WO2023037554A1 - 振動型角速度センサ - Google Patents

振動型角速度センサ Download PDF

Info

Publication number
WO2023037554A1
WO2023037554A1 PCT/JP2021/033589 JP2021033589W WO2023037554A1 WO 2023037554 A1 WO2023037554 A1 WO 2023037554A1 JP 2021033589 W JP2021033589 W JP 2021033589W WO 2023037554 A1 WO2023037554 A1 WO 2023037554A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
velocity sensor
vibrator
control circuit
electrode
Prior art date
Application number
PCT/JP2021/033589
Other languages
English (en)
French (fr)
Inventor
孝文 森口
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to PCT/JP2021/033589 priority Critical patent/WO2023037554A1/ja
Publication of WO2023037554A1 publication Critical patent/WO2023037554A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719

Definitions

  • This invention relates to a vibrating angular velocity sensor.
  • the above Japanese Patent Application Laid-Open No. 2009-115559 discloses an angular velocity sensor (vibrating angular velocity sensor).
  • This angular velocity sensor has a ring-shaped element portion and a plurality of electrodes arranged radially outwardly of the ring-shaped element portion and circumferentially.
  • the plurality of electrodes includes primary electrodes and secondary electrodes.
  • An AC power source is connected to generate primary vibration in the ring-shaped element portion by applying an AC voltage to one of the primary electrode and the secondary electrode.
  • the other of the primary electrode and the secondary electrode is connected to detection means for detecting the magnitude of the electrical signal generated in the ring-shaped element portion.
  • a detecting means connected to the other of the primary electrode and the secondary electrode detects the magnitude of an electric signal generated in the other of the primary electrode and the secondary electrode due to the secondary vibration. be done. Also, an AC voltage is applied to the other of the primary electrode and the secondary electrode for canceling the secondary vibration based on the magnitude of the detected electrical signal. Then, the magnitude of the angular velocity is calculated based on the magnitude of the AC voltage for canceling the secondary vibration.
  • the angular velocity detected by the vibrating angular velocity sensor has a bias component (zero point output from the sensor even when no angular velocity is applied). error from ) is included.
  • the bias component is caused by the asymmetry of the gyro element included in the vibrating angular velocity sensor. Therefore, in a conventional vibrating angular velocity sensor such as that disclosed in Japanese Patent Application Laid-Open No.
  • an electrode one of the primary electrode and the secondary electrode
  • the electrode to which the detection means is connected the other of the primary electrode and the secondary electrode
  • the output of the switched vibrating angular velocity sensor before and after is configured to cancel the bias component by subtracting .
  • the present invention has been made to solve the above problems, and one object of the present invention is to cancel the bias component while continuously detecting the angular velocity in a vibrating angular velocity sensor in motion.
  • An object of the present invention is to provide a vibrating angular velocity sensor capable of
  • a vibrating angular velocity sensor includes a first angular velocity sensor section and a second angular velocity sensor section, the second angular velocity sensor section comprising an oscillator and a closed angular velocity sensor.
  • a primary-side control circuit in which the output of the closed control loop induces primary vibration in the vibrator, and a secondary vibration generated in the vibrator due to the angular velocity applied to the vibrator.
  • a secondary-side control circuit having a closed control loop for detecting, wherein the primary-side control circuit is configured to be able to switch electrodes for inducing primary vibration in the vibrator, and the secondary-side control circuit is configured to switch the electrodes for inducing primary vibration in the vibrator;
  • the second angular velocity sensor unit detects the angular velocity based on the secondary vibration of the oscillator by the secondary side control circuit, and the second angular velocity sensor unit detects the angular velocity based on the secondary vibration of the oscillator.
  • Angular velocity is detected by one angular velocity sensor unit during the predetermined period, and a first detection result detected by the first angular velocity sensor unit during the predetermined period and a second detection result detected by the second angular velocity sensor unit during the predetermined period. and to calculate the bias component of the first angular velocity sensor unit.
  • the second angular velocity sensor section detects the angular velocity based on the secondary vibration of the vibrator by the secondary side control circuit during the predetermined period. 1) switching the electrode for inducing the primary vibration in the vibrator and the electrode for detecting the secondary vibration of the vibrator, and detecting the angular velocity based on the secondary vibration of the vibrator by the secondary side control circuit. Further, the vibrating angular velocity sensor detects the angular velocity during the predetermined period by the first angular velocity sensor, detects the first detection result detected by the first angular velocity sensor during the predetermined period, and detects the second angular velocity during the predetermined period.
  • the bias component of the first angular velocity sensor is calculated based on the second detection result detected by the sensor.
  • the second angular velocity sensor unit switches between the electrode that induces the primary vibration of the vibrator and the electrode that detects the secondary vibration of the vibrator.
  • the detection result can be used to continuously cancel the bias component of the first angular velocity sensor section.
  • the bias component can be canceled while continuously detecting the angular velocity in the vibrating angular velocity sensor in motion.
  • the bias component caused by the temperature change can be continuously canceled, so the bias component that fluctuates depending on the temperature of the surrounding environment can be canceled with high accuracy. .
  • the value of the first detection result detected by the first angular velocity sensor unit during the predetermined period is changed to the second detection result detected by the second angular velocity sensor unit during the predetermined period.
  • the bias component of the first angular velocity sensor is calculated.
  • the predetermined period includes a first period during which the secondary-side control circuit detects the angular velocity based on the secondary vibration of the vibrator, a second period in which the electrode for inducing vibration and the electrode for detecting the secondary vibration of the vibrator are switched, and the secondary-side control circuit detects the angular velocity based on the secondary vibration of the vibrator;
  • the period and the second period are of the same length of time.
  • the period detected by the next-side control circuit can be made equal.
  • the detection result detected by the secondary side control circuit of the second angular velocity sensor unit and the secondary side after switching the electrode for inducing the primary vibration in the vibrator and the electrode for detecting the secondary vibration of the vibrator are switched.
  • the detection result detected by the control circuit can be used to calculate the bias component without performing correction considering the difference in the detection period.
  • the predetermined period is preferably a short period during which the bias component of the second angular velocity sensor section is substantially constant.
  • the secondary vibration including substantially the same bias component that does not fluctuate is transmitted to each of the second speed sensors before and after switching between the electrode for inducing the primary vibration in the vibrator and the electrode for detecting the secondary vibration of the vibrator.
  • the secondary-side control circuit of the second angular velocity sensor unit the secondary vibration of the electrode and the vibrator that induces the primary vibration in the vibrator is detected from the detection result of the secondary-side control circuit of the second angular velocity sensor unit.
  • the bias component can be easily canceled from the second detection result detected by the second angular velocity sensor section by subtracting the detection result by the secondary side control circuit after switching the electrode to be used.
  • the first detection result detected by the first angular velocity sensor unit in the first predetermined period and the second angular velocity sensor unit detected in the first predetermined period Based on the detection result, the bias component of the first angular velocity sensor is calculated, and using the angular velocity detected by the second angular velocity sensor during the second predetermined period and the bias component of the first angular velocity sensor, It is configured to calculate a bias component of the second angular velocity sensor.
  • the bias component of the first angular velocity sensor section and the bias component of the second angular velocity sensor section can be corrected in the first predetermined period and the second predetermined period, respectively. It is possible to further improve the accuracy of canceling the bias component.
  • the first angular velocity sensor preferably has a vibrator and a closed control loop, and the output of the closed control loop induces primary vibration in the vibrator.
  • a secondary control circuit having a closed control loop for detecting secondary vibration generated in the vibrator due to an angular velocity applied to the vibrator; and the electrode for detecting the secondary vibration of the vibrator are configured so as not to be switched.
  • the primary vibration is induced in the vibrator by using the second angular velocity sensor section capable of switching between the electrode for inducing the primary vibration in the vibrator and the electrode for detecting the secondary vibration of the vibrator. It is possible to accurately cancel the bias component of the first angular velocity sensor section that cannot switch the electrode and the electrode that detects the secondary vibration of the vibrator.
  • the first detection result is an integral value of the angular velocity detected by the first angular velocity sensor during the predetermined period
  • the second detection result is the second angular velocity sensor during the predetermined period. 2 It is an integrated value of the angular velocity detected by the angular velocity sensor.
  • the vibrator preferably includes a ring-type vibrator.
  • the vibration mode by the primary side control circuit is similar to the vibration mode by the primary side control circuit after electrode switching. Therefore, if the present invention is applied to a vibrating angular velocity sensor including a ring-shaped vibrator, there is no need to consider the influence of the difference in vibration modes.
  • the bias component can be canceled while the angular velocity is continuously detected by the vibrating angular velocity sensor in motion.
  • FIG. 1 is a block diagram showing the configuration of a vibrating angular velocity sensor according to one embodiment
  • FIG. 3 is a block diagram showing a first angular velocity sensor section of the vibrating angular velocity sensor according to one embodiment
  • FIG. 4 is a block diagram showing a second angular velocity sensor section of the vibrating angular velocity sensor according to one embodiment
  • FIG. 5 is a diagram for explaining calculation of a bias of the vibrating angular velocity sensor according to one embodiment
  • FIG. 1 The configuration of a vibrating angular velocity sensor 100 according to this embodiment will be described with reference to FIGS. 1 to 4.
  • FIG. 1 The configuration of a vibrating angular velocity sensor 100 according to this embodiment will be described with reference to FIGS. 1 to 4.
  • FIG. 1 The configuration of a vibrating angular velocity sensor 100 according to this embodiment will be described with reference to FIGS. 1 to 4.
  • FIG. 1 The configuration of a vibrating angular velocity sensor 100 according to this embodiment will be described with reference to FIGS. 1 to 4.
  • the vibrating angular velocity sensor 100 includes a first angular velocity sensor section 101, a second angular velocity sensor section 102, and a control circuit 103.
  • the first angular velocity sensor section 101 and the second angular velocity sensor section 102 are configured to detect angular velocities around axes parallel or coaxial to each other.
  • the first angular velocity sensor unit 101 has a vibrator 11 and a closed control loop, and the output of the closed control loop induces primary vibration in the vibrator 11.
  • a primary side control circuit. 12 and a secondary side control circuit 13 having a closed control loop for detecting secondary vibration generated in the vibrator 11 due to the angular velocity applied to the vibrator 11 .
  • the vibrator 11 includes a ring-shaped vibrator.
  • the primary side control circuit 12 of the first angular velocity sensor unit 101 includes an amplifier circuit 21, a synchronous detection circuit 22, a loop filter 23, a modulation circuit 24, a drive circuit 25, and a PLL (Phase Locked Loop) circuit (phase synchronous circuit) 26 and a reference signal generation circuit 27 .
  • the vibrator 11, amplifier circuit 21, synchronous detection circuit 22, loop filter 23, modulation circuit 24 and drive circuit 25 are connected in this order to form a closed control loop.
  • Loop filter 23 includes, for example, an integration filter.
  • the secondary-side control circuit 13 of the first angular velocity sensor unit 101 includes an amplifier circuit 31, a synchronous detection circuit 32, an adder circuit 33, a loop filter 34, a modulation circuit 35, a drive circuit 36, an amplifier circuit 37, and a contains.
  • the vibrator 11, amplifier circuit 31, synchronous detection circuit 32, addition circuit 33, loop filter 34, modulation circuit 35 and drive circuit 36 are connected in this order to form a closed control loop.
  • the addition circuit 33 is composed of a general addition/subtraction circuit using operational amplifiers.
  • loop filter 34 includes, for example, an integration filter.
  • the output of the loop filter 34 is input to the amplifier circuit 37 . Then, the signal output from the amplifier circuit 37 is output to the outside as the sensor output of the first angular velocity sensor section 101 .
  • the first angular velocity sensor unit 101 is configured such that the electrode 50 that induces the primary vibration of the vibrator 11 and the electrode 50 that detects the secondary vibration of the vibrator 11 cannot be switched.
  • the first angular velocity sensor unit 101 is provided with an addition/subtraction amount adjustment circuit 14 to which the output from the primary side control circuit 12 (output from the loop filter 23) is input.
  • the addition/subtraction amount adjustment circuit 14 adjusts the magnitude of the output of the loop filter 23 of the primary side control circuit 12 that depends on the temperature, and applies the adjusted output (first offset value) to the addition of the secondary side control circuit 13. It is configured to be input to circuit 33 .
  • the addition amount of the first offset value is adjusted by dividing the voltage using a potentiometer (volume resistor) or the like.
  • the first angular velocity sensor unit 101 is provided with an addition/subtraction amount adjustment circuit 15 to which a constant signal S1 independent of temperature is input.
  • the addition/subtraction amount adjustment circuit 15 is configured to adjust the magnitude of the constant signal S1 and input the adjusted constant signal S1 (second offset value) to the addition circuit 33 of the secondary side control circuit 13. ing.
  • the addition amount of the constant signal S1 is adjusted by dividing the voltage using a potentiometer (volume resistor) or the like.
  • the second angular velocity sensor unit 102 has a vibrator 11 and a closed control loop, and the output of the closed control loop induces primary vibration in the vibrator 11.
  • the vibrator 11 includes a ring-shaped vibrator.
  • the second angular velocity sensor unit 102 is arranged at a position where the temperature change rate is small.
  • the primary side control circuit 16 of the second angular velocity sensor unit 102 includes an amplifier circuit 21, a synchronous detection circuit 22, a loop filter 23, a modulation circuit 24, a drive circuit 25, and a PLL (Phase Locked Loop) circuit (phase synchronous circuit) 26 and a reference signal generation circuit 27 .
  • the vibrator 11, amplifier circuit 21, synchronous detection circuit 22, loop filter 23, modulation circuit 24 and drive circuit 25 are connected in this order to form a closed control loop.
  • Loop filter 23 includes, for example, an integration filter.
  • the secondary-side control circuit 17 of the second angular velocity sensor section 102 includes an amplifier circuit 31, a synchronous detection circuit 32, an adder circuit 33, a loop filter 34, a modulation circuit 35, a drive circuit 36, an amplifier circuit 37, and a contains.
  • the vibrator 11, amplifier circuit 31, synchronous detection circuit 32, addition circuit 33, loop filter 34, modulation circuit 35 and drive circuit 36 are connected in this order to form a closed control loop.
  • the addition circuit 33 is composed of a general addition/subtraction circuit using operational amplifiers.
  • loop filter 34 includes, for example, an integration filter.
  • the output of the loop filter 34 is input to the amplifier circuit 37 . Then, the signal output from the amplifier circuit 37 is output to the outside as the sensor output of the second angular velocity sensor section 102 .
  • the second angular velocity sensor unit 102 is configured such that the electrode 50 that induces the primary vibration in the vibrator 11 can be switched by the primary side control circuit 16 , and the secondary side control circuit 17
  • the electrodes 50 for detecting the secondary vibration of the vibrator 11 can be switched by .
  • a switch 41 is provided on the signal input side to the vibrator 11, and a switch 42 is provided on the signal output side (the output side of the amplifier circuit 21) from the vibrator 11.
  • a switch 43 is provided on the signal input side to the vibrator 11, and a switch 44 is provided on the signal output side from the vibrator 11 (the output side of the amplifier circuit 31).
  • Each of the switches 41, 42, 43, and 44 is configured to switch between a state of being connected to the primary side control circuit 16 and a state of being connected to the secondary side control circuit 17. .
  • switches 41 and 42 connect the electrode 50 arranged above the vibrator 11 and the primary control circuit 16
  • switches 43 and 44 are arranged below the vibrator 11 .
  • a state in which the electrode 50 and the secondary-side control circuit 17 are connected is shown.
  • the terms “upper side” and “lower side” refer to the “upper side” and “lower side”, respectively, for explanation in FIG. It does not mean “lower side”.
  • the switches 41 and 42 By switching the switches 41 and 42 , the electrodes 50 that induce the primary vibration in the vibrator 11 are switched by the primary-side control circuit 16 . Further, by switching the switches 43 and 44 , the electrode 50 for detecting the secondary vibration of the vibrator 11 is switched by the secondary side control circuit 17 . Specifically, switches 41 and 42 shown in FIG. From the state in which the electrode 50 arranged on the lower side of the vibrator 11 and the secondary side control circuit 17 are connected, the switch 41 and the switch 42 are connected to the electrode 50 arranged on the upper side of the vibrator 11 and the secondary side control circuit. Circuit 17 is connected, and switch 43 and switch 44 are switched to a state in which electrode 50 arranged on the lower side of vibrator 11 and primary side control circuit 16 are connected.
  • the primary control circuit 16 switches the electrode 50 that induces the primary vibration in the vibrator 11
  • the secondary control circuit 17 switches the electrode 50 that detects the secondary vibration of the vibrator 11 .
  • the terms “upper side” and “lower side” refer to the “upper side” and “lower side”, respectively, for explanation in FIG. It does not mean “lower side”.
  • the second angular velocity sensor unit 102 is provided with an addition/subtraction amount adjustment circuit 14 to which the output from the primary side control circuit 16 (output from the loop filter 23) is input.
  • the addition/subtraction amount adjustment circuit 14 adjusts the magnitude of the output of the loop filter 23 of the primary side control circuit 16 that depends on the temperature, and applies the adjusted output (first offset value) to the addition of the secondary side control circuit 17. It is configured to be input to circuit 33 .
  • the addition amount of the first offset value is adjusted by dividing the voltage using a potentiometer (volume resistor) or the like.
  • the second angular velocity sensor unit 102 is provided with an addition/subtraction amount adjustment circuit 15 to which a constant signal S1 independent of temperature is input.
  • the addition/subtraction amount adjustment circuit 15 is configured to adjust the magnitude of the constant signal S1 and input the adjusted constant signal S1 (second offset value) to the addition circuit 33 of the secondary side control circuit 17. ing.
  • the addition amount of the constant signal S1 is adjusted by dividing the voltage using a potentiometer (volume resistor) or the like.
  • the control circuit 103 causes the second angular velocity sensor unit 102 to detect the angular velocity based on the secondary vibration of the oscillator 11 by the secondary side control circuit 17 in a predetermined period, and a process of switching the electrode 50 for inducing the primary vibration of the vibrator 11 and the electrode 50 detecting the secondary vibration of the vibrator 11 to detect the angular velocity based on the secondary vibration of the vibrator 11 by the secondary side control circuit 17; is configured to control the Specifically, as shown in FIG. 4C, during a predetermined period from time t1 to time t2 and from time t4 to time t5 after electrode switching, secondary side control of the second angular velocity sensor unit 102 is performed.
  • a circuit 17 performs processing for detecting the angular velocity based on the secondary vibration of the vibrator 11 .
  • control circuit 103 is configured to perform control for detecting the angular velocity in a predetermined period by the first angular velocity sensor unit 101 . Specifically, as shown in FIG. 4B, during predetermined periods from time t1 to time t2 and from time t4 to time t5, the secondary-side control circuit 13 of the first angular velocity sensor unit 101 vibrates. A process of detecting the angular velocity based on the secondary vibration of the element 11 is performed.
  • control circuit 103 controls the first angular velocity sensor based on the first detection result detected by the first angular velocity sensor unit 101 during the predetermined period and the second detection result detected by the second angular velocity sensor unit 102 during the predetermined period. It is configured to calculate the bias component (B1(t)) of the unit 101 .
  • control circuit 103 subtracts the value of the second detection result detected by the second angular velocity sensor unit 102 during the predetermined period from the value of the first detection result detected by the first angular velocity sensor unit 101 during the predetermined period. It is configured to calculate the bias component of the first angular velocity sensor unit 101 .
  • the predetermined period includes a first period (a period from time t1 to time t2) during which the secondary-side control circuit 17 detects the angular velocity based on the secondary vibration of the vibrator 11, and a second period after the electrode switching. and a second period (period from time t4 to time t5) during which the side control circuit 17 performs processing for detecting the angular velocity based on the secondary vibration of the vibrator 11 .
  • the first period and the second period have the same length of time. As shown in FIG. 4, the first period and the second period each have a length of time T. As shown in FIG.
  • the first detection result is an integrated value of angular velocities detected by the first angular velocity sensor unit 101 in a predetermined period.
  • the second detection result is an integrated value of angular velocities detected by the second angular velocity sensor unit 102 in a predetermined period.
  • the predetermined period is a short period during which the bias component of the second angular velocity sensor section 102 is substantially constant.
  • the predetermined period has a length of several seconds to several tens of seconds.
  • the predetermined period is a period during which the influence of temperature change can be ignored and the bias component of the second angular velocity sensor section 102 can be assumed to remain substantially unchanged.
  • the integrated value I1 of the first detection result in a predetermined period (first period from time t1 to time t2 and second period from time t4 to time t5) shown in FIG. is represented as
  • the angular velocity ⁇ 1(t) detected by the secondary-side control circuit 13 of the first angular velocity sensor unit 101 is the angular velocity (true angular velocity) ⁇ 0(t) generated by the motion (movement) shown in FIG. 1
  • the bias B1(t) of the angular velocity sensor unit 101 it is expressed as in Equation (2).
  • equation (1) is derived as equation (3).
  • the integrated value I2 of the second detection result in a predetermined period (the first period from time t1 to time t2 and the second period from time t4 to time t5) shown in FIG. 4).
  • the integrated value is subtracted considering that ⁇ 2(t) is inverted with respect to the bias component.
  • the angular velocity ⁇ 2(t) detected by the secondary-side control circuit 17 of the second angular velocity sensor unit 102 and the angular velocity ⁇ 2(t) detected by the secondary-side control circuit 17 after switching the electrodes correspond to the motion shown in FIG.
  • angular velocity (true angular velocity) ⁇ 0(t) caused by the (movement) and the bias B2(t) of the second angular velocity sensor unit 102 they are represented by equations (5) and (6), respectively.
  • equation (6) is negative because ⁇ 0(t) is inverted with respect to the bias component.
  • equation (4) is derived as equation (7).
  • the bias B1(t) of the first angular velocity sensor section 101 and the bias B1(t) of the second angular velocity sensor section 102 B2(t) can be assumed to hold equations (9) and (10) because the amount of change over time is negligible (because it is constant).
  • B1 is the bias value of the first angular velocity sensor unit 101 in the first period and the second period
  • B2 is the bias value of the second angular velocity sensor part 102 in the first period and the second period.
  • equation (11) is derived from equation (8).
  • the bias value B1 of the first angular velocity sensor unit 101 is calculated by dividing (I1-I2) by 2T.
  • the calculated bias value B1 is used for angular velocity detection by the first angular velocity sensor unit 101 . For example, it is used as an observation update for the Kalman filter.
  • Control is performed to switch between the electrode 50 that induces the primary vibration of the vibrator 11 of the second angular velocity sensor unit 102 and the electrode 50 that detects the secondary vibration of the vibrator 11, and the angular velocity for calculating the bias value B1 is controlled. It suffices that the relationships of equations (9) and (10) hold during the measurement period. Therefore, for example, even if the time interval (t6-t5) to time t6, which is the starting point of the next process, is long and B1 changes, it can be similarly corrected by the process from time t6. However, it is always preferable to make the time interval (t6-t5) small enough so that the change in B1 is small.
  • control is performed to switch between the electrode 50 for inducing the primary vibration of the vibrator 11 of the second angular velocity sensor unit 102 and the electrode 50 for detecting the secondary vibration of the vibrator 11, and the angular velocity for calculating the bias value B1 is controlled.
  • the relationship of formula (10) may not hold during the measurement period. In other words, the formula (12) may be obtained. Even in this case, ⁇ is taken into consideration at the start of operation (at the start of movement), and the two first angular velocity sensor unit 101 and second angular velocity sensor unit 102 are used to mutually correct the bias components. , and bias component (B2(t)).
  • the control circuit 103 is based on the first detection result detected by the first angular velocity sensor unit 101 during the first predetermined period and the second detection result detected by the second angular velocity sensor unit 102 during the first predetermined period. , the bias component of the first angular velocity sensor unit 101 is calculated. In addition, the control circuit 103 calculates the bias component of the second angular velocity sensor section 102 using the angular velocity detected by the second angular velocity sensor section 102 in the second predetermined period and the bias component of the first angular velocity sensor section 101. do. The control circuit 103 alternately repeats these controls. That is, B1, which is the bias component of the first angular velocity sensor unit 101, is corrected by the first calculation of the bias component.
  • the second angular velocity sensor unit 102 detects the angular velocity based on the secondary vibration of the oscillator 11 by the secondary-side control circuit 17 in a predetermined period, and switching the electrode 50 for inducing the secondary vibration and the electrode 50 for detecting the secondary vibration of the vibrator 11, and detecting the angular velocity based on the secondary vibration of the vibrator 11 by the secondary side control circuit 17;
  • the vibration type angular velocity sensor 100 detects the angular velocity in a predetermined period by the first angular velocity sensor section 101, and the first detection result detected by the first angular velocity sensor section 101 in the predetermined period and the second angular velocity in the predetermined period.
  • the bias component of the first angular velocity sensor unit 101 is calculated.
  • the second angular velocity sensor section 102 detects the electrode 50 that induces the primary vibration of the vibrator 11 and the electrode 50 that detects the secondary vibration of the vibrator 11 .
  • the bias component of the first angular velocity sensor unit 101 can be continuously canceled using the second detection result calculated while switching.
  • the bias component can be canceled while the angular velocity is continuously detected in the vibrating angular velocity sensor 100 in motion.
  • the bias component caused by the temperature change can be continuously canceled, so the bias component that fluctuates depending on the temperature of the surrounding environment can be canceled with high accuracy. .
  • the value of the second detection result detected by the second angular velocity sensor unit 102 in the predetermined period is subtracted to calculate the bias component of the first angular velocity sensor unit 101 .
  • the angular velocity based on the actual motion detected by the first angular velocity sensor unit 101 and the angular velocity based on the actual motion detected by the second angular velocity sensor unit 102 can be offset.
  • only the bias component can be extracted. As a result, it is possible to easily calculate the bias component of the first angular velocity sensor section 101 even when the vibrating angular velocity sensor 100 is in motion (even if the angular velocity is not constant).
  • the predetermined period includes the first period in which the secondary-side control circuit 17 detects the angular velocity based on the secondary vibration of the vibrator 11 and the primary period in which the vibrator 11 a second period in which the electrode 50 for inducing vibration and the electrode 50 for detecting the secondary vibration of the vibrator 11 are switched, and the secondary-side control circuit 17 detects the angular velocity based on the secondary vibration of the vibrator 11; , where the first period and the second period are of the same length of time.
  • the period of detection by the secondary-side control circuit 17 of the second angular velocity sensor unit 102, the electrode 50 that induces the primary vibration of the vibrator 11, and the electrode 50 that detects the secondary vibration of the vibrator 11 are switched.
  • the period detected by the secondary side control circuit 17 can be made equal.
  • the detection result detected by the secondary-side control circuit 17 of the second angular velocity sensor unit 102, the electrode 50 for inducing the primary vibration of the vibrator 11, and the electrode 50 for detecting the secondary vibration of the vibrator 11 are switched.
  • the detection result detected by the secondary-side control circuit 17 can be used to calculate the bias component without performing correction considering the difference in the detection period.
  • the predetermined period is a short period during which the bias component of the second angular velocity sensor section 102 is substantially constant.
  • the second angular velocity sensor section detects the secondary vibration including substantially the same bias component that does not fluctuate. 102 can be detected by the secondary side control circuit 17 of the second angular velocity sensor section 102.
  • the electrode 50 and the vibrator 11 that induce the primary vibration in the vibrator 11 By subtracting the detection result by the secondary side control circuit 17 after switching the electrode 50 for detecting the secondary vibration, the bias component can be easily canceled from the second detection result detected by the second angular velocity sensor unit 102. can be done.
  • the first detection result detected by the first angular velocity sensor unit 101 during the first predetermined period and the second detection result detected by the second angular velocity sensor unit 102 during the first predetermined period Based on the detection result, the bias component of the first angular velocity sensor unit 101 is calculated. Also, the bias component of the second angular velocity sensor section 102 is calculated using the angular velocity detected by the second angular velocity sensor section 102 in the second predetermined period and the bias component of the first angular velocity sensor section 101 . As a result, the bias component of the first angular velocity sensor section 101 and the bias component of the second angular velocity sensor section 102 can be corrected in the first predetermined period and the second predetermined period, respectively. can be further improved.
  • the first angular velocity sensor unit 101 is configured such that the electrode 50 that induces the primary vibration of the vibrator 11 and the electrode 50 that detects the secondary vibration of the vibrator 11 cannot be switched. is configured to As a result, the primary vibration is applied to the vibrator 11 by using the second angular velocity sensor unit 102 that can switch between the electrode 50 that induces the primary vibration in the vibrator 11 and the electrode 50 that detects the secondary vibration of the vibrator 11 .
  • the bias component of the first angular velocity sensor section 101 that cannot switch the electrode 50 for inducing and the electrode 50 for detecting the secondary vibration of the vibrator 11 can be canceled with high accuracy.
  • the first detection result is the integrated value of the angular velocity detected by the first angular velocity sensor unit 101 during the predetermined period
  • the second detection result is the angular velocity detected by the second angular velocity sensor during the predetermined period. It is the integrated value of the angular velocity detected by the unit 102 .
  • the vibrator 11 includes a ring-type vibrator.
  • the vibration mode by the primary side control circuit 16 is similar to the vibration mode by the primary side control circuit 16 after electrode switching. Accordingly, it is not necessary to consider the influence of the difference in the vibration modes of the vibrating angular velocity sensor 100 including the ring-shaped vibrator 11 .
  • the vibrator may have a symmetrical shape, and may be disc-shaped, cup-shaped (wine glass-shaped), octagonal, or the like.
  • control loop may be configured with a configuration other than the configuration including the amplifier circuit, synchronous detection circuit, loop filter, modulation circuit, and drive circuit.
  • an integration filter is used as a loop filter
  • a loop filter other than an integration filter may be used.
  • the first angular velocity sensor has an example of a configuration in which the electrode for inducing the primary vibration of the vibrator and the electrode for detecting the secondary vibration of the vibrator cannot be switched. It is not limited to this.
  • the first angular velocity sensor section may be switchable between an electrode that induces the primary vibration of the vibrator and an electrode that detects the secondary vibration of the vibrator, similarly to the second angular velocity sensor section.
  • the vibrating angular velocity sensor may be provided with three or more angular velocity sensor units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

この振動型角速度センサ(100)は、第1角速度センサ部(101)と第2角速度センサ部(102)とを備える。第2角速度センサ部により、所定期間において、2次側制御回路(17)により振動子(11)の2次振動に基づく角速度を検出する処理と、振動子に1次振動を誘起する電極(50)および振動子の2次振動を検出する電極を切り替えて、2次側制御回路により振動子の2次振動に基づく角速度を検出する処理と、を行う。第1角速度センサ部により、所定期間において、角速度を検出する。所定期間において第1角速度センサ部により検出した第1検出結果と、所定期間において第2角速度センサ部により検出した第2検出結果とに基づいて、第1角速度センサ部のバイアス成分を算出する。

Description

振動型角速度センサ
 この発明は、振動型角速度センサに関する。
 従来、振動型角速度センサが知られている。たとえば、特開2009-115559号公報に開示されている。
 上記特開2009-115559号公報には、角速度センサ(振動型角速度センサ)が開示されている。この角速度センサは、リング状のエレメント部と、リング状のエレメント部の径方向外側でかつ周状に複数の電極とが配置されている。複数の電極は、一次電極と二次電極とを含む。一次電極と二次電極とのうちの一方に交流電圧を印加することにより、リング状のエレメント部に一次振動を発生させる交流電源が接続されている。また、一次電極と二次電極とのうちの他方には、リング状のエレメント部に発生する電気信号の大きさを検出する検出手段が接続されている。そして、リング状のエレメント部に一次振動が発生している状態で、エレメント部の法線方向回りに回転運動が発生すると、回転運動の角速度に応じた二次振動がエレメント部に発生する。そして、一次電極と二次電極とのうちの他方に接続されている検出手段によって、二次振動に起因して一次電極と二次電極とのうちの他方に発生する電気信号の大きさが検出される。また、検出された電気信号の大きさに基づいて、二次振動を打ち消すための交流電圧が一次電極と二次電極とのうちの他方に印加される。そして、二次振動を打ち消すための交流電圧の大きさに基づいて角速度の大きさが演算される。
 また、上記特開2009-115559号公報に記載のような従来の振動型角速度センサでは、振動型角速度センサが検出する角速度にはバイアス成分(角速度が加わっていない状態でもセンサから出力されるゼロ点からの誤差)が含まれている。バイアス成分は、振動型角速度センサに含まれるジャイロ素子の非対称性などに起因して生じる。そこで、上記特開2009-115559号公報のような従来の振動型角速度センサは、角速度を一定とさせた状態(振動型角速度センサを静止させた状態)において、交流電源が接続されている電極(一次電極と二次電極とのうちの一方)と、検出手段が接続されている電極(一次電極と二次電極とのうちの他方)とを切り替え、切り替えられた前後の振動型角速度センサの出力を差分することにより、バイアス成分をキャンセルするように構成されている。
特開2009-115559号公報
 上記特開2009-115559号公報に記載のような従来の振動型角速度センサでは、角速度を一定とさせた状態(振動型角速度センサを静止させた状態)において、バイアス成分をキャンセルするための角速度を検出する必要があるので、運動させた状態でバイアス成分をキャンセルするための角速度を検出することが困難である。そこで、運動中の振動型角速度センサにおいて角速度を継続的に検出しながら、バイアス成分をキャンセルすることが可能な振動型角速度センサが望まれている。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、運動中の振動型角速度センサにおいて角速度を継続的に検出しながら、バイアス成分をキャンセルすることが可能な振動型角速度センサを提供することである。
 上記目的を達成するために、この発明の一の局面による振動型角速度センサは、第1角速度センサ部と、第2角速度センサ部と、を備え、第2角速度センサ部は、振動子と、閉じた制御ループを有し、閉じた制御ループの出力が振動子に1次振動を誘起させる1次側制御回路と、振動子に印加される角速度に起因して振動子に発生する2次振動を検出する閉じた制御ループを有する2次側制御回路と、を含み、1次側制御回路によって振動子に1次振動を誘起する電極を切り替え可能に構成されており、2次側制御回路によって振動子の2次振動を検出する電極を切り替え可能に構成されており、第2角速度センサ部により、2次側制御回路により振動子の2次振動に基づく角速度を検出する処理と、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えて、2次側制御回路により振動子の2次振動に基づく角速度を検出する処理と、を所定期間において行うとともに、第1角速度センサ部により、上記所定期間において、角速度を検出し、上記所定期間において第1角速度センサ部により検出した第1検出結果と、上記所定期間において第2角速度センサ部により検出した第2検出結果とに基づいて、第1角速度センサ部のバイアス成分を算出するように構成されている。
 この発明の一の局面による振動型角速度センサは、上記のように、第2角速度センサ部により、上記所定期間において、2次側制御回路により振動子の2次振動に基づく角速度を検出する処理と、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えて、2次側制御回路により振動子の2次振動に基づく角速度を検出する処理と、を行う。また、振動型角速度センサは、第1角速度センサ部により、上記所定期間において、角速度を検出し、上記所定期間において第1角速度センサ部により検出した第1検出結果と、上記所定期間において第2角速度センサ部により検出した第2検出結果とに基づいて、第1角速度センサ部のバイアス成分を算出するように構成されている。これにより、第1角速度センサ部により角速度を検出しながら、第2角速度センサ部により、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えながら算出した第2検出結果を用いて、第1角速度センサ部のバイアス成分を継続的にキャンセルすることができる。その結果、運動中の振動型角速度センサにおいて角速度を継続的に検出しながら、バイアス成分をキャンセルすることができる。また、周囲の環境の温度変化があった場合でも、温度変化に起因したバイアス成分を継続的にキャンセルすることができるので、周囲の環境の温度によって変動するバイアス成分を精度よくキャンセルすることができる。
 上記一の局面による振動型角速度センサにおいて、好ましくは、上記所定期間において第1角速度センサ部により検出した第1検出結果の値から、上記所定期間において第2角速度センサ部により検出した第2検出結果の値を減じることにより、第1角速度センサ部のバイアス成分を算出するように構成されている。このように構成すれば、第1角速度センサ部により検知した実際の運動に基づく角速度と、第2角速度センサ部により検知した実際の運動に基づく角速度とを、相殺することができるので、角速度を一定としなくても、バイアス成分のみを抽出することができる。その結果、振動型角速度センサの運動中においても(角速度が一定でなくても)第1角速度センサ部のバイアス成分を容易に算出することができる。
 上記一の局面による振動型角速度センサにおいて、好ましくは、上記所定期間は、2次側制御回路により振動子の2次振動に基づく角速度を検出する処理を行う第1期間と、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えて、2次側制御回路により振動子の2次振動に基づく角速度を検出する処理を行う第2期間とを含み、第1期間および第2期間は、同じ長さの時間である。このように構成すれば、第2角速度センサ部の2次側制御回路により検出する期間と、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えて、2次側制御回路により検出する期間とを等しくすることができる。これにより、第2角速度センサ部の2次側制御回路により検出した検出結果と、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えた後の2次側制御回路により検出した検出結果とを、検出期間の相違を考慮した補正を行うことなくバイアス成分の算出に用いることができる。
 上記一の局面による振動型角速度センサにおいて、好ましくは、上記所定期間は、第2角速度センサ部のバイアス成分が略一定となる短い期間である。このように構成すれば、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替える前後において、変動しない略同じバイアス成分を含む2次振動を第2各速度センサ部の2次側制御回路により検出することができるので、第2角速度センサ部の2次側制御回路による検出結果から、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えた後の2次側制御回路による検出結果を減じることにより、第2角速度センサ部により検出した第2検出結果からバイアス成分を容易にキャンセルすることができる。
 上記一の局面による振動型角速度センサにおいて、好ましくは、第1の所定期間において第1角速度センサ部により検出した第1検出結果と、第1の所定期間において第2角速度センサ部により検出した第2検出結果とに基づいて、第1角速度センサ部のバイアス成分を算出するとともに、第2の所定期間において第2角速度センサ部により検出した角速度と、第1角速度センサ部のバイアス成分とを用いて、第2角速度センサ部のバイアス成分を算出するように構成されている。このように構成すれば、第1角速度センサ部のバイアス成分と、第2角速度センサ部のバイアス成分とを、それぞれ、第1の所定期間および第2の所定期間において、補正することができるので、バイアス成分をキャンセルする精度をより向上させることができる。
 上記一の局面による振動型角速度センサにおいて、好ましくは、第1角速度センサ部は、振動子と、閉じた制御ループを有し、閉じた制御ループの出力が振動子に1次振動を誘起させる1次側制御回路と、振動子に印加される角速度に起因して振動子に発生する2次振動を検出する閉じた制御ループを有する2次側制御回路と、を含み、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極は切り替えられないように構成されている。このように構成すれば、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替え可能な第2角速度センサ部を用いて、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えられない第1角速度センサ部のバイアス成分を精度よくキャンセルすることができる。
 上記一の局面による振動型角速度センサにおいて、好ましくは、第1検出結果は、上記所定期間において第1角速度センサ部により検出した角速度の積分値であり、第2検出結果は、上記所定期間において第2角速度センサ部により検出した角速度の積分値である。このように構成すれば、あるタイミングにおける検出結果を用いてバイアス成分を算出する場合と異なり、上記所定期間における検出結果を積算した積分値を用いてバイアス成分を算出することができるので、バイアス成分以外のノイズを平準化させてキャンセルすることができる。その結果、バイアス成分をより精度よく算出することができる。
 上記一の局面による振動型角速度センサにおいて、好ましくは、振動子は、リング型の振動子を含む。ここで、リング型の振動子は、対称的な形状を有するので、1次側制御回路による振動モードと、電極切り替え後の1次側制御回路による振動モードとが類似する。このため、本発明をリング型の振動子を含む振動型角速度センサに適用すれば、振動モードの差異の影響を考慮する必要がない。
 本発明によれば、上記のように、運動中の振動型角速度センサにおいて角速度を継続的に検出しながら、バイアス成分をキャンセルすることができる。
一実施形態による振動型角速度センサの構成を示したブロック図である。 一実施形態による振動型角速度センサの第1角速度センサ部を示したブロック図である。 一実施形態による振動型角速度センサの第2角速度センサ部を示したブロック図である。 一実施形態による振動型角速度センサのバイアスの算出を説明するための図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1~図4を参照して、本実施形態による振動型角速度センサ100の構成について説明する。
 図1に示すように、振動型角速度センサ100は、第1角速度センサ部101と、第2角速度センサ部102と、制御回路103とを備えている。第1角速度センサ部101と、第2角速度センサ部102とは、互いに平行または同軸の軸線回りの角速度を検出するように構成されている。
 第1角速度センサ部101は、図2に示すように、振動子11と、閉じた制御ループを有し、閉じた制御ループの出力が振動子11に1次振動を誘起させる1次側制御回路12と、振動子11に印加される角速度に起因して振動子11に発生する2次振動を検出する閉じた制御ループを有する2次側制御回路13とを備えている。振動子11は、リング型の振動子を含んでいる。
 第1角速度センサ部101の1次側制御回路12は、増幅回路21と、同期検波回路22と、ループフィルタ23と、変調回路24と、駆動回路25と、PLL(Phase Locked Loop)回路(位相同期回路)26と、基準信号生成回路27とを含んでいる。そして、振動子11、増幅回路21、同期検波回路22、ループフィルタ23、変調回路24および駆動回路25が、この順で接続されており、閉じた制御ループを構成している。ループフィルタ23は、たとえば積分フィルタを含んでいる。
 第1角速度センサ部101の2次側制御回路13は、増幅回路31と、同期検波回路32と、加算回路33と、ループフィルタ34と、変調回路35と、駆動回路36と、増幅回路37とを含んでいる。そして、振動子11、増幅回路31、同期検波回路32、加算回路33、ループフィルタ34、変調回路35および駆動回路36が、この順で接続されており、閉じた制御ループを構成している。加算回路33は、オペアンプを用いた一般的な加減算回路により構成されている。また、ループフィルタ34は、たとえば積分フィルタを含んでいる。また、ループフィルタ34の出力が、増幅回路37に入力される。そして、増幅回路37から出力された信号が、第1角速度センサ部101のセンサ出力として、外部に出力される。
 ここで、本実施形態では、第1角速度センサ部101は、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50は切り替えられないように構成されている。
 また、第1角速度センサ部101には、1次側制御回路12からの出力(ループフィルタ23からの出力)が入力される加減算量調整回路14が設けられている。加減算量調整回路14は、温度に依存する1次側制御回路12のループフィルタ23の出力の大きさを調整して、調整した出力(第1オフセット値)を、2次側制御回路13の加算回路33に入力するように構成されている。たとえば、加減算量調整回路14において、ポテンショメータ(ボリューム抵抗)などを用いて分圧することにより、第1オフセット値の加算量の調整が行われる。
 また、第1角速度センサ部101には、温度に依存しない一定の信号S1が入力される加減算量調整回路15が設けられている。加減算量調整回路15は、一定の信号S1の大きさを調整して、調整した一定の信号S1(第2オフセット値)を、2次側制御回路13の加算回路33に入力するように構成されている。たとえば、加減算量調整回路15において、ポテンショメータ(ボリューム抵抗)などを用いて分圧することにより、一定の信号S1の加算量の調整が行われる。
 第2角速度センサ部102は、図3に示すように、振動子11と、閉じた制御ループを有し、閉じた制御ループの出力が振動子11に1次振動を誘起させる1次側制御回路16と、振動子11に印加される角速度に起因して振動子11に発生する2次振動を検出する閉じた制御ループを有する2次側制御回路17とを備えている。振動子11は、リング型の振動子を含んでいる。第2角速度センサ部102は、温度の変化率が小さい位置に配置されている。
 第2角速度センサ部102の1次側制御回路16は、増幅回路21と、同期検波回路22と、ループフィルタ23と、変調回路24と、駆動回路25と、PLL(Phase Locked Loop)回路(位相同期回路)26と、基準信号生成回路27とを含んでいる。そして、振動子11、増幅回路21、同期検波回路22、ループフィルタ23、変調回路24および駆動回路25が、この順で接続されており、閉じた制御ループを構成している。ループフィルタ23は、たとえば積分フィルタを含んでいる。
 第2角速度センサ部102の2次側制御回路17は、増幅回路31と、同期検波回路32と、加算回路33と、ループフィルタ34と、変調回路35と、駆動回路36と、増幅回路37とを含んでいる。そして、振動子11、増幅回路31、同期検波回路32、加算回路33、ループフィルタ34、変調回路35および駆動回路36が、この順で接続されており、閉じた制御ループを構成している。加算回路33は、オペアンプを用いた一般的な加減算回路により構成されている。また、ループフィルタ34は、たとえば積分フィルタを含んでいる。また、ループフィルタ34の出力が、増幅回路37に入力される。そして、増幅回路37から出力された信号が、第2角速度センサ部102のセンサ出力として、外部に出力される。
 ここで、本実施形態では、第2角速度センサ部102は、1次側制御回路16によって振動子11に1次振動を誘起する電極50を切り替え可能に構成されており、2次側制御回路17によって振動子11の2次振動を検出する電極50を切り替え可能に構成されている。具体的には、1次側制御回路16において、振動子11に対する信号の入力側にスイッチ41、および、振動子11からの信号の出力側(増幅回路21の出力側)にスイッチ42が設けられている。また、2次側制御回路17において、振動子11に対する信号の入力側にスイッチ43、および、振動子11からの信号の出力側(増幅回路31の出力側)にスイッチ44が設けられている。スイッチ41、スイッチ42、スイッチ43、および、スイッチ44は、各々、1次側制御回路16に接続される状態と、2次側制御回路17に接続される状態とを切り替え可能に構成されている。
 図3では、スイッチ41およびスイッチ42が振動子11の上方側に配置される電極50と1次側制御回路16とを接続し、スイッチ43およびスイッチ44が振動子11の下方側に配置される電極50と2次側制御回路17とを接続する状態を示している。なお、「上方側」および「下方側」とは、それぞれ、図3での説明のための「上方側」および「下方側」を意味しており、実際の振動子11における「上方側」および「下方側」を意味しているのではない。
 そして、スイッチ41およびスイッチ42が切り替えられることにより、1次側制御回路16によって振動子11に1次振動を誘起する電極50が切り替えられる。また、スイッチ43およびスイッチ44が切り替えられることにより、2次側制御回路17によって振動子11の2次振動を検出する電極50が切り替えられる。具体的には、図3に示されている、スイッチ41およびスイッチ42が振動子11の上方側に配置される電極50と1次側制御回路16とを接続し、スイッチ43およびスイッチ44が振動子11の下方側に配置される電極50と2次側制御回路17とを接続している状態から、スイッチ41およびスイッチ42が振動子11の上方側に配置される電極50と2次側制御回路17とを接続し、スイッチ43およびスイッチ44が振動子11の下方側に配置される電極50と1次側制御回路16とを接続する状態に切り替えられる。これにより、1次側制御回路16によって振動子11に1次振動を誘起する電極50が切り替えられ、2次側制御回路17によって振動子11の2次振動を検出する電極50が切り替えられる。なお、「上方側」および「下方側」とは、それぞれ、図3での説明のための「上方側」および「下方側」を意味しており、実際の振動子11における「上方側」および「下方側」を意味しているのではない。
 また、第2角速度センサ部102には、1次側制御回路16からの出力(ループフィルタ23からの出力)が入力される加減算量調整回路14が設けられている。加減算量調整回路14は、温度に依存する1次側制御回路16のループフィルタ23の出力の大きさを調整して、調整した出力(第1オフセット値)を、2次側制御回路17の加算回路33に入力するように構成されている。たとえば、加減算量調整回路14において、ポテンショメータ(ボリューム抵抗)などを用いて分圧することにより、第1オフセット値の加算量の調整が行われる。
 また、第2角速度センサ部102には、温度に依存しない一定の信号S1が入力される加減算量調整回路15が設けられている。加減算量調整回路15は、一定の信号S1の大きさを調整して、調整した一定の信号S1(第2オフセット値)を、2次側制御回路17の加算回路33に入力するように構成されている。たとえば、加減算量調整回路15において、ポテンショメータ(ボリューム抵抗)などを用いて分圧することにより、一定の信号S1の加算量の調整が行われる。
 ここで、本実施形態では、制御回路103は、第2角速度センサ部102により、所定期間において、2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理と、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えて、2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理と、を行う制御をするように構成されている。具体的には、図4(C)に示すように、時間t1から時間t2まで、および、電極切り替え後の時間t4から時間t5までの所定期間において、第2角速度センサ部102の2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理が行われる。
 また、制御回路103は、第1角速度センサ部101により、所定期間において、角速度を検出する処理を行う制御をするように構成されている。具体的には、図4(B)に示すように、時間t1から時間t2まで、および、時間t4から時間t5までの所定期間において、第1角速度センサ部101の2次側制御回路13により振動子11の2次振動に基づく角速度を検出する処理が行われる。
 また、制御回路103は、所定期間において第1角速度センサ部101により検出した第1検出結果と、所定期間において第2角速度センサ部102により検出した第2検出結果とに基づいて、第1角速度センサ部101のバイアス成分(B1(t))を算出するように構成されている。
 また、制御回路103は、所定期間において第1角速度センサ部101により検出した第1検出結果の値から、所定期間において第2角速度センサ部102により検出した第2検出結果の値を減じることにより、第1角速度センサ部101のバイアス成分を算出するように構成されている。
 なお、所定期間は、2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理を行う第1期間(時間t1から時間t2までの期間)と、電極切り替え後の2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理を行う第2期間(時間t4から時間t5までの期間)とを含んでいる。また、第1期間および第2期間は、同じ長さの時間である。図4に示すように、第1期間および第2期間は、各々時間Tの長さを有している。
 また、第1検出結果は、所定期間において第1角速度センサ部101により検出した角速度の積分値である。また、第2検出結果は、所定期間において第2角速度センサ部102により検出した角速度の積分値である。
 また、所定期間は、第2角速度センサ部102のバイアス成分が略一定となる短い期間である。たとえば、所定期間は、数秒から数十秒程度の長さを有している。また、所定期間は、温度変化の影響が無視でき、第2角速度センサ部102のバイアス成分が略変わらないと仮定できる期間である。
 図4(B)に示す、所定期間(時間t1から時間t2までの第1期間、および、時間t4から時間t5までの第2期間)における第1検出結果の積分値I1は、式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、第1角速度センサ部101の2次側制御回路13により検出した角速度ω1(t)は、図4(A)に示す運動(移動)により生じる角速度(真の角速度)ω0(t)および第1角速度センサ部101のバイアスB1(t)を用いて、式(2)のように表される。
Figure JPOXMLDOC01-appb-M000002
 したがって、式(1)は、式(3)のように導出される。
Figure JPOXMLDOC01-appb-M000003
 また、図4(C)に示す、所定期間(時間t1から時間t2までの第1期間、および、時間t4から時間t5までの第2期間)における第2検出結果の積分値I2は、式(4)のように表される。
Figure JPOXMLDOC01-appb-M000004
なお、時間t4から時間t5までの第2期間は、ω2(t)がバイアス成分に対して反転されることを考慮して、積分値を減算している。
 第2角速度センサ部102の2次側制御回路17により検出した角速度ω2(t)および電極切り替え後の2次側制御回路17により検出した角速度ω2(t)は、図4(A)に示す運動(移動)により生じる角速度(真の角速度)ω0(t)および第2角速度センサ部102のバイアスB2(t)を用いて、それぞれ、式(5)および式(6)のように表される。
Figure JPOXMLDOC01-appb-M000005
なお、時間t4から時間t5までの第2期間の式(6)では、ω0(t)がバイアス成分に対して反転されるため、マイナスがかけられる。
 したがって、式(4)は、式(7)のように導出される。
Figure JPOXMLDOC01-appb-M000006
 第1検出結果の積分値I1から第2検出結果の積分値I2を減じると、式(8)のように導出される。
Figure JPOXMLDOC01-appb-M000007
 ここで、時間t1から時間t2までの第1期間、および、時間t4から時間t5までの第2期間において、第1角速度センサ部101のバイアスB1(t)と、第2角速度センサ部102のバイアスB2(t)とは、各々、時間的な変化量が無視できるので(一定であるので)、式(9)および式(10)が成り立つと仮定できる。
Figure JPOXMLDOC01-appb-M000008
ただし、B1は、第1期間および第2期間における第1角速度センサ部101のバイアス値であり、B2は、第1期間および第2期間における第2角速度センサ部102のバイアス値である。
 したがって、式(8)から、式(11)が導出される。
Figure JPOXMLDOC01-appb-M000009
 Tは、既知であるため、(I1―I2)を2Tで除算することにより、第1角速度センサ部101のバイアス値B1が算出される。算出したバイアス値B1を、第1角速度センサ部101による角速度検出に用いる。たとえば、カルマンフィルタの観測更新として利用する。
 なお、第2角速度センサ部102の振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替える制御を行い、バイアス値B1を算出するための角速度の測定を行う期間中に式(9)および式(10)の関係が成立していればよい。このため、たとえば、次の処理の開始点となる時間t6までの時間間隔(t6-t5)が大きく、B1が変化した場合でも、同様に、次の時間t6からの処理により補正可能である。ただし、常に、B1の変化が小さくするために、時間間隔(t6-t5)を十分に小さくすることが好ましい。
 ここで、第2角速度センサ部102の振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替える制御を行い、バイアス値B1を算出するための角速度の測定を行う期間中に式(10)の関係が成立しない場合がある。つまり、式(12)となる場合がある。
Figure JPOXMLDOC01-appb-M000010
この場合でも、動作開始時(移動開始時)に、αを加味しておき、2つの第1角速度センサ部101および第2角速度センサ部102を使用して、相互にバイアス成分を補正することにより、バイアス成分(B2(t))の時間変化にも対応することが可能である。
 つまり、制御回路103は、第1の所定期間において第1角速度センサ部101により検出した第1検出結果と、第1の所定期間において第2角速度センサ部102により検出した第2検出結果とに基づいて、第1角速度センサ部101のバイアス成分を算出する。また、制御回路103は、第2の所定期間において第2角速度センサ部102により検出した角速度と、第1角速度センサ部101のバイアス成分とを用いて、第2角速度センサ部102のバイアス成分を算出する。そして、制御回路103は、これらの制御を交互に繰り返す。つまり、最初のバイアス成分の算出により、第1角速度センサ部101のバイアス成分であるB1を補正する。次のサイクルにおいて、補正したB1を用いて、第2角速度センサ部102のバイアス成分であるB2のαを算出する。そして、さらに次のサイクルにおいて、補正したαを用いて、第1角速度センサ部101のバイアス成分であるB1を補正する。以降は、これらの処理を交互に繰り返す。
 なお、動作開始時の移動開始前において、静止させた状態(角速度ω0(t)が一定の状態)において、αを求めて、以降、上記のようにして順次α(t)を補正してもよい。
(本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、上記のように、第2角速度センサ部102により、所定期間において、2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理と、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えて、2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理と、を行う。また、振動型角速度センサ100を、第1角速度センサ部101により、所定期間において、角速度を検出し、所定期間において第1角速度センサ部101により検出した第1検出結果と、所定期間において第2角速度センサ部102により検出した第2検出結果とに基づいて、第1角速度センサ部101のバイアス成分を算出するように構成する。これにより、第1角速度センサ部101により角速度を検出しながら、第2角速度センサ部102により、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えながら算出した第2検出結果を用いて、第1角速度センサ部101のバイアス成分を継続的にキャンセルすることができる。その結果、運動中の振動型角速度センサ100において角速度を継続的に検出しながら、バイアス成分をキャンセルすることができる。また、周囲の環境の温度変化があった場合でも、温度変化に起因したバイアス成分を継続的にキャンセルすることができるので、周囲の環境の温度によって変動するバイアス成分を精度よくキャンセルすることができる。
 また、本実施形態では、上記のように、所定期間において第1角速度センサ部101により検出した第1検出結果の値から、所定期間において第2角速度センサ部102により検出した第2検出結果の値を減じることにより、第1角速度センサ部101のバイアス成分を算出するように構成する。これにより、第1角速度センサ部101により検知した実際の運動に基づく角速度と、第2角速度センサ部102により検知した実際の運動に基づく角速度とを、相殺することができるので、角速度を一定としなくても、バイアス成分のみを抽出することができる。その結果、振動型角速度センサ100の運動中においても(角速度が一定でなくても)第1角速度センサ部101のバイアス成分を容易に算出することができる。
 また、本実施形態では、上記のように、所定期間は、2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理を行う第1期間と、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えて、2次側制御回路17により振動子11の2次振動に基づく角速度を検出する処理を行う第2期間とを含み、第1期間および第2期間は、同じ長さの時間である。これにより、第2角速度センサ部102の2次側制御回路17により検出する期間と、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えて、2次側制御回路17により検出する期間とを等しくすることができる。その結果、第2角速度センサ部102の2次側制御回路17により検出した検出結果と、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えた後の2次側制御回路17により検出した検出結果とを、検出期間の相違を考慮した補正を行うことなくバイアス成分の算出に用いることができる。
 また、本実施形態では、上記のように、所定期間は、第2角速度センサ部102のバイアス成分が略一定となる短い期間である。これにより、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替える前後において、変動しない略同じバイアス成分を含む2次振動を第2角速度センサ部102の2次側制御回路17により検出することができるので、第2角速度センサ部102の2次側制御回路17による検出結果から、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えた後の2次側制御回路17による検出結果を減じることにより、第2角速度センサ部102により検出した第2検出結果からバイアス成分を容易にキャンセルすることができる。
 また、本実施形態では、上記のように、第1の所定期間において第1角速度センサ部101により検出した第1検出結果と、第1の所定期間において第2角速度センサ部102により検出した第2検出結果とに基づいて、第1角速度センサ部101のバイアス成分を算出する。また、第2の所定期間において第2角速度センサ部102により検出した角速度と、第1角速度センサ部101のバイアス成分とを用いて、第2角速度センサ部102のバイアス成分を算出する。これにより、第1角速度センサ部101のバイアス成分と、第2角速度センサ部102のバイアス成分とを、それぞれ、第1の所定期間および第2の所定期間において、補正することができるので、バイアス成分をキャンセルする精度をより向上させることができる。
 また、本実施形態では、上記のように、第1角速度センサ部101は、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50は切り替えられないように構成されている。これにより、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替え可能な第2角速度センサ部102を用いて、振動子11に1次振動を誘起する電極50および振動子11の2次振動を検出する電極50を切り替えられない第1角速度センサ部101のバイアス成分を精度よくキャンセルすることができる。
 また、本実施形態では、上記のように、第1検出結果は、所定期間において第1角速度センサ部101により検出した角速度の積分値であり、第2検出結果は、所定期間において第2角速度センサ部102により検出した角速度の積分値である。これにより、あるタイミングにおける検出結果を用いてバイアス成分を算出する場合と異なり、所定期間における検出結果を積算した積分値を用いてバイアス成分を算出することができるので、バイアス成分以外のノイズを平準化させてキャンセルすることができる。その結果、バイアス成分をより精度よく算出することができる。
 また、本実施形態では、上記のように、振動子11は、リング型の振動子を含む。ここで、リング型の振動子は、対称的な形状を有するので、1次側制御回路16による振動モードと、電極切り替え後の1次側制御回路16による振動モードとが類似する。これにより、リング型の振動子11を含む振動型角速度センサ100の振動モードの差異の影響を考慮する必要がない。
(変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記実施形態では、リング型の振動子が用いられる例を示したが、本発明はこれに限られない。たとえば、振動子が対称的な形状を有していればよく、円盤型、カップ型(ワイングラス型)、八角形型、などの振動子を用いてもよい。
 また、上記実施形態では、振動子、増幅回路、同期検波回路、ループフィルタ、変調回路および駆動回路により閉じた制御ループが構成されている例を示したが、本発明はこれに限られない。たとえば、増幅回路、同期検波回路、ループフィルタ、変調回路および駆動回路からなる構成以外の構成により制御ループが構成されていてもよい。
 また、上記実施形態では、ループフィルタとして積分フィルタが用いられる例を示したが、たとえば、積分フィルタ以外のループフィルタを用いてもよい。
 また、上記実施形態では、第1角速度センサ部は、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極を切り替えられない構成の例を示したが、本発明はこれに限られない。本発明では、第1角速度センサ部も、第2角速度センサ部と同様に、振動子に1次振動を誘起する電極および振動子の2次振動を検出する電極が切り替え可能であってもよい。
 また、上記実施形態では、振動型角速度センサに、第1角速度センサ部と、第2角速度センサ部との2つの角速度センサ部が設けられている構成の例を示したが、本発明はこれに限られない。本発明では、振動型角速度センサに、3つ以上の角速度センサ部が設けられていてもよい。
 11 振動子
 12、16 1次側制御回路
 13、17 2次側制御回路
 50 電極
 100 振動型角速度センサ
 101 第1角速度センサ部
 102 第2角速度センサ部

Claims (8)

  1.  第1角速度センサ部と、
     第2角速度センサ部と、を備え、
     前記第2角速度センサ部は、
     振動子と、
     閉じた制御ループを有し、前記閉じた制御ループの出力が前記振動子に1次振動を誘起させる1次側制御回路と、
     前記振動子に印加される角速度に起因して前記振動子に発生する2次振動を検出する閉じた制御ループを有する2次側制御回路と、を含み、
     前記1次側制御回路によって前記振動子に前記1次振動を誘起する電極を切り替え可能に構成されており、
     前記2次側制御回路によって前記振動子の前記2次振動を検出する電極を切り替え可能に構成されており、
     前記第2角速度センサ部により、前記2次側制御回路により前記振動子の前記2次振動に基づく角速度を検出する処理と、前記振動子に前記1次振動を誘起する電極および前記振動子の前記2次振動を検出する電極を切り替えて、前記2次側制御回路により前記振動子の前記2次振動に基づく角速度を検出する処理と、を所定期間において行うとともに、前記第1角速度センサ部により、前記所定期間において、角速度を検出し、前記所定期間において前記第1角速度センサ部により検出した第1検出結果と、前記所定期間において前記第2角速度センサ部により検出した第2検出結果とに基づいて、前記第1角速度センサ部のバイアス成分を算出するように構成されている、振動型角速度センサ。
  2.  前記所定期間において前記第1角速度センサ部により検出した前記第1検出結果の値から、前記所定期間において前記第2角速度センサ部により検出した前記第2検出結果の値を減じることにより、前記第1角速度センサ部のバイアス成分を算出するように構成されている、請求項1に記載の振動型角速度センサ。
  3.  前記所定期間は、前記2次側制御回路により前記振動子の前記2次振動に基づく角速度を検出する処理を行う第1期間と、前記振動子に前記1次振動を誘起する電極および前記振動子の前記2次振動を検出する電極を切り替えて、前記2次側制御回路により前記振動子の前記2次振動に基づく角速度を検出する処理を行う第2期間とを含み、
     前記第1期間および前記第2期間は、同じ長さの時間である、請求項1または2に記載の振動型角速度センサ。
  4.  前記所定期間は、前記第2角速度センサ部のバイアス成分が略一定となる短い期間である、請求項1~3のいずれか1項に記載の振動型角速度センサ。
  5.  第1の前記所定期間において前記第1角速度センサ部により検出した前記第1検出結果と、前記第1の所定期間において前記第2角速度センサ部により検出した前記第2検出結果とに基づいて、前記第1角速度センサ部のバイアス成分を算出するとともに、第2の前記所定期間において前記第2角速度センサ部により検出した角速度と、前記第1角速度センサ部のバイアス成分とを用いて、前記第2角速度センサ部のバイアス成分を算出するように構成されている、請求項1~3のいずれか1項に記載の振動型角速度センサ。
  6.  前記第1角速度センサ部は、
     振動子と、
     閉じた制御ループを有し、前記閉じた制御ループの出力が前記振動子に1次振動を誘起させる1次側制御回路と、
     前記振動子に印加される角速度に起因して前記振動子に発生する2次振動を検出する閉じた制御ループを有する2次側制御回路と、を含み、
     前記振動子に前記1次振動を誘起する電極および前記振動子の前記2次振動を検出する電極は切り替えられないように構成されている、請求項1~5のいずれか1項に記載の振動型角速度センサ。
  7.  前記第1検出結果は、前記所定期間において前記第1角速度センサ部により検出した角速度の積分値であり、
     前記第2検出結果は、前記所定期間において前記第2角速度センサ部により検出した角速度の積分値である、請求項1~6のいずれか1項に記載の振動型角速度センサ。
  8.  前記振動子は、リング型の振動子を含む、請求項1~7のいずれか1項に記載の振動型角速度センサ。
PCT/JP2021/033589 2021-09-13 2021-09-13 振動型角速度センサ WO2023037554A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033589 WO2023037554A1 (ja) 2021-09-13 2021-09-13 振動型角速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033589 WO2023037554A1 (ja) 2021-09-13 2021-09-13 振動型角速度センサ

Publications (1)

Publication Number Publication Date
WO2023037554A1 true WO2023037554A1 (ja) 2023-03-16

Family

ID=85506238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033589 WO2023037554A1 (ja) 2021-09-13 2021-09-13 振動型角速度センサ

Country Status (1)

Country Link
WO (1) WO2023037554A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520716A (ja) * 2004-02-04 2007-07-26 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動構造ジャイロスコープにおけるバイアス誤差を低減する方法
JP2009115559A (ja) * 2007-11-05 2009-05-28 Sumitomo Precision Prod Co Ltd 角速度センサ及び角速度センサを備えた電子機器
WO2015129464A1 (ja) * 2014-02-26 2015-09-03 住友精密工業株式会社 振動型角速度センサ
CN108253952A (zh) * 2017-12-01 2018-07-06 北京时代民芯科技有限公司 一种零偏自校准mems陀螺仪及其零偏自校准方法
JP6761140B1 (ja) * 2020-03-24 2020-09-23 住友精密工業株式会社 振動型角速度センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520716A (ja) * 2004-02-04 2007-07-26 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動構造ジャイロスコープにおけるバイアス誤差を低減する方法
JP2009115559A (ja) * 2007-11-05 2009-05-28 Sumitomo Precision Prod Co Ltd 角速度センサ及び角速度センサを備えた電子機器
WO2015129464A1 (ja) * 2014-02-26 2015-09-03 住友精密工業株式会社 振動型角速度センサ
CN108253952A (zh) * 2017-12-01 2018-07-06 北京时代民芯科技有限公司 一种零偏自校准mems陀螺仪及其零偏自校准方法
JP6761140B1 (ja) * 2020-03-24 2020-09-23 住友精密工業株式会社 振動型角速度センサ

Similar Documents

Publication Publication Date Title
WO2021192336A1 (ja) 振動型角速度センサ
KR101297654B1 (ko) 평행판 전극 타입 공진형 센서의 온도 보상 방법과 온도 및 공진 제어루프 시스템
EP2351982B1 (en) Angular velocity sensor
JP4729801B2 (ja) 振動子駆動装置及び振動子駆動装置を備えた角速度センサ
WO2005103618A1 (ja) ジャイロ装置
US10848159B2 (en) Drive circuit, physical quantity sensor, and electronic device
WO2005068939A1 (ja) 検波回路、検波方法および物理量測定装置
JP2006177963A (ja) マイクロメカニカル回転速度センサ
JP2015230281A (ja) バイアス安定化が図られた振動型ジャイロ、及び振動型ジャイロの使用方法
WO2023037554A1 (ja) 振動型角速度センサ
JP2001264071A (ja) 振動子駆動装置
US9279826B2 (en) Inertial force sensor with a correction unit
JP4763565B2 (ja) 位相補償同期検波回路、振動ジャイロ
JP7404124B2 (ja) 方位角姿勢角計測装置
WO2021193597A1 (ja) 方位角姿勢角計測装置
GB2597041A (en) Improved inertial sensor
JP2006250643A (ja) 角速度センサの異常検出装置
JP2008216050A (ja) センサドリフト補正装置及び補正方法
JP2007292660A (ja) 角速度センサ
JP2014149228A (ja) 角速度センサ
JP2005300202A (ja) 静電振動型角速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE