WO2010050393A1 - 角速度センサ - Google Patents

角速度センサ Download PDF

Info

Publication number
WO2010050393A1
WO2010050393A1 PCT/JP2009/068121 JP2009068121W WO2010050393A1 WO 2010050393 A1 WO2010050393 A1 WO 2010050393A1 JP 2009068121 W JP2009068121 W JP 2009068121W WO 2010050393 A1 WO2010050393 A1 WO 2010050393A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
vibrator
output
axis direction
vibration
Prior art date
Application number
PCT/JP2009/068121
Other languages
English (en)
French (fr)
Inventor
哲 浅野
松本 昌大
康志 岡田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP09823505.4A priority Critical patent/EP2351982B1/en
Priority to US13/126,615 priority patent/US8746033B2/en
Publication of WO2010050393A1 publication Critical patent/WO2010050393A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5614Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719

Definitions

  • the present invention relates to a vibration type angular velocity sensor, and more particularly to a vibration type angular velocity sensor having a self-diagnosis function for constantly diagnosing abnormality of the angular velocity sensor.
  • a vibration-type angular velocity sensor is a device in which an oscillator in an angular velocity sensor is resonantly driven (hereinafter referred to as drive vibration), and when an angular velocity is applied in a rotation axis direction orthogonal to the drive axis direction of the vibrator, Utilizes the fact that vibration (hereinafter referred to as Coriolis vibration) is generated by applying Coriolis force in the detection axis direction orthogonal to the drive axis direction, and electrically processing the amplitude of the generated Coriolis vibration The angular velocity applied in (1) is acquired.
  • drive vibration an oscillator in an angular velocity sensor is resonantly driven
  • the vibrator is provided with a drive electrode for driving and vibrating the vibrator and a detection electrode for detecting Coriolis vibration.
  • the detection electrode includes a detection method such as a capacitance type in which amplitude is detected by a change in capacitance, or a piezoelectric type in which amplitude is detected using a piezoelectric effect.
  • Patent Document 1 describes a vibration-type angular velocity sensor that performs failure diagnosis using this self-vibration.
  • a vibration-type angular velocity sensor is output from a vibrator, and is based on an electrical signal including Coriolis vibration and self-vibration corresponding to the angular velocity.
  • the self-diagnosis is performed by monitoring the amplitude of the self-vibration.
  • the ambient temperature of the angular velocity sensor varies greatly depending on the location of the angular velocity sensor, the vehicle conditions, the season, and so on. Also, disturbance vibrations such as road surface vibrations generated during traveling and mechanical vibrations generated by the vehicle such as engine noise are transmitted to the angular velocity sensor through the vehicle body.
  • high reliability of fault detection that detects faults with excellent accuracy in such an environment and high reliability of angular velocity detection that detects angular velocity with excellent accuracy are required.
  • the resonance frequency of the vibrator changes at a high temperature place such as in an engine room.
  • the included vibration amplitude in the direction of the detection axis changes, and as a result, it is necessary to set a large allowable fluctuation amount of self-vibration.
  • disturbance vibration generated from the road surface or vehicle also affects the vibration amplitude of the vibrator, so the external force applied to the vibrator is output through the vibrator with resonance characteristics, which may cause a large detection error.
  • failure detection with high accuracy cannot be performed.
  • the conventional example lacks consideration.
  • An object of the present invention is to provide an angular velocity sensor capable of detecting a failure with excellent accuracy even when the ambient temperature changes or disturbance vibration is applied.
  • the object is to provide a vibrator that is elastically displaceably supported on a substrate, a drive means that vibrates the vibrator in a drive axis direction that is horizontal to the substrate surface, and a plane that is horizontal to the substrate surface and perpendicular to the drive axis direction.
  • Detection axis direction displacement detection means for detecting displacement of the vibrator in the detection axis direction, angular velocity detection means for detecting angular velocity based on displacement in the detection axis direction of the vibrator, and vibration of the vibrator in the drive axis direction
  • Self-vibration detecting means for detecting the self-vibration of the vibrator caused by leakage in the detection axis direction
  • a self-vibration feedback circuit for zeroing the self-vibration of the vibrator
  • an output of the self-vibration detecting means This is achieved by an angular velocity sensor having abnormality determination means for determining abnormality using
  • FIG. 1 shows the configuration of the first embodiment of the angular velocity sensor provided by the present invention.
  • the sensor element 200 includes the vibrator 1, drive electrodes 2 and 3 that apply external force to drive the vibrator 1, and drive detection that detects displacement of the vibrator 1 in the drive axis direction.
  • the drive control unit 201 also converts the output of the drive detection electrode 4 into an inverter 22 that reverses the phase, and converts the outputs of the inverter 22 and the drive detection electrode 5 into a voltage signal corresponding to the displacement amount of the vibrator 1 in the drive axis direction.
  • a conversion amplifier 10 that amplifies, a drive control circuit 11 that performs control to keep the amplitude and period of the drive vibration of the vibrator 1 constant from the output of the conversion amplifier 10, and an inverter 21 that reverses the phase of the output of the drive control circuit 11 Composed.
  • the servo control unit 202 converts the output from the detection electrodes 6 and 7 into a voltage signal corresponding to the amount of displacement of the vibrator in the detection axis direction, and drives the vibrator 1 to drive the output of the conversion amplifier 12.
  • a synchronous detection circuit 13 that performs synchronous detection with a signal ⁇ 1 that is 90 ° behind the output signal of the circuit 11, an integration circuit 14 that integrates the output of the synchronous detection circuit 13, and an output of the conversion amplifier 12 that drives the vibrator 1.
  • a detection unit composed of a synchronous detection circuit 16 that performs synchronous detection with a signal ⁇ 3 having the same phase as the output signal of the control circuit 11, an integration circuit 17 that integrates the output of the synchronous detection circuit 16, and an output of the integration circuit 14
  • the modulation circuit 15 that performs modulation by multiplying the signal ⁇ 2 having the same phase as the output signal of the drive control circuit 11 of the vibrator 1, and the output signal of the drive control circuit 11 of the vibrator 1 and the phase of the output of the integration circuit 17 are 90.
  • ° Delayed belief Modulation circuit 18 that performs modulation by multiplying the signal ⁇ 4, an adder 23 that adds the outputs of the modulation circuits 15 and 18, an inverter 24 that inverts the output of the adder 23, and an output and inversion of the adder 23 And a feedback unit composed of adders 25 and 26 for adding a constant bias voltage Vb to the output of the device 24 and applying the same to the servo electrodes 8 and 9.
  • the angular velocity sensor also controls the driving of the signals ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 used in the comparison circuit 19 that compares the output of the integration circuit 17 with a predetermined value, and the synchronous detection circuits 13 and 16 and the modulation circuits 15 and 18.
  • the phase delay circuit 20 is also configured to adjust the phase of the output signal of the circuit 11.
  • the output of the integration circuit 14 is output to the output terminal 100
  • the output of the integration circuit 17 is output to the output terminal 101
  • the output of the comparison circuit 19 is output to the output terminal 102
  • the output of the adder 26 is the output terminal 103.
  • the output of the adder 25 is output to the output terminal 104.
  • an external force is applied from the drive electrodes 2 and 3 to vibrate the vibrator 1 in the drive axis direction, and the vibrator 1 is displaced into the drive vibration.
  • the generated minute voltage change is converted into a displacement signal corresponding to the displacement amount of the vibrator 1 in the drive axis direction using the conversion amplifier 10 constituted by a preamplifier, a differential amplifier, and the like, and the converted signal is converted into a signal after the conversion.
  • the drive control circuit 11 including a multiplier, an integration circuit, a limiter circuit, etc.
  • the vibrator 1 is driven to vibrate by applying drive signals generated by the drive control circuit 11 to the drive electrodes 2 and 3 in opposite phases.
  • a minute change in voltage generated in the detection electrodes 6 and 7 due to displacement of the vibrator 1 due to Coriolis vibration is detected by using a conversion amplifier 12 constituted by a preamplifier, a differential amplifier, or the like, in the detection axis direction of the vibrator 1.
  • Servo control for converting servo signals into a displacement signal corresponding to the amount of displacement of the servo and applying servo voltages to the servo electrodes 8 and 9 in opposite phases to each other so that the displacement of the vibrator 1 due to Coriolis vibration and self-vibration becomes zero 202.
  • An angular velocity is obtained by taking out a part of the servo voltage as an angular velocity detection signal.
  • the detection unit performs synchronous detection on the displacement signal of the vibrator 1 output from the conversion amplifier 12 by using the synchronous detection circuit 13 based on ⁇ 1, and the displacement of the vibrator 1 due to Coriolis vibration. (Hereinafter referred to as Coriolis component).
  • the integration circuit 14 integrates the signal obtained by the synchronous detection circuit 13.
  • the displacement signal of the vibrator 1 output from the conversion amplifier 12 is subjected to synchronous detection using the synchronous detection circuit 16 by ⁇ 3, and the displacement of the vibrator 1 due to self-vibration (hereinafter referred to as self-vibration component). Is detected.
  • the integration circuit 17 integrates the signal obtained by the synchronous detection circuit 16.
  • the Coriolis component is modulated by ⁇ 2 using the modulation circuit 15 in order to feed back the signals acquired by the integration circuits 14 and 17 to the vibrator 1, and the detection axis direction of the vibrator 1 is detected.
  • a feedback signal (hereinafter referred to as a Coriolis feedback signal) for displacement due to Coriolis vibration is generated.
  • the self-vibration component is modulated by ⁇ 4 using the modulation circuit 18 to generate a feedback signal (hereinafter referred to as a self-vibration feedback signal) for displacement due to self-vibration of the vibrator 1 in the detection axis direction.
  • the adder 23 is used to combine the two feedback signals, and the bias voltage Vb is added using the adders 25 and 26 to the combined feedback signal and the feedback signal whose phase is inverted using the inverter 24. And applied to the servo electrodes 8 and 9 of the vibrator 1.
  • the servo control unit 202 performs servo control that cancels the displacement of the vibrator 1 in the detection axis direction by the operations of the detection unit and the feedback unit described above.
  • an output voltage corresponding to the Coriolis component is acquired by outputting the output of the integrating circuit 14 to the output terminal 100, and an output of the integrating circuit 17 is output to the output terminal 101.
  • the output voltage corresponding to the self vibration component is acquired.
  • the output voltage output to the output terminal 101 is in accordance with the self-vibration component, and the self-vibration component changes when abnormality such as disconnection or short circuit, breakage of the vibrator, sticking or the like occurs in the angular velocity sensor. Therefore, it is possible to detect a failure of the angular velocity sensor by monitoring this self-vibration component.
  • the boundary value of the self-vibration component is set in the comparison circuit 19 in advance, and the boundary value is determined by comparing the self-vibration component corresponding to the output voltage output to the output terminal 101 with the boundary value. When it deviates, it is determined as a failure and a failure detection signal is output to the output terminal 102.
  • the phase delay of the signal is generated by various filter circuits included in the signal processing circuit, so that the Coriolis vibration and self-vibration phases of the vibrator 1 and the Coriolis included in the output of the conversion amplifier 12 are obtained.
  • the phase of the component and the self-vibration component do not match, and similarly, the phase of the Coriolis vibration and self-vibration of the vibrator 1 does not match the phase of the Coriolis feedback signal and self-vibration feedback signal. Therefore, even if synchronous detection is performed using ⁇ 1 whose phase is delayed by 90 ° with respect to the output signal of the drive control circuit 11, an accurate Coriolis component is not output to the output of the synchronous detection circuit 13. Similarly, accurate output values are not output to the outputs of the synchronous detection circuit 16 and the modulation circuits 15 and 18 for each of ⁇ 2, ⁇ 3, and ⁇ 4.
  • a phase delay circuit 20 is provided to perform a process of individually delaying the phases of the detection signals ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 with respect to the phase of the drive signal. Specifically, the phase of ⁇ 1 with respect to the drive signal is delayed so that the phase of Coriolis vibration included in the output from the conversion amplifier circuit 12 and the phase of ⁇ 1 match, and the phase of Coriolis vibration of the vibrator 1 and ⁇ 2 is The phase of ⁇ 2 with respect to the drive signal is delayed so as to match, and the phase of ⁇ 3 with respect to the drive signal is delayed so that the phase of self-oscillation included in the output from the conversion amplifier circuit 12 matches with the phase of ⁇ 3.
  • phase delay circuit can be realized by, for example, a CR filter in the case of analog processing, and can be realized by outputting one arbitrarily selected from, for example, a 16-stage shift register in the case of digital processing.
  • the first advantage is that the servo control unit 202 performs servo control that cancels the displacement of the vibrator 1 in the detection axis direction by the operation of the feedback unit, so that the displacement of the vibrator in the detection axis direction becomes zero. Therefore, highly accurate detection of the Coriolis component and the self-vibration component is realized without being affected by the change in the resonance characteristics of the vibrator 1 due to a temperature change or the like.
  • the drive frequency is controlled to be constant by the drive control circuit 11
  • the resonance frequency of the vibrator 1 changes due to the change in the ambient temperature of the angular velocity sensor in the conventional example described in Patent Document 1
  • the vibrator As a result, the amount of displacement in the direction of the detection axis 1 changes, and it is impossible to detect the Coriolis component and the self-vibration component with high accuracy.
  • the second advantage is that the servo control unit 202 performs the servo control that cancels the displacement of the vibrator 1 in the detection axis direction by the operation of the feedback part.
  • the detection of the Coriolis component and the self-vibration component with high accuracy is suppressed.
  • the third advantage is that the Coriolis component and the self-vibration component are separated and extracted by using the synchronous detection circuits 13 and 16 with respect to the displacement signal of the vibrator 1 output by the conversion amplification circuit 12 in the detection unit. Therefore, it is possible to detect Coriolis components and self-vibration components with high accuracy.
  • the fourth advantage is that the modulation circuits 15 and 18 are used for the Coriolis component and the self-vibration component of the vibrator 1 output by the integration circuits 14 and 17 in the engine unit, and the Coriolis vibration and the self-vibration of the vibrator 1 are used.
  • the modulation circuits 15 and 18 are used for the Coriolis component and the self-vibration component of the vibrator 1 output by the integration circuits 14 and 17 in the engine unit, and the Coriolis vibration and the self-vibration of the vibrator 1 are used.
  • servo control that cancels out displacement of the vibrator 1 in the detection axis direction with high accuracy is realized, and detection of Coriolis components and self-vibration components with high accuracy is realized.
  • the fifth advantage is that the phase delay circuit 20 is provided, and the process of individually delaying the phases of the detection signals ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 with respect to the phase of the driving signal is performed. It is possible to realize highly accurate detection.
  • signal phase delay is caused by various filter circuits included in the signal processing circuit, and is included in the phase of Coriolis vibration and self-vibration of the vibrator 1 and the output of the conversion amplifier 12. Since the phases of the Coriolis component and the self-vibration component do not match, accurate Coriolis component and self-vibration component are not output to the outputs of the synchronous detection circuits 13 and 16.
  • a synchronous detection circuit that performs synchronous detection with respect to the feedback signal by ⁇ 1, and an integration that integrates the output of the synchronous detection circuit.
  • a configuration in which a circuit and a comparison circuit for comparing the output of the integration circuit with a predetermined value may be provided.
  • the phase delay circuit 20 it is of course possible to provide a phase delay circuit for each of ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the electrodes constituting the sensor element 200 are compatible with both capacitance type and piezoelectric type. It is also possible to configure an angular velocity sensor by using a digital signal processing device having functions equivalent to those of the drive control unit 201, the servo control unit 202, the comparison circuit 19, and the phase delay circuit 20.
  • FIG. 2 shows the configuration of the second embodiment of the angular velocity sensor provided by the present invention.
  • a servo control unit 203 is provided in place of the servo control unit 202 in the first embodiment shown in FIG. 1, and the servo control unit 203 includes modulation circuits 15 and 18 in the servo control unit 202 and Except for the adder 23, the integration circuit 26 is provided.
  • the servo control unit 203 integrates the output of the conversion amplifier 12, and synchronous detection is performed on the output of the integration circuit 27 by ⁇ 1.
  • the number of synchronous detection circuits can be reduced to two compared to the first embodiment, and only two detection signals ⁇ 1 and ⁇ 3 need be adjusted at the output of the phase delay circuit 20. .
  • the feedback unit generates a feedback signal to be fed back to the transducer 1 by integrating the displacement signal of the transducer 1 output from the conversion amplifier 12 by the integration circuit 27.
  • the bias voltage Vb is added using the adders 25 and 26 to the feedback signal whose phase is inverted by the inverter 24 and applied to the servo electrodes 8 and 9 of the vibrator 1.
  • the detection unit performs synchronous detection on the feedback signal output from the integration circuit 27 using the synchronous detection circuit 13 by ⁇ 1, and detects the Coriolis component.
  • the integration circuit 14 integrates the signal obtained by the synchronous detection circuit 13.
  • synchronous detection is performed on the feedback signal output from the conversion amplifier 27 using the synchronous detection circuit 16 based on ⁇ 3, and the self-vibration component is detected.
  • the integration circuit 17 integrates the signal obtained by the synchronous detection circuit 16.
  • the servo control unit 203 performs servo control that cancels the displacement of the vibrator 1 in the detection axis direction by the operations of the detection unit and the feedback unit described above.
  • an output voltage corresponding to the Coriolis component is acquired by outputting the output of the integrating circuit 14 to the output terminal 100, and an output of the integrating circuit 17 is output to the output terminal 101.
  • the output voltage corresponding to the self vibration component is acquired.
  • This embodiment also has the same advantages as the first, second, third, and fifth advantages in the first embodiment, but the feedback signal in the servo control unit 203 is not separated from the Coriolis component and the self-vibration component. As a result, the circuit configuration of the feedback unit can be further simplified.
  • FIG. 3 shows the configuration of the third embodiment of the angular velocity sensor provided by the present invention.
  • a plurality of angular velocity sensors shown in the first embodiment shown in FIG. 1 are arranged in parallel (hereinafter referred to as angular velocity sensors 1, 2,... N), and each of the angular velocity sensors 1 to N is arranged.
  • the comparison circuit 19 is provided, and a comparison circuit 28 and an arithmetic circuit 29 are provided.
  • an output voltage corresponding to the Coriolis component output to the output terminal 100 of each angular velocity sensor 1 to N is input to the arithmetic circuit 29 and output to the output terminal 101 of each angular velocity sensor 1 to N.
  • An output voltage corresponding to the self vibration component is input to the comparison circuit 28.
  • the comparison circuit 28 compares the output voltage corresponding to the self-vibration component of each of the angular velocity sensors 1 to N input to the comparison circuit 28 with the boundary value set in the comparison circuit 28 in advance, so that each of the angular velocity sensors 1 to N is compared.
  • a failure is determined and a failure determination signal is output to the arithmetic circuit 29.
  • the arithmetic circuit 29 performs an averaging operation on the output voltage corresponding to the Coriolis components of the angular velocity sensors 1 to N that are not regarded as a failure based on the failure determination signal output from the comparison circuit 28, and outputs the output terminal 105-1. Output to. Further, the number of angular velocity sensors regarded as a failure is recognized by the output of the comparison circuit 28, and a warning signal is output to the output terminal 105-2 when the number of angular velocity sensors recognized as a failure exceeds a predetermined number. .
  • This embodiment also has the same advantages as those of the first embodiment, but the Coriolis components of the angular velocity sensors 1 to N that are not regarded as a failure based on the failure determination signal output from the comparison circuit 28 by the arithmetic circuit 29 are included. More stable angular velocity information can be obtained by averaging the corresponding output voltages.
  • the angular velocity sensor in the present embodiment with the angular velocity sensors described in the plurality of first embodiments, even if any one of the angular velocity sensors has an abnormality, normal angular velocity information is obtained by other angular velocity sensors. Can be acquired continuously.
  • the number of angular velocity sensors regarded as a failure is recognized by the output of the comparison circuit 28 using the arithmetic circuit 29, and a warning signal is output when the number of angular velocity sensors recognized as a failure exceeds a predetermined number.
  • a warning signal is output when the number of angular velocity sensors recognized as a failure exceeds a predetermined number.
  • FIG. 4 shows the configuration of the fourth embodiment of the angular velocity sensor provided by the present invention.
  • This embodiment is configured by providing a servo control unit 203 in place of the servo control unit 202 in the third embodiment shown in FIG.
  • the operation of the servo control unit 203 in this embodiment is omitted because it has been described in the second embodiment. Further, the operation of the angular velocity sensor in this embodiment is omitted because it has been described in the third embodiment.
  • This embodiment has the same advantages as those of the second embodiment, but the Coriolis of the angular velocity sensors 1 to N that are not regarded as a failure based on the failure determination signal output from the comparison circuit 28 by the arithmetic circuit 29. More stable angular velocity information can be acquired by averaging the output voltage corresponding to the component.
  • the angular velocity sensor in the present embodiment with the angular velocity sensors described in the plurality of first embodiments, even if any one of the angular velocity sensors has an abnormality, normal angular velocity information is obtained by other angular velocity sensors. Can be acquired continuously.
  • the number of angular velocity sensors regarded as a failure is recognized by the output of the comparison circuit 28 using the arithmetic circuit 29, and a warning signal is output when the number of angular velocity sensors recognized as a failure exceeds a predetermined number.
  • a warning signal is output when the number of angular velocity sensors recognized as a failure exceeds a predetermined number.
  • FIG. 5 shows a configuration of the fifth embodiment of the angular velocity sensor provided by the present invention.
  • a pair of angular velocity sensors having the same characteristics are arranged in parallel, and a pair of vibrators 1 are arranged.
  • the electrodes 2 to 9 are arranged so as to perform differential vibration with each other, and an elastic connecting portion 30 for elastically connecting the pair of vibrators 1 is provided to compensate for the displacement phase of the differential vibration between the vibrators.
  • the operation circuit 31 and the comparison circuit 32 are provided.
  • an output voltage corresponding to the self-vibration component output to the output terminal 101 of the pair of angular velocity sensors is input to the arithmetic circuit 31.
  • the arithmetic circuit 31 subtracts the input pair of signals and outputs the result to the comparison circuit 32.
  • the comparison circuit 32 determines a failure of the angular velocity sensor by comparing the preset boundary value with the input signal after subtraction, and outputs a failure determination signal to the output terminal 106.
  • the self-vibration component detected by each angular velocity sensor is ideally output to the output terminal 101 as the same output voltage value because the law of conservation of momentum is maintained by the elastic connecting portion 30. Accordingly, since the voltage value that is twice the voltage output to the output terminal 101 is output to the output of the arithmetic circuit 31, the voltage value output to the output terminal 101 is set to the boundary value set in the comparison circuit 32. A certain range of values centering on twice the voltage value is provided. However, the law of conservation of momentum does not hold when there is a support portion or the like that applies an external force in the detection axis direction of the vibrator 1 according to the amount of displacement due to the self-vibration of the vibrator 1, and therefore the boundary value set in the comparison circuit 32 is not satisfied. A voltage value that is twice the voltage value output to the output terminal 101 cannot be set at the center.
  • the arithmetic circuit 31 is described as performing a subtraction process, but an addition process may be performed.
  • an addition process may be performed.
  • This embodiment also has the same advantages as the first embodiment, but the self-vibration component detected by the pair of angular velocity sensors is added or subtracted, and the output is determined by the comparison circuit 32. Thus, it becomes possible to detect a failure with higher accuracy than the angular velocity sensor in the first embodiment.
  • FIG. 6 shows the configuration of the sixth embodiment of the angular velocity sensor provided by the present invention.
  • This embodiment is configured by providing a servo control unit 203 instead of the servo control unit 202 in the fifth embodiment shown in FIG.
  • the operation of the servo control unit 203 in this embodiment is omitted because it has been described in the second embodiment. Further, the operation of the angular velocity sensor in this embodiment is omitted because it has been described in the fifth embodiment.
  • This embodiment has the same advantages as those of the second embodiment.
  • the self-vibration component detected by the pair of angular velocity sensors is added or subtracted, and the output is determined by the comparison circuit 32.
  • the comparison circuit 32 determines whether the angular velocity sensor is a failure with higher accuracy than the angular velocity sensor in the second embodiment.
  • FIG. 7 shows the configuration of the seventh embodiment of the angular velocity sensor provided by the present invention.
  • the angular velocity sensor in the first embodiment shown in FIG. 1 is provided with a pseudo self-vibration output means 33 and an adder 34 for adding the output of the pseudo self-vibration output means 33 to the output of the integrating circuit 17. Composed.
  • the pseudo self-vibration output means 33 can be configured by, for example, a method of constantly outputting a fixed value.
  • the self-vibration is performed by modulating the signal obtained by adding the output of the pseudo self-vibration output means 33 to the output of the integration circuit 17 by the adder 34 using the modulation circuit 18 by ⁇ 4.
  • an external force hereinafter referred to as a pseudo self-vibration force
  • a feedback signal obtained by adding the Coriolis feedback signal output by the self-vibration feedback signal and the pseudo self-vibration force.
  • a bias voltage Vb is added to the feedback signal and the feedback signal whose phase is inverted by the inverter 24 using the adders 25 and 26 and applied to the servo electrodes 8 and 9.
  • the vibrator 1 receives a force in the direction of the detection axis by the voltage applied to the servo electrodes 8 and 9, and pseudo self-vibration occurs.
  • the displacement in the detection axis direction of the vibrator 1 is converted into a displacement signal by the detection electrodes 6 and 7 and the conversion amplifier 12, and the displacement signal is subjected to synchronous detection by using the synchronous detection circuit 16 by ⁇ 3, and self-vibration and The displacement of the vibrator 1 due to pseudo self vibration is detected.
  • the integration circuit 17 integrates the signal obtained by the synchronous detection circuit 16.
  • the output of the pseudo self-vibration output means 33 is added to the output of the integration circuit 17 by the adder 34 and is input to the modulation circuit 18 again.
  • the angular velocity sensor in the present embodiment performs servo control that cancels the displacement due to the self-vibration in the detection axis direction of the vibrator 1 and the pseudo self-vibration by the operation described above.
  • the output voltage corresponding to the displacement obtained by adding the self-vibration component and the pseudo self-vibration component is obtained by outputting the output of the integration circuit 17 to the output terminal 101.
  • the output voltage output to the output terminal 101 corresponds to the displacement obtained by adding the self-vibration component and the pseudo self-vibration component, and abnormalities such as disconnection, short circuit, breakage of the vibrator, and fixation occurred in the angular velocity sensor.
  • the displacement signal of the vibrator 1 with respect to the resultant force of the self-vibration feedback signal and the pseudo self-vibration force applied to the vibrator 1 changes, the failure of the angular velocity sensor is detected by monitoring the output of the integration circuit 17. It becomes possible to do.
  • the boundary value of the self-vibration component is set in the comparison circuit 19 in advance, and the boundary value is determined by comparing the self-vibration component corresponding to the output voltage output to the output terminal 101 with the boundary value. When it deviates, it is determined as a failure and a failure detection signal is output to the output terminal 102.
  • the displacement of the vibrator 1 in the detection axis direction is simulated by monitoring the output of the integration circuit 17 in a state where the output of the pseudo self-vibration output means 33 is periodically changed. It is possible to detect whether or not the displacement according to the change in the output of the self-vibration output means 33 can be detected, and it is possible to detect a failure of the angular velocity sensor.
  • the vibrator 1 can be diagnosed by performing failure diagnosis while canceling the pseudo self-vibration generated by the method described in this embodiment by servo control. Therefore, an active diagnostic method that does not place a burden on the vibrator 1 is possible.
  • FIG. 8 shows the configuration of the eighth embodiment of the angular velocity sensor provided by the present invention.
  • an angular velocity sensor in the second embodiment shown in FIG. 2 is added to a modulation circuit 36 that performs modulation by the pseudo self-vibration output means 35 and ⁇ 1, and an adder 37 that adds the modulation circuit 36 to the output of the integration circuit 27. It is comprised by providing.
  • the pseudo self-vibration output means 35 can be configured by, for example, a method of constantly outputting a fixed value.
  • the pseudo self-vibration force is generated by modulating the output of the pseudo self-vibration output means 35 by using the modulation circuit 36 by ⁇ 1, and the signal output from the integration circuit 27 is obtained.
  • the adder 37 generates a feedback signal obtained by adding the proceeding self-vibration force.
  • a bias voltage Vb is added using adders 25 and 26 to the feedback signal and the feedback signal whose phase is inverted by the inverter 24 and applied to the servo electrodes 8 and 9.
  • the vibrator 1 receives a force in the direction of the detection axis by the voltage applied to the servo electrodes 8 and 9, and pseudo self-vibration occurs.
  • the displacement in the detection axis direction of the vibrator 1 is converted into a displacement signal by the detection electrodes 6 and 7 and the conversion amplifier 12, and the displacement signal is integrated by the integration circuit 27 and then the output of the modulation circuit 36 is output by the adder 37.
  • a feedback signal is generated by addition.
  • the angular velocity sensor in this embodiment performs servo control that cancels the displacement of the vibrator 1 in the detection axis direction by the operation described above.
  • the displacement of the vibrator 1 due to self-vibration and pseudo self-vibration is detected by synchronously detecting the displacement signal output from the integrating circuit 27 using the synchronous detection circuit 16 based on ⁇ 3. Integrate the output of the circuit 16. Then, the output voltage corresponding to the displacement obtained by adding the self-vibration component and the pseudo self-vibration component to output the output of the integration circuit 17 to the output terminal 101 is acquired.
  • the output voltage output to the output terminal 101 corresponds to the displacement obtained by adding the self-vibration component and the pseudo self-vibration component, and abnormalities such as disconnection, short circuit, breakage of the vibrator, and fixation occurred in the angular velocity sensor.
  • the displacement signal of the vibrator 1 with respect to the resultant force of the self-vibration feedback signal and the pseudo self-vibration force applied to the vibrator 1 changes, the failure of the angular velocity sensor is detected by monitoring the output of the integration circuit 17. It becomes possible to do.
  • the boundary value of the self-vibration component is set in the comparison circuit 19 in advance, and the boundary value is determined by comparing the self-vibration component corresponding to the output voltage output to the output terminal 101 with the boundary value. When it deviates, it is determined as a failure and a failure detection signal is output to the output terminal 102.
  • the displacement of the vibrator 1 in the detection axis direction is simulated by monitoring the output of the integrating circuit 17 in a state where the output of the pseudo self-vibration output means 35 is periodically changed. It is possible to detect whether or not the displacement according to the change in the output of the self-vibration output means 35 is detected, and it is possible to detect a failure of the angular velocity sensor.
  • the vibrator 1 can be diagnosed by performing failure diagnosis while canceling the pseudo self-vibration generated by the method described in this embodiment by servo control. Therefore, an active diagnostic method that does not place a burden on the vibrator 1 is possible.
  • FIG. 9 shows the configuration of the detection axis direction gravity center moving means in the ninth embodiment of the angular velocity sensor provided by the present invention.
  • the detection axis direction center-of-gravity moving means of the angular velocity sensor in the present embodiment includes a substrate 39 fixed to the transducer 38, support portions 40, 41, 42, 43 that elastically connect the transducer 38 and the substrate 39, and the transducer 38.
  • a sensor element 204 composed of electrodes 44 and 45 for applying electrostatic force to the electrodes and fixing portions 46 and 47 for fixing the electrodes 44 and 45, and voltage applying units 48 and 49 for applying a DC voltage to the electrodes 44 and 45, respectively. Consists of.
  • the detection axis direction center-of-gravity moving means of the angular velocity sensor in the present embodiment generates an electrostatic force by the voltage applied to the electrodes 39 and 40 by the voltage applying units 46 and 47, and the vibrator 38 is displaced according to the electrostatic force. This can be realized by moving the center of gravity of the vibrator 38 in the detection axis direction. At this time, the vibrator 38 receives an external force corresponding to the displacement by the substrate 39 and the support portions 40, 41, 42, 43, so it is necessary to continuously apply an electrostatic force to the vibrator 38 by the electrodes 44, 45. .
  • the self-vibration means the position of the center of the resultant force of the external force applied to the vibrator by the support part and the drive electrodes 2 and 3 that support the vibrator such as the support parts 40, 41, 42, and 43 on the substrate, and the barycentric position of the vibrator 38. Is caused by deviation on the detection axis, and vibration amplitude is generated in proportion to the magnitude of the deviation. For this reason, it is possible to control the displacement amount due to the self-vibration of the vibrator 38 by moving the position of the center of gravity of the vibrator 38 in the direction of the detection axis using the detection axis direction center of gravity moving means described in the present embodiment. Become.
  • the failure detection method described in the first to eighth embodiments is used for a sensor element that has no manufacturing error and does not generate self-vibration by moving the center of gravity position of the transducer by the detection axis direction center of gravity moving means. It is possible to detect a failure of the angular velocity sensor.
  • the electrodes 44 and 45 for applying an external force in the detection axis direction of the vibrator 38 are provided as means for realizing the detection axis direction center of gravity moving means. This can also be realized by applying output voltages of 48 and 49.
  • FIG. 10 shows the configuration of the detection axis direction gravity center moving means in the tenth embodiment of the angular velocity sensor provided by the present invention.
  • the detection axis direction center-of-gravity moving means of the angular velocity sensor in this embodiment includes a substrate 64 fixed to the vibrator 50, a support portion 63 that connects the vibrator 50 and the substrate 64, and drive legs 51 and 52 that constitute the vibrator 50.
  • Drive electrodes 55a, 55b, 56a, 56b, 57a, 57b, 58a, and 58b that vibrate the detection legs 53 and 54 and the drive legs 51 and 52 and the vibrator 50 are made of materials having different linear expansion coefficients and form cuts.
  • the driving unit is composed of the flat plates 59, 60, 61, 62 and the constant voltage generator 63.
  • the flat plates 59, 60, 61, 62 are made of aluminum (23 ⁇ 10 ⁇ 6 / K) or copper with respect to silicon (linear expansion coefficient 2.6 ⁇ 10 ⁇ 6 / K) constituting the driving legs 51 and 52, for example. (Linear expansion coefficient 17 ⁇ 10 ⁇ 6 / K) or the like.
  • the drive electrodes are electrodes 55a, 55b, 57a, 57b for applying the output of the drive control circuit 11 and electrodes for transmitting a drive force corresponding to signals applied to the electrodes 55a, 55b, 57a, 57b to the drive legs 51, 52. 56a, 56b, 58a, 58b.
  • the detection axis direction center-of-gravity moving means of the angular velocity sensor in the present embodiment applies Joule heat to the driving unit by applying a voltage to the flat plate by the constant voltage generator 63, and by the difference in linear expansion between the flat plate and the driving leg due to Joule heat. This can be realized by causing a certain amount of warpage in the drive unit and moving the center of gravity in the direction of the detection axis of the drive legs 51 and 52.
  • the self-vibration occurs because the position of the resultant force center of the driving force applied to the driving leg by the driving electrodes 56a, 56b, 58a, 58b and the position of the center of gravity of the driving legs 51, 52 are shifted on the detection axis.
  • This is a vibration in which a vibration amplitude is generated in proportion to the magnitude of.
  • the displacement amount by the self-vibration of the drive legs 51 and 52 is controlled by moving the gravity center positions of the drive legs 51 and 52 in the detection axis direction using the detection axis direction gravity center moving means described in the present embodiment. Things will be possible. With this effect, it is possible to correct variations in self-vibration components for each solid due to manufacturing errors of the sensor element.
  • the failure detection method described in the first to eighth embodiments is used for a sensor element that has no manufacturing error and does not generate self-vibration by moving the gravity center position of the vibrator by the detection axis direction gravity center moving means. It is possible to detect a failure of the angular velocity sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

 周囲温度が変化しても、又は外乱振動が加わっても優れた精度で故障を検出する。  基板上に弾性的に変位可能に支持された振動子と前記基板表面に水平な駆動軸方向に前記振動子を振動させる駆動手段と前記基板表面に水平かつ駆動軸方向と垂直な検出軸方向の前記振動子の変位を検出する検出軸方向変位検出手段と前記振動子の検出軸方向の変位に基づいて角速度を検出する角速度検出手段と駆動軸方向への前記振動子の振動が検出軸方向に漏れ込む事が原因で生じる前記振動子の自己振動を検出する自己振動検出手段と、前記振動子の自己振動をゼロにする自己振動帰還回路と、前記自己振動検出手段の出力を利用して異常を判定する異常判定手段とを有する角速度センサとで構成される。

Description

角速度センサ
 本発明は、振動式の角速度センサに係り、特に角速度センサの異常を常時診断する常時自己診断機能を備えた振動式の角速度センサに関する。
 振動型角速度センサとは、角速度センサ内部の振動子を共振駆動(以下、駆動振動と呼称)させ、振動子の駆動軸方向に直交する回転軸方向に角速度が印加されると、回転軸方向と駆動軸方向に直交する検出軸方向にコリオリ力が加わることにより振動(以下、コリオリ振動と呼称)が発生することを利用したものであり、この発生したコリオリ振動の振幅を電気的に処理することで印加された角速度を取得するものである。
 このため振動子には、振動子を駆動振動させるための駆動電極、またコリオリ振動を検出するための検出電極が振動子に設置される。検出電極には静電容量の変化により振幅を検出する静電容量式、または圧電効果を用いて振幅を検出する圧電式などの検出方式がある。
 しかし実際には、角速度が印加されない状態でも微小振動が検出軸方向に発生していることが知られている。これは振動子の駆動軸方向に印加された駆動振動が振動子やその支持部を含んだセンサ素子構造の微小誤差等により検出軸方向に漏れ込んだ結果生じる検出軸方向の振動(以下、自己振動と呼称)であり、この自己振動は駆動振動と同一位相で発生する。またこの自己振動は角速度センサを構成するセンサ素子及び信号処理回路において構造的な異常が発生しない限り定常振幅となる。
 特許文献1にはこの自己振動を用いて故障診断を行う振動型角速度センサが記載されており、この例では、振動子から出力され、角速度に応じたコリオリ振動及び自己振動を含む電気的信号から、コリオリ振動の振幅を抽出して角速度を検出する角速度センサにおいて、自己振動の振幅を監視することにより自己診断を行うものとなっている。
特開2000-171257号公報
 角速度センサの周囲温度は、角速度センサの設置場所や車両状況,季節等によって大きく変化する。また走行中に発生する路面振動やエンジンノイズ等の車両が発生する機械振動などの外乱振動も車体を通して角速度センサに伝達されることとなる。角速度センサを車載用に使用しようとした場合、この様な環境の中でも優れた精度で故障を検出する故障検出の高信頼性や優れた精度で角速度を検出する角速度検出の高信頼性が要求される。
 特に、故障検出の高信頼性の観点においては、特許文献1に記載の角速度センサの場合、エンジンルーム内等の高温になる場所では振動子の共振周波数が変化するため、コリオリ振動及び自己振動を含んだ検出軸方向の振動振幅が変化し、その結果自己振動の変動許容量を大きく設定する必要がある。また路面や車両から発生した外乱振動も振動子の振動振幅に影響を与えるため振動子に印加された外力が共振特性を持つ振動子を介して出力される事となり、大きな検出誤差が生じる可能性もあり、精度の良い故障検出が行えない可能性がある。これらの事に関して前記従来例は配慮が欠けていた。
 本発明の目的は、周囲温度が変化しても、又は外乱振動が加わっても優れた精度で故障検出が可能な角速度センサを提供する事にある。
 上記目的は、基板上に弾性的に変位可能に支持された振動子と前記基板表面に水平な駆動軸方向に前記振動子を振動させる駆動手段と前記基板表面に水平かつ駆動軸方向と垂直な検出軸方向の前記振動子の変位を検出する検出軸方向変位検出手段と前記振動子の検出軸方向の変位に基づいて角速度を検出する角速度検出手段と駆動軸方向への前記振動子の振動が検出軸方向に漏れ込む事が原因で生じる前記振動子の自己振動を検出する自己振動検出手段と、前記振動子の自己振動をゼロにする自己振動帰還回路と、前記自己振動検出手段の出力を利用して異常を判定する異常判定手段とを有する角速度センサなどにより達成される。
 周囲温度が変化しても、又は外乱振動が加わっても優れた精度で故障検出が可能な角速度センサを提供できる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
第1の実施例における角速度センサの構成。 第2の実施例における角速度センサの構成。 第3の実施例における角速度センサの構成。 第4の実施例における角速度センサの構成。 第5の実施例における角速度センサの構成。 第6の実施例における角速度センサの構成。 第7の実施例における角速度センサの構成。 第8の実施例における角速度センサの構成。 第9の実施例における角速度センサの検出軸方向重心移動手段の概略構造。 第10の実施例における角速度センサの検出軸方向重心移動手段の概略構造。
 以下、本発明の実施の形態について、図面を参照して説明する。
 まず、本発明の第1の実施例である角速度センサを図1により説明する。
 尚、図1は本発明が提供する角速度センサの、第1の実施例における構成を表すものである。
 本実施例の角速度センサにおいて、センサ素子200は振動子1と、振動子1を駆動振動させるため外力を印加する駆動電極2,3と、振動子1の駆動軸方向の変位を検出する駆動検出電極4,5と、振動子1の検出軸方向の変位を検出する検出電極6,7と、振動子1に働くコリオリ力を打ち消す外力を印加するサーボ電極8,9とで構成される。
 また、駆動制御部201は駆動検出電極4の出力を位相反転する反転器22と,反転器22と駆動検出電極5の出力を振動子1の駆動軸方向の変位量に応じた電圧信号に変換増幅する変換増幅器10と、変換増幅器10の出力から振動子1の駆動振動の振幅及び周期を一定に保つ制御を行う駆動制御回路11と、駆動制御回路11の出力を位相反転する反転器21で構成される。
 また、サーボ制御部202は検出電極6,7からの出力を振動子の検出軸方向の変位量に応じた電圧信号に変換する変換増幅器12と、変換増幅器12の出力を振動子1の駆動制御回路11の出力信号と位相が90°遅れた信号Φ1で同期検波する同期検波回路13と、同期検波回路13の出力を積分演算する積分回路14と、変換増幅器12の出力を振動子1の駆動制御回路11の出力信号と同一位相の信号Φ3で同期検波する同期検波回路16と、同期検波回路16の出力を積分演算する積分回路17とで構成される検出部と、積分回路14の出力に振動子1の駆動制御回路11の出力信号と同一位相の信号Φ2を乗算して変調を行う変調回路15と、積分回路17の出力に振動子1の駆動制御回路11の出力信号と位相が90°遅れた信号Φ4を乗算して変調を行う変調回路18と、変調回路15,18の出力を加算する加算器23と、加算器23の出力を位相反転する反転器24と、加算器23の出力と反転器24の出力に一定のバイアス電圧Vbを加算してサーボ電極8,9に印加する加算器25,26とで構成される帰還部とで構成される。
 また、本角速度センサは積分回路17の出力と所定の値との比較を行う比較回路19と、同期検波回路13,16及び変調回路15,18において用いる信号Φ1,Φ2,Φ3,Φ4の駆動制御回路11の出力信号に対する位相を調整する位相遅延回路20によっても構成される。
 尚、積分回路14の出力は出力端子100に出力され、積分回路17の出力は出力端子101に出力され、比較回路19の出力は出力端子102に出力され、加算器26の出力は出力端子103に出力され、加算器25の出力は出力端子104に出力される。
 次に本実施例における角速度センサの動作について説明する。
 本実施例の角速度センサにおいては、駆動電極2,3から外力を加えて振動子1を駆動軸方向に駆動振動させ、この振動子1が駆動振動に変位する事により駆動検出電極4,5に発生する微小電圧変化を、前置増幅器や差動増幅器等で構成される変換増幅器10を用いて振動子1の駆動軸方向の変位量に応じた変位信号に変換し、この変換後の信号に基づいて振動子1の駆動振幅を一定に保ち且つ駆動周波数を振動子1の共振周波数で駆動振動するフィードバック制御を、乗算器や積分回路,リミッタ回路等で構成される駆動制御回路11により行い、駆動制御回路11により生成された駆動信号を駆動電極2,3に対して互いに逆位相で印加する事により振動子1を駆動振動している。
 また、コリオリ振動により振動子1が変位する事により検出電極6,7に発生する微小電圧変化を前置増幅器や差動増幅器等により構成される変換増幅器12を用いて振動子1の検出軸方向の変位量に応じた変位信号に変換し、コリオリ振動及び自己振動による振動子1の変位をゼロにする様なサーボ電圧をサーボ電極8,9に互いに逆位相で印加するサーボ制御をサーボ制御部202により行う。このサーボ電圧の一部を角速度の検出信号とみなして取り出す事により角速度を得る。
 また、サーボ制御部202において、検出部では、変換増幅器12により出力される振動子1の変位信号に対し、Φ1により同期検波回路13を用いて同期検波を行い、コリオリ振動による振動子1の変位(以下、コリオリ成分と呼称)を検出する。次に積分回路14において同期検波回路13で得られた信号を積分演算する。同様に、変換増幅器12により出力される振動子1の変位信号に対し、Φ3により同期検波回路16を用いて同期検波を行い、自己振動による振動子1の変位(以下、自己振動成分と呼称)を検出する。次に積分回路17において同期検波回路16で得られた信号を積分演算する。
 次に帰還部では、次に前記積分回路14,17により取得された信号を振動子1に帰還させるため、コリオリ成分に関してはΦ2により変調回路15を用いて変調し、振動子1の検出軸方向のコリオリ振動による変位に対する帰還信号(以下、コリオリ帰還信号と呼称)を生成する。また自己振動成分に関してはΦ4により変調回路18を用いて変調し、振動子1の検出軸方向の自己振動による変位に対する帰還信号(以下、自己振動帰還信号と呼称)を生成する。次に加算器23を用いて前記2つの帰還信号を合成し、合成した帰還信号と反転器24を用いて位相反転させた帰還信号に対して加算器25,26を用いてバイアス電圧Vbを加算し、振動子1のサーボ電極8,9に印加する。
 サーボ制御部202においては以上に記載した検出部と帰還部の動作により振動子1の検出軸方向の変位を打ち消すサーボ制御を行っている。
 このサーボ制御を行っている状態において、積分回路14の出力を出力端子100に出力する事でコリオリ成分に応じた出力電圧を取得し、また積分回路17の出力を出力端子101に出力する事で自己振動成分に応じた出力電圧を取得する。
 また、出力端子101に出力される出力電圧は自己振動成分に応じたものであり、角速度センサに断線やショート,振動子の破損,固着等の異常が生じた際には自己振動成分が変化するため、この自己振動成分を監視する事により、角速度センサの故障を検出する事が可能となる。具体的には、比較回路19に予め自己振動成分の境界値を設定しておき、出力端子101に出力される出力電圧に応じた自己振動成分と境界値とを比較する事により、境界値を逸脱していた際は故障と判定し故障検出信号を出力端子102に出力するものである。
 また、実際の角速度センサの動作では、信号処理回路に含まれる各種フィルタ回路により信号の位相遅延が生じる事により、振動子1のコリオリ振動及び自己振動の位相と変換増幅器12の出力に含まれるコリオリ成分及び自己振動成分の位相は一致しておらず、同様に振動子1のコリオリ振動及び自己振動の位相とコリオリ帰還信号及び自己振動帰還信号の位相は一致していない。従って駆動制御回路11の出力信号に対し90°位相が遅れたΦ1を用いて同期検波を行っても同期検波回路13の出力には正確なコリオリ成分は出力されない。同様にΦ2,Φ3,Φ4各々についても同期検波回路16及び変調回路15,18の出力には正確な出力値が出力されない事となる。
 そのため位相遅延回路20を設け、駆動信号の位相に対する各検波信号Φ1,Φ2,Φ3,Φ4の位相を個別に遅延する処理を行っている。具体的には、変換増幅回路12からの出力に含まれるコリオリ振動の位相とΦ1の位相が一致する様に、駆動信号に対するΦ1の位相を遅延し、振動子1のコリオリ振動とΦ2の位相が一致する様に、駆動振動に対するΦ2の位相を遅延し、変換増幅回路12からの出力に含まれる自己振動の位相とΦ3の位相が一致する様に、駆動信号に対するΦ3の位相を遅延し、振動子1の自己振動とΦ4の位相が一致する様に、駆動振動に対するΦ4の位相を遅延するものである。この様な位相遅延回路は、アナログ処理の場合は例えばCRフィルタ等により実現でき、デジタル処理の場合は例えば16段構成のシフトレジスタの内、任意に選択した1つを出力する事により実現できる。
 次に本実施例において得られる利点について説明する。
 まず第1の利点は、サーボ制御部202が帰還部の動作により振動子1の検出軸方向の変位を打ち消すサーボ制御を行っている事により、振動子の検出軸方向への変位はゼロとなるため、温度変化等による振動子1の共振特性変化の影響を受けずに精度の高いコリオリ成分及び自己振動成分の検出が実現される事である。
 駆動振動は駆動制御回路11により駆動周波数が一定に制御されるため、特許文献1に記載の従来例において角速度センサの周囲温度が変化する事により振動子1の共振周波数が変化する場合、振動子1の検出軸方向の変位量が変化してしまい精度の高いコリオリ成分及び自己振動成分の検出が出来ない。
 次に第2の利点は、サーボ制御部202が帰還部の動作により振動子1の検出軸方向の変位を打ち消すサーボ制御を行っている事により、外乱が振動子1に入力した際の影響を抑えて精度の高いコリオリ成分及び自己振動成分の検出が実現される事である。
 特許文献1に記載の従来例の場合では、角速度センサに路面の凹凸や車体が発する機械振動等の外乱が入力すると振動子1の検出軸方向の振動振幅に影響を与え、入力された外力が検出誤差として出力されるため精度の高いコリオリ成分及び自己振動成分の検出が出来ない。
 次に第3の利点は、検出部において変換増幅回路12により出力された振動子1の変位信号に対して同期検波回路13,16を用いてコリオリ成分と自己振動成分を分離して抽出している事により精度の高いコリオリ成分と自己振動成分の検出が実現される事である。
 次に第4の利点は、機関部において積分回路14,17により出力された振動子1のコリオリ成分及び自己振動成分に対し変調回路15,18を用いて振動子1のコリオリ振動と自己振動に同期した帰還信号を生成する事により、振動子1の検出軸方向の変位を高い精度で打ち消すサーボ制御を実現し、コリオリ成分と自己振動成分の高い精度の検出を実現する事である。
 次に第5の利点は、位相遅延回路20を設け、駆動信号の位相に対する各検波信号Φ1,Φ2,Φ3,Φ4の位相を個別に遅延する処理を行う事により、コリオリ成分及び自己振動成分の精度の高い検出が実現できる事である。
 特許文献1に記載の従来例の場合では、信号処理回路に含まれる各種フィルタ回路等により信号の位相遅延が生じ、振動子1のコリオリ振動及び自己振動の位相と変換増幅器12の出力に含まれるコリオリ成分及び自己振動成分の位相は一致していないため、同期検波回路13,16の出力には正確なコリオリ成分及び自己振動成分が出力されない。
 本発明の第1の実施例である角速度センサの変形例としては、比較回路19を除き、帰還信号に対し、Φ1により同期検波を行う同期検波回路と、同期検波回路の出力を積分演算する積分回路と、積分回路の出力と所定の値との比較を行う比較回路を設けた構成でも良い。また、位相遅延回路20の変形例として、Φ1,Φ2,Φ3,Φ4それぞれについて位相遅延回路を設ける事ももちろん可能である。また、センサ素子200を構成する電極は静電容量式・圧電式共に対応可能である。また、駆動制御部201及びサーボ制御部202及び比較回路19及び位相遅延回路20と等価な機能を有するデジタル信号処理装置を用いる事により角速度センサを構成する事も可能である。
 次に、本発明の第2の実施例である角速度センサを図2により説明する。
 尚、図2は本発明が提供する角速度センサの、第2の実施例における構成を表すものである。
 本実施例は、図1に記載した第1の実施例におけるサーボ制御部202の代わりにサーボ制御部203を設けた構成であり、サーボ制御部203はサーボ制御部202における変調回路15,18及び加算器23を除き、積分回路26を設けた構成であり、サーボ制御部203は変換増幅器12の出力を積分演算する積分回路27と、積分回路27の出力に対しΦ1により同期検波を行う同期検波回路13と、同期検波回路13の出力を積分演算する積分回路14と、積分回路27の出力に対しΦ3により同期検波を行う同期検波回路16と、同期検波回路16の出力を積分演算する積分回路17とで構成される検出部と、積分回路27の出力を位相反転する反転器24と、積分回路27の出力と反転器24の出力に一定のバイアス電圧Vbを加算してサーボ電極8,9に印加する加算器25,26とで構成される帰還部とで構成される。尚、本実施例においては実施例1に対して同期検波回路の数を2つに減少させる事ができ、位相遅延回路20の出力においてΦ1,Φ3の2つの検波信号の調整を行うだけで良い。
 次に本実施例におけるサーボ制御部203の動作について説明する。
 本実施例のサーボ制御部203において、帰還部では変換増幅器12により出力された振動子1の変位信号を積分回路27により積分演算して振動子1に帰還させる帰還信号を生成し、この帰還信号と反転器24によって位相反転した帰還信号に対して加算器25,26を用いてバイアス電圧Vbを加算し、振動子1のサーボ電極8,9に印加する。
 次に、検出部では積分回路27により出力される帰還信号に対しΦ1により同期検波回路13を用いて同期検波を行い、コリオリ成分を検出する。次に積分回路14において同期検波回路13で得られた信号を積分演算する。同様に、変換増幅器27により出力される帰還信号に対し、Φ3により同期検波回路16を用いて同期検波を行い、自己振動成分を検出する。次に積分回路17において同期検波回路16で得られた信号を積分演算する。
 サーボ制御部203においては以上に記載した検出部と帰還部の動作により振動子1の検出軸方向の変位を打ち消すサーボ制御を行っている。
 このサーボ制御を行っている状態において、積分回路14の出力を出力端子100に出力する事でコリオリ成分に応じた出力電圧を取得し、また積分回路17の出力を出力端子101に出力する事で自己振動成分に応じた出力電圧を取得する。
 本実施例においても第1の実施例における第1,2,3,5の利点と同様の利点があるが、サーボ制御部203における帰還部においてコリオリ成分及び自己振動成分を分離せずに帰還信号を生成している事により、帰還部の回路構成をより単純化することが出来る。
 次に、本発明の第3の実施例である角速度センサを図3により説明する。
 尚、図3は本発明が提供する角速度センサの、第3の実施例における構成を表すものである。
 本実施例は、図1に記載した第1の実施例に示される角速度センサを複数個並列(以下、角速度センサ1,2,・・・Nと呼称)に配置し、各角速度センサ1~Nの比較回路19を除き、比較回路28と演算回路29を設ける事で構成される。
 本実施例の角速度センサにおいては、各角速度センサ1~Nの出力端子100に出力したコリオリ成分に応じた出力電圧を演算回路29に入力し、各角速度センサ1~Nの出力端子101に出力した自己振動成分に応じた出力電圧を比較回路28に入力する。次に比較回路28に入力した各角速度センサ1~Nの自己振動成分に応じた出力電圧と予め比較回路28に設定した境界値を比較回路28により比較する事により、各角速度センサ1~Nの故障を判定し、故障判定信号を演算回路29に出力する。次に演算回路29により比較回路28により出力された故障判定信号に基づいて故障とみなされていない角速度センサ1~Nのコリオリ成分に応じた出力電圧に対し平均化演算を行い出力端子105-1に出力する。また、比較回路28の出力によって故障とみなされた角速度センサの個数を認識し、故障と認識された角速度センサの個数が所定の数を超えた場合に警告信号を出力端子105-2に出力する。
 本実施例においても第1の実施例と同様の利点があるが、演算回路29により比較回路28により出力された故障判定信号に基づいて故障とみなされていない角速度センサ1~Nのコリオリ成分に応じた出力電圧を平均化演算する事でより安定した角速度情報を取得する事が出来る。また、本実施例における角速度センサを複数の第1の実施例に記載した角速度センサにより構成する事により、いずれか1つの角速度センサに異常が発生しても、他の角速度センサにより正常な角速度情報を継続的に取得する事が可能となる。また、演算回路29を用いて比較回路28の出力によって故障とみなされた角速度センサの個数を認識し、故障と認識された角速度センサの個数が所定の数を超えた場合に警告信号を出力する事で、本実施例における角速度センサの動作状態を監視する事が可能となる。
 次に、本発明の第4の実施例である角速度センサを図4により説明する。
 尚、図4は本発明が提供する角速度センサの、第4の実施例における構成を表すものである。
 本実施例は、図3に記載した第3の実施例におけるサーボ制御部202の代わりにサーボ制御部203を設ける事で構成される。
 本実施例におけるサーボ制御部203の動作については第2の実施例の中で記述した為省略する。また、本実施例における角速度センサの動作については第3の実施例の中で記述した為省略する。
 尚、本実施例においても第2の実施例と同様の利点があるが、演算回路29により比較回路28により出力された故障判定信号に基づいて故障とみなされていない角速度センサ1~Nのコリオリ成分に応じた出力電圧を平均化演算する事でより安定した角速度情報を取得する事が出来る。また、本実施例における角速度センサを複数の第1の実施例に記載した角速度センサにより構成する事により、いずれか1つの角速度センサに異常が発生しても、他の角速度センサにより正常な角速度情報を継続的に取得する事が可能となる。また、演算回路29を用いて比較回路28の出力によって故障とみなされた角速度センサの個数を認識し、故障と認識された角速度センサの個数が所定の数を超えた場合に警告信号を出力する事で、本実施例における角速度センサの動作状態を監視する事が可能となる。
 次に、本発明の第5の実施例である角速度センサを図5により説明する。
 尚、図5は本発明が提供する角速度センサの、第5の実施例における構成を表すものである。
 本実施例は、図1に記載した第1の実施例における角速度センサから比較回路19を除いた角速度センサにおいて、互いに特性の揃った角速度センサを1対並列に配置し、1対の振動子1が互いに差動振動を行う様に電極2~9を配置し、振動子間の差動振動の変位位相を補償するために1対の振動子1を弾性的に連結する弾性連結部30を設け、演算回路31と比較回路32を設ける事で構成される。
 本実施例の角速度センサにおいては、1対の角速度センサの出力端子101に出力した自己振動成分に応じた出力電圧を演算回路31に入力する。次に演算回路31は入力された1対の信号を減算し比較回路32に出力する。次に比較回路32は予め設定された境界値と入力した減算後の信号を比較する事により角速度センサの故障を判定し、故障判定信号を出力端子106に出力する。
 ここで、各角速度センサにおいて検出する自己振動成分は弾性連結部30により運動量保存の法則が保たれるため理想的には同じ出力電圧値として出力端子101に出力される。従って演算回路31の出力には出力端子101に出力される電圧の2倍の電圧値が出力される事となるため、比較回路32に設定する境界値に出力端子101に出力される電圧値の2倍の電圧値を中心とした一定範囲の値を設ける事としている。ただし、振動子1の自己振動による変位量に応じて振動子1の検出軸方向に外力を与える支持部等がある場合は運動量保存の法則は成立しないため、比較回路32に設定する境界値の中心に出力端子101に出力される電圧値の2倍の電圧値を設定する事はできない。
 また、本実施例おいて演算回路31は減算処理を行うものとして記載したが、加算処理を行う事としても良い。1対の振動子1間の運動量保存則が成立し、互いに同一の自己振動振幅により差動振動する場合には、加算後の出力は理想的にはゼロとなる。この出力を監視する事によっても角速度センサの故障を検出する事が可能となる。
 尚、本実施例においても第1の実施例と同様の利点があるが、1対の角速度センサにより検出した自己振動成分を加算乃至は減算し、その出力を比較回路32により故障を判定する事により、第1の実施例における角速度センサよりも優れた精度での故障の検出が可能となる。
 次に、本発明の第6の実施例である角速度センサを図6により説明する。
 尚、図6は本発明が提供する角速度センサの、第6の実施例における構成を表すものである。
 本実施例は、図5に記載した第5の実施例におけるサーボ制御部202の代わりにサーボ制御部203を設ける事で構成される。
 本実施例におけるサーボ制御部203の動作については第2の実施例の中で記述した為省略する。また、本実施例における角速度センサの動作については第5の実施例の中で記述した為省略する。
 尚、本実施例においても第2の実施例と同様の利点があるが、1対の角速度センサにより検出した自己振動成分を加算乃至は減算し、その出力を比較回路32により故障を判定する事により、第2の実施例における角速度センサよりも優れた精度での故障の検出が可能となる。
 次に、本発明の第7の実施例である角速度センサを図7により説明する。
 尚、図7は本発明が提供する角速度センサの、第7の実施例における構成を表すものである。
 本実施例は、図1に記載した第1の実施例における角速度センサに擬似自己振動出力手段33と積分回路17の出力に擬似自己振動出力手段33の出力を加算する加算器34を設ける事により構成される。擬似自己振動出力手段33は、例えば固定値を定常的に出力する方法等により構成できる。
 本実施例の角速度センサにおいては、積分回路17の出力に対して擬似自己振動出力手段33の出力を加算器34により加算した信号に対しΦ4により変調回路18を用いて変調する事により、自己振動帰還信号に加えて振動子1を検出軸方向に自己振動と同位相で振動する擬似的な自己振動を起こす外力(以下、擬似自己振動力と呼称)を生成し、加算器23により変調回路15により出力されるコリオリ帰還信号と、自己振動帰還信号及び擬似自己振動力を加算した帰還信号を生成する。次に帰還信号と反転器24により位相反転した帰還信号に対し加算器25,26を用いてバイアス電圧Vbを加算してサーボ電極8,9に印加する。その結果、サーボ電極8,9に印加した電圧により振動子1が検出軸方向に力を受け擬似自己振動が生じる。次に振動子1の検出軸方向の変位を検出電極6,7及び変換増幅器12により変位信号に変換し、この変位信号に対しΦ3により同期検波回路16を用いて同期検波する事により自己振動及び擬似自己振動による振動子1の変位を検出する。次に積分回路17において同期検波回路16で得られた信号を積分演算する。そして積分回路17の出力に擬似自己振動出力手段33の出力を加算器34により加算して再び変調回路18に入力する。
 本実施例における角速度センサは以上に記載した動作により振動子1の検出軸方向の自己振動と擬似自己振動による変位を打ち消すサーボ制御を行っている。
 このサーボ制御を行っている状態において、積分回路17の出力を出力端子101に出力する事により自己振動成分及び擬似自己振動成分を加算した変位に応じた出力電圧を取得する。
 また、出力端子101に出力される出力電圧は自己振動成分及び擬似自己振動成分を加算した変位に応じたものであり、角速度センサに断線やショート,振動子の破損,固着等の異常が生じた際には振動子1に与えた自己振動帰還信号と擬似自己振動力の合力に対する振動子1の変位信号が変化するため、この積分回路17の出力を監視する事により、角速度センサの故障を検出する事が可能となる。具体的には、比較回路19に予め自己振動成分の境界値を設定しておき、出力端子101に出力される出力電圧に応じた自己振動成分と境界値とを比較する事により、境界値を逸脱していた際は故障と判定し故障検出信号を出力端子102に出力するものである。
 また、本実施例における角速度センサにおいて、擬似自己振動出力手段33の出力を周期的に変化させている状態において積分回路17の出力を監視する事により、振動子1の検出軸方向の変位が擬似自己振動出力手段33の出力の変化に応じた変位をしているかどうかを検知する事ができ、角速度センサの故障を検出する事が可能となる。
 尚、本実施例においても第1の実施例と同様の利点があるが、本実施例に記載した方法で発生させた擬似自己振動をサーボ制御により打ち消しながら故障診断を行うことで、振動子1に大きな振動を生じる事はないため振動子1に負担を与えないアクティブ診断方法を可能とする。
 次に、本発明の第8の実施例である角速度センサを図8により説明する。
 尚、図8は本発明が提供する角速度センサの、第8の実施例における構成を表すものである。
 本実施例は、図2に記載した第2の実施例における角速度センサに擬似自己振動出力手段35とΦ1により変調を行う変調回路36と積分回路27の出力に変調回路36を加算する加算器37を設ける事により構成される。擬似自己振動出力手段35は、例えば固定値を定常的に出力する方法等により構成できる。
 本実施例の角速度センサにおいては、擬似自己振動出力手段35の出力に対しΦ1により変調回路36を用いて変調する事により擬似自己振動力を生成し、積分回路27から出力された信号に対して加算器37により議事自己振動力を加算した帰還信号を生成する。次に帰還信号と反転器24により位相反転した帰還信号に対し加算器25,26を用いてバイアス電圧Vbを加算してサーボ電極8,9に印加する。その結果、サーボ電極8,9に印加した電圧により振動子1が検出軸方向に力を受け擬似自己振動が生じる。次に振動子1の検出軸方向の変位を検出電極6,7及び変換増幅器12により変位信号に変換し、この変位信号を積分回路27により積分演算した後に加算器37により変調回路36の出力を加算する事で帰還信号を生成する。
 本実施例における角速度センサは以上に記載した動作により振動子1の検出軸方向の変位を打ち消すサーボ制御を行っている。
 次に、積分回路27により出力される変位信号に対しΦ3により同期検波回路16を用いて同期検波する事により自己振動及び擬似自己振動による振動子1の変位を検出し、積分回路17において同期検波回路16の出力を積分演算する。そして積分回路17の出力を出力端子101に出力する事自己振動成分及び擬似自己振動成分を加算した変位に応じた出力電圧を取得する。
 また、出力端子101に出力される出力電圧は自己振動成分及び擬似自己振動成分を加算した変位に応じたものであり、角速度センサに断線やショート,振動子の破損,固着等の異常が生じた際には振動子1に与えた自己振動帰還信号と擬似自己振動力の合力に対する振動子1の変位信号が変化するため、この積分回路17の出力を監視する事により、角速度センサの故障を検出する事が可能となる。具体的には、比較回路19に予め自己振動成分の境界値を設定しておき、出力端子101に出力される出力電圧に応じた自己振動成分と境界値とを比較する事により、境界値を逸脱していた際は故障と判定し故障検出信号を出力端子102に出力するものである。
 また、本実施例における角速度センサにおいて、擬似自己振動出力手段35の出力を周期的に変化させている状態において積分回路17の出力を監視する事により、振動子1の検出軸方向の変位が擬似自己振動出力手段35の出力の変化に応じた変位をしているかどうかを検知する事ができ、角速度センサの故障を検出する事が可能となる。
 尚、本実施例においても第2の実施例と同様の利点があるが、本実施例に記載した方法で発生させた擬似自己振動をサーボ制御により打ち消しながら故障診断を行うことで、振動子1に大きな振動を生じる事はないため振動子1に負担を与えないアクティブ診断方法を可能とする。
 次に、本発明の第9の実施例である角速度センサを図9により説明する。
 尚、図9は本発明が提供する角速度センサの、第9の実施例における検出軸方向重心移動手段の構成を表すものである。
 本実施例における角速度センサの検出軸方向重心移動手段は、振動子38と固定された基板39と振動子38と基板39を弾性的に連結する支持部40,41,42,43と振動子38に静電気力をあたえる電極44,45と電極44,45を固定する固定部46,47とで構成されるセンサ素子204と、電極44,45にそれぞれ直流電圧を印加する電圧印加部48,49とで構成される。
 本実施例における角速度センサの検出軸方向重心移動手段は、電圧印加部46,47により電極39,40に印加された電圧により静電気力を発生し、振動子38は静電気力に応じて変位する事により検出軸方向に振動子38の重心を移動する事で実現できる。この時振動子38は基板39と支持部40,41,42,43により変位に応じた外力を受けるため、電極44,45により振動子38に対して連続的に静電気力を印加する必要がある。
 ここで、自己振動は支持部40,41,42,43等の振動子を基板に支持する支持部及び駆動電極2,3が振動子に与える外力の合力中心の位置と振動子38の重心位置が検出軸上においてずれているために生じ、このずれの大きさに比例して振動振幅が発生する振動である。このため、本実施例により記載した検出軸方向重心移動手段を用いて振動子38の重心位置を検出軸方向に移動する事で、振動子38の自己振動による変位量を制御する事が可能となる。この効果により、センサ素子の製造誤差による固体毎の自己振動成分のバラつきを補正することが出来る。また、製造誤差がなく自己振動が発生しないセンサ素子に対しても、検出軸方向重心移動手段により振動子の重心位置を移動する事により第1~8の実施例において記載した故障検出方法を用いた角速度センサの故障検出を行う事が可能となる。
 また、本実施例において検出軸方向重心移動手段の実現手段として振動子38の検出軸方向に外力を印加する電極44,45を設けたが、センサ素子200における検出電極6,7に電圧印加部48,49の出力電圧を印加する事でも実現可能である。
 次に、本発明の第10の実施例である角速度センサを図10により説明する。
 尚、図10は本発明が提供する角速度センサの、第10の実施例における検出軸方向重心移動手段の構成を表すものである。
 本実施例における角速度センサの検出軸方向重心移動手段は、振動子50と固定された基板64と振動子50と基板64を連結する支持部63と振動子50を構成する駆動脚51,52と検出脚53,54と駆動脚51,52を駆動振動する駆動電極55a,55b,56a,56b,57a,57b,58a,58bと振動子50と線膨張係数の異なる素材で構成され且つ切り込みを形成した平板59,60,61,62とで構成される駆動部と、定電圧発生装置63により構成される。ここで平板59,60,61,62は、例えば駆動脚51,52を構成するシリコン(線膨張係数2.6×10-6/K)に対しアルミニウム(23×10-6/K)や銅(線膨張係数17×10-6/K)等で構成する事ができる。また駆動電極は駆動制御回路11の出力を印加する電極55a,55b,57a,57bと電極55a,55b,57a,57bに印加された信号に応じた駆動力を駆動脚51,52に伝達する電極56a,56b,58a,58bにより構成される。
 本実施例における角速度センサの検出軸方向重心移動手段は、定電圧発生装置63により平板に電圧を印加する事でジュール熱を駆動部に与え、ジュール熱による平板と駆動脚の線膨張の差分により駆動部に一定の反りを生じさせ、駆動脚51,52の検出軸方向に重心を移動する事により実現できる。
 ここで、自己振動は駆動電極56a,56b,58a,58bが駆動脚に与える駆動力の合力中心の位置と駆動脚51,52の重心位置が検出軸上においてずれているために生じ、このずれの大きさに比例して振動振幅が発生する振動である。このため、本実施例により記載した検出軸方向重心移動手段を用いて駆動脚51,52の重心位置を検出軸方向に移動する事で、駆動脚51,52の自己振動による変位量を制御する事が可能となる。この効果により、センサ素子の製造誤差による固体毎の自己振動成分のバラつきを補正することが出来る。また、製造誤差がなく自己振動が発生しないセンサ素子に対しても、検出軸方向重心移動手段により振動子の重心位置を移動する事により第1~8の実施例において記載した故障検出方法を用いた角速度センサの故障検出を行う事が可能となる。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 1,38,50 振動子
 10,12 変換増幅器
 11 駆動制御回路
 13,16 同期検波回路
 14,17 積分回路
 15,18,36 変調回路
 19,28,32 比較回路
 20 位相遅延回路

Claims (22)

  1.  基板上に弾性的に変位可能に支持された振動子と、
     前記基板表面に水平な駆動軸方向に前記振動子を振動させる駆動手段と、
     前記基板表面に水平かつ駆動軸方向と垂直な検出軸方向の前記振動子の変位を検出する検出軸方向変位検出手段と、
     前記振動子の検出軸方向の変位に基づいて角速度を検出する角速度検出手段と、
    を備えた角速度センサにおいて、
     前記駆動軸方向への前記振動子の振動が検出軸方向に漏れ込むことが原因で生じる前記振動子の自己振動を検出する自己振動検出手段と、
     前記振動子の自己振動をゼロにする自己振動帰還回路と、
     前記自己振動検出手段の出力を利用して異常を判定する異常判定手段と
    を有することを特徴とする角速度センサ。
  2.  請求項1において、
     前記自己振動検出手段が、前記検出軸方向変位検出手段の出力を前記振動子の駆動軸方向の振動に応じた信号で同期検波する第1同期検波回路と、前記第1同期検波回路の出力を積分する第1積分回路とで構成されることを特徴とする角速度センサ。
  3.  請求項1において、
     前記自己振動帰還回路が、前記振動子の自己振動をゼロにする外力を前記振動子に印加するために前記第1積分回路の出力を変調する第1変調回路で構成されることを特徴とする角速度センサ。
  4.  請求項1において、
     前記振動子に対し所定の角速度を与えた際の前記第1積分回路の出力と、
     前記振動子に対し所定の角速度を与え無かった際の前記第1積分回路の出力と
    を等しくする位相調整手段を有することを特徴とする角速度センサ。
  5.  請求項1において、
     前記振動子に角速度を印加することにより前記振動子に働くコリオリ力により生じる前記振動子の検出軸方向のコリオリ振動をゼロにする第2帰還回路を有することを特徴とした角速度センサ。
  6.  請求項1において、
     前記角速度検出手段が、前記検出軸方向変位検出手段の出力を前記振動子の駆動軸方向の振動と位相が90°ずれた信号で同期検波する第2同期検波回路と、前記第1同期検波回路の出力を積分する第2積分回路とで構成されることを特徴とする角速度センサ。
  7.  請求項5において、
     前記第2帰還回路が、前記振動子のコリオリ振動をゼロにする外力を前記振動子に印加するために前記第2積分回路の出力を変調する第2変調回路で構成されることを特徴とする角速度センサ。
  8.  請求項6において、
     前記振動子に対し所定の角速度を与えた際の前記第2積分回路の出力と、
     前記振動子に対し所定の角速度を与え無かった際の前記第2積分回路の出力と
    の出力差を最大とする位相調整手段を備えたことを特徴とする角速度センサ。
  9.  請求項1において、
     前記異常判定手段が前記第1積分回路の出力と所定の値を比較する比較回路により構成されることを特徴とした角速度センサ。
  10.  請求項1において、
     前記自己振動帰還回路が、前記検出軸方向変位検出手段の出力を積分する第3積分回路で構成されることを特徴とする角速度センサ。
  11.  請求項10において、
     前記自己振動検出手段が、前記第3積分回路の出力を前記振動子の駆動軸方向の振動に応じた信号で同期検波する第3同期検波回路と、前記第3同期検波回路の出力を積分する第4積分回路とで構成されることを特徴とする角速度センサ。
  12.  請求項10において、
     前記角速度検出手段が、前記第3積分回路の出力を前記振動子の駆動軸方向の振動と位相が90°ずれた信号で同期検波する第4同期検波回路と、
     前記第4同期検波回路の出力を積分する第5積分回路と
    を有することを特徴とする角速度センサ。
  13.  前記請求項10において、
     前記振動子に対し所定の角速度を与えた際の前記第4積分回路の出力と、
     前記振動子に対し所定の角速度を与え無かった際の前記第4積分回路の出力と
    を等しくする位相調整手段を有することを特徴とする角速度センサ。
  14.  前記請求項10において、
     前記異常判定手段が前記第4積分回路の出力と所定の値を比較する比較回路により構成されることを特徴とした角速度センサ。
  15.  請求項2において、
     互いに特性の揃った複数の前記請求項2~9に記載の角速度センサにより構成し、
     各々の角速度センサの有する前記異常判定手段に代えて全ての角速度センサの有する第1積分回路の出力を入力として個々の角速度センサについて異常を判定する第2異常判定手段を設け、
     前記異常判定手段の出力に応じて複数の正常な角速度センサの前記角速度検出手段の出力から1つの最終的な出力を出力する演算回路を有することを特徴とした角速度センサ。
  16.  互いに特性の揃った複数の請求項10に記載の角速度センサにより構成し、
     各々の角速度センサの有する前記異常判定手段に代えて全ての角速度センサの有する第1積分回路の出力を入力として個々の角速度センサについて異常を判定する第2異常判定手段を設け、
     前記異常判定手段の出力に応じて複数の正常な角速度センサの前記角速度検出手段の出力から1つの最終的な出力を出力する演算回路を有することを特徴とした角速度センサ。
  17.  基板上に弾性的に変位可能に支持された第1及び第2振動子と、
     前記基板表面に水平な駆動軸方向に前記第1及び第2振動子を互いに差動振動させる駆動手段と、
     駆動軸方向に垂直な検出軸方向の前記第1及び第2振動子の変位を検出する検出軸方向変位検出手段と、
    を備えた角速度センサにおいて、
     駆動軸方向への前記第1及び第2振動子の振動が検出軸方向に漏れ込むことが原因で生じる前記第1及び第2振動子の自己振動を検出する、
     前記検出軸方向変位検出手段の出力を前記振動子の駆動軸方向の振動に応じた信号で同期検波する同期検波回路及び前記同期検波回路の出力を積分する積分回路、
    により構成した第1及び第2自己振動検出手段と、
     前記第1及び第2振動子の自己振動をゼロにする第1及び第2帰還回路と、
     1対の前記積分回路の出力に基づいて所定の演算を行う演算手段と、
     前記演算手段の出力に基づいて異常を判定する異常判定手段と
    を有することを特徴とする角速度センサ。
  18.  基板上に弾性的に変位可能に支持された第1及び第2振動子と、
     前記基板表面に水平な駆動軸方向に前記第1及び第2振動子を互いに差動振動させる駆動手段と、
     駆動軸方向に垂直な検出軸方向の前記第1及び第2振動子の変位を検出する検出軸方向変位検出手段と、
     前記振動子の検出軸方向の変位をゼロにする、
     前記検出軸方向変位検出手段の出力を積分する積分回路、
    により構成された帰還回路と、
    を備えた角速度センサにおいて、
     駆動軸方向への前記第1及び第2振動子の振動が検出軸方向に漏れ込むことが原因で生じる前記第1及び第2振動子の自己振動を検出する、
     前記検出軸方向変位検出手段の出力を前記振動子の駆動軸方向の振動に応じた信号で同期検波する同期検波回路及び前記同期検波回路の出力を積分する積分回路、
    により構成した第1及び第2自己振動検出手段と、
     1対の前記積分回路の出力に基づいて所定の演算を行う演算手段と、
     前記演算手段の出力に基づいて異常を判定する異常判定手段と
    を有することを特徴とする角速度センサ。
  19.  請求項18において、
     前記振動子の検出軸方向に自己振動と同位相の外力を印加する擬似自己振動印加手段を有することを特徴とする角速度センサ。
  20.  基板上に弾性的に変位可能に支持された振動子と、
     前記基板と前記振動子を弾性的に連結する弾性連結梁と、
     前記基板表面に水平な駆動軸方向に前記振動子を振動させる駆動手段と、
     駆動軸方向に垂直な検出軸方向の前記振動子の変位を検出する検出軸方向変位検出手段と、
    を備えた角速度センサにおいて、
     前記弾性連結梁の合力中心に対する前記振動子の質量中心の位置を検出軸方向に移動する検出軸方向重心移動手段を有することを特徴とする角速度センサ。
  21.  請求項20において、
     前記検出軸方向重心移動手段が、
     前記振動子の検出軸方向に所定の外力を印加する検出軸方向外力印加手段
    により構成されることを特徴とする角速度センサ。
  22.  請求項20において、
     前記検出軸方向重心移動手段は、前記振動子が互いに線膨張係数の異なる物質を検出軸方向に直列に重ね合わせることにより構成され、
     前記振動子の温度調整が可能な温度調整手段により構成されることを特徴とする角速度センサ。
PCT/JP2009/068121 2008-10-30 2009-10-21 角速度センサ WO2010050393A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09823505.4A EP2351982B1 (en) 2008-10-30 2009-10-21 Angular velocity sensor
US13/126,615 US8746033B2 (en) 2008-10-30 2009-10-21 Angular velocity sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008279033A JP5408961B2 (ja) 2008-10-30 2008-10-30 角速度センサ
JP2008-279033 2008-10-30

Publications (1)

Publication Number Publication Date
WO2010050393A1 true WO2010050393A1 (ja) 2010-05-06

Family

ID=42128758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068121 WO2010050393A1 (ja) 2008-10-30 2009-10-21 角速度センサ

Country Status (4)

Country Link
US (1) US8746033B2 (ja)
EP (1) EP2351982B1 (ja)
JP (1) JP5408961B2 (ja)
WO (1) WO2010050393A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143615A1 (ja) * 2009-06-12 2010-12-16 エプソントヨコム株式会社 物理量検出装置並びに物理量検出装置の制御方法、異常診断システム及び異常診断方法
WO2012118101A1 (ja) * 2011-02-28 2012-09-07 曙ブレーキ工業株式会社 角速度センサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159429A (ja) * 2011-02-01 2012-08-23 Toyota Motor Corp 音叉振動型角速度センサ
JP2013011539A (ja) * 2011-06-30 2013-01-17 Hitachi Automotive Systems Ltd 角速度検出装置
US9109901B2 (en) * 2013-03-08 2015-08-18 Freescale Semiconductor Inc. System and method for monitoring a gyroscope
US20160102978A1 (en) * 2014-10-14 2016-04-14 Richtek Technology Corporation Rotation velocity sensor and method for sensing rotation velocity
JP6265549B2 (ja) * 2014-10-15 2018-01-24 三菱重工業株式会社 ポイント算出装置、ポイント算出方法及びプログラム
US10527643B2 (en) * 2015-07-10 2020-01-07 Hitachi, Ltd. Inertia sensor with improved detection sensitivity using servo voltage to detect a physical quantity
JP6671151B2 (ja) * 2015-11-09 2020-03-25 セイコーエプソン株式会社 物理量検出回路、電子機器および移動体
EP3696502B1 (en) 2019-02-15 2022-04-06 Murata Manufacturing Co., Ltd. Gyroscope with double input
JP7362684B2 (ja) * 2021-02-25 2023-10-17 株式会社東芝 センサ及び電子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102013A (ja) * 1990-08-21 1992-04-03 Nec Home Electron Ltd 振動ジャイロおよびその駆動方法
JPH10103960A (ja) * 1996-09-25 1998-04-24 Murata Mfg Co Ltd 角速度検出装置
JPH11132770A (ja) * 1997-10-29 1999-05-21 Toyota Central Res & Dev Lab Inc 振動式角速度検出器
JP2000171257A (ja) 1998-12-04 2000-06-23 Toyota Motor Corp 角速度検出装置
JP2000193460A (ja) * 1998-10-23 2000-07-14 Toyota Motor Corp 角速度検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409565B2 (ja) * 1996-03-01 2003-05-26 日産自動車株式会社 角速度センサの自己診断方法
JP2002139322A (ja) * 2000-10-31 2002-05-17 Murata Mfg Co Ltd 振動ジャイロの自己診断方法、及び、振動ジャイロ及びそれを用いた電子装置
DE102004058183A1 (de) 2004-12-02 2006-06-08 Robert Bosch Gmbh Messfühler mit Selbsttest

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102013A (ja) * 1990-08-21 1992-04-03 Nec Home Electron Ltd 振動ジャイロおよびその駆動方法
JPH10103960A (ja) * 1996-09-25 1998-04-24 Murata Mfg Co Ltd 角速度検出装置
JPH11132770A (ja) * 1997-10-29 1999-05-21 Toyota Central Res & Dev Lab Inc 振動式角速度検出器
JP2000193460A (ja) * 1998-10-23 2000-07-14 Toyota Motor Corp 角速度検出装置
JP2000171257A (ja) 1998-12-04 2000-06-23 Toyota Motor Corp 角速度検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143615A1 (ja) * 2009-06-12 2010-12-16 エプソントヨコム株式会社 物理量検出装置並びに物理量検出装置の制御方法、異常診断システム及び異常診断方法
US8375790B2 (en) 2009-06-12 2013-02-19 Epson Toyocom Corporation Physical quantity detection apparatus, method of controlling physical quantity detection apparatus, abnormality diagnosis system, and abnormality diagnosis method
WO2012118101A1 (ja) * 2011-02-28 2012-09-07 曙ブレーキ工業株式会社 角速度センサ

Also Published As

Publication number Publication date
EP2351982A1 (en) 2011-08-03
US8746033B2 (en) 2014-06-10
JP2010107326A (ja) 2010-05-13
JP5408961B2 (ja) 2014-02-05
US20110252886A1 (en) 2011-10-20
EP2351982A4 (en) 2014-01-01
EP2351982B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP5408961B2 (ja) 角速度センサ
JP3603501B2 (ja) 角速度検出装置
EP1519149B1 (en) Angular-rate detecting apparatus
JP4392599B2 (ja) センサシステム
TWI482946B (zh) 旋轉速率感測器用的補償電路與其補償方法
US7779688B2 (en) Vibration gyro sensor
JP2006194701A (ja) 振動ジャイロ
JP2005283481A (ja) センサシステム
KR20060096063A (ko) 회전 속도 센서
JP2018021850A (ja) バイアス補正機能を有する振動型ジャイロ、及び振動型ジャイロの使用方法
JP2007292743A (ja) 音叉型振動ジャイロ
WO2018190303A1 (ja) 電気慣性制御装置
JP6305223B2 (ja) バイアス安定化が図られた振動型ジャイロ、及び振動型ジャイロの使用方法
JP2000009475A (ja) 角速度検出装置
JP4869001B2 (ja) 振動ジャイロ
JP3458732B2 (ja) 振動型センサの断線検出装置
JP2004301512A (ja) 角速度センサ装置
JP4524571B2 (ja) 振動型角速度センサ
JP2001304866A (ja) ジャイロ装置及びそのクロストーク低減方法
JP2002213961A (ja) 振動ジャイロおよび振動ジャイロの自己診断方法
JP2005265724A (ja) 振動型角速度センサ
JP4697373B2 (ja) 物理量測定方法、物理量測定装置および物理量測定器への電力供給方法
WO2023037554A1 (ja) 振動型角速度センサ
JP2008111786A (ja) 自己診断を行う異常検出回路を備えたセンサ回路
WO2012118101A1 (ja) 角速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009823505

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13126615

Country of ref document: US