WO2010045766A1 - 一种纤维素制乙二醇的方法 - Google Patents

一种纤维素制乙二醇的方法 Download PDF

Info

Publication number
WO2010045766A1
WO2010045766A1 PCT/CN2008/072894 CN2008072894W WO2010045766A1 WO 2010045766 A1 WO2010045766 A1 WO 2010045766A1 CN 2008072894 W CN2008072894 W CN 2008072894W WO 2010045766 A1 WO2010045766 A1 WO 2010045766A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cellulose
active component
reaction
tungsten
Prior art date
Application number
PCT/CN2008/072894
Other languages
English (en)
French (fr)
Inventor
张涛
郑明远
纪娜
王爱琴
舒玉瑛
王辉
王晓东
陈经广
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to BRPI0822634A priority Critical patent/BRPI0822634B1/pt
Priority to US12/734,601 priority patent/US7960594B2/en
Priority to CA2725248A priority patent/CA2725248C/en
Priority to MX2010011284A priority patent/MX2010011284A/es
Priority to ES08877495.5T priority patent/ES2447367T3/es
Priority to EP08877495.5A priority patent/EP2338867B1/en
Publication of WO2010045766A1 publication Critical patent/WO2010045766A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for the preparation of ethylene glycol from cellulose, in particular to a process in which cellulose is subjected to one-step catalytic hydrodegradation to ethylene glycol under hydrothermal conditions.
  • Ethylene glycol is an important energy liquid fuel and is also a very important raw material for polyester synthesis.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • ethylene glycol is mainly based on the petroleum raw material route, that is, ethylene epoxidation to obtain ethylene oxide, and then hydration to obtain ethylene glycol
  • Document 1 Cui Huaweing, domestic and international ethylene glycol production development overview, chemistry Industrial, 2007, 25, (4), 15-21.
  • Document 2 Pr ° C ess for preparing ethanediol by catalyzing epoxyethane hydration, Patent No. CN1463960-A; CN1204103-C].
  • the synthesis method relies on non-renewable petroleum resources, and the production process includes selective oxidation or epoxidation steps, which are technically difficult, inefficient, have many by-products, high material consumption and serious pollution.
  • cellulose glycols not only opens up new synthetic pathways, but also enables products of high economic value from inexpensive cellulose. Moreover, since cellulose is not consumed by humans, it does not affect human food security. Further, cellulose is formed by condensation of a glucose unit through a glycosidic bond and contains a large amount of a hydroxyl group. These hydroxyl groups are completely retained during the conversion of cellulose to ethylene glycol, making this conversion process extremely atomic. Thus, the conversion of cellulose to ethylene glycol has significant advantages that are unmatched by many other production routes.
  • the cellulose is subjected to a one-step catalytic hydrogenation degradation process to produce ethylene glycol in high yield and high selectivity.
  • the technical solution adopted by the present invention is as follows: cellulose is used as a reaction raw material, and the active component of the catalyst is composed of two parts.
  • One part is a transition metal of Groups 8, 9, and 10, one or more of cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum.
  • the other part is a metallic molybdenum and/or tungsten, or a carbide with molybdenum, a nitride of molybdenum, a phosphide of molybdenum, and/or a carbide of tungsten, a nitride of tungsten, a phosphide of tungsten.
  • the reaction was carried out by stirring in a closed autoclave.
  • the initial pressure of hydrogen in the reactor at room temperature is l-12 MPa, the reaction temperature is 120-300 ° C, and the reaction time is not less than 5 minutes.
  • the weight ratio of the second portion to the active component of the first portion is in the range of 0.02 to 1600 times.
  • the active component is supported on a carrier, including activated carbon, alumina, silica, silicon carbide, zirconia, zinc oxide, titanium dioxide or one or more composites; the first part of the active component metal is on the catalyst at 0.05- 50 wt%, the second part of the active component metal is present on the catalyst in an amount of from 1 to 80% by weight.
  • a framework metal catalyst having an active component as a catalyst skeleton such as Raney nickel or the like.
  • the mass ratio of cellulose to water of the reaction raw material is 1:200-1:4, and the mass ratio of cellulose to catalyst is 1:1-30:1.
  • the largest cellulose produced in natural biomass is used as a raw material, which has a wide range of sources, including wood, cotton, crop straw, etc., and has the advantages of low raw material cost.
  • ethylene is used as a raw material, and the reaction process provided by the present invention does not consume fossil resources, and has the advantages of renewable raw material resources, and meets the requirements of sustainable development.
  • the present invention utilizes cellulose which is inedible by humans as a raw material, thereby maximally eliminating raw materials.
  • the process of material energy conversion may have adverse effects on human food security.
  • the reaction process of the present invention is simple, and it is not necessary to carry out acid hydrolysis of cellulose in advance, and ethylene glycol made of cellulose can be realized only by one-step reaction process.
  • the reaction system Hydrogenation and conversion of cellulose under hydrothermal conditions, the reaction system is environmentally friendly and non-polluting. Water is used as the reaction medium, and no inorganic acid or alkali is used in the reaction, which avoids the environmental pollution problems common in the cellulose degradation process. 6.
  • the reaction process has high product yield and selectivity, and the yield of ethylene glycol can reach 70%, which has a good application prospect.
  • the present invention achieves high efficiency, high selectivity, and high yield of ethylene glycol for the preparation of ethylene glycol.
  • the reaction provided by the present invention has the remarkable advantages that the raw material is a renewable resource, the reaction process is green and environmentally friendly, and the atomic economy is obtained.
  • metal tungsten catalyst Preparation of metal tungsten catalyst: The ammonium metatungstate solution (mass concentration 0.4 g/ml) was immersed on the activated carbon support, dried in an oven at 120 ° C for 12 h, and then placed in an H 2 atmosphere at 700 ° C for 1 h. W/AC with a tungsten loading of 30% was obtained.
  • the tungsten catalyst prepared according to Example 1 was further impregnated with a nickel nitrate solution, dried at 120 ° C, and reduced at 400 ° C for 2 h to obtain MW /AC (15% Ni-25% W). ) Catalyst.
  • tungsten carbide catalyst Preparation of tungsten carbide catalyst: The ammonium metatungstate solution (mass concentration 0.4 g/ml) was immersed on an activated carbon support (AC), and after drying in a 120 oven for 12 h, the catalyst precursor was placed in an H2 atmosphere at 800 °C. The carbothermal reaction was carried out for 1 hour to obtain a W2C/AC catalyst having a tungsten loading of 30%.
  • AC activated carbon support
  • tungsten nitride catalyst Preparation of tungsten nitride catalyst: Ammonium metatungstate solution (mass concentration 0.2 g / ml) was immersed in activated carbon support, dried in a 120 oven for 12 h, then placed in an NH3 atmosphere for 700 nitridation for 1 h to obtain tungsten The load is 15 ⁇ % of W2N/AC.
  • Ni-W2N /AC catalyst 15 wt% Ni- 15 wt% W.
  • Example 7 Preparation of a molybdenum nitride catalyst: An ammonium molybdate solution (mass concentration of 0.3 g/ml) was impregnated with an activated carbon support (AC). After drying in a 120 oven for 12 h, the catalyst precursor was placed in a H3 atmosphere at 700 ° C for 1 h to obtain a Mo2N /AC catalyst (15 wt% Mo).
  • AC activated carbon support
  • Ni-Mo 2 N /AC catalyst 15 wt% M-15 wt% Mo.
  • molybdenum phosphide catalyst Preparation of molybdenum phosphide catalyst: Ammonium molybdate and diammonium phosphate were formulated into a solution according to a ratio of molybdenum to phosphorus atomic ratio of 1:1.2. The solution was immersed in a Ti02 support, dried over 120, and reduced with hydrogen at 650 ° C for 2 h to obtain a MoP/Ti02 catalyst (16 wt% Mo).
  • ammonium molybdate, diammonium hydrogen phosphate and antimony trichloride are formulated into a solution according to a certain ratio, wherein the atomic ratio of molybdenum to phosphorus is 1:1.2, and the weight ratio of molybdenum and rhenium is 8:1.
  • the solution was impregnated with a Ti02 support, dried over 120, and then reduced with hydrogen at 650 °C for 2 hours to obtain a Ru-MoP / Ti02 catalyst (2 wt% Ru-16 wt% Mo).
  • the product yield is calculated only for the target product ethylene glycol and hexahydric alcohol (including sorbitol, mannitol).
  • Other liquid products include propylene glycol, butyl glycol, ethanol, unknown components, and gaseous products (C02, CH4, C2H6). Etc.) The yield was not calculated.
  • a catalyst composed of a nitrogen nitride, a phosphide of tungsten and molybdenum and a hydrogenation catalytically active component has a good ethylene glycol yield.
  • Effect of catalyst usage A simple mechanical mixture of a catalyst containing a single active component of tungsten carbide, metal molybdenum and tungsten and a Group 8, 9, 10 metal catalyst in a weight ratio of 1:1 is added to the reaction system. Used in the middle, the cellulose reaction results are listed in the following table (Table 4). The reaction conditions were the same as in Example 11.
  • the nickel-tungsten catalyst has excellent ethylene glycol yield in a certain reaction time.
  • the preferred time is between 30 min and 3 h.
  • the nickel-tungsten catalyst has excellent ethylene glycol yield in a certain temperature range.
  • the preferred temperature is around 220-250 °C.
  • the nickel-tungsten catalyst has excellent ethylene glycol yield under a certain reaction pressure.
  • the preferred reaction pressure is 3-7 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

一种纤维素制乙二醇的方法 技术领域
本发明涉及一种由纤维素制备乙二醇的方法,具体地说是纤维素在水热条件下经 过一步催化加氢降解制乙二醇的反应过程。 背景技术
乙二醇是重要的能源液体燃料, 也是非常重要的聚酯合成原料, 例如, 用于聚对 苯二甲酸乙二酯(PET), 聚萘二甲酸乙二醇酯(PEN) , 还可以用作防冻剂、润滑剂、 增塑剂、 表面活性剂等, 是用途广泛的有机化工原料。
目前, 乙二醇的工业生产主要是采用石油原料路线, 即乙烯环氧化后得到环氧乙 烷, 然后水合得到乙二醇【文献 1 : 崔小明, 国内外乙二醇生产发展概况, 化学工业, 2007 , 25, (4), 15-21. 文献 2: Pr °C ess for preparing ethanediol by catalyzing epoxyethane hydration, Patent No. CN1463960-A; CN1204103-C】。合成方法依赖于不可 再生的石油资源,而且生产过程中包括选择氧化或环氧化步骤,技术难度大,效率低, 副产物多, 物耗高且污染严重。
利用具有可再生性的生物质制备乙二醇, 可以减少人类对化石能源物质的依赖, 有利于实现环境友好和经济可持续发展。目前生物质转化制乙二醇的研究多数集中在 淀粉、 葡萄糖、 蔗糖、 己糖醇等为原料的转化【文献 3 : Pr°C ess for the preparation of lower polyhydric alcohols, patent, No. US5107018. 文献 4: Preparation of lower polyhydric alcohols, patent, No. US5210335.】。 然而, 这些生产原料本身就是人类赖以 生存的食粮, 以此制备乙二醇必然使人类面临着生存与发展之间的冲突矛盾。纤维素 是地球上产量最大的可再生资源, 来源非常丰富, 例如农业生产中剩余的秸秆、林业 生产的废料等等,利用成本非常低廉。利用纤维素制乙二醇不仅可以开辟新的合成路 径,实现由廉价的纤维素得到高经济价值的产品。而且, 由于纤维素不能被人类食用, 因而不会对人类的粮食安全造成影响。另外, 纤维素是由葡萄糖单元通过糖苷键缩聚 而成,含有大量的羟基。在纤维素转化制乙二醇的过程中,这些羟基得到完全的保留, 使得这一转化过程具有极高的原子经济性。 由此可见, 由纤维素转化制乙二醇具有诸 多其他生产途径不可比拟的显著优势。
尽管利用纤维素制多羟基醇有如此多的优点, 然而, 由于纤维素中存在大量的分子 内和分子间的氢键的作用, 纤维素的结构非常稳定。 以往人们只能够通过先对纤维素进 行酸水解, 然后再利用得到葡萄糖进行后期的转化利用。 这个过程不但繁琐, 而且产生 严重的环境污染问题【文献 4: Two stage hydrogenolysis of carbonhydrate to glycols using sulfide modified ruthenium catalyst in second stage, patent, No. US4476331】。 本发明所提供 的反应过程, 以对环境最为友好的溶剂水为反应介质, 并不需要添加任何的酸或碱, 通 过一步反应过程, 即可以实现纤维素高效转化为乙二醇。 发明内容
本发明的目的在于提供一种纤维素制乙二醇的方法。纤维素经过一步催化加氢降 解过程, 高收率、 高选择性地制备乙二醇。
为实现上述目的, 本发明采取的技术方案为: 以纤维素为反应原料, 催化剂活性 组分由两部分共同构成。 一部分为 8、 9、 10族过渡金属铁、 钴、 镍、 钌、 铑、 钯、 铱、 铂中的一种或几种。 另一部分为金属态的钼和 / 或钨, 或者与钼的碳化物、 钼 的氮化物、 钼的磷化物、 和 /或钨的碳化物、 钨的氮化物、 钨的磷化物。 反应于密闭 高压反应釜中搅拌进行。 反应釜中氢气室温时的初始压力为 l-12MPa, 反应温度为 120-300 °C , 反应时间不少于 5 分钟。 第二部份与第一部份的活性组分的重量比在 0.02-1600倍范围之间。
活性组分担载在载体上, 包括活性炭、 氧化铝、 氧化硅、 碳化硅、 氧化锆、 氧化 锌、 二氧化钛一种或一种以上复合体; 第一部分活性组分金属于催化剂上的含量在 0.05-50 wt%, 第二部分活性组分金属于催化剂上的含量为 1-80 wt%。 或者是以活性 组分作为催化剂骨架的骨架金属催化剂, 例如雷尼镍等。
反应原料纤维素与水的质量比为 1 :200—1 :4, 纤维素与催化剂的质量比为 1 : 1一 30: 1。
下面所列的实施例为高压反应釜中进行,但不排除可以通过反应器设计优化, 实 现纤维素、 氢气、 以及催化剂之间更好的传质效果, 获得更好的反应结果。
本发明有如下优点:
1 . 以自然界生物质中产量的最大的纤维素为原料, 其来源广泛, 包括木材、 棉 花、 农作物的秸秆等, 具有原料成本低廉优点。 而且, 相对于现有的乙二醇工业合成 路线中使用乙烯为原料,本发明所提供的反应过程不消耗化石资源, 具有原料资源可 再生的优点, 符合可持续发展的要求。
2. 相对于其他的利用生物质资源生产乙二醇的技术, 例如利用淀粉、 葡萄糖、 果糖原等原料进行转化,本发明中利用人类不能食用的纤维素为原料, 从而最大限度 地消除了生物质能源转化过程可能对人类的粮食安全造成的不良影响。
3. 本发明反应过程简单, 无需预先对纤维素进行酸水解, 仅仅通过一步反应过 程即可实现由纤维素制乙二醇。
4. 纤维素催化降解后, 纤维素分子中的碳氢氧原子得到最大程度的保留, 具有 极高的原子经济性。
5. 采用水热条件下加氢降解转化纤维素, 反应体系环境友好, 无污染。 以水为 反应介质, 反应中不使用任何的无机酸、碱, 避免了纤维素降解工艺中常见的环境污 染问题。 6. 反应过程具有很高的产品收率和选择性, 乙二醇的收率可以达到 70%, 具有 很好的应用前景。
总之, 本发明实现纤维素高效、 高选择性、 高收率制备乙二醇。 与现有的乙烯为 反应原料的乙二醇工业合成路线相比较, 本发明所提供的反应具有原料为可再生资 源、 反应过程绿色环境友好、 原子经济性的显著优点。
下面通过具体实施例对本发明进行详细说明,但这些实施例并不对本发明的内容 构成限制。 具体实施方式
实施例 1
金属钨催化剂制备: 将偏钨酸铵溶液 (质量浓度为 0.4 g/ml) 浸渍于活性炭载体 上, 经 120°C烘箱干燥 12 h后, 将置于 H2气氛中 700°C进行还原 1 h, 得到钨担载量 为 30 \^%的 W/AC。
实施例 2
金属镍钨催化剂制备:将按照实施例 1所述制备的钨催化剂近一步浸渍硝酸镍溶 液, 经过 120 °C干燥, 400°C还原 2 h后, 得到 M-W /AC ( 15%Ni-25%W) 催化剂。
实施例 3
金属铂钨催化剂制备: 将偏钨酸铵溶液 (质量浓度为 0.2 g/ml) 浸渍于氧化硅载 体上, 经 120 烘箱干燥 12 h后, 将置于 H2气氛中 700 进行还原 1 h, 得到钨担 载量为 15 wt°/ W/Si02。而后, 进一步浸渍氯铂酸溶液, 经 120 °C干燥, 在 350 V 氢气还原 2 h, 得到 Pt-W/Si02 ( 0.5%Pt-15%W) 催化剂。
实施例 4
碳化钨催化剂制备: 将偏钨酸铵溶液 (质量浓度为 0.4 g/ml) 浸渍于活性炭载体 (AC)上, 经 120 烘箱干燥 12 h后, 将催化剂前体置于 H2气氛中 800 °C进行碳 热反应 l h, 得到钨担载量为 30 ^%的 W2C/AC催化剂。
实施例 5
氮化钨催化剂制备: 偏钨酸铵溶液(质量浓度为 0.2 g/ml)浸渍于活性炭载体上, 经 120 烘箱干燥 12 h后, 将置于 NH3气氛中 700 进行氮化 1 h, 得到钨担载量 为 15 \^%的 W2N/AC。
实施例 6
镍氮化钨催化剂制备: 将偏钨酸铵和硝酸镍按照钼 /镍质量比为 1 : 1的比例制成 混合溶液,其中,偏钨酸铵的质量浓度为 0.2 g/ml。将混合溶液浸渍活性炭载体(AC)。 经 120 烘箱干燥 12 h后, 将催化剂前体置于 H3气氛中 700 °C下氮化 1 h, 得到 Ni-W2N /AC催化剂 ( 15 wt% Ni- 15 wt%W )。
实施例 7 氮化钼催化剂制备:将钼酸铵溶液(质量浓度为 0.3 g/ml)浸渍活性炭载体(AC)。 经 120 烘箱干燥 12 h后, 将催化剂前体置于 H3气氛中 700 °C下氮化 1 h, 得到 Mo2N /AC催化剂 ( 15 wt% Mo )。
实施例 8
镍氮化钼催化剂制备: 将钼酸铵和硝酸镍按照钼 /镍质量比为 1 : 1的比例制成混 合溶液, 其中, 钼酸铵的质量浓度为 0.27 g/ml。 而后, 将混合溶液浸渍活性炭载体 (AC)。 经 120 烘箱干燥 12 h后, 将催化剂前体置于 H3气氛中 700 °C下氮化 1 h , 得到 Ni-Mo2N /AC催化剂 ( 15 wt% M-15 wt%Mo)。
实施例 9
磷化钼催化剂制备: 将钼酸铵、 磷酸氢二铵按照钼磷原子比为 1 : 1.2的比例配成 溶液。 将溶液浸渍于 Ti02载体, 经过 120 干燥后, 于 650 °C下用氢气还原 2 h, 得到 MoP/Ti02催化剂 ( 16 wt% Mo )。
实施例 10
钌磷化钼催化剂制备:将钼酸铵、磷酸氢二铵、三氯化钌按照一定比例配成溶液, 其中钼磷原子比为 1 : 1.2, 钼钌重量比为 8: 1。 将溶液浸渍 Ti02载体, 经过 120 干 燥后, 于 650 °C下用氢气还原 2小时,得到 Ru-MoP /Ti02催化剂(2 wt% Ru-16 wt% Mo)。
实施例 11
纤维素催化转化实验: 将 1.0 g纤维素, 0.3 g催化剂和 100 ml水加入到 200 ml 反应釜中, 通入氢气置换三次气体后, 充氢气至 5 MPa, 同时升温至 240 V 反应 30 min。 反应结束后, 降至室温, 取离心后的上清液体, 在高效液相色谱钙型离子交换 柱上进行分离并用差示折光检测器进行检测。纤维素转化率以剩余固体干重计算。液 体产物的收率以 (产物重量) I (纤维素重量) X 100%进行计算。 产物收率中仅对目 标产物乙二醇以及六元醇(包括山梨醇、 甘露醇)进行计算, 其他液体产物包括丙二 醇、 丁四醇、 乙醇、 未知成分, 以及气体产物 (C02, CH4, C2H6等) 未计算其收 率。
实施例 12
各种金属及双金属催化剂上, 纤维素催化转化的结果 (表一)。 反应条件同实施 例 11。
表一 各种金属及双金属催化剂上, 纤维素催化转化的结果
Figure imgf000005_0001
Pt-W/AC(0.5%Pt- 15%W) 100 60 8 32
Ru-W/AC(0.5%Ru- 15%W) 100 57 12 31
Ni-Mo/A1203 ( 15%Mo- 15%Ni) 67 34 3 30
Pt/AC(l%Pt) 62 9 7 46
Ni/AC(20%Ni) 71 11 6 54
Ru/AC(2%Ru) 55 12 10 33 从以上结果可以看到, 对于单一的金属 W或者 8, 9, 10族的金属 M, Pt, Ru 催化剂, 其乙二醇收率均较低。 然而, 当这些具有加氢能力的活性金属与 W构成双 金属催化剂时, 乙二醇的收率显著提升, 表现出优异的催化性能。 例如, M-W催化 剂上乙二醇收率可高达 69%。
实施例 13
碳化钼催化剂上纤维素反应结果 (表二), 反应条件如实施例 11。
表二 各种碳化物催化剂上纤维素反应结果
Figure imgf000006_0001
从表中的结果可以看到,当铂族金属加氢活性组分与碳化钼构成多金属活性组分 催化剂时, 乙二醇的收率明显高于仅使用碳化钼催化剂。
实施例 14
几种氮化物、 磷化物催化剂上纤维素反应结果 (表三)。 反应条件同实施例 11。 表三 氮化物催化剂上纤维素反应结果
Figure imgf000006_0002
从表中的结果可以看到, 钨、钼的氮化氮、磷化物与加氢催化活性组分构成的催 化剂具有良好的乙二醇收率。 催化剂使用方式的影响: 将含有碳化钨、 金属钼、钨的单一活性组分的催化剂与 8, 9, 10族金属催化剂按照重量比 1 : 1的比例进行简单的机械混合后, 加入到反应 体系中进行使用, 纤维素反应结果列于下表 (表四)。 反应条件同实施例 11。
表四 催化剂组合使用条件下纤维素反应结果
Figure imgf000007_0001
从表中的结果可以看到, 通过将碳化钨、 金属钨、钼活性组分的催化剂与对含有 加氢性能的 8, 9, 10族金属催化剂以机械混合的方式进行组合使用, 同样能够获得 非常高的乙二醇收率, 表现除明显优于各自单独使用时催化性能。 另外, 骨架金属催 化剂雷尼镍与金属钨同时使用时, 催化性能同样非常好。
实施例 16
反应时间的影响。 不同反应时间下 Ni-W/AC ( 15%Ni-25%W) 催化剂上纤维素 催化转化性能的比较 (表五)。 除反应时间不同外, 反应条件同实施例 11。
表五 不同反应时间下 M-W/AC催化剂上纤维素催化转化性能的比较
Figure imgf000007_0002
5 h 100 24 8 68
24 h 100 19 10 71
从表中可以看出,镍钨催化剂在一定的反应时间内均有优良的乙二醇收率。较佳 时间为在 30 min -3 h。
实施例 17
反应温度的影响。 不同反应温度下 M-W/AC ( 15%Ni-25%W) 催化剂上纤维素 催化转化性能的比较, 见表六。 除反应温度不同外, 反应条件同实施例 11。
表六 不同反应温度下 M-W/AC催化剂上纤维素催化转化性能的比较
Figure imgf000008_0001
从表中可以看出,镍钨催化剂在一定的温度范围内均有优良的乙二醇收率。较佳 温度在 220-250 °C附近。
实施例 18
反应压力的影响。 不同氢气压力下 Ni-W/AC ( 15%Ni-25%W) 催化剂上纤维素 催化转化性能的比较, 见表七。 除反应中的氢气压力不同外, 反应条件同实施例 11。
表七 不同氢气压力下 M-W/AC催化剂上纤维素催化转化性能的比较
Figure imgf000008_0002
从表中可以看出,镍钨催化剂在一定的反应压力下均有优良的乙二醇收率。较佳 反应压力为 3-7 MPa。

Claims

权 利 要 求 书
1 . 一种纤维素制乙二醇的方法, 其特征在于: 其以纤维素为反应原料, 在密闭 高压反应釜内于水中进行催化加氢反应, 所采用的催化剂活性组分由二部份共同构 成, 第一部份为 8、 9、 10族过渡金属铁、 钴、 镍、 钌、 铑、 钯、 铱、 铂中的一种或 一种以上, 第二部份为金属态的钼和 / 或钨、 或者钼的碳化物、 钼的氮化物、 钼的 磷化物、 和 /或钨的碳化物、 钨的氮化物、 钨的磷化物中的一种或一种以上; 反应于 密闭高压反应釜中搅拌进; 反应釜中氢气室温时的初始压力为 l-12MPa, 反应温度为 120-300°C , 反应时间不少于 5分钟;
第二部份与第一部份的活性组分的重量比在 0.02-1600倍范围之间。
2. 按照权利要求 1所述的方法, 其特征在于: 所述催化剂为负载型催化剂, 活 性组分担载在载体上, 所述载体为活性炭、 氧化铝、 氧化硅、 碳化硅、 氧化锆、 氧化 锌、二氧化钛一种或一种以上的复合载体; 第一部分活性组分金属于催化剂上的含量 在 0.05-50 wt%, 第二部分活性组分金属于催化剂上的含量为 1-80 wt%。
3. 按照权利要求 2所述的方法, 其特征在于: 所述第一部分活性组分金属于催 化剂上的含量优选在 1-30 wt%, 第二部分活性组分金属于催化剂上的含量优选为 10-60 wt%。
4. 按照权利要求 1所述的方法, 其特征在于: 所述催化剂也可以是非负载的、 以活性组分作为催化剂骨架的骨架金属催化剂。
5. 按照权利要求 1 所述的方法, 其特征在于: 所采用的催化剂活性组分由二部 份机械混合而成用式 A+B表示, 第一部份 A为 8、 9、 10族过渡金属铁、 钴、 镍、 钌、 铑、 钯、 铱、 铂中的一种或一种以上, 第二部份 B为钨的碳化物, B和 A的重 量比在 0.02-1600倍范围之间。
6. 按照权利要求 1所述的方法, 其特征在于: 反应原料纤维素与水的质量比为 1 :200- 1 :4, 纤维素与催化剂的质量比为 1 : 1一 30: 1。
7. 按照权利要求 1所述的方法, 其特征在于: 优选的反应温度为 220-250 °C, 室温下反应釜中氢气的优选初始压力 3-7 MPa, 优选反应时间为 30 min - 3 h。
8. 按照权利要求 1所述的方法, 其特征在于: 所述第二部份与第一部份的活性 组分的优选重量比在 0.3-60倍范围之间。
PCT/CN2008/072894 2008-10-24 2008-10-31 一种纤维素制乙二醇的方法 WO2010045766A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0822634A BRPI0822634B1 (pt) 2008-10-24 2008-10-31 método para a prepararação de etileno glicol a partir de celulose
US12/734,601 US7960594B2 (en) 2008-10-24 2008-10-31 Method of preparing ethylene glycol from cellulose
CA2725248A CA2725248C (en) 2008-10-24 2008-10-31 Method of preparing ethylene glycol from cellulose
MX2010011284A MX2010011284A (es) 2008-10-24 2008-10-31 Un procedimiento para preparar etilenglicol con el uso de celulosa.
ES08877495.5T ES2447367T3 (es) 2008-10-24 2008-10-31 Un proceso para preparar etilenglicol usando celulosa
EP08877495.5A EP2338867B1 (en) 2008-10-24 2008-10-31 A process for preparing ethylene glycol using cellulose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810228257.7 2008-10-24
CN2008102282577A CN101723802B (zh) 2008-10-24 2008-10-24 一种纤维素制乙二醇的方法

Publications (1)

Publication Number Publication Date
WO2010045766A1 true WO2010045766A1 (zh) 2010-04-29

Family

ID=42118905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072894 WO2010045766A1 (zh) 2008-10-24 2008-10-31 一种纤维素制乙二醇的方法

Country Status (8)

Country Link
US (1) US7960594B2 (zh)
EP (1) EP2338867B1 (zh)
CN (1) CN101723802B (zh)
BR (1) BRPI0822634B1 (zh)
CA (1) CA2725248C (zh)
ES (1) ES2447367T3 (zh)
MX (1) MX2010011284A (zh)
WO (1) WO2010045766A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8323937B2 (en) 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US8410319B2 (en) 2011-07-28 2013-04-02 Uop Llc Continuous catalytic generation of polyols from cellulose with recycle

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648140B (zh) * 2008-08-14 2011-09-07 中国科学院大连化学物理研究所 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用
CN101735014B (zh) * 2008-11-26 2013-07-24 中国科学院大连化学物理研究所 一种多羟基化合物制乙二醇的方法
CN102049273B (zh) 2009-10-27 2013-05-01 中国科学院大连化学物理研究所 一种介孔炭担载的碳化钨催化剂及其制备和应用
CN102190562B (zh) 2010-03-17 2014-03-05 中国科学院大连化学物理研究所 一种多羟基化合物制乙二醇的方法
CN102675045B (zh) * 2011-03-15 2015-04-01 中国科学院大连化学物理研究所 一种糖溶液制备乙二醇、1,2-丙二醇的方法
CN102643164B (zh) * 2011-06-28 2014-07-02 中国科学院大连化学物理研究所 连续加氢裂解纤维素生产乙二醇及1,2-丙二醇的方法
CN102643165B (zh) * 2011-06-28 2014-07-02 中国科学院大连化学物理研究所 连续加氢裂解糖转化生产乙二醇及1,2-丙二醇的方法
EP2736869A4 (en) * 2011-07-28 2015-01-07 Uop Llc OBTAINING POLYOLS FROM SACCHARIDES
WO2013015996A2 (en) * 2011-07-28 2013-01-31 Uop Llc Generation of polyols from saccharide containing feedstock
CN102731256B (zh) * 2011-12-20 2014-10-22 中国科学院大连化学物理研究所 一种抑制环醚醇生成的纤维素转化制乙二醇的方法
WO2013159115A2 (en) 2012-04-20 2013-10-24 Brookhaven Science Associates, Llc Molybdenum and tungsten nanostructures and methods for making and using same
CN103420798B (zh) * 2012-05-18 2015-12-09 中国科学院大连化学物理研究所 一种高效催化转化纤维素类原料到二元醇的方法
CN103420795B (zh) * 2012-05-18 2015-11-04 中国科学院大连化学物理研究所 一种低沸点有机相中由碳水化合物生产二元醇的方法
CN103420787B (zh) * 2012-05-21 2015-01-28 中国科学院大连化学物理研究所 近或超临界水条件下碳水化合物制小分子多元醇的方法
CN102731258B (zh) * 2012-05-21 2014-07-23 中国科学院大连化学物理研究所 一种碳水化合物内循环催化转化制备低碳多元醇的方法
CN102757310B (zh) * 2012-07-04 2015-04-29 易高环保能源研究院有限公司 催化转化纤维素制异丙醇的方法
US20150291899A1 (en) * 2012-12-28 2015-10-15 Mitsubishi Heavy Industries, Ltd. Co shift catalyst, co shift reactor, and method for purifying gasification gas
FR3004182B1 (fr) * 2013-04-09 2015-03-27 IFP Energies Nouvelles Procede de transformation de biomasses lignocellulosiques en molecules mono ou poly-oxygenees
CN103232322A (zh) * 2013-05-23 2013-08-07 上海宇海企业发展集团有限公司 一种由生物质原料制备乙二醇的方法
ITTO20130885A1 (it) 2013-10-31 2015-05-01 Biochemtex Spa Conversione di una sospensione di biomassa lignocellulosica di bassa viscosita' in polioli
CN106795081B (zh) 2014-05-19 2018-12-28 爱荷华谷类推广协会 由糖类连续制备乙二醇的方法
CA2973437C (en) 2015-01-13 2020-04-14 Avantium Knowledge Centre B.V. Process for preparing ethylene glycol from a carbohydrate source
PL3245183T3 (pl) 2015-01-13 2020-07-27 Avantium Knowledge Centre B.V. Sposób wytwarzania glikolu etylenowego ze źródła węglowodanów
US10131600B2 (en) 2015-01-13 2018-11-20 Avantium Knowledge Centre B.V. Process for preparing ethylene glycol from a carbohydrate
US10138184B2 (en) 2015-01-13 2018-11-27 Avantium Knowledge Centre B.V. Continuous process for preparing ethylene glycol from a carbohydrate source
US10385462B2 (en) 2015-07-09 2019-08-20 Saudi Arabian Oil Company Electrode material for electrolytic hydrogen generation
CN106694009B (zh) 2015-11-12 2019-12-13 中国科学院大连化学物理研究所 合金催化剂用于碳水化合物催化制备低碳二元醇的方法
GB201607609D0 (en) * 2016-04-29 2016-06-15 Scg Chemicals Co Ltd And Scg Packaging Public Company Ltd Catalyst and use thereof
CN107008485B (zh) * 2017-05-08 2019-05-03 齐鲁工业大学 一种氮掺杂石墨烯负载Ru和WO3的催化剂及制备方法与应用
CN109896922B (zh) * 2017-12-07 2022-03-22 中国科学院大连化学物理研究所 一种木质纤维素高效分离并实现全组分利用的方法
MX2020008341A (es) * 2018-02-09 2020-12-11 Archer Daniels Midland Co Hidrogenólisis de azúcar con co-catalizador de molibdeno selectivo para la produccion de glicoles.
CN110882710B (zh) * 2018-09-07 2022-10-21 中国石油化工股份有限公司 碳化物基催化剂及其制备方法以及甘油氢解方法
CN110064400B (zh) * 2019-05-06 2022-04-12 东南大学 一种三层磁性催化剂的制备及其催化纤维素加氢的应用
EP4003946A1 (en) 2019-07-31 2022-06-01 Avantium Knowledge Centre B.V. Process for preparing alkylene glycol from a carbohydrate source comprising hemicellulose, cellulose and lignin
US11187044B2 (en) 2019-12-10 2021-11-30 Saudi Arabian Oil Company Production cavern
CN115038684A (zh) 2020-02-17 2022-09-09 阿凡田知识中心有限公司 一种对甘油选择性增加的从碳水化合物来源制备亚烷基二醇的方法
EP4107141B1 (en) 2020-02-17 2024-04-03 Avantium Knowledge Centre B.V. Process for preparing alkylene glycol mixture from a carbohydrate source with decreased selectivity for polyol side products
US11460330B2 (en) 2020-07-06 2022-10-04 Saudi Arabian Oil Company Reducing noise in a vortex flow meter
CN112206773A (zh) * 2020-11-08 2021-01-12 河南理工大学 一种用于纤维素制备乙醇的催化剂及其制备方法和用途
CN112569996B (zh) * 2020-12-10 2022-12-09 中化蓝天集团有限公司 一种制备全卤代乙烯的催化剂及其制备方法和应用
CN112657526B (zh) * 2020-12-10 2023-04-28 中化蓝天集团有限公司 一种制备全卤代乙烯的催化剂及其制备方法和应用
CN112961046B (zh) * 2021-02-06 2022-10-14 中国石油大学(华东) 一种利用废弃生物质无碱合成乙醇酸的方法
CN115155571B (zh) * 2022-06-22 2024-02-13 东南大学 还原态金属催化剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476331A (en) 1982-02-11 1984-10-09 Ethyl Corporation Two stage hydrogenolysis of carbohydrate to glycols using sulfide modified ruthenium catalyst in second stage
US5107018A (en) 1989-08-26 1992-04-21 Basf Aktiengesellschaft Process for the preparation of lower polyhydric alcohols
US5210335A (en) 1988-05-28 1993-05-11 Basf Aktiengesellschaft Preparation of lower polyhydric alcohols
CN1463960A (zh) 2002-06-12 2003-12-31 中国石油化工股份有限公司 环氧乙烷催化水合制备乙二醇的方法
CN101428214A (zh) * 2007-11-07 2009-05-13 中国科学院大连化学物理研究所 氧化铝负载类贵金属催化剂在纤维素加氢水解中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868847A (en) * 1956-10-05 1959-01-13 Engelhard Ind Inc Hydrogenation of mono-and disaccharides to polyols
CN1218917C (zh) * 2003-07-09 2005-09-14 中国石油化工股份有限公司 用于环氧乙烷催化水合制备乙二醇的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476331A (en) 1982-02-11 1984-10-09 Ethyl Corporation Two stage hydrogenolysis of carbohydrate to glycols using sulfide modified ruthenium catalyst in second stage
US5210335A (en) 1988-05-28 1993-05-11 Basf Aktiengesellschaft Preparation of lower polyhydric alcohols
US5107018A (en) 1989-08-26 1992-04-21 Basf Aktiengesellschaft Process for the preparation of lower polyhydric alcohols
CN1463960A (zh) 2002-06-12 2003-12-31 中国石油化工股份有限公司 环氧乙烷催化水合制备乙二醇的方法
CN1204103C (zh) 2002-06-12 2005-06-01 中国石油化工股份有限公司 环氧乙烷催化水合制备乙二醇的方法
CN101428214A (zh) * 2007-11-07 2009-05-13 中国科学院大连化学物理研究所 氧化铝负载类贵金属催化剂在纤维素加氢水解中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI XIAO-MING: "the overview of the production development of ethylene glycol", CHEMICAL INDUSTRY, vol. 25, no. 4, 2007, pages 15 - 21
NA JI ET AL.: "Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts", ANGEW. CHEM. INT. ED., vol. 47, no. 44, 20 October 2008 (2008-10-20), pages 8510 - 8511, XP008143521 *
See also references of EP2338867A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8323937B2 (en) 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US8410319B2 (en) 2011-07-28 2013-04-02 Uop Llc Continuous catalytic generation of polyols from cellulose with recycle

Also Published As

Publication number Publication date
BRPI0822634A2 (pt) 2015-06-16
CA2725248A1 (en) 2010-04-29
US7960594B2 (en) 2011-06-14
ES2447367T3 (es) 2014-03-11
CN101723802B (zh) 2013-06-19
EP2338867B1 (en) 2014-01-08
CN101723802A (zh) 2010-06-09
EP2338867A4 (en) 2012-06-13
US20100256424A1 (en) 2010-10-07
MX2010011284A (es) 2010-11-10
BRPI0822634B1 (pt) 2017-03-07
CA2725248C (en) 2015-01-20
EP2338867A1 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
WO2010045766A1 (zh) 一种纤维素制乙二醇的方法
CA2720693C (en) Tungsten carbide catalysts, their preparation and application in synthesis of ethylene glycol from cellulose
JP5575911B2 (ja) 多価化合物からエチレングリコールを調製する方法
WO2010060345A1 (zh) 一种多羟基化合物制乙二醇的方法
WO2013170767A1 (zh) 一种高效催化转化纤维素类原料到二元醇的方法
CN108623436B (zh) 一种一锅法转化纤维素为生物乙醇的方法
KR20120094555A (ko) 활성 카본 에어로젤에 담지된 귀금속 촉매, 그 제조방법 및 상기 촉매를 이용한 리그닌 화합물 분해방법
CN102921429A (zh) 一种煤制天然气催化剂及其制备方法
CN111054339B (zh) 制乙二醇的催化剂组合物
CN115155571A (zh) 还原态金属催化剂及其制备方法与应用
CN111217672B (zh) 一种碳水化合物制备乙醇的方法
CN108607553A (zh) 一种甘油氢解制备1,3-丙二醇的催化剂及制备和应用
CN108212200A (zh) 一种木质素基酚类水相重整制氢催化剂的制备方法
BRPI0822635B1 (pt) Tungsten carbide catalyst, its preparation process and its use in the preparation of ethylene glycol from cellulose

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12734601

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877495

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2725248

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/011284

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008877495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0822634

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101103