WO2021179566A1 - 一种生物质热解炭化催化一体化方法及装置 - Google Patents

一种生物质热解炭化催化一体化方法及装置 Download PDF

Info

Publication number
WO2021179566A1
WO2021179566A1 PCT/CN2020/116634 CN2020116634W WO2021179566A1 WO 2021179566 A1 WO2021179566 A1 WO 2021179566A1 CN 2020116634 W CN2020116634 W CN 2020116634W WO 2021179566 A1 WO2021179566 A1 WO 2021179566A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
carbonization
biochar
tar
flue gas
Prior art date
Application number
PCT/CN2020/116634
Other languages
English (en)
French (fr)
Inventor
姚宗路
郝晓文
赵立欣
贾吉秀
丛宏斌
霍丽丽
Original Assignee
中国农业科学院农业环境与可持续发展研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业科学院农业环境与可持续发展研究所 filed Critical 中国农业科学院农业环境与可持续发展研究所
Priority to US17/429,402 priority Critical patent/US20220213386A1/en
Publication of WO2021179566A1 publication Critical patent/WO2021179566A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/12Applying additives during coking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/32Other processes in ovens with mechanical conveying means
    • C10B47/44Other processes in ovens with mechanical conveying means with conveyor-screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/18Modifying the properties of the distillation gases in the oven

Definitions

  • the invention belongs to the field of biomass pyrolysis, and in particular relates to a method and device for catalyzing biomass pyrolysis and carbonization.
  • biomass pyrolysis and catalyst regeneration are carried out separately, and there is a problem of high energy consumption.
  • Both the carbonization furnace and the catalytic chamber of the pyrolysis equipment require external heat sources for heating.
  • the carbonization furnace and the tar catalytic chamber of the pyrolysis equipment are generally separated in structure.
  • the two processes of pyrolysis and catalysis are carried out separately, and the external heat sources of the carbonization furnace and the catalytic chamber are independently supplied with heat.
  • the external heat source of the catalytic chamber is mostly heated by electric heating equipment, or the pyrolysis raw gas is heated by the preheating furnace and then enters the catalytic chamber.
  • This system structure has high energy consumption, high cost, and low energy efficiency.
  • catalyst is the main factor that affects the effect of catalytic cracking.
  • the most commonly used and most of the types of catalysts mentioned in the literature mainly include natural ore catalysts and precious metal catalysts.
  • noble metal catalysts such as nickel-based catalysts will quickly deactivate due to the presence of sulfur and tar, and are expensive.
  • Calcined dolomite and limestone and other ore catalysts have low mechanical strength, low life and poor thermal stability. Olivine and iron-based catalysts require higher calcination temperatures.
  • the purpose of the present invention is to provide a biomass pyrolysis carbonization catalysis integrated method and device to solve the problems of high energy consumption, high cost, and low energy utilization rate existing in the existing method.
  • an integrated catalytic method for biomass pyrolysis and carbonization including:
  • the waste biomass of agriculture and forestry described in 1) can be various existing biomass that can be pyrolyzed and charred, including crop straw, rice husk or wood chips.
  • the waste biomass of agriculture and forestry described in 1) is crop stalks, more preferably corn stalks.
  • the raw materials described in 1) usually need to be pre-processed such as drying and crushing.
  • the pre-processing is to dry the raw materials to a water content of 10-15%, then mechanically crush and granulate them through crushing and drying, and process them into particles with a size of less than 5 cm.
  • the pyrolysis and carbonization reaction is carried out in a pyrolysis and carbonization device (such as a rotary pyrolysis and carbonization furnace), and 2) the tar catalytic cracking reaction is carried out in a catalytic device, so
  • a pyrolysis and carbonization device such as a rotary pyrolysis and carbonization furnace
  • the tar catalytic cracking reaction is carried out in a catalytic device
  • the external heat source used to maintain 1) the pyrolysis carbonization reaction temperature and 2) the tar catalytic cracking reaction temperature is 1) a part of the pyrolysis oil and gas obtained
  • the pyrolysis carbonization reaction and the tar catalytic cracking reaction provide heat.
  • the catalytic device is placed inside the pyrolysis and carbonization device, and at the same time, a flue gas channel isolated from the reaction material is provided inside the pyrolysis and carbonization device; a part of the heat obtained by burning 1) Decompose the oil-gas mixture and/or 2) obtained small-molecule combustible gas and light tar, return the flue gas produced by combustion to the flue gas channel inside the pyrolysis and carbonization device, and use the waste heat of the flue gas as the The external heat source for 1) the pyrolysis carbonization reaction and the 2) the tar catalytic cracking reaction simultaneously supply heat through the flue gas channel to dissipate heat.
  • the flue gas reflux is guided through the flue gas channel, so that the refluxed flue gas is 2) the tar catalytic cracking reaction and 1) the pyrolysis carbonization reaction.
  • the high-temperature flue gas can firstly supply heat for the catalytic cracking reaction of tar with a higher reaction temperature, and then supply heat for the pyrolysis carbonization reaction with a lower reaction temperature, so that the cascade full utilization of energy can be realized.
  • the biochar catalyst described in 2) can be selected from various biochar catalysts available for tar catalytic cracking.
  • the biochar catalyst obtained in 3) is applied to 2) as the biochar catalyst used in the catalytic cracking of tar.
  • the method for preparing the matured biochar into a biochar catalyst described in 3) may be a variety of existing methods.
  • the matured biochar is processed by high-temperature roasting, impregnated nickel-loaded, magnetic stirring, filter washing and drying, etc., specifically including the following steps: putting it in a tube furnace at a temperature of 5°C/min The heating rate is increased to 850°C. As the temperature increases, the specific surface area of the biochar increases, and then it is roasted at a high temperature in a nitrogen atmosphere for 2h to obtain the activated biochar; then the nickel is loaded by the impregnation method and Ni(NO 3 ) 2 ⁇ 6H 2 O is the precursor.
  • the most preferred biomass pyrolysis carbonization catalytic method of the present invention includes:
  • biochar After heating and curing the biochar obtained in b) at 530 ⁇ 650°C, put it in a tube furnace, heat it up to 850°C at a heating rate of 5°C/min, and roast it at high temperature under nitrogen atmosphere for 2h to obtain the activated product.
  • Biochar then take the activated biochar and add it to a solution of Ni(NO 3 ) 2 ⁇ 6H 2 O dissolved in deionized water, and stir at 60°C for 2 hours; then filter and wash with deionized water and then oven at 90°C Drying for 12h; finally, calcining at 500°C for 2h under a nitrogen atmosphere and holding for 2h to obtain a biochar catalyst.
  • the obtained biochar catalyst is used in the catalytic device described in c) as a biochar catalyst for tar catalytic cracking.
  • the present invention also provides an integrated equipment for the biomass pyrolysis carbonization catalytic method, including a screw feeder, a pyrolysis carbonization device and a catalytic device;
  • the pyrolysis and carbonization device includes a rotary pyrolysis and carbonization furnace, a spiral plate conveying mechanism, and a transmission system; the rotary pyrolysis and carbonization furnace is provided with an inlet and an outlet; the spiral plate conveying mechanism is penetratingly arranged in the The interior of the rotary pyrolysis and carbonization furnace is used to actively transport materials; the transmission system and the spiral plate conveying mechanism are connected outside the rotary pyrolysis and carbonization furnace by a transmission assembly, and are used to drive the spiral with external power.
  • the operation of the copy board conveying mechanism is performed by a transmission assembly, and are used to drive the spiral with external power.
  • the screw feeder and the spiral plate conveying mechanism are hermetically connected at the inlet end of the rotary pyrolysis carbonization furnace, and are used to input materials into the spiral plate conveying mechanism, and then convey the materials to the rotary pyrolysis carbonization furnace internal;
  • the catalytic device is arranged inside the rotary pyrolysis and carbonization furnace, and is connected to the outlet of the rotary pyrolysis and carbonization furnace to form an integral body through dynamic sealing; the inside of the catalytic device is loaded with a biochar catalyst.
  • the specific process is: using agricultural waste biomass as raw materials, pre-processing the raw materials, and passing the pre-processed raw materials under sealed conditions
  • the screw feeder, the screw conveyor mechanism and the transmission system realize feeding and uniform distribution.
  • the raw materials undergo pyrolysis reaction at 630-720°C in the rotary pyrolysis and carbonization furnace, and the pyrolysis is obtained after pyrolysis and carbonization.
  • Oil and gas mixture and biochar; pyrolysis oil and gas mixture and biochar enter the catalytic device integrated with the rotary pyrolysis carbonization furnace to achieve carbon gas separation.
  • the pyrolysis oil and gas mixture is in the catalytic device at 690-850°C Carry out the tar catalytic process.
  • the biochar catalyst in the catalytic device catalytically cracks the tar particles in the pyrolysis oil and gas mixture into small molecular gases such as methane and hydrogen; at the same time, the biochar enters the catalytic device to be further matured at 530-650°C. Part of the matured biochar can be used as a new catalyst.
  • the rotary pyrolysis and carbonization furnace is further provided with a flue gas recirculation device to utilize the waste heat of the combustion flue gas;
  • the flue gas recirculation device includes The flue gas inlet near the outlet of the furnace, the flue gas channel arranged along the inner wall of the rotary pyrolysis and carbonization furnace, and the flue gas outlet arranged near the inlet of the rotary pyrolysis and carbonization furnace; the flue gas channel is used for Lead the flue gas to flow back and isolate the flue gas and reaction materials.
  • Part of the combustible gas after catalytic cracking and the flue gas produced by the combustion of products such as separated wood tar can be returned to the pyrolysis carbonization device through the flue gas reflux device, and the waste heat of the refluxed flue gas can be used for the above processes (catalytic cracking and thermal Decarbonization) for stepped heating.
  • the flue gas generated by the combustion enters the rotary pyrolysis carbonization furnace through the flue gas inlet, it forms a countercurrent flow with the pyrolysis material along the flue gas channel, and leaves the rotary pyrolysis carbonization through the exhaust port furnace.
  • the refluxed flue gas will first pass through the catalytic device which is arranged in the rotary pyrolysis and carbonization furnace and is connected to the outlet of the rotary pyrolysis and carbonization furnace.
  • the gas can be used as an external heat source to supply heat to the catalytic device to maintain a higher tar catalytic cracking temperature; then the flue gas passes through the other parts of the rotary pyrolysis and carbonization furnace from the outlet to the inlet, during which the remaining heat can be removed As an external heat source, it is provided to the pyrolysis carbonization reaction with a lower reaction temperature in the rotary pyrolysis carbonization furnace.
  • the inside of the catalytic device further includes a catalytic chamber, the inside of the catalytic chamber is loaded with a biochar catalyst, and the top of the catalytic chamber is provided with an air outlet communicating with the outside.
  • a thermal insulation carbonization device communicating with the catalytic chamber is arranged below the chamber, and a carbon outlet is provided at the bottom of the thermal insulation carbonization device.
  • the tar in the pyrolysis oil and gas mixture is decomposed into small molecular gases such as methane under the action of the biochar catalyst and heating, and the tar is catalyzed
  • part of the heavy tar is cracked into light tar, and part of the tar is converted into gas
  • the CO 2 , water vapor and other components in the pyrolyzed oil-gas mixture undergo gasification reaction with biochar to convert into CO and H 2 And other combustible components; all gases flow out from the gas outlet on the top of the catalytic chamber for collection and utilization;
  • the biochar enters the thermal insulation carbonization device below the catalytic chamber, and after thermal insulation and maturation, a biochar carrier capable of preparing a biochar catalyst is obtained.
  • the catalytic chamber is loaded with the biochar catalyst through a pull-out structure, so that the replacement of the catalyst is convenient and easy, and the catalytic effect can be guaranteed to last.
  • the spiral plate conveying mechanism is installed on the inner wall of the rotary pyrolysis carbonization furnace, and the spiral plate conveying mechanism is provided with a four-wire spiral plate for actively conveying materials; Ensure that the filling factor of the material in the conveying process is 0.2.
  • the inclination angle of the spiral plate is set at an angle of 30-60°.
  • a serpentine tube is further provided between the screw feeder and the spiral plate conveying mechanism, and a water seal for sealing is provided in the serpentine tube as a safety explosion-proof
  • the device is used for emergency pressure relief when a local deflagration or explosion occurs after a large amount of air is abnormally entered into the system.
  • the pyrolysis furnace and the catalytic device in the traditional pyrolysis device are connected together by dynamic sealing to form a whole body.
  • the waste heat of the flue gas is returned to supply heat to the pyrolysis furnace and the catalytic device at the same time, which effectively reduces heat loss and improves the overall Thermal efficiency and catalytic efficiency, clean and efficient.
  • the pyrolysis product biochar and pyrolysis gas are recycled and burned, and the high-temperature flue gas produced provides heat for pyrolysis, which saves fuel costs and is environmentally friendly and low-carbon.
  • the treated nickel-based biochar catalyst is used to effectively remove and transform the tar in the pyrolysis raw gas at high temperatures.
  • the more pore structure and larger specific surface area of biochar provide more active sites for the catalytic reaction, thereby promoting the catalytic conversion of tar.
  • the nickel-based biochar catalyst in the present invention has high activity, good stability, low preparation cost, environmental protection and high efficiency. Has long-lasting stability and good resistance to carbon deposition.
  • the catalyst is inserted in a pull-out structure design, which is convenient and easy to replace the catalyst, which can ensure the long-lasting catalytic effect.
  • the designed processing capacity of the equipment and method of the present invention for biomass raw materials such as corn stalks is 500 kg/h.
  • the average residence time of the materials in the pyrolysis carbonization furnace is 30 minutes.
  • the conveying mechanism adopts a four-wire spiral plate design.
  • the bulk density of the materials is 120kg/m 3 , the length of the reaction chamber is 8m, and the material filling factor is 0.2.
  • Fig. 1 is a schematic structural diagram of an integrated pyrolysis and carbonization catalytic device in Example 1 of the present invention.
  • Figure 2 is a flow chart of the pyrolysis carbonization catalysis method described in Example 2 of the present invention.
  • 1-Pyrolysis and carbonization device 11-Rotary pyrolysis and carbonization furnace, 111-screw plate conveying mechanism, 112-burner, 113-transmission system, 12-screw feeder, 13-safety explosion-proof device, 14-dynamic seal Device, 15-catalysis chamber, 151-bio-char catalyst, 152-catalyst placement sieve plate, 153-pressure gauge, 154-dust sedimentation insulation carbonization device, 155-outlet, 157-charcoal outlet, 2-return flue gas waste heat Utilization device, 21- flue gas inlet, 22- flue gas channel, 23- baffle plate, 24- insulation layer, 25- flue gas outlet.
  • the pyrolysis and carbonization catalysis integrated device used in the present invention includes a screw feeder 12, a pyrolysis and carbonization device 1, and a catalytic device.
  • the pyrolysis and carbonization device 1 includes a rotary pyrolysis and carbonization furnace 11, and a screw feeder.
  • the plate conveying mechanism 111, the transmission system 113, the catalytic device is located in the inner cavity of the pyrolysis and carbonization device 1, the catalytic device is arranged at the end of the rotary pyrolysis and carbonization furnace 11 near its outlet, the outlet end of the rotary pyrolysis and carbonization furnace 11 and the catalytic device Connected as a whole, the rotary pyrolysis and carbonization furnace 11 is provided with a spiral plate conveying mechanism 111, which is heated by a burner 112, and the rotary pyrolysis and carbonization furnace 11 is connected to a transmission system 113.
  • the catalytic device includes a catalytic chamber 15, a pressure gauge 153, a dust settling insulation carbonization device 154, and an air outlet 155.
  • the catalytic chamber 15 is provided with a pressure gauge 153, and the bottom of the catalytic chamber 15 is equipped with a dust settling insulation carbonization device 154.
  • the bottom of the device is provided with a charcoal outlet 157.
  • the backflow flue gas waste heat utilization device 2 includes a flue gas inlet 21, a flue gas outlet 25, a flue gas channel 22, and a fold
  • the flow plate 23, the insulation layer 24, the flue gas inlet 21 is located at the outlet end of the rotary pyrolysis carbonization furnace 11, and the smoke exhaust port 25 is located at the inlet end of the rotary pyrolysis carbonization furnace 11.
  • the flue gas inlet direction is opposite to the material travel direction.
  • baffle 23 is also provided on the inner wall of the rotary pyrolysis and carbonization furnace 11.
  • the baffle 23 is spirally located in the flue gas channel 22; the flue gas channel 22 and the spiral
  • the space where the board conveyor mechanism 111 is located is isolated from each other.
  • the spiral plate conveying mechanism 111 actively transports materials through a four-wire spiral plate.
  • the spiral plate is processed in the shape of a spiral blade and is distributed along the spiral in one direction. There are four spiral lines.
  • the plate pitch is 500mm according to the size of the rotary drum.
  • the height is 500mm and the thickness is 10mm.
  • Each blade is distributed by 90 degrees, and the four blades are evenly distributed 360 degrees on the entire internal surface of the reactor to ensure that the material is conveyed at a uniform speed and the filling factor of the material during the conveying process is 0.2.
  • the inclination angle of the spiral plate is set at an angle of 30-60°.
  • Spiral copy board not only has the ability of screw pushing and conveying, but also has the ability of turning, so that the material is heated evenly during the whole forward pushing process, which improves the stability and order of material transportation, and can take into account the heat exchange efficiency of the system and the uniform carbonization. sex.
  • One end of the spiral plate conveying mechanism is also provided with a supporting frame.
  • the supporting frame is provided with a transmission mechanism.
  • the transmission mechanism is a motor and one of a gear, a sprocket or a belt connecting the motor and the spiral plate conveying mechanism.
  • the feeding process of the screw feeder 12 is stable, and there will be no screw blockage, and it can transport materials with larger particle size and is suitable for short-distance transportation.
  • a safety explosion-proof device 13 is provided at one end of the spiral plate conveying mechanism 111.
  • the safety explosion-proof device 13 is a serpentine tube, and a water seal for sealing is provided in the serpentine tube.
  • the safety explosion-proof device 13 adopts a U-shaped water seal, which is used for emergency pressure relief when a local deflagration or explosion occurs after a large amount of air is abnormally entered into the system.
  • the burner 112 is composed of a fuel unit and a gas unit.
  • the fuel oil unit is respectively connected with the outlet of the rotary pyrolysis carbonization furnace 11 and the flue gas inlet 21 of the return flue gas waste heat utilization device 2 through pipes, and is used to burn part of the pyrolysis gas produced by pyrolysis and carbonization, and then transport the produced flue gas to Reflux flue gas waste heat utilization device 2;
  • the gas unit is connected to the outlet 155 of the catalytic device and the flue gas inlet 21 of the return flue gas waste heat utilization device 2 through pipes, and is used to burn the combustible gas produced by catalytic cracking.
  • the gas is transported to the recirculation flue gas waste heat utilization device 2.
  • the movable sealing device 14 connects the outlet end of the rotating rotary pyrolysis carbonization furnace 11 and the fixed catalytic chamber 15 into one body.
  • the pull-type catalyst in the catalytic chamber 15 is placed on the sieve plate 152 to place the biochar catalyst 151, and the gas outlet 155 controls the gas-phase residence time of the pyrolysis gas in the catalytic chamber to be 0.5-1.0 s by adjusting the gas flow control method.
  • the hot flue gas is swirled from the flue gas inlet 21 through the baffle 23 and discharged from the exhaust port 25 through the entire chamber, which prolongs the heat exchange time and enhances the heat exchange effect of the reaction chamber.
  • the pyrolysis gas originally produced by the rotary pyrolysis carbonization furnace 11 is catalyzed by the catalytic chamber 15, and then purified and dusted and separated from oil and water to obtain pyrolysis by-products.
  • the pyrolysis by-products mainly include combustible gas, wood tar, wood vinegar, etc.
  • the external heat source used in the rotary pyrolysis carbonization furnace 11 is provided by the recirculation of the flue gas produced by the combustion of wood tar and part of the pyrolysis gas; or the partial flow of the original pyrolysis gas is directly burned and the produced flue gas is refluxed for heating.
  • the specific operation process is as follows: biomass raw materials such as straw enter from the hopper of the screw feeder 12, and the electric motor pushes the raw materials in the hopper into the rotary pyrolysis carbonization furnace 11 uniformly.
  • the material in the rotary pyrolysis carbonization furnace 11 is turned and moved forward under the action of the spiral plate conveying mechanism 111. At the same time, it is thermally decomposed under the action of the starting heat source or the residual heat of the refluxing flue gas, and undergoes two processes of drying, dehydration and thermal cracking.
  • the gas and biochar are separated after entering the catalytic chamber 15.
  • the biochar is thermally decomposed under the action of heating, and then enters the dust settling and thermal insulation carbonization device 154 below the catalytic chamber 15, and is further matured in an adiabatic and thermal insulation environment.
  • Part of the matured biochar is made into a new biochar catalyst after high-temperature roasting, immersion in nickel-loaded, magnetic stirring, and filtering and drying processes.
  • the pyrolysis gas originally produced by the rotary pyrolysis carbonization furnace 11 flows upward from the bottom of the catalytic chamber 15.
  • the tar in the pyrolysis gas is decomposed into methane under the combined action of the biochar catalyst and the residual heat of the refluxing flue gas.
  • tar undergoes a catalytic cracking reaction, so that part of the heavy tar is cracked into light tar, and part of the tar is converted into gas.
  • the CO 2 , water vapor and other components in the pyrolysis gas undergo a gasification reaction with the biochar to be converted into combustible components such as CO and H 2 , and flow out from the upper gas outlet 155 together with other gases for collection.
  • a catalytic method for pyrolysis and carbonization of biomass includes the following steps:
  • the stalks are crushed into small particles with a particle size of 1 to 5 cm, dried at 70°C to 120°C to a moisture content of 10%-15%, and then pulverized and granulated by mechanical pulverization and drying. Processed into particles smaller than 5cm in size;
  • the processed raw materials are fed through the screw feeder 12, the spiral conveyor mechanism 111 and the transmission system 113 under sealed conditions to achieve feeding and uniform distribution.
  • a pyrolysis reaction is performed in an environment of 720°C, and a pyrolysis oil-gas mixture and biochar are obtained after pyrolysis and carbonization.
  • the pyrolysis oil-gas mixture and the biochar enter the catalytic chamber 15 integrated with the rotary pyrolysis carbonization furnace 11 to carry out the tar catalytic cracking process, and realize the separation of carbon and gas.
  • the biochar catalyst 151 in the catalytic chamber 15 catalytically cracks the tar particles in the pyrolyzed oil-gas mixture into small molecular gases such as methane and hydrogen under the condition of above 690°C.
  • a pressure gauge 153 is installed in the catalytic chamber 15 with an alarm function for excessive pressure.
  • the biochar enters the dust settling thermal insulation carbonization device 154 below the catalytic chamber 15 to further mature, and the environmental temperature of the thermal insulation carbonization process is controlled at 650° C. to obtain matured corn stalk biochar.
  • the activated nickel is loaded by the dipping method, Ni(NO 3 ) 2 ⁇ 6H 2 O is used as the precursor, and a certain mass is weighed and dissolved in an appropriate amount of deionized water.
  • the activated biochar is added to the above solution. Stir magnetically at 60°C for 2h. After the stirring, it was filtered and washed with deionized water for 3 times, and dried in an oven at 90°C for 12 hours. Finally, it is calcined in a tube furnace at 500°C for 2 hours under a nitrogen atmosphere and kept for 2 hours to obtain an activated nickel-based catalyst with corn stalk biochar as a carrier.
  • the obtained nickel-based catalyst was filled in a stainless steel pull-out sieve plate 152 with a thickness of 50 mm and arranged in the catalytic chamber 15 for the catalytic cracking of tar, and the reaction zone area was 1 m 2 .
  • part of the combustible gas after catalytic cracking is discharged through the air outlet 155 at the top of the catalytic chamber 15, and after cooling, a mixture of combustible gas and wood tar liquid is obtained, and then sent to the combustor 112 Combustion, the flue gas generated by combustion is returned to the return flue gas waste heat utilization device 2.
  • the return flue gas After the return flue gas enters from the flue gas inlet 21, it flows along the flue gas channel 22 on the periphery of the rotary pyrolysis carbonization furnace 11 and passes through the baffle 23
  • the swirling flow is formed, which firstly provides heat for the catalytic cracking reaction in the catalytic chamber 15, and then provides the remaining heat for the pyrolysis and carbonization reaction, thereby using the waste heat of the refluxing flue gas to provide stepped heat for the above process, and extend the heat exchange Time enhances the heat exchange effect of the reaction chamber.
  • the corn stover biochar obtained in this example has relatively higher K and Ca content, which is beneficial to improve catalyst activity.
  • a catalytic method for biomass pyrolysis and carbonization is basically the same as the overall steps and equipment used in Example 2, except that the pyrolysis reaction temperature is 700°C, the thermal insulation carbonization temperature is 600°C, and the tar catalytic cracking temperature is 800°C.
  • a biomass pyrolysis carbonization catalytic method The overall steps and equipment used in Example 2 are basically the same. The difference is that the pyrolysis reaction temperature is 630°C, the thermal insulation carbonization temperature is 530°C, and the tar catalytic cracking temperature is 690°C.
  • the pyrolysis carbonization temperature of the system of the present invention is controlled at 630-720°C, and the tar content in the original pyrolysis gas produced by the carbonization is 15%-20%.
  • the nickel-based biochar catalyst prepared by the invention has a nickel content of 1.5%.
  • Tar 750 ⁇ 850 °C, the reaction time to reach 20min, concentration of 1.06g / m 3 when the carbon conversion rate of 78.5%, can be more than 80% lysis rate in a short time.
  • the invention can keep the biomass at the optimal pyrolysis temperature of 600°C, while maintaining the catalytic temperature of the biochar at 700°C or above, and play the role of tar removal, so as to achieve the highest level of biomass pyrolysis, tar removal and catalyst regeneration. Gradient distribution of optimal reaction temperature. Among them, the temperature of the catalytic chamber can reach up to 850°C, which meets the needs of catalytic reactions, has high thermal efficiency, high tar decomposition rate, and tar conversion rate above 80%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明提供一种生物质热解炭化催化方法,包括:以农林废弃生物质为原料,在限氧或绝氧条件下进行630~720℃的热解炭化反应,产物经炭气分离得到含焦油的热解油气混合物和生物炭;将所得的含焦油的热解油气混合物在690~850℃下经生物炭催化剂处理,进行焦油催化裂解,得到小分子可燃气体和轻质焦油;将所得的生物炭在530~650℃下保温熟化后制成生物炭催化剂。本发明还提供用于生物质热解炭化催化方法的一体化设备,包括螺旋喂料机、热解炭化装置和设置在热解炭化装置内的催化装置。本发明所述的生物质热解炭化催化一体化方法及装置,可以解决现有方法存在的能耗高、成本高、能源利用率低的问题。

Description

一种生物质热解炭化催化一体化方法及装置 技术领域
本发明属于生物质热解领域,具体涉及一种生物质热解炭化催化方法及装置。
背景技术
通常生物质热解与催化剂再生都是分开进行,存在能耗较高的问题。热解设备的炭化炉和催化室都需要外部热源供热。目前热解设备的炭化炉和焦油催化室结构上普遍分离,热解与催化两过程分开进行,炭化炉和催化室的外部热源分开独立供热。催化室的外部热源多为电热设备加热,或者热解原始气经过预热炉加热后再进入催化室。这种系统结构能耗高,成本高,能源利用率低。
催化剂的选择是影响催化裂解效果的主要因素,目前最常用的及大部分文献中提到的催化剂种类主要有天然矿石催化剂和贵重金属催化剂。但镍基催化剂等贵金属催化剂由于硫和焦油存在会迅速失活,价格昂贵。煅烧白云石和石灰石等矿石催化剂机械强度低,寿命低,热稳定性差。橄榄石和铁基催化剂需要较高的煅烧温度。
鉴于上述背景,有必要研发一种新的生物质热解炭化催化方法及装置,以降低能耗、提高能源利用率和工业应用性。
发明内容
本发明的目的是提供一种生物质热解炭化催化一体化方法及装置,以解决现有方法存在的能耗高、成本高、能源利用率低的问题。
本发明技术方案如下:
首先,提供一种生物质热解炭化一体化催化方法,包括:
1)以农林废弃生物质为原料,在限氧或绝氧条件下进行630~720℃的热解炭化反应,产物经炭气分离得到含焦油的热解油气混合物和生物炭;
2)将1)所得的含焦油的热解油气混合物在690~850℃下经生物炭催化剂处理,进行焦油催化裂解,得到小分子可燃气体和轻质焦油;
3)将1)所得的生物炭在530~650℃下保温熟化后制成生物炭催化剂。
本发明所述的方案中,1)所述的农林废弃生物质可以是现有的各种可被热解炭化的生物质,包括农作物秸秆、稻壳或木屑等。本发明优选的方案中,1)所述的农林废弃生物质是农作物秸秆,更优选玉米秸秆。
本发明所述的方案中,1)所述的原料通常需要进行干燥和粉碎等预加工。本发明优选的方案中,所述的预加工是将原料干燥至含水量10~15%后,通过粉碎和烘干机械粉碎制粒,加工成尺寸小于5cm的颗粒物。
本发明所述的方案中,1)所述的热解炭化反应在热解炭化装置(例如回转式热解炭化炉)中进行,2)所述的焦油催化裂解反应在催化装置内进行,所述的热解炭化反应和焦油催化裂解反应的温度提升和保持由同一外部热源同时供热实现。
本发明优选的方案中,在启动后的连续工艺中,用于保持1)所述的热解炭化反应温度和2)所述焦油催化裂解反应温度的外部热源是1)所得的一部分热解油气混合物和/或2)所得小分子可燃气体和轻质焦油的燃烧产生的烟气;所述烟气通过不与反应物料接触的方式回流至所述热解炭化装置和催化装置,用于为所述热解炭化反应和所述焦油催化裂解反应供热。
本发明进一步优选的方案中,将所述的催化装置置于所述热解炭化装置内部,同时在所述热解炭化装置内部设置与反应物料隔离的烟气通道;燃烧1)所得的一部分热解油气混合物和/或2)所得小分子可燃气体和轻质焦油,将燃烧产生的烟气回流至所述热解炭化装置内部的所述烟气通道,以所述烟气的余热作为所述的外部热源,通过所述烟气通道散热为1)所述的热解炭化反应和2)所述的焦油催化裂解反应同时供热。
本发明更优选的方案中,通过所述的烟气通道引导所述的烟气回流,使回流的烟气依次为2)所述的焦油催化裂解反应和1)所述的热解炭化反应供热,以控制各反应的温度。由此,可以使高温的烟气先为反应温度较高的焦油催化裂解反应供热,然后再为反应温度较低的热解炭化反应供热,能够实现能量的梯级式充分利用。
本发明所述的方案中,2)所述的生物炭催化剂可以选自现有的焦油催化裂解可用的各种生物炭催化剂。本发明优选的方案中,将3)所得的生物炭催化剂套用至2)中作为焦油催化裂解所用的生物炭催化剂。
本发明的方案中,3)所述的将熟化的生物炭制成生物炭催化剂的方法可以是现有的多种方法。本发明优选的方案中,熟化后的生物炭采用高温焙烧、浸渍载镍、磁力搅拌以及滤洗干燥等过程处理,具体包括以下步骤处理:将其放入管式炉中,以5℃/min的升温速率升温至850℃,随着温度的增加,生物炭比表面积上升,随后在氮气氛围下高温焙烧2h,得到活化后生物炭;然后采用浸渍法载镍,以Ni(NO 3) 2·6H 2O为前体,称取一定质量后溶解在适量的去离子水中,取活化后生物炭加入到上述溶液中,在60℃下磁力搅拌2h;搅拌结束后,采用去离子水滤洗3次,放入90℃烘箱干燥12h;最后,在管式炉氮气气氛下500℃ 焙烧2h,保温2h,得到生物炭催化剂,即活化后以生物炭为载体的镍基催化剂。
本发明最优选的生物质热解炭化催化方法,包括:
a)以农林废弃生物质为原料,将所述原料预加工成含水量10~15%且尺寸小于5cm的颗粒物;
b)在限氧或绝氧条件下,将a)所得颗粒物输入内部设有催化装置的热解炭化装置进行630~720℃的热解炭化反应,产物经炭气分离得到含焦油的热解油气混合物和生物炭;
c)将b)所得的含焦油的热解油气混合物剩余部分送入所述热解炭化装置内部的催化装置,在690~850℃下经生物炭催化剂处理,进行焦油催化裂解,得到小分子可燃气体和轻质焦油;
d)燃烧b)所得热解油气混合物的一部分和/或c)所得的小分子可燃气体和轻质焦油,将产生的热烟气通过不与反应物料接触的方式回流至所述热解炭化装置,用于为b)所述热解炭化反应和c)所述焦油催化裂解反应供热;
e)将b)所得的生物炭在530~650℃下保温熟化后,放入管式炉中,以5℃/min的升温速率升温至850℃,在氮气氛围下高温焙烧2h,得到活化后生物炭;然后取所述活化后生物炭加入到Ni(NO 3) 2·6H 2O溶于去离子水的溶液中,在60℃下搅拌2h;再用去离子水滤洗后90℃烘箱干燥12h;最后,在氮气气氛下500℃焙烧2h,保温2h,得到生物炭催化剂,将得到的生物炭催化剂套用于c)所述的催化装置内作为焦油催化裂解的生物炭催化剂。
本发明还提供一种用于所述生物质热解炭化催化方法的一体化设备,包括螺旋喂料机、热解炭化装置和催化装置;
所述热解炭化装置包括回转热解炭化炉、螺旋抄板输送机构和传动系统;所述的回转热解炭化炉设有进口和出口;所述的螺旋抄板输送机构贯穿地设置在所述回转热解炭化炉内部,用于主动输送物料;所述的传动系统与所述的螺旋抄板输送机构在所述回转热解炭化炉外部通过传动组件连接,用于以外部动力带动所述螺旋抄板输送机构运转;
所述的螺旋喂料机与所述螺旋抄板输送机构在所述回转热解炭化炉的进口端密闭连接,用于将物料输入螺旋抄板输送机构,进而将物料输送至回转热解炭化炉内部;
所述催化装置设在所述回转热解炭化炉内部,并与所述回转热解炭化炉的出口通过动密封连接成一体;所述催化装置内部装载生物炭催化剂。
本发明所述一体化设备用于本发明所述生物质热解炭化方法时,具体过程为:将农业废弃生物质作为原料,对原料进行预加工,将预加工过的原料在密封条件下通过所述螺旋喂料 机、螺旋抄板输送机构和传动系统实现进料和均匀布料,原料在所述回转热解炭化炉内在630~720℃下进行热解反应,经过热解炭化后得到热解油气混合物以及生物炭;热解油气混合物以及生物炭进入与所述回转热解炭化炉连为一体的所述催化装置,实现炭气分离,热解油气混合物在催化装置中在690~850℃下进行焦油催化过程,催化装置内的生物炭催化剂将所述热解油气混合物中的焦油颗粒催化裂解为甲烷、氢气等小分子气体;同时生物炭进入催化装置在530~650℃下被进一步熟化,部分熟化后的生物炭经制成新的催化剂继续使用。
本发明优选的一体化设备中,所述的回转热解炭化炉内部进一步设有烟气回流装置,以利用燃烧烟气的余热;所述的烟气回流装置包括设置在所述回转热解炭化炉的出口附近的烟气入口、沿所述回转热解炭化炉内壁设置的烟气通道、和设置在所述回转热解炭化炉的进口附近的排烟口;所述的烟气通道用于引导烟气回流并隔绝烟气和反应物料。部分催化裂解后的可燃气体以及分离出的木焦油等产品燃烧产生的烟气可以通过所述烟气回流装置回流到热解炭化装置中,利用回流烟气的余热对以上过程(催化裂解和热解炭化)进行阶梯式的供热。所述燃烧产生的烟气通过所述烟气入口进入所述回转热解炭化炉后,沿所述烟气通道与热解物料形成逆向流动,从所述排烟口离开所述回转热解炭化炉。该过程中,基于所述烟气通道的引导,回流的烟气会首先经过设置在所述回转热解炭化炉内并与回转热解炭化炉出口连接成一体的所述催化装置,此时烟气能够作为外部热源向所述催化装置供热,用于维持较高的焦油催化裂解温度;然后烟气再经过所述回转热解炭化炉的从出口至入口的其他部分,期间可将剩余热量作为外部热源提供给回转热解炭化炉中的反应温度较低的热解炭化反应。
本发明优选的一体化设备中,所述的催化装置内部进一步包括催化室,所述的催化室内部装载有生物炭催化剂,所述催化室顶部设有与外界连通的出气口,所述的催化室下方设有与催化室连通的保温炭化装置,所述保温炭化装置的底部设有出炭口。所述热解炭化得到的热解油气混合物和生物炭进入所述催化室后,所述的热解油气混合物中的焦油在生物炭催化剂及加热作用下分解为甲烷等小分子气体,焦油发生催化裂解反应,使部分重质焦油裂解为轻质焦油,部分焦油转化为气体;此外,热解油气混合物中的CO 2、水蒸气等组分与生物炭发生气化反应,转化为CO、H 2等可燃组分;所有气体从所述催化室顶部的出气口流出供收集利用;所述的生物炭则进入催化室下方的保温炭化装置,经过保温熟化得到可以制备生物炭催化剂的生物炭载体。
本发明进一步优选的方案中,所述的催化室通过抽拉式结构装载所述的生物炭催化剂,使催化剂更换方便易行,能够保证催化效力持久。
本发明优选的一体化设备中,所述的螺旋抄板输送机构安装在回转热解炭化炉的内壁上,所述的螺旋抄板输送机构设有四线螺旋抄板,用于主动输送物料;保证物料在输送过程中的填充系数为0.2。螺旋抄板的倾斜角度为30-60°角设置。
本发明优选的一体化设备中,所述的螺旋喂料机与所述螺旋抄板输送机构之间进一步设有蛇形管,所述的蛇形管内设有用于密封的水封,作为安全防爆装置用于因系统异常进入大量空气后出现局部爆燃或爆炸时的紧急泄压。
与现有技术相比,本发明的有益效果体现如下:
1.将传统热解装置中的热解炉和催化装置通过动密封连在一起,制成一体,通过回流烟气余热为热解炉和催化装置同时供热,有效减少热流失,同时提升总体热效率和催化效率,清洁高效。
2.将热解产品生物炭和热解气回收燃烧,产生的高温烟气为热解提供热量,节省燃料成本,环保低碳。
3.采用经过处理的镍基生物炭催化剂,在高温时有效脱除和转化热解原始气中的焦油。生物炭较多的孔结构与较大的比表面积为催化反应提供更多的活性位点,从而促进焦油的催化转化。本发明中的镍基生物炭催化剂活性高、稳定性好、制备成本低、环保高效。具有持久的稳定性和良好的抗积炭能力。催化剂置入采用抽拉式结构设计,催化剂更换方便易行,能够保证催化效力持久。
4.本发明的设备及方法针对玉米秸秆等生物质原料的设计处理能力为500kg/h。物料在热解炭化炉的平均滞留时间为30min,输送机构采用四线螺旋抄板设计,物料堆积密度为120kg/m 3,反应室长度为8m,物料填充系数0.2。
附图说明
图1是本发明实施例1中的热解炭化催化一体化装置的结构示意图。
图2是本发明实施例2所述的热解炭化催化方法的流程图。
附图标记说明如下:
1-热解炭化装置,11-回转热解炭化炉,111-螺旋抄板输送机构,112-燃烧器,113-传动系统,12-螺旋喂料机,13-安全防爆装置,14-动密封装置,15-催化室,151-生物炭催化剂,152-催化剂放置筛板,153-压力计,154-粉尘沉降保温炭化装置,155-出气口,157-出炭口,2-回流烟气余热利用装置,21-烟气入口,22-烟气通道,23-折流板,24-保温层,25-排烟口。
具体实施方式
下面结合附图对本发明做进一步详细的说明。
实施例1
本发明中采用的热解炭化催化一体化装置,如图1所示,包括螺旋喂料机12、热解炭化装置1和催化装置,热解炭化装置1包括回转热解炭化炉11、螺旋抄板输送机构111、传动系统113,催化装置位于热解炭化装置1内腔,催化装置设在回转热解炭化炉11的靠近其出口的端部,回转热解炭化炉11的出口端与催化装置连接成一体,回转热解炭化炉11内设有螺旋抄板输送机构111,通过燃烧器112加热,回转热解炭化炉11连接传动系统113。
催化装置包括催化室15、压力计153、粉尘沉降保温炭化装置154、出气口155,催化室15上设有压力计153,催化室15的底部设有粉尘沉降保温炭化装置154,粉尘沉降保温炭化装置的底部设有出炭口157。
在回转热解炭化炉11与螺旋抄板输送机构111之间设有回流烟气余热利用装置2,回流烟气余热利用装置2包括烟气入口21、排烟口25、烟气通道22、折流板23、保温层24,烟气入口21位于回转热解炭化炉11的出口端,排烟口25位于回转热解炭化炉11的进口端,烟气流入方向与物料行进方向相反,保温层24设在回转热解炭化炉11的内壁,在回转热解炭化炉11的内壁上还设有折流板23,折流板23呈螺旋状处于烟气通道22内;烟气通道22与螺旋抄板输送机构111所在空间相互隔绝。
螺旋抄板输送机构111通过四线的螺旋抄板主动输送物料,螺旋抄板采用螺旋叶片形状加工,单向沿螺旋线分布,共分为四条螺旋线,根据回转筒尺寸选择抄板螺距500mm,高度为500mm,厚度为10mm。每个叶片之间相错90度分布,四个叶片在整个反应器内部表面360度均匀分布,保证物料输送在匀速下进行,保证物料在输送过程中的填充系数为0.2。螺旋抄板的倾斜角度为30-60°角设置。
螺旋抄板既具有螺旋的推送输料能力,同时还有翻抄能力,使物料整体向前推送过程中受热均匀,提高物料输送的稳定性与有序性,可兼顾系统换热效率与炭化均匀性。螺旋抄板输送机构的一端还设有支撑架,支撑架上设有传动机构,传动机构为电动机,以及连接电动机与螺旋抄板输送机构之间的齿轮、链轮或皮带中的一种。
螺旋喂料机12进料过程稳定,不会出现螺旋堵料情况,可以输送较大粒径物料,适合短距离输送。
螺旋抄板输送机构111的一端设有安全防爆装置13,安全防爆装置13为蛇形管,蛇形 管内设有用于密封的水封。安全防爆装置13采用U形水封,用于因系统异常进入大量空气后出现局部爆燃或爆炸时的紧急泄压。
燃烧器112由燃油单元和燃气单元共同构成。燃油单元分别与回转热解炭化炉11的出口及回流烟气余热利用装置2的烟气入口21通过管道连接,用于燃烧热解炭化产生的部分热解气后,将产生的烟气输送至回流烟气余热利用装置2;燃气单元分别和催化装置的出气口155及回流烟气余热利用装置2的烟气入口21通过管道连接,用于燃烧催化裂解产生的可燃气体后,将产生的烟气输送至回流烟气余热利用装置2。
动密封装置14将旋转的回转热解炭化炉11出口端和固定不动的催化室15连为一体。
催化室15内的抽拉式的催化剂放置筛板152上放置生物炭催化剂151,出气口155通过调节气体流量的控制方式,将热解气在催化室内的气相停留时间控制在0.5~1.0s。
回流烟气余热利用装置2中,热烟气由烟气入口21经过折流板23旋流通过整个腔室从排烟口25排出,延长了换热时间,增强了反应室换热效果。
回转热解炭化炉11原始产生的热解气,经过催化室15被催化后,再经过净化除尘与油水分离,得到热解副产品,热解副产品主要包括可燃气体、木焦油、木醋液等。回转热解炭化炉11采用的外部热源由木焦油和部分热解气燃烧产生的烟气回流提供;或分流部分原始产生的热解气直接燃烧后将产生的烟气回流供热。
具体操作过程为:秸秆等生物质原料从螺旋喂料机12的料斗进入,电动机将料斗内原料均匀一致的推送至回转热解炭化炉11内。在回转热解炭化炉11内的物料在螺旋抄板输送机构111的作用下翻转前进,同时在启动热源或回流烟气余热的作用下受热分解,经历干燥脱水、受热裂解两个过程,热解气与生物炭在进入催化室15后分离。生物炭在加热作用下受热分解,然后进入催化室15下方的粉尘沉降保温炭化装置154,在绝氧与保温环境中进一步熟化。部分熟化后的生物炭经过高温焙烧、浸渍载镍、磁力搅拌以及滤洗干燥等过程后制成新的生物炭催化剂继续使用。
同时,回转热解炭化炉11原始产生的热解气由催化室15下方向上流动,经过挡尘板后,热解气中的焦油在生物炭催化剂及回流烟气余热的共同作用下分解为甲烷等小分子气体,焦油发生催化裂解反应,使部分重质焦油裂解为轻质焦油,部分焦油转化为气体。此外,热解气中的CO 2、水蒸气等组分与生物炭发生气化反应,转化为CO、H 2等可燃组分,与其他气体共同从上方出气口155流出供收集。
实施例2
一种生物质热解炭化催化方法,如图2所示,包括以下步骤:
以玉米秸秆等生物质作为原料,将秸秆粉碎成粒径为1~5cm的小颗粒,在70℃~120℃干燥至水分含量为10%-15%,通过粉碎和烘干机械粉碎制粒,加工成尺寸小于5cm的颗粒物;
采用实施例1所述的一体化设备,将加工过的原料通过所述螺旋喂料机12、螺旋抄板输送机构111和传动系统113在密封条件下实现进料和均匀布料,在回转热解炭化炉11内,在720℃的环境下进行热解反应,经过热解炭化后得到热解油气混合物以及生物炭。热解油气混合物以及生物炭进入与回转热解炭化炉11连为一体的催化室15中进行焦油催化裂解过程,并实现炭气分离。催化室15内的生物炭催化剂151在690℃以上的条件下,将热解油气混合物中的焦油颗粒催化裂解为甲烷、氢气等小分子气体。催化室15内装有压力计153,具有压力过高报警功能。同时生物炭进入催化室15下方的粉尘沉降保温炭化装置154进一步熟化,保温炭化过程的环境温度控制在650℃,得到熟化的玉米秸秆生物炭。
将熟化后玉米秸秆生物炭从出炭口157取出后放入管式炉中,以5℃/min的升温速率升温至850℃,随着温度的增加,玉米秸秆生物炭比表面积能够上升到79.81m 2/g。
随后在氮气氛围下高温焙烧2h,得到活化后的生物炭。
然后将活化后的采用浸渍法载镍,以Ni(NO 3) 2·6H 2O为前体,称取一定质量后溶解在适量的去离子水中,取活化后的生物炭加入到上述溶液,在60℃下磁力搅拌2h。搅拌结束后,采用去离子水滤洗3次,放入90℃烘箱干燥12h。最后,在管式炉氮气气氛下500℃焙烧2h,保温2h,得到活化后以玉米秸秆生物炭为载体的镍基催化剂。将得到的镍基催化剂填充于厚度50mm的设置在催化室15内的不锈钢抽拉式的放置筛板152内用于焦油的催化裂解,反应段面积为1m 2
在以上过程中,在催化室15内,部分被催化裂解后的可燃气体通过催化室15顶部的出气口155排出,经过冷却后得到可燃气体和木焦油液体等混合物,然后输送至燃烧器112内燃烧,将燃烧产生的烟气回流到回流烟气余热利用装置2内,回流烟气从烟气入口21进入后,沿烟气通道22在回转热解炭化炉11外围流动,通过折流板23形成旋流,首先为催化室15内的催化裂解反应提供热量,再为热解炭化反应提供剩余的热量,由此利用回流烟气的余热对以上过程进行阶梯式的供热,延长了换热时间,增强了反应室换热效果。
本实施例得到的玉米秸秆生物炭与稻壳炭和木屑炭相比,K、Ca含量相对较高,有利于提高催化剂活性。
实施例3
一种生物质热解炭化催化方法,与实施例2整体步骤和所用设备基本相同,不同之处在于热解反应温度为700℃,保温炭化的温度为600℃,焦油催化裂解温度为800℃。
实施例4
一种生物质热解炭化催化方法,与实施例2整体步骤和所用设备基本相同,不同之处在于热解反应温度为630℃,保温炭化的温度为530℃,焦油催化裂解温度为690℃。
本发明系统热解炭化温度控制在630~720℃,炭化产生的原始热解气中焦油的含量在15%~20%。本发明所制取的镍基生物炭催化剂载镍量为1.5%。焦油在750~850℃,反应时间达到20min,浓度1.06g/m 3时碳转化率可达78.5%,可在短时间内达到80%以上的裂解率。
本发明能够使生物质保持在最佳热解温度600℃,同时生物炭催化温度维持在700℃以上,发挥脱除焦油的作用,实现生物质热解、脱除焦油以及催化剂再生所处的最佳反应温度的梯度分布。其中催化室温度最高可达850℃,满足催化反应需要,热效率高,焦油分解率高,焦油转化率在80%以上。

Claims (15)

  1. 一种生物质热解炭化催化方法,包括:
    1)以农林废弃生物质为原料,在限氧或绝氧条件下进行630~720℃的热解炭化反应,产物经炭气分离得到含焦油的热解油气混合物和生物炭;
    2)将1)所得的含焦油的热解油气混合物在690~850℃下经生物炭催化剂处理,进行焦油催化裂解,得到小分子可燃气体和轻质焦油;
    3)将1)所得的生物炭在530~650℃下保温熟化后制成生物炭催化剂。
  2. 权利要求1所述的方法,其特征在于:1)所述的农林废弃生物质是农作物秸秆,更优选玉米秸秆。
  3. 权利要求1所述的方法,其特征在于:1)所述的原料是经过预加工的原料,所述的预加工是将原料干燥至含水量10~15%后,通过粉碎和烘干机械粉碎制粒,加工成尺寸小于5cm的颗粒物。
  4. 权利要求1所述的方法,其特征在于:1)所述的热解炭化反应在热解炭化装置中进行,2)所述的焦油催化裂解反应在催化装置内进行,所述的热解炭化反应和焦油催化裂解反应的温度提升和保持由同一外部热源同时供热实现;所述的外部热源是1)所得的一部分热解油气混合物和/或2)所得小分子可燃气体和轻质焦油的燃烧产生的烟气;所述烟气通过不与反应物料接触的方式回流至所述热解炭化装置和催化装置,用于同时为所述热解炭化反应和所述焦油催化裂解反应供热。
  5. 权利要求4所述的方法,其特征在于:将所述的催化装置置于所述热解炭化装置内部,同时在所述热解炭化装置内部设置与反应物料隔离的烟气通道;燃烧1)所得的一部分热解油气混合物和/或2)所得小分子可燃气体和轻质焦油,将燃烧产生的烟气回流至所述热解炭化装置内部的所述烟气通道,以所述烟气的余热作为所述的外部热源,通过所述烟气通道散热为1)所述的热解炭化反应和2)所述的焦油催化裂解反应同时供热。
  6. 权利要求5所述的方法,其特征在于:通过所述的烟气通道引导所述的烟气回流,使回流的烟气依次为2)所述的焦油催化裂解反应和1)所述的热解炭化反应供热。
  7. 权利要求1所述的方法,其特征在于:将3)所得的生物炭催化剂套用至2)中作为焦油催化裂解所用的生物炭催化剂。
  8. 权利要求1所述的方法,其特征在于:3)所述的将熟化的生物炭制成生物炭催化剂的方法是熟化后的生物炭经高温焙烧、浸渍载镍、磁力搅拌以及滤洗干燥处理,具体包括以下步骤处理:将其放入管式炉中,以5℃/min的升温速率升温至850℃,随着温度的增加,生物炭比表面积上升,随后在氮气氛围下高温焙烧2h,得到活化后生物炭;然后采用浸渍法载镍,以Ni(NO 3) 2·6H 2O为前体,称取一定质量后溶解在适量的去离子水中,取活化后生物炭加入到上述溶液中,在60℃下磁力搅拌2h;搅拌结束后,采用去离子水滤洗3次,放入90℃烘箱干燥12h;最后,在管式炉氮气气氛下500℃焙烧2h,保温2h,得到生物炭催化剂,即活化后以生物炭为载体的镍基催化剂。
  9. 一种生物质热解炭化催化方法,包括:
    a)以农林废弃生物质为原料,将所述原料预加工成含水量10~15%且尺寸小于5cm的颗粒物;
    b)在限氧或绝氧条件下,将a)所得颗粒物输入内部设有催化装置的热解炭化装置进行630~720℃的热解炭化反应,产物经炭气分离得到含焦油的热解油气混合物和生物炭;
    c)将b)所得的含焦油的热解油气混合物剩余部分送入所述热解炭化装置内部的催化装置,在690~850℃下经生物炭催化剂处理,进行焦油催化裂解,得到小分子可燃气体和轻质焦油;
    d)燃烧b)所得热解油气混合物的一部分和/或c)所得的小分子可燃气体和轻质焦油,将产生的热烟气通过不与反应物料接触的方式回流至所述热解炭化装置,用于为b)所述热解炭化反应和c)所述焦油催化裂解反应供热;
    e)将b)所得的生物炭在530~650℃下保温熟化后,放入管式炉中,以5℃/min的升温速率升温至850℃,在氮气氛围下高温焙烧2h,得到活化后生物炭;然后取所述活化后生物炭加入到Ni(NO 3) 2·6H 2O溶于去离子水的溶液中,在60℃下搅拌2h;再用去离子水滤洗后90℃烘箱干燥12h;最后,在氮气气氛下500℃焙烧2h,保温2h,得到生物炭催化剂,将得到的生物炭催化剂套用于c)所述的催化装置内作为焦油催化裂解的生物炭催化剂。
  10. 一种用于生物质热解炭化催化方法的一体化设备,包括螺旋喂料机、热解炭化装置和催化装置;
    所述热解炭化装置包括回转热解炭化炉、螺旋抄板输送机构和传动系统;所述的回转热解炭化炉设有进口和出口;所述的螺旋抄板输送机构贯穿地设置在所述回转热解炭化炉内部,用于主动输送物料;所述的传动系统与所述的螺旋抄板输送机构在所述回转热解炭化炉外部通过传动组件连接,用于以外部动力带动所述螺旋抄板输送机构运转;
    所述的螺旋喂料机与所述螺旋抄板输送机构在所述回转热解炭化炉的进口端密闭连接,用于将物料输入螺旋抄板输送机构,进而将物料输送至回转热解炭化炉内部;
    所述催化装置设在所述回转热解炭化炉内部,并与所述回转热解炭化炉的出口通过动密封连接成一体;所述催化装置内部装载生物炭催化剂。
  11. 权利要求10所述的一体化设备,其特征在于:所述的回转热解炭化炉内部进一步设有烟气回流装置,以利用燃烧烟气的余热;所述的烟气回流装置包括设置在所述回转热解炭化炉的出口附近的烟气入口、沿所述回转热解炭化炉内壁设置的烟气通道、和设置在所述回转热解炭化炉的进口附近的排烟口;所述的烟气通道用于引导烟气回流并隔绝烟气和反应物料。
  12. 权利要求10所述的一体化设备,其特征在于:所述的催化装置内部进一步包括催化室,所述的催化室内部装载有生物炭催化剂,所述催化室顶部设有与外界连通的出气口,所述的催化室下方设有与催化室连通的保温炭化装置,所述保温炭化装置的底部设有出炭口。
  13. 权利要求12所述的一体化设备,其特征在于:所述的催化室通过抽拉式结构装载所述的生物炭催化剂。
  14. 权利要求10所述的一体化设备,其特征在于:所述的螺旋抄板输送机构安装在回转热解炭化炉的内壁上,所述的螺旋抄板输送机构设有四线螺旋抄板,用于主动输送物料;保证物料在输送过程中的填充系数为0.2。螺旋抄板的倾斜角度为30-60°角设置。
  15. 权利要求10所述的一体化设备,其特征在于:所述的螺旋喂料机与所述螺旋抄板输送机构之间进一步设有蛇形管,所述的蛇形管内设有用于密封的水封,作为安全防爆装置用于因系统异常进入大量空气后出现局部爆燃或爆炸时的紧急泄压。
PCT/CN2020/116634 2020-03-09 2020-09-22 一种生物质热解炭化催化一体化方法及装置 WO2021179566A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/429,402 US20220213386A1 (en) 2020-03-09 2020-09-22 An integrated method of pyrolysis carbonization and catalysis for biomass and a device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010157657.4A CN111218291B (zh) 2020-03-09 2020-03-09 一种热解炭化催化一体化方法
CN202010157657.4 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021179566A1 true WO2021179566A1 (zh) 2021-09-16

Family

ID=70812029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116634 WO2021179566A1 (zh) 2020-03-09 2020-09-22 一种生物质热解炭化催化一体化方法及装置

Country Status (3)

Country Link
US (1) US20220213386A1 (zh)
CN (1) CN111218291B (zh)
WO (1) WO2021179566A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350390A (zh) * 2021-12-07 2022-04-15 东南大学 一种生物质热解气化耦合等离子体协同催化制取小分子不可冷凝气的方法和装置
CN114836243A (zh) * 2022-04-25 2022-08-02 西安交通大学 一种移动式生物质热解气化产炭系统及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111218291B (zh) * 2020-03-09 2021-05-07 中国农业科学院农业环境与可持续发展研究所 一种热解炭化催化一体化方法
CN112066384A (zh) * 2020-09-17 2020-12-11 中国农业科学院农业环境与可持续发展研究所 一种秸秆生活垃圾废弃物捆烧热解协同处理方法
CN112063400A (zh) * 2020-09-18 2020-12-11 中国农业科学院农业环境与可持续发展研究所 一种秸秆炭基催化热解制取炭基复合材料一体化方法
CN112063397A (zh) * 2020-09-23 2020-12-11 栾运宇 一种多级控温控压控氧且便于回收可燃气体的生物炭制备工艺
CN112126453A (zh) * 2020-09-29 2020-12-25 无锡金球机械有限公司 含氯混合废旧塑料分级可控式热解系统及方法
CN112980486A (zh) * 2021-02-24 2021-06-18 中国石油大学(华东) 一种模块化热解装置及分级热解的方法
CN113789524A (zh) * 2021-09-29 2021-12-14 大连理工大学 一种生物质基镍-氮-碳复合催化材料的制备方法及其应用
CN114018036A (zh) * 2021-11-11 2022-02-08 山东嘉盛博纳环保科技有限公司 一种立式炉焙烧设备
CN114317025B (zh) * 2021-11-30 2022-09-16 南京林业大学 一种焦油热催化裂解装置与催化剂持续气化再生方法
CN115212911B (zh) * 2022-09-21 2022-12-20 中国农业科学院农业环境与可持续发展研究所 一种镍负载氮掺杂多级孔生物炭材料及其制备方法和应用
CN116040580B (zh) * 2023-01-13 2024-07-19 哈尔滨工业大学 一种生物质内外金属协同催化气化制氢的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010107A1 (en) * 1992-10-29 1994-05-11 Midwest Research Institute Process to convert biomass and refuse derived fuel to ethers and/or alcohols
CN203112751U (zh) * 2012-09-25 2013-08-07 秦恒飞 一种多功能生物质热转化设备
CN103614151A (zh) * 2013-01-25 2014-03-05 农业部规划设计研究院 卧式连续生物炭炭化设备
CN105623685A (zh) * 2015-12-09 2016-06-01 华中师范大学 一种连续式生物质原料原位催化裂解气、炭联产的方法与设备
CN106433712A (zh) * 2016-10-09 2017-02-22 农业部规划设计研究院 一种回转式生物质连续热解炭气联产工艺
CN106811217A (zh) * 2015-11-27 2017-06-09 湖南鼎玖能源环境科技有限公司 一种生物质气化设备及生物质气化工艺
CN111218291A (zh) * 2020-03-09 2020-06-02 中国农业科学院农业环境与可持续发展研究所 一种热解炭化催化一体化方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762834A (en) * 1953-09-24 1956-09-11 Nat Res Corp Production of acrylonitrile
FI120909B (fi) * 2001-04-12 2010-04-30 Neste Oil Oyj Menetelmä hiilipitoisen materiaalin käsittelemiseksi
KR100787958B1 (ko) * 2004-09-25 2007-12-31 구재완 폐합성 고분자화합물의 연속식 열분해 시스템
JP5508714B2 (ja) * 2005-09-08 2014-06-04 リサーチ・ファウンデーション・オブ・ザ・シティー・ユニヴァーシティー・オブ・ニュー・ヨーク 都市スラッジ、産業スラッジ、コンポストおよびタバコ廃棄物から得られる触媒作用性吸着媒、およびその製造方法
CN101139526A (zh) * 2007-06-27 2008-03-12 中国科学院生态环境研究中心 一种生物质热解液化装置及其使用方法
KR20090117973A (ko) * 2008-05-12 2009-11-17 굴람후세인 레흐맛 아미랄리 회전 반응로용 가스 분배 장치
CN101747943B (zh) * 2008-12-01 2013-01-16 中国农业科学院农业环境与可持续发展研究所 一种畜禽粪便分步热解制取富氢燃气和其它产物的方法和装置
CN101775299A (zh) * 2010-02-23 2010-07-14 山西工霄商社有限公司 农作物秸秆限氧自热式热解快速制炭设备
WO2011146847A2 (en) * 2010-05-20 2011-11-24 Kansas State University Research Foundation Char-supported catalysts for syngas cleanup and conditioning
US8999017B2 (en) * 2010-09-10 2015-04-07 Coates Engineering, Llc Method and apparatus for fast pyrolysis of biomass in rotary kilns
JP2012224677A (ja) * 2011-04-15 2012-11-15 Actree Corp 湿潤バイオマスの炭化処理システム及び炭化処理方法
US10252951B2 (en) * 2011-06-06 2019-04-09 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US8834834B2 (en) * 2011-07-21 2014-09-16 Enerkem, Inc. Use of char particles in the production of synthesis gas and in hydrocarbon reforming
CN102405706A (zh) * 2011-08-12 2012-04-11 南京农业大学 一种利用农业废弃物生物质炭化产物改良熟化盐碱土的方法
JP5889613B2 (ja) * 2011-11-25 2016-03-22 国立大学法人群馬大学 金属担持用担体、金属担持触媒、メタネーション反応装置及びこれらに関する方法
US20160032196A1 (en) * 2013-03-15 2016-02-04 Battelle Memorial Institute Vapor Phase Catalytic Reactor for Upgarde of Fuels Produced by Fast Pyrolysis of Biomass
CN203393101U (zh) * 2013-05-09 2014-01-15 农业部规划设计研究院 内加热连续式生物炭成套设备
KR101487387B1 (ko) * 2013-10-24 2015-01-28 한국에너지기술연구원 금속 카바이드계 메탄 리포밍 촉매 제조방법 및 그 방법에 의해 제조된 메탄 리포밍 촉매
CN104946337A (zh) * 2015-06-12 2015-09-30 钟诚 生产生物质成型碳的方法
CN105482835B (zh) * 2015-12-21 2018-03-02 中国科学院过程工程研究所 一种集成式生物质燃气催化合成及净化装置
CN205893158U (zh) * 2016-01-30 2017-01-18 农业部规划设计研究院 一种全自动生物质热解炭化密封出炭系统
CN205628890U (zh) * 2016-05-16 2016-10-12 西安华大骄阳绿色科技有限公司 一种生活垃圾无害化、资源化处理设备
CN106115655B (zh) * 2016-06-25 2018-06-05 惠安三兴石材有限公司 一种利用生物质发泡剂制备泡沫炭的制备方法
US10465120B1 (en) * 2016-09-12 2019-11-05 Michael Garjian Method and device with catalyst storage and delivery capsule for converting biomass into solid and gaseous components
CN107353918A (zh) * 2017-08-23 2017-11-17 农业部规划设计研究院 一种扰动式内构件回转炉生物质热解炭化多联产系统
CN107603668B (zh) * 2017-09-01 2020-07-03 北京华福工程有限公司 乙炔三聚生产轻质芳烃的方法
CN109266355A (zh) * 2018-11-08 2019-01-25 吉林化工学院 一种含镉茶园土壤改良剂及其用途和茶园土壤改良方法
CN109609158B (zh) * 2019-02-12 2020-06-09 西北民族大学 一种生物质催化热解反应的工艺
CN110801840A (zh) * 2019-10-16 2020-02-18 中国科学院广州能源研究所 一种生物炭为载体的Cu-Ni双金属催化剂及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010107A1 (en) * 1992-10-29 1994-05-11 Midwest Research Institute Process to convert biomass and refuse derived fuel to ethers and/or alcohols
CN203112751U (zh) * 2012-09-25 2013-08-07 秦恒飞 一种多功能生物质热转化设备
CN103614151A (zh) * 2013-01-25 2014-03-05 农业部规划设计研究院 卧式连续生物炭炭化设备
CN106811217A (zh) * 2015-11-27 2017-06-09 湖南鼎玖能源环境科技有限公司 一种生物质气化设备及生物质气化工艺
CN105623685A (zh) * 2015-12-09 2016-06-01 华中师范大学 一种连续式生物质原料原位催化裂解气、炭联产的方法与设备
CN106433712A (zh) * 2016-10-09 2017-02-22 农业部规划设计研究院 一种回转式生物质连续热解炭气联产工艺
CN111218291A (zh) * 2020-03-09 2020-06-02 中国农业科学院农业环境与可持续发展研究所 一种热解炭化催化一体化方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350390A (zh) * 2021-12-07 2022-04-15 东南大学 一种生物质热解气化耦合等离子体协同催化制取小分子不可冷凝气的方法和装置
CN114836243A (zh) * 2022-04-25 2022-08-02 西安交通大学 一种移动式生物质热解气化产炭系统及方法
CN114836243B (zh) * 2022-04-25 2023-05-30 西安交通大学 一种移动式生物质热解气化产炭系统及方法

Also Published As

Publication number Publication date
US20220213386A1 (en) 2022-07-07
CN111218291A (zh) 2020-06-02
CN111218291B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2021179566A1 (zh) 一种生物质热解炭化催化一体化方法及装置
CN103468322B (zh) 一种由固体有机物水蒸气气化制取富氢气体的方法
US6039774A (en) Pyrolytic conversion of organic feedstock and waste
CN110451754A (zh) 一种油泥热解的无害化处理方法
CN100516174C (zh) 生物质电磁感应热解液化反应器
RU2544669C1 (ru) Способ переработки горючих углерод- и/или углеводородсодержащих продуктов и реактор для его осуществления
CN101906323A (zh) 一种生物质气化制取低焦油含量可燃气的方法及装置
CN102732274A (zh) 以燃煤热风炉作为供热的褐煤干馏方法
CN110079337A (zh) 一种生物质热解气再循环利用的炭化炉及生物质炭化方法
CN101575527A (zh) 生物质直接热裂解发生器及其裂解方法
CN105316014A (zh) 热解生物质的方法和系统
CN107629819A (zh) 一种生物质热解联产高品质热解气和生物炭的工艺
CN104861996A (zh) 一种生物质热解炭气油多联产系统
CN104861993B (zh) 塔式生物质连续碳化炉
CN104211271A (zh) 一种二段式污泥燃气化处理方法及处理装置
CN103480301A (zh) 一种碾挤压秸秆、沫煤柱体颗粒替代块煤制备燃气的方法
RU2725434C1 (ru) Способ термической деструкции сыпучей органики в вертикальном реакторе газификации
CN214457774U (zh) 移动式农林秸秆微波辅助快速热解多联产的装置
CN209445368U (zh) 一种利用热解气为载热体的热解装置
CN102732275A (zh) 以燃煤热风炉作为供热的褐煤干馏装置
CN116179243A (zh) 生物质热裂解设备及方法
CN205974375U (zh) 一种煤热解和催化裂解产合成气系统
RU2718051C1 (ru) Способ окислительной торрефикации биоотходов в кипящем слое
RU149053U1 (ru) Тоннельная печь
CN201834880U (zh) 生物质燃气高温无氧强化干馏热解装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923914

Country of ref document: EP

Kind code of ref document: A1