WO2010043011A2 - Aparelho e processo para decomposição térmica de qualquer tipo de material orgânico - Google Patents

Aparelho e processo para decomposição térmica de qualquer tipo de material orgânico Download PDF

Info

Publication number
WO2010043011A2
WO2010043011A2 PCT/BR2009/000321 BR2009000321W WO2010043011A2 WO 2010043011 A2 WO2010043011 A2 WO 2010043011A2 BR 2009000321 W BR2009000321 W BR 2009000321W WO 2010043011 A2 WO2010043011 A2 WO 2010043011A2
Authority
WO
WIPO (PCT)
Prior art keywords
heating
gases
gas
tritube
reactor
Prior art date
Application number
PCT/BR2009/000321
Other languages
English (en)
French (fr)
Other versions
WO2010043011A3 (pt
WO2010043011A8 (pt
Inventor
Daltro Garcia Pinatti
Isaías OLIVEIRA
Álvaro GUEDES SOARES
Érica Leonor ROMÃO
João Carlos FERREIRA
Original Assignee
Rm Materiais Refratários Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20090764693 priority Critical patent/EP2351812A2/en
Priority to JP2011531308A priority patent/JP2012505931A/ja
Priority to CA 2740991 priority patent/CA2740991A1/en
Priority to EA201170565A priority patent/EA201170565A1/ru
Priority to MX2011004135A priority patent/MX2011004135A/es
Priority to CN2009801515869A priority patent/CN102245737A/zh
Application filed by Rm Materiais Refratários Ltda. filed Critical Rm Materiais Refratários Ltda.
Priority to US13/124,793 priority patent/US8603404B2/en
Publication of WO2010043011A2 publication Critical patent/WO2010043011A2/pt
Publication of WO2010043011A8 publication Critical patent/WO2010043011A8/pt
Publication of WO2010043011A3 publication Critical patent/WO2010043011A3/pt
Priority to ZA2011/03399A priority patent/ZA201103399B/en
Priority to US13/774,308 priority patent/US20130270099A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • C10B47/16Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge with indirect heating means both inside and outside the retorts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/482Preparation from used rubber products, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to an apparatus for thermal decomposition (decoupling) of any type of organic material (biomass, sludge, organic sludge, pies, bran, dried vinasse, composites, animal droppings, waste tires, polymers in general, peat moss , etc.) to obtain commercial products such as oils (with fatty, dye, aromatic, limonene, tar, etc.) and coals (vegetable, lignite, bituminous, recovered carbon black - NFR, etc.). ).
  • the apparatus of this invention also enables the destruction of products and soils contaminated with oils, organochlorine hydrocarbons and dioxins.
  • Japanese Patent JP 561 15386 of 1981 describes an apparatus for charring old tires for heat generation. This is accomplished by burning the gas generated and obtaining coal without concern for the recovery of carbon black contained in the raw material. That is, this device does not allow the use of reaction products such as coal, recovered carbon black obtained when the raw material is tire, and oil.
  • Japanese patent JP561 15386 the tire is heated by direct contact of the flue gas over the material to be processed through the holes 5.
  • the apparatus described in this Japanese patent is a simple gasifier with three concentric vessels .
  • reaction products which are the carbons (recovered carbon black obtained when the raw material is a tire) and the oil.
  • reaction products which are the carbons (recovered carbon black obtained when the raw material is a tire) and the oil.
  • the constructive concepts of the Japanese patent JP 561 15386 and the present patent application are completely different.
  • the heating of the tires (or any other raw material) in the present invention is done indirectly through Tritube technology (three concentric tubes).
  • THE Raw material is placed in the space between the Tritube intermediate tube and the Tritube outer tube as the heating gas passes through the area between the Tritube intermediate tube and the Tritube inner tube and also the Tritube outer region.
  • the present invention is an airtight apparatus that reproduces the geological conditions of formation of coal, oil and gas underground (according to Ernest Bayer), its fractionation, loading, unloading, low energy consumption, investment cost, operational and processing. any kind of organic material including whole tires.
  • British Patent GB 362.522 of 1931 describes a batch-operated machine for "medium temperature carbonization" in the range of 590 Q to 700 Q C. Above 500 Q C the processes are pyrolytic (gasification) and below 500 Q C are low temperature conversions (cracking + synthesis). It notes that the usual operating range of the presen- invention thee is 380 to 420 C-5 C. It is found that below 380 Q C the reaction is too slow and not economically feasible , and above 420 C initiated 9 thermal decomposition of much of the oil generated by the process.
  • the coke chamber has its volume increased by the movement of the hollow walls 2 which are articulated at one end ( Figure 1).
  • the product is arranged between plate pairs and heating is carried out in the space between plate pairs;
  • the machine has a coke pushing device which is operated when the hollow walls are moved and at the same time are opened to the hinged doors at the bottom of the coking chamber to allow the coke to discharge.
  • the present invention solves the problem of coal discharge in a simple and different way: when the reaction is over, the reactor closing cap, which is mounted on a rail trolley, moves freely. When running the reactor, the entire equipment is tilted around its horizontal axis (which passes through the center of gravity of the apparatus) at an angle of about 180 degrees. The feed mouth of the Tritube, which in the feed and reaction steps is turned up, in the discharge is turned down and becomes a discharge mouth.
  • the main differences between this patent and the present invention are:
  • GB 362.522 has upper loading and lower unloading.
  • the present invention has only the top cover with unloading tipping for maximum airtightness;
  • GB 362,522 is not airtight.
  • the present invention is airtight;
  • GB 362.522 patent machine is sequential (almost continuous) loading and unloading. That of the present invention is by batch.
  • Japanese Patent JP 10279950 of 1998 describes a carbonization equipment of old tires, vinyl tailings, wood chips, etc.
  • the equipment is of vertical construction and is composed of an external oven and an internal oven concentric to the first.
  • the inner oven has a higher protrusion than the outer oven.
  • the constructive concepts of the Japanese patent JP 10279950 and the present invention are completely different.
  • the problem of raw material feed and product discharge in the Japanese patent is solved by baskets introduced via upper flange which is installed on the protruding part of the inner tube. Already in the present invention there is no basket and unloading is by tipping.
  • the JP 10279950 basket is divided into three parts: lower B1, intermediate B2 and upper B3.
  • the bottom is closed to prevent coal leakage and the upper and intermediate parts have holes that allow the product to be discharged.
  • the problem of product discharge is solved by the equipment tilting system.
  • the reactor closing cap that is mounted on a rail trolley moves releasing the reactor, the entire equipment is tilted around its horizontal axis (passing through the center of gravity of the apparatus) describing an angle of about 180 degrees.
  • the feed mouth of the Tritube which in the feed and reaction steps is turned up, in the discharge is turned down and becomes a discharge mouth.
  • a major problem with Japanese patent equipment is that it has a single tube that if applied to industrial quantities involves large diameters.
  • the charred material on the outer wall of the inner tube acts as thermal insulation for the centrally located material, requiring several hours and even days to complete the process, and is therefore a very useful device for any industrial application.
  • the apparatus of the present invention in addition to a number of additional features, has solved the processing time issue with the internal and external heat tritubes of the raw material located in the annular part, which results in small material thickness and order processing times. 3 hours, thus enabling industrial capacity to be achieved. It should be noted that the present invention further contemplates the possibility that the gases used in the reaction may have different temperatures in an alternative embodiment of the invention.
  • British Patent GB 330,980 of 1929 describes a carbonization equipment of coal, peat, wood, etc.
  • the constructive concepts of GB 330,980 and the present patent are completely different, starting from the principle of operation which is continuous in the first and by batch in the second.
  • GB 330,980 describes an apparatus comprised of several statically mounted vertical (retort) containers following a carousel-type toroidal symmetry.
  • retort Surrounding this retort carousel is an annular profile bell forming a tunnel that covers the retort carousel.
  • This tunnel is mounted on rollers and rails, has a periodic circular motion and is insulated with Cradle of sand.
  • the tunnel features loading, heating and cooling regions.
  • Each retort also has an upper port for loading and lower for discharging coal over a bucket and each set of three retorts has a stationary piping for the output of vapors (byproducts). Through this collecting pipe, the vapors generated in the process are removed to a distillation plant.
  • the English patent resembles the figure of the Tritube which is the main feature of the equipment of the present invention whose configuration is cylindrical, vertical and with completely different mechanical elements and processes. The lack of hemerticity and reaction temperature make the final product of the English patent completely different from the present invention.
  • U.S. Patent 5,095,040 to 1992 is a process patent. It describes the use of conventional equipment (tire chippers, vibrating screens, electromagnets, stock hoppers, rotary kiln, burners, temperature controllers, stuffed condensation tower, oil tanks and chimney) for thermal tire processing. old, in an environment free of atmospheric air, but not airtight.
  • the process sequence is: a) tire chipping; b) separating the thin pieces with dimensions of 1.27 cm (Go ") to 1.9 cm (3 ⁇ 4") and discarding the coarse material including metal; c) lung silo of raw material (small pieces); d) carbonization in a rotary kiln in the absence of atmospheric air; e) recovery of solid product (porous coal); f) condensation of vapors generating oil and g) flaring or chimney discharge of non-condensable gases.
  • solid product solid product
  • the tube has material lifting and dragging and tilting fins in the range of 5 to 10 degrees and the feed mouth is higher than the discharge mouth for flow of the process material and to hinder air entry into the furnace.
  • Rotation is slow on the order of 3 rpm.
  • the residence time of the processed material in the rotary kiln is 7 to 8 minutes resulting in an estimated production of 2 to 3 t / h due to the low fill rate of the rotary kilns.
  • the rotary kiln is enclosed by a thermally insulated box where burners are directed towards the bottom of the rotary tube.
  • Temperature sensors are installed in the tube body to maintain the temperature in the desired conditions which are: rubber inlet: 480 9 C to 540-C, central region: 480 9 C and carbon outlet: 425 Q C to 440 Q C.
  • the fumes 34 leave the rea- tor the temperature range of 160 to 190 Q C Q C and the condensation tower operates in the range of 60 C to Q 70 Q C.
  • US Patent 5,095,040 emphasizes that the use of a smooth wall rotary kiln, rather than conveyor or belt systems, avoids locking problems due to the sticky characteristic of the processed material. US Patent 5,095,040, therefore, has no feature similar to the present invention.
  • the present invention describes a new device with consequent new process, which is not pyrolysis to be 9 below 500 C and inert atmosphere (totally free of O 2), resulting in its low - temperature conversion name.
  • the process used by the present invention there is the simultaneous cracking and synthesis allowed by the residence time of 60 to 90 minutes and thus results in maximization (increase of quantity) and improvement of oil quality.
  • the main equipment required to develop the process described in US patent is a conventional rotary kiln which is a machine of constructive characteristics completely different from the Tritube bundle heat exchanger reactor defined in the present invention.
  • the operating system of the rotary kiln is continuous and the reactor of the present invention is by batch.
  • Tritubes that perform both the chemical reactor and heat exchanger functions simultaneously.
  • organochlorines and dioxins and furans PCB, HCB, PCDD and PCDF
  • the present invention deals with a CBT reactor which enables the simultaneous performance of a vessel and a heat exchanger and their chemical reactions and thermal changes.
  • the reactor consists of square arrangements (or any other geometric shape) from three concentric tubes in the configuration of a Tritube to a number of Tritubes that is technically and economically feasible. That is, what will define the quantity of Tritubes is a technical and economic analysis of the project to be implemented.
  • the pipe triplets of the present invention are arranged in an upright position with loading of the raw material through hoppers from the top and unloading of solid products by tilting the reactor.
  • the hot heating gas enters simultaneously through the Tritube outer wall and the region between the Tritube inner and middle tube and exits through the smaller inner tube called the bayonet.
  • the tubes are preferably made of 310 stainless steel, may be used other steels resistant to medium temperatures (380 ° C to 450 Q C).
  • the total flow rate of the CBT Reactor (including all processing steps - from loading to unloading) is per batch lasting approximately 6 to 8 hours, depending on the raw material.
  • the batch steps are: feeding, heating, oil extraction and condensation processing, cooling, tipping and coal processing.
  • the reactor is kept airtight, free of oxygen, using N 2 or CO 2 as carrier gas.
  • the raw material is dried in an external dryer to a minimum of approximately 95% dry matter.
  • the phases that exist during the process are as follows: the solid phase of the reaction that exists in the annular region, between the outer tube and the intermediate tube, has inorganic catalysts that are part of the raw material itself (Si0 2 , AI2O3, Fe0 3 , Ti 2 , K 2 O, Zn, etc.).
  • the vapor phase (tar vapors, fatty oil, diesel, aromatics, limonenes, hydrocarbon monomers and water) and the non-condensable gases phase (CO, CO 2 , H 2 , CH 4 , N 2 , etc. .) which are produced during the conversion.
  • external catalysts may be mixed with the raw materials during drying in rotary, fluidized bed or turbo turret dryer.
  • the existing phases, externally to the outer tube and internally to the intermediate tube and inner tube, comprise externally generated hot gas generator combustion gases for heating the CBT Reactor.
  • the movement conditions of the materials during a reaction period inside the CBT reactor are: 1 ê ) Raw Material - Top loading through hoppers in 240 seconds; 2-) Solids (raw material in conversion) - Fixed cradle during the batch processing period of 6 to 8 hours; 3) Vapors and Non-Condensable Gases - Extraction by the annular region of the Tritube also during the 6 to 8 hours batch period; ⁇ ) Heating Combustion Gas and Cooling Air - Continuous flow with residence period of 8 seconds; 5 â ) Coal - Dump discharge in approximately 120 seconds.
  • Non-condensable vapors and gases may have an upward or downward flow (N 2 purge extraction) in the annular region, the latter aiming at extend their contact with the catalysts present in the solid mass.
  • the diameter of the raw material used in the reactor of the present invention ranges from submillimeter particles (sharps, pies, sludge, sludge, droppings), centimeter to bulk (chips, chopped plastics) and briquettes (agricultural reforestation, sawmills and grasses ) and metrics for car, truck and tractor tires that are treated whole, without the need for pitting.
  • the sizes of the Tritube may vary according to the needs involved. The biggest demand is for car tires. Materials with low apparent density are pre-bonded in cylindrical or torodal shapes with similar diameters to car tires.
  • the heat and mass transfer rate of the CBT reactor is a significant ingenuity of the present invention.
  • the largest fraction of the products involved in the reaction is coal (40 to 60%), a thermal insulator that makes heat transfer difficult for conversion.
  • the present invention solves this issue by heat tritubes with heating on the outer and inner side of the annular region keeping the heat transfer thickness less than approximately 175 mm allowing to reduce the conversion period to approximately 3 hours, which is 4 to 10 times lower than conventional carbonization furnaces.
  • a good mass processing rate is achieved with the apparent average specific volumes of the processed raw materials (Table 1).
  • Temperature control is excellent due to continuous flue gas heating of the hot gas generator and the metallic conductivity of the CBT reactor Tritube beam.
  • the hot gas generator You can use any type of fuel (biomass, oil, natural gas or LPG). Thermal cycling (heating, conversion and cooling steps) allows the production of 3 to 4 batches per day.
  • the present invention may be considered as an apparatus for thermal decomposition of any type of organic material comprising an airtight outer casing, a thermal insulation layer disposed on the entire inner surface of the outer casing and lid, and further comprising at least one structure with three internally arranged concentric tubes substantially positioned vertically and of a thickness of their walls suitable for gas heating on an inner and outer side of said structure.
  • the structure with three concentric tubes comprises an inner tube, an intermediate tube and an outer tube and is heated on the outer and inner side of the annular region of the tubes.
  • the spacing between the inner wall of the outer tube and the outer wall of the intermediate tube is approximately 175 mm.
  • the three concentric tube structure has substantially thin walls whose thickness ranges from 2 to 5 mm, preferably 3 mm and a length substantially equal to that of the apparatus.
  • the heat flow for heating transferred by conduction to the three concentric tubes occurs simultaneously from the inner side of the intermediate tube to the center of the annular region of the three concentric tubes and from the outside of the outer tube to the center of the annular region of the three concentric tubes.
  • gases used for heating have no physical contact with the material to be decomposed. Heating by process hot gases allows the temperature difference between the inlet and outlet of the gases to be approximately 15 ° C.
  • said apparatus is a batch operation reactor.
  • the material used in the outer casing is preferably carbon steel.
  • the material used in the concentric tubes is preferably Inox 310 and other materials resistant to average temperatures between 380 ° C and 420 ° C may be used.
  • the material used inside the box The outer shell and lid is preferably a refractory blanket for thermal insulation of the outer shell and Viton or silicone seals at the lid closure of the apparatus.
  • the apparatus of the present invention comprises air compression devices and N2 or CO2 supply blowers for purifying non-condensable vapors and gases, as well as a heating gas supply and outlet assembly.
  • the apparatus of the present invention preferably further comprises two cooling circuits.
  • the first cooling circuit comprises the same heating pipes and is implemented through a fan blower and the hot gas outlet in the chimney.
  • a second cooling circuit internal cooling occurs by circulating inert gas (N 2 or CO 2 ) directly over the coal in the annular portion of the pipes.
  • the second cooling circuit comprises a purge conduit, an outlet for non-condensable vapors and gases, and the recirculation of neutral gases in a heat exchanger through Blower Roots.
  • the present invention further comprises a process for thermally decomposing any type of organic material using the apparatus as previously described and comprises the steps of feeding organic material into the apparatus; gas heating on the inside and outside of an annular region located in the concentric tubes internal to the apparatus; oil extraction and condensation processing; gas cooling; and tilting of the apparatus.
  • the process further comprises the conversion step which maintains a temperature difference between the inlet and outlet of the heating hot gases in the process regime of approximately 15 ° C.
  • THE heating for conversion of reaction material being carried out for approximately 3 hours, preferably 165 minutes. Heating is performed externally to the outer tube and internally to the intermediate tube and inner tube. Cooling for unloading reaction material is performed for approximately 2 hours.
  • the process further comprises the extraction and condensation steps of the vapors and non-condensable gases generated in the conversion.
  • CBT reactor generally uses four main materials in its manufacture: a) carbon steel in the reactor outer structure operating at room temperature, b) Stainless steel 310 or other similar refractory steel suitable for the working temperature of 380 and C 420 Q C ç). Refractory blanket, thermally insulating the external structure of the heat exchanger reactor itself from the internal temperature and, d) Viton or silicone seals in the closure of the reactor cover.
  • the mechanical resistances of the materials available on the market (bearings, etc.) allow the manufacture of CBT reactors with up to 64 Tritubes (table 2).
  • the main external operations of the reactor process are: a) drying the raw materials in rotary dryers, fluid bed or turbo-dryers; b) food; c) generation of hot gas in furnaces using any type of fuel; d) extraction and fractional condensation or non-condensation of vapors and non-condensable gases generated in the conversion; e) thermal exchange carried out by means of the cooling water tower and pump, the steam condenser heat exchangers and the gas scrubber water; f) N 2 or CO 2 supply g) Coal unloading and processing.
  • Feed hoppers are square or circular boxes equipped with split butterfly valves for each Tritube. After loading, the hoppers are hoisted by the overhead crane, positioned on top of the reactor and unloaded. For larger reactors the hoppers are divided in half or in four quarters in order to respect the road dimensions and allow the loading of raw materials also at their generation points.
  • Coal processing can be simplified or complete. Processing is simplified when it is intended for bulk fuels. It is complete in the case of recovered carbon black (NFR) obtained from converting tires which first have a steel mesh separation step and then grinding and grading into particles of less than 20 pm, 7 pm or 1 pm .
  • NFR recovered carbon black
  • CBT is a destroyer of organochlorines and dioxins through process airtightness and disruption of heterogeneous bonds (CO, CH, C-CI, CN, CI-0, etc.)
  • the apparatus of the present invention allows total destruction of dioxins by installation of molten salt cradle (850 Q C) at the outlet of non-condensable gases in cases where the raw material contains these pollutants.
  • a reactor embodiment of the present invention the following basic steps take place: drying the external raw material; simultaneous feeding of all Tritubes through hoppers equipped with split butterfly valves for each Tritube; heating the reactor through a hot gas generator using any type of fuel; reactor cooling using the same heating air suction system (furnace off) for cold air intake; extraction and fractional condensation or non-condensation of vapors and non-condensable gases generated on conversion; cooling of the heat exchanger used for condensation of vapors and the gas washer heat exchanger through freon or cryogenic cooling tower for monomers generated by polymers.
  • the present invention utilizes compressed air compressors in its instruments and blowers to supply N 2 or CO 2 in order to purge non-condensable vapors and gases. Processing can be simplified (shipping or packaging) or complete (grinding and grading of coals). Note that from the processing of used tires the recovered carbon black (NFR) is produced. Sealing can be done completely on the reactor cover or individually on each Tritube. Unloading is performed by tipping. There is a low generation of non-condensable gases in the reactor processing of the present invention. Heat recovery from non-condensable gases as furnace fuel occurs when they do not contain potentially toxic compounds. The total elimination of dioxins and organochlorines is achieved by passing non-condensable gases into molten salt cradles;
  • Shrubs (charcoal and tar); ] _b: Clean Biomass with Potassium Contamination: Agricultural Waste, Grass, Bagasse and Sugarcane Straw (Charcoal and Tar); M: Pies, Bran, Grain Waste, Dry Grease, Meat Flour, Bone Flour, Blood Flour, etc.
  • Raw Material Class Kq / m 3 la Clean Biomass Wood, Reforestation Waste150 and Shrubs lb Clean Biomass with Potassium Contamination: 150 Agricultural Waste, Grass, Bagasse and Straw
  • Figure 1.1 illustrates a front view of the Tritube CBT reactor which is the object of the present invention.
  • Figure 1.2 illustrates the CBT reactor with a Tritube which is the object of the present invention in horizontal section A-A.
  • Figure 1.3 illustrates the Tritube CBT reactor which is the object of the present invention in vertical section B-B.
  • Figure 1.4 illustrates the Tritube CBT reactor which is the object of the present invention in perspective view.
  • Figure 2.1 illustrates a front view of the 32 Tritube CBT reactor which is the subject of the present invention.
  • Figure 2.2 illustrates the 32 Tritube CBT reactor which is the object of the present invention in AA horizontal section.
  • Figure 2.3 illustrates the 32 Tritube CBT reactor which is the object of the present invention in vertical section B-B.
  • Figure 3 illustrates an example of a typical CBT reactor Plant layout that is the subject of the present invention.
  • Figure 4 illustrates a heating and cooling curve of the CBT Reactor and the accumulated reaction rate of matter contained in the reactor of the present invention.
  • Figure 5 illustrates the heat fluxes per unit length transferred by conduction to the Tritube and their respective equations.
  • Figure 6 illustrates the variation of the heat flux transferred by conduction by the formed coal and the heating rate in relation to the annular thickness of the Tritube.
  • FIGS 1.1 to 1.4 to 2.1 to 2.3 illustrate the CBT reactors of the present invention with 1 Tritube and 32 Tritube, respectively, which use the same concept differing in size only.
  • Parts 1 to 5 comprise support structure 1, outer housing 2, tilt shaft 3, gearmotor 4 and thermal insulation of reactor 5.
  • Parts 7 to 10 form the Tritube assembly comprising an inner tube 7, intermediate tube 8, outer tube 9 and bleed pipe 10.
  • the Tritube is the main item of the present invention and incorporates 8 concepts namely: fixed cradle reactor, heat exchanger, inert gas carrier cradle, feasibility due to the low thermal conduction caused by the coal formed during the process (thermal insulator), direct neutral gas (N 2 or CO 2 ) cooling to overcome the thermal insulation of the coal formed, coincidence of the size of the previous item with the passenger car tire size, useful occupancy of approximately 1/3 of the total reactor volume and low impedance in the heating and cooling gas fluid dynamics outside the Tritube.
  • 8 concepts namely: fixed cradle reactor, heat exchanger, inert gas carrier cradle, feasibility due to the low thermal conduction caused by the coal formed during the process (thermal insulator), direct neutral gas (N 2 or CO 2 ) cooling to overcome the thermal insulation of the coal formed, coincidence of the size of the previous item with the passenger car tire size, useful occupancy of approximately 1/3 of the total reactor volume and low impedance in the heating and cooling gas fluid dynamics outside the Tritube.
  • Parts 11 through 17 comprise the inlet coupling of hot gas 11, hot gas inlet plenum 12, lower mirror 13 (hot gas flow homogenizer), intermediate mirror 14, heating gas pickup duct 15, heating gas outlet plenum 16 and output coupling heating gas 17.
  • Such parts show the hot gas supply and outlet assembly generated by the furnace.
  • Part 18 shows the upper mirror that supports the loading of the Tritubes in operation (vertical position) and during tilting assisted by the parts 13 (lower mirror) 14 (intermediate mirror), 16 (hot gas inlet and outlet plenum) with reduced thermal loss to the external structure due to the use of stainless steels and thermal insulation.
  • Part 19 ( Figures 1 and 2) shows the reactor cover, which is closed by means of a hydraulic cylinder. Said lid 19 is sealed by soft and hard rubbers around it.
  • Part 25 shows the vapor and gas outlet installed in cover 19 which is connected to venturi 55 ( Figure 3) via hydraulic cylinder-driven coupling 27.
  • Part 29 shows cover moving trolley with lifting system and wheeled casters.
  • Part 37 is a possible replacement of 4 to 5 Tritubes that can receive passenger car tires with a Tritubo that can receive truck tires (figure 2.2).
  • the passenger car / truck tire ratio is 20/1 by installing a single Tritube in each reactor to process the truck tires.
  • the distance between the outer tube 9 and the intermediate tube 8 of the truck tire tritube runs away from the efficient heat transfer distance, which is compensated by the increased reaction time (two batches in a row) by blocking its discharge after the first reaction. .
  • Locking is carried out by a locking device which may or may not be mounted on the device itself.
  • FIG. 2.1 shows a 32 Tritube CBT reactor, which has a circular section and can also be made with a square section. In this case the reactor will have 4 more Tritubes than the previous version. Note that the Tritube of the present invention may have any shape in its section, provided that the effective distance for the heat transfer. This configuration has a higher investment cost but lower operating cost due to higher batch production. Industrial practice will show which of the two configurations will be most economically advantageous.
  • the 1-Tritube CBT Ballast and the 32-Tritube CBT Ballast also have a global cap 19 for Tritubes with refrigerated hermetic rubber sealing rings 23, hydraulic cylinder 24 with rotary engagement to press the cap against the rings resting on the reactor body , thermal insulation 5 (eg ceramic fiber) top mirror 18 and support structure 1.
  • This same overall cover is applied to the square section reactor.
  • the main difference is that the structure is a profile I in the square section reactor and U profile in the circular section reactor.
  • the CBT reactor can also operate with the individual lid option for each Tritube.
  • the parts are the same as the previous options, varying only their positioning in the reactor.
  • the non-condensable vapors and exhaust outlet coupling of the global cap option consists of the following parts: non-condensable vapors and exhaust outlet 25, flange 26, expansion joint 27 and hydraulic cylinder 28. Disengaging parts 25 to 28 allows the lid to move over the trolley to free the ballast from tilting; part 27 is the expansion joint and part 28 is a hydraulic cylinder that retracts the coupling;
  • the coupling assembly is fixed to the steam conduit (figure 3) vapors piping and non-condensable gas cooling.
  • a typical layout of the CBT Reactor Installation is illustrated in figure 3 where coal is fed and discharged.
  • a tire feed hopper 40 is provided with split butterfly valves for each Tritube; The hopper is in the stand position. Contaminated sludge feed hopper 41 is in the standby position.
  • An overhead crane 42 picks up the hopper hoppers and raises it to the stand-up position and then up to the reactor for feed operation; The overhead crane is also used for assembly and maintenance. equipment.
  • Discharge hopper 43 receives coal from the reactor tipping so that they move to belt 44 and deaerator roll 45, falling onto belt 46. Steel in the case of tires is separated by an electromagnet 47, and proceeds to conveyor 48 and baler 49.
  • the charcoal follows the snail 50 which transfers to the bucket elevator 51 which unloads the coal into container 52 when it is used for energy (fuel) purposes.
  • the bucket elevator 51 discharges the coal (NFR) into hammer mill 53 and thence to classifier 54, which has a sleeve filter which releases the product. Sorted end for Big-Bag bagger or paper bags.
  • non-condensable vapors and gases From the outlet of non-condensable vapors and gases 25, they flow to venturi 55 condensing in tank 56 from which they are pumped by pump 57 to condensation tower 58 through heat exchanger 59. After condensation the oil passes through the water / oil centrifuge 60 into tank 61 with a storage pump 62. Non-condensable gases are suctioned by the fan 63 which transfers them to the demister 64 (condensate separator) and is fed to the furnace 66 In polymer processing, non-condensable gases (monomers) are condensed by refrigeration or cryogenics.
  • the external circuit comprises the same heating pipes, which are carried out by blowing through the fan 70 and leaving the hot gas in the chimney 71. Due to the low thermal conductivity of the coal, internal cooling is required by the circulation of inert gas (N 2 or C0 2 ) directly over the coal in the annular part of the Tritubes, thus aiming to reduce the cooling period.
  • inert gas N 2 or C0 2
  • the purge pipe 10 and the outlet of non-condensable vapors and gases 25 are used, but the neutral gases in the heat exchanger 72 are recirculated through the Blower Roots 73.
  • Sludge, pies, droppings, etc. need to be dried with a maximum of 5% moisture to prevent oxidation of oils. This drying is carried out on the dryer set using any type of dryer (rotary drum, fluidized bed or turbodryer). Using hot exhaust gases from the reactor heating.
  • peripheral equipment which comprises the following units: water cooling tower, or freon or cryogenic chiller, water pumps, compressor, compressed air tank, nitrogen or CO 2 -
  • Figure 4 illustrates a heating and cooling curve of the CBT Reactor and the accumulated conversion rate (fraction of raw material that transforms into coal, oil and non-condensable gases) of the material contained in the reactor. Adding the loading and unloading period, the total processing time is approximately 6 to 8 hours allowing 4 to 3 batches per day.
  • the apparatus of the present invention performs quasi-isothermal thermochemical conversion of any type of organic material into various types of non-condensable oils, coals and gases according to the type of raw material used. Quasi-isothermal reactors are within a narrow range of viability dictated by the temperature difference ⁇ between the inlet and outlet temperature of the heating medium. When ⁇ decreases (tending to zero) the heat transfer capacity of the heating medium to the raw material being processed is nullified. Increasing heat transfer capacity in order to increase processing capacity and thereby achieve economic viability requires increasing ⁇ , ie increasing the inlet temperature and / or decreasing the outlet temperature of the medium. of heating.
  • the invention achieved a satisfactory conversion time of 3.0 h dictated by the fact that the coals formed during the process are insulating materials, making heat transfer difficult with the processing time.
  • the same period for the charged reactor heating is also used for cooling the load below 100 Q C prior to opening it to prevent spontaneous combustion of the coals. Heat Transfer in Tritube
  • o_ ⁇ ⁇ , ⁇ ⁇ , ( ⁇ 1 - ⁇ 3 ) ⁇ _ R ⁇ + n ⁇ Rl _ R , )) + ⁇ Cp (T 1 -T 3 ) j 2 ⁇ 3
  • Q is the heat required for the conversion of raw material
  • L is the length of the Tritubo, to heating time
  • PA density the specific heat, where the last two are average values, plus coal formed rather than the initial raw material.
  • FIG. 6 presents the variation of the heat transfer by conduction and the heating rate in relation to the annular thickness of the Tritube keeping the other parameters constant. The following points are highlighted:
  • the thermal conductivity of stainless steel is not decisive and the conductivity of coal determines the heat conduction and consequently all dimensions of the Tritube and the conversion process of the present invention.
  • Tritube performance is identical for all raw materials is that the thermal behavior is determined by the properties of coal and all raw materials are converted at the end. a coal with properties close to that of coke.
  • annular thickness of the 175 mm Tritube is around the optimum value, and is determined by the thermal conductivity and specific heat of the formed coal, which are close to the coke values whatever the initial raw material.
  • Another detail of the invention is batch operation with top cover loading and tilting unloading by rotation about axis passing through the center of gravity.
  • the cover is sealed by cooled sliding O-rings (viton or silicones) giving the reactor airtight (oxygen-free) characteristic to prevent oxidation of the formed oil and coal.
  • O-rings viton or silicones
  • the invention maximizes the yield of the products represented by about 40% to 60% coal, 10% to 30% oil, 10% to 15% water and 10% to 20% noncondensable gases over initial raw material.
  • the lid is opened by a small pneumatic lift and side sliding by a motorized cart.
  • Another detail of the invention is its ability to process various types of raw materials generating different products, grouped into the following classes:] _a: Clean Biomass: Wood, Reforestation Waste and Shrubs generating charcoal and tar; l_b: Clean Biomass with Potassium contamination: Agricultural Waste, Grass, Bagasse and Sugarcane Straw, also generating charcoal and tar; M: Pies, Bran, Grain Waste; Dry Grease, Beef Flour, Bone Flour, Blood Flour, etc.
  • Tritube models (average 31 t / day) 64 tubes (average 220 t / day) or even more.
  • the smaller sizes are limited by the economic results and the larger sizes by the mechanical strength of the materials supporting the full load of the appliance (own weight + raw material) which can reach in total countless tons.
  • the use of special high strength steels in the structure of the apparatus and superalloys in the piping will allow the manufacture of large capacity reactors with the possibility of steam activation up to 850 Q C.
  • the useful length of the Tritubo device is variable and may be increased by the use of the above-mentioned advanced materials.
  • the device is loaded by hoppers equipped with split butterfly valves positioned above each Tritube.
  • the hoppers are pre-loaded near the CBT or at the source of raw material generation and transported to the CBT in trucks and hoists. cranes to the floor at the reactor power level.
  • the hoppers are in stand-by position and after the reactor has discharged the previous reaction, it returns to the loading position. After that, the hoppers are positioned over the apparatus, and the split butterfly valves are opened completing the loading quickly (approximately 4 minutes).
  • the hoppers may be unique for small appliances (1 and 16 tubes), double for medium appliances (25, 36 and 49 tubes) and quadruple for giant appliances (64 tubes or more).
  • the division of the hoppers allows them to have widths within road standards (max.
  • the reactor of the present invention further enables a rapid discharge (approximately 2 minutes) of solids by tilting about axis through the center of gravity of the apparatus.
  • the unloading is done on a vibrating hopper that transports the solid products to the finishing stages according to the market requirements (disintegrating rollers or mills, sieves, magnetic separators, hammer or disc mills with classifiers and packaging).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Treatment Of Sludge (AREA)

Abstract

A presente invenção refere-se a um aparelho de Conversão de Baixa Temperatura composto de Tritubos que realiza simultaneamente as funções de vaso e trocador de calor. Este aparelho é capaz de promover a decomposição térmica de qualquer tipo de material orgánico para obtenção de carvão, óleo, água e gases não-condensáveis, como também promover a descontaminação de solos e resíduos contaminados com organoclorados e dioxinas. O aparelho é utilizado para decomposição térmica de qualquer tipo de material orgânico e compreende: uma caixa externa (2) com tampa hermética (19); uma camada de isolamento térmico (5) disposta em toda superficie interna da caixa externa (2) e tampa, o referido aparelho compreendendo ainda pelo menos uma estrutura com tres tubos concéntricos dispostos internamente, posicionados substancialmente na vertical e com a espessura de suas paredes adequada para aquecimento por meio de gases de um lado interno e externo da referida estrutura. A invenção ainda trata de um processo para decomposição térmica de qualquer tipo de material orgánico utilizando o aparelho da presente invenção e compreende as etapas de alimentação de material orgánico no interior do aparelho; aquecimento com gases no lado interior e exterior de uma região anular localizada nos tubos concéntricos internos ao aparelho; processamento com extração e condensação de óleo; resfriamento com gases; e basculamento do aparelho.

Description

Relatório Descritivo da Patente de Invenção para "APARELHO E PROCESSO PARA DECOMPOSIÇÃO TÉRMICA DE QUALQUER TIPO DE MATERIAL ORGÂNICO".
Campo da Invenção
A presente invenção refere-se a um aparelho para decomposição (dissociação) térmica de qualquer tipo de material orgânico (biomassas, lodos, borras orgânicas, tortas, farelos, vinhaças secas, compósitos, excrementos de animais, pneus inservíveis, polímeros em geral, turfas, etc.) para obtenção de produtos comerciais tais como óleos (com frações graxas, die- sei, aromáticos, limoneno, alcatrões, etc.) e carvões (tipo vegetal, linhito, betuminoso, negro-de-fumo recuperado - NFR, etc). O aparelho desta invenção possibilita também a destruição de produtos e solos contaminados com óleos, hidrocarbonetos organoclorados e dioxinas.
Descrição da técnica antecedente
A Patente Japonesa JP 561 15386 de 1981 descreve um aparelho para carbonização de pneus velhos para geração de calor. Isso é realizado através da queima do gás gerado e obtenção de carvão sem preocupação com a recuperação do negro-de-fumo contido na matéria-prima. Ou seja, esse aparelho não permite o aproveitamento dos produtos da reação que são os carvões, negro-de-fumo recuperado obtido quando a matéria- prima for pneu, e o óleo. Na patente japonesa JP561 15386 o aquecimento do pneu é feito através de contato direto do gás de combustão sobre o material a ser processado, através dos furos 5. Na verdade, o aparelho descrito nessa patente japonesa é um simples gaseificador com três vasos concên- tricôs.
Já o presente pedido de patente descreve um aparelho que permite o aproveitamento dos produtos da reação, os quais são os carvões (negro-de-fumo recuperado obtido quando a matéria-prima for pneu) e o ó- leo. Os conceitos construtivos da patente japonesa JP 561 15386 e do pre- sente pedido de patente são completamente diferentes. O aquecimento dos pneus (ou qualquer outra matéria-prima) na presente invenção é feito de forma indireta através da tecnologia de Tritubo (três tubos concêntricos). A matéria-prima é colocada no espaço entre o tubo intermediário do Tritubo e tubo externo do Tritubo já o gás de aquecimento passa pela área entre o tubo intermediário do Tritubo e o tubo interno do Tritubo e também pela região externa do Tritubo. A presente invenção é um aparelho hermético que reproduz as condições geológicas de formação do carvão, petróleo e gases no subsolo (conforme Ernest Bayer), seus fracionamentos, otimizações de carregamento, descarregamento, baixo consumo de energia, custo de investimento, operacional e processamento de qualquer tipo de material orgânico inclusive pneus inteiros.
A patente Inglesa GB 362.522 de 1931 descreve uma máquina que é operada em regime de batelada para "carbonização a média temperatura" na faixa de 590QC a 700QC. Acima de 500QC os processos são pirolíti- cos (gaseificações) e abaixo de 500QC são conversões de baixa temperatura (craqueamento + síntese). Note-se que a faixa de operação usual da presen- te invenção é de 380-C a 4205C. Verifica-se que abaixo de 380 QC a reação será muito lenta e não viável economicamente e acima de 420 9C inicia-se a decomposição térmica de grande parte do óleo gerado pelo processo.
Voltando à patente inglesa, deve ser verificado que, terminada a reação, há uma grande dificuldade para descarga do coque produzido, pois o mesmo fica aderido às paredes do reator. Tenta-se superar esse problema por meio de duas providências:
a) a câmara de coqueificação tem seu volume aumentado através do movimento das paredes ocas 2 que são articuladas em uma de suas extremidades (figura 1 ). O produto é disposto entre pares de placas e o a- quecimento é realizado no espaço entre os pares de placas;
b) a máquina tem um dispositivo para empurrar o coque que é acionado quando as paredes ocas são movidas e ao mesmo tempo são a- bertas às portas articuladas na parte inferior da câmara de coqueificação, de modo a permitir a descarga do coque.
A presente invenção resolve o problema da descarga do carvão de forma simples e diferente: terminada a reação, a tampa de fechamento do reator, que está montada em um carrinho sobre trilhos, se movimenta libe- rando o reator, o equipamento todo é basculado em torno do seu eixo horizontal (o qual passa pelo centro de gravidade do aparelho) descrevendo um ângulo de cerca de 180 graus. A boca de alimentação do Tritubo, que nas etapas de alimentação e reação é voltada para cima, na descarga fica volta- da para baixo e passa a ser uma boca de descarga. Assim, as principais diferenças entre esta patente e a presente invenção são:
1 Q) a patente GB 362.522 tem carregamento superior e o descarregamento inferior. A presente invenção possui apenas a tampa superior com basculamento para descarregamento visando à máxima hermeticidade possível;
2°) a patente GB 362.522 não é hermética. A presente invenção é hermética;
3Q) a patente GB 362.522 aplica-se apenas a produção de coque a partir de carvão mineral. A presente invenção aplica-se a várias matérias- primas que produzem diferentes tipos de óleos e carvões;
4°) a máquina da patente GB 362.522 é de carregamento e descarregamento sequencial (quase contínua). A da presente invenção é por batelada.
A Patente Japonesa JP 10279950 de 1998 descreve um equi- pamento de carbonização de pneus velhos, rejeitos de vinil, cavacos de madeira, etc. O equipamento tem construção vertical e é composto de um forno externo e um forno interno concêntrico ao primeiro. O forno interno apresenta uma saliência superior em relação ao forno externo. Os conceitos construtivos da patente japonesa JP 10279950 e da presente invenção são comple- tamente diferentes. O problema da alimentação de matéria-prima e descarga de produtos na patente japonesa é resolvido através de cestos introduzidos via flange superior, o qual é instalado na parte saliente do tubo interno. Já na presente invenção não há cesto e o descarregamento é por basculamento. O cesto da patente JP 10279950 é dividido em três partes: inferior B1 , inter- mediária B2 e superior B3. A parte inferior é fechada para impedir vazamento do carvão e as partes superiores e intermediárias possuem furos que permitem a descarga do produto. Na presente invenção o problema da descarga do produto é resolvido pelo sistema de basculamento do equipamento. Terminada a reação, a tampa de fechamento do reator que é montada em um carrinho sobre trilhos se movimenta liberando o reator, o equipamento todo é basculado em torno do seu eixo horizontal (que passa pelo centro de gravidade do aparelho) descrevendo um ângulo de cerca 180 graus. A boca de alimentação do Tritubo, que nas etapas de alimentação e reação é voltada para cima, na descarga fica voltada para baixo e passa a ser uma boca de descarga. Um grande problema do equipamento da patente japonesa é ter um único tubo que se aplicado para quantidades industriais implica grandes diâmetros. O material carbonizado na parede externa do tubo interno atua como isolamento térmico para o material situado na parte central, passando a exigir várias horas e mesmo dias para término do processo, sendo portanto um aparelho muito pouco útil para qualquer aplicação industrial. O aparelho da presente invenção, além de várias características adicionais, resolveu a questão do tempo de processamento através dos Tritubos com aquecimento interno e externo da matéria-prima situada na parte anular, o que resulta em espessura de material pequena e tempos de processamento da ordem de 3 horas, permitindo assim que se alcance capacidade industrial. Deve ser verificado que a presente invenção ainda contempla a possibilidade dos gases utilizados na reação poderem ter temperaturas diferentes em uma modalidade alternativa da invenção.
A Patente Inglesa GB 330.980 de 1929 descreve um equipamento de carbonização de carvão mineral, turfa, madeira, etc. Os conceitos construtivos da patente inglesa GB 330.980 e da presente patente são completamente diferentes, a começar do princípio de operação que é continuo na primeira e por batelada na segunda. A patente inglesa GB 330,980 descreve um aparelho composto por vários containers verticais (retortas) montados estaticamente segundo uma simetria toroidal do tipo carrossel. Envol- vendo este carrossel de retortas, há uma campânula com perfil anular formando um túnel que cobre o carrossel de retortas. Este túnel é montado sobre roletes e trilhos, têm um movimento circular periódico e é isolado com berço de areia. O túnel apresenta regiões de carga, aquecimento e resfriamento. Desta forma é estabelecida a operação contínua do equipamento. Cada retorta dispõe ainda de uma porta superior para carga e inferior para descarga do carvão sobre uma caçamba e cada conjunto de três retortas possui uma tubulação estacionária, para saída dos vapores (subprodutos). Através desta tubulação coletora, são retirados os vapores gerados no processo que são conduzidos para uma planta de destilação. Não há nada na patente inglesa que se assemelhe à figura do Tritubo que é a principal característica do equipamento da presente invenção cuja configuração é cilíndrica, vertical e com elementos mecânicos e processos completamente diferentes. A falta da hemerticidade e a temperatura da reação faz com que o produto final da patente inglesa seja completamente diferente do da presente invenção.
A patente Americana 5.095.040 de 1992 é uma patente de pro- cesso. Ela descreve a utilização de equipamentos convencionais (picadores de pneus, peneiras vibratórias, eletro-ímãs, moegas para estocagem, forno rotativo, queimadores, controladores de temperatura, torre de condensação com recheio, tanques de óleo e chaminé) para o processamento térmico de pneus velhos, em ambiente livre do ar atmosférico, porém não-hermético. A sequência de processo é: a) picamento do pneus; b) separação dos pedaços finos com dimensões de 1 ,27 cm (Vá") a 1 ,9 cm (¾") e descarte do material grosso incluindo o metal; c) silo pulmão de matéria-prima (pedaços pequenos); d) carbonização em forno rotativo na ausência do ar atmosférico; e) recuperação do produto sólido (carvão poroso); f) condensação dos vapores gerando óleo e g) queima ou descarte em chaminé dos gases não- condensáveis. Na patente americana não há menção sobre as características e aplicações do produto sólido (carvão poroso). Já na presente invenção, quando se processa biomassa contendo lipídios, proteínas e lignocelu- lósicos tem-se o carvão e ao se processar pneus tem-se o negro-de-fumo recuperado (NFR). Também não é citada a composição química e as aplicações do óleo, mas sim suas propriedades físicas 41 ,8 MJ/kg (18.000 BTU/pound), gravidade específica de 0,90, ponto de fluidez de -7 eC e ponto de ebulição de 112 9C (óleo n9 4). Os gases não-condensáveis são enviados para chaminé ou são queimados em um ou mais queimadores. A principal etapa de processo é a carbonização da borracha que é feita em um forno rotativo constituído por um tubo de aço inoxidável com as seguintes dimen- sões sugeridas: diâmetro = 609mm, comprimento = 6.300mm e espessura da chapa de inox de 11 ,1 mm. O tubo apresenta aletas de levantamento e arraste do material e inclinação na faixa de 5 a 10 graus sendo a boca de alimentação mais elevada que a boca de descarga para escoamento do material em processo e para dificultar a entrada de ar dentro do forno. A rotação é lenta da ordem de 3 rpm. O tempo de residência do material processado no forno rotativo é de 7 a 8 minutos resultando em uma produção estimada de 2 a 3 t/h devido à baixa taxa de enchimento dos fornos rotativos. O forno rotativo é envolto por uma caixa isolada termicamente onde são instalados queimadores direcionados para a parte inferior do tubo rotativo. Sensores de temperatura são instalados no corpo do tubo para manter a temperatura nas condições desejadas que são: entrada da borracha: 4809C a 540-C, região central: 4809C e saída de carvão: 425QC a 440QC. A fumaça 34 deixa o rea- tor na faixa de temperatura de 160QC a 190QC e a torre de condensação opera na faixa de 60QC a 70QC. A taxa de aquecimento estimada é de 125 9C/min caindo na taxa de pirólise rápida inerte. A patente americana 5.095.040 destaca que a utilização de um forno rotativo com parede lisa, ao invés de sistemas de correias ou rosca transportadoras, evita problemas de travamentos devido à característica pegajosa do material processado. A patente americana 5.095.040, portanto, não tem nenhuma característica seme- lhante com a presente invenção. A presente invenção descreve um equipamento novo com consequente processo novo, que não é pirólise, por ser abaixo de 5009C e em atmosfera inerte (totalmente livre de O2), resultando daí seu nome conversão de baixa temperatura. No processo utilizado pela presente invenção acontece o craqueamento e síntese simultânea permiti- dos pelo tempo de residência de 60 a 90 minutos e, de modo, resulta em maximização (aumento da quantidade) e melhoria da qualidade dos óleos. O equipamento principal necessário para desenvolver o processo descrito na patente americana é um forno rotativo convencional que é uma máquina de características construtivas completamente diferentes do reator tipo trocador de calor com feixes de Tritubos definido na presente invenção. A sistemática operacional do forno rotativo é contínua e do reator da presente invenção é por batelada.
Obietivos da Invenção
É um objetivo da presente invenção proporcionar um aparelho com geometria de trio de tubos múltiplos de paredes finas chamados Tritubos que executam simultaneamente as funções de reator químico e de tro- cador de calor.
É um objetivo da presente invenção manter a atmosfera na região anular do Tritubo livre de oxigénio para evitar a oxidação das matérias- primas e produtos durante uma reação química.
É um outro objetivo do aparelho da presente invenção possuir paredes externas termicamente isoladas para diminuir o consumo de energia térmica de aquecimento para uma reação química.
É um objetivo da presente invenção realizar o carregamento das matérias-primas e o descarregamento dos produtos sólidos de modo rápido.
É um outro objetivo do aparelho da presente invenção realizar a conversão de matérias-primas contendo lipídios e proteínas (juntas ou separadas) em óleo, carvão e gases não-condensáveis.
É um outro objetivo do aparelho da presente invenção realizar a conversão de matérias-primas lignocelulósicas em óleos (alcatrão), carvão, água e gases não-condensáveis.
É um outro objetivo do aparelho da presente invenção realizar a conversão de pneus e borrachas em geral em óleo (contendo frações de Limoneno e aromáticos), negro-de-fumo recuperado (contendo negro-de- fumo original e as cinzas (compostos de zinco e enxofre, silício, alumínio, ferro, titânio, potássio, etc.) utilizados na fabricação das borrachas) e gases não-condensáveis.
É um outro objetivo do aparelho da presente invenção realizar a conversão de plásticos e polímeros em geral nos seus monômeros (eteno, propeno, estireno, etc), carvões, cinzas (compostos de zinco e enxofre, silício, alumínio, ferro, titânio, potássio, etc ) e gases não-condensáveis através do resfriamento em temperaturas a freon ou criogênicas.
É um outro objetivo do aparelho da presente invenção realizar o tratamento de solos contaminados ou outros materiais com organoclorados e dioxinas e furanos (PCB, HCB, PCDD e PCDF) de modo a obter um material resultante descontaminado.
É um outro objetivo do aparelho da presente invenção obter produtos separados mais puros através da condensação fracionada ou mesmo uma mistura resultante ainda mais pura que o usual de modo a permitir usos dos produtos resultantes diferentes daqueles relacionados ao do campo e- nergético.
Sumário da Invenção
A presente invenção trata de um reator de CBT que permite a realização das funções simultâneas de um vaso e de um trocador de calor e suas reações químicas e trocas térmicas. O reator é constituído de arranjos quadrados (ou de qualquer outra forma geométrica) de três tubos concêntricos nas configurações de um Tritubo até um número de Tritubos que seja técnico e economicamente viável. Ou seja, o que vai definir a quantidade de Tritubos é uma analise técnica e económica do projeto a ser implementado.
Os trios de tubos da presente invenção, chamados de Tritubos, são dispostos na posição vertical com carregamento da matéria-prima através de moegas, pela parte superior e descarregamento dos produtos sólidos por basculamento do reator. Na configuração Tritubo, o gás quente de aque- cimento entra simultaneamente pela parede externa do Tritubo e pela região entre o tubo interno e intermediário do Tritubo e sai pelo tubo interno menor chamado de baioneta. Este arranjo permite que a diferença de temperatura ΔΤ entre entrada e saída dos gases quentes de aquecimento em regime de processo seja de apenas ΔΤ = 415 - 400 = 15 QC conferindo a característica de reator isotérmico. Os tubos são preferencialmente fabricados em Inox 310, podendo ser utilizados outros aços resistentes a temperaturas médias (380°C a 450QC). O regime total de fluxo do Reator CBT (incluindo todas as etapas do processamento - do carregamento ao descarregamento) é por batelada com duração aproximada de 6 a 8 horas, dependendo da matéria-prima. As etapas da batelada são: alimentação, aquecimento, processamento com ex- tração e condensação do óleo, esfriamento, basculamento e processamento do carvão. Em cada batelada o reator é mantido hermético, livre de oxigénio, utilizando N2 ou CO2 como gás de arraste. A matéria-prima é seca em secador externo em um mínimo aproximado de 95% de matéria seca.
As fases existentes durante o processo são as seguintes: a fase sólida da reação que existe na região anular, entre o tubo externo e o tubo intermediário, possui catalisadores inorgânicos que fazem parte da própria matéria-prima (Si02, AI2O3, Fe03, Ti02, K2O, Zn, etc). A fase dos vapores (vapores dos alcatrões, óleo graxo, diesel, aromáticos, limonenos, monôme- ros de hidrocarbonetos e água) e a fase dos gases não-condensáveis (CO, CO2, H2, CH4, N2, etc.) que são produzidos durante a conversão. Note-se que catalisadores externos podem ser misturados às matérias-primas durante sua secagem em fornos rotativos, de leito fluidizado ou secadores turbo "turbodryers". As fases existentes, externamente ao tubo externo e internamente ao tubo intermediário e tubo interno, compreendem gases de combus- tão do gerador de gás quente gerados externamente para aquecimento do Reator CBT.
As condições de movimento dos materiais durante o período de uma reação no interior do reator CBT são: 1 ê) Matéria-prima - Carregamento superior através de moegas em 240 segundos; 2-) Sólidos (matéria-prima em conversão) - Berço fixo durante o período de processamento em batelada de 6 a 8 horas; 3 ) Vapores e Gases Não-condensáveis - Extração pela região anular do Tritubo também durante o período da batelada de 6 a 8 horas; 4§) Gás de Combustão de Aquecimento e ar de Resfriamento - Fluxo contínuo com período de residência de 8 segundos; 5â) Carvão - Descarre- gamento por basculamento em aproximadamente 120 segundos. Os vapores e gases não-condensáveis podem ter o fluxo ascendente ou descendente (extração pela purga do N2) na região anular sendo que esta última visa à ampliar o contato dos mesmos com os catalisadores presentes na massa sólida.
O diâmetro da matéria-prima utilizada no reator da presente invenção vai desde partículas submilimétricas (farelos, tortas, borras, lodos, excrementos), centimétricas para granéis (cavacos, plásticos picados) e bri- quetas (restos de reflorestamento agrícolas, serrarias e capins) e métricas para pneus de carros, caminhões e tratores que são tratados inteiros, sem necessidade de picamentos. Para pneus de caminhões, 4 ou 5 tubos de 0 = 650mm poderiam ser substituídos por um único tubo de aproximadamente 0 = 1.350 mm cuja ampliação de dimensões demanda maior período de processamento. Deve ser verificado que os tamanhos do Tritubo podem variar de acordo com as necessidades envolvidas. A maior demanda é para pneus de carro. Materiais com baixa densidade aparente são previamente brique- tados em formas cilíndricas ou torodais com diâmetros similares aos dos pneus de carros.
A taxa de transferência de calor e massa do reator CBT constitui significativa engenhosidade da presente invenção. A maior fração dos produtos envolvidos na reação é o carvão (40 a 60%), um isolante térmico que dificulta a transferência de calor para a conversão. A presente invenção re- solve esta questão através dos Tritubos com aquecimento do lado externo e interno da região anular mantendo a espessura de transmissão de calor inferior a aproximadamente 175 mm permitindo reduzir o período de conversão para aproximadamente 3 horas, o que é 4 a 10 vezes inferior aos fornos de carbonização convencionais. Uma boa taxa de processamento de massa é alcançada com os volumes específicos médios aparentes das matérias- primas processadas (Tabela 1 ). Há uma feliz coincidência entre a espessura anular ótima para transmissão de calor (175 mm) e a espessura dos pneus de veículos de passeio integral, dispensando a necessidade das custosas operações de picamento.
O controle de temperatura é excelente devido ao aquecimento contínuo com gás de combustão do gerador de gás quente e da condutividade metálica do feixe de Tritubo do reator de CBT. O gerador de gás quen- te pode utilizar qualquer tipo de combustível (biomassa, óleo, gás natural ou GLP). A ciclagem térmica (etapas de aquecimento, conversão e resfriamento), permite a produção de 3 a 4 bateladas por dia.
A presente invenção pode ser considerada como um aparelho para decomposição térmica de qualquer tipo de material orgânico compreendendo uma caixa externa com tampa hermética, uma camada de isolamento térmico disposta em toda superfície interna da caixa externa e tampa, e compreendendo ainda pelo menos uma estrutura com três tubos concêntricos dispostos internamente, posicionados substancialmente na vertical e com a espessura de suas paredes adequada para aquecimento por meio de gases de um lado interno e externo da referida estrutura.
A estrutura com três tubos concêntricos compreende um tubo interno, um tubo intermediário e um tubo externo e é aquecida no lado externo e interno da região anular dos tubos. O espaçamento entre a parede inte- rior do tubo externo e a parede externa do tubo intermediário é de aproximadamente 175 mm. A estrutura com três tubos concêntricos possui paredes substancialmente finas cuja espessura varia entre 2 a 5 mm, preferencialmente, 3 mm e um comprimento substancialmente igual ao do aparelho.
O fluxo de calor para aquecimento transferido por condução aos três tubos concêntricos ocorre simultaneamente pelo lado interno do tubo intermediário para o centro da região anular dos três tubos concêntricos e pelo lado externo do tubo externo para o centro da região anular dos três tubos concêntricos, os gases utilizados para aquecimento não possuem con- tato físico com o material a ser decomposto. O aquecimento feito pelos ga- ses quentes em regime de processo permite que a diferença de temperatura entre a entrada e a saída dos gases seja de aproximadamente 15°C.
Note-se que o referido aparelho é um reator de operação por batelada.
O material utilizado na caixa externa é, preferencialmente, aço carbono. O material utilizado nos tubos concêntricos é, preferencialmente, Inox 310, podendo ser utilizados outros materiais resistentes às temperaturas médias entre 380°C e 420°C. Já o material utilizado no interior da caixa externa e tampa é, preferencialmente, uma manta refratária para isolamento térmico da estrutura externa e vedações de Viton ou silicone no fechamento da tampa do aparelho.
O aparelho da presente invenção compreende dispositivos de compressão de ar e sopradores para suprimento de N2 ou CO2 para purgar vapores e gases não-condensáveis, bem como um conjunto de alimentação e saída de gás de aquecimento O conjunto de alimentação e saída de gás de aquecimento compreende um acoplamento de entrada de gás quente, um plenum de entrada de gás quente, um espelho inferior para homogenização do fluxo de gás quente, um espelho intermediário, um duto de captação de gás de aquecimento, um plenum de saída de gás de aquecimento e um acoplamento de saída de gás de aquecimento.
O aparelho da presente invenção compreende ainda, preferencialmente, dois circuitos de resfriamento. O primeiro circuito de resfriamento compreende as mesmas tubulações de aquecimento e é implementado através de insuflação por um ventilador e pela saída do gás quente na chaminé. Em um segundo circuito de resfriamento o resfriamento interno se dá pela circulação de gás inerte (N2 ou CO2) diretamente sobre o carvão na parte anular dos tubos. O segundo circuito de resfriamento compreende uma ca- nalização de purga, uma saída de vapores e gases não-condensáveis e a recirculação de gases neutros em um trocador de calor através de Blower Roots .
A presente invenção ainda compreende um processo para decomposição térmica de qualquer tipo de material orgânico utilizando o apare- lho como previamente descrito e compreende as etapas de alimentação de material orgânico no interior do aparelho; aquecimento com gases no lado interior e exterior de uma região anular localizada nos tubos concêntricos internos ao aparelho; processamento com extração e condensação de óleo; esfriamento com gases; e basculamento do aparelho.
O processo ainda compreende a etapa de conversão que mantém uma diferença de temperatura entre a entrada e saída dos gases quentes de aquecimento em regime de processo de aproximadamente 15°C. O aquecimento para conversão do material de reação sendo realizado por a- proximadamente 3 horas, preferivelmente, 165 minutos. O aquecimento é realizado externamente ao tubo externo e internamente ao tubo intermediário e tubo interno. O resfriamento para descarregamento do material da rea- ção é realizado por aproximadamente 2 horas.
No referido processo N2 é inserido no interior do aparelho para expulsão de oxigénio. O aquecimento da reação é realizado por meio da a- limentação de gás quente simultaneamente a todos os tubos.
O Processo ainda compreende as etapas de extração e conden- sação dos vapores e gases não-condensáveis gerados na conversão.
O reator CBT utiliza geralmente quatro materiais principais na sua fabricação: a)Aço Carbono na estrutura externa do reator operando a temperatura ambiente, b) Inox 310 ou outro aço refratário similar indicado para a temperatura de trabalho de 380eC a 420QC, c). Manta refratária, iso- lando termicamente a estrutura externa do reator trocador de calor propriamente dito da temperatura interna e, d) vedações de Viton ou silicone no fechamento da tampa do reator. As resistências mecânicas dos materiais existentes no mercado (mancais, etc.) permite a fabricação de reator CBT com até 64 Tritubos (tabela 2).
As principais operações externas do processo do reator são: a) secagem das matérias-primas em secadores rotativos, leito fluidos ou turbo- dryers; b) alimentação; c) geração de gás quente em fornalhas utilizando qualquer tipo de combustível; d) extração e condensação fracionada ou não dos vapores e gases não-condensáveis gerados na conversão; e) troca tér- mica realizada por meio da torre e bomba de água de resfriamento, dos trocadores de calor de condensação dos vapores e da água do lavador de gases; f) suprimento de N2 ou CO2 g) descarregamento e processamento dos carvões.
Para a condensação de monômeros gerados na conversão de polímeros (eteno, propeno, etc.) as torres de resfriamento de água são substituídas por refrigeração a freon ou criogênica.
As moegas de alimentação são caixas quadradas ou circulares dotadas de válvulas borboletas bipartidas para cada Tritubo. Após os carregamentos, as moegas são içadas pela ponte rolante, posicionadas no topo do reator e descarregadas. Para os reatores maiores as moegas são divididas ao meio ou em quatro quartos de modo a respeitar as dimensões rodo- viárias e possibilitar o carregamento das matérias-primas também em seus pontos de geração.
O processamento dos carvões pode ser simplificado ou completo. O processamento é simplificado quando é destinado a combustíveis a granel. É completo no caso do negro-de-fumo recuperado (NFR) obtido a partir da conversão de pneus que possuem primeiramente uma etapa de separação da malha de aço e em seguida moagem e classificação em partículas inferiores a 20 pm, 7 pm ou 1 pm.
Embora o CBT seja destruidor de organoclorados e dioxinas a- través da hermeticidade do processo e ruptura das ligações heterogéneas (C-O, C-H, C-CI, C-N, CI-0 etc), o aparelho da presente invenção permite destruição total das dioxinas através da instalação de berço de sal fundido (850QC) na saída dos gases não-condensáveis para os casos em que a ma- téria-prima contenha estes poluentes.
Na utilização de uma modalidade do reator da presente invenção as seguintes etapas básicas acontecem: secagem da matéria-prima externa; alimentação simultânea de todos os Tritubos através de moegas dotadas de válvulas borboletas bipartidas para cada Tritubo; aquecimento do reator a- través de gerador de gás quente utilizando qualquer tipo de combustível; resfriamento do reator utilizando o mesmo sistema de sucção do ar de aque- cimento (estando a fornalha desligada) para admissão de ar frio; extração e condensação fracionada ou não dos vapores e gases não-condensáveis gerados na conversão; resfriamento do trocador de calor utilizado na condensação de vapores e do trocador de calor do lavador de gases através de torre de refrigeração a freon ou criogênica para monômeros gerados pelos po- límeros.
A presente invenção utiliza compressores de ar comprimido nos seus instrumentos e sopradores para o suprimento de N2 ou C02 de modo a poder purgar os vapores e gases não-condensáveis. O processamento pode ser simplificado (despacho ou embalagem) ou completo (moagem e classificação dos carvões). Note-se que a partir do processamento de pneus usados é produzido o negro-de-fumo recuperado (NFR). A selagem pode ser feita total na tampa do reator ou individual em cada Tritubo. O descarregamento é realizado por basculamento. Há uma baixa geração de gases não- condensáveis no processamento do reator da presente invenção. A recuperação do calor dos gases não-condensáveis como combustível da fornalha acontece quando os mesmos não contêm compostos potencialmente tóxi- cos. A eliminação total de dioxinas e organoclorados é feita através da passagem dos gases não-condensáveis em berço de sal fundido;
Com o intuito de melhor entender o tipo de material a ser convertido no aparelho da presente invenção, faz-se aqui as seguintes classificação de Matérias-Primas:
J_a: Biomassa Limpa: Madeira, Resíduos de Reflorestamento e
Arbustos (carvão tipo vegetal e Alcatrão); ]_b: Biomassa Limpa com contaminação de Potássio: Resíduos Agrícolas, Capins, Bagaço e Palha da Cana (Carvão Vegetal e Alcatrão); M: Tortas, Farelos, Resíduos de Grãos, Graxa- ria Seca, Farinha de Carne, Farinha de Osso, Farinha de Sangue, etc. (Ó- leos Graxos e Carvão); \ : Excrementos (cama de frango, esterco de porco e gado), dependendo do teor de terra, esta classe passa a ser Classe II ou Classe IV (Óleos Graxos e Carvões); ]\Λ Lodos de Estação de Tratamento de Esgoto Doméstico e Industriais (Óleos Graxos e Carvões); V: Pneus, Borrachas (Óleo Limoneno/ Aromático e Negro-de-fumo Recuperado - NFR); VI: Plásticos e Polímeros (Monômeros e Carvões); Especial: Destruição de organoclorados e dioxinas (PCB, HCB, PCDD e PCDF) contidos em resíduos e solos contaminados (Monômeros, Cinzas e Carvões)
Tabela 1 - Massas Específicas Médias Aparentes das Várias Matérias- Primas
Classe Matéria-orima Kq/m3 la Biomassa Limpa: Madeira, Resíduos de Refloresta150 mento e Arbustos lb Biomassa Limpa com contaminação de Potássio: 150 Resíduos Agrícolas, Capins, Bagaço e Palha da Cana
II Tortas, Farelos, Resíduos de Grãos, Graxaria Seca, 580 Farinha de Carne, Farinha de Osso, Farinha de Sangue, etc.
III Excrementos (cama de frango, esterco de porco e 560 gado), dependendo do teor de terra, esta classe passa a ser Classe II ou Classe IV
IV Lodos de Estação de Tratamento de Esgoto Domés550 tico e Industriais
V Pneus, Borrachas 560
VI Plásticos e Polímeros 330
Especial Solos contaminados 1.600
Tabela 2 - Pesos das Várias Configurações dos Reatores
Figure imgf000018_0001
Breve descrição das figuras
A figura 1.1 ilustra uma vista frontal do reator de CBT com um Tritubo que é objeto da presente invenção.
A figura 1.2 ilustra o reator de CBT com um Tritubo que é objeto da presente invenção em corte horizontal A-A.
A figura 1.3 ilustra o reator de CBT com um Tritubo que é objeto da presente invenção em corte vertical B-B.
A figura 1.4 ilustram o reator de CBT com um Tritubo que é obje- to da presente invenção em uma vista em perspectiva.
A figura 2.1 ilustra uma vista frontal do reator de CBT com 32 Tritubos que é objeto da presente invenção. A figura 2.2 ilustra o reator de CBT com 32 Tritubos que é objeto da presente invenção em corte horizontal A-A.
A figura 2.3 ilustra o reator de CBT com 32 Tritubos que é objeto da presente invenção em corte vertical B-B.
A figura 3 ilustra um exemplo de um layout típico das Instalações de um reator de CBT que é objeto da presente invenção.
A figura 4 ilustra uma curva de aquecimento e resfriamento do Reator CBT e a taxa acumulada de reação da matéria contida no reator da presente invenção.
A figura 5 ilustra os fluxos de calor por unidade de comprimento transferidos por condução ao Tritubo e suas respectivas equações.
A figura 6 ilustra a variação do fluxo de calor transferido por condução pelo carvão formado e da taxa de aquecimento em relação a espessura anular do Tritubo.
Descrição detalhada das Figuras
As Figuras 1.1 a 1.4 a 2.1 a 2.3 ilustram os reatores CBT da presente invenção com 1 Tritubo e 32 Tritubos, respectivamente, os quais utilizam o mesmo conceito diferindo entre eles somente no tamanho. As peças 1 a 5 compreendem a estrutura suporte 1 , a caixa externa 2, o eixo de bascu- lamento 3, o motorredutor 4 e isolamento térmico do reator 5. As peças 7 a 10 formam o conjunto Tritubo que compreende um tubo interrno 7, o tubo intermediário 8, o tubo externo 9 e o tubo de purga 10. O Tritubo constitui o item principal da presente invenção e integra 8 conceitos a saber: reator de berço fixo, trocador de calor, berço de arraste de gás inerte, tamanho de via- bilização em função da baixa condução térmica causada pelo carvão formado durante o processo (isolante térmico), resfriamento com gás neutro (N2 ou CO2) direto para vencer o isolamento térmico do carvão formado, coincidência do tamanho do item anterior com o tamanho dos pneus de carros de passageiros, ocupação útil de aproximadamente 1/3 do volume total do rea- tor e baixa impedância na fluidodinâmica do gás de aquecimento e de resfriamento externo ao Tritubo.
As peças 11 a 17,compreendem o acoplamento de entrada de gás quente 11 , plenum de entrada de gás quente 12, espelho inferior 13 (homogenizador do fluxo de gás quente), espelho intermediário 14, duto de captação de gás de aquecimento 15, plenum de saída de gás de aquecimento 16 e acoplamento de saída de gás de aquecimento 17. Tais peças mos- tram o conjunto de alimentação e saída do gás quente gerado pela fornalha. A peça 18 mostra o espelho superior que suporta a carga dos Tritubos em operação (posição vertical) e durante o basculamento auxiliado pelas peças 13 (espelho inferior) 14 (espelho intermediário), 16 (plenum de entrada e saída de gás quente) com reduzida perda térmica para a estrutura externa devido ao uso de aços inoxidáveis e isolamento térmico. A peça 19 (figura 1 e 2) mostra a tampa do reator, a qual é fechada por meio de cilindro hidráulico. A referida tampa 19 é vedada por meio de borrachas macias e duras ao seu redor. A peça 25 mostra a saída de vapores e gases instalada na tampa 19, a qual é conectada ao venturi 55 (figura 3) através de acoplamento 27 acionado por cilindro hidráulicos 28. A peça 29 mostra o carrinho de movimentação da tampa com sistema de levantamento e rodízios de movimentação sobre trilhos. A peça 37 é uma possível substituição de 4 a 5 Tritubos que podem receber pneus de carros de passeio por um Tritubo que pode receber pneus de caminhões (figura 2.2). A proporção pneus de carros de passeio / pneus de caminhão é de 20/1 bastando a instalação de um único Tritubo em cada reator para processar os pneus de caminhão. A distância entre o tubo externo 9 e o tubo intermediário 8 do Tritubo para pneus de caminhão foge da distância eficiente de transferência de calor, deficiência essa compensada pelo aumento do tempo reacional (duas bateladas seguidas) através do bloqueio do seu descarregamento após a primeira reação. O bloqueio é realizado por um dispositivo de travamento que pode ser ou não- montado no próprio aparelho.
Na figura 2.1 pode ser visualizado um reator CBT com 32 Tritubos, o qual possui secção circular podendo ser constituído também com secção quadrada. Nesse caso o reator terá 4 Tritubos a mais que a versão anterior. Note-se que o Tritubo da presente invenção pode possuir qualquer formato em sua seção, desde que seja mantida a distância efetiva para a transferência de calor. Esta configuração tem um custo de investimento maior, porém menor custo operacional devido a maior produção por batelada. A prática industrial mostrará qual das duas configurações será economicamente mais vantajosa.
O reator CBT com 1 Tritubo e o reator CBT com 32 Tritubos compreendem ainda uma tampa global 19 para os Tritubos com anéis de vedação hermética de borracha refigerados 23, cilindro hidráulico 24 com engate rotativo para pressionar a tampa contra os anéis apoiados no corpo do reator, isolamento térmico 5 (por exemplo de fibra cerâmica) espelho su- perior 18 e estrutura suporte 1. Esta mesma tampa global é aplicada para o reator de secção quadrada. A diferença principal é que a estrutura é um perfil I no reator de secção quadrada e em perfil U no reator de secção circular. O reator CBT pode operar também com a opção de tampa individual para cada Tritubo.
As peças são as mesmas das opções anteriores variando apenas seu posicionamento no reator. O acoplamento de saída dos vapores e gases não-condensáveis da opção tampa global é constituído das seguintes peças: saída de vapores e gases não-condensáveis 25, flange 26, junta de expansão 27 e cilindro hidráulico 28. O desengate das peças 25 a 28 permi- te o movimento da tampa sobre o carrinho afim de liberar o basculamento do reator; a peça 27 é a junta de expansão e a peça 28 é um cilindro hidráulico que recua o engate; o conjunto de acoplamento é fixo na tubulação do Ven- turi 55 (figura 3) de condensação dos vapores e esfriamento dos gases não- condensáveis.
Um layout típico da Instalação do Reator CBT é ilustrado na figura 3 em que acontece a alimentação e o descarregamento do carvão. Uma moega de alimentação 40 de pneus é dotada das válvulas borboletas bipartidas para cada Tritubo; a moega está colocada na posição de espera. A moega 41 de alimentação de lodos contaminados, etc, está na posição de espera. Uma ponte rolante 42 pega as moegas das carretas e levanta para a posição de espera e posteriormente para cima do reator para a operação de alimentação; a ponte rolante é utilizada também para montagem e manuten- ção dos equipamentos. A moega de descarga 43 recebe o carvão do basculamento do reator, de modo que eles seguem para a esteira 44 e para o rolo desaglomerador 45, caindo na esteira 46. O aço no caso dos pneus é separado por um eletroímã 47, e segue para a esteira 48 e para a prensa enfar- dadeira 49. Após a esteira 46 o carvão segue pelo caracol 50 que transfere para o elevador de caçamba 51 que descarrega o carvão no container 52 quando este for utilizado para fins energéticos (combustível). No caso do processamento de pneus onde se obtém o negro-de-fumo recuperado (NFR) o elevador de caçamba 51 descarrega o carvão (NFR) no moinho de martelo 53 e daí para o classificador 54, dotado de filtro manga que libera o produto final classificado para o ensacador de Big-Bag ou sacos de papel.
Já a partir da saída de vapores e gases não-condensáveis 25, os mesmos seguem para o venturi 55 condensando no tanque 56 de onde são bombeados pela bomba 57 para a torre de condensação 58 através do trocador de calor 59. Após condensação o óleo passa pela centrífuga á- gua/óleo 60 indo para o tanque 61 dotado de bomba de estocagem 62. Os gases não-condensáveis são succionados pelo ventilador 63 que transfere os mesmos para o demister 64 (separador de condensados) e são encaminhados para a fornalha 66. No processamento de polímeros os gases não- condensáveis (monômeros) são condensados por refrigeração ou criogênia. Para os reatores CBT's dedicados ao processamento de matérias-primas contendo organoclorados e dioxinas os gases não-condensáveis passam por queimador de alta temperatura e berço de sal fundido. Os gases não- condensáveis após passagem pelo selo hidráulico 65 e são queimados na fornalha de alta temperatura 66 com chama de combustível auxiliar (GLP, GN, Acetileno, etc.) de modo que estes gases de combustão passem pelo berço de sal fundido 68 onde ocorre a destruição final dos organoclorados e dioxinas. Quando o teor de cloro nas matérias-primas for baixo, os gases não-condensáveis são queimados diretamente na fornalha de biomassa 67. Os gases de combustão de ambas as fornalhas 66, 67 se juntam na tubulação de gás quente do reator succionados pelo ventilador de gás quente 69. O controle de temperatura é feito através de damper (válvula) de ar frio na tubulação de ar quente.
Existem dois circuitos de resfriamento. O circuito externo compreende as mesmas tubulações de aquecimento, o qual é realizado através de insuflação pelo ventilador 70 e pela saída do gás quente na chaminé 71. Em razão da baixa condutividade térmica do carvão, é necessário resfriamento interno pela circulação de gás inerte (N2 ou C02) diretamente sobre o carvão na parte anular dos Tritubos, visando assim diminuir o período de resfriamento. Para tanto, utiliza-se a canalização de purga 10 e a saída de vapores e gases não-condensáveis 25, porém recircula-se os gases neutros no trocador de calor 72 através do Blower Roots 73.
Os lodos, tortas, excrementos, etc. necessitam serem secados com um máximo de 5% de umidade para evitar oxidação dos óleos. Esta secagem é realizada no conjunto secador utilizando-se qualquer tipo de secadores (tambor rotativo, leito fluidizado ou secador turbo "turbodryer"). Utili- zando - se a exaustão dos gases quentes do aquecimento do reator.
Na presente invenção ainda atuam outros equipamentos periféricos não-ilustrados, os quais são constituídos das seguintes unidades: torre de resfriamento de água, ou resfriador a freon ou criogênico, bombas de á- gua, compressor, tanque de ar comprimido, tanque e soprador de nitrogénio ou CO2-
A figura 4 ilustra uma curva de aquecimento e resfriamento do Reator de CBT e a taxa acumulada de conversão (fração da matéria-prima que se transforma em carvão, óleo e gases não-condensáveis) da matéria contida no reator. Adicionando o período de carga e descarga, o tempo total de processamento é de aproximadamente 6 a 8 horas permitindo 4 a 3 bateladas por dia.
O aparelho da presente invenção realiza a conversão termoquímica quase isotérmica de qualquer tipo de material orgânico em vários tipos de óleos, carvões e gases não-condensáveis de acordo com o tipo de maté- ria-prima utilizada. Os reatores quase isotérmicos situam-se em estreita faixa de viabilidade ditada pela diferença de temperatura ΔΤ entre a temperatura de entrada e saída do meio de aquecimento. Quando ΔΤ diminui (tendendo a zero) anula-se a capacidade de transferência de calor do meio de aquecimento para a matéria-prima que está sendo processada. O aumento da capacidade de transferência de calor com o objetivo de ampliar a capacidade de processamento e com isso alcançar viabilidade económica, exige o au- mento de ΔΤ, isto é, aumento da temperatura de entrada e/ou diminuição da temperatura de saída do meio de aquecimento. A primeira (aumento da temperatura de entrada) é limitada pela temperatura máxima de decomposição dos óleos (450QC) e a segunda (diminuição da temperatura de saída) é limitada pela temperatura mínima de conversão termoquímica dos materiais or- gânicos (3809C). A otimização dos processos tais como boa capacidade de processamento simultaneamente com boa qualidade dos produtos (óleos e carvões) depende de se diminuir o intervalo de temperatura de ΔΤ = 709C (máx) até ΔΤ < 15 9C.
A invenção alcançou período satisfatório de conversão de 3,0 h ditado pelo fato dos carvões formados durante o processo serem materiais isolantes, dificultando a transferência de calor com o tempo de processamento. A invenção resolve esta questão limitando a distância de transferência de calor a aproximadamente 175mm entre o diâmetro externo máximo de 0 = 650mm e o diâmetro interno mínimo de 0 = 300mm, ambos recebendo calor do meio de aquecimento. O espaço anular entre os diâmetros acima é o espaço útil de carregamento do reator com matéria-prima a ser processada resultando em uma taxa de secção útil de aproximadamente 33% dado pelos seguintes exemplos típicos não limitativos: secção do reator típico = 5,3 x 5,3 m; n9 de Tritubos = 36; secção útil de carregamento π/4 (0 ext2 - 0 int2) = π/4 (0,652 - 0,32) = 0,261 m2; taxa de secção útil = 36 x 0,261/5,3 x 5,3 = 0,33 = 33%. O mesmo período para o aquecimento do reator carregado é também utilizado para o resfriamento da carga abaixo de 100 QC antes da abertura do mesmo a fim de evitar a combustão espontânea dos carvões. A transferência de calor no Tritubo
Verifica-se que o fluxo de calor transferido por condução ao Tritubo ocorre simultaneamente por duas vias, a saber: a) pelo lado interno do tubo intermediário para o centro da região anular do Tritubo b) pelo lado ex- terno do tubo externo para o centro da região anular do Tritubo. A figura 5 apresenta os dois fluxos de calor transferidos por condução ao Tritubo e suas respectivas equações, sendo que: Ti = T5 e T3 são as temperaturas nas regiões quente e fria respectivamente; Ri , R2, R3, R4 e R5 os raios da secção reta do Tritubo; e a espessura da região anular do Tritubo; S a área anular do Tritubo; kA| e kc as conductividades térmicas do aço inox 31 OS e do carvão formado durante a conversão em baixa temperatura.
O fluxo de calor por condução é absorvido pela taxa de calor de aquecimento do Tritubo com a matéria-prima cujas equações seguem abai- xo:
Q = [(mAICpAI) + (mcCpc)](T1 -T3)
Q = [(p^LCpJ + ( cSCpD T, - T3)
° = PA,CpA|(T1 -T3) R - R2) + n(R§ -R^J + pCp^ -T3)2neRg
Dividindo-se pelo tempo t de aquecimento da matéria-prima em óleo e carvão tem-se:
o_ = ^Ρ ,ΟΡΑ,(Τ1 - Τ3)^ _ R } + n{Rl _ R,))+ ^Cp(T1 -T3)j 2πθΡ3 onde Q é o calor necessário para a conversão da matéria-prima, L o comprimento do Tritubo, t o tempo de aquecimento, pAi a densidade do aço inox 31 OS, CPAI O calor específico do aço inox, p a densidade e Cp o calor específico, onde os dois últimos são valores médios, mais próximos do carvão formado do que da matéria-prima inicial.
Verificou-se que tanto o fluxo de calor por condução como a taxa de calor de aquecimento variam em relação a espessura anular do Tritubo. Neste estudo foi analisado o comportamento de ambos os casos em função da espessura anular.
Ajuste das equações de transferência de calor aos dados experimentais Calor transferido por condução ao Tritubo
- Temperatura no interior do tubo intermediário do Tritubo: T
420 QC
- Temperatura no diâmetro médio do Tritubo: T3: 25 -C
- Temperatura no lado externo do tubo externo do Tritubo: T5: 420 °€ - Temperatura média do Tritubo: Tm = (420+25)/2 = 222,5 QC
- Conductividade térmica do aço inox 31 OS na temperatura Tm:
Figure imgf000026_0001
. Conductividade térmica média, mais próxima do carvão forma- do na temperatura Tm: kc = 0,9868 W/mQC (este valor está da mesma ordem que a condutividade do coque de 0,9519 W/mQC)
- Espessura anular do Tritubo: e = 175 mm
- Espessura da chapa de aço inox 31 OS: ΘΜ' 3 mm
- Raio médio do Tritubo: R3 = 230 mm
- Raio externo do tubo intermediário do Tritubo:
R2 = R3 - e/2 = 230 - 87,5 = 42,5 mm
Raio interno do tubo intermediário do Tritubo: R, = R2 - eAI = 142,5 - 3 = 139,5 mm
Raio interno do tubo externo do Tritubo: R4 = R3 + e/2 = 230 + 87,5 = 317,5 mm
Raio externo do tubo externo do Tritubo: R5 = R4 + eAI = 317,5 + 3 = 320,5 mm
- Fluxo de calor transferido pelo lado do tubo intermediário do Tritubo: q-i/L
- Fluxo de calor transferido pelo lado do tubo externo do Tritubo: q2/L
- Fluxo de calor total transferida para o Tritubo:— =— +—
L L L
Figure imgf000026_0002
q _ 2π(420 - 25) 2π(420 - 25)
L ~ ln(0, 425/0, 395) ln(0,230/0, 425) ln(0,3205/0,3 75) ln(0,3 75/0,230)
18,69 + 0,9868 18,69 + 0,9868 q 2481,86 2481,86
L 1,138 x 10""3 +0,4851 5,032 x 10~4 + 0,3267
= 5.104,21 + 7.584,82 = 12.689,03 W/m = 12,6890 kW/m
Taxa de calor de aquecimento da matéria-prima
- Calor específico médio, mais próximo do carvão formado na temperatura Tm: Cp: 1 ,0200 kJ/kgQC (este valor está da mesma ordem que o calor específico do coque de 1 ,0366 kJ/kgQC)
- Calor específico do aço inox 31 OS na temperatura Tm: CPAI: 0,46 kJ/kg°C
- Densidade média: p = 550 kg/m3
- Densidade do aço inox 31 OS: pAi = 7.900 kg/m3
- Tempo de aquecimento do Tritubo de 259C a 420QC: t = t:
5.400 s
- Taxa de calor necessária para aquecer a massa de matéria- prima
Figure imgf000027_0001
_Q_ = (7.900)(0,46)(420 - 25)V í(550)(1,0200)(420 - 25)
L x t 5.400 ) 5.400 )
- = 2,3049 + 10,3780 = 12,6828 kW/m
L x t
Análise das curvas de transferência de calor
A figura 6 apresenta a variação do fluxo de calor transferido por condução e da taxa de aquecimento em relação à espessura anular do Tritubo mantendo-se os demais parâmetros constantes. Ressaltam-se os se- guintes pontos:
O conjunto de dados experimentais, constantes dos materiais e os valores de condutividade térmica e calor específico próximos do carvão coque, resulta na espessura anular de 175 mm. Esta espessura, além de permitir o tratamento de pneus inservíveis de carros de passageiros inteiros, viabiliza uma produtividade económica para o tratamento de vários materiais (lodos, dejetos, tortas, farelos, madeira, etc).
A condutividade térmica do inox não é determinante e a condutividade do carvão determina a condução de calor e consequentemente todas as dimensões do Tritubo e do processo de conversão da presente invenção.
Note-se que a taxa de aquecimento do inox representa apenas
18,3% da taxa de aquecimento total, isto é, a matéria-prima e produtos (carvão) são os determinantes da mesma.
O motivo pelo qual o desempenho do Tritubo é idêntico para todas as matérias-primas é que o comportamento térmico é determinado pelas propriedades do carvão e todas as matérias-primas são convertidas no final a um carvão com propriedades próximas ao do coque.
O fluxo de calor do tubo interno representa 40% do fluxo total e do tubo externo 60%. Uma distribuição meio a meio é impossível porque resultaria em R3/R2 = R4/R3 .·. fí2 3 = R2R4 .·. R2 3 = (R3 - e/LXR3 + e/L) = R2. - (e/L)2 .·. e/L = 0■
Se levássemos em conta o aumento do tempo de conversão com a espessura anular, resultaria em valores menores para a taxa de calor de aquecimento para os valores maiores da espessura anular e consequentemente cruzamento das duas famílias de curvas em e > 175mm. O grande aumento do tempo de aquecimento, devido ao comportamento assintótico da curva de fluxo de calor, resulta em menor produção diária e inviabilização económica da tecnologia. A análise acima mostra que a espessura anular do Tritubo de 175 mm está em torno do valor ótimo, e é determinada pela condutividade térmica e calor específico do carvão formado, que estão próximos dos valores do coque qualquer que seja a matéria-prima inicial.
Outro detalhe da invenção é a operação por batelada com carregamento pela tampa superior e descarregamento por basculamento através de rotação em torno de eixo que passa pelo centro de gravidade. A tampa é vedada por anéis em O deslizantes (viton ou silicones) resfriados dando ao reator característica hermética (livre de oxigénio) para impedir a oxidação do óleo e carvão formados. Desta forma a invenção maximiza o rendimento dos produtos representados por cerca de 40% a 60% de carvão, 10% a 30% de óleo, 10% a 15% de água e 10% a 20% de gases não-condensáveis em relação à matéria-prima inicial. A abertura da tampa se dá por pequeno levantamento pneumático e deslizamento lateral por um carrinho motorizado
Outro detalhe da invenção é sua capacidade de processamento de vários tipos de matérias-primas gerando diferentes produtos, agrupadas nas seguintes classes: ]_a: Biomassa Limpa: Madeira, Resíduos de Reflores- tamento e Arbustos gerando carvão tipo vegetal e alcatrão; l_b: Biomassa Limpa com contaminação de Potássio: Resíduos Agrícolas, Capins, Bagaço e Palha da Cana, gerando também carvão tipo vegetal e alcatrão; M: Tortas, Farelos, Resíduos de Grãos; Graxaria Seca, Farinha de Carne, Farinha de Osso, Farinha de Sangue, etc. gerando óleos graxos e carvão; IN: Excre- mentos (cama de frango, esterco de porco, gado e outros animais), gerando óleos graxos e carvão; dependendo do teor de terra esta classe passa a ser Classe II ou Classe IV; ]V: Lodos de Estação de Tratamento de Esgoto Doméstico e Industriais, gerando óleos graxos ou carvão; V: Pneus, Borrachas gerando óleos limonenos/aromáticos, monômeros e negro-de-fumo recuperado - NFR, VI: Plásticos e polímeros em geral gerando os monômeros originais, carvões com cinza e gases não-condensáveis em temperatura a freon ou criogênicas e, Classe Especial: Destruição de organoclorados e dioxinas (PCB, HCB, PCDD e PCDF) contidos em resíduos e solos contaminados.
A capacidade de utilização de várias classes de matérias-primas e a obtenção de vários tipos de óleo e de carvões, associado às características de temperatura, tempo e hermeticidade anteriormente descrita, assegura várias alternativas económicas jamais alcançadas por dispositivos similares. Note-se que o nitrogénio ou C02 é utilizado como gás de arraste para dimi- nuir o tempo de permanência dos vapores de óleo no reator para evitar sua decomposição.
Há uma ampla faixa de capacidade de processamento com modelos, a qual se inicia com um 1 Tritubo. Por exemplo, pode-se ter modelos de 9 Tritubos (média de 31 t/dia) 64 tubos (média de 220 t/dia) ou até mais. Os tamanhos menores são limitados pelos resultados económicos e os tamanhos maiores pela resistência mecânica dos materiais no suporte das cargas totais do aparelho (peso próprio + matéria-prima) que podem alcançar no total inúmeras toneladas. A utilização de aços especiais de alta resistência na estrutura do aparelho e superligas na tubulação permitirá a fabri- cação de reatores com grande capacidade e com possibilidade de ativação com vapor até 850QC. O comprimento útil do dispositivo do Tritubo é variável, podendo ser aumentado em função do uso dos materiais avançados acima mencionados.
O carregamento do aparelho é feito através de moegas dotadas de válvulas borboletas bipartidas posicionadas acima de cada Tritubo. As moegas são previamente carregadas próximas ao CBT ou na origem de geração das matérias-primas e transportadas até ao CBT em caminhões e iça- das por pontes rolantes até ao piso no nível de alimentação do reator. As moegas ficam em posição de espera ("standy by") e após o reator ter descarregado a reação anterior, ela retorna para a posição de carregamento. Depois disso, as moegas são posicionadas sobre o aparelho, e a as válvulas borboletas bipartidas são abertas completando o carregamento de modo rápido (aproximadamente 4 minutos). Por exemplo, as moegas podem ser únicas no caso dos aparelhos pequenos (1 e 16 tubos), duplas no caso dos aparelhos médios (25, 36 e 49 tubos) e quádruplas no caso dos aparelhos gigantes (64 tubos ou mais). A divisão das moegas permite que as mesmas tenham larguras dentro dos padrões rodoviários (máx. 3,20m) permitindo operação "just in time" entre suprimento e processamento de biomassa eli- minando-se a necessidade de grandes depósitos de biomassa e resíduos. As modulações dos reatores, subdivisão das moegas com larguras dentro dos padrões rodoviários, capacidade de carga suportada pelos materiais estruturais determinam o tamanho dos aparelhos da presente invenção.
O reator da presente invenção ainda possibilita um descarregamento rápido (aproximadamente 2 minutos) dos produtos sólidos através do basculamento em torno de eixo passando pelo centro de gravidade do aparelho. O descarregamento é feito sobre moega vibratória que transporta os produtos sólidos para as etapas de acabamento de acordo com as exigências de mercado (rolos ou moinhos desintegradores, peneiras, separadores magnéticos, moinhos de martelo ou de disco dotados de classificadores e embalagem).
Legenda da Patente: Um Aparelho para Conversão de Baixa Temperatura
Item Descrição
01 Estrutura suporte do reator
02 Caixa estrutural externa
03 Eixo de basculamento
04 Motorredutor do reator
05 Isolação térmica
06 Conjunto Tritubo
07 Tubo interno menor do Tritubo Item Descrição
08 Tubo intermediário do Tritubo
09 Tubo externo do Tritubo
10 Tubo de entrada de gás inerte / purga de óleo pesado do
Tritubo
11 Acoplamento de entrada de gás quente
12 Plenum de entrada de gás quente
13 Espelho inferior
14 Espelho intermediário
15 Duto de captação de gás de aquecimento
16 Plenum de saída de gás de aquecimento
17 Acoplamento de saída de gás de aquecimento
18 Espelho superior
19 Tampa do reator
20 Estrutura da tampa
21 Isolamento térmico da tampa
22 Chapa de revestimento
23 Selagem da tampa
24 Cilindro hidráulico de vedação da tampa
25 Saída de vapores e gases não-condensáveis
26 Acoplamento de saída dos vapores e gases não- condensáveis
27 Junta de expansão
28 Cilindro de acoplamento da saída dos vapores e gases não- condensáveis
29 Carrinho de levantamento da tampa
30 Guia de movimentação vertical da tampa
31 Corrente de movimentação da tampa
32 Engrenagem de levantamento da tampa
33 Engrenagem de enrolamento da corrente
34 Cilindro de giro do eixo da engrenagem
35 Estrutura do carrinho
36 Rodízio
37 Substituição de 4 ou 5 Tritubos para pneus de passageiros por um Tritubo para pneu de caminhão Item Descrição
38 Matéria-prima (ex.: pneu inteiro)
39 Reator CBT - 32 Tubos
40 Alimentador de pneus
41 Alimentador de lodos
42 Ponte rolante
43 Moega de descarga de carvão
44 Esteira de transferência de carvão
45 Desaglomerador de carvão/aço
46 Esteira de carvão
47 Eletroímã
48 Esteira de aço residual
49 Prensa enfardadeira de aço
50 Caracol de carvão limpo
51 Elevador de caçamba de carvão
52 Container de carvão limpo
53 Moinho de martelo
54 Classificador de negro-de-fumo
55 Venturi
56 Tanque de condensado
57 Bomba de recirculação de óleo
58 Torre de condensação
59 Trocador de calor
60 Centrífuga água / óleo
61 Tanque de estocagem de óleo
62 Bomba do tanque de estocagem de óleo
63 Ventilador de gases não-condensáveis
64 Demister
65 Selo hidráulico
66 Fornalha
67 Berço de sal fundido
68 Ventilador de gás quente
69 Ventilador de resfriamento Item Descrição
70 Chaminé
71 Trocador de calor
72 Blower Roots

Claims

REIVINDICAÇÕES
1. Aparelho para decomposição térmica de qualquer tipo de material orgânico compreendendo:
uma caixa externa (2) com tampa hermética (19)
uma camada de isolamento térmico (5) disposta em toda superfície interna da caixa externa (2) e tampa, o referido aparelho caracterizado por compreender ainda
pelo menos uma estrutura com três tubos concêntricos dispostos internamente, posicionados substancialmente na vertical e com a espessura de suas paredes adequada para aquecimento por meio de gases de um lado interno e externo da referida estrutura.
2. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de que a estrutura com três tubos concêntricos compreende um tubo interno (7), um tubo intermediário (8) e um tubo externo (9), o aquecimento sendo realizado no lado externo e interno da região anular dos tubos.
3. Aparelho de acordo com a reivindicação 2, caracterizado pelo fato de que o espaçamento entre a parede interior do tubo externo (9) e a parede externa do tubo intermediário (8) é de aproximadamente 175 mm.
4. Aparelho de acordo com a reivindicação 1 , caracterizado pe- lo fato de que a estrutura com três tubos concêntricos possui paredes substancialmente finas cuja espessura varia entre 2 a 5 mm, preferencialmente, 3 mm e um comprimento substancialmente igual ao do aparelho.
5. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de que o fluxo de calor para aquecimento transferido por condução aos três tubos concêntricos ocorre simultaneamente pelo lado interno do tubo intermediário (8) para o centro da região anular dos três tubos concêntricos e pelo lado externo do tubo externo (9) para o centro da região anular dos três tubos concêntricos, os gases utilizados para aquecimento não possuindo contato físico com o material a ser decomposto.
6. Aparelho de acordo com a reivindicação 1 ou 5, caracterizado pelo fato de que o aquecimento feito pelos gases quentes em regime de processo permite que a diferença de temperatura entre a entrada e saída dos gases seja de aproximadamente 15°C.
7. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de que é um reator de operação por batelada.
8. Aparelho de acordo com a reivindicação 1 , caracterizado pe- lo fato de que o material utilizado na caixa externa é, preferencialmente, aço carbono.
9. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de que o material utilizado nos tubos concêntricos é, preferencialmente, Inox 310, podendo ser utilizados outros materiais resistentes às tem- peraturas médias entre 380°C e 420°C.
10. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de que o material utilizado no interior da caixa externa e tampa é, preferencialmente, uma manta refratária para isolamento térmico da estrutura externa e vedações de Viton ou silicone no fechamento da tampa do apa- relho.
11. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de compreender dispositivos de compressão de ar e sopradores para suprimento de N2 ou C02 para purgar vapores e gases não- condensáveis.
12. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de compreender um conjunto de alimentação e saída de gás de aquecimento (11-17).
13. Aparelho de acordo com a reivindicação 1 ou 6, caracterizado pelo fato de compreender um conjunto de alimentação e saída de gás de aquecimento compreendendo um acoplamento de entrada de gás quente (11), um plenum de entrada de gás quente (12), um espelho inferior (13) para homogenização do fluxo de gás quente, um espelho interrmediário (14), um duto de captação de gás de aquecimento (15), um plenum de saída de gás de aquecimento (16) e um acoplamento de saída de gás de aquecimen- to (17).
14. Aparelho de acordo com a reivindicação 1 , caracterizado pelo fato de compreender ainda, preferencialmente, dois circuitos de resfri- amento.
15. Aparelho de acordo com a reivindicação 14, caracterizado pelo fato de um primeiro circuito de resfriamento compreender as mesmas tubulações de aquecimento e ser realizado através de insuflação por um ventilador (70) e pela saída do gás quente na chaminé (71 ).
16. Aparelho de acordo com a reivindicação 14, caracterizado pelo fato de um segundo circuito de resfriamento compreender o resfriamento interno pela circulação de gás inerte (N2 ou C02) diretamente sobre o carvão na parte anular dos tubos.
17. Aparelho de acordo com a reivindicação 16, caracterizado pelo fato de que o segundo circuito de resfriamento compreende uma canalização de purga (10), uma saída de vapores e gases não-condensáveis (25) e a recirculação de gases neutros em um trocador de calor (72) através de Blower Roots (73).
18. Processo para decomposição térmica de qualquer tipo de material orgânico utilizando o aparelho como definido em qualquer uma das reivindicações 1 a 17, caracterizado pelo fato de compreender as etapas de
alimentação de material orgânico no interior do aparelho;
aquecimento com gases no lado interior e exterior de uma região anular localizada nos tubos concêntricos internos ao aparelho;
processamento com extração e condensação de óleo; resfriamento com gases; e
basculamento do aparelho.
19. Processo de acordo com a reivindicação 18, caracterizado pelo fato de
compreender a etapa de
manutenção de uma diferença de temperatura entre a entrada e saídas dos gases quentes de aquecimento em regime de processo de apro- ximadamente 5°C;
20. Processo de acordo com a reivindicação 18, caracterizado pelo fato de que o aquecimento para conversão do material de reação é realizado por aproximadamente 3 horas, preferivelmente, 165 minutos.
21. Processo de acordo com a reivindicação 18, caracterizado pelo fato de que o aquecimento é realizado externamente ao tubo externo e internamente ao tubo intermediário e tubo interno.
22. Processo de acordo com a reivindicação 18, caracterizado pelo fato de que o resfriamento para descarregamento do material da rea- ção é realizado por aproximadamente 2 horas.
23. Processo de acordo com a reivindicação 18, caracterizado pelo fato de que N2 é inserido no interior do aparelho para expulsão de oxi- génio.
24. Processo de acordo com a reivindicação 18, caracterizado pelo fato de que o aquecimento é realizado por meio da alimentação de gás quente simultaneamente a todos os tubos.
25. Processo de acordo com a reivindicação 18, caracterizado pelo fato de que compreende as etapas de
extração e condensação dos vapores e gases não-condensáveis gerados na conversão.
PCT/BR2009/000321 2008-10-16 2009-10-16 Aparelho e processo para decomposição térmica de qualquer tipo de material orgânico WO2010043011A2 (pt)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20090764693 EP2351812A2 (en) 2008-10-16 2009-08-16 Apparatus and process for thermal decomposition of any kind of organic material
CA 2740991 CA2740991A1 (en) 2008-10-16 2009-10-16 Apparatus and process for thermal decomposition of any kind of organic material
EA201170565A EA201170565A1 (ru) 2008-10-16 2009-10-16 Устройство и способ для термического разложения органического материала любого типа
MX2011004135A MX2011004135A (es) 2008-10-16 2009-10-16 Aparato y proceso para descomposicion termica de cualquier tipo de material organico.
CN2009801515869A CN102245737A (zh) 2008-10-16 2009-10-16 用于任何种类的有机材料的热解的装置和方法
JP2011531308A JP2012505931A (ja) 2008-10-16 2009-10-16 各種の有機材料の熱分解用装置および方法
US13/124,793 US8603404B2 (en) 2008-10-16 2009-10-16 Apparatus and process for thermal decomposition of any kind of organic material
ZA2011/03399A ZA201103399B (en) 2008-10-16 2011-05-10 Apparatus and process for thermal decomposition of any kind of organic material
US13/774,308 US20130270099A1 (en) 2008-10-16 2013-02-22 Apparatus and process for thermal decomposition of any kind of organic material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BRPI0804349 2008-10-16
BRPI0804349-3A BRPI0804349A2 (pt) 2008-10-16 2008-10-16 aparelho e processo para decomposição térmica de qualquer tipo de material orgánico
BRPI0804349-3 2008-10-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/124,793 A-371-Of-International US8603404B2 (en) 2008-10-16 2009-10-16 Apparatus and process for thermal decomposition of any kind of organic material
US13/774,308 Division US20130270099A1 (en) 2008-10-16 2013-02-22 Apparatus and process for thermal decomposition of any kind of organic material

Publications (3)

Publication Number Publication Date
WO2010043011A2 true WO2010043011A2 (pt) 2010-04-22
WO2010043011A8 WO2010043011A8 (pt) 2010-07-29
WO2010043011A3 WO2010043011A3 (pt) 2010-09-30

Family

ID=42046167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2009/000321 WO2010043011A2 (pt) 2008-10-16 2009-10-16 Aparelho e processo para decomposição térmica de qualquer tipo de material orgânico

Country Status (12)

Country Link
US (2) US8603404B2 (pt)
EP (1) EP2351812A2 (pt)
JP (1) JP2012505931A (pt)
CN (1) CN102245737A (pt)
BR (1) BRPI0804349A2 (pt)
CA (1) CA2740991A1 (pt)
CO (1) CO6410241A2 (pt)
EA (1) EA201170565A1 (pt)
MX (1) MX2011004135A (pt)
PE (1) PE20120200A1 (pt)
WO (1) WO2010043011A2 (pt)
ZA (1) ZA201103399B (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527710A (zh) * 2012-02-27 2012-07-04 山西省环境科学研究院 用于有机类污染场地土壤修复的热处理设备
CN103298911A (zh) * 2011-01-05 2013-09-11 皮吕姆创新国际股份有限公司 热反应器
CN110297008A (zh) * 2019-08-02 2019-10-01 南京工业大学 一种固体可燃物可控气氛热解测试系统及测试方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985558B (zh) * 2010-08-19 2012-01-04 西峡龙成特种材料有限公司 煤物质的分解设备
CN101985564B (zh) * 2010-08-19 2011-09-14 西峡龙成特种材料有限公司 煤物质的立式分解设备
CN102585863B (zh) * 2012-02-21 2014-01-15 西峡龙成特种材料有限公司 筒套型煤物质分解装置
JP5851883B2 (ja) * 2012-02-28 2016-02-03 三菱日立パワーシステムズ株式会社 非凝縮性ガスの排気装置およびガス化複合発電設備
US9140446B2 (en) * 2012-03-27 2015-09-22 Daniel R. Higgins Method and apparatus for improved firing of biomass and other solid fuels for steam production and gasification
ES1076772Y (es) * 2012-03-30 2012-07-27 Seat Sa Dispositivo recuperador de calor para chimenea de cogeneracion.
US9719526B2 (en) * 2012-06-08 2017-08-01 Oxea Corporation Vertical cooler with liquid removal and mist eliminator
CN104043378B (zh) * 2013-03-15 2017-04-05 于政道 一种汽爆机的入料压料机构
KR101515287B1 (ko) * 2013-05-20 2015-04-27 한국산업기술대학교산학협력단 열분해기
CN203820724U (zh) * 2014-03-31 2014-09-10 萧良英 用于热裂解生物质的连续式处理装置
CN105087077A (zh) * 2014-05-05 2015-11-25 汪春雷 一种内热立式垃圾全气化炉
ES2557492B1 (es) * 2014-07-23 2016-11-03 Universidad De León Pirolizador móvil y autotérmico
KR101744558B1 (ko) * 2015-10-06 2017-06-20 서울시립대학교 산학협력단 폐타이어 처리용 2 단 열분해 장치, 이를 이용한 폐타이어 처리 방법 및 시스템
ITUB20160894A1 (it) * 2016-02-19 2017-08-19 Ferram Recycling S R L Procedimento per l’ottenimento di materia prima derivante da materiale di scarto
CN106093273B (zh) * 2016-07-13 2018-08-28 大唐南京环保科技有限责任公司 一种全尺寸蜂窝催化剂反应单元液压密封系统及其工作方法
WO2018149424A1 (en) * 2017-02-15 2018-08-23 Bioland Energy Limited Unique process produces electricity through tyre pyrolysis
KR101736838B1 (ko) * 2017-04-20 2017-05-29 채재우 물과 연소공기의 열분해를 이용한 하이브리드형 연소장치
KR102224770B1 (ko) * 2017-08-30 2021-03-09 서큘러 리소시즈 (아이피) 피티이 리미티드 폐기물 처리 시스템
CN110118435B (zh) * 2019-05-05 2021-10-29 四川奥格莱能源科技有限公司 一种壁挂炉热交换器
BR102021013295A2 (pt) * 2021-07-05 2023-01-10 Antonio Delfino Dos Santos Neto Processo e unidade produtiva para obtenção de carvão vegetal
CN113684050A (zh) * 2021-08-31 2021-11-23 江苏融道复合材料产业技术研究院有限公司 一种生物沥青材料用高温裂解设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB233335A (en) 1924-05-05 1925-07-16 Raphaeel Malbay Apparatus for the carbonisation and distillation of wood
GB330980A (en) 1929-03-22 1930-06-23 Charles Burton Winzer Improvements in or relating to the carbonisation of coal, peat, wood and the like
GB362522A (en) 1929-10-01 1931-12-10 Franz Puening Improvements in coking apparatus
JPS56115386A (en) 1980-02-14 1981-09-10 Sugio Matsumoto Carbonization oven utilizing heat of waste tire, followed by preparing rubber coke fuel as by-product
JPS5813693A (ja) 1981-07-15 1983-01-26 Takehiro Aikawa 廃タイヤ熱分解採油装置
US5095040A (en) 1991-02-11 1992-03-10 Ledford Charles D Process for conveying old rubber tires into oil and a useful residue
JPH10279950A (ja) 1997-04-08 1998-10-20 Ikunou Shigen Kaihatsu:Kk 炭化方法および炭化装置
WO2005121278A1 (fr) 2004-06-09 2005-12-22 Mencarelli, Renato Installation et procédé pour la production de substances combustibles par dépolymérisation de produits en gomme

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1955041A (en) * 1932-01-04 1934-04-17 Francis S Woidich Simultaneous treatment of crude petroleums or the like and bituminous coals or the like
JPS59203683A (ja) * 1983-05-02 1984-11-17 Ryozo Hotta 廃タイヤの乾留装置
JPS6023480A (ja) * 1983-07-18 1985-02-06 Mikami Junichi ゴム等の油分含有物の乾留装置
JP3001845U (ja) * 1994-03-09 1994-09-06 株式会社ジェ・シィ・エー ゴム等の油分含有物の乾留装置
RU2078111C1 (ru) * 1994-05-10 1997-04-27 Акционерное общество "Татарский научно-исследовательский и проектно-конструкторский институт нефтяного машиностроения" Печь для пиролиза углеводородного сырья
US5628260A (en) * 1995-02-21 1997-05-13 Rongved; Paul I. Vertical ring processor
JPH101678A (ja) * 1996-06-19 1998-01-06 Mitsui Eng & Shipbuild Co Ltd 熱分解反応炉
JP2000290661A (ja) * 1999-04-05 2000-10-17 Nippon System Kanryu Kk ゴム等の油分含有物の乾留装置
US6585899B1 (en) * 1999-11-10 2003-07-01 Microseptec, Inc. Mobile waste treatment system
US6474249B1 (en) * 2000-08-18 2002-11-05 John Bruce Smith Mobile furnace and method of facilitating removal of material from workpieces
JP2004131676A (ja) * 2002-10-09 2004-04-30 Yoshinobu Kobayashi 廃棄物炭化処理装置
FR2891162B1 (fr) * 2005-09-28 2008-05-09 Commissariat Energie Atomique Reacteur et procede pour le traitement d'une matiere dans un milieu reactionnel fluide
ES2427123T3 (es) * 2006-12-28 2013-10-28 N.M.G Environmental Development Co., Ltd. Método para eliminación de material orgánico residual y aparato para el método.
CN101139526A (zh) * 2007-06-27 2008-03-12 中国科学院生态环境研究中心 一种生物质热解液化装置及其使用方法
KR100846897B1 (ko) * 2008-01-25 2008-07-17 이종호 가연성 폐기물의 열분해 처리 시스템과 이를 이용한 폐기물처리 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB233335A (en) 1924-05-05 1925-07-16 Raphaeel Malbay Apparatus for the carbonisation and distillation of wood
GB330980A (en) 1929-03-22 1930-06-23 Charles Burton Winzer Improvements in or relating to the carbonisation of coal, peat, wood and the like
GB362522A (en) 1929-10-01 1931-12-10 Franz Puening Improvements in coking apparatus
JPS56115386A (en) 1980-02-14 1981-09-10 Sugio Matsumoto Carbonization oven utilizing heat of waste tire, followed by preparing rubber coke fuel as by-product
JPS5813693A (ja) 1981-07-15 1983-01-26 Takehiro Aikawa 廃タイヤ熱分解採油装置
US5095040A (en) 1991-02-11 1992-03-10 Ledford Charles D Process for conveying old rubber tires into oil and a useful residue
JPH10279950A (ja) 1997-04-08 1998-10-20 Ikunou Shigen Kaihatsu:Kk 炭化方法および炭化装置
WO2005121278A1 (fr) 2004-06-09 2005-12-22 Mencarelli, Renato Installation et procédé pour la production de substances combustibles par dépolymérisation de produits en gomme

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298911A (zh) * 2011-01-05 2013-09-11 皮吕姆创新国际股份有限公司 热反应器
CN103298911B (zh) * 2011-01-05 2015-01-21 皮吕姆创新国际股份有限公司 热反应器
CN102527710A (zh) * 2012-02-27 2012-07-04 山西省环境科学研究院 用于有机类污染场地土壤修复的热处理设备
CN102527710B (zh) * 2012-02-27 2013-07-03 山西省环境科学研究院 用于有机类污染场地土壤修复的热处理设备
CN110297008A (zh) * 2019-08-02 2019-10-01 南京工业大学 一种固体可燃物可控气氛热解测试系统及测试方法
CN110297008B (zh) * 2019-08-02 2024-03-08 南京工业大学 一种固体可燃物可控气氛热解测试系统及测试方法

Also Published As

Publication number Publication date
CN102245737A (zh) 2011-11-16
ZA201103399B (en) 2012-07-25
BRPI0804349A2 (pt) 2010-07-13
CO6410241A2 (es) 2012-03-30
EP2351812A2 (en) 2011-08-03
JP2012505931A (ja) 2012-03-08
US20130270099A1 (en) 2013-10-17
CA2740991A1 (en) 2010-04-22
US20110315349A1 (en) 2011-12-29
US8603404B2 (en) 2013-12-10
WO2010043011A3 (pt) 2010-09-30
MX2011004135A (es) 2011-07-04
EA201170565A1 (ru) 2011-12-30
WO2010043011A8 (pt) 2010-07-29
PE20120200A1 (es) 2012-03-09

Similar Documents

Publication Publication Date Title
WO2010043011A2 (pt) Aparelho e processo para decomposição térmica de qualquer tipo de material orgânico
WO2021179566A1 (zh) 一种生物质热解炭化催化一体化方法及装置
US20200002630A1 (en) Pyrolysis processing of solid waste from a water treatment plant
CN110451754A (zh) 一种油泥热解的无害化处理方法
JP5683575B2 (ja) 有機廃棄物の熱分解ガス化のための新規な方法
JP6124494B1 (ja) 植物性バイオマス半炭化物の製造装置
BRPI0621931A2 (pt) sistema de extração de óleo para a pirólise de materiais residuais de plástico e método de extração de óleo para a pirólise de materiais residuais de plástico
WO2011091499A1 (pt) Equipamento trocador de calor vibrante para conversão de baixa temperatura para tratamento de resíduos orgânicos e processo de tratamento de residuos orgânicos mediante emprego de equipamento trocador de calor vibrante para conversão de baixa temperatura
AU2765395A (en) Improved pyrolytic conversion of organic feedstock and waste
PT106729A (pt) Processo de conversão de biomassa de elevada eficácia energética
US10899967B2 (en) Molecular pyrodisaggregator
CN107118788B (zh) 一种粉末状物料热解炉
BRPI0903587A2 (pt) processo de pirólise de biomassa e resìduos sólidos em múltiplos estágios
WO2015087568A1 (ja) 鶏糞処理方法及び鶏糞処理システム
EP3265721B1 (en) Temperature profile in an advanced thermal treatment apparatus and method
AU2012392294A1 (en) Apparatus and method for material treatment of raw materials
CN207121573U (zh) 一种粉沫状物料热解炉
EA028666B1 (ru) Способ переработки изношенных шин и комплекс устройств для его осуществления
CA3227040A1 (en) Multifunctional indirectly heated rotary kiln
RU144666U1 (ru) Реактор для пиролизной переработки органосодержащих отходов
WO2023178400A1 (pt) Processo integrado de pirólise e gaseificação de resíduos e seus derivados e o equipamento para sua realização
RU2545577C1 (ru) Реактор для пиролизной переработки органосодержащих отходов
BRC20903587E2 (pt) Dispositivo e processo para tratamento térmico de biomassa e resíduos sólidos em múltiplos estágios
BRC10903587E2 (pt) Dispositivo e processo para tratamento térmico de biomassa e resíduos sólidos em múltiplos estágios
JP2002537475A (ja) 低い遊離酸素含有量を有する廃棄物の熱分解処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151586.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09764693

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011531308

Country of ref document: JP

Ref document number: 2740991

Country of ref document: CA

Ref document number: 000912-2011

Country of ref document: PE

Ref document number: MX/A/2011/004135

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3047/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009764693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201170565

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 11059447

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 13124793

Country of ref document: US