される。このため、ブロックコポリマーからなる自己組織化パターンのスループットを向上することができる。
 第3のブロックコポリマーの自己組織化パターン形成方法において、水溶性ポリマーには、ポリビニールアルコール、ポリビニールピロリドン、ポリアクリル酸又はポリスチレンスルフォン酸を用いることができる。
 第1~第3のブロックコポリマーの自己組織化パターン形成方法において、ブロックコポリマーは、親水性ユニットと疎水性ユニットから構成されていることが好ましい。
 この場合に、親水性ユニットには、メタクリレート、ブタジエン、ビニールアセテート、アクリレート、アクリルアミド、アクリロニトリル、アクリル酸、ビニールアルコール、エチレングリコール又はプロピレングリコールを用いることができる。
 また、この場合に、疎水性ユニットには、スチレン、キシリエン又はエチレンを用いることができる。
 また、この場合に、自己組織化パターンを形成する工程において、自己組織化パターンは、親水性ユニットを含む第1のパターン又は疎水性ユニットを含む第2のパターンをエッチングすることにより形成することができる。
 本発明に係るブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法によると、ブロックコポリマーの自己組織化によるパターン形成におけるスループットを向上することができる。
図1(a)~図1(d)は本発明の第1の実施形態に係るパターン形成方法の各工程を示す断面図である。 図2は本発明の第1の実施形態に係るパターン形成方法の一工程を示す断面図である。 図3(a)~図3(d)は本発明の第2の実施形態に係るパターン形成方法の各工程を示す断面図である。 図4は本発明の第2の実施形態に係るパターン形成方法の一工程を示す断面図である。 図5(a)~図5(d)は本発明の第3の実施形態に係るパターン形成方法の各工程を示す断面図である。 図6(a)及び図6(b)は本発明の第3の実施形態に係るパターン形成方法の各工程を示す断面図である。 図7(a)~図7(c)は従来のブロックコポリマーを用いたパターン形成方法の各工程を示す断面図である。
 (第1の実施形態)
 本発明の第1の実施形態に係るブロックコポリマーを用いたパターン形成方法について図1(a)~図1(d)及び図2を参照しながら説明する。
 まず、図1(a)に示すように、基板101の上に、親水性を有する水素化シルセスキオキサンをメチルイソブチルケトンに溶かした溶液をスピンコートし、続いて、ホットプレートにより温度が110℃で60秒間のベークを行って、厚さが40nmの水素化シルセスキオキサン膜を成膜する。その後、成膜された水素化シルセスキオキサン膜に対して、電圧が100kVの電子線露光を選択的に照射し、続いて、濃度が2.3wt%のテトラメチルアンモニウムハイドロオキサイド水溶液で現像することにより、水素化シルセスキオキサン膜から幅が30nmの開口部102aを有するガイドパターン102を形成する。
 次に、図1(b)に示すように、ガイドパターン102の開口部102aに以下の組成を有し、厚さが30nmのブロックコポリマー膜103を形成する
 ポリ(スチレン(60mol%)-メチルメタクリレート(40mol%))(ブロックコポリマー)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2g
 プロピレングリコールモノメチルエーテルアセテート(溶媒)・・・・・・・・10g
 次に、図1(c)に示すように、ブロックコポリマー膜103に対して、不活性ガスであるネオン(Ne)雰囲気下で、温度を180℃とし約3時間のオーブンによるアニーリングを行う。これにより、図1(d)に示すように、基板101に垂直に自己組織化した、ライン幅が16nmのラメラ構造を持つ第1のパターン103a及び第2のパターン103bが得られる。ここで、ガイドパターン102は、親水性を有する水素化シルセスキオキサンからなるため、ガイドパターン102の側面と接する第1のパターン103aは親水性を有するポリメチルメタクリレートを主成分とし、第1のパターン103aの内側の第2のパターン103bは疎水性を有するポリスチレンを主成分とする。
 次に、酸素系ガスに対して、ポリスチレンとポリメチルメタクリレートとではエッチングレートに大きな差があるため、すなわち、ポリメチルメタクリレートのエッチングレートがポリスチレンよりも大きいため、酸素系ガスで第1のパターン103aをエッチングすると、図2に示すように、ポリスチレンからなる第2のパターン103bを3時間程度のアニーリングによって形成することができる。従って、ブロックコポリマーを用いたパターン形成を半導体装置の製造プロセスに適用できるようになる。
 なお、本実施形態においては、不活性ガスにネオン(Ne)を用いたが、ネオンに代えて、ヘリウム(He)、アルゴン(Ar)、クリプトン(Kr)若しくはキセノン(Xe)又はこれらのうちの2つ以上の混合ガスを用いることができる。
 (第2の実施形態)
 以下、本発明の第2の実施形態に係るブロックコポリマーを用いたパターン形成方法について図3(a)~図3(d)及び図4を参照しながら説明する。
 まず、図3(a)に示すように、基板201の上に、親水性を有する水素化シルセスキオキサンをメチルイソブチルケトンに溶かした溶液をスピンコートし、続いて、ホットプレートにより温度が110℃で60秒間のベークを行って、厚さが40nmの水素化シルセスキオキサン膜を成膜する。その後、成膜された水素化シルセスキオキサン膜に対して、電圧が100kVの電子線露光を選択的に照射し、続いて、濃度が2.3wt%のテトラメチルアンモニウムハイドロオキサイド水溶液で現像することにより、水素化シルセスキオキサン膜から幅が30nmの開口部202aを有するガイドパターン202を形成する。
 次に、図3(b)に示すように、ガイドパターン202の開口部202aに以下の組成を有し、厚さが30nmのブロックコポリマー膜203を形成する
 ポリ(スチレン(40mol%)-メチルメタクリレート(60mol%))(ブロックコポリマー)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2g
 プロピレングリコールモノメチルエーテルアセテート(溶媒)・・・・・・・・10g
 次に、図3(c)に示すように、ブロックコポリマー膜203の周囲に水蒸気を導入し、ブロックコポリマー膜203に対して、湿度が約40%の加湿下で、温度を190℃とし約2時間のオーブンによるアニーリングを行う。これにより、図3(d)に示すように、基板201に垂直に自己組織化した、ライン幅が16nmのラメラ構造を持つ第1のパターン203a及び第2のパターン203bが得られる。ここで、ガイドパターン202は、親水性を有する水素化シルセスキオキサンからなるため、ガイドパターン202の側面と接する第1のパターン203aは親水性を有するポリメチルメタクリレートを主成分とし、第1のパターン203aの内側の第2のパターン203bは疎水性を有するポリスチレンを主成分とする。
 次に、第1のパターン203a及び第2のパターン203bに対して、酸素系ガスでエッチングを行うと、図4に示すように、エッチングレートが大きい第1のパターン203aがエッチングされて、ポリスチレンからなる第2のパターン203bを2時間程度のアニーリングによって形成することができる。従って、ブロックコポリマーを用いたパターン形成を半導体装置の製造プロセスに適用できるようになる。
 なお、本実施形態においては、アニーリング時の湿度を40%程度に設定しているが、30%以上の湿度であればよい。
 (第3の実施形態)
 以下、本発明の第3の実施形態に係るブロックコポリマーを用いたパターン形成方法について図5(a)~図5(d)、図6(a)及び図6(b)を参照しながら説明する。
 まず、図5(a)に示すように、基板301の上に、親水性を有する水素化シルセスキオキサンをメチルイソブチルケトンに溶かした溶液をスピンコートし、続いて、ホットプレートにより温度が110℃で60秒間のベークを行って、厚さが40nmの水素化シルセスキオキサン膜を成膜する。その後、成膜された水素化シルセスキオキサン膜に対して、電圧が100kVの電子線露光を選択的に照射し、続いて、濃度が2.3wt%のテトラメチルアンモニウムハイドロオキサイド水溶液で現像することにより、水素化シルセスキオキサン膜から幅が30nmの開口部302aを有するガイドパターン302を形成する。
 次に、図5(b)に示すように、ガイドパターン302の開口部302aに以下の組成を有し、厚さが30nmのブロックコポリマー膜303を形成する
 ポリ(スチレン(50mol%)-メチルメタクリレート(50mol%))(ブロックコポリマー)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2g
 プロピレングリコールモノメチルエーテルアセテート(溶媒)・・・・・・・・10g
 次に、図5(c)に示すように、ブロックコポリマー膜303の上に、厚さが20nmのポリビニールアルコールからなる水溶性ポリマー膜304を形成する。
 次に、図5(d)に示すように、水溶性ポリマー膜304とブロックコポリマー膜303とに対して、温度が180℃で約3時間のオーブンによるアニーリングを行う。
 次に、水溶性ポリマー膜304を水等により除去するか、酸素系ガスによりアッシングして、図6(a)に示すように、基板301に垂直に自己組織化した、ライン幅が16nmのラメラ構造を持つ第1のパターン303a及び第2のパターン303bを得る。ここで、ガイドパターン302は、親水性を有する水素化シルセスキオキサンからなるため、ガイドパターン302の側面と接する第1のパターン303aは親水性を有するポリメチルメタクリレートを主成分とし、第1のパターン303aの内側の第2のパターン303bは疎水性を有するポリスチレンを主成分とする。
 次に、第1のパターン303a及び第2のパターン303bに対して、酸素系ガスでエッチングを行うと、図6(b)に示すように、エッチングレートが大きい第1のパターン303aがエッチングされて、ポリスチレンからなる第2のパターン303bを3時間程度のアニーリングによって形成することができる。従って、ブロックコポリマーを用いたパターン形成を半導体装置の製造プロセスに適用できるようになる。
 なお、本実施形態においては、水溶性ポリマー膜304に、ポリビニールアルコールを用いたが、これに代えて、ポリビニールピロリドン、ポリアクリル酸又はポリスチレンスルフォン酸を用いることができる。
 また、本実施形態において、水溶性ポリマー膜304は、ガイドパターン302の上にも形成されているが、ガイドパターン302、ブロックコポリマー膜303及び水溶性ポリマー膜304の各膜厚によっては、ガイドパターン302の上を覆うことなく、ブロックコポリマー膜303の上にのみ形成してもよい。
 また、第1~第3の各実施形態において、ブロックコポリマー膜を構成する親水性ユニットにメタクリレートを用い、疎水性ユニットにスチレンを用いたが、これに限られない。例えば、親水性ユニットには、メタクリレートに代えて、ブタジエン、ビニールアセテート、アクリレート、アクリルアミド、アクリロニトリル、アクリル酸、ビニールアルコール、エチレングリコール又はプロピレングリコールを用いることができ、また、疎水性ユニットには、スチレンに代えて、キシリエン又はエチレンを用いることができる。さらに、モノマーユニットの性質を維持できれば、モノマーユニットを構成するモノマーは単一である必要はなく、複数のモノマーを混合したポリマー鎖をモノマーユニットとしてもよい。
 また、ガイドパターンを構成する材料として、水素化シルセスキオキサンを用いたが、これに代えて、テトラアルコキシシラン等を用いることができる。
 なお、第1~第3の実施形態においては、親水性のガイドパターンにより、基板に垂直な方向のラメラ構造を形成する。従って、第1の実施形態におけるアニーリング時の不活性ガス雰囲気、第2の実施形態におけるアニーリング時の加湿雰囲気、及び第3の実施形態における水溶性ポリマー膜の使用は、基板に垂直なラメラ構造を促進する程度に限られ、該ラメラ構造を損なわない程度とする。
 本発明に係るブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法は、ブロックコポリマーの自己組織化によるパターン形成におけるスループットを向上することができ、半導体装置の製造プロセスにおける微細パターンの形成等に有用である。
101  基板
102  ガイドパターン
102a 開口部
103  ブロックコポリマー膜
103a 第1のパターン
103b 第2のパターン
201  基板
202  ガイドパターン
202a 開口部
203  ブロックコポリマー膜
203a 第1のパターン
203b 第2のパターン
301  基板
302  ガイドパターン
302a 開口部
303  ブロックコポリマー膜
303a 第1のパターン
303b 第2のパターン
304  水溶性ポリマー膜

Claims (19)

  1.  基板の上に、ブロックコポリマーからなる第1の膜を形成する工程と、
     前記第1の膜を不活性ガス雰囲気でアニーリングする工程とを備えているブロックコポリマーの自己組織化促進方法。
  2.  請求項1において、
     前記不活性ガスは、ヘリウム、ネオン、アルゴン、クリプトン又はキセノンであるブロックコポリマーの自己組織化促進方法。
  3.  基板の上に、ブロックコポリマーからなる第1の膜を形成する工程と、
     前記第1の膜を加湿下でアニーリングする工程とを備えているブロックコポリマーの自己組織化促進方法。
  4.  請求項3において、
     前記加湿下のアニーリングは、湿度が30%以上の加湿雰囲気で行うブロックコポリマーの自己組織化促進方法。
  5.  基板の上に、ブロックコポリマーからなる第1の膜を形成する工程と、
     前記第1の膜の上に、水溶性ポリマーからなる第2の膜を形成する工程と、
     前記第1の膜と前記第2の膜とをアニーリングする工程とを備えているブロックコポリマーの自己組織化促進方法。
  6.  請求項5において、
     前記水溶性ポリマーは、ポリビニールアルコール、ポリビニールピロリドン、ポリアクリル酸又はポリスチレンスルフォン酸であるブロックコポリマーの自己組織化促進方法。
  7.  請求項1~6のいずれか1項において、
     前記ブロックコポリマーは、親水性ユニットと疎水性ユニットから構成されているブロックコポリマーの自己組織化促進方法。
  8.  請求項7において、
     前記親水性ユニットは、メタクリレート、ブタジエン、ビニールアセテート、アクリレート、アクリルアミド、アクリロニトリル、アクリル酸、ビニールアルコール、エチレングリコール又はプロピレングリコールであるブロックコポリマーの自己組織化促進方法。
  9.  請求項7又は8において、
     前記疎水性ユニットは、スチレン、キシリエン又はエチレンであるブロックコポリマーの自己組織化促進方法。
  10.  基板の上に、親水性又は疎水性を有し且つ開口部を有するガイドパターンを形成する工程と、
     前記基板の上における前記ガイドパターンの前記開口部に、ブロックコポリマーからなる第1の膜を形成する工程と、
     前記第1の膜を不活性ガス雰囲気でアニーリングすることにより、前記第1の膜を自己組織化する工程と、
     自己組織化された前記第1の膜から自己組織化パターンを形成する工程とを備えているブロックコポリマーの自己組織化パターン形成方法。
  11.  請求項10において、
     前記不活性ガスは、ヘリウム、ネオン、アルゴン、クリプトン又はキセノンであるブロックコポリマーの自己組織化パターン形成方法。
  12.  基板の上に、親水性又は疎水性を有し且つ開口部を有するガイドパターンを形成する工程と、
     前記基板の上における前記ガイドパターンの前記開口部に、ブロックコポリマーからなる第1の膜を形成する工程と、
     前記第1の膜を加湿下でアニーリングすることにより、前記第1の膜を自己組織化する工程と、
     自己組織化された前記第1の膜から自己組織化パターンを形成する工程とを備えているブロックコポリマーの自己組織化パターン形成方法。
  13.  請求項12において、
     前記加湿下のアニーリングは、湿度が30%以上の加湿雰囲気で行うブロックコポリマーの自己組織化パターン形成方法。
  14.  基板の上に、親水性又は疎水性を有し且つ開口部を有するガイドパターンを形成する工程と、
     前記基板の上における前記ガイドパターンの前記開口部に、ブロックコポリマーからなる第1の膜を形成する工程と、
     前記第1の膜の上に、水溶性ポリマーからなる第2の膜を形成する工程と、
     前記第1の膜と前記第2の膜とをアニーリングすることにより、前記第1の膜を自己組織化する工程と、
     前記第2の膜を除去した後、自己組織化された前記第1の膜から自己組織化パターンを形成する工程とを備えているブロックコポリマーの自己組織化パターン形成方法。
  15.  請求項14において、
     前記水溶性ポリマーは、ポリビニールアルコール、ポリビニールピロリドン、ポリアクリル酸又はポリスチレンスルフォン酸であるブロックコポリマーの自己組織化パターン形成方法。
  16.  請求項10~15のいずれか1項において、
     前記ブロックコポリマーは、親水性ユニットと疎水性ユニットから構成されているブロックコポリマーの自己組織化パターン形成方法。
  17.  請求項16において、
     前記親水性ユニットは、メタクリレート、ブタジエン、ビニールアセテート、アクリレート、アクリルアミド、アクリロニトリル、アクリル酸、ビニールアルコール、エチレングリコール又はプロピレングリコールであるブロックコポリマーの自己組織化パターン形成方法。
  18.  請求項16又は17において、
     前記疎水性ユニットは、スチレン、キシリエン又はエチレンであるブロックコポリマーの自己組織化パターン形成方法。
  19.  請求項16~18のいずれか1項において、
     前記自己組織化パターンを形成する工程において、前記自己組織化パターンは、前記親水性ユニットを含む第1のパターン又は前記疎水性ユニットを含む第2のパターンをエッチングすることにより形成するブロックコポリマーの自己組織化パターン形成方法。
PCT/JP2009/004217 2008-11-12 2009-08-28 ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法 WO2010055601A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/085,954 US20110186544A1 (en) 2008-11-12 2011-04-13 Method of accelerating self-assembly of block copolymer and method of forming self-assembled pattern of block copolymer using the accelerating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289806 2008-11-12
JP2008289806A JP2010115832A (ja) 2008-11-12 2008-11-12 ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/085,954 Continuation US20110186544A1 (en) 2008-11-12 2011-04-13 Method of accelerating self-assembly of block copolymer and method of forming self-assembled pattern of block copolymer using the accelerating method

Publications (1)

Publication Number Publication Date
WO2010055601A1 true WO2010055601A1 (ja) 2010-05-20

Family

ID=42169748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004217 WO2010055601A1 (ja) 2008-11-12 2009-08-28 ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法

Country Status (3)

Country Link
US (1) US20110186544A1 (ja)
JP (1) JP2010115832A (ja)
WO (1) WO2010055601A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014700A1 (ja) * 2010-07-28 2012-02-02 株式会社 東芝 パターン形成方法及びポリマーアロイ下地材料
JP2013227479A (ja) * 2011-09-15 2013-11-07 Wisconsin Alumni Research Foundation 化学的にパターン化された表面と第2の表面との間でのブロック共重合体薄膜の誘導集合
JP2015517021A (ja) * 2012-02-10 2015-06-18 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム ブロックコポリマー薄膜においてドメインの配向性を制御するための化学蒸着された膜の使用
JP2016513594A (ja) * 2013-03-15 2016-05-16 エーエスエムエル ネザーランズ ビー.ブイ. ブロック共重合体の自己組織化によって基板上にリソグラフィフィーチャを提供する方法
US10438626B2 (en) 2007-12-07 2019-10-08 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259661B2 (ja) 2010-09-07 2013-08-07 株式会社東芝 パターン形成方法
JP5112500B2 (ja) * 2010-11-18 2013-01-09 株式会社東芝 パターン形成方法
KR20120126725A (ko) 2011-05-12 2012-11-21 에스케이하이닉스 주식회사 반도체 소자의 형성 방법
JP5694109B2 (ja) * 2011-09-26 2015-04-01 株式会社東芝 パターン形成方法
JP2013075984A (ja) * 2011-09-30 2013-04-25 Toshiba Corp 微細構造体の製造方法
US9314819B2 (en) 2012-02-10 2016-04-19 Board Of Regents, The University Of Texas System Anhydride copolymer top coats for orientation control of thin film block copolymers
KR102018932B1 (ko) 2012-02-10 2019-09-05 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 박막 블록 공중합체의 배향 조절을 위한 무수물 공중합체 톱 코트
JP6089298B2 (ja) * 2012-04-10 2017-03-08 裕司 清野 パターン形成方法、スチレン系ポリマー薄膜付き基材、表面撥水性材料、パスワード生成装置、培養器、パターン形成剤、及び反転パターン形成方法。
KR101529646B1 (ko) * 2012-09-10 2015-06-17 주식회사 엘지화학 실리콘 옥사이드의 나노 패턴 형성 방법, 금속 나노 패턴의 형성 방법 및 이를 이용한 정보저장용 자기 기록 매체
JP5752655B2 (ja) * 2012-09-10 2015-07-22 株式会社東芝 パターン形成方法
JP5537628B2 (ja) * 2012-10-09 2014-07-02 株式会社東芝 自己組織化パターンの形成方法
JP6027912B2 (ja) * 2013-02-22 2016-11-16 東京応化工業株式会社 相分離構造を含む構造体の製造方法、及びパターン形成方法、並びにトップコート材料
JP5981392B2 (ja) 2013-06-19 2016-08-31 株式会社東芝 パターン形成方法
TWI658055B (zh) * 2013-06-19 2019-05-01 德州大學董事會 用於薄膜嵌段共聚物之定向控制之酸酐共聚物面塗層
KR102399752B1 (ko) 2013-09-04 2022-05-20 도쿄엘렉트론가부시키가이샤 유도 자기 조립용 화학 템플릿을 생성하기 위한 경화 포토레지스트의 자외선을 이용한 박리
US9793137B2 (en) 2013-10-20 2017-10-17 Tokyo Electron Limited Use of grapho-epitaxial directed self-assembly applications to precisely cut logic lines
US9349604B2 (en) 2013-10-20 2016-05-24 Tokyo Electron Limited Use of topography to direct assembly of block copolymers in grapho-epitaxial applications
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
KR101780100B1 (ko) 2013-12-06 2017-09-19 주식회사 엘지화학 블록 공중합체
EP3078687B1 (en) 2013-12-06 2020-06-03 LG Chem, Ltd. Block copolymer
EP3078654B1 (en) 2013-12-06 2021-07-07 LG Chem, Ltd. Monomer and block copolymer
EP3078688B1 (en) 2013-12-06 2020-03-04 LG Chem, Ltd. Block copolymer
WO2015084131A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
EP3078694B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
JP6419820B2 (ja) 2013-12-06 2018-11-07 エルジー・ケム・リミテッド ブロック共重合体
EP3101043B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN105899557B (zh) 2013-12-06 2018-10-26 株式会社Lg化学 嵌段共聚物
CN105960422B (zh) * 2013-12-06 2019-01-18 株式会社Lg化学 嵌段共聚物
CN105873968B (zh) 2013-12-06 2018-09-28 株式会社Lg化学 嵌段共聚物
JP6334706B2 (ja) 2013-12-06 2018-05-30 エルジー・ケム・リミテッド ブロック共重合体
JP6432846B2 (ja) 2013-12-06 2018-12-05 エルジー・ケム・リミテッド ブロック共重合体
WO2015084123A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
JP6538159B2 (ja) * 2014-09-30 2019-07-03 エルジー・ケム・リミテッド ブロック共重合体
CN107077066B9 (zh) 2014-09-30 2021-05-14 株式会社Lg化学 制造图案化基底的方法
WO2016053011A1 (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
CN107075054B (zh) 2014-09-30 2020-05-05 株式会社Lg化学 嵌段共聚物
CN107078026B (zh) 2014-09-30 2020-03-27 株式会社Lg化学 图案化基底的制备方法
JP6394798B2 (ja) 2014-09-30 2018-09-26 エルジー・ケム・リミテッド ブロック共重合体
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
KR20160038711A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
CN107075051B (zh) 2014-09-30 2019-09-03 株式会社Lg化学 嵌段共聚物
CN107075055B (zh) * 2014-09-30 2019-08-27 株式会社Lg化学 嵌段共聚物
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
US9947597B2 (en) 2016-03-31 2018-04-17 Tokyo Electron Limited Defectivity metrology during DSA patterning
US10303049B2 (en) * 2017-03-22 2019-05-28 Canon Kabushiki Kaisha Reducing electric charge in imprint lithography
TWI805617B (zh) 2017-09-15 2023-06-21 南韓商Lg化學股份有限公司 層壓板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085372A (ja) * 2001-12-28 2008-04-10 Toshiba Corp 発光素子
JP2008149447A (ja) * 2006-08-11 2008-07-03 Rohm & Haas Denmark Finance As ナノ構造化されたパターン製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW576864B (en) * 2001-12-28 2004-02-21 Toshiba Corp Method for manufacturing a light-emitting device
RU2007137124A (ru) * 2005-03-09 2009-04-20 Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния (Us) Нанокомпозитные мембраны и способы их получения и применения
US20070093587A1 (en) * 2005-10-25 2007-04-26 Starfire Systems Silicon carbide precursors and uses thereof
JP4673266B2 (ja) * 2006-08-03 2011-04-20 日本電信電話株式会社 パターン形成方法及びモールド
US8097175B2 (en) * 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US8101261B2 (en) * 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
JP4654279B2 (ja) * 2008-08-28 2011-03-16 株式会社日立製作所 微細構造を有する高分子薄膜およびパターン基板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085372A (ja) * 2001-12-28 2008-04-10 Toshiba Corp 発光素子
JP2008149447A (ja) * 2006-08-11 2008-07-03 Rohm & Haas Denmark Finance As ナノ構造化されたパターン製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10438626B2 (en) 2007-12-07 2019-10-08 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
WO2012014700A1 (ja) * 2010-07-28 2012-02-02 株式会社 東芝 パターン形成方法及びポリマーアロイ下地材料
US8986488B2 (en) 2010-07-28 2015-03-24 Kabushiki Kaisha Toshiba Pattern formation method and polymer alloy base material
JP2013227479A (ja) * 2011-09-15 2013-11-07 Wisconsin Alumni Research Foundation 化学的にパターン化された表面と第2の表面との間でのブロック共重合体薄膜の誘導集合
US9718250B2 (en) 2011-09-15 2017-08-01 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
JP2015517021A (ja) * 2012-02-10 2015-06-18 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム ブロックコポリマー薄膜においてドメインの配向性を制御するための化学蒸着された膜の使用
JP2016513594A (ja) * 2013-03-15 2016-05-16 エーエスエムエル ネザーランズ ビー.ブイ. ブロック共重合体の自己組織化によって基板上にリソグラフィフィーチャを提供する方法
US9666443B2 (en) 2013-03-15 2017-05-30 Asml Netherlands B.V. Methods for providing lithography features on a substrate by self-assembly of block copolymers

Also Published As

Publication number Publication date
JP2010115832A (ja) 2010-05-27
US20110186544A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2010055601A1 (ja) ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
JP4815011B2 (ja) ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
JP4815010B2 (ja) ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
KR101357442B1 (ko) 패턴 형성 방법
JP5222805B2 (ja) 自己組織化パターン形成方法
TWI599582B (zh) 新穎嵌段共聚物之組合物及自我組裝方法
US7419771B2 (en) Method for forming a finely patterned resist
KR101372152B1 (ko) 패턴 형성 방법 및 중합체 알로이 기재
TWI631434B (zh) 硬化光阻之紫外線輔助剝離以建立用於定向自組裝之化學模板
TWI535770B (zh) 用於導向自組裝嵌段共聚物之中性層組合物及其方法
KR20120096888A (ko) 패턴 형성 방법
US9040123B2 (en) Pattern formation method
JP5813604B2 (ja) パターン形成方法
CN102466970A (zh) 带有拉链状机构的光刻胶及方法
US20140021166A1 (en) Pattern forming method
KR20080057562A (ko) 반도체 소자의 미세 패턴 형성 방법
JP6470079B2 (ja) パターン形成方法
TWI754661B (zh) 用於自組裝應用之聚合物組合物
US6946390B2 (en) Photolithographic production of trenches in a substrate
US20070196772A1 (en) Method for forming fine pattern of semiconductor device
JP2014135435A (ja) 半導体装置の製造方法
JP6129773B2 (ja) パターン形成方法
JP6063825B2 (ja) パターン形成方法
US20180275519A1 (en) Pattern Formation Method
JP2005229014A (ja) パターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09825856

Country of ref document: EP

Kind code of ref document: A1