WO2010052768A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2010052768A1
WO2010052768A1 PCT/JP2008/070103 JP2008070103W WO2010052768A1 WO 2010052768 A1 WO2010052768 A1 WO 2010052768A1 JP 2008070103 W JP2008070103 W JP 2008070103W WO 2010052768 A1 WO2010052768 A1 WO 2010052768A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
transmission mode
engine
operating point
motor generator
Prior art date
Application number
PCT/JP2008/070103
Other languages
English (en)
French (fr)
Inventor
幸彦 出塩
駒田 英明
寛之 柴田
智仁 大野
横山 亘
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/070103 priority Critical patent/WO2010052768A1/ja
Priority to JP2010536605A priority patent/JPWO2010052768A1/ja
Priority to DE112008004034T priority patent/DE112008004034T5/de
Priority to CN2008801309301A priority patent/CN102137782A/zh
Priority to US13/061,432 priority patent/US20110160947A1/en
Publication of WO2010052768A1 publication Critical patent/WO2010052768A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/105Infinitely variable gearings of electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/12Engine control specially adapted for a transmission comprising a torque converter or for continuously variable transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device suitable for a hybrid vehicle.
  • a hybrid vehicle including a motor generator that functions as an electric motor or a generator is known.
  • an internal combustion engine is operated in a highly efficient state as much as possible, while an excess or deficiency of driving force or engine brake is compensated by a motor generator.
  • a hybrid vehicle configured to be able to operate by switching between a continuously variable transmission mode and a fixed transmission mode, as shown in Patent Document 1 below.
  • an engine, a generator, and a drive shaft are coupled to each rotating element of the planetary gear mechanism, a brake is connected to the rotor of the generator, and an electric motor is connected to the drive shaft.
  • a reaction torque corresponding to the engine torque is output to the motor generator, and the rotation speed of the generator is continuously changed.
  • the rotational speed of the engine continuously changes, and the operation in the continuously variable transmission mode is executed.
  • the present invention has been made in order to solve the above-described problems, and it is clarified in advance whether or not the motor generator can output the reaction torque corresponding to the engine torque when performing the shift mode switching control.
  • Another object of the present invention is to provide a control device for a hybrid vehicle that can prevent the engine from blowing up when the transmission mode is switched.
  • a control device for a hybrid vehicle applied to a hybrid vehicle having an engagement mechanism that is connected to any one of the rotation elements and fixes or releases the rotation element is defined by an accelerator opening and a vehicle speed, and is a continuously variable transmission mode.
  • the rotating element is fixed by the engagement mechanism, and the reaction torque
  • a control means for switching the transmission mode to a fixed transmission mode for receiving the engagement mechanism, wherein the fixed transmission mode region has a first fixed state in which the reaction force torque is equal to or less than a maximum rated torque of the motor generator.
  • a shift mode region, and a second fixed shift mode region in which the reaction force torque is greater than the maximum rated torque, and the control means includes either the first or second fixed shift mode region.
  • the hybrid vehicle control apparatus includes an engine, a motor generator, a power distribution mechanism connected to the engine and the motor generator, a drive shaft to which an output from the power distribution mechanism is transmitted, and any of the power distribution mechanisms.
  • the present invention is applied to a hybrid vehicle that is connected to a rotating element and has an engagement mechanism that fixes or releases the rotating element.
  • the hybrid vehicle control device includes, for example, a control unit such as an ECU (Electronic Control Unit), and a map that is defined by an accelerator opening and a vehicle speed and in which a continuously variable transmission mode region and a fixed transmission mode region are set. When the vehicle operating point moves from the fixed transmission mode region to the continuously variable transmission mode region on the map, the control means releases the rotating element by the engagement mechanism to cope with the engine torque of the engine.
  • the rotating element When the vehicle operating point moves from the continuously variable transmission mode region to the fixed transmission mode region, the rotating element is operated by the engagement mechanism when the transmission mode is switched to the continuously variable transmission mode that outputs the reaction torque to the motor generator. And the shift mode is switched to the fixed shift mode in which the reaction force torque is received by the engagement mechanism.
  • the engagement mechanism is a clutch such as a wet multi-plate clutch.
  • the fixed speed change mode region includes a first fixed speed change mode region in which the reaction force torque is less than or equal to the maximum rated torque of the motor generator, and a second fixed speed change mode region in which the reaction force torque is greater than the maximum rated torque.
  • the control means varies the shift mode switching control method depending on which region of the first or second fixed shift mode region the vehicle operating point is positioned or moves. This makes it possible to perform systematic control in which whether or not the motor generator can output the reaction force torque corresponding to the engine torque can be performed when performing the shift mode switching control.
  • Another aspect of the hybrid vehicle control device includes an auxiliary unit capable of outputting at least a part of the reaction torque, and the control unit operates the vehicle when the shift mode is switched.
  • the control unit operates the vehicle when the shift mode is switched.
  • control means may be configured such that when a part of the reaction force torque is output by the auxiliary means when the shift mode is switched, the motor generator Set the torque output from the maximum rated torque. Thereby, the load on the engagement mechanism can be reduced, and the power generation amount of the motor generator can be increased.
  • control means may be configured such that the vehicle operating point moves from the continuously variable transmission mode region to the second fixed transmission mode region due to an increase in accelerator opening or vehicle speed.
  • the torque output from the motor generator is set to the maximum rated torque.
  • the hybrid vehicle includes an assist motor generator that outputs torque to the drive shaft by the electric power generated by the motor generator, and the control means includes a shift mode.
  • the torque output from the assist motor generator is controlled so that the drive force of the drive shaft becomes the required drive force. As a result, it is possible to suppress a shock that occurs when the shift mode is switched.
  • Another aspect of the hybrid vehicle control device is the engagement mechanism in which the auxiliary means is configured such that engagement elements that engage with each other are differentially rotatable. Accordingly, the engagement torque generated in the engagement mechanism can be continuously changed, and the reaction mechanism corresponding to the engine torque can be provided to the engagement mechanism.
  • control means may be configured such that the vehicle operating point moves from the continuously variable transmission mode region to the second fixed transmission mode region due to an increase in accelerator opening or vehicle speed.
  • the engine torque is controlled so that the driving force of the drive shaft becomes constant according to the engagement torque output by the engagement mechanism. Thereby, the shock at the time of engagement of an engagement mechanism can be reduced.
  • control means may be configured to move the vehicle operating point from the first fixed transmission mode region to the continuously variable transmission mode region due to an increase in accelerator opening. causes the motor generator to output the reaction torque. By doing in this way, time until completion of release of an engagement mechanism can be shortened, and drivability can be improved.
  • control means moves the vehicle operating point from the second fixed transmission mode region to the continuously variable transmission mode region as the accelerator opening increases.
  • the reaction torque is output by the motor generator and the auxiliary means. Thereby, a driving force can be raised.
  • the auxiliary means is a torque-up means for temporarily increasing the torque that can be output from the motor generator to be larger than the maximum rated torque.
  • the means increases the torque that can be output from the motor generator by the torque increase unit.
  • the engine torque is limited according to the torque that can be output by the motor generator whose torque has been increased.
  • the torque-up means is, for example, an ECU.
  • control means may be configured such that, when the vehicle operating point moves from the second fixed transmission mode region to the continuously variable transmission mode region, the assist motor generator The assist torque that is output more is increased, and the engine torque is decreased so that the driving force of the drive shaft becomes the required driving force in accordance with the increase amount of the assist torque. As a result, it is possible to prevent a decrease in driving force when the transmission mode is switched.
  • FIG. 5 is a timing chart showing shift mode switching control when the vehicle operating point advances from a continuously variable transmission mode region to a first fixed transmission mode region.
  • FIG. 1 shows a schematic configuration of a hybrid vehicle to which a control device according to each embodiment is applied.
  • the example of FIG. 1 is a hybrid vehicle called a mechanical distribution type two-motor type, and includes an engine (internal combustion engine) 1, a first motor generator MG 1, a second motor generator MG 2, and a power distribution mechanism 20.
  • An engine 1 corresponding to a power source and a first motor generator MG1 are connected to a power distribution mechanism 20.
  • the drive shaft 3 of the power distribution mechanism 20 is connected to a second motor generator MG2 that is a power source for assisting torque (drive force) or brake force of the drive shaft 3. Further, the drive shaft 3 is connected to the left and right drive wheels 9 via a final speed reducer 8.
  • the first motor generator MG1 and the second motor generator MG2 are electrically connected via a battery, an inverter, or an appropriate controller (see FIG. 1) or directly, and the first motor generator MG1
  • the second motor generator MG2 is driven by the generated electric power.
  • Engine 1 is a heat engine that generates power by burning fuel, and includes a diesel engine, a gasoline engine, and the like.
  • the first motor generator MG1 generates power mainly by receiving torque from the engine 1 and rotating, and a reaction force of torque accompanying power generation acts. By controlling the rotation speed of first motor generator MG1, the engine rotation speed of engine 1 changes continuously. Such a speed change mode is called a continuously variable speed change mode. Therefore, the first motor generator MG1 functions as a motor generator in the present invention.
  • the second motor generator MG2 is a device that assists (assists) the driving force or the braking force.
  • the second motor generator MG2 functions as an electric motor upon receipt of electric power.
  • the second motor generator MG2 functions as a generator that is rotated by the torque transmitted from the drive wheels 9 to generate electric power. Therefore, the second motor generator MG2 functions as an assist motor generator in the present invention.
  • the power distribution mechanism 20 is a so-called single pinion type planetary gear mechanism, and includes a ring gear R1, a carrier C1, and a sun gear S1.
  • the carrier C1 holds a pinion gear CP1 that meshes with both the ring gear R1 and the sun gear S1.
  • the output shaft 2 of the engine 1 is connected to the carrier C1 of the first planetary gear mechanism.
  • One end of the rotor 11 of the first motor generator MG1 is connected to the sun gear S1 of the first planetary gear mechanism.
  • the ring gear R1 is connected to the drive shaft 3.
  • the lock mechanism 7 includes a clutch 7a and an actuator 7b.
  • the clutch 7a has a pair of engaging elements that engage with each other. Of the pair of engagement elements, one engagement element is fixed to a case or the like, and the other engagement element is coupled to the rotor 11 of the first motor generator MG1.
  • the lock mechanism 7 is configured to be able to engage and release the clutch 7a using an actuator 7b. Specifically, the actuator 7b engages the clutch 7a by, for example, a hydraulic pressure.
  • Lock mechanism 7 engages clutch 7a to fix rotor 11 of first motor generator MG1 and to fix sun gear S1 of power distribution mechanism 20.
  • the lock mechanism 7 releases the engagement of the clutch 7a, thereby releasing the rotor 11 of the first motor generator MG1 and releasing the sun gear S1 of the power distribution mechanism 20. That is, the clutch 7a functions as a brake that fixes the sun gear S1 of the power distribution mechanism 20.
  • the lock mechanism 7 controls the engagement / release of the clutch 7a by controlling the actuator 7b based on the control signal Sig5 transmitted from the ECU 4.
  • the engine speed of the engine 1 is continuously changed by continuously changing the rotation speed of the first motor generator MG1, thereby realizing the continuously variable transmission mode. Is done.
  • the transmission ratio determined by the power distribution mechanism 20 is in an overdrive state (that is, the engine speed of the engine 1 is smaller than the speed of the drive shaft 3). The fixed shift mode is realized.
  • the power supply unit 30 includes an inverter 31, a converter 32, an HV battery 33, and a converter 34.
  • the first motor generator MG1 is connected to the inverter 31 by a power line 37
  • the second motor generator MG2 is connected to the inverter 31 by a power line 38.
  • the inverter 31 is connected to the converter 32
  • the converter 32 is connected to the HV battery 33.
  • the HV battery 33 is connected to the auxiliary battery 35 via the converter 34.
  • the inverter 31 exchanges power with the motor generators MG1 and MG2. During regeneration of the motor generator, the inverter 31 converts the electric power generated by the motor generators MG1 and MG2 into the direct current and supplies the direct current to the converter 32. Converter 32 converts the electric power supplied from inverter 31 to charge HV battery 33. On the other hand, when the motor generator is powered, the DC power output from the HV battery 33 is boosted by the converter 32 and supplied to the inverter 31, and then supplied to the motor generator MG 1 or MG 2 via the power line 37 or 38.
  • the electric power of the HV battery 33 is converted into a voltage by the converter 34 and supplied to the auxiliary battery 35, and used for driving various auxiliary machines.
  • ECU4 controls operation
  • a necessary signal indicating the state of each element in the power supply unit 30 is supplied to the ECU 4 as a control signal Sig4.
  • SOC State Of Charge
  • indicating the remaining battery capacity of the HV battery 33, the input / output limit value of the battery, and the like are supplied to the ECU 4 as a control signal Sig4.
  • the ECU 4 transmits / receives control signals Sig1 to Sig3 to / from the engine 1, the first motor generator MG1 and the second motor generator MG2, thereby controlling them and transmitting the control signal Sig5 to the lock mechanism 7.
  • the lock mechanism 7 is controlled.
  • the ECU 4 detects the accelerator opening degree based on a control signal from an accelerator pedal (not shown) to obtain a required driving force, and the engine 1 and the first motor generator so that the driving force becomes the required driving force.
  • MG1 and second motor generator MG2 are controlled.
  • the ECU 4 controls the lock mechanism 7 based on a vehicle speed detected based on a detection signal from a vehicle speed sensor (not shown) and an engine speed detected based on a detection signal from a crank angle sensor (not shown). To do. Therefore, the ECU 4 functions as a control unit in the present invention.
  • FIG. 2 shows an example of an alignment chart in the continuously variable transmission mode and the fixed transmission mode.
  • the vertical direction corresponds to the rotational speed
  • the upward direction corresponds to the positive rotation
  • the downward direction corresponds to the negative rotation.
  • the upward torque corresponds to the positive torque
  • the downward torque corresponds to the negative torque.
  • the straight lines A1a, A1b, and A1c in FIG. 2 (a) show examples of collinear diagrams in the continuously variable transmission mode.
  • a reaction torque corresponding to the engine torque TKE of the engine 1 is output from the first motor generator MG1 as the torque TK1.
  • the engine torque TKE is a positive torque
  • the torque TK1 is a negative torque.
  • Torque TK2 indicates the torque output from second motor generator MG2.
  • the engine speed of the engine 1 can be continuously controlled by increasing or decreasing the rotation speed of the first motor generator MG1.
  • the rotational speed of the drive shaft 3 is N1
  • the rotational speed of the first motor generator MG1 is sequentially changed to white circles m1, m2, and m3
  • the first motor generator MG1 generates electric power and supplies electric power to the second motor generator MG2 that assists the drive shaft 3 via the inverter 31.
  • the output from the engine 1 is directly transmitted to the drive shaft 3 via the power distribution mechanism 20 and the second motor assists the drive shaft 3 from the first motor generator MG1. It is transmitted to the drive shaft 3 through two routes: a route electrically transmitted to the motor generator MG2.
  • a straight line A2 in FIG. 2B shows an example of a collinear diagram in the fixed speed change mode.
  • the lock mechanism 7 fixes the rotor 11 of the first motor generator MG1 and the sun gear S1. Therefore, the speed ratio determined by the power distribution mechanism 20 is overdrive.
  • the state is fixed (ie, the state in which the engine speed Ne4 of the engine 1 is smaller than the speed N1 of the drive shaft 3).
  • the clutch 7 a of the lock mechanism 7 is responsible for the reaction torque corresponding to the engine torque of the engine 1. Since first motor generator MG1 does not function as either a generator or an electric motor, power is not supplied from first motor generator MG1 to second motor generator MG2. Therefore, in the fixed speed change mode, the output from the engine 1 is transmitted to the drive shaft 3 only through a route that is directly transmitted to the drive shaft 3 via the power distribution mechanism 20.
  • FIG. 3 is a diagram showing how the vehicle operating point (vehicle operating point) moves on the map defined by the vehicle speed and the accelerator opening, where the vertical axis indicates the accelerator opening and the horizontal axis indicates the vehicle speed. ing. Vehicle operating points are indicated by white circles.
  • Fixed transmission mode areas Ar1 and Ar2 and a continuously variable transmission mode area Ar3 which is an area other than the fixed transmission mode areas Ar1 and Ar are set.
  • the ECU 4 sets the shift mode to the fixed shift mode when the vehicle operating point moves to the fixed shift mode areas Ar1 and Ar2, and moves the vehicle to the continuously variable shift mode area Ar3.
  • the transmission mode is set to the continuously variable transmission mode.
  • the map is defined by the vehicle speed and the accelerator opening, but is not limited to this, and may be defined by the vehicle speed and driving force instead.
  • the fixed transmission mode areas Ar1 and Ar2 are composed of a first fixed transmission mode area Ar1 and a second fixed transmission mode area Ar2.
  • First fixed speed change mode region Ar1 is a region in which the reaction torque corresponding to the engine torque is equal to or lower than the maximum rated torque of first motor generator MG1.
  • second fixed speed change mode region Ar2 is a region in which the reaction torque corresponding to the engine torque exceeds the maximum rated torque of first motor generator MG1.
  • the maximum rated torque is the maximum value of torque that can be output continuously by the first motor generator MG1.
  • first motor generator MG1 can always output reaction torque corresponding to engine torque.
  • the ECU 4 controls the first motor generator MG1 to perform the rotational speed synchronization control for controlling the rotational speed of the first motor generator MG1 to “0”, and then engages the clutch 7a of the lock mechanism 7.
  • the transmission mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • the ECU 4 has the map shown in FIG. 3 in which the first fixed shift mode region Ar1 and the second fixed shift mode region Ar2 are set when the shift mode is switched.
  • the method for controlling the switching of the shift mode is made different depending on in which region the vehicle operating point moves or is positioned.
  • the ECU 4 operates when the vehicle operating point is moved or positioned in the second fixed transmission mode area Ar2 and the clutch 7a is in the released state when the transmission mode is switched.
  • auxiliary means such as the clutch 7a.
  • FIG. 4A is a diagram showing the movement of the operating point (engine operating point) of the engine 1 determined by the engine torque and the engine speed, where the vertical axis indicates the engine torque and the horizontal axis indicates the engine speed. Is shown. Specifically, FIG. 4A shows how the engine operating point moves when the vehicle speed increases and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the first fixed transmission mode region Ar1. Is shown.
  • a solid line Lc indicates an operation line of the engine 1 in the case of the continuously variable transmission mode (hereinafter referred to as “CVT operation line”).
  • the CVT operation line Lc is defined so as to be optimal from the viewpoint of improving fuel consumption, for example.
  • the engine torque of the engine 1 has a maximum torque TKec.
  • This torque TKec indicates the engine torque when the reaction torque becomes equal to the maximum rated torque of first motor generator MG1.
  • the torque TKec is sometimes referred to as “reaction force upper limit engine torque”.
  • a point Pec on the CVT operation line indicates an engine operating point in the continuously variable transmission mode.
  • the torque TKem indicates the maximum value of the engine torque that can be output by the engine 1 itself (hereinafter referred to as “maximum engine torque”).
  • An alternate long and two short dashes line Lcmax indicates an operating line when the maximum engine torque is output from the engine 1 (hereinafter referred to as a “maximum engine torque operating line”).
  • a broken line Ls indicates an operation line of the engine 1 in the case of the fixed speed change mode, and an alternate long and short dash line Lp indicates an equal power line.
  • a point Pes on the operating line Ls indicates an engine operating point in the fixed speed change mode.
  • FIG. 4B shows how the collinear diagram changes at this time. 4 (a) and 4 (b), the engine speed when the engine operating point is the point Pec is shown as PecN, and the engine speed when the engine operating point is the point Pes is shown as PesN. ing.
  • the engine operating point is moved from the point Pec to the point Pes along the equal power line Lp by increasing the engine speed and decreasing the engine torque.
  • the nomograph changes from the straight line Ac to the straight line As. That is, since the clutch 7a is engaged, the first motor generator MG1 is controlled so as to become the rotational speed “0” from the negatively rotating state.
  • FIG. 5 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG.
  • the vertical axis indicates the vehicle speed, the accelerator opening, the lock command flag, the engine speed, the rotational speed of the first motor generator MG1 (MG1 rotational speed), the engine torque, and the first motor generator MG1 in order from the top.
  • the torque (MG1 torque), the engagement torque of the clutch 7a of the lock mechanism 7 and the driving force are shown, and the horizontal axis shows time.
  • MG1 torque The torque (MG1 torque), the engagement torque of the clutch 7a of the lock mechanism 7 and the driving force
  • the horizontal axis shows time.
  • a positive value indicates a positive rotation
  • a negative value indicates a negative rotation.
  • the engine speed is always positive. Further, regarding the engine torque, the MG1 torque, and the torque of the second motor generator MG2 (MG2 torque), a positive value indicates a positive torque, and a negative value indicates a negative torque.
  • MG2 torque the magnitude of the torque and the rotational speed, that is, the absolute value is increased or decreased unless otherwise specified.
  • the driving force is kept constant during the shift mode switching control.
  • the ECU 4 holds the relationship between the vehicle speed, the accelerator opening, and the shift mode as shown in FIG. 3 in a memory or the like as a map (hereinafter referred to as “shift mode determination map”).
  • shift mode determination map a map
  • the ECU 4 determines that the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the first fixed transmission mode area Ar1 based on the vehicle speed, based on the vehicle speed, the lock command flag is turned on from off. To. The time at this time is T1. When it is confirmed that the lock command flag is turned on, the ECU 4 starts the shift mode switching control.
  • ECU4 performs control which decreases engine torque gradually from engine torque at time T1 from time T1 to T2. Further, ECU 4 controls first motor generator MG1 from time T1 to time T2, and gradually reduces MG1 torque to be equal to the reaction force torque corresponding to engine torque, while negatively rotating MG1 rotation speed. It approaches “0” from the rotational speed of the hour. When the MG1 rotation speed approaches “0” from the rotation speed during the negative rotation, the engine rotation speed increases as shown in FIG. In this way, the engine operating point moves from the point Pec to the point Pes in FIG. When the MG1 rotation speed becomes “0” (time T2), the ECU 4 increases the pressing force of the actuator 7b to completely engage the clutch 7a and decreases the MG1 torque.
  • the ECU 4 sets the MG1 torque to “0” and ends the shift mode switching control. In this way, by completely engaging the clutch 7a after setting the MG1 rotation speed to “0”, it is possible to prevent a shock when the clutch 7a is engaged, and to suppress the load on the clutch 7a. .
  • the ECU 4 reacts with the reaction torque corresponding to the engine torque.
  • the MG1 torque is controlled while the MG1 rotation speed is brought close to “0”, and the shift mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • FIG. 6 (a) is a diagram showing the movement of the engine operating point when the vehicle speed increases and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the second fixed transmission mode region Ar2.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • FIG. 6A as in FIG. 4A, the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, the equal power line Lp, and the maximum engine torque operation line Lcmax are shown.
  • FIG. 6B shows how the nomograph changes at this time.
  • the engine operating point decreases from the point Pec on the CVT operating line Lc to the point Pes on the operating line Lc on the constant power line Lp by decreasing the engine speed and increasing the engine torque. Is moving along.
  • the collinear diagram changes from the straight line Ac to the straight line As. That is, in order to engage the clutch 7a in the lock mechanism 7, the first motor generator MG1 is controlled so that the rotational speed becomes “0” from the state of normal rotation.
  • FIG. 7 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, second motor generator MG2 torque (MG2 torque), MG1 torque, lock mechanism in order from the top.
  • MG2 torque second motor generator MG2 torque
  • MG1 torque lock mechanism in order from the top.
  • 7 shows the engagement torque and driving force of the clutch 7a
  • the horizontal axis shows time.
  • the engine operating point moves along the equal power line Lp, so that the driving force is kept constant during the shift mode switching control.
  • the lock command flag is turned on from off. (Time T1).
  • the ECU 4 starts the shift mode switching control.
  • the ECU 4 performs control to gradually increase the engine torque from the engine torque at the time T1 from the time T1 to the time T2.
  • the engine torque exceeds the reaction force upper limit engine torque TKec, that is, corresponds to the engine torque.
  • the reaction force torque to be exceeded exceeds the maximum rated torque TKmgx of the MG1 torque.
  • a clutch in which engaging elements engaged with each other are configured to be capable of differential rotation is used as the clutch 7a.
  • the ECU 4 can increase the engagement torque by increasing the friction force generated between the engagement elements by increasing the pressing force on the clutch.
  • Examples of such a clutch include a wet multi-plate clutch.
  • the ECU 4 sets the MG1 torque to the maximum rated torque TKmgx from time T1 to time T2, and gradually increases the engagement torque of the clutch 7a by gradually increasing the pressing force of the actuator 7b.
  • the rotational speed is gradually brought close to “0”.
  • the ECU 4 outputs the reaction torque corresponding to the engine torque from the time T1 to T2 not only to the first motor generator MG1 but also to the clutch 7a.
  • the MG1 rotation speed can be set to “0”.
  • the engine rotational speed gradually approaches “0” from the rotational speed at the normal rotation, the engine rotational speed also gradually decreases as shown in FIG. In this way, the engine operating point moves from the point Pec to the point Pes in FIG.
  • the ECU 4 sets the MG1 torque to the maximum rated torque TKmgx from time T1 to time T2.
  • the load on the clutch 7a of the lock mechanism 7 can be reduced, and the power generation amount of the first motor generator MG1 can be reduced.
  • the MG1 torque is always set to the maximum rated torque TKmgx.
  • the motor generator MG1 need not be subjected to cooperative control, and the control can be simplified.
  • the ECU 4 may correct the engine torque so that the driving force becomes constant according to the engagement torque.
  • the ECU 4 uses the following differential mechanism equations of motion (1) to (6) to calculate an engine torque for a constant driving force, and calculates the calculated engine torque and the actual engine torque. The difference from the torque is calculated as the correction torque. Then, the ECU 4 supplies a control signal to the engine 1 to correct the engine torque by the correction torque. Thereby, the shock at the time of engagement of the clutch 7a can be reduced. Further, by calculating the correction torque using the equation of motion of the differential mechanism and predetermining that the engine torque is corrected by the correction torque, it is not necessary to perform cooperative control on the engine 1, thereby simplifying the control. Can be achieved.
  • the ECU 4 sets the second motor so that the driving force becomes the required driving force regardless of whether the vehicle operating point moves to the first fixed transmission mode region Ar1 or the second fixed transmission mode region Ar2. Compensation control may be performed by the generator MG2.
  • the ECU 4 performs a constant driving force in addition to the control of the engine torque described above.
  • the MG2 torque may be corrected so that For example, in the example shown in FIG. 7, from time T1 to T2, the ECU 4 gradually decreases the MG2 torque as the engine torque gradually increases. As a result, the driving force can be kept constant. Further, the ECU 4 controls the second motor generator MG2 that is faster in response than the engine 1 until the engine torque is corrected by the correction torque after the control signal is transmitted to the engine 1, and MG2 The driving force may be constant by correcting the torque.
  • the engine torque is preferentially corrected out of the engine torque and the MG2 torque.
  • the power consumption of the HV battery 33 can be suppressed, and the burden on the HV battery 33 can be reduced. Further, it is possible to suppress a shock when the clutch 7a is engaged regardless of the charging state of the HV battery 33.
  • the ECU 4 changes the MG1 torque to the maximum rated torque TKmgx.
  • the engagement torque of the clutch 7a is controlled to switch the transmission mode from the continuously variable transmission mode to the fixed transmission mode.
  • the ECU 4 determines, based on the vehicle speed, whether the vehicle operating point advances from the continuously variable shift mode area Ar3 to the fixed shift mode area Ar1 or Ar2. Shift mode switching control corresponding to each case is performed.
  • step S101 the ECU 4 uses the shift mode determination map based on the vehicle speed to determine whether or not the vehicle operating point moves to the fixed shift mode region, that is, engage the clutch 7a of the lock mechanism 7 (power-on engagement). Judgment) is made.
  • step S101: No the ECU 4 ends this control process, and when it is determined that the clutch 7a should be engaged (step S101: Yes), the process proceeds to step S102.
  • step S102 the ECU 4 determines whether or not the vehicle operating point moves to the second fixed transmission mode region Ar2 from the transmission mode determination map, and if the vehicle operating point moves to the second fixed transmission mode region Ar2. When it determines (step S102: Yes), it progresses to the process of step S103. On the other hand, when the ECU 4 determines that the vehicle operating point does not move to the second fixed transmission mode region Ar2, that is, the vehicle operating point moves to the first fixed transmission mode region Ar1 (step S102: No), The process proceeds to step S107.
  • step S103 the ECU 4 sets the MG1 torque to the maximum rated torque.
  • step S104 the ECU 4 performs clutch pressing control for gradually increasing the pressing force of the actuator 7b, and gradually increases the engagement torque of the clutch 7a of the lock mechanism 7. As a result, the reaction torque corresponding to the engine torque is output by the clutch 7a and the first motor generator MG1.
  • step S105 the ECU 4 performs engine control for correcting the engine torque so that the driving force becomes constant according to the engagement torque.
  • step S106 the ECU 4 performs MG2 torque compensation control for correcting the MG2 torque so that the driving force becomes constant. Thereafter, the process proceeds to step S109.
  • step S109 the ECU 4 determines whether or not the engagement of the clutch 7a has been completed. If it is determined that the engagement of the clutch 7a has not been completed (step S109: No), the process proceeds to step S102. Returning, when it is determined that the engagement of the clutch 7a has been completed (step S109: Yes), this control process is terminated.
  • step S102 when the ECU 4 determines that the vehicle operating point does not move to the second fixed transmission mode region Ar2, that is, the vehicle operating point moves to the first fixed transmission mode region Ar1. (Step S102: No), the process proceeds to Step S107.
  • step S107 the ECU 4 controls the first motor generator MG1 to control the MG1 torque so as to be equal to the reaction torque corresponding to the engine torque, while gradually reducing the MG1 rotation speed to 0. Performs synchronous control.
  • step S108 the ECU 4 performs engagement control for increasing the pressing force of the actuator 7b to completely engage the clutch 7a. Thereafter, the ECU 4 proceeds to the processes of steps S106 and S109, and ends this control process.
  • the ECU 4 when the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the first fixed transmission mode region Ar1 due to an increase in vehicle speed, the ECU 4 It is assumed that the MG1 torque is controlled to the reaction force torque corresponding to the engine torque and the MG1 rotation speed is controlled to approach “0”. Thereby, the shock at the time of engagement of the clutch 7a can be prevented, and the load on the clutch 7a can be suppressed.
  • the ECU 4 uses the clutch 7a of the lock mechanism 7 to A part of the reaction torque corresponding to the torque is to be assigned. By doing so, it is possible to prevent the engine from blowing up when the transmission mode is switched.
  • FIG. 9 is a diagram showing how the vehicle operating point moves in the second embodiment, where the vertical axis indicates the accelerator opening and the horizontal axis indicates the vehicle speed. Also in FIG. 9, a continuously variable transmission mode area Ar3 and fixed transmission mode areas Ar1 and Ar2 are shown, and vehicle operating points are indicated by white circles. In the second embodiment, as indicated by arrows W1 and W2 in FIG. 9, the accelerator opening increases, and the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the fixed transmission mode areas Ar1 and Ar2. A shift mode switching control method in this case will be described.
  • FIG. 10A is a diagram illustrating a state of movement of the engine operating point when the accelerator opening is increased and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the first fixed transmission mode region Ar1.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • FIG. 10 (a) also shows the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax.
  • FIG. 10B shows how the nomograph changes at this time.
  • FIG. 10A the engine is started and the engine torque and the engine speed are increased, so that the engine operating point is moved from the point Pec to the point Pes on the operating line Ls along the arrow.
  • FIG. 10B the collinear diagram changes from the straight line Ac to the straight line As. That is, since the clutch 7a in the lock mechanism 7 is engaged, the first motor generator MG1 is controlled so as to become the rotational speed “0” from the negatively rotating state.
  • FIG. 11 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, MG1 torque, engine torque, engagement torque of the clutch 7a of the lock mechanism 7, and driving force in order from the top.
  • the horizontal axis shows time.
  • the engine torque timing chart is indicated by a one-dot chain line in order to distinguish it from the MG1 torque timing chart.
  • the ECU 4 holds the relationship between the vehicle speed, the accelerator opening, and the shift mode shown in FIG. 9 in a memory or the like as a shift mode determination map.
  • the ECU 4 determines that the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the first fixed transmission mode area Ar1 based on the accelerator opening, based on the accelerator opening, the ECU 4 displays a lock command flag. From off to on (time T1). When it is confirmed that the lock command flag is turned on, the ECU 4 starts the shift mode switching control.
  • the ECU 4 When the ECU 4 confirms that the lock command flag is turned on at time T1, the ECU 4 cranks the engine 1 by the first motor generator MG1. From time T1 to Ta, cranking of the engine 1 is performed, so that positive MG1 torque is output from the first motor generator MG1. Thereby, from time T1 to Ta, MG1 rotation speed approaches "0" from rotation speed at the time of negative rotation. When the MG1 rotation speed approaches “0” from the rotation speed during the negative rotation, the engine rotation speed increases as shown in FIG. At time Ta, engine 1 is started by cranking, and positive engine torque is output from engine 1. Thereby, in FIG. 10A, the engine operating point moves from the point Pec to the point Pes, and the driving force increases.
  • the first motor generator MG1 When the engine 1 is started at time Ta, the first motor generator MG1 needs to output a reaction torque of the engine torque. Therefore, negative torque MG1 torque is output from first motor generator MG1. Since the ECU 4 has determined that the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the first fixed transmission mode region Ar1 this time, the reaction torque corresponding to the engine torque is the maximum rated torque TKmgx of MG1. Not exceed. Therefore, from time T1 to time T2, the ECU 4 causes the first motor generator MG1 to output a reaction force torque corresponding to the engine torque.
  • the ECU 4 increases the pressing force of the actuator 7b to increase the engagement torque of the clutch 7a and decrease the MG1 torque.
  • the ECU 4 sets the MG1 torque to “0” and ends the shift mode switching control. Thereby, the shock at the time of engagement of the clutch 7a can be prevented, and the load on the clutch 7a can be suppressed.
  • the ECU 4 counteracts the reaction corresponding to the engine torque.
  • the MG1 torque is controlled to be equal to the force torque, and the transmission mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • the shift mode is switched when the accelerator opening increases and the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the second fixed transmission mode area Ar2 (shown by the arrow W2 in FIG. 9).
  • a control method will be described with reference to FIGS.
  • the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the second fixed transmission mode region Ar2 via the first fixed transmission mode region Ar1.
  • FIG. 12 (a) is a diagram showing the movement of the engine operating point when the accelerator opening is increased and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the second fixed transmission mode region Ar2.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • FIG. 12A the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax are shown.
  • FIG. 12B shows how the nomograph changes at this time.
  • FIG. 12A the engine is started and the engine torque and the engine speed are increased, so that the engine operating point is moved from the point Pec to the point Pes on the operating line Ls along the arrow.
  • the collinear diagram changes from the straight line Ac to the straight line As. That is, in order to engage the clutch 7a in the lock mechanism 7, after the engine is started, the first motor generator MG1 is controlled from the state of negative rotation to the rotational speed “0”.
  • FIG. 13 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, MG1 torque, MG2 torque, engine torque, engagement torque of the clutch 7a of the lock mechanism 7 and drive in order from the top.
  • the horizontal axis indicates time.
  • the timing chart of engine torque is indicated by a one-dot chain line
  • the timing chart of MG2 torque is indicated by a two-dot chain line.
  • the ECU 4 determines that the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the second fixed transmission mode area Ar2 from the transmission mode determination map based on the accelerator opening, the ECU 4 turns off the lock command flag. From on (time T1). When it is confirmed that the lock command flag is turned on, the ECU 4 starts the shift mode switching control.
  • the ECU 4 When the ECU 4 confirms that the lock command flag is turned on at the time T1, the ECU 1 cranks the engine 1 from the time T1 to the time Ta. From time T1 to Ta, cranking of the engine 1 is performed, so that positive MG1 torque is output from the first motor generator MG1. Thereby, from time T1 to Ta, MG1 rotation speed approaches "0" from rotation speed at the time of negative rotation. At time Ta, engine 1 is started by cranking, and positive engine torque is output from engine 1.
  • the first motor generator MG1 When the engine 1 is started at time Ta, the first motor generator MG1 needs to output a reaction torque of the engine torque. Therefore, negative torque MG1 torque is output from first motor generator MG1. Then, from the time Ta to Tb, the engine torque further increases and exceeds the reaction force upper limit engine torque TKec. Therefore, the reaction torque corresponding to the engine torque also exceeds the maximum rated torque TKmgx of the first motor generator at time Tb.
  • the ECU 4 maintains the MG1 torque at the maximum rated torque TKmgx, and gradually increases the engagement torque of the clutch 7a of the lock mechanism 7 by gradually increasing the pressing force of the actuator 7b, while rotating the MG1. The number is brought close to “0”.
  • the reaction force torque corresponding to the engine torque is output by the first motor generator MG1 and the clutch 7a.
  • the MG1 rotation speed approaches “0” from the rotation speed during the negative rotation
  • the engine rotation speed increases as shown in FIG.
  • the reaction torque corresponding to the engine torque is also received by the clutch 7a.
  • the clutch 7a By having it, engine blow-up can be prevented.
  • the MG1 torque to the maximum rated torque TKmgx, it is possible to reduce the load on the clutch 7a of the lock mechanism 7 and simplify the control.
  • the ECU 4 increases the pressing force of the actuator 7b, completely engages the clutch 7a at time T2 when the MG1 rotation speed becomes “0”, and then sets the MG1 torque to “0” at time T3 to change the speed mode.
  • the switching control is terminated.
  • the ECU 4 performs MG2 torque compensation control for correcting the MG2 torque so that the driving force becomes the required driving force. Specifically, from time Tb to T2, the ECU 4 performs control to correct the MG2 torque so as to cancel the reaction torque of the engagement torque according to the engagement torque. Specifically, the ECU 4 decreases the MG2 torque as the engagement torque increases. Thereby, the shock by the engagement torque of the clutch 7a can be reduced.
  • the reaction torque corresponding to the engine torque is obtained.
  • the ECU 4 controls the MG1 torque to the maximum rated torque and controls the pressing force of the clutch 7a to change the shift mode from the continuously variable transmission mode to the fixed transmission mode. Switch.
  • the shift mode switching process according to the second embodiment will be described with reference to the flowchart shown in FIG.
  • the ECU 4 moves from the continuously variable shift mode area Ar3 to the fixed shift mode area Ar1 or Ar2 based on the accelerator opening. And shift mode switching control corresponding to each case is performed.
  • step S201 the ECU 4 determines whether or not the vehicle operating point moves to the fixed shift mode region based on the accelerator opening, that is, whether or not the clutch 7a of the lock mechanism 7 should be engaged (accelerator on engagement). Judge about.
  • step S201: No the ECU 4 ends this control process, and when it determines that the clutch 7a should be engaged (step S201: Yes), the process proceeds to step S202.
  • step S202 the ECU 4 determines whether or not the vehicle operating point moves to the second fixed transmission mode area Ar2 from the transmission mode determination map.
  • the ECU 4 determines that the vehicle operating point moves to the second fixed transmission mode region Ar2
  • the ECU 4 proceeds to the process of step S203, and the vehicle operating point does not move to the second fixed transmission mode region Ar2, that is, the vehicle If it is determined that the operating point moves to the first fixed transmission mode region Ar1, the process proceeds to step S208.
  • step S203 the ECU 4 starts the engine by cranking and then increases the engine torque.
  • step S204 the ECU 4 determines whether or not the reaction torque of the engine torque exceeds the maximum rated torque of the MG1 torque.
  • step S204: Yes the ECU 4 proceeds to the process of step S205, and the reaction torque of the engine torque is the maximum rating of the MG1 torque.
  • step S204: No the process proceeds to step S208.
  • step S205 the ECU 4 sets the MG1 torque to the maximum rated torque, and in step S206, performs the clutch pressing control for gradually increasing the pressing force of the actuator 7b to gradually increase the engagement torque of the clutch 7a.
  • reaction torque corresponding to engine torque is output by first motor generator MG1 and clutch 7a.
  • step S207 the ECU 4 corrects the MG2 torque so as to cancel the reaction torque of the engagement torque according to the engagement torque. Thereafter, the process proceeds to step S210.
  • step S210 the ECU 4 determines whether or not the engagement of the clutch 7a has been completed. If it is determined that the engagement of the clutch 7a has not been completed, the ECU 4 returns to the process of step S202 to engage the clutch 7a. If it is determined that the match has been completed, this control process is terminated.
  • step S202 when it is determined in step S202 described above that the vehicle operating point does not move to the second fixed transmission mode region Ar2 (step S202: No), or in step S204 described above, the engine torque If it is determined that the reaction torque is not greater than the maximum rated torque of the MG1 torque (step S204: No), the process proceeds to step S208.
  • step S208 the ECU 4 controls the first motor generator MG1 to control the MG1 torque so as to be the reaction torque corresponding to the engine torque, while gradually rotating the MG1 rotation speed to “0”. Performs number synchronization control.
  • step S209 the ECU 4 performs engagement control for engaging the clutch 7a. Thereafter, the ECU 4 proceeds to the processes of steps S207 and S210, and ends this control process.
  • the ECU 4 when the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the second fixed transmission mode region Ar2 due to an increase in the accelerator opening, the engine torque Until the reaction torque corresponding to 1 exceeds the maximum rated torque of the first motor generator MG1, the ECU 4 causes the first motor generator MG1 to output the reaction torque corresponding to the engine torque.
  • the ECU 4 responds to the engine torque by the clutch 7a of the lock mechanism 7. It is assumed that a part of the reaction force torque is given.
  • the ECU 4 when the vehicle operating point moves in the first fixed speed change mode region Ar1, the ECU 4 causes the first motor generator MG1 to receive a reaction torque corresponding to the engine torque. And Then, when the vehicle operating point moves in the second fixed speed change mode region Ar2, the ECU 4 receives the reaction torque by the first motor generator MG1 and the clutch 7a. Even in this case, similarly to the first embodiment, it is possible to prevent the engine from blowing up when the transmission mode is switched.
  • FIG. 15 is a diagram showing how the vehicle operating point moves in the third embodiment, where the vertical axis indicates the accelerator opening and the horizontal axis indicates the vehicle speed. Also in FIG. 15, continuously variable transmission mode area Ar3, fixed transmission mode areas Ar1 and Ar2 are shown, and vehicle operating points are indicated by white circles. In the third embodiment, as indicated by arrows W1 and W2 in FIG. 15, the accelerator opening decreases, and the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the fixed transmission mode areas Ar1 and Ar2. A shift mode switching control method in this case will be described.
  • FIG. 16A is a diagram showing the movement of the engine operating point when the accelerator opening is lowered and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the first fixed transmission mode region Ar1.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax are shown.
  • FIG. 16B shows how the nomograph changes at this time.
  • the engine operating point is moved along the arrow from the point Pec on the CVT operating line to the point Pes on the operating line Ls due to a decrease in engine torque and engine speed.
  • the alignment chart changes from the straight line Ac to the straight line As. That is, in order to engage the clutch 7a in the lock mechanism 7, the first motor generator MG1 is controlled so that the rotational speed becomes “0” from the state of normal rotation.
  • FIG. 17 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7, and driving force in order from the top.
  • the horizontal axis shows time.
  • the ECU 4 holds the relationship between the vehicle speed, the accelerator opening, and the shift mode shown in FIG. 15 in a memory or the like as a shift mode determination map.
  • the ECU 4 determines that the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the first fixed transmission mode area Ar1 based on the accelerator opening degree based on the accelerator opening, the ECU 4 turns off the lock command flag. From on (time T1). When it is confirmed that the lock command flag is turned on, the ECU 4 starts the shift mode switching control.
  • the ECU4 performs control which decreases engine torque gradually from engine torque at time T1 from time T1 to T2. From time T1 to T2, the engine torque gradually decreases from the torque TKec, so that the reaction torque corresponding to the engine torque also gradually decreases. Therefore, the reaction torque corresponding to the engine torque does not exceed the maximum rated torque TKmgx of the MG1 torque.
  • the ECU 4 controls the first motor generator MG1 from time T1 to time T2, gradually reducing the MG1 torque so as to be equal to the reaction torque corresponding to the engine torque, and gradually increasing the MG1 rotation speed to “0”. ” When the MG1 rotation speed approaches “0” from the rotation speed at the normal rotation, the engine rotation speed gradually decreases as shown in FIG. In this way, the engine operating point moves from the point Pec to the point Pes in FIG. 16, and the driving force decreases.
  • the ECU 4 increases the pressing force of the actuator 7b when the MG1 rotation speed becomes “0” (time T2). Then, at time T3, the ECU 4 completely engages the clutch 7a of the lock mechanism 7, sets the MG1 torque to “0”, and ends the shift mode switching control. Thereby, the shock at the time of engagement of the clutch 7a can be prevented, and the load on the clutch 7a can be suppressed.
  • the ECU 4 reacts to the engine torque.
  • the MG1 torque is controlled to be equal to the force torque, and the transmission mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • FIG. 18A is a diagram showing the movement of the engine operating point when the accelerator opening is lowered and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the second fixed transmission mode region Ar2.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax are shown.
  • FIG. 18B shows how the nomograph changes at this time.
  • FIG. 19 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG2 torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7 and drive in order from the top.
  • the horizontal axis indicates time.
  • the ECU 4 determines that the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the second fixed transmission mode area Ar2 from the transmission mode determination map based on the accelerator opening, the ECU 4 turns off the lock command flag. From on (time T1). When it is confirmed that the lock command flag is turned on, the ECU 4 starts the shift mode switching control.
  • the ECU 4 performs control to gradually increase the engine torque from the engine torque at the time T1 from the time T1 to the time T2.
  • the engine torque exceeds the reaction force upper limit engine torque TKec, that is, the reaction force corresponding to the engine torque.
  • the torque exceeds the maximum rated torque TKmgx of the MG1 torque.
  • the ECU 4 sets the MG1 torque to the maximum rated torque TKmgx from time T1 to T2, and gradually increases the pressing force of the actuator 7b to bring the MG1 rotation speed close to “0”.
  • the reaction torque corresponding to the engine torque is output by the first motor generator MG1 and the clutch 7a, and it is possible to prevent the engine from blowing up.
  • the MG1 rotation speed approaches “0” from the rotation speed at the time of normal rotation, the engine rotation speed gradually decreases as shown in FIG. In this way, the engine operating point moves from the point Pec to the point Pes in FIG. 18A, and the driving force decreases.
  • the ECU 4 performs MG2 torque compensation control for compensating the MG2 torque so that the driving force becomes the required driving force, according to the engaging torque. Control is performed to correct the MG2 torque so as to cancel the reaction torque of the MG2. Specifically, the ECU 4 performs control to decrease the MG2 torque as the engagement torque increases.
  • the ECU 4 completely engages the clutch 7a at time T2 when the MG1 rotational speed becomes “0”, and thereafter, at time T3, sets the MG1 torque to “0” and ends the shift mode switching control.
  • the ECU 4 sets the MG1 torque to the maximum rated torque. And the pressing force of the clutch 7a is controlled to switch the transmission mode from the continuously variable transmission mode to the fixed transmission mode.
  • the ECU 4 determines, based on the accelerator opening, whether the vehicle operating point advances from the continuously variable shift mode area Ar3 to the fixed shift mode area Ar1 or Ar2. Then, the shift mode switching control corresponding to each case is performed.
  • step S301 the ECU 4 determines whether or not the vehicle operating point has moved to the fixed shift mode region based on the accelerator opening, that is, whether or not the clutch 7a of the lock mechanism 7 should be engaged (foot return on engagement). Determine whether or not.
  • step S301: No the ECU 4 ends this control process, and when it is determined that the clutch 7a should be engaged (step S301: Yes), the process proceeds to step S302.
  • step S302 the ECU 4 determines whether or not the vehicle operating point moves to the second fixed transmission mode region Ar2 from the transmission mode determination map.
  • step S302: Yes the ECU 4 proceeds to the process of step S303, and the vehicle operating point enters the second fixed transmission mode region Ar2.
  • step S302: No the process proceeds to step S308.
  • step S303 the ECU 4 increases the engine torque
  • step S304 the ECU 4 determines whether or not the reaction torque of the engine torque exceeds the maximum rated torque of the MG1 torque.
  • step S304: Yes the ECU 4 proceeds to the processing of step S305, and the reaction torque of the engine torque is the maximum rating of the MG1 torque.
  • step S304: No the process proceeds to step S308.
  • step S305 the ECU 4 sets the MG1 torque to the maximum rated torque, and in step S306, performs clutch pressing control for gradually increasing the pressing force of the actuator 7b to gradually increase the engagement torque of the clutch 7a.
  • reaction torque corresponding to engine torque is output by first motor generator MG1 and clutch 7a.
  • step S307 the ECU 4 corrects the MG2 torque so as to cancel the reaction torque of the engagement torque according to the engagement torque.
  • step S310 the ECU 4 determines whether or not the engagement of the clutch 7a is completed. If it is determined that the engagement of the clutch 7a is not completed, the ECU 4 returns to the process of step S302, and the clutch 7a is engaged. If it is determined that the engagement has been completed, this control process ends.
  • step S302 when it is determined in step S302 described above that the vehicle operating point does not move to the second fixed transmission mode region Ar2 (step S302: No), or in step S304 described above, the engine torque When it is determined that the reaction torque is not greater than the maximum rated torque of the MG1 torque (step S304: No), the process proceeds to step S308.
  • step S308 the ECU 4 controls the first motor generator MG1 to control the MG1 torque so as to be the reaction torque corresponding to the engine torque, while gradually rotating the MG1 rotation speed to “0”. Performs number synchronization control.
  • step S309 the ECU 4 performs engagement control for engaging the clutch 7a. Thereafter, the ECU 4 proceeds to the processes of steps S307 and 310, and ends this control process.
  • the ECU 4 when the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the second fixed transmission mode region Ar2 due to a decrease in the accelerator opening, the ECU 4
  • the clutch 7a of the lock mechanism 7 is responsible for part of the reaction torque corresponding to the engine torque.
  • FIG. 21 is a diagram showing how the vehicle operating point moves in the fourth embodiment, where the vertical axis shows the accelerator opening and the horizontal axis shows the vehicle speed. Also in FIG. 21, continuously variable transmission mode area Ar3, fixed transmission mode areas Ar1 and Ar2 are shown, and vehicle operating points are indicated by white circles.
  • the accelerator opening increases, and the vehicle operating point moves from each of the fixed transmission mode regions Ar1 and Ar2 to the continuously variable transmission mode region Ar3. A shift mode switching control method in this case will be described.
  • FIG. 22A is a diagram showing how the engine operating point moves when the vehicle operating point moves from the first fixed transmission mode region Ar1 to the continuously variable transmission mode region Ar3, and the vertical axis shows the engine torque.
  • the horizontal axis indicates the engine speed.
  • 22A also shows the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax.
  • FIG. 22B shows how the nomograph changes at this time.
  • the engine operating point is moved along the arrow from the point Pes on the operating line Ls to the point Pec on the CVT operating line by increasing the engine speed and the engine torque.
  • the collinear diagram changes from the straight line As to the straight line Ac. That is, when the accelerator opening increases, the clutch 7a in the lock mechanism 7 is released, and the first motor generator MG1 is controlled to rotate normally from the state of the rotational speed “0”.
  • FIG. 23 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pes to the point Pec in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7, and driving force in order from the top.
  • the horizontal axis shows time.
  • the ECU 4 determines that the vehicle operating point moves from the first fixed transmission mode area Ar1 to the continuously variable transmission mode area Ar3 from the transmission mode determination map based on the accelerator opening, the ECU 4 turns on the lock command flag. To turn off (time T1). When it is confirmed that the lock command flag is turned off, the ECU 4 starts the shift mode switching control.
  • the ECU 4 quickly increases the MG1 torque while keeping the clutch 7a engaged from time T1 to time T2.
  • the ECU 4 completely releases the clutch 7a when the MG1 torque becomes equal to the reaction torque corresponding to the engine torque at time T2.
  • the time until the release of the clutch 7a can be shortened, and drivability can be improved.
  • the ECU 4 increases the engine torque and controls the first motor generator MG1 to control the MG1 torque so as to be equal to the reaction force torque corresponding to the engine torque. Raise from “0” in the forward rotation direction.
  • the engine rotation speed also increases as shown in FIG. In this way, the engine operating point moves from the point Pes to the point Pec in FIG. 22, and the driving force increases.
  • the ECU 4 corresponds to the engine torque.
  • the shift mode is switched from the fixed shift mode to the continuously variable transmission mode by performing control to release the clutch 7a.
  • FIG. 24A is a diagram showing how the engine operating point moves when the vehicle operating point moves from the second fixed transmission mode region Ar2 to the continuously variable transmission mode region Ar3, and the vertical axis shows the engine torque.
  • the horizontal axis indicates the engine speed.
  • 24A also shows the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax.
  • FIG. 24B shows how the nomograph changes at this time.
  • the engine operating point moves from the point Pes on the operating line Ls to the point Pec on the CVT operating line Lc along the arrow as the engine torque decreases and the engine speed increases. is doing.
  • the collinear diagram changes from the straight line As to the straight line Ac. That is, when the accelerator opening increases, the clutch 7a in the lock mechanism 7 is released, and the first motor generator MG1 is controlled to rotate normally from the state of the rotational speed “0”.
  • FIG. 25 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pes to the point Pec in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7, and driving force in order from the top.
  • the horizontal axis shows time.
  • the ECU 4 determines that the vehicle operating point moves from the second fixed transmission mode area Ar2 to the continuously variable transmission mode area Ar3 from the transmission mode determination map based on the accelerator opening, the ECU 4 turns on the lock command flag. To turn off (time T1). When it is confirmed that the lock command flag is turned off, the ECU 4 starts the shift mode switching control.
  • the ECU 4 performs control to gradually decrease the engine torque from the engine torque at the time T1 from the time T1 to the time T3. Further, the ECU 4 increases the MG1 torque to the maximum rated torque TKmgx from the time T1 to the time T2, and decreases the engagement torque in accordance with the increase in the MG1 torque. The ECU 4 maintains the MG1 torque at the maximum rated torque TKmgx from time T2 to T3, and further reduces the engagement torque in accordance with the decrease in engine torque. That is, the reaction force corresponding to the engine torque is handled by the first motor generator MG1 and the clutch 7a from time T1 to T3.
  • the ECU 4 controls the pressing force of the actuator 7b to increase the MG1 rotation speed in the forward rotation direction while decreasing the engagement torque.
  • the engine rotation speed increases as shown in FIG.
  • the driving force can be increased by taking the reaction torque corresponding to the engine torque between the first motor generator MG1 and the clutch 7a.
  • the engine torque decreases, and the reaction torque corresponding to the engine torque becomes equal to the maximum rated torque TKmgx of the MG1 torque. That is, at time T3, the first motor generator MG1 can independently handle the reaction force corresponding to the engine torque. Therefore, at this time, the ECU 4 controls the engagement torque to “0”, that is, completely releases the clutch 7a. As a result, it is possible to prevent the engine and the first motor generator MG1 from blowing up. Moreover, by doing in this way, the time until the release of the clutch 7a can be shortened, and drivability can be improved.
  • the ECU 4 may correct the MG2 torque so that the driving force becomes the required driving force according to the engagement torque. Thereby, with respect to the accelerator opening, the driving force can be increased with good responsiveness, and drivability can be improved.
  • the reaction force torque corresponding to the engine torque Is larger than the maximum rated torque of the MG1 torque, the ECU 4 controls the MG1 torque to be the maximum rated torque and also controls the pressing force of the clutch 7a.
  • the reaction torque corresponding to the engine torque becomes equal to the maximum rated torque TKmgx, the ECU 4 controls the release of the clutch 7a to switch the shift mode from the fixed shift mode to the continuously variable shift mode. .
  • the ECU 4 determines, based on the accelerator opening, whether the vehicle operating point advances from the fixed shift mode area Ar1 or Ar2 to the continuously variable shift mode area Ar3. Shift mode switching control corresponding to each case is performed.
  • step S401 the ECU 4 determines whether or not the clutch 7a of the lock mechanism 7 should be released based on the accelerator opening.
  • step S401: No the ECU 4 ends this control process and determines that the clutch 7a should be released. (Step S401: Yes), the process proceeds to Step S402.
  • step S402 the ECU 4 determines whether or not the vehicle operating point is located in the first fixed shift mode region Ar1 from the shift mode determination map.
  • step S402: Yes the ECU 4 proceeds to the process of step S403, and the vehicle operating point is in the first fixed transmission mode region Ar1.
  • step S402: No the process proceeds to step S407.
  • step S403 the ECU 4 performs engine control for increasing the engine torque, and in subsequent step S404, controls the MG1 torque so as to be equal to the reaction force torque corresponding to the engine torque.
  • step S405 the ECU 4 determines whether or not the MG1 torque has reached the reaction torque corresponding to the engine torque.
  • step S405: Yes the ECU 4 proceeds to the process of step S406, and the MG1 torque reaches the reaction torque corresponding to the engine torque. If it is determined that it is not present (step S405: No), the process proceeds to step S411.
  • step S406 the ECU 4 proceeds to the processing of step S410 after performing clutch pressing-off control for completely releasing the clutch 7a.
  • step S410 the ECU 4 performs MG2 torque compensation control for correcting the MG2 torque so that the driving force becomes the required driving force.
  • step S411 the ECU 4 determines whether or not the clutch 7a has been released. If it is determined that the clutch 7a has not been released, the process proceeds to step S402. If it is determined that the clutch 7a has been released, This control process ends.
  • step S402 when it is determined in step S402 described above that the vehicle operating point is not located in the first fixed shift mode region Ar1 (step S402: No), that is, the vehicle operating point is the second fixed shift mode. If it is determined to be in the mode, the process proceeds to step S407. In step S407, the ECU 4 performs engine control for reducing the engine torque, and the process proceeds to step S408.
  • step S408 the ECU 4 increases the MG1 torque to the maximum rated torque.
  • step S409 the ECU 4 decreases the pressing force of the actuator 7b to decrease the engagement torque in accordance with the decrease in the engine torque. In this way, the reaction torque corresponding to the engine torque is output by the first motor generator and the clutch 7a. Thereafter, the ECU 4 proceeds to the processes of steps S410 and 411, and ends this control process.
  • the ECU 4 when the vehicle operating point moves from the first fixed transmission mode region Ar1 to the continuously variable transmission mode region Ar3 due to an increase in the accelerator opening, The ECU 4 quickly increases the MG1 torque until it becomes equal to the reaction torque corresponding to the engine torque while keeping the clutch 7a engaged. By doing in this way, the time until the release of the clutch 7a can be shortened, and drivability can be improved.
  • the ECU 4 determines that the reaction torque corresponding to the engine torque is MG1 torque.
  • the first motor generator MG1 and the clutch 7a are allowed to receive the reaction torque until the maximum rated torque becomes equal. Thereby, a driving force can be raised.
  • the engine torque is set to the engine torque by the clutch 7a. It was supposed to output a part of the corresponding reaction force torque.
  • the clutch 7a is a clutch configured to be differentially rotatable, such as a wet multi-plate clutch, for example, and the ECU 4 adjusts the engagement torque generated in the clutch 7a to adjust the engine torque. A part of the corresponding reaction torque was output.
  • the ECU 4 changes the reaction torque corresponding to the engine torque to exceed the maximum rated torque of the first motor generator MG1 when switching the transmission mode from the continuously variable transmission mode to the fixed transmission mode.
  • the first motor generator MG1 is controlled so that MG1 torque exceeding the maximum rated torque can be temporarily output.
  • FIG. 27 is a diagram showing how the vehicle operating point moves in the fifth embodiment, where the vertical axis indicates the accelerator opening and the horizontal axis indicates the vehicle speed.
  • FIG. 27 shows a continuously variable transmission mode area Ar3 and fixed transmission mode areas Ar1 and Ar2.
  • the shift mode switching control method when the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the fixed transmission mode areas Ar1 and Ar2 will be described.
  • FIG. 28 (a) is a diagram showing the movement of the engine operating point when the vehicle speed increases and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the first fixed transmission mode region Ar1.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • FIG. 28A shows a CVT operation line Lc, an operation line Ls of the engine 1 in the case of the fixed speed change mode, an equal power line Lp, and a maximum engine torque operation line Lcmax.
  • FIG. 28B shows how the nomograph changes at this time.
  • the engine operating point is changed from the point Pec on the CVT operation line Lc to the point Pes on the operation line Ls on the constant power line Lp by decreasing the engine torque and increasing the engine speed. Is moving along.
  • the collinear diagram changes from the straight line Ac to the straight line As. That is, since the clutch 7a in the lock mechanism 7 is engaged, the first motor generator MG1 is controlled so as to become the rotational speed “0” from the negatively rotating state.
  • FIG. 29 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG. 29, in order from the top, the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7, and driving force.
  • the horizontal axis shows time.
  • the ECU 4 holds the relationship between the vehicle speed, the accelerator opening, and the shift mode shown in FIG. 27 in a memory as a shift mode determination map.
  • the lock command flag is turned on from off. (Time T1).
  • the ECU 4 starts the shift mode switching control. In this example, since the engine operating point moves along the equal power line Lp, the driving force is kept constant during the shift mode switching control.
  • ECU4 performs control which decreases engine torque gradually from engine torque at time T1 from time T1 to T2. Further, ECU 4 controls first motor generator MG1 from time T1 to time T2, and gradually reduces MG1 torque to be equal to the reaction force torque corresponding to engine torque, while negatively rotating MG1 rotation speed. It approaches “0” from the rotational speed of the hour. When the MG1 rotation speed approaches “0” from the rotation speed during the negative rotation, the engine rotation speed increases as shown in FIG. As a result, the engine operating point moves from the point Pec to the point Pes in FIG. The second motor generator MG2 is controlled so that the power balance is constant from time T1 to time T2.
  • the ECU 4 engages the clutch 7a when the MG1 rotation speed becomes “0” (time T2). After the clutch 7a is engaged, the ECU 4 sets the MG1 torque to “0” (time T3) and ends the shift mode switching control. By doing in this way, the synchronous control which makes MG1 rotation speed "0” by 1st motor generator MG1 with sufficient responsiveness can be performed, ensuring a driving force. In addition, since the second motor generator MG2 is controlled to have the power balance “0” by the equal power shift, the load on the HV battery 33 can be suppressed.
  • the ECU 4 reacts with the reaction torque corresponding to the engine torque.
  • MG1 torque is controlled so as to be equal to, and the shift mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • FIG. 30 (a) is a diagram showing how the engine operating point moves when the vehicle speed increases and the vehicle operating point moves from the continuously variable transmission mode region Ar3 to the second fixed transmission mode region Ar2.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • FIG. 30A shows a CVT operation line Lc, an operation line Ls of the engine 1 in the case of the fixed speed change mode, an equal power line Lp, and a maximum engine torque operation line Lcmax.
  • FIG. 30B shows how the nomograph changes at this time.
  • the engine operating point increases from the point Pec on the CVT operating line to the point Pes on the operating line Ls along the equal power line Lp as the engine torque increases and the engine speed decreases. Has moved.
  • the collinear diagram changes from the straight line Ac to the straight line As. That is, in order to engage the clutch 7a in the lock mechanism 7, the first motor generator MG1 is controlled so that the rotational speed becomes “0” from the state of normal rotation.
  • FIG. 31 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG2 torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7 and drive in order from the top.
  • the horizontal axis indicates time. In this example, since the engine operating point moves along the equal power line Lp, the driving force is kept constant during the shift mode switching control.
  • the lock command flag is turned on from off. (Time T1).
  • the ECU 4 starts the shift mode switching control.
  • the ECU 4 performs control to gradually increase the engine torque from the engine torque at the time T1 from the time T1 to the time T2.
  • the engine torque exceeds the reaction force upper limit engine torque TKec, that is, corresponds to the engine torque.
  • the reaction force torque to be exceeded exceeds the maximum rated torque TKmgx of the MG1 torque.
  • the ECU 4 increases the amount of current flowing through the first motor generator MG1 from time T1 to time T2, and temporarily outputs the MG1 torque exceeding the maximum rated torque TKmgx from the first motor generator MG1 (MG1 torque). up).
  • the ECU 4 performs control to limit the engine torque so that the engine torque becomes the torque that can be output by the first motor generator MG1 whose torque has been increased.
  • ECU 4 controls the engine torque so that the reaction torque is equal to or lower than the torque that can be output by first motor generator MG1 whose torque has been increased. Thereby, reaction torque corresponding to engine torque can be handled by first motor generator MG1, and engine blow-up can be prevented.
  • the ECU 4 controls the first motor generator MG1 to increase the MG1 torque so as to be equal to the reaction torque corresponding to the engine torque, while increasing the MG1 rotational speed from the rotational speed at the normal rotation to “0”. Move closer to. As the MG1 rotational speed decreases from time T1 to T2, the engine rotational speed also decreases as shown in FIG. 30 (b). In this way, the engine operating point moves from the point Pec to the point Pes in FIG. The second motor generator MG2 is controlled so that the power balance is constant from time T1 to time T2.
  • the ECU 4 engages the clutch 7a of the lock mechanism 7 when the MG1 rotation speed becomes “0” (time T2). Thereafter, the ECU 4 sets the MG1 torque to “0” and ends the shift mode switching control (time T3).
  • the MG1 torque is temporarily increased, the first motor generator MG1 can be protected as compared with the case where the MG1 torque is always increased. Further, by performing the MG1 torque increase, it is possible to perform the synchronous control to set the MG1 rotation speed to “0” by the first motor generator MG1 having good responsiveness while ensuring the driving force. Further, in this example, the second motor generator MG2 is controlled to achieve the power balance “0” by the equal power shift, and thus the load on the HV battery 33 can be suppressed.
  • the ECU 4 performs the MG1 torque-up control.
  • the transmission mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • FIG. 32A is a diagram showing how the engine operating point moves when the vehicle operating point moves from the continuously variable transmission mode area Ar3 to the second fixed transmission mode area Ar2, and the vertical axis shows the engine torque.
  • the horizontal axis indicates the engine speed.
  • FIG. 32A shows a CVT operation line Lc, an operation line Ls of the engine 1 in the case of the fixed speed change mode, an equal power line Lp, and a maximum engine torque operation line Lcmax.
  • FIG. 32B shows how the nomograph changes at this time.
  • the engine operating point increases from the point Pec on the CVT operating line Lc to the point Pes on the operating line Ls along the arrow by increasing the engine torque after the engine speed decreases. Has moved.
  • the alignment chart changes from the straight line Ac to the straight line As. That is, in order to engage the clutch 7a in the lock mechanism 7, the first motor generator MG1 is controlled so that the rotational speed becomes “0” from the state of normal rotation.
  • 33 and 34 show timing charts of the shift mode switching control when the engine operating point moves from the point Pec to the point Pes in FIG. 33 and 34
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG2 torque, MG1 torque, and engagement torque of the clutch 7a of the lock mechanism 7 in order from the top.
  • the driving force is shown, and the horizontal axis shows time.
  • the engine torque is the reaction force upper limit engine torque TKec.
  • the ECU 4 keeps the MG1 torque at the maximum rated torque TKmgx from time T1 to T2, and limits the engine torque to the reaction force upper limit engine torque TKec in order to prevent the engine from blowing up. Further, since the MG1 torque is held at the maximum rated torque TKmgx from the time T1 to the time T2 and the engagement torque cannot be controlled, the ECU 4 performs synchronous control of the MG1 rotation speed by controlling the engine rotation speed. Specifically, the ECU 4 reduces the engine speed from time T1 to time T2, thereby reducing the MG1 speed and approaching “0” as shown in FIG.
  • the MG1 rotational speed can be controlled synchronously while the MG1 torque is maintained at the maximum rated torque TKmgx.
  • the second motor generator MG2 is controlled so that the power balance is constant from time T1 to T2.
  • the ECU 4 engages the clutch 7a of the lock mechanism 7 when the MG1 rotation speed becomes “0” (time T2). Then, the ECU 4 sets the MG1 torque to “0” and increases the engine torque from time T2 to T3, and ends the shift mode switching control. By doing so, the engine operating point moves along the arrow from the point Pec to the point Pes in FIG. 32A, and the shift mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • the ECU 4 controls the second motor generator MG2 from time T1 to T2 so that the driving force becomes constant.
  • MG2 torque compensation control for controlling the MG2 torque is performed.
  • the MG1 torque is set to the maximum rated torque TKmgx from time T1 to time T2.
  • the decrease in the amount of power 33 can be suppressed.
  • the engine torque is set to the reaction force upper limit engine torque TKec, that is, the engine torque is controlled so as to satisfy the required driving force as much as possible. Therefore, when the MG2 torque compensation control is performed, the required MG2 torque is suppressed. That is, the MG2 torque compensation control can be minimized. Further, by determining in advance that the MG1 torque is always set to the maximum rated torque TKmgx, it is not necessary to perform cooperative control on the first motor generator MG1, and the control can be simplified.
  • the ECU 4 engages the clutch 7a when the MG1 rotation speed becomes “0” (time T2). Then, the ECU 4 increases the engine torque from time T2 to T3, and controls the second motor generator MG2 to decrease the MG2 torque so that the driving force becomes constant as the engine torque increases. (Time T3). This is because when the MG2 torque compensation is performed, the amount of power used by the second motor generator MG2 becomes larger than the amount of power charged in the HV battery 33, and the MG2 torque is not decreased in accordance with the increase in engine torque. This is because a shock may occur when the transmission mode is switched. As a result, the driving force can be kept constant. In this way, in the example shown in FIG. 34, the transmission mode is switched from the continuously variable transmission mode to the fixed transmission mode without causing a decrease in driving force.
  • the ECU 4 does not perform MG1 torque-up control.
  • the transmission mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • the ECU 4 further performs MG2 torque compensation control by the second motor generator MG2.
  • the ECU 4 determines whether the vehicle operating point advances from the continuously variable shift mode area Ar3 to the fixed shift mode area Ar1 or Ar2 based on the accelerator opening and the vehicle speed.
  • the shift mode switching control is performed according to each case. Further, when it is determined that the vehicle operating point advances from the continuously variable transmission mode area Ar3 to the second fixed transmission mode area Ar2, the ECU 4 determines whether or not the MG1 torque can be increased.
  • the ECU 4 When it is determined that the MG1 torque can be increased, the ECU 4 performs the shift mode switching control using the MG1 torque increase control, and when it is determined that the MG1 torque cannot be increased, the engine 4 Shift mode switching control is performed using torque limit control and MG2 torque compensation control.
  • step S501 the ECU 4 determines whether or not the clutch 7a of the lock mechanism 7 should be engaged based on the vehicle speed or the accelerator opening.
  • step S501: No the ECU 4 ends this control process and determines that the clutch 7a should be engaged.
  • Step S501: Yes the process proceeds to Step S502.
  • step S502 the ECU 4 determines whether or not the vehicle operating point moves to the first fixed shift mode region Ar1 using the shift mode determination map based on the vehicle speed or the accelerator opening. If the ECU 4 determines that the vehicle operating point moves to the first fixed transmission mode region Ar1 (step S502: Yes), the ECU 4 proceeds to the process of step S503, and the vehicle operating point enters the first fixed transmission mode region Ar1. If it is determined that the vehicle does not move, that is, the vehicle operating point moves to the second fixed speed change mode (step S503: No), the process proceeds to step S507.
  • step S503 the ECU 4 controls the engine torque.
  • step S504 the ECU 4 controls the first motor generator MG1 to control the MG1 torque so as to be equal to the reaction force torque corresponding to the engine torque, while bringing the MG1 rotation speed closer to “0”.
  • step S505 the ECU 4 determines whether or not the MG1 rotation speed is “0”, that is, whether or not the MG1 rotation speed synchronization control is completed, and if it is determined that the synchronization control is not completed. (Step S505: No), the process returns to Step S502, and if it is determined that the synchronization control is completed (Step S505: Yes), the process proceeds to Step S506. In step S506, the ECU 4 transmits a control signal to the lock mechanism 7 to engage the clutch 7a. Thereafter, the ECU 4 ends this control process.
  • step S502 determines in step S502 that the vehicle operating point is not in the first fixed transmission mode region Ar1, that is, the vehicle operating point is in the second fixed transmission mode region Ar2 (step S502: No)
  • the process proceeds to step S507, and it is determined whether or not the MG1 torque can be increased based on the SOC, the state of the inverter 31, the temperature of the first motor generator MG1 itself, and the like.
  • the ECU 4 detects the temperature of the first motor generator MG1 based on a detection signal from a temperature sensor attached to the first motor generator MG1, and when the temperature is equal to or lower than a predetermined temperature. It is determined that MG1 torque can be increased.
  • the predetermined temperature is set to a temperature at which the first motor generator MG1 does not break even when torque exceeding the maximum rated torque is temporarily output from the first motor generator MG1.
  • step S508 the ECU 4 performs control to limit the engine torque in accordance with the torque increase amount of the first motor generator MG1. That is, the ECU 4 performs control to limit the engine torque so that the engine torque corresponding to the torque that can be output by the first motor generator MG1 that has been increased in torque is output. Thereafter, the ECU 4 proceeds to the process of step S503.
  • step S507 determines in step S507 that the torque of the first motor generator MG1 cannot be increased (step S507: No)
  • step S509 the engine torque is increased to the reaction force upper limit engine. Limit to torque and keep MG1 torque at maximum rated torque.
  • step S510 the ECU 4 controls the engine speed so as to bring the MG1 speed close to “0” and perform engine speed synchronization control.
  • step S511 the ECU 4 controls the second motor generator MG2 to perform MG2 torque compensation control for controlling the MG2 torque so that the driving force becomes constant.
  • step S512 the ECU 4 determines whether or not the MG1 rotational speed is “0”, that is, whether or not the engine rotational speed synchronization control is completed, and when it is determined that the synchronous control is not completed. (Step S512: No), the process returns to Step S502, and if it is determined that the synchronization control is completed (Step S512: Yes), the process proceeds to Step S513.
  • step S513 the ECU 4 transmits a control signal to the lock mechanism 7 in step S506 to engage the clutch 7a.
  • step S514 the ECU 4 increases the engine torque.
  • step S515 the ECU 4 decreases the MG2 torque to “0” so that the driving force becomes constant as the engine torque increases. Thereafter, the ECU 4 ends this control process.
  • the ECU 4 determines whether the MG1 torque can be increased, If it is determined that it is possible, the shift mode switching control is performed using MG1 torque-up control. On the other hand, if it is determined that the MG1 torque cannot be increased, the ECU 4 limits the engine torque to the reaction force upper limit engine torque, holds the MG1 torque at the maximum rated torque, and performs the shift mode switching control. To do. By doing so, it is possible to prevent the engine from blowing up when the transmission mode is switched.
  • the ECU 4 limits the engine torque to the reaction force upper limit engine torque, and performs the MG2 torque compensation control by the second motor generator MG2 when the MG1 torque is held at the maximum rated torque. Thereby, the fall of driving force can be prevented.
  • FIG. 36 is a diagram showing how the vehicle operating point moves in the sixth embodiment, where the vertical axis indicates the accelerator opening and the horizontal axis indicates the vehicle speed.
  • FIG. 36 shows a continuously variable transmission mode area Ar3 and fixed transmission mode areas Ar1 and Ar2.
  • Wa1, Wa2, Wc1, and Wc2 in FIG. 36 the vehicle speed decreases or the accelerator opening increases, so that each of the fixed transmission mode regions Ar1 and Ar2 is continuously variable.
  • Wa1, Wa2, Wc1, and Wc2 in FIG. 36 the vehicle speed decreases or the accelerator opening increases, so that each of the fixed transmission mode regions Ar1 and Ar2 is continuously variable.
  • a shift mode switching control method when the vehicle operating point moves to the shift mode area Ar3 will be described.
  • the accelerator operation amount increases and the vehicle operating point moves from each of the fixed transmission mode regions Ar1 and Ar2 to the continuously variable transmission mode region Ar3.
  • FIG. 37 (a) is a diagram showing how the engine operating point moves when the accelerator opening increases and the vehicle operating point moves from the first fixed transmission mode region Ar1 to the continuously variable transmission mode region Ar3.
  • the vertical axis indicates the engine torque
  • the horizontal axis indicates the engine speed.
  • FIG. 37A shows the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax.
  • FIG. 37 (b) shows how the nomograph changes at this time.
  • the engine operating point is moved along the arrow from the point Pes on the operating line Ls to the point Pec on the CVT operating line Lc by increasing the engine torque and the engine speed. .
  • the collinear diagram changes from the straight line As to the straight line Ac. That is, after the clutch 7a in the lock mechanism 7 is released, the first motor generator MG1 is controlled to rotate forward from the rotational speed “0”.
  • FIG. 38 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pes to the point Pec in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG2 torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7 and drive in order from the top.
  • the horizontal axis indicates time.
  • the ECU 4 holds the relationship between the vehicle speed, the accelerator opening, and the shift mode shown in FIG. 36 in a memory or the like as a shift mode determination map.
  • the ECU 4 determines that the vehicle operating point moves from the first fixed transmission mode area Ar1 to the continuously variable transmission mode area Ar3 from the transmission mode determination map based on the accelerator opening, the ECU 4 turns on the lock command flag. To turn off (time T1). When it is confirmed that the lock command flag is turned off, the ECU 4 starts the shift mode switching control.
  • the ECU 4 obtains a required driving force based on the accelerator opening, and obtains an engine torque when the driving force becomes the required driving force. Further, at time T1, the ECU 4 performs control to increase the MG1 torque so as to be equal to the reaction torque corresponding to the engine torque, and releases the clutch 7a. Then, the ECU 4 performs control to increase the engine torque from the engine torque at the time T1 so that the driving force becomes the required driving force from the time T1 to the time T2. At this time, the ECU 4 controls the first motor generator MG1 to increase the MG1 rotation speed in the positive rotation direction while increasing the MG1 torque to be equal to the reaction force torque corresponding to the engine torque.
  • the engine rotation speed increases in the forward rotation direction, the engine rotation speed also increases as shown in FIG. By doing in this way, reaction force torque can be given by 1st motor generator MG1 with good responsiveness. Further, after time T1, the ECU 4 compensates the shortage with respect to the required driving force by increasing the MG2 torque.
  • the engine torque is controlled so that the driving force becomes the required driving force, the compensation by the MG2 torque can be minimized. By doing so, the engine operating point moves from the point Pes to the point Pec in FIG. 37A, and the driving force increases.
  • the ECU 4 performs release control for releasing the clutch 7a, engine torque control,
  • the shift mode is switched from the fixed shift mode to the continuously variable shift mode by the MG2 torque compensation control.
  • FIG. 39A is a diagram showing how the engine operating point moves when the vehicle operating point moves from the second fixed transmission mode region Ar2 to the continuously variable transmission mode region Ar3, and the vertical axis shows the engine torque.
  • the horizontal axis indicates the engine speed.
  • FIG. 39A shows a CVT operation line Lc, an operation line Ls of the engine 1 in the case of the fixed speed change mode, and a maximum engine torque operation line Lcmax.
  • FIG. 39B shows how the nomograph changes at this time.
  • the engine operating point moves from the point Pes on the operating line Ls to the point Pec on the CVT operating line Lc along the arrow as the engine torque decreases and the engine speed increases. is doing.
  • the alignment chart changes from the straight line As to the straight line Ac. That is, in order to engage the clutch 7a in the lock mechanism 7, the first motor generator MG1 is controlled to rotate normally from the rotational speed “0”.
  • FIG. 40 shows a timing chart of the shift mode switching control when the engine operating point moves from the point Pes to the point Pec in FIG.
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7, and driving force in order from the top.
  • the horizontal axis shows time.
  • the ECU 4 determines that the vehicle operating point moves from the second fixed transmission mode area Ar2 to the continuously variable transmission mode area Ar3 from the transmission mode determination map based on the accelerator opening, the ECU 4 turns on the lock command flag. To turn off (time T1). When it is confirmed that the lock command flag is turned off, the ECU 4 starts the shift mode switching control.
  • the ECU 4 outputs torque exceeding the maximum rated torque TKmgx from the first motor generator MG1 at time T1, and limits the engine torque according to the torque that can be output from the first motor generator MG1 increased in torque. . Thereafter, the ECU 4 releases the clutch 7a (time Ta). Thereby, it is possible to prevent the engine from blowing up when the clutch 7a is released.
  • the ECU 4 gradually decreases the engine torque from the engine torque at the time Ta from time Ta to T2, and controls the engine torque so as to become the reaction force upper limit engine torque TKec at time T2. Further, at this time, the ECU 4 controls the first motor generator MG1 to perform a control for gradually reducing the MG1 torque so as to be equal to the reaction force torque corresponding to the engine torque, while rotating the MG1 rotational speed in the forward direction. Raise in the direction. As the MG1 rotation speed increases in the forward rotation direction, the engine rotation speed also increases as shown in FIG. The ECU 4 gradually decreases the MG1 torque, and controls the MG1 torque so as to reach the maximum rated torque TKmgx at time T2.
  • the first motor generator MG1 can be protected as compared with the case where the MG1 torque increase is always performed. Further, by temporarily increasing the outputable MG1 torque, the first motor generator MG1 having good responsiveness can be provided with reaction force torque. In this way, the engine operating point moves from the point Pes to the point Pec in FIG. 39A, and the driving force increases.
  • the ECU 4 can increase the MG1 torque.
  • the shift mode is switched from the fixed shift mode to the continuously variable shift mode by performing MG1 torque increase control for increasing the torque that can be output as the MG1 torque.
  • FIG. 41 (a) is a diagram showing how the engine operating point moves when the vehicle operating point moves from the second fixed transmission mode region Ar2 to the continuously variable transmission mode region Ar3, and the vertical axis shows the engine torque.
  • the horizontal axis indicates the engine speed.
  • FIG. 41A shows the CVT operation line Lc, the operation line Ls of the engine 1 in the case of the fixed speed change mode, and the maximum engine torque operation line Lcmax.
  • FIG. 41B shows how the nomograph changes at this time.
  • the engine operating point is moved along the arrow from the point Pes on the CVT operation line Lc to the point Pec on the operation line Ls by decreasing the engine torque and increasing the engine speed. is doing.
  • the collinear diagram changes from the straight line As to the straight line Ac. That is, in order to engage the clutch 7a in the lock mechanism 7, the first motor generator MG1 is controlled to rotate normally from the rotational speed “0”.
  • FIG. 42 and 43 show timing charts of the shift mode switching control when the engine operating point moves from the point Pes to the point Pec in FIG. 42 and 43
  • the vertical axis indicates the vehicle speed, accelerator opening, lock command flag, engine speed, MG1 speed, engine torque, MG2 torque, MG1 torque, engagement torque of the clutch 7a of the lock mechanism 7 in order from the top.
  • the driving force is shown, and the horizontal axis shows time.
  • the ECU 4 determines that the vehicle operating point moves from the second fixed transmission mode area Ar2 to the continuously variable transmission mode area Ar3 from the transmission mode determination map based on the accelerator opening, the ECU 4 turns on the lock command flag. To turn off (time T1). When it is confirmed that the lock command flag is turned off, the ECU 4 starts the shift mode switching control.
  • ECU4 sets MG1 torque to maximum rated torque TKmgx at time T1.
  • the ECU 4 decreases the engine torque from time T1 to Ta until it reaches a magnitude that allows the first motor generator MG1 to bear the reaction force torque, that is, until the reaction force upper limit engine torque TKec is reached.
  • the ECU 4 releases the clutch 7a at the time Ta when the engine torque is reduced and the first motor generator MG1 can bear the reaction torque. Thereby, it is possible to prevent the engine from blowing up when the clutch 7a is released.
  • the ECU 4 limits the engine torque to the reaction force upper limit engine torque TKec from the time Ta to T2, and maintains the MG1 torque at the maximum rated torque TKmgx for engine rotation.
  • the MG1 rotation speed is increased in the positive rotation direction by increasing the number.
  • the engine operating point moves from the point Pes to the point Pec in FIG.
  • second motor generator MG2 is controlled so that the power balance is constant from time Ta to T2. In this way, the transmission mode is switched from the continuously variable transmission mode to the fixed transmission mode.
  • the ECU 4 controls the second motor generator MG2 to increase the MG2 torque from time T1 to time Ta, thereby increasing the MG2 torque.
  • the MG2 torque assist control for reducing the engine torque is performed in accordance with the increase in the engine torque. Specifically, the ECU 4 increases the MG2 torque according to the maximum rated torque of the second motor generator MG2 or the amount of electric power that can be taken out by the HV battery 33, and the driving force according to the increase amount of the MG2 torque.
  • the engine torque is reduced so that becomes the required driving force. As a result, a decrease in driving force can be prevented, and drivability can be improved.
  • the MG1 torque is set to the maximum rated torque TKmgx.
  • the amount of power generated by first motor generator MG1 can be increased, and HV battery by performing MG2 torque assist control.
  • the decrease in the amount of power 33 can be suppressed.
  • the ECU 4 releases the clutch 7a when the engine torque reaches the reaction force upper limit engine torque TKec (time Ta). As a result, it is possible to prevent a decrease in driving force and improve drivability.
  • the ECU 4 performs MG1 torque-up control. Instead, the transmission mode is switched from the fixed transmission mode to the continuously variable transmission mode by limiting the engine torque to the reaction force upper limit engine torque. In this shift mode switching control, the ECU 4 performs torque assist control by the second motor generator MG2. Thereby, the fall of a driving force can be prevented.
  • the ECU 4 determines whether the vehicle operating point advances from the fixed shift mode area Ar1 or Ar2 to the continuously variable shift mode area Ar3 based on the accelerator opening or the vehicle speed.
  • the shift mode switching control is performed according to each case. Further, when it is determined that the vehicle operating point advances from the second fixed transmission mode region Ar2 to the continuously variable transmission mode region Ar3, the ECU 4 determines whether or not the MG1 torque can be increased.
  • the ECU 4 When it is determined that the MG1 torque can be increased, the ECU 4 performs the shift mode switching control using the MG1 torque increase control, and when it is determined that the MG1 torque cannot be increased, the MG2 Shift mode switching control is performed using compensation control.
  • step S601 the ECU 4 determines whether or not the clutch 7a of the lock mechanism 7 should be released based on the accelerator opening or the vehicle speed.
  • step S601: No the ECU 4 ends this control process and determines that the clutch 7a should be released. (Step S601: Yes), the process proceeds to Step S602.
  • step S602 the ECU 4 determines whether or not the vehicle operating point is located in the first fixed shift mode region Ar1 using the shift mode determination map based on the accelerator opening or the vehicle speed.
  • step S602: Yes the ECU 4 proceeds to the process of step S603, and the vehicle operating point is in the first fixed transmission mode region Ar1. If it is determined that the vehicle operating point is not located, that is, the vehicle operating point is located in the second fixed speed change mode (step S02: No), the process proceeds to step S609.
  • step S603 the ECU 4 controls the engine torque, and in step S604, controls the MG1 torque so as to be equal to the reaction torque corresponding to the engine torque.
  • step S605 the ECU 4 compensates the shortage with respect to the required driving force by correcting the MG2 torque.
  • step S606 the ECU 4 determines whether or not the MG1 torque has reached the reaction torque corresponding to the engine torque. When it is determined that the MG1 torque has reached the reaction torque corresponding to the engine torque (step S606: Yes), the ECU 4 performs control to release the clutch 7a (step S607), and then performs normal travel control. (Step S608), this control process is terminated. In step S606, when the ECU 4 determines that the MG1 torque has not reached the reaction torque corresponding to the engine torque (step S606: No), the ECU 4 returns to the process of step S602.
  • step S602 determines in step S602 that the vehicle operating point is not located in the first fixed transmission mode region Ar1, that is, the vehicle operating point is located in the second fixed transmission mode region Ar2 (step S602). : No)
  • step S609 it is determined whether or not the MG1 torque can be increased using the same determination method as described in the flowchart (FIG. 35) of the fifth embodiment.
  • step S609: Yes the ECU 4 proceeds to the process of step S610 after performing the MG1 torque increase control, and determines that the MG1 torque cannot be increased. In that case (step S609: No), the process proceeds to step S611.
  • step S610 the ECU 4 performs control to limit the engine torque in accordance with the torque increase amount of the first motor generator MG1. That is, the ECU 4 performs control to limit the engine torque so that the engine torque corresponding to the maximum torque that can be output by the first motor generator MG1 whose torque has been increased is output. Thereafter, the ECU 4 proceeds to the process of step S603.
  • step S609 determines whether the MG1 torque cannot be increased (step S609: No)
  • the process proceeds to step S611, and the MG1 torque is controlled to the maximum rated torque.
  • step S612 the ECU 4 controls the second motor generator MG2 to perform MG2 torque assist control for increasing the MG2 torque.
  • step S613 the ECU 4 decreases the engine torque according to the increase amount of the MG2 torque. Thereafter, the ECU 4 proceeds to the process of step S606, and ends this control process through the processes of steps S607 to S608.
  • the ECU 4 when the transmission mode is switched from the fixed transmission mode to the continuously variable transmission mode, the ECU 4 can increase the MG1 torque as in the fifth embodiment. If it is determined that it is possible, the shift mode switching control is performed using the MG1 torque-up control. When it is determined that the MG1 torque cannot be increased, the ECU 4 limits the engine torque to the reaction force upper limit engine torque, and performs the shift mode switching control while maintaining the MG1 torque at the maximum rated torque. By doing so, it is possible to prevent the engine from blowing up when the transmission mode is switched. When the engine torque is held at the reaction force upper limit engine torque and the MG1 torque is held at the maximum rated torque, the ECU 4 performs MG2 torque assist control. Thereby, the fall of a driving force can be prevented.
  • the power distribution mechanism 20 is a single pinion type planetary gear mechanism, but is not limited thereto. Instead, it may be a double pinion type planetary gear mechanism. That is, the carrier C1 is configured to mesh with the inner pinion gear configured to mesh with the sun gear S1 and the inner pinion gear and the ring gear R1 instead of holding the pinion gear CP1 meshed with both the ring gear R1 and the sun gear S1. It is also possible to hold the outer pinion gear. Further, the pinion gear CP1 may be a pinion gear with a step.
  • the present invention can be applied even to a mechanism that realizes the fixed transmission mode by fixing any one of the rotating elements of the power distribution mechanism 20 other than the sun gear S1 with a brake. .
  • the present invention can be used for a hybrid vehicle configured to be able to switch between the continuously variable transmission mode and the fixed transmission mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 ハイブリッド車両の制御装置は、アクセル開度及び車速によって規定され、無段変速モード領域と固定変速モード領域とが設定されたマップと、マップ上における車両動作点の移動に応じて変速モードの切り換えを行う制御手段とを有する。固定変速モード領域は、反力トルクがモータジェネレータの最大定格トルク以下となる第1の固定変速モード領域と、反力トルクが最大定格トルクよりも大きくなる第2の固定変速モード領域とより構成される。制御手段は、第1又は第2の固定変速モード領域のいずれの領域に車両動作点が位置又は移動するかに応じて、変速モードの切り換え制御方法を異ならせる。

Description

ハイブリッド車両の制御装置
 本発明は、ハイブリッド車両に好適な制御装置に関する。
 内燃機関(エンジン)に加えて、電動機や発電機として機能するモータジェネレータを備えるハイブリッド車両が知られている。ハイブリッド車両では、内燃機関を可及的に高効率状態で運転する一方、駆動力やエンジンブレーキの過不足をモータジェネレータで補う。
 このようなハイブリッド車両の一例として、以下の特許文献1に示すように、無段変速モードと固定変速モードとを切り替えて運転することが可能なように構成されたハイブリッド車両がある。このハイブリッド車両では、エンジンと発電機と駆動軸とが遊星歯車機構の各回転要素に連結されるとともに、発電機のロータにはブレーキが接続され、駆動軸には電動機が接続されている。ブレーキが解放された状態では、エンジントルクに対応する反力トルクをモータジェネレータに出力させ、発電機の回転数を連続的に変化させる。これにより、エンジンの回転数が連続的に変化し、無段変速モードでの運転が実行される。一方、ブレーキが係合された状態では、発電機の回転が固定され、遊星歯車機構における1つの回転要素の回転が阻止される。これにより、変速比が固定となり、固定変速モードでの運転が実行される。特許文献1には、アクセル開度が小さい場合には、ブレーキを係合状態として、発電機を固定し(即ち、固定変速モードとし)、アクセル開度が大きい場合には、ブレーキを解放状態として(即ち無段変速モードとして)、アクセル開度に比例して発電機の回転数を上げ、発電量を増加させる技術が記載されている。
特開平9-156387号公報
 ところで、特許文献1では、中速度から高速度域において無段変速モードとされるが、この場合において、エンジントルクに対応する反力トルクが発電機の出力可能なトルク上限を超えるような場合については考慮されていない。このような場合において、ブレーキを係合すると、エンジン回転数が急激に上昇する、いわゆる吹き上がりが発生する可能性がある。しかしながら、変速モード切り換え制御を行う際において、エンジントルクに対応する反力トルクをモータジェネレータが出力可能か否かを予め明確にすることは難しい。また、エンジントルクに対応させた反力トルクをモータジェネレータに常に出力させようとすると、発電機の小型化を図ることができない。
 本発明は、上記のような課題を解決するためになされたものであり、変速モード切り換え制御を行う際において、エンジントルクに対応する反力トルクをモータジェネレータが出力可能か否かを予め明確にし、変速モード切り換えの際におけるエンジンの吹き上がりを防止することが可能なハイブリッド車両の制御装置を提供することを課題とする。
 本発明の1つの観点では、エンジンと、モータジェネレータと、前記エンジン及び前記モータジェネレータが連結された動力分配機構と、前記動力分配機構からの出力が伝達される駆動軸と、前記動力分配機構におけるいずれかの回転要素と連結され、前記回転要素を固定又は解放する係合機構と、を有するハイブリッド車両に適用されるハイブリッド車両の制御装置は、アクセル開度及び車速によって規定され、無段変速モード領域と固定変速モード領域とが設定されたマップと、前記マップ上において、前記固定変速モード領域から前記無段変速モード領域へと車両動作点が移動する場合には、前記係合機構により前記回転要素を解放して、前記エンジンのエンジントルクに対応する反力トルクを前記モータジェネレータに出力させる無段変速モードに変速モードを切り換え、前記無段変速モード領域から前記固定変速モード領域へと車両動作点が移動する場合には、前記係合機構により前記回転要素を固定して、前記反力トルクを前記係合機構に受け持たせる固定変速モードに変速モードを切り換える制御手段と、を備え、前記固定変速モード領域は、前記反力トルクが前記モータジェネレータの最大定格トルク以下となる第1の固定変速モード領域と、前記反力トルクが前記最大定格トルクよりも大きくなる第2の固定変速モード領域とより構成され、前記制御手段は、前記第1又は第2の固定変速モード領域のいずれの領域に前記車両動作点が移動又は位置するかに応じて、変速モードの切り換え制御方法を異ならせる。
 上記のハイブリッド車両の制御装置は、エンジンと、モータジェネレータと、エンジン及びモータジェネレータが連結された動力分配機構と、動力分配機構からの出力が伝達される駆動軸と、動力分配機構におけるいずれかの回転要素と連結され、前記回転要素を固定又は解放する係合機構と、を有するハイブリッド車両に適用される。ハイブリッド車両の制御装置は、例えばECU(Electronic Control Unit)などの制御手段と、アクセル開度及び車速によって規定され、無段変速モード領域と固定変速モード領域とが設定されたマップとを有する。制御手段は、当該マップ上において、固定変速モード領域から無段変速モード領域へと車両動作点が移動する場合には、前記係合機構により前記回転要素を解放して、エンジンのエンジントルクに対応する反力トルクをモータジェネレータに出力させる無段変速モードに変速モードを切り換え、無段変速モード領域から固定変速モード領域へと車両動作点が移動する場合には、前記係合機構により前記回転要素を固定して、反力トルクを係合機構に受け持たせる固定変速モードに変速モードを切り換える。ここで、係合機構は、例えば湿式多板クラッチなどのクラッチである。固定変速モード領域は、反力トルクがモータジェネレータの最大定格トルク以下となる第1の固定変速モード領域と、反力トルクが最大定格トルクよりも大きくなる第2の固定変速モード領域とより構成される。制御手段は、第1又は第2の固定変速モード領域のいずれの領域に車両動作点が位置又は移動するかに応じて、変速モードの切り換え制御方法を異ならせる。このようにすることで、変速モード切り換え制御を行う際に、エンジントルクに対応する反力トルクをモータジェネレータが出力可能か否かを予め明確にした体系的な制御を行うことが可能となる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記反力トルクの少なくとも一部を出力することが可能な補助手段を備え、前記制御手段は、変速モードの切り換えの際において、前記車両動作点が前記第2の固定変速モード領域に移動又は位置し、かつ、前記回転要素が解放されている場合には、前記反力トルクの少なくとも一部を前記補助手段により出力させる。これにより、変速モード切り換えの際において、エンジンの吹き上がりを防止することができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記制御手段は、変速モードの切り換えの際において、前記補助手段により前記反力トルクの一部が出力されている場合には、前記モータジェネレータより出力されるトルクを最大定格トルクに設定する。これにより、係合機構への負荷を軽減することができるとともに、モータジェネレータの発電量を大きくすることができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記制御手段は、アクセル開度又は車速の上昇により、前記無段変速モード領域から前記第2の固定変速モード領域へと前記車両動作点が移動する場合には、前記モータジェネレータより出力されるトルクを前記最大定格トルクに設定する。これにより、係合機構への負荷の軽減、モータジェネレータの発電量の増大を図ることができるとともに、制御の簡素化を図ることができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記ハイブリッド車両は、前記モータジェネレータにより発電された電力により、前記駆動軸にトルクを出力するアシストモータジェネレータを備え、前記制御手段は、変速モードの切り換えの際において、前記駆動軸の駆動力が要求駆動力となるように、前記アシストモータジェネレータより出力されるトルクを制御する。これにより、変速モードの切り換えの際に発生するショックを抑えることができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記補助手段は、互いに係合する係合要素が差動回転可能に構成された前記係合機構である。これにより、係合機構に発生する係合トルクを連続的に変化させることができ、エンジントルクに対応する反力トルクを当該係合機構に受け持たせることができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記制御手段は、アクセル開度又は車速の上昇により、前記無段変速モード領域から前記第2の固定変速モード領域へと前記車両動作点が移動する場合には、前記係合機構により出力される係合トルクに応じて、前記駆動軸の駆動力が一定となるように前記エンジントルクを制御する。これにより、係合機構の係合時におけるショックを低減することができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記制御手段は、アクセル開度の上昇により、前記第1の固定変速モード領域から無段変速モード領域へと車両動作点が移動する場合には、前記モータジェネレータにより前記反力トルクを出力させる。このようにすることで、係合機構の解放完了までの時間を短縮することができ、ドライバビリティを向上させることができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記制御手段は、アクセル開度の上昇により、前記第2の固定変速モード領域から前記無段変速モード領域へと前記車両動作点が移動する場合には、前記モータジェネレータと前記補助手段とにより前記反力トルクを出力させる。これにより、駆動力を上昇させることができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記補助手段は、前記モータジェネレータの出力可能なトルクを、前記最大定格トルクよりも一時的に大きくトルクアップするトルクアップ手段であり、前記制御手段は、前記無段変速モード領域から前記第2の固定変速モード領域へと前記車両動作点が移動する場合には、前記トルクアップ手段により、前記モータジェネレータの出力可能なトルクをトルクアップするとともに、トルクアップされた前記モータジェネレータによる出力可能なトルクに応じて、前記エンジントルクを制限する。ここで、トルクアップ手段は、例えばECUである。これにより、駆動力を確保しつつ、応答性が良いモータジェネレータにより回転数同期制御を行うことができる。
 上記のハイブリッド車両の制御装置の他の一態様は、前記制御手段は、前記第2の固定変速モード領域から前記無段変速モード領域へと前記車両動作点が移動する場合において、前記アシストモータジェネレータより出力されるアシストトルクを上昇させ、前記アシストトルクの上昇量に応じて、前記駆動軸の駆動力が要求駆動力となるように、前記エンジントルクを低下させる。これにより、変速モード切り換え時における駆動力の低下を防ぐことができる。
本実施形態に係るハイブリッド車両の概略構成を示す図である。 無段変速モード及び固定変速モードにおける共線図の一例を示す図である。 第1実施形態に係る車両動作点の移動の様子を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合における変速モード切り換え制御を示すタイミングチャートである。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合における変速モード切り換え制御のタイミングチャートを示す図である。 第1実施形態に係る変速モード切換処理を示すフローチャートである。 第2実施形態に係る車両動作点の移動の様子を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合における変速モード切り換え制御を示すタイミングチャートである。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合における変速モード切り換え制御のタイミングチャートを示す図である。 第2実施形態に係る変速モード切換処理を示すフローチャートである。 第3実施形態に係る車両動作点の移動の様子を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合における変速モード切り換え制御を示すタイミングチャートである。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合における変速モード切り換え制御のタイミングチャートを示す図である。 第3実施形態に係る変速モード切換処理を示すフローチャートである。 第4実施形態に係る車両動作点の移動の様子を示す図である。 車両動作点が第1の固定変速モード領域から無段変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が第1の固定変速モード領域から無段変速モード領域へと進む場合における変速モード切り換え制御を示すタイミングチャートである。 車両動作点が第2の固定変速モード領域から無段変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が第2の固定変速モード領域から無段変速モード領域へと進む場合における変速モード切り換え制御のタイミングチャートを示す図である。 第4実施形態に係る変速モード切換処理を示すフローチャートである。 第5実施形態に係る車両動作点の移動の様子を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第1の固定変速モード領域へと進む場合における変速モード切り換え制御を示すタイミングチャートである。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合にMG1トルクアップを行ったときのエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合にMG1トルクアップを行ったときの変速モード切り換え制御のタイミングチャートである。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合にMG1トルクアップを行わないときのエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合にMG1トルクアップを行わないときの変速モード切り換え制御のタイミングチャートである。 車両動作点が無段変速モード領域から第2の固定変速モード領域へと進む場合にMG1トルクアップを行わないときの変速モード切り換え制御のタイミングチャートである。 第5実施形態に係る変速モード切換処理を示すフローチャートである。 第6実施形態に係る車両動作点の移動の様子を示す図である。 車両動作点が第1の固定変速モード領域から無段変速モード領域へと進む場合におけるエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が第1の固定変速モード領域から無段変速モード領域へと進む場合における変速モード切り換え制御を示すタイミングチャートである。 車両動作点が第2の固定変速モード領域から無段変速モード領域へと進む場合にMG1トルクアップを行ったときのエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が第2の固定変速モード領域から無段変速モード領域へと進む場合にMG1トルクアップを行ったときの変速モード切り換え制御のタイミングチャートである。 車両動作点が第2の固定変速モード領域から無段変速モード領域へと進む場合にMG1トルクアップを行わないときのエンジン動作点の移動及び共線図の変化を示す図である。 車両動作点が第2の固定変速モード領域から無段変速モード領域へと進む場合にMG1トルクアップを行わないときの変速モード切り換え制御のタイミングチャートである。 車両動作点が第2の固定変速モード領域から無段変速モード領域へと進む場合にMG1トルクアップを行わないときの変速モード切り換え制御のタイミングチャートである。 第6実施形態に係る変速モード切換処理を示すフローチャートである。
符号の説明
 MG1、MG2 モータジェネレータ
 1 エンジン
 7 ロック機構
 20 動力分配機構
 4 ECU
 以下、図面を参照して本発明の好適な実施の形態について説明する。
 [装置構成]
 図1に各実施形態に係る制御装置を適用したハイブリッド車両の概略構成を示す。図1の例は、機械分配式2モータ型と称されるハイブリッド車両であり、エンジン(内燃機関)1、第1のモータジェネレータMG1、第2のモータジェネレータMG2、動力分配機構20、を備える。動力源に相当するエンジン1と、第1のモータジェネレータMG1とが動力分配機構20に連結されている。動力分配機構20の駆動軸3には、駆動軸3のトルク(駆動力)又はブレーキ力のアシストを行うための動力源である第2のモータジェネレータMG2が連結されている。さらに、駆動軸3は最終減速機8を介して左右の駆動輪9に連結されている。第1のモータジェネレータMG1と第2のモータジェネレータMG2とは、バッテリ、インバータ、又は適宜のコントローラ(図1参照)を介して、もしくは直接的に電気的に接続され、第1のモータジェネレータMG1で生じた電力で第2のモータジェネレータMG2を駆動するように構成されている。
 エンジン1は燃料を燃焼して動力を発生する熱機関であり、ディーゼルエンジン、ガソリンエンジンなどが挙げられる。第1のモータジェネレータMG1はエンジン1からトルクを受けて回転することにより主として発電を行うものであり、発電に伴うトルクの反力が作用する。第1のモータジェネレータMG1の回転数を制御することにより、エンジン1のエンジン回転数が連続的に変化する。このような変速モードを無段変速モードという。従って、第1のモータジェネレータMG1が本発明におけるモータジェネレータとして機能する。
 第2のモータジェネレータMG2は、駆動力又はブレーキ力を補助(アシスト)する装置である。駆動力をアシストする場合、第2のモータジェネレータMG2は電力の供給を受けて電動機として機能する。一方、ブレーキ力をアシストする場合には、第2のモータジェネレータMG2は、駆動輪9から伝達されるトルクにより回転させられて電力を発生する発電機として機能する。従って、第2のモータジェネレータMG2が本発明におけるアシストモータジェネレータとして機能する。
 動力分配機構20は、いわゆるシングルピニオン型の遊星歯車機構であり、リングギヤR1、キャリアC1、サンギヤS1、を備える。キャリアC1は、リングギヤR1とサンギヤS1との両方に噛み合っているピニオンギヤCP1を保持している。
 エンジン1の出力軸2は第1の遊星歯車機構のキャリアC1に連結されている。第1のモータジェネレータMG1のロータ11の一端は第1の遊星歯車機構のサンギヤS1に連結されている。リングギヤR1は駆動軸3に連結されている。
 第1のモータジェネレータMG1のロータ11の他端はロック機構7に連結されている。ロック機構7は、クラッチ7a、アクチュエータ7b、を有する。クラッチ7aは、互いに係合する一対の係合要素を有している。一対の係合要素のうち、一方の係合要素はケースなどに固定され、他方の係合要素は第1のモータジェネレータMG1のロータ11に連結されている。ロック機構7は、アクチュエータ7bを用いてクラッチ7aを係合及び解放することが可能に構成されている。具体的には、アクチュエータ7bは、例えば油圧による押圧力によりクラッチ7aを係合する。ロック機構7は、クラッチ7aを係合することにより、第1のモータジェネレータMG1のロータ11を固定し、動力分配機構20のサンギヤS1を固定する。また、ロック機構7は、クラッチ7aの係合を解放することにより、第1のモータジェネレータMG1のロータ11を解放し、動力分配機構20のサンギヤS1を解放する。つまり、クラッチ7aは、動力分配機構20のサンギヤS1を固定するブレーキとして機能する。ロック機構7は、ECU4から送信された制御信号Sig5に基づいて、アクチュエータ7bを制御することにより、クラッチ7aの係合/解放を制御する。
 ロック機構7がクラッチ7aを解放している状態では、第1のモータジェネレータMG1の回転数を連続的に変化させることによりエンジン1のエンジン回転数が連続的に変化し、無段変速モードが実現される。一方、ロック機構7がクラッチ7aを係合している状態では、動力分配機構20により決定される変速比がオーバードライブ状態(即ち、エンジン1のエンジン回転数が駆動軸3の回転数より小さくなる状態)に固定され、固定変速モードが実現される。
 電源ユニット30は、インバータ31、コンバータ32、HVバッテリ33及びコンバータ34を備える。第1のモータジェネレータMG1は電源線37によりインバータ31に接続されており、第2のモータジェネレータMG2は電源線38によりインバータ31に接続されている。また、インバータ31はコンバータ32に接続され、コンバータ32はHVバッテリ33に接続されている。さらに、HVバッテリ33はコンバータ34を介して補機バッテリ35に接続されている。
 インバータ31は、モータジェネレータMG1及びMG2との間で電力の授受を行う。モータジェネレータの回生時には、インバータ31はモータジェネレータMG1及びMG2が回生により発電した電力を直流に変換し、コンバータ32へ供給する。コンバータ32は、インバータ31から供給される電力を電圧変換し、HVバッテリ33を充電する。一方、モータジェネレータの力行時には、HVバッテリ33から出力される直流電力はコンバータ32により昇圧されてインバータ31へ供給され、電源線37又は38を介してモータジェネレータMG1又はMG2へ供給される。
 HVバッテリ33の電力はコンバータ34により電圧変換されて補機バッテリ35に供給され、各種の補機の駆動に使用される。
 インバータ31、コンバータ32、HVバッテリ33及びコンバータ34の動作はECU4により制御されている。ECU4は制御信号Sig4を送信することにより、電源ユニット30内の各要素の動作を制御する。また、電源ユニット30内の各要素の状態などを示す必要な信号は制御信号Sig4としてECU4に供給される。具体的には、HVバッテリ33のバッテリ残存容量を示すSOC(State Of Charge)及びバッテリの入出力制限値などは制御信号Sig4としてECU4に供給される。
 ECU4は、エンジン1、第1のモータジェネレータMG1及び第2のモータジェネレータMG2との間で制御信号Sig1~Sig3を送受信することにより、それらを制御し、ロック機構7に制御信号Sig5を送信することにより、ロック機構7を制御する。例えば、ECU4は、図示しないアクセルペダルからの制御信号に基づいて、アクセル開度を検出して要求駆動力を求め、駆動力が当該要求駆動力となるように、エンジン1、第1のモータジェネレータMG1及び第2のモータジェネレータMG2を制御する。また、ECU4は、図示しない車速センサからの検出信号に基づいて検出された車速と、図示しないクランク角センサからの検出信号に基づいて検出されたエンジン回転数とに基づいて、ロック機構7を制御する。従って、ECU4は、本発明における制御手段として機能する。
 次に、図2を参照して、無段変速モード及び固定変速モードにおけるハイブリッド車両の動作状態について説明する。図2は、無段変速モード及び固定変速モードにおける共線図の一例を示している。図2(a)、(b)において、上下方向は回転数に対応しており、上方向が正回転に対応し、下方向が負回転に対応する。また、図2(a)、(b)において、上方向に向かうトルクは正トルクに対応し、下方向に向かうトルクは負トルクに対応する。
 図2(a)における直線A1a、A1b、A1cは無段変速モードにおける共線図の一例を示している。無段変速モードの場合には、エンジン1のエンジントルクTKEに対応する反力トルクが、第1のモータジェネレータMG1よりトルクTK1として出力される。なお、ここで、図2(a)より分かるように、エンジントルクTKEは正トルクとなっており、トルクTK1は負トルクとなっている。なお、トルクTK2は、第2のモータジェネレータMG2より出力されるトルクを示している。無段変速モードでは、第1のモータジェネレータMG1の回転数を増減変化させることにより、エンジン1のエンジン回転数を連続的に制御することが可能である。駆動軸3の回転数がN1であるとした場合において、例えば、第1のモータジェネレータMG1の回転数を白丸m1、m2、m3と順次変化させた場合には、エンジン1のエンジン回転数は、白丸Ne1(>N1)、Ne2(=N1)、Ne3(<N1)と順次変化する。つまり、エンジン1のエンジン回転数は、駆動軸3の回転数よりも高い値、等しい値及び低い値に順次変化する。このとき、第1のモータジェネレータMG1は発電し、インバータ31を介して、駆動軸3のアシストを行う第2のモータジェネレータMG2に電力を供給する。つまり、無段変速モードでは、エンジン1からの出力は、動力分配機構20を介して駆動軸3に直接伝達されるルートと、第1のモータジェネレータMG1から駆動軸3のアシストを行う第2のモータジェネレータMG2へ電気的に伝達されるルートと、の2つのルートで駆動軸3へ伝達される。
 図2(b)における直線A2は固定変速モードにおける共線図の一例を示している。固定変速モードの場合には、ロック機構7が第1のモータジェネレータMG1のロータ11を固定するとともにサンギヤS1を固定している状態となるため、動力分配機構20により決定される変速比がオーバードライブ状態(即ち、エンジン1のエンジン回転数Ne4が駆動軸3の回転数N1より小さくなる状態)に固定される。このとき、ロック機構7のクラッチ7aが、エンジン1のエンジントルクに対応する反力トルクを受け持つこととなる。第1のモータジェネレータMG1は発電機及び電動機のいずれとしても機能しないため、第1のモータジェネレータMG1から第2のモータジェネレータMG2へは電力が供給されない。従って、固定変速モードでは、エンジン1からの出力は、動力分配機構20を介して駆動軸3に直接伝達されるルートでのみ、駆動軸3へ伝達される。
 次に、本発明の変速モード切り換え制御方法について具体的に説明する。図3は、車速及びアクセル開度で規定されたマップ上における車両の動作点(車両動作点)の移動の様子を示す図であり、縦軸がアクセル開度を示し、横軸が車速を示している。車両動作点は白丸で示されている。図3に示すマップ上には、固定変速モード領域Ar1、Ar2と、固定変速モード領域Ar1、Ar以外の領域である無段変速モード領域Ar3と、が設定されている。ECU4は、図3に示したマップを基に、固定変速モード領域Ar1、Ar2に車両動作点が移動する場合には、変速モードを固定変速モードに設定し、無段変速モード領域Ar3に車両動作点が移動する場合には、変速モードを無段変速モードに設定する。なお、マップは、車速及びアクセル開度で規定されるとしているが、これに限られるものではなく、代わりに、車速及び駆動力で規定されるとしても良い。
 固定変速モード領域Ar1、Ar2は、第1の固定変速モード領域Ar1と第2の固定変速モード領域Ar2とより構成される。第1の固定変速モード領域Ar1は、エンジントルクに対応する反力トルクが第1のモータジェネレータMG1の最大定格トルク以下となる領域である。一方、第2の固定変速モード領域Ar2は、エンジントルクに対応する反力トルクが第1のモータジェネレータMG1の最大定格トルクを超える領域である。ここで、最大定格トルクとは、第1のモータジェネレータMG1が連続して出力可能なトルクの最大値である。
 例えば、変速モードを切り換える際において、矢印W1に示すように、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合、エンジントルクに対応する反力トルクは、常に、第1のモータジェネレータMG1の最大定格トルク以下となる。従って、第1のモータジェネレータMG1は、常に、エンジントルクに対応する反力トルクを出力することができる。この場合、ECU4は、第1のモータジェネレータMG1を制御して、第1のモータジェネレータMG1の回転数を「0」に制御する回転数同期制御を行った後、ロック機構7のクラッチ7aを係合して、無段変速モードから固定変速モードへと変速モードを切り換える。
 一方、変速モードを切り換える際において、矢印W2に示すように、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合には、第2の固定変速モード領域Ar2に車両動作点が到達したときに、エンジントルクに対応する反力トルクが第1のモータジェネレータMG1の最大定格トルクを超える。そのため、ロック機構7のクラッチ7aが解放されている場合には、エンジン回転数が急激に上昇する現象(吹き上がり)が発生する可能性がある。この場合には、第1のモータジェネレータMG1の回転数を「0」にすることが難しくなる。第1のモータジェネレータMG1の回転数を「0」にしない状態でクラッチ7aを係合した場合には、係合によるショックが発生し、クラッチ7aにも過大な負荷が掛かってしまう。
 そこで、本発明のハイブリッド車両の制御装置では、ECU4は、変速モードの切り換えの際に、第1の固定変速モード領域Ar1と第2の固定変速モード領域Ar2とが設定された図3に示すマップ上において、どちらの領域に車両動作点が移動又は位置するかに応じて、変速モードの切り換え制御の方法を異ならせることとする。このようにすることで、変速モード切り換え制御を行う際において、エンジントルクに対応する反力トルクを第1のモータジェネレータMG1が出力可能か否かを予め明確にした体系的な制御を行うことが可能となる。具体的な制御の方法としては、ECU4は、変速モードの切り換えの際において、第2の固定変速モード領域Ar2に車両動作点が移動又は位置し、かつ、クラッチ7aが解放状態にされている場合には、エンジントルクに対応する反力トルクの少なくとも一部を、クラッチ7aなどの補助手段により出力させることとする。これにより、エンジンの吹き上がりを防ぐことができる。以下で、本発明の各実施形態について詳細に説明する。
 [第1実施形態]
 最初に、本発明の第1実施形態について説明する。第1実施形態では、図3の矢印W1、W2で示したように、車速が上昇して、無段変速モード領域Ar3から固定変速モード領域Ar1、Ar2のそれぞれへと車両動作点が移動する場合における変速モードの切り換え制御の方法について説明する。
 まず、車速が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合(図3の矢印W1に示す場合)における変速モードの切り換え制御方法について図4、5を用いて説明する。
 図4(a)は、エンジントルクとエンジン回転数とで決まるエンジン1の動作点(エンジン動作点)の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。具体的には、図4(a)は、車速が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示している。
 図4(a)において、実線Lcは、無段変速モードの場合におけるエンジン1の動作線(以下、「CVT動作線」と称する)を示している。CVT動作線Lcは、例えば、燃費の向上の観点から最適となるように規定されている。図4(a)に示すように、CVT動作線Lc上では、エンジン1のエンジントルクはトルクTKecが最大値となっている。このトルクTKecは、第1のモータジェネレータMG1の最大定格トルクに反力トルクが等しくなるときのエンジントルクを示している。言い換えると、エンジントルクがトルクTKecを超えると、当該エンジントルクに対応する反力トルクが第1のモータジェネレータMG1の最大定格トルクを超える。以下では、トルクTKecを「反力上限エンジントルク」と称することもある。CVT動作線上の点Pecは、無段変速モード時におけるエンジン動作点を示している。
 また、図4(a)において、トルクTKemは、エンジン1自体が出力可能なエンジントルクの最大値(以下、「最大エンジントルク」と称する)を示している。二点鎖線Lcmaxは、エンジン1より最大エンジントルクを出力させるときの動作線(以下、「最大エンジントルク動作線」と称する)を示している。破線Lsは、固定変速モードの場合におけるエンジン1の動作線を示し、一点鎖線Lpは等パワー線を示している。動作線Ls上の点Pesは、固定変速モード時におけるエンジン動作点を示している。
 図4(b)は、このときの共線図の変化の様子を示している。図4(a)、(b)において、エンジン動作点が点Pecとなっているときのエンジン回転数をPecNとして示し、エンジン動作点が点Pesとなっているときのエンジン回転数をPesNとして示している。
 図4(a)では、エンジン回転数が上昇するとともにエンジントルクが低下することにより、エンジン動作点が、点Pecから点Pesへと等パワー線Lp上に沿って移動している。点Pecから点Pesへとエンジン動作点が移動するとき、図4(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、クラッチ7aを係合するため、第1のモータジェネレータMG1は負回転している状態から回転数「0」となるように制御される。
 図5は、図4(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図5において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、第1のモータジェネレータMG1の回転数(MG1回転数)、エンジントルク、第1のモータジェネレータMG1のトルク(MG1トルク)、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。図5を含む以下に述べるタイミングチャートにおいて、MG1回転数、第2のモータジェネレータMG2の回転数(MG2回転数)について、正の値は正回転であることを示し、負の値は負回転であることを示している。なお、エンジン回転数は常に正回転となっている。また、エンジントルク、MG1トルク、第2のモータジェネレータMG2のトルク(MG2トルク)についても、正の値は正トルクであることを示し、負の値は負トルクであることを示している。なお、以下において、トルク及び回転数が上昇又は低下といった場合には、特に断りが無い限り、トルク及び回転数の大きさ、即ち、絶対値が上昇又は低下することを示すものとする。なお、図5に示す例では、エンジン動作点は等パワー線Lp上に沿って移動するため、変速モード切り換え制御が行われる間、駆動力は一定に保たれる。
 ECU4は、図3に示したような、車速及びアクセル開度と変速モードとの関係をマップ(以下、「変速モード判定マップ」と称する)としてメモリなどに保持している。ECU4は、車速を基に、変速モード判定マップより、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする。このときの時刻をT1とする。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1からT2にかけて、時刻T1のときのエンジントルクから、エンジントルクを徐々に低下させる制御を行う。また、ECU4は、時刻T1からT2にかけて、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを徐々に低下させつつ、MG1回転数を負回転時の回転数から「0」に近づける。MG1回転数が負回転時の回転数から「0」に近づくことにより、図4(b)に示すように、エンジン回転数は上昇する。このようにして、図4(a)においてエンジン動作点が点Pecから点Pesへと移動する。ECU4は、MG1回転数が「0」になったときに(時刻T2)、アクチュエータ7bの押圧力を増加させてクラッチ7aを完全に係合させるとともに、MG1トルクを低下させる。ECU4は、クラッチ7aが完全に係合したときに(時刻T3)、MG1トルクを「0」にして変速モード切り換え制御を終了する。このように、MG1回転数を「0」にしてからクラッチ7aを完全に係合させることにより、クラッチ7aの係合時におけるショックを防止することができ、クラッチ7aへの負荷を抑えることができる。
 以上に述べたように、車速が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合において、ECU4は、エンジントルクに対応する反力トルクにMG1トルクを制御しつつ、MG1回転数を「0」に近づける同期制御を行って、無段変速モードから固定変速モードへと変速モードを切り換える。
 次に、車速が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合(図3の矢印W2に示す場合)における変速モードの切り換え制御の方法について図6、7を用いて説明する。
 図6(a)は、車速が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図6(a)においても、図4(a)と同様、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、等パワー線Lp、最大エンジントルク動作線Lcmaxが示されている。図6(b)は、このときの共線図の変化の様子を示している。
 図6(a)では、エンジン回転数が低下するとともにエンジントルクが上昇することにより、エンジン動作点が、CVT動作線Lc上の点Pecから動作線Lc上の点Pesへと等パワー線Lp上に沿って移動している。このとき、図6(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は、正回転している状態から回転数「0」となるように制御される。
 図7は、図6(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図7において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、第2のモータジェネレータMG2のトルク(MG2トルク)、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。なお、図7に示す例においても、エンジン動作点は等パワー線Lp上に沿って移動するため、変速モード切り換え制御が行われる間、駆動力は一定に保たれる。
 ECU4は、車速を基に、変速モード判定マップより、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1からT2にかけて、時刻T1のときのエンジントルクから、エンジントルクを徐々に上昇させる制御を行う。ここで、図6(a)に示したように、エンジン動作点が点Pecにいる状態で、エンジントルクが上昇した場合、エンジントルクは反力上限エンジントルクTKecを超える、即ち、エンジントルクに対応する反力トルクは、MG1トルクの最大定格トルクTKmgxを超えることとなる。
 そこで、第1実施形態では、互いに係合する係合要素が差動回転可能に構成されているクラッチをクラッチ7aとして用いることとする。このようなクラッチでは、アクチュエータ7bの押圧力を制御することにより、係合要素間に生じる摩擦力を変化させ、係合トルクを連続的に変えることが可能である。例えば、ECU4は、クラッチに対する押圧力を増加させることにより、係合要素間に生じる摩擦力を増加させて、係合トルクを増加させることができる。このようなクラッチの例としては、例えば湿式多板クラッチなどが挙げられる。ECU4は、時刻T1からT2にかけて、MG1トルクを最大定格トルクTKmgxに設定し、それとともに、アクチュエータ7bの押圧力を徐々に大きくすることにより、クラッチ7aの係合トルクを徐々に増加させつつ、MG1回転数を徐々に「0」に近づける。つまり、ECU4は、時刻T1からT2にかけて、エンジントルクに対応する反力トルクを、第1のモータジェネレータMG1だけでなく、クラッチ7aにも出力させることとする。これにより、エンジンの吹き上がりを防止することができるとともに、MG1回転数を「0」にすることができる。MG1回転数が正回転時の回転数から徐々に「0」に近づくことにより、図6(b)にも示すように、エンジン回転数も徐々に低下する。このようにして、図6(a)においてエンジン動作点が点Pecから点Pesへと移動する。
 また、上述したように、ECU4は、時刻T1からT2にかけて、MG1トルクを最大定格トルクTKmgxに設定している。これにより、最大定格トルクTKmgxよりも小さいトルクにMG1トルクを設定する場合と比較して、ロック機構7のクラッチ7aへの負荷を軽減することができるとともに、第1のモータジェネレータMG1の発電量を大きくすることができる。また、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合には、MG1トルクを最大定格トルクTKmgxに常に設定すると予め決めておくことで、第1のモータジェネレータMG1については協調制御を行う必要がなくなり、制御の簡素化を図ることができる。
 ここで、ECU4は、上述の制御に加えて、係合トルクに応じて、駆動力が一定となるように、エンジントルクを補正するとしても良い。具体的には、ECU4は、以下の差動機構の運動方程式(1)~(6)を用いて、駆動力が一定となるためのエンジントルクを算出し、算出されたエンジントルクと実際のエンジントルクとの差を補正トルクとして算出する。そして、ECU4は、エンジン1に制御信号を供給して、エンジントルクを補正トルク分だけ補正する。これにより、クラッチ7aの係合時におけるショックを低減することができる。また、差動機構の運動方程式を用いて補正トルクを算出し、エンジントルクを当該補正トルク分だけ補正すると予め決めておくことにより、エンジン1については協調制御を行う必要がなくなり、制御の簡素化を図ることができる。
Figure JPOXMLDOC01-appb-M000001
 なお、ECU4は、第1の固定変速モード領域Ar1又は第2の固定変速モード領域Ar2のどちらに車両動作点が移動するかに拘わらず、駆動力が要求駆動力となるように第2のモータジェネレータMG2により補償制御するとしても良い。
 例えば、第2の固定変速モード領域Ar2へ車両動作点が移動する場合において、エンジントルクを補正トルク分補正しきれない場合には、ECU4は、上述のエンジントルクの制御に加え、駆動力が一定となるようにMG2トルクを補正するとしても良い。例えば、図7に示す例では、時刻T1からT2にかけて、ECU4は、エンジントルクが徐々に上昇するのに合わせて、MG2トルクを徐々に低下させている。これにより、駆動力を一定に保つことができる。また、ECU4は、エンジン1に制御信号を送信してからエンジントルクが補正トルク分だけ補正されるまでの間、エンジン1と比較して応答の速い第2のモータジェネレータMG2の制御を行い、MG2トルクの補正を行うとすることで、駆動力が一定となるようにするとしても良い。このようにすることで、エンジン1の応答遅れによる駆動力の変化を抑えることができる。また、この例では、エンジントルクとMG2トルクのうち、エンジントルクを優先して補正している。これにより、MG2トルクを優先して補正する場合と比較して、HVバッテリ33の電力消費量を抑えることができ、HVバッテリ33への負担を低減することができる。また、HVバッテリ33の充電状況に依らずにクラッチ7aの係合時におけるショックを抑えることができる。
 以上に述べたように、車速が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合において、ECU4は、MG1トルクを最大定格トルクTKmgxに制御するととともにクラッチ7aの係合トルクを制御して、無段変速モードから固定変速モードへと変速モードを切り換える。
 次に、第1実施形態に係る変速モード切換処理について、図8に示すフローチャートを用いて説明する。第1実施形態に係る変速モード切換処理では、ECU4は、車速を基に、無段変速モード領域Ar3から、固定変速モード領域Ar1又はAr2のどちらの領域に車両動作点が進むのかを判定し、それぞれの場合に応じた変速モード切換制御を行う。
 ステップS101にかけて、ECU4は、車速を基に、変速モード判定マップを用いて、車両動作点が固定変速モード領域に移動するか否か、即ち、ロック機構7のクラッチ7aを係合(パワーオン係合)すべきか否かについて判定する。ECU4は、クラッチ7aを係合すべきでないと判定した場合には(ステップS101:No)、本制御処理を終了し、クラッチ7aを係合すべきであると判定した場合には(ステップS101:Yes)、ステップS102の処理へ進む。
 ステップS102において、ECU4は、変速モード判定マップより、車両動作点が第2の固定変速モード領域Ar2に移動するか否かについて判定し、車両動作点が第2の固定変速モード領域Ar2に移動すると判定した場合には(ステップS102:Yes)、ステップS103の処理へ進む。一方、ECU4は、車両動作点が第2の固定変速モード領域Ar2に移動しない、即ち、車両動作点が第1の固定変速モード領域Ar1に移動すると判定した場合には(ステップS102:No)、ステップS107の処理へ進む。
 ステップS103において、ECU4は、MG1トルクを最大定格トルクに設定する。続くステップS104において、ECU4は、アクチュエータ7bの押圧力を徐々に大きくするクラッチ押圧制御を行い、ロック機構7のクラッチ7aの係合トルクを徐々に増加させる。これにより、エンジントルクに対応する反力トルクは、クラッチ7aと第1のモータジェネレータMG1とによって出力されることとなる。
 ステップS105において、ECU4は、係合トルクに応じて、駆動力が一定となるように、エンジントルクを補正するエンジン制御を行う。
 ステップS106において、ECU4は、駆動力が一定となるように、MG2トルクを補正するMG2トルク補償制御を行う。その後、ステップS109の処理へ進む。
 ステップS109において、ECU4は、クラッチ7aの係合が完了したか否かを判定し、クラッチ7aの係合が完了していないと判定した場合には(ステップS109:No)、ステップS102の処理へ戻り、クラッチ7aの係合が完了したと判定した場合には(ステップS109:Yes)、本制御処理を終了する。
 一方、先に述べたステップS102において、ECU4は、車両動作点が第2の固定変速モード領域Ar2に移動しない、即ち、車両動作点が第1の固定変速モード領域Ar1に移動すると判定した場合には(ステップS102:No)、ステップS107の処理へ進む。ステップS107において、ECU4は、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを制御しつつ、MG1回転数を徐々に0に近づけるMG1回転数同期制御を行う。続くステップS108において、ECU4は、アクチュエータ7bの押圧力を増加させてクラッチ7aを完全に係合させる係合制御を行う。その後、ECU4は、ステップS106、S109の処理へ進み、本制御処理を終了する。
 以上に述べたことから分かるように、第1実施形態では、車速の上昇により、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合において、ECU4は、エンジントルクに対応する反力トルクにMG1トルクを制御しつつ、MG1回転数を「0」に近づける同期制御を行うこととする。これにより、クラッチ7aの係合時におけるショックを防止することができ、クラッチ7aへの負荷を抑えることができる。また、第1実施形態では、車速の上昇により無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合において、ECU4は、ロック機構7のクラッチ7aにより、エンジントルクに対応する反力トルクの一部を受け持たせることとする。このようにすることで、変速モード切り換えの際におけるエンジンの吹き上がりを防止することができる。
 [第2実施形態]
 次に、本発明の第2実施形態について説明する。
 図9は、第2実施形態における車両動作点の移動の様子を示す図であり、縦軸がアクセル開度を示し、横軸が車速を示している。図9においても、無段変速モード領域Ar3、固定変速モード領域Ar1、Ar2が示されており、車両動作点が白丸で示されている。第2実施形態では、図9の矢印W1、W2に示すように、アクセル開度が上昇して、無段変速モード領域Ar3から固定変速モード領域Ar1、Ar2のそれぞれへと車両動作点が移動する場合における変速モードの切り換え制御方法について説明する。
 まず、アクセル開度が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合(図9の矢印W1に示す場合)における変速モードの切り換え制御方法について図10、11を用いて説明する。
 図10(a)は、アクセル開度が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図10(a)においても、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図10(b)は、このときの共線図の変化の様子を示している。
 図10(a)では、エンジンが始動し、エンジントルク及びエンジン回転数が上昇することにより、エンジン動作点が、点Pecから動作線Ls上の点Pesへと矢印に沿って移動している。このとき、図10(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は負回転している状態から回転数「0」となるように制御される。
 図11は、図10(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図11において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、MG1トルク、エンジントルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。なお、図11において、MG1トルクのタイミングチャートと区別するため、エンジントルクのタイミングチャートを一点鎖線で示している。
 ECU4は、図9に示した、車速及びアクセル開度と変速モードとの関係を変速モード判定マップとしてメモリなどに保持している。ECU4は、アクセル開度を基に、当該変速モード判定マップより、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1において、ロック指令フラグがオンになったのを確認すると、第1のモータジェネレータMG1によりエンジン1のクランキングを行う。時刻T1からTaでは、エンジン1のクランキングが行われるため、正トルクのMG1トルクが第1のモータジェネレータMG1より出力される。これにより、時刻T1からTaにかけて、MG1回転数は負回転時の回転数から「0」に近づく。MG1回転数が負回転時の回転数から「0」に近づくことにより、図10(b)に示すように、エンジン回転数は上昇する。時刻Taにおいて、クランキングによりエンジン1が始動し、エンジン1より正トルクのエンジントルクが出力される。これにより、図10(a)においてエンジン動作点が点Pecから点Pesへと移動し、駆動力は上昇する。
 時刻Taにおいて、エンジン1が始動すると、第1のモータジェネレータMG1は、エンジントルクの反力トルクを出力する必要がある。そのため、負トルクのMG1トルクが第1のモータジェネレータMG1より出力される。今回、ECU4は、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動すると判定しているので、エンジントルクに対応する反力トルクは、MG1の最大定格トルクTKmgxを超えない。従って、時刻T1から時刻T2にかけて、ECU4は、エンジントルクに対応する反力トルクを第1のモータジェネレータMG1より出力させる。
 その後、時刻T2から時刻T3にかけて、ECU4は、アクチュエータ7bの押圧力を増加させて、クラッチ7aの係合トルクを増加させるとともに、MG1トルクを低下させる。ECU4は、クラッチ7aが完全に係合したときに(時刻T3)、MG1トルクを「0」にして変速モード切り換え制御を終了する。これにより、クラッチ7aの係合時におけるショックを防止することができ、クラッチ7aへの負荷を抑えることができる。
 以上に述べたように、アクセル開度が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合において、ECU4は、エンジントルクに対応する反力トルクに等しくなるようにMG1トルクを制御して、無段変速モードから固定変速モードへと変速モードを切り換える。
 次に、アクセル開度が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合(図9の矢印W2に示す場合)における変速モードの切り換え制御の方法について図12、13を用いて説明する。この場合、図9に示すように、車両動作点は、無段変速モード領域Ar3から第1の固定変速モード領域Ar1を経由して第2の固定変速モード領域Ar2へと移動する。
 図12(a)は、アクセル開度が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図12(a)においても、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図12(b)は、このときの共線図の変化の様子を示している。
 図12(a)では、エンジンが始動し、エンジントルク及びエンジン回転数が上昇することにより、エンジン動作点が、点Pecから動作線Ls上の点Pesへと矢印に沿って移動している。このとき、図12(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するために、エンジン始動後、第1のモータジェネレータMG1は負回転している状態から回転数「0」となるように制御される。
 図13は、図12(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図13において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、MG1トルク、MG2トルク、エンジントルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。なお、図13において、MG1トルクのタイミングチャートと区別するため、エンジントルクのタイミングチャートを一点鎖線で示し、MG2トルクのタイミングチャートを二点鎖線で示している。
 ECU4は、アクセル開度を基に、変速モード判定マップより、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1において、ロック指令フラグがオンになったのを確認すると、時刻T1から時刻Taにかけて、第1のモータジェネレータMG1によりエンジン1のクランキングを行う。時刻T1からTaでは、エンジン1のクランキングが行われるため、正トルクのMG1トルクが第1のモータジェネレータMG1より出力される。これにより、時刻T1からTaにかけて、MG1回転数は負回転時の回転数から「0」に近づく。時刻Taにおいて、クランキングによりエンジン1が始動し、エンジン1より正トルクのエンジントルクが出力される。
 時刻Taにおいて、エンジン1が始動すると、第1のモータジェネレータMG1はエンジントルクの反力トルクを出力する必要がある。そのため、負トルクのMG1トルクが第1のモータジェネレータMG1より出力される。そして、時刻TaからTbにかけて、エンジントルクは、更に上昇して、反力上限エンジントルクTKecを超える。そのため、エンジントルクに対応する反力トルクも、時刻Tbにおいて、第1のモータジェネレータの最大定格トルクTKmgxを超える。このとき、ECU4は、MG1トルクを最大定格トルクTKmgxに保持するとともに、アクチュエータ7bの押圧力を徐々に大きくすることにより、ロック機構7のクラッチ7aの係合トルクを徐々に増加させつつ、MG1回転数を「0」に近づける。つまり、このとき、エンジントルクに対応する反力トルクは、第1のモータジェネレータMG1とクラッチ7aとによって出力される。MG1回転数が負回転時の回転数から「0」に近づくことにより、図12(b)に示すように、エンジン回転数は上昇する。このようにして、図12(a)においてエンジン動作点が点Pecから点Pesへと移動し、駆動力は上昇する。第1実施形態で述べたのと同様、第2実施形態においても、車両動作点が第2の固定変速モード領域Ar2に移動した際に、エンジントルクに対応する反力トルクをクラッチ7aにも受け持たせることで、エンジンの吹き上がりを防止することができる。また、このとき、MG1トルクを最大定格トルクTKmgxに設定することにより、ロック機構7のクラッチ7aへの負荷の軽減、制御の簡素化を図ることができる。
 ECU4は、アクチュエータ7bの押圧力を増加させ、MG1回転数が「0」となる時刻T2において、クラッチ7aを完全に係合し、その後、時刻T3において、MG1トルクを「0」にして変速モード切り換え制御を終了する。
 なお、図13に示す例においても、ECU4は、駆動力が要求駆動力となるようにMG2トルクを補正するMG2トルク補償制御を行っている。具体的には、時刻TbからT2にかけて、ECU4は、係合トルクに応じて、当該係合トルクの反力トルクをキャンセルするようにMG2トルクを補正する制御を行っている。具体的には、ECU4は、係合トルクが上昇するに従い、MG2トルクを低下させている。これにより、クラッチ7aの係合トルクによるショックを低減することができる。
 以上に述べたように、アクセル開度が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合には、エンジントルクに対応する反力トルクがMG1トルクの最大定格トルクを超えたときに、ECU4は、MG1トルクを最大定格トルクに制御するとともに、クラッチ7aの押圧力を制御して、無段変速モードから固定変速モードへと変速モードを切り換える。
 次に、第2実施形態に係る変速モード切換処理について、図14に示すフローチャートを用いて説明する。第2実施形態に係る変速モード切換処理では、ECU4は、アクセル開度を基に、無段変速モード領域Ar3から、固定変速モード領域Ar1又はAr2のうち、どちらの領域に車両動作点が進むのかを判定し、それぞれの場合に応じた変速モード切換制御を行うこととする。
 ステップS201において、ECU4は、アクセル開度に基づいて、車両動作点が固定変速モード領域に移動するか否か、即ち、ロック機構7のクラッチ7aを係合(アクセルオン係合)すべきか否かについて判定する。ECU4は、クラッチ7aを係合すべきでないと判定した場合には(ステップS201:No)、本制御処理を終了し、クラッチ7aを係合すべきであると判定した場合には(ステップS201:Yes)、ステップS202の処理へ進む。
 ステップS202において、ECU4は、変速モード判定マップより、車両動作点が第2の固定変速モード領域Ar2に移動するか否かについて判定する。ECU4は、車両動作点が第2の固定変速モード領域Ar2に移動すると判定した場合には、ステップS203の処理へ進み、車両動作点が第2の固定変速モード領域Ar2に移動しない、即ち、車両動作点が第1の固定変速モード領域Ar1に移動すると判定した場合には、ステップS208の処理へ進む。
 ステップS203において、ECU4は、クランキングによりエンジンを始動させた後、エンジントルクを上昇させ、続くステップS204において、エンジントルクの反力トルクがMG1トルクの最大定格トルクを超えたか否かについて判定する。ECU4は、エンジントルクの反力トルクがMG1トルクの最大定格トルクを超えたと判定した場合には(ステップS204:Yes)、ステップS205の処理へ進み、エンジントルクの反力トルクがMG1トルクの最大定格トルク以下となっていると判定した場合には(ステップS204:No)、ステップS208の処理へ進む。
 ステップS205において、ECU4は、MG1トルクを最大定格トルクに設定するとともに、ステップS206において、アクチュエータ7bの押圧力を徐々に大きくするクラッチ押圧制御を行い、クラッチ7aの係合トルクを徐々に増加させる。これにより、エンジントルクに対応する反力トルクは、第1のモータジェネレータMG1とクラッチ7aとによって出力される。
 ステップS207において、ECU4は、係合トルクに応じて、当該係合トルクの反力トルクをキャンセルするようにMG2トルクを補正する。その後、ステップS210の処理へ進む。
 ステップS210において、ECU4は、クラッチ7aの係合が完了したか否かを判定し、クラッチ7aの係合が完了していないと判定した場合には、ステップS202の処理へ戻り、クラッチ7aの係合が完了したと判定した場合には、本制御処理を終了する。
 一方、先に述べたステップS202において、車両動作点が第2の固定変速モード領域Ar2に移動しないと判定された場合(ステップS202:No)、又は、先に述べたステップS204において、エンジントルクの反力トルクがMG1トルクの最大定格トルク以下となっていると判定された場合には(ステップS204:No)、ステップS208の処理へ進む。
 ステップS208において、ECU4は、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクとなるようにMG1トルクを制御しつつ、MG1回転数を徐々に「0」に近づけるMG1回転数同期制御を行う。続くステップS209において、ECU4は、クラッチ7aを係合させる係合制御を行う。その後、ECU4は、ステップS207、S210の処理へ進み、本制御処理を終了する。
 以上に述べたことから分かるように、第2実施形態では、アクセル開度の上昇により無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合において、エンジントルクに対応する反力トルクが、第1のモータジェネレータMG1の最大定格トルクを超えるまでは、ECU4は、エンジントルクに対応する反力トルクを第1のモータジェネレータMG1により出力させることとする。そして、エンジントルクが上昇して、エンジントルクに対応する反力トルクが、第1のモータジェネレータMG1の最大定格トルクを超えたときに、ECU4は、ロック機構7のクラッチ7aにより、エンジントルクに対応する反力トルクの一部を受け持たせることとする。言い換えると、第2実施形態では、車両動作点が第1の固定変速モード領域Ar1を移動するときに、ECU4は、エンジントルクに対応する反力トルクを第1のモータジェネレータMG1により受け持たせることとする。そして、車両動作点が第2の固定変速モード領域Ar2を移動するときに、ECU4は、第1のモータジェネレータMG1とクラッチ7aとにより当該反力トルクを受け持たせることとする。このようにしても、第1実施形態と同様、変速モード切り換えの際におけるエンジンの吹き上がりを防止することができる。
 [第3実施形態]
 次に、本発明の第3実施形態について説明する。
 図15は、第3実施形態における車両動作点の移動の様子を示す図であり、縦軸がアクセル開度を示し、横軸が車速を示している。図15においても、無段変速モード領域Ar3、固定変速モード領域Ar1、Ar2が示されており、車両動作点が白丸で示されている。第3実施形態では、図15の矢印W1、W2に示すように、アクセル開度が低下して、無段変速モード領域Ar3から固定変速モード領域Ar1、Ar2のそれぞれへと車両動作点が移動する場合における変速モードの切り換え制御方法について説明する。
 まず、アクセル開度が低下して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合(図15の矢印W1に示す場合)における変速モードの切り換え制御方法について図16、17を用いて説明する。
 図16(a)は、アクセル開度が低下して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図16(a)においても、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図16(b)は、このときの共線図の変化の様子を示している。
 図16(a)では、エンジントルク及びエンジン回転数が低下することにより、エンジン動作点が、CVT動作線上の点Pecから動作線Ls上の点Pesへと矢印に沿って移動している。このとき、図16(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は正回転している状態から回転数「0」となるように制御される。
 図17は、図16(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図17において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 ECU4は、ECU4は、図15に示した、車速及びアクセル開度と変速モードとの関係を変速モード判定マップとしてメモリなどに保持している。ECU4は、アクセル開度を基に、変速モード判定マップより、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1からT2にかけて、時刻T1のときのエンジントルクから、エンジントルクを徐々に低下させる制御を行う。時刻T1からT2では、エンジントルクはトルクTKecから徐々に低下するので、エンジントルクに対応する反力トルクも徐々に低下することとなる。従って、エンジントルクに対応する反力トルクは、MG1トルクの最大定格トルクTKmgxを超えることはない。ECU4は、時刻T1からT2にかけて、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクに等しくなるようにMG1トルクを徐々に低下させつつ、MG1回転数を徐々に「0」に近づける。MG1回転数が正回転時の回転数から「0」に近づくことにより、図16(b)に示すように、エンジン回転数も徐々に低下する。このようにして、図16においてエンジン動作点が点Pecから点Pesへと移動し、駆動力は低下する。
 ECU4は、MG1回転数が「0」になったときに(時刻T2)、アクチュエータ7bの押圧力を増加させる。そして、ECU4は、時刻T3において、ロック機構7のクラッチ7aを完全に係合するとともに、MG1トルクを「0」にして変速モード切り換え制御を終了する。これにより、クラッチ7aの係合時におけるショックを防止することができ、クラッチ7aへの負荷を抑えることができる。
 以上に述べたように、アクセル開度が低下して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合において、ECU4は、エンジントルクに対応する反力トルクに等しくなるようにMG1トルクを制御して、無段変速モードから固定変速モードへと変速モードを切り換える。
 次に、アクセル開度が減少して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合(図15の矢印W2に示す場合)における変速モードの切り換え制御の方法について図18、19を用いて説明する。
 図18(a)は、アクセル開度が低下して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図18(a)においても、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図18(b)は、このときの共線図の変化の様子を示している。
 図18(a)では、エンジン回転数が低下するとともにエンジントルクが上昇することにより、エンジン動作点が、CVT動作線上の点Pecから動作線Ls上の点Pesへと矢印に沿って移動している。このとき、図18(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は正回転している状態から回転数「0」となるように制御される。
 図19は、図18(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図19において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG2トルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 ECU4は、アクセル開度を基に、変速モード判定マップより、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1からT2にかけて、時刻T1のときのエンジントルクから、エンジントルクを徐々に上昇させる制御を行う。図18(a)に示したように、エンジン動作点が点Pecにいる状態で、エンジントルクが上昇した場合、エンジントルクは反力上限エンジントルクTKecを超える、即ち、エンジントルクに対応する反力トルクは、MG1トルクの最大定格トルクTKmgxを超えることとなる。
 そこで、ECU4は、時刻T1からT2にかけて、MG1トルクを最大定格トルクTKmgxに設定するとともに、アクチュエータ7bの押圧力を徐々に増加させ、MG1回転数を「0」に近づける。これにより、エンジントルクに対応する反力トルクは、第1のモータジェネレータMG1とクラッチ7aとによって出力されることとなり、エンジンの吹き上がりを防止することが可能となる。MG1回転数が正回転時の回転数から「0」に近づくことにより、図18(b)に示すように、エンジン回転数も徐々に低下する。このようにして、図18(a)においてエンジン動作点が点Pecから点Pesへと移動し、駆動力は低下する。時刻T1からT2にかけて、MG1トルクを最大定格トルクTKmgxに設定することにより、ロック機構7のクラッチ7aへの負荷の軽減、制御の簡素化を図ることができる。
 なお、図19に示す例では、時刻T1からT2にかけて、ECU4は、駆動力が要求駆動力となるようにMG2トルクを補償するMG2トルク補償制御として、係合トルクに応じて、当該係合トルクの反力トルクをキャンセルするようにMG2トルクを補正する制御を行っている。具体的には、ECU4は、係合トルクが上昇するに従い、MG2トルクを低下させる制御を行っている。
 ECU4は、MG1回転数が「0」となる時刻T2において、クラッチ7aを完全に係合し、その後、時刻T3において、MG1トルクを「0」にして変速モード切り換え制御を終了する。
 以上に述べたように、アクセル開度が低下して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合において、ECU4は、MG1トルクを最大定格トルクに制御するととともにクラッチ7aの押圧力を制御して、無段変速モードから固定変速モードへと変速モードを切り換える。
 次に、第3実施形態に係る変速モード切換処理について、図20に示すフローチャートを用いて説明する。第3実施形態に係る変速モード切換処理では、ECU4は、アクセル開度を基に、無段変速モード領域Ar3から、固定変速モード領域Ar1又はAr2のどちらの領域に車両動作点が進むのかを判定し、それぞれの場合に応じた変速モード切換制御を行うこととする。
 ステップS301において、ECU4は、アクセル開度に基づいて、車両動作点が固定変速モード領域に移動したか否か、即ち、ロック機構7のクラッチ7aを係合(足戻しオン係合)すべきか否かについて判定する。ECU4は、クラッチ7aを係合すべきでないと判定した場合には(ステップS301:No)、本制御処理を終了し、クラッチ7aを係合すべきであると判定した場合には(ステップS301:Yes)、ステップS302の処理へ進む。
 ステップS302において、ECU4は、変速モード判定マップより、車両動作点が第2の固定変速モード領域Ar2に移動するか否かについて判定する。ECU4は、車両動作点が第2の固定変速モード領域Ar2に移動すると判定した場合には(ステップS302:Yes)、ステップS303の処理へ進み、車両動作点が第2の固定変速モード領域Ar2に移動しない、即ち、車両動作点が第1の固定変速モード領域Ar1に移動すると判定した場合には(ステップS302:No)、ステップS308の処理へ進む。
 ステップS303において、ECU4は、エンジントルクを上昇させ、続くステップS304において、エンジントルクの反力トルクがMG1トルクの最大定格トルクを超えたか否かについて判定する。ECU4は、エンジントルクの反力トルクがMG1トルクの最大定格トルクを超えたと判定した場合には(ステップS304:Yes)、ステップS305の処理へ進み、エンジントルクの反力トルクがMG1トルクの最大定格トルク以下となっていると判定した場合には(ステップS304:No)、ステップS308の処理へ進む。
 ステップS305において、ECU4は、MG1トルクを最大定格トルクに設定するとともに、ステップS306において、アクチュエータ7bの押圧力を徐々に大きくするクラッチ押圧制御を行い、クラッチ7aの係合トルクを徐々に増加させる。これにより、エンジントルクに対応する反力トルクは、第1のモータジェネレータMG1とクラッチ7aとによって出力される。
 ステップS307において、ECU4は、係合トルクに応じて、当該係合トルクの反力トルクをキャンセルするようにMG2トルクを補正する。続くステップS310において、ECU4は、クラッチ7aの係合が完了したか否かを判定し、クラッチ7aの係合が完了していないと判定した場合には、ステップS302の処理へ戻り、クラッチ7aの係合が完了したと判定した場合には、本制御処理を終了する。
 一方、先に述べたステップS302において、車両動作点が第2の固定変速モード領域Ar2に移動しないと判定された場合(ステップS302:No)、又は、先に述べたステップS304において、エンジントルクの反力トルクがMG1トルクの最大定格トルク以下となっていると判定された場合には(ステップS304:No)、ステップS308の処理へ進む。
 ステップS308において、ECU4は、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクとなるようにMG1トルクを制御しつつ、MG1回転数を徐々に「0」に近づけるMG1回転数同期制御を行う。続くステップS309において、ECU4は、クラッチ7aを係合させる係合制御を行う。その後、ECU4は、ステップS307、310の処理へ進み、本制御処理を終了する。
 以上に述べたことから分かるように、第3実施形態では、アクセル開度の低下により、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合において、ECU4は、ロック機構7のクラッチ7aにより、エンジントルクに対応する反力トルクの一部を受け持たせることとする。このようにすることで、第1及び第2実施形態と同様、変速モード切り換えの際におけるエンジンの吹き上がりを防止することができる。
 [第4実施形態]
 次に、本発明の第4実施形態について説明する。
 図21は、第4実施形態における車両動作点の移動の様子を示す図であり、縦軸がアクセル開度を示し、横軸が車速を示している。図21においても、無段変速モード領域Ar3、固定変速モード領域Ar1、Ar2が示されており、車両動作点が白丸で示されている。第4実施形態では、図21の矢印W1、W2に示すように、アクセル開度が上昇して、固定変速モード領域Ar1、Ar2のそれぞれから無段変速モード領域Ar3へと車両動作点が移動する場合における変速モードの切り換え制御方法について説明する。
 まず、アクセル開度が上昇して、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動する場合(図21の矢印W1)における変速モードの切り換え制御方法について図22、23を用いて説明する。
 図22(a)は、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図22(a)においても、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図22(b)は、このときの共線図の変化の様子を示している。
 図22(a)では、エンジン回転数及びエンジントルクが上昇することにより、エンジン動作点が、動作線Ls上の点PesからCVT動作線上の点Pecへと矢印に沿って移動している。このとき、図22(b)に示すように、共線図は、直線Asから直線Acへと変化する。つまり、アクセル開度が上昇することにより、ロック機構7におけるクラッチ7aが解放され、第1のモータジェネレータMG1は、回転数「0」の状態から正回転するように制御される。
 図23は、図22(a)において点Pesから点Pecへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図23において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 ECU4は、アクセル開度を基に、変速モード判定マップより、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動すると判定した場合には、ロック指令フラグをオンからオフにする(時刻T1)。ECU4は、ロック指令フラグがオフになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1からT2にかけて、クラッチ7aを係合した状態に保持しつつ、速やかにMG1トルクを増加させる。そして、ECU4は、時刻T2において、エンジントルクに対応する反力トルクにMG1トルクが等しくなったときに、クラッチ7aを完全に解放する。これにより、エンジンや第1のモータジェネレータMG1の吹き上がりを防止することができる。また、このようにすることで、クラッチ7aの解放完了までの時間を短縮することができ、ドライバビリティを向上させることができる。時刻T2以降では、ECU4は、エンジントルクを上昇させるとともに、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクに等しくなるようにMG1トルクを制御しつつ、MG1回転数を「0」から正回転方向に上昇させる。MG1回転数が「0」から正回転方向に上昇することにより、図22(b)に示すように、エンジン回転数も上昇する。このようにして、図22においてエンジン動作点が点Pesから点Pecへと移動し、駆動力は上昇する。
 以上に述べたように、アクセル開度が上昇して、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動する場合には、ECU4は、エンジントルクに対応する反力トルクに等しくなるようにMG1トルクを制御した後、クラッチ7aを解放する制御を行うことで、固定変速モードから無段変速モードへと変速モードを切り換える。
 次に、アクセル開度が上昇して、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合(図21の矢印W2)における変速モードの切り換え制御の方法について図24、25を用いて説明する。
 図24(a)は、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図24(a)においても、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図24(b)は、このときの共線図の変化の様子を示している。
 図24(a)では、エンジントルクが低下するとともにエンジン回転数が上昇することにより、エンジン動作点が、動作線Ls上の点PesからCVT動作線Lc上の点Pecへと矢印に沿って移動している。このとき、図22(b)に示すように、共線図は、直線Asから直線Acへと変化する。つまり、アクセル開度が上昇することにより、ロック機構7におけるクラッチ7aが解放され、第1のモータジェネレータMG1は、回転数「0」の状態から正回転するように制御される。
 図25は、図24(a)において点Pesから点Pecへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図25において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 ECU4は、アクセル開度を基に、変速モード判定マップより、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動すると判定した場合には、ロック指令フラグをオンからオフにする(時刻T1)。ECU4は、ロック指令フラグがオフになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1からT3にかけて、時刻T1のときのエンジントルクから、エンジントルクを徐々に低下させる制御を行う。また、ECU4は、時刻T1からT2にかけて、MG1トルクを上昇させて最大定格トルクTKmgxにするとともに、MG1トルクの上昇に応じて、係合トルクを低下させる。そして、ECU4は、時刻T2からT3にかけて、MG1トルクを最大定格トルクTKmgxに保持するとともに、エンジントルクの低下に応じて、係合トルクをさらに低下させる。つまり、時刻T1からT3にかけて、エンジントルクに対応する反力は、第1のモータジェネレータMG1とクラッチ7aとで受け持つこととなる。時刻T2からT3にかけて、ECU4は、アクチュエータ7bの押圧力を制御することにより、係合トルクを低下させつつ、MG1回転数を正回転方向に上昇させる。MG1回転数が正回転方向に上昇することにより、図24(b)に示すように、エンジン回転数も上昇する。これにより、図24において点Pesから点Pecへとエンジン動作点が移動し、駆動力は上昇する。このように、エンジントルクに対応する反力トルクを、第1のモータジェネレータMG1とクラッチ7aとで受け持つことにより、駆動力を上昇させることができる。
 時刻T3において、エンジントルクは低下して、エンジントルクに対応する反力トルクがMG1トルクの最大定格トルクTKmgxと等しくなる。即ち、時刻T3において、第1のモータジェネレータMG1は、エンジントルクに対応する反力を単独で受け持つことが可能となる。従って、このとき、ECU4は、係合トルクを「0」に制御する、即ち、クラッチ7aを完全に解放する。これにより、エンジンや第1のモータジェネレータMG1の吹き上がりを防止することができる。また、このようにすることで、クラッチ7aの解放完了までの時間を短縮することができ、ドライバビリティを向上させることができる。なお、ここで、時刻T1からT3にかけて、ECU4は、係合トルクに応じて、駆動力が要求駆動力となるようにMG2トルクを補正するとしても良い。これにより、アクセル開度に対し、駆動力を応答性良く上昇させることができ、ドライバビリティを向上させることができる。
 以上に述べたように、アクセル開度が上昇して、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合には、エンジントルクに対応する反力トルクがMG1トルクの最大定格トルクよりも大きいときに、ECU4は、MG1トルクを最大定格トルクにする制御が行うとともに、クラッチ7aの押圧力を制御する。そして、エンジントルクに対応する反力トルクが最大定格トルクTKmgxと等しくなったときに、ECU4は、クラッチ7aを解放する制御を行うことで、固定変速モードから無段変速モードへと変速モードを切り換える。
 次に、第4実施形態に係る変速モード切換処理について、図26に示すフローチャートを用いて説明する。第4実施形態に係る変速モード切換処理では、ECU4は、アクセル開度を基に、固定変速モード領域Ar1又はAr2のどちらの領域から無段変速モード領域Ar3へ車両動作点が進むのか判定し、それぞれの場合に応じた変速モード切換制御を行うこととする。
 ステップS401において、ECU4は、アクセル開度に基づいて、ロック機構7のクラッチ7aを解放すべきか否かについて判定する。ECU4は、アクセル開度に基づいて、クラッチ7aを解放すべきでないと判定した場合には(ステップS401:No)、本制御処理を終了し、クラッチ7aを解放すべきであると判定した場合には(ステップS401:Yes)、ステップS402の処理へ進む。
 ステップS402において、ECU4は、変速モード判定マップより、車両動作点が第1の固定変速モード領域Ar1に位置するか否かについて判定する。ECU4は、車両動作点が第1の固定変速モード領域Ar1に位置すると判定した場合には(ステップS402:Yes)、ステップS403の処理へ進み、車両動作点が第1の固定変速モード領域Ar1に位置しない、即ち、車両動作点が第2の固定変速モード領域Ar2に位置すると判定した場合には(ステップS402:No)、ステップS407の処理へ進む。
 ステップS403において、ECU4は、エンジントルクを上昇させるエンジン制御を行い、続くステップS404において、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを制御する。
 ステップS405において、ECU4は、エンジントルクに対応する反力トルクにMG1トルクが達したか否かについて判定する。ECU4は、エンジントルクに対応する反力トルクにMG1トルクが達したと判定した場合には(ステップS405:Yes)、ステップS406の処理へ進み、エンジントルクに対応する反力トルクにMG1トルクが達していないと判定した場合には(ステップS405:No)、ステップS411の処理へ進む。ステップS406において、ECU4は、クラッチ7aを完全に解放するクラッチ押圧オフ制御を行った後、ステップS410の処理へ進む。
 ステップS410において、ECU4は、駆動力が要求駆動力となるようにMG2トルクを補正するMG2トルク補償制御を行う。続くステップS411において、ECU4は、クラッチ7aが解放されたか否かを判定し、解放されていないと判定した場合には、ステップS402の処理へ進み、クラッチ7aが解放されたと判定した場合には、本制御処理を終了する。
 一方、先に述べたステップS402において、車両動作点が第1の固定変速モード領域Ar1に位置しないと判定された場合には(ステップS402:No)、即ち、車両動作点が第2の固定変速モードに位置すると判定された場合には、ステップS407の処理へ進む。ステップS407において、ECU4は、エンジントルクを減少させるエンジン制御を行い、ステップS408の処理へ進む。
 ステップS408において、ECU4は、MG1トルクを増加させて最大定格トルクにするとともに、ステップS409において、エンジントルクの低下に応じて、アクチュエータ7bの押圧力を減少させて係合トルクを減少させる。このようにして、エンジントルクに対応する反力トルクは、第1のモータジェネレータとクラッチ7aとによって出力される。その後、ECU4は、ステップS410、411の処理へ進み、本制御処理を終了する。
 以上に述べたことから分かるように、第4実施形態では、アクセル開度の上昇により第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと当該車両動作点が移動する場合には、ECU4は、クラッチ7aを係合した状態に保持しつつ、エンジントルクに対応する反力トルクに等しくなるまで速やかにMG1トルクを上昇させる。このようにすることで、クラッチ7aの解放完了までの時間を短縮することができ、ドライバビリティを向上させることができる。また、アクセル開度の上昇により第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと当該車両動作点が移動する場合には、ECU4は、エンジントルクに対応する反力トルクがMG1トルクの最大定格トルクと等しくなるまで、第1のモータジェネレータMG1とクラッチ7aとで当該反力トルクを受け持たせることとする。これにより、駆動力を上昇させることができる。
 [第5実施形態]
 次に、本発明の第5実施形態について説明する。第1から第4実施形態では、変速モードの切り換えの際において、エンジントルクに対応する反力トルクが、第1のモータジェネレータMG1の最大定格トルクを超える場合には、クラッチ7aにより、エンジントルクに対応する反力トルクの一部を出力することとしていた。より具体的には、クラッチ7aは、例えば湿式多板クラッチのように差動回転可能に構成されたクラッチであり、ECU4は、クラッチ7aに発生する係合トルクを調整することにより、エンジントルクに対応する反力トルクの一部を出力していた。しかしながら、ドグクラッチやワンウェイクラッチなどのように差動回転を行うことが難しいクラッチをクラッチ7aとして用いた場合には、完全に係合された状態、又は、完全に解放された状態のうち、いずれかの状態しかとれず、係合トルクを連続的に変化させることができない。そのため、この場合には、第1~第4実施形態で述べた方法を用いることができなくなる。
 そこで、第5実施形態では、ECU4は、無段変速モードから固定変速モードへと変速モードを切り換える際において、エンジントルクに対応する反力トルクが、第1のモータジェネレータMG1の最大定格トルクを超える場合には、当該最大定格トルクを超えるMG1トルクを一時的に出力することができるように第1のモータジェネレータMG1を制御することとする。
 図27は、第5実施形態における車両動作点の移動の様子を示す図であり、縦軸がアクセル開度を示し、横軸が車速を示している。図27には、無段変速モード領域Ar3、固定変速モード領域Ar1、Ar2が示されている。第5実施形態では、図27に示すように、車速が上昇した場合(矢印Wa1、Wa2)、アクセル開度が上昇した場合(矢印Wb1、Wb2)、アクセル開度が低下した場合(矢印Wc1、Wc2)のそれぞれに示すように、無段変速モード領域Ar3から固定変速モード領域Ar1、Ar2へと車両動作点が移動する場合における変速モードの切り換え制御方法について説明する。以下では、一例として、車速が上昇して、無段変速モード領域Ar3から固定変速モード領域Ar1、Ar2のそれぞれに車両動作点が移動する場合について説明する。
 まず、車速が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合(図27の矢印W1aに示す場合)における変速モードの切り換え制御方法について図28、29を用いて説明する。
 図28(a)は、車速が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図28(a)には、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、等パワー線Lp、最大エンジントルク動作線Lcmaxが示されている。図28(b)は、このときの共線図の変化の様子を示している。
 図28(a)では、エンジントルクが低下するとともにエンジン回転数が上昇することにより、エンジン動作点が、CVT動作線Lc上の点Pecから動作線Ls上の点Pesへと等パワー線Lp上に沿って移動している。このとき、図28(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は負回転している状態から回転数「0」となるように制御される。
 図29は、図28(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図29において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 ECU4は、図27に示した、車速及びアクセル開度と変速モードとの関係を変速モード判定マップとしてメモリなどに保持している。ECU4は、車速を基に、変速モード判定マップより、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。なお、この例では、エンジン動作点は等パワー線Lp上に沿って移動するため、変速モード切り換え制御が行われる間、駆動力は一定に保たれる。
 ECU4は、時刻T1からT2にかけて、時刻T1のときのエンジントルクから、エンジントルクを徐々に低下させる制御を行う。また、ECU4は、時刻T1からT2にかけて、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを徐々に低下させつつ、MG1回転数を負回転時の回転数から「0」に近づける。MG1回転数が負回転時の回転数から「0」に近づくことにより、図28(b)に示すように、エンジン回転数は上昇する。これにより、図28(a)においてエンジン動作点が点Pecから点Pesへと移動する。なお、時刻T1からT2にかけて、電力収支一定となるように、第2のモータジェネレータMG2は制御される。ECU4は、MG1回転数が「0」になったときに(時刻T2)、クラッチ7aを係合させる。ECU4は、クラッチ7aが係合した後、MG1トルクを「0」にして(時刻T3)、変速モード切り換え制御を終了する。このようにすることで、駆動力を確保しつつ、応答性が良い第1のモータジェネレータMG1によりMG1回転数を「0」にする同期制御を行うことができる。また、等パワー変速により、第2のモータジェネレータMG2は電力収支「0」となるように制御されるため、HVバッテリ33への負荷を抑えることができる。
 以上に述べたように、車速が上昇して、無段変速モード領域Ar3から第1の固定変速モード領域Ar1へと車両動作点が移動する場合において、ECU4は、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを制御して、無段変速モードから固定変速モードへと変速モードを切り換える。
 次に、車速が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合(図27の矢印Wa2に示す場合)における変速モードの切り換え制御の方法について図30、31を用いて説明する。
 図30(a)は、車速が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図30(a)には、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、等パワー線Lp、最大エンジントルク動作線Lcmaxが示されている。図30(b)は、このときの共線図の変化の様子を示している。
 図30(a)では、エンジントルクが上昇するとともにエンジン回転数が低下することにより、エンジン動作点が、CVT動作線上の点Pecから動作線Ls上の点Pesへと等パワー線Lpに沿って移動している。このとき、図30(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は正回転している状態から回転数「0」となるように制御される。
 図31は、図30(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図31において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG2トルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。なお、この例では、エンジン動作点は等パワー線Lp上に沿って移動するため、変速モード切り換え制御が行われる間、駆動力は一定に保たれる。
 ECU4は、車速を基に、変速モード判定マップより、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1からT2にかけて、時刻T1のときのエンジントルクから、エンジントルクを徐々に上昇させる制御を行う。ここで、図30(a)に示したように、エンジン動作点が点Pecにいる状態で、エンジントルクが上昇した場合、エンジントルクは反力上限エンジントルクTKecを超える、即ち、エンジントルクに対応する反力トルクは、MG1トルクの最大定格トルクTKmgxを超えることとなる。
 そこで、ECU4は、時刻T1からT2にかけて、第1のモータジェネレータMG1に流れる電流量を増加させて、最大定格トルクTKmgxを超えるMG1トルクを第1のモータジェネレータMG1より一時的に出力させる(MG1トルクアップ)。また、このとき、ECU4は、トルクアップされた第1のモータジェネレータMG1による出力可能なトルクに応じたエンジントルクとなるようにエンジントルクを制限する制御を行う。具体的には、ECU4は、トルクアップされた第1のモータジェネレータMG1による出力可能なトルク以下に反力トルクがなるようにエンジントルクを制御する。これにより、エンジントルクに対応する反力トルクを第1のモータジェネレータMG1で受け持つことができ、エンジンの吹き上がりを防止することができる。そして、ECU4は、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを上昇させつつ、MG1回転数を正回転時の回転数から「0」に近づける。時刻T1からT2にかけて、MG1回転数が低下するに伴い、図30(b)に示すように、エンジン回転数も低下する。このようにして、図30(a)においてエンジン動作点が点Pecから点Pesへと移動する。なお、時刻T1からT2にかけて、電力収支一定となるように、第2のモータジェネレータMG2は制御される。
 ECU4は、MG1回転数が「0」になったときに(時刻T2)、ロック機構7のクラッチ7aを係合する。その後、ECU4は、MG1トルクを「0」にして、変速モード切り換え制御を終了する(時刻T3)。この例では、一時的にMG1トルクアップを行っているので、常にMG1トルクアップを行う場合と比較して、第1のモータジェネレータMG1の保護を図ることができる。また、MG1トルクアップを行うことで、駆動力を確保しつつ、応答性が良い第1のモータジェネレータMG1によりMG1回転数を「0」にする同期制御を行うことができる。また、この例では、等パワー変速により、第2のモータジェネレータMG2は電力収支「0」となるように制御されるため、HVバッテリ33への負荷を抑えることができる。
 以上に述べたように、車速が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合において、ECU4は、MG1トルクアップ制御を行うことによって、無段変速モードから固定変速モードへと変速モードを切り換える。
 図31の例では、MG1トルクアップを行うことが可能な場合について述べた。しかしながら、HVバッテリ33の状態によっては、MG1トルクアップを行うことができない場合もある。そこで、次に述べる例では、エンジントルクに対応する反力トルクが、第1のモータジェネレータMG1の最大定格トルクTKmgxを超えると判定した場合において、MG1トルクアップを行う代わりに、エンジントルクを反力上限エンジントルクに制限することとする。図32~図34を用いて具体的に説明する。
 図32(a)は、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図32(a)には、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、等パワー線Lp、最大エンジントルク動作線Lcmaxが示されている。図32(b)は、このときの共線図の変化の様子を示している。
 図32(a)では、エンジン回転数が低下した後、エンジントルクが上昇することにより、エンジン動作点が、CVT動作線Lc上の点Pecから動作線Ls上の点Pesへと矢印に沿って移動している。このとき、図32(b)に示すように、共線図は、直線Acから直線Asへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は正回転している状態から回転数「0」となるように制御される。
 図33、34は、図32(a)において点Pecから点Pesへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図33、34において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG2トルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 まず、図33を用いて説明する。ECU4は、車速を基に、変速モード判定マップより、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動すると判定した場合には、ロック指令フラグをオフからオンにする(時刻T1)。ECU4は、ロック指令フラグがオンになったのを確認すると、変速モード切り換え制御を開始する。
 時刻T1において、エンジン動作点は点Pecにあるため、エンジントルクは反力上限エンジントルクTKecとなっている。ECU4は、時刻T1からT2にかけて、MG1トルクを最大定格トルクTKmgxに保持するとともに、エンジンの吹き上がりを防ぐため、エンジントルクを反力上限エンジントルクTKecに制限する。また、時刻T1からT2にかけて、MG1トルクが最大定格トルクTKmgxに保持されており、係合トルクも制御できないため、ECU4は、エンジン回転数を制御することにより、MG1回転数の同期制御を行う。具体的には、ECU4は、時刻T1からT2にかけて、エンジン回転数を低下させることで、図32(b)に示すように、MG1回転数を低下させ「0」に近づける。これにより、MG1トルクを最大定格トルクTKmgxに保持しつつ、MG1回転数の同期制御を行うことができる。なお、図33の例では、時刻T1からT2にかけて、電力収支一定となるように、第2のモータジェネレータMG2は制御される。
 ECU4は、MG1回転数が「0」になったときに(時刻T2)、ロック機構7のクラッチ7aを係合する。そして、ECU4は、時刻T2からT3にかけて、MG1トルクを「0」にするとともに、エンジントルクを上昇させ、変速モード切り換え制御を終了する。このようにすることで、図32(a)において点Pecから点Pesへ矢印に沿ってエンジン動作点が移動することとなり、無段変速モードから固定変速モードへと変速モードが切り換えられる。
 しかしながら、時刻T1からT2にかけて、電力収支一定となるように、第2のモータジェネレータMG2が制御された場合には、MG2トルクは徐々に低下することとなり、図33に示すように、駆動力の低下が発生してしまうこととなる。
 そこで、第5実施形態では、図34に示すように、上述した制御に加えて、ECU4は、時刻T1からT2にかけて、第2のモータジェネレータMG2を制御して、駆動力が一定となるようにMG2トルクを制御するMG2トルク補償制御を行う。これにより、時刻T1からT2にかけて、駆動力の低下を防いで、ドライバビリティを向上させることができる。なお、ここで、時刻T1からT2にかけて、MG1トルクは最大定格トルクTKmgxに設定されている。これにより、最大定格トルクTKmgxよりも小さいトルクにMG1トルクを設定する場合と比較して、第1のモータジェネレータMG1の発電量を大きくすることができ、MG2トルク補償制御が行われることによるHVバッテリ33の電力量の減少を抑えることができる。また、先に述べたように、エンジントルクは反力上限エンジントルクTKecに設定されている、つまり、エンジントルクは要求駆動力をなるべく満足するように制御されている。そのため、MG2トルク補償制御が行われる場合において、必要とされるMG2トルクは抑えられる。即ち、MG2トルク補償制御は必要最小限に抑えられる。また、MG1トルクを最大定格トルクTKmgxに常に設定すると予め決めておくことで、第1のモータジェネレータMG1については協調制御を行う必要がなくなり、制御の簡素化を図ることができる。
 ECU4は、MG1回転数が「0」になったときに(時刻T2)、クラッチ7aを係合する。そして、ECU4は、時刻T2からT3にかけて、エンジントルクを上昇させるとともに、エンジントルク上昇に合わせて駆動力が一定となるように、第2のモータジェネレータMG2を制御してMG2トルクを低下させ「0」にする(時刻T3)。なぜならば、MG2トルク補償が行われると、HVバッテリ33に充電される電力量よりも第2のモータジェネレータMG2により使われる電力量の方が大きくなり、エンジントルク上昇に合わせてMG2トルクを低下させないと、変速モード切り換えの際においてショックが発生してしまう恐れがあるからである。これにより、駆動力を一定に保持することができる。このようにして、図34に示す例では、駆動力の低下を引き起こすことなく、無段変速モードから固定変速モードへと変速モードが切り換えられる。
 以上に述べたように、車速が上昇して、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へと車両動作点が移動する場合において、ECU4は、MG1トルクアップ制御を行う代わりに、エンジントルクを反力上限エンジントルクTKecに制限することで、無段変速モードから固定変速モードへと変速モードを切り換える。また、この変速モード切り換え制御が行われる際において、さらに、ECU4は、第2のモータジェネレータMG2によりMG2トルク補償制御を行うこととする。これにより、駆動力の低下を抑えることができ、ショックの発生を防止することができる。
 なお、上述した例では、車速が上昇して、無段変速モード領域Ar3から固定変速モード領域Ar1、Ar2のそれぞれへと車両動作点が移動する場合(図27の矢印Wa1、Wa2に示す場合)について述べた。しかしながら、これに限られるものではなく、アクセル開度が上昇又は低下して、無段変速モード領域Ar3から固定変速モード領域Ar1、Ar2のそれぞれへと車両動作点が移動する場合(図27の矢印Wb1、Wb2に示す場合、及び、矢印Wc1、Wc2に示す場合)についても同様に、上述した切り換え制御方法を用いることができる。
 次に、第5実施形態に係る変速モード切換処理について、図35に示すフローチャートを用いて説明する。第5実施形態に係る変速モード切換処理では、ECU4は、アクセル開度や車速を基に、無段変速モード領域Ar3から固定変速モード領域Ar1又はAr2のどちらの領域へ車両動作点が進むのか判定し、それぞれの場合に応じて変速モード切り換え制御を行うこととする。また、ECU4は、無段変速モード領域Ar3から第2の固定変速モード領域Ar2へ車両動作点が進むと判定した場合において、MG1トルクアップ可能か否かを判定する。ECU4は、MG1トルクアップが可能であると判定した場合には、MG1トルクアップ制御を用いて、変速モード切り換え制御を行うこととし、MG1トルクアップが不可能であると判定した場合には、エンジントルク制限制御、MG2トルク補償制御を用いて、変速モード切り換え制御を行うこととする。
 まず、ステップS501において、ECU4は、車速又はアクセル開度に基づいて、ロック機構7のクラッチ7aを係合すべきか否かについて判定する。ECU4は、車速に基づいて、クラッチ7aを係合すべきでないと判定した場合には(ステップS501:No)、本制御処理を終了し、クラッチ7aを係合すべきであると判定した場合には(ステップS501:Yes)、ステップS502の処理へ進む。
 ステップS502において、ECU4は、車速又はアクセル開度に基づいて、変速モード判定マップを用いて、車両動作点が第1の固定変速モード領域Ar1に移動するか否かについて判定する。ECU4は、車両動作点が第1の固定変速モード領域Ar1に移動すると判定した場合には(ステップS502:Yes)、ステップS503の処理へ進み、車両動作点が第1の固定変速モード領域Ar1に移動しない、即ち、車両動作点が第2の固定変速モードに移動すると判定した場合には(ステップS503:No)、ステップS507の処理へ進む。
 ステップS503において、ECU4は、エンジントルクの制御を行う。続くステップS504において、ECU4は、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを制御しつつ、MG1回転数を「0」に近づける。
 ステップS505において、ECU4は、MG1回転数が「0」になっているか否か、即ち、MG1回転数同期制御が完了したか否かを判定し、同期制御が完了していないと判定した場合には(ステップS505:No)、ステップS502の処理へ戻り、同期制御が完了したと判定した場合には(ステップS505:Yes)、ステップS506の処理へ進む。ステップS506において、ECU4は、ロック機構7に制御信号を送信して、クラッチ7aの係合を行う。この後、ECU4は、本制御処理を終了する。
 一方、ステップS502において、ECU4は、車両動作点が第1の固定変速モード領域Ar1にない、即ち、車両動作点が第2の固定変速モード領域Ar2にあると判定した場合には(ステップS502:No)、ステップS507の処理へ進み、SOCやインバータ31の状態、第1のモータジェネレータMG1自体の温度などに基づいて、MG1トルクアップが可能か否かについて判定する。例えば、ECU4は、第1のモータジェネレータMG1に取り付けられた温度センサからの検出信号に基づいて、第1のモータジェネレータMG1の温度を検出し、当該温度が所定温度以下となっている場合には、MG1トルクアップが可能であると判定する。ここで、例えば、所定温度は、最大定格トルクを超えるトルクを第1のモータジェネレータMG1より一時的に出力させた場合であっても、第1のモータジェネレータMG1が壊れることのない温度に設定される。ECU4は、MG1トルクアップが可能であると判定した場合には(ステップS507:Yes)、MG1トルクアップを行って、ステップS508の処理へ進み、MG1トルクアップが不可能であると判定した場合には(ステップS507:No)、ステップS509の処理へ進む。
 ステップS508において、ECU4は、第1のモータジェネレータMG1のトルクアップ量に応じて、エンジントルクを制限する制御を行う。即ち、ECU4は、トルクアップされた第1のモータジェネレータMG1による出力可能なトルクに応じたエンジントルクが出力されるように、エンジントルクを制限する制御を行う。その後、ECU4は、ステップS503の処理へ進む。
 一方、ステップS507において、ECU4は、第1のモータジェネレータMG1のトルクアップが不可能であると判定した場合には(ステップS507:No)、ステップS509の処理へ進み、エンジントルクを反力上限エンジントルクに制限し、MG1トルクを最大定格トルクに保持する。続くステップS510において、ECU4は、エンジン回転数を制御することにより、MG1回転数を「0」に近づけるエンジン回転数同期制御を行う。
 ステップS511において、ECU4は、第2のモータジェネレータMG2を制御して、駆動力が一定となるようにMG2トルクを制御するMG2トルク補償制御を行う。ステップS512において、ECU4は、MG1回転数が「0」になっているか否か、即ち、エンジン回転数同期制御が完了したか否かを判定し、同期制御が完了していないと判定した場合には(ステップS512:No)、ステップS502の処理へ戻り、同期制御が完了したと判定した場合には(ステップS512:Yes)、ステップS513の処理へ進む。
 ステップS513において、ECU4は、ステップS506において、ECU4は、ロック機構7に制御信号を送信して、クラッチ7aの係合を行う。そして、ステップS514において、ECU4は、エンジントルクを上昇させ、続くステップS515において、エンジントルク上昇に合わせて駆動力が一定となるように、MG2トルクを低下させ「0」にする。この後、ECU4は、本制御処理を終了する。
 以上に述べたことから分かるように、第5実施形態では、無段変速モードから固定変速モードへと変速モードの切り換えが行われる場合において、ECU4は、MG1トルクアップ可能か否かを判定し、可能であると判定した場合には、MG1トルクアップ制御を用いて、変速モード切り換え制御を行うこととする。一方、ECU4は、MG1トルクアップが不可能であると判定した場合には、エンジントルクを反力上限エンジントルクに制限し、MG1トルクを最大定格トルクに保持して変速モード切り換え制御を行うこととする。このようにすることで、変速モード切り換えの際におけるエンジンの吹き上がりを防止することができる。また、ECU4は、エンジントルクを反力上限エンジントルクに制限し、MG1トルクを最大定格トルクに保持した場合において、第2のモータジェネレータMG2によりMG2トルク補償制御を行うこととする。これにより、駆動力の低下を防止することができる。
 [第6実施形態]
 次に、本発明の第6実施形態について説明する。
 図36は、第6実施形態における車両動作点の移動の様子を示す図であり、縦軸がアクセル開度を示し、横軸が車速を示している。図36には、無段変速モード領域Ar3、固定変速モード領域Ar1、Ar2が示されている。第6実施形態では、図36の矢印Wa1、Wa2、Wc1、Wc2に示すように、車速が低下して、又は、アクセル開度が上昇して、固定変速モード領域Ar1、Ar2のそれぞれから無段変速モード領域Ar3へと車両動作点が移動する場合における変速モードの切り換え制御方法について説明する。以下では、一例として、アクセル開度が上昇して、固定変速モード領域Ar1、Ar2のそれぞれから無段変速モード領域Ar3へと車両動作点が移動する場合について説明する。
 まず、アクセル開度が上昇して、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動する場合(図36の矢印Wc1)における変速モードの切り換え制御方法について図37、38を用いて説明する。
 図37(a)は、アクセル開度が上昇して、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図37(a)には、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図37(b)は、このときの共線図の変化の様子を示している。
 図37(a)では、エンジントルク及びエンジン回転数が上昇することにより、エンジン動作点が、動作線Ls上の点PesからCVT動作線Lc上の点Pecへと矢印に沿って移動している。このとき、図37(b)に示すように、共線図は、直線Asから直線Acへと変化する。つまり、ロック機構7におけるクラッチ7aが解放された後、第1のモータジェネレータMG1は回転数「0」から正回転するように制御される。
 図38は、図37(a)において点Pesから点Pecへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図38において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG2トルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 ECU4は、図36に示した、車速及びアクセル開度と変速モードとの関係を変速モード判定マップとしてメモリなどに保持している。ECU4は、アクセル開度を基に、変速モード判定マップより、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動すると判定した場合には、ロック指令フラグをオンからオフにする(時刻T1)。ECU4は、ロック指令フラグがオフになったのを確認すると、変速モード切り換え制御を開始する。
 まず、ECU4は、時刻T1において、アクセル開度に基づき、要求駆動力を求め、駆動力が当該要求駆動力となるときのエンジントルクを求める。また、ECU4は、時刻T1において、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを上昇させる制御を行い、クラッチ7aを解放する。そして、ECU4は、時刻T1からT2にかけて、駆動力が要求駆動力となるように、時刻T1の時のエンジントルクから、エンジントルクを上昇させる制御を行う。このとき、ECU4は、第1のモータジェネレータMG1を制御することにより、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクを上昇させつつ、MG1回転数を正回転方向に上昇させる。MG1回転数が正回転方向に上昇することにより、図37(b)に示すように、エンジン回転数も上昇する。このようにすることで、応答性が良い第1のモータジェネレータMG1により反力トルクを受け持たせることができる。また、ECU4は、時刻T1以降において、MG2トルクを増加させることにより要求駆動力に対する不足分を補償する。ここで、先にも述べたように、駆動力が要求駆動力となるようにエンジントルクは制御されているので、MG2トルクによる補償分は最小限に抑えられる。このようにすることで、図37(a)においてエンジン動作点は点Pesから点Pecへと移動し、駆動力は上昇する。
 以上に述べたように、第1の固定変速モード領域Ar1から無段変速モード領域Ar3へと車両動作点が移動する場合において、ECU4は、クラッチ7aを解放する解放制御と、エンジントルク制御と、MG2トルク補償制御とによって、固定変速モードから無段変速モードへと変速モードを切り換える。
 次に、アクセル開度が上昇して、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合(図36の矢印Wc2)における変速モード切り換え制御方法について説明する。まず、MG1トルクアップ制御を行う場合における変速モード切り換え制御方法について図39、40を用いて説明する。
 図39(a)は、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図39(a)には、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図39(b)は、このときの共線図の変化の様子を示している。
 図39(a)では、エンジントルクが低下するとともにエンジン回転数が上昇することにより、エンジン動作点が、動作線Ls上の点PesからCVT動作線Lc上の点Pecへと矢印に沿って移動している。このとき、図39(b)に示すように、共線図は、直線Asから直線Acへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は回転数「0」から正回転するように制御される。
 図40は、図39(a)において点Pesから点Pecへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図40において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 ECU4は、アクセル開度を基に、変速モード判定マップより、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動すると判定した場合には、ロック指令フラグをオンからオフにする(時刻T1)。ECU4は、ロック指令フラグがオフになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1において、最大定格トルクTKmgxを超えるトルクを第1のモータジェネレータMG1より出力させるとともに、トルクアップされた第1のモータジェネレータMG1からの出力可能なトルクに応じてエンジントルクを制限する。その後、ECU4は、クラッチ7aを解放する(時刻Ta)。これにより、クラッチ7aの解放時においてエンジンの吹き上がりが発生するのを防ぐことができる。
 そして、ECU4は、時刻TaからT2にかけて、時刻Taのときのエンジントルクから、エンジントルクを徐々に低下させ、時刻T2において、反力上限エンジントルクTKecとなるようにエンジントルクを制御する。また、このとき、ECU4は、第1のモータジェネレータMG1を制御して、エンジントルクに対応する反力トルクに等しくなるようにMG1トルクを徐々に低下させる制御を行いつつ、MG1回転数を正回転方向に上昇させる。MG1回転数が正回転方向に上昇することにより、図39(b)に示すように、エンジン回転数も上昇する。ECU4は、MG1トルクを徐々に低下させ、時刻T2において、最大定格トルクTKmgxになるようにMG1トルクを制御する。この例では、MG1トルクアップは一時的なものであるので、常にMG1トルクアップを行う場合と比較して、第1のモータジェネレータMG1の保護を図ることができる。また、出力可能なMG1トルクを一時的にトルクアップすることで、応答性が良い第1のモータジェネレータMG1により反力トルクを受け持たせることができる。このようにして、図39(a)においてエンジン動作点が点Pesから点Pecへと移動し、駆動力は上昇する。
 以上に述べたように、アクセル開度が上昇して、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合において、ECU4は、MG1トルクアップが可能な場合には、MG1トルクの出力可能なトルクをトルクアップするMG1トルクアップ制御を行うことによって、固定変速モードから無段変速モードへと変速モードが切り換えられる。
 次に、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合における変速モードの切り換え制御方法として、エンジントルクを反力上限エンジントルクに制限する方法について図41から43を用いて説明する。
 図41(a)は、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合におけるエンジン動作点の移動の様子を示す図であり、縦軸がエンジントルクを示し、横軸がエンジン回転数を示している。図41(a)には、CVT動作線Lc、固定変速モードの場合におけるエンジン1の動作線Ls、最大エンジントルク動作線Lcmaxが示されている。図41(b)は、このときの共線図の変化の様子を示している。
 図41(a)では、エンジントルクが低下するとともにエンジン回転数が上昇することにより、エンジン動作点が、CVT動作線Lc上の点Pesから動作線Ls上の点Pecへと矢印に沿って移動している。このとき、図41(b)に示すように、共線図は、直線Asから直線Acへと変化する。つまり、ロック機構7におけるクラッチ7aを係合するため、第1のモータジェネレータMG1は回転数「0」から正回転するように制御される。
 図42、43は、図41(a)において点Pesから点Pecへとエンジン動作点が移動する場合における変速モード切り換え制御のタイミングチャートを示している。図42、43において、縦軸は上から順に、車速、アクセル開度、ロック指令フラグ、エンジン回転数、MG1回転数、エンジントルク、MG2トルク、MG1トルク、ロック機構7のクラッチ7aの係合トルク、駆動力を示しており、横軸は時間を示している。
 まず、図42を用いて説明する。ECU4は、アクセル開度を基に、変速モード判定マップより、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動すると判定した場合には、ロック指令フラグをオンからオフにする(時刻T1)。ECU4は、ロック指令フラグがオフになったのを確認すると、変速モード切り換え制御を開始する。
 ECU4は、時刻T1において、MG1トルクを最大定格トルクTKmgxに設定する。ECU4は、時刻T1からTaにかけて、第1のモータジェネレータMG1により反力トルクを担うことが可能な大きさとなるまで、即ち、反力上限エンジントルクTKecとなるまでエンジントルクを低下させる。ECU4は、エンジントルクが低下して、第1のモータジェネレータMG1により反力トルクを担うことが可能となった時刻Taにおいて、クラッチ7aを解放する。これにより、クラッチ7aの解放時においてエンジンの吹き上がりが発生するのを防ぐことができる。
 次に、ECU4は、時刻Taにおいて、クラッチ7aを解放した後、時刻TaからT2にかけて、エンジントルクを反力上限エンジントルクTKecに制限するとともに、MG1トルクを最大定格トルクTKmgxに保持し、エンジン回転数を上昇させることによりMG1回転数を正回転方向に上昇させる。これにより、図39(a)において、点Pesから点Pecへとエンジン動作点が移動する。なお、この例では、時刻TaからT2にかけて、電力収支一定となるように、第2のモータジェネレータMG2は制御される。このようにして、無段変速モードから固定変速モードへと変速モードが切り換えられる。
 しかしながら、時刻T1からT2にかけて、電力収支一定となるように、ECU4が第2のモータジェネレータMG2を制御した場合には、図42に示すように、時刻Taにおいて駆動力の低下が発生してしまうこととなる。
 そこで、第6実施形態では、上述した制御に加えて、図43に示すように、ECU4は、時刻T1から時刻Taにかけて、第2のモータジェネレータMG2を制御してMG2トルクを上昇させ、MG2トルクの上昇に合わせて、エンジントルクを低下させるMG2トルクアシスト制御を行うこととする。具体的には、ECU4は、第2のモータジェネレータMG2の最大定格トルクやHVバッテリ33の持ち出し可能な電力量などに応じて、MG2トルクを上昇させ、MG2トルクの上昇量に応じて、駆動力が要求駆動力となるようにエンジントルクを低下させる。これにより、駆動力の低下を防ぐことができ、ドライバビリティを向上させることができる。なお、ここで、MG1トルクは最大定格トルクTKmgxに設定されている。これにより、最大定格トルクTKmgxよりも小さいトルクにMG1トルクを設定する場合と比較して、第1のモータジェネレータMG1の発電量を大きくすることができ、MG2トルクアシスト制御が行われることによるHVバッテリ33の電力量の減少を抑えることができる。そして、ECU4は、エンジントルクが反力上限エンジントルクTKecとなったときに(時刻Ta)、クラッチ7aを解放する。これにより、駆動力の低下が発生するのを防ぐことができ、ドライバビリティを向上させることができる。
 以上に述べたように、アクセル開度が上昇して、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へと車両動作点が移動する場合において、ECU4は、MG1トルクアップ制御を行う代わりに、エンジントルクを反力上限エンジントルクに制限することで、固定変速モードから無段変速モードへと変速モードを切り換える。また、この変速モード切り換え制御では、ECU4は、第2のモータジェネレータMG2によるトルクアシスト制御を行うこととする。これにより、駆動力の低下を防ぐことができる。
 なお、上述した例では、アクセル開度が上昇して、固定変速モード領域Ar1、Ar2のそれぞれから無段変速モード領域Ar3へと車両動作点が移動する場合(図36の矢印Wc1、Wc2に示す場合)について述べた。しかしながら、これに限られるものではなく、車速が低下して、固定変速モード領域Ar1、Ar2のそれぞれから無段変速モード領域Ar3へと車両動作点が移動する場合(図36の矢印Wa1、Wa2に示す場合)についても同様に、上述した切り換え制御方法を用いることができる。
 次に、第6実施形態に係る変速モード切換処理について、図44に示すフローチャートを用いて説明する。第6実施形態に係る変速モード切換処理では、ECU4は、アクセル開度又は車速を基に、固定変速モード領域Ar1又はAr2のどちらの領域から無段変速モード領域Ar3へ車両動作点が進むのか判定し、それぞれの場合に応じて変速モード切り換え制御を行うこととする。また、ECU4は、第2の固定変速モード領域Ar2から無段変速モード領域Ar3へ車両動作点が進むと判定した場合において、MG1トルクアップ可能か否かを判定する。ECU4は、MG1トルクアップが可能であると判定した場合には、MG1トルクアップ制御を用いて、変速モード切り換え制御を行うこととし、MG1トルクアップが不可能であると判定した場合には、MG2補償制御を用いて、変速モード切り換え制御を行うこととする。
 まず、ステップS601において、ECU4は、アクセル開度又は車速に基づいて、ロック機構7のクラッチ7aを解放すべきか否かについて判定する。ECU4は、アクセル開度に基づいて、クラッチ7aを解放すべきでないと判定した場合には(ステップS601:No)、本制御処理を終了し、クラッチ7aを解放すべきであると判定した場合には(ステップS601:Yes)、ステップS602の処理へ進む。
 ステップS602において、ECU4は、アクセル開度又は車速を基に、変速モード判定マップを用いて、車両動作点が第1の固定変速モード領域Ar1に位置するか否かについて判定する。ECU4は、車両動作点が第1の固定変速モード領域Ar1に位置すると判定した場合には(ステップS602:Yes)、ステップS603の処理へ進み、車両動作点が第1の固定変速モード領域Ar1に位置しない、即ち、車両動作点が第2の固定変速モードに位置すると判定した場合には(ステップS02:No)、ステップS609の処理へ進む。
 ステップS603において、ECU4は、エンジントルクの制御を行うとともに、ステップS604において、エンジントルクに対応する反力トルクと等しくなるようにMG1トルクの制御を行う。続くステップS605において、ECU4は、MG2トルクを補正することにより要求駆動力に対する不足分を補償する。
 ステップS606において、ECU4は、エンジントルクに対応する反力トルクにMG1トルクが達したか否かについて判定する。ECU4は、エンジントルクに対応する反力トルクにMG1トルクが達したと判定した場合には(ステップS606:Yes)、クラッチ7aを解放する制御を行った後(ステップS607)、通常走行制御を行い(ステップS608)、本制御処理を終了する。ステップS606において、ECU4は、エンジントルクに対応する反力トルクにMG1トルクが達していないと判定した場合には(ステップS606:No)、ステップS602の処理へ戻る。
 一方、ステップS602において、ECU4は、車両動作点が第1の固定変速モード領域Ar1に位置しない、即ち、車両動作点が第2の固定変速モード領域Ar2に位置すると判定した場合には(ステップS602:No)、ステップS609の処理へ進み、第5実施形態のフローチャート(図35)で述べたのと同様の判定方法を用いて、MG1トルクアップが可能か否かについて判定する。ECU4は、MG1トルクアップが可能であると判定した場合には(ステップS609:Yes)、MG1トルクアップ制御を行った後、ステップS610の処理へ進み、MG1トルクアップが不可能であると判定した場合には(ステップS609:No)、ステップS611の処理へ進む。
 ステップS610において、ECU4は、第1のモータジェネレータMG1のトルクアップ量に応じて、エンジントルクを制限する制御を行う。即ち、ECU4は、トルクアップされた第1のモータジェネレータMG1による出力可能な最大トルクに応じたエンジントルクが出力されるように、エンジントルクを制限する制御を行う。その後、ECU4は、ステップS603の処理へ進む。
 一方、ステップS609において、ECU4は、MG1トルクアップが不可能であると判定した場合には(ステップS609:No)、ステップS611の処理へ進み、MG1トルクを最大定格トルクに制御する。続くステップS612において、ECU4は、第2のモータジェネレータMG2を制御して、MG2トルクを上昇させるMG2トルクアシスト制御を行う。ステップS613において、ECU4は、MG2トルクの上昇量に応じて、エンジントルクを低下させる。その後、ECU4は、ステップS606の処理へ進み、ステップS607からS608の処理を経て、本制御処理を終了する。
 以上に述べたことから分かるように、第6実施形態では、固定変速モードから無段変速モードへと変速モードの切り換えが行われる場合において、第5実施形態と同様、ECU4は、MG1トルクアップ可能か否かを判定し、可能であると判定した場合には、MG1トルクアップ制御を用いて、変速モード切り換え制御を行うこととする。ECU4は、MG1トルクアップが不可能であると判定した場合には、エンジントルクを反力上限エンジントルクに制限し、MG1トルクを最大定格トルクに保持して変速モード切り換え制御を行うこととする。このようにすることで、変速モード切り換えの際におけるエンジンの吹き上がりを防止することができる。また、エンジントルクを反力上限エンジントルクに保持し、MG1トルクを最大定格トルクに保持した場合において、ECU4は、MG2トルクアシスト制御を行うこととする。これにより、駆動力の低下を防ぐことができる。
 なお、第6、7実施形態に係る制御方法と、前述した第1~5実施形態に係る制御方法と、を組み合わせて実行することも可能であるのは言うまでもない。
[変形例]
 また、上述の各実施形態では、動力分配機構20は、シングルピニオン型の遊星歯車機構であるとしているがこれに限られない。代わりに、ダブルピニオン型の遊星歯車機構であるとしてもよい。即ち、キャリアC1は、リングギヤR1とサンギヤS1との両方に噛み合っているピニオンギヤCP1を保持する代わりに、サンギヤS1と噛み合うように構成されたインナーピニオンギヤと、当該インナーピニオンギヤ及びリングギヤR1と噛み合うように構成されたアウターピニオンギヤと、を保持するとしても良い。また、ピニオンギヤCP1としては、段差付きのピニオンギヤであるとしても良い。
 また、本発明を適用することが可能なハイブリッド車両の機構としては、第1のモータジェネレータMG1のロータをロックすることにより、即ち、サンギヤS1を固定することにより固定変速モードを実現するものには限られない。代わりに、動力分配機構20の回転要素のうち、サンギヤS1以外のいずれか一つをブレーキにより固定することで固定変速モードを実現する機構であっても、本発明を適用することが可能である。
 本発明は、無段変速モードと固定変速モードとの間で変速モードの切り換えが可能に構成されたハイブリッド車両に利用することができる。

Claims (11)

  1.  エンジンと、モータジェネレータと、前記エンジン及び前記モータジェネレータが連結された動力分配機構と、前記動力分配機構からの出力が伝達される駆動軸と、前記動力分配機構におけるいずれかの回転要素と連結され、前記回転要素を固定又は解放する係合機構と、を有するハイブリッド車両に適用されるハイブリッド車両の制御装置であって、
     アクセル開度及び車速によって規定され、無段変速モード領域と固定変速モード領域とが設定されたマップと、
     前記マップ上において、前記固定変速モード領域から前記無段変速モード領域へと車両動作点が移動する場合には、前記係合機構により前記回転要素を解放して、前記エンジンのエンジントルクに対応する反力トルクを前記モータジェネレータに出力させる無段変速モードに変速モードを切り換え、前記無段変速モード領域から前記固定変速モード領域へと車両動作点が移動する場合には、前記係合機構により前記回転要素を固定して、前記反力トルクを前記係合機構に受け持たせる固定変速モードに変速モードを切り換える制御手段と、を備え、
     前記固定変速モード領域は、前記反力トルクが前記モータジェネレータの最大定格トルク以下となる第1の固定変速モード領域と、前記反力トルクが前記最大定格トルクよりも大きくなる第2の固定変速モード領域とより構成され、
     前記制御手段は、前記第1又は第2の固定変速モード領域のいずれの領域に前記車両動作点が移動又は位置するかに応じて、変速モードの切り換え制御方法を異ならせることを特徴とするハイブリッド車両の制御装置。
  2.  前記反力トルクの少なくとも一部を出力することが可能な補助手段を備え、
     前記制御手段は、変速モードの切り換えの際において、前記車両動作点が前記第2の固定変速モード領域に移動又は位置し、かつ、前記回転要素が解放されている場合には、前記反力トルクの少なくとも一部を前記補助手段により出力させることを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3.  前記制御手段は、変速モードの切り換えの際において、前記補助手段により前記反力トルクの一部が出力されている場合には、前記モータジェネレータより出力されるトルクを最大定格トルクに設定することを特徴とする請求項2に記載のハイブリッド車両の制御装置。
  4.  前記制御手段は、アクセル開度又は車速の上昇により、前記無段変速モード領域から前記第2の固定変速モード領域へと前記車両動作点が移動する場合には、前記モータジェネレータより出力されるトルクを前記最大定格トルクに設定することを特徴とする請求項3に記載のハイブリッド車両の制御装置。
  5.  前記ハイブリッド車両は、前記モータジェネレータにより発電された電力により、前記駆動軸にトルクを出力するアシストモータジェネレータを備え、
     前記制御手段は、変速モードの切り換えの際において、前記駆動軸の駆動力が要求駆動力となるように、前記アシストモータジェネレータより出力されるトルクを制御することを特徴とする請求項1乃至4に記載のハイブリッド車両の制御装置。
  6.  前記補助手段は、互いに係合する係合要素が差動回転可能に構成された前記係合機構であることを特徴とする請求項1乃至5に記載のハイブリッド車両の制御装置。
  7.  前記制御手段は、アクセル開度又は車速の上昇により、前記無段変速モード領域から前記第2の固定変速モード領域へと前記車両動作点が移動する場合には、前記係合機構により出力される係合トルクに応じて、前記駆動軸の駆動力が一定となるように前記エンジントルクを制御することを特徴とする請求項6に記載のハイブリッド車両の制御装置。
  8.  前記制御手段は、アクセル開度の上昇により、前記第1の固定変速モード領域から無段変速モード領域へと車両動作点が移動する場合には、前記モータジェネレータにより前記反力トルクを出力させることを特徴とする請求項1乃至7に記載のハイブリッド車両の制御装置。
  9.  前記制御手段は、アクセル開度の上昇により、前記第2の固定変速モード領域から前記無段変速モード領域へと前記車両動作点が移動する場合には、前記モータジェネレータと前記補助手段とにより前記反力トルクを出力させることを特徴とする請求項1乃至7に記載のハイブリッド車両の制御装置。
  10.  前記補助手段は、前記モータジェネレータの出力可能なトルクを、前記最大定格トルクよりも一時的に大きくトルクアップするトルクアップ手段であり、
     前記制御手段は、前記無段変速モード領域から前記第2の固定変速モード領域へと前記車両動作点が移動する場合には、前記トルクアップ手段により、前記モータジェネレータの出力可能なトルクをトルクアップするとともに、トルクアップされた前記モータジェネレータによる出力可能なトルクに応じて、前記エンジントルクを制限することを特徴とする請求項1乃至5に記載のハイブリッド車両の制御装置。
  11.  前記制御手段は、前記第2の固定変速モード領域から前記無段変速モード領域へと前記車両動作点が移動する場合には、前記アシストモータジェネレータより出力されるアシストトルクを上昇させ、前記アシストトルクの上昇量に応じて、前記駆動軸の駆動力が要求駆動力となるように、前記エンジントルクを低下させることを特徴とする請求項4に記載のハイブリッド車両の制御装置。
PCT/JP2008/070103 2008-11-05 2008-11-05 ハイブリッド車両の制御装置 WO2010052768A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/070103 WO2010052768A1 (ja) 2008-11-05 2008-11-05 ハイブリッド車両の制御装置
JP2010536605A JPWO2010052768A1 (ja) 2008-11-05 2008-11-05 ハイブリッド車両の制御装置
DE112008004034T DE112008004034T5 (de) 2008-11-05 2008-11-05 Steuervorrichtung eines Hybridfahrzeugs
CN2008801309301A CN102137782A (zh) 2008-11-05 2008-11-05 混合动力车辆的控制装置
US13/061,432 US20110160947A1 (en) 2008-11-05 2008-11-05 Control device of a hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070103 WO2010052768A1 (ja) 2008-11-05 2008-11-05 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2010052768A1 true WO2010052768A1 (ja) 2010-05-14

Family

ID=42152584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070103 WO2010052768A1 (ja) 2008-11-05 2008-11-05 ハイブリッド車両の制御装置

Country Status (5)

Country Link
US (1) US20110160947A1 (ja)
JP (1) JPWO2010052768A1 (ja)
CN (1) CN102137782A (ja)
DE (1) DE112008004034T5 (ja)
WO (1) WO2010052768A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116664A (ja) * 2011-12-02 2013-06-13 Toyota Motor Corp ハイブリッド車両の駆動装置
WO2013145094A1 (ja) * 2012-03-26 2013-10-03 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
JP2016094157A (ja) * 2014-11-17 2016-05-26 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2020152251A (ja) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 ハイブリッド車両

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062363B2 (ja) * 2009-04-01 2012-10-31 トヨタ自動車株式会社 内燃機関の制御装置
JP5811187B2 (ja) * 2011-11-24 2015-11-11 トヨタ自動車株式会社 ハイブリッド車両の変速指示装置
SE1250720A1 (sv) * 2012-06-27 2013-12-28 Scania Cv Ab Förfarande för att byta växel hos ett fordon
DE102012021292A1 (de) * 2012-10-30 2014-04-30 Audi Ag Antriebsvorrichtung für ein Geschwindigkeits-Wechselgetriebe
CN103836180B (zh) * 2012-11-22 2015-12-23 广州汽车集团股份有限公司 换档控制方法及装置
KR20140079156A (ko) * 2012-12-18 2014-06-26 현대자동차주식회사 하이브리드 차량의 모터의 토크 결정 방법 및 시스템
DE102013014085A1 (de) * 2013-08-27 2015-03-05 Mtu Friedrichshafen Gmbh Systemsteuerung und Verfahren zum Steuern eines Ladesystems, das zum Laden eines elektrischen Energiespeichers vorgesehen ist, sowie Ladesystem und Fahrzeug
JP6194845B2 (ja) * 2014-04-25 2017-09-13 トヨタ自動車株式会社 車両用動力伝達機構の制御装置
JP6135603B2 (ja) * 2014-06-02 2017-05-31 トヨタ自動車株式会社 車両の制御装置
KR101684525B1 (ko) * 2015-07-08 2016-12-08 현대자동차 주식회사 하이브리드 차량의 엔진 클러치 접합점 학습 장치 및 방법
DE102015222694A1 (de) * 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
KR101788190B1 (ko) * 2016-04-08 2017-10-19 현대자동차주식회사 하이브리드 전기 자동차의 주행 모드 제어 방법 및 장치
JP7120035B2 (ja) * 2019-01-15 2022-08-17 トヨタ自動車株式会社 車両の変速制御装置
CN110103975A (zh) * 2019-05-12 2019-08-09 东南大学 一种多模混合动力汽车的模式切换图设计方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336810A (ja) * 1994-06-06 1995-12-22 Aqueous Res:Kk ハイブリッド型車両
JPH09156387A (ja) * 1995-12-05 1997-06-17 Aqueous Res:Kk ハイブリッド車両
JPH10325344A (ja) * 1997-05-26 1998-12-08 Toyota Motor Corp ハイブリッド駆動制御装置
JP2004254468A (ja) * 2003-02-21 2004-09-09 Honda Motor Co Ltd ハイブリッド車両
JP2005278387A (ja) * 2004-02-25 2005-10-06 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006022933A (ja) * 2004-07-09 2006-01-26 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006044555A (ja) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2006144625A (ja) * 2004-11-18 2006-06-08 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006240608A (ja) * 2005-02-04 2006-09-14 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006327552A (ja) * 2005-05-30 2006-12-07 Toyota Motor Corp 車両用駆動装置の制御装置
JP2007001492A (ja) * 2005-06-24 2007-01-11 Toyota Motor Corp 車両用駆動装置の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823281A (en) * 1995-05-25 1998-10-20 Kabushikikaisha Equos Reseach Hybrid vehicle
EP1146252B1 (en) * 1998-10-26 2004-12-29 Yanmar Diesel Engine Co. Ltd. Continuously variable transmission
JP3906717B2 (ja) * 2002-03-19 2007-04-18 トヨタ自動車株式会社 アクセル開度設定装置およびこれを備える自動車
US7077223B2 (en) * 2002-05-29 2006-07-18 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle
JP2005138743A (ja) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP3858885B2 (ja) * 2003-11-18 2006-12-20 日産自動車株式会社 ハイブリッド変速機の変速比制御装置
DE102005030603B8 (de) * 2004-07-01 2015-02-19 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für ein Fahrzeugantriebssystem
JP4005069B2 (ja) * 2004-09-03 2007-11-07 本田技研工業株式会社 ハイブリッド車両の制御装置
DE112005002717B4 (de) * 2004-10-27 2019-07-18 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Fahrzeugantriebssystem
JP4529726B2 (ja) * 2005-02-23 2010-08-25 トヨタ自動車株式会社 動力出力装置、動力出力装置の制御方法及びそれを搭載した車両

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336810A (ja) * 1994-06-06 1995-12-22 Aqueous Res:Kk ハイブリッド型車両
JPH09156387A (ja) * 1995-12-05 1997-06-17 Aqueous Res:Kk ハイブリッド車両
JPH10325344A (ja) * 1997-05-26 1998-12-08 Toyota Motor Corp ハイブリッド駆動制御装置
JP2004254468A (ja) * 2003-02-21 2004-09-09 Honda Motor Co Ltd ハイブリッド車両
JP2005278387A (ja) * 2004-02-25 2005-10-06 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006022933A (ja) * 2004-07-09 2006-01-26 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006044555A (ja) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2006144625A (ja) * 2004-11-18 2006-06-08 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006240608A (ja) * 2005-02-04 2006-09-14 Toyota Motor Corp 車両用駆動装置の制御装置
JP2006327552A (ja) * 2005-05-30 2006-12-07 Toyota Motor Corp 車両用駆動装置の制御装置
JP2007001492A (ja) * 2005-06-24 2007-01-11 Toyota Motor Corp 車両用駆動装置の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116664A (ja) * 2011-12-02 2013-06-13 Toyota Motor Corp ハイブリッド車両の駆動装置
WO2013145094A1 (ja) * 2012-03-26 2013-10-03 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
JP2016094157A (ja) * 2014-11-17 2016-05-26 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2020152251A (ja) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 ハイブリッド車両
JP7207059B2 (ja) 2019-03-20 2023-01-18 トヨタ自動車株式会社 ハイブリッド車両

Also Published As

Publication number Publication date
JPWO2010052768A1 (ja) 2012-03-29
DE112008004034T5 (de) 2011-11-24
CN102137782A (zh) 2011-07-27
US20110160947A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2010052768A1 (ja) ハイブリッド車両の制御装置
JP4501956B2 (ja) ハイブリッド車両用駆動装置の制御装置
JP4229165B2 (ja) 車両およびその制御方法
WO2013186924A1 (ja) ハイブリッド車両用駆動装置
JP5466258B2 (ja) ハイブリッド車両の制御装置
JP2009096284A (ja) 車両の駆動制御装置
JP2009160951A (ja) 車両用駆動装置の制御装置
JP5886640B2 (ja) ハイブリッド車両の駆動装置およびその制御方法
JP4192897B2 (ja) ハイブリッド車両
JP2009068615A (ja) 車両用駆動装置の制御装置
JP2009208721A (ja) ハイブリッド車両の制御装置
JP6485404B2 (ja) 車両の駆動制御装置
JP4094591B2 (ja) ハイブリッド車両の駆動装置
JP5157871B2 (ja) ハイブリッド車両の制御装置
JP5240107B2 (ja) 車両の制御装置
JP5130799B2 (ja) ハイブリッド車両の駆動制御装置
JP5240079B2 (ja) 車両の制御装置
JP6048101B2 (ja) ハイブリッド車両用駆動装置
JP6589757B2 (ja) ハイブリッド車両の走行モード切換制御装置
JP4941255B2 (ja) ハイブリッド車両の駆動装置
JP4192898B2 (ja) ハイブリッド車両
JP2010208411A (ja) ハイブリッド車両の制御装置
JP2011025742A (ja) ハイブリッド車両の制御装置
JP2011201376A (ja) ハイブリッド車両の制御装置
JP2009208723A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130930.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536605

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120080040346

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877963

Country of ref document: EP

Kind code of ref document: A1