JP5851883B2 - 非凝縮性ガスの排気装置およびガス化複合発電設備 - Google Patents

非凝縮性ガスの排気装置およびガス化複合発電設備 Download PDF

Info

Publication number
JP5851883B2
JP5851883B2 JP2012042229A JP2012042229A JP5851883B2 JP 5851883 B2 JP5851883 B2 JP 5851883B2 JP 2012042229 A JP2012042229 A JP 2012042229A JP 2012042229 A JP2012042229 A JP 2012042229A JP 5851883 B2 JP5851883 B2 JP 5851883B2
Authority
JP
Japan
Prior art keywords
gas
steam
fuel
fluidized bed
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012042229A
Other languages
English (en)
Other versions
JP2013178027A (ja
Inventor
大浦 康二
康二 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012042229A priority Critical patent/JP5851883B2/ja
Priority to AU2013201145A priority patent/AU2013201145B2/en
Publication of JP2013178027A publication Critical patent/JP2013178027A/ja
Application granted granted Critical
Publication of JP5851883B2 publication Critical patent/JP5851883B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Drying Of Solid Materials (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、褐炭等の湿潤燃料の供給時に混入する非凝縮性ガスを排気する非凝縮性ガスの排気装置およびガス化複合発電設備に関するものである。
従来、褐炭等の低品位炭を、ホッパから乾燥容器へ向けて供給し、乾燥容器内に供給された低品位炭をスチーム(蒸気)により流動させて乾燥する低品位炭乾燥方法および装置が知られている(例えば、特許文献1参照)。この低品位炭乾燥装置では、乾燥容器から排出されたスチームを部分凝縮器に供給することで、スチームの潜熱を回収している。
特開昭61−250096号公報
ところで、褐炭等の湿潤燃料を水蒸気等の流動化蒸気により流動させながら乾燥させる流動層乾燥装置では、流動層乾燥装置から排出された蒸気を再圧縮して利用する場合がある。このとき、流動層乾燥装置から排出された蒸気に非凝縮性ガスが混入すると、再圧縮された蒸気が低クオリティ(クオリティ:蒸気の全量に対する気相の蒸気の割合)になるにつれて、つまり、液相となる蒸気の割合が多くなるにつれて、気相中における蒸気の割合が低下すると共に非凝縮性ガスの割合が増加する。これにより、低クオリティとなった蒸気は、非凝縮性ガスの割合が増加することで、蒸気温度が低下し、潜熱を回収し難くなる。
そこで、本発明は、非凝縮性ガスの混入を抑制することで、蒸気の潜熱を効率よく回収することが可能な非凝縮性ガスの排気装置およびガス化複合発電設備を提供することを課題とする。
本発明の非凝縮性ガスの排気装置は、湿潤燃料を流動化蒸気により流動させながら、湿潤燃料を乾燥可能な流動層乾燥装置と、流動層乾燥装置へ向けて湿潤燃料を供給可能な燃料供給装置との間に設けられ、燃料供給装置との間および流動層乾燥装置との間をそれぞれ仕切った状態で、燃料供給装置から供給された湿潤燃料と共に混入する非凝縮性ガスを排気することを特徴とする。
この構成によれば、燃料供給装置との間および流動層乾燥装置との間をそれぞれ仕切った状態で、湿潤燃料と共に混入する非凝縮性ガスを排気することができる。このため、非凝縮性ガスの混入を抑制しつつ、湿潤燃料を流動層乾燥装置に供給することができる。これにより、流動層乾燥装置から排出される蒸気は、非凝縮性ガスの混入量が少ないものとすることができる。よって、流動層乾燥装置から排出される蒸気を再圧縮し、再圧縮した蒸気を利用する場合、蒸気が低クオリティとなっても、気相中における蒸気の割合が減少し難くなるため、蒸気温度の低下を抑制し、蒸気の潜熱を効率よく回収することができる。
この場合、燃料供給装置から供給された湿潤燃料を貯留する燃料貯留部と、燃料供給装置と燃料貯留部との間および燃料貯留部と流動層乾燥装置との間にそれぞれ設けられた複数の仕切り部と、燃料貯留部内の非凝縮性ガスを排気するガス排気部と、を有していることが好ましい。
この構成によれば、燃料貯留部に湿潤燃料を貯留し、各仕切り部により、燃料供給装置と燃料貯留部との間、および燃料貯留部と流動層乾燥装置との間をそれぞれ仕切った状態で、ガス排気部により、燃料貯留部内の非凝縮性ガスを排気することにより、非凝縮性ガスを好適に排気することができる。
この場合、ガス排気部は、燃料貯留部内に蒸気を供給する蒸気供給部と、燃料貯留部内の非凝縮性ガスを排出するガス排出部と、を有していることが好ましい。
この構成によれば、蒸気供給部により燃料貯留部内に蒸気を供給し、ガス排出部から燃料貯留部内の非凝縮性ガスを排出することで、燃料貯留部内の非凝縮性ガスを蒸気で満たすことができる。これにより、燃料貯留部内の非凝縮性ガスを蒸気で置換することができるため、非凝縮性ガスを好適に排気することができる。また、燃料貯留部内に貯留した湿潤燃料を、供給した蒸気により予熱することができる。このため、予熱された湿潤燃料を流動層乾燥装置へ供給することができるため、流動層乾燥装置の供給側において蒸気の再凝縮を抑制することができ、凝縮水による湿潤燃料の流動化不良を抑制することができる。
この場合、ガス排気部は、燃料貯留部内の非凝縮性ガスを吸気するガス吸気部を有していることが好ましい。
この構成によれば、ガス吸気部により燃料貯留部内の非凝縮性ガスを吸気することができる。これにより、燃料貯留部内の非凝縮性ガスを強制的に排気することができる。
本発明のガス化複合発電設備は、湿潤燃料を流動化蒸気により流動させながら、湿潤燃料を乾燥可能な流動層乾燥装置と、流動層乾燥装置へ向けて湿潤燃料を供給可能な燃料供給装置と、流動層乾燥装置と燃料供給装置との間に設けられた上記の非凝縮性ガスの排気装置と、流動層乾燥装置から供給された乾燥後の湿潤燃料を処理してガス化ガスに変換するガス化炉と、ガス化ガスを燃料として運転されるガスタービンと、ガスタービンからのタービン排ガスを導入する排熱回収ボイラで生成した蒸気により運転される蒸気タービンと、ガスタービンおよび蒸気タービンと連結された発電機とを備えたことを特徴とする。
この構成によれば、排気装置により非凝縮性ガスを排気することができるため、非凝縮性ガスの流動層乾燥装置への混入を抑制しつつ、湿潤燃料を流動層乾燥装置へ好適に供給することができる。このため、流動層乾燥装置において好適に流動させ乾燥させた湿潤燃料をガス化炉に供給することができる。
本発明の非凝縮性ガスの排気方法は、供給された湿潤燃料を貯留する燃料貯留工程と、燃料貯留工程の実行後、湿潤燃料を隔離する燃料隔離工程と、燃料隔離工程の実行後、湿潤燃料の供給と共に混入した非凝縮性ガスを排気する排気工程と、を備えたことを特徴とする。
この構成によれば、燃料隔離工程および排気工程を実行することにより、湿潤燃料を燃料貯留部に隔離した状態で、湿潤燃料の供給と共に混入した非凝縮性ガスを排気することができる。このため、非凝縮性ガスの混入を抑制しつつ、湿潤燃料を流動層乾燥装置に供給することができる。これにより、流動層乾燥装置から排出される蒸気は、非凝縮性ガスの混入量が少ないものとすることができる。よって、流動層乾燥装置から排出される蒸気を再圧縮し、再圧縮した蒸気を利用する場合、蒸気が低クオリティとなっても、気相中における蒸気の割合が減少し難くなるため、蒸気温度の低下を抑制し、蒸気の潜熱を効率よく回収することができる。
本発明の非凝縮性ガスの排気装置およびガス化複合発電設備によれば、流動層乾燥装置内への非凝縮性ガスの混入を抑制することで、流動層乾燥装置から排出される蒸気に含まれる非凝縮性ガスの混入量を抑制することができるため、再圧縮される蒸気の温度低下を抑制でき、再圧縮される蒸気の潜熱を効率よく回収することができる。
図1は、実施例1に係る排気装置を適用した石炭ガス化複合発電設備の概略構成図である。 図2は、実施例1に係る排気装置を模式的に表した概略構成図である。 図3は、従来に係る流動層乾燥装置における乾燥用蒸気のクオリティに関するグラフである。 図4は、実施例1に係る流動層乾燥装置における乾燥用蒸気のクオリティに関するグラフである。 図5は、実施例2に係る排気装置を模式的に表した概略構成図である。 図6は、実施例3に係る排気装置を模式的に表した概略構成図である。
以下、添付した図面を参照して、本発明に係る非凝縮性ガスの排気装置、ガス化複合発電設備および非凝縮性ガスの排気方法について説明する。なお、以下の実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
図1は、実施例1に係る排気装置を適用した石炭ガス化複合発電設備の概略構成図である。実施例1の排気装置8が適用された石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)100は、空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。すなわち、実施例1の石炭ガス化複合発電設備100は、空気燃焼方式(空気吹き)の発電設備である。この場合、ガス化炉に供給する湿潤燃料として褐炭を使用している。
なお、実施例1では、湿潤燃料として褐炭を適用したが、水分含量の高いものであれば、亜瀝青炭等を含む低品位炭や、スラッジ等の泥炭を適用してもよく、また、高品位炭であっても適用可能である。また、湿潤燃料として、褐炭等の石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。
実施例1において、図1に示すように、石炭ガス化複合発電設備100は、給炭装置(燃料供給装置)111、排気装置8、流動層乾燥装置1、微粉炭機113、石炭ガス化炉114、チャー回収装置115、ガス精製装置116、ガスタービン設備117、蒸気タービン設備118、発電機119、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)120を有している。
給炭装置111は、原炭バンカ121と、石炭供給機122と、クラッシャ123とを有している。原炭バンカ121は、褐炭を貯留可能であって、所定量の褐炭を石炭供給機122に投下する。石炭供給機122は、原炭バンカ121から投下された褐炭をコンベアなどにより搬送し、クラッシャ123に投下する。このクラッシャ123は、投下された褐炭を細かく破砕して細粒化する。
排気装置8は、給炭装置111から供給された褐炭と共に混入する非凝縮性ガスを排気するものである。非凝縮性ガスは、いわゆる窒素を含む空気である。なお、排気装置8の詳細については後述する。
流動層乾燥装置1は、排気装置8を介して給炭装置111から投入された褐炭を水蒸気等の流動化蒸気により流動させると共に、伝熱管33により加熱乾燥することで、褐炭が含有する水分を除去するものである。この流動層乾燥装置1には、排出された乾燥済の褐炭(乾燥炭)を冷却する冷却器131が接続されている。冷却器131には、冷却済の乾燥炭を貯留する乾燥炭バンカ132が接続されている。また、流動層乾燥装置1には、外部へ排出される蒸気から乾燥炭の粒子を分離する集塵装置139として乾燥炭サイクロン133と乾燥炭電気集塵機134が接続されている。乾燥炭サイクロン133および乾燥炭電気集塵機134において蒸気から分離された乾燥炭の粒子は、乾燥炭バンカ132に貯留される。なお、乾燥炭電気集塵機134で乾燥炭が分離された蒸気は、蒸気圧縮機135で圧縮されてから流動層乾燥装置1の伝熱管33に熱媒として供給される。
微粉炭機113は、流動層乾燥装置1により乾燥された褐炭(乾燥炭)を細かい粒子状に粉砕して微粉炭を製造するものである。すなわち、微粉炭機113は、乾燥炭バンカ132に貯留された乾燥炭が石炭供給機136により投下されると、この乾燥炭を所定粒径以下の微粉炭とする。そして、微粉炭機113で粉砕後の微粉炭は、微粉炭バグフィルタ137a,137bにより搬送用ガスから分離され、微粉炭供給ホッパ138a,138bに貯留される。
石炭ガス化炉114は、微粉炭機113で処理された微粉炭が供給されると共に、チャー回収装置115で回収されたチャー(石炭の未燃分)が供給される。
石炭ガス化炉114は、ガスタービン設備117(圧縮機161)から圧縮空気供給ライン141が接続されており、このガスタービン設備117で圧縮された圧縮空気が供給可能となっている。空気分離装置142は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン143が石炭ガス化炉114に接続され、この第1窒素供給ライン143に微粉炭供給ホッパ138a,138bからの給炭ライン144a,144bが接続されている。また、第2窒素供給ライン145も石炭ガス化炉114に接続され、この第2窒素供給ライン145にチャー回収装置115からのチャー戻しライン146が接続されている。更に、酸素供給ライン147は、圧縮空気供給ライン141に接続されている。この場合、窒素は、石炭やチャーの搬送用ガスとして利用され、酸素は、酸化剤として利用される。
石炭ガス化炉114は、例えば、噴流床形式のガス化炉であって、内部に供給された石炭、チャー、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、二酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)が発生し、この可燃性ガスをガス化剤としてガス化反応が起こる。なお、石炭ガス化炉114は、微粉炭の混入した異物を除去する異物除去装置148が設けられている。この場合、石炭ガス化炉114は噴流床ガス化炉に限らず、流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉114は、チャー回収装置115に向けて可燃性ガスのガス生成ライン149が設けられており、チャーを含む可燃性ガスが排出可能となっている。この場合、ガス生成ライン149にガス冷却器を設けることで、可燃性ガスを所定温度まで冷却してからチャー回収装置115に供給するとよい。
チャー回収装置115は、集塵装置151と供給ホッパ152とを有している。この場合、集塵装置151は、1つまたは複数のバグフィルタやサイクロンにより構成され、石炭ガス化炉114で生成された可燃性ガスに含有するチャーを分離することができる。そして、チャーが分離された可燃性ガスは、ガス排出ライン153を通してガス精製装置116に送られる。供給ホッパ152は、集塵装置151で可燃性ガスから分離されたチャーを貯留するものである。なお、集塵装置151と供給ホッパ152との間にビンを配置し、このビンに複数の供給ホッパ152を接続するように構成してもよい。そして、供給ホッパ152からのチャー戻しライン146が第2窒素供給ライン145に接続されている。
ガス精製装置116は、チャー回収装置115によりチャーが分離された可燃性ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置116は、可燃性ガスを精製して燃料ガスを製造し、これをガスタービン設備117に供給する。なお、このガス精製装置116では、チャーが分離された可燃性ガス中にはまだ硫黄分(HS)が含まれているため、アミン吸収液によって除去することで、硫黄分を最終的には石膏として回収し、有効利用する。
ガスタービン設備117は、圧縮機161、燃焼器162、タービン163を有しており、圧縮機161とタービン163は、回転軸164により連結されている。燃焼器162は、圧縮機161から圧縮空気供給ライン165が接続されると共に、ガス精製装置116から燃料ガス供給ライン166が接続され、タービン163に燃焼ガス供給ライン167が接続されている。また、ガスタービン設備117は、圧縮機161から石炭ガス化炉114に延びる圧縮空気供給ライン141が設けられており、圧縮空気供給ライン141に昇圧機168が介設されている。従って、燃焼器162では、圧縮機161から供給された圧縮空気とガス精製装置116から供給された燃料ガスとを混合して燃焼し、タービン163にて、発生した燃焼ガスにより回転軸164を回転することで発電機119を駆動することができる。
蒸気タービン設備118は、ガスタービン設備117における回転軸164に連結されるタービン169を有しており、発電機119は、この回転軸164の基端部に連結されている。排熱回収ボイラ120は、ガスタービン設備117(タービン163)からの排ガスライン170に設けられており、空気と高温の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そのため、排熱回収ボイラ120は、蒸気タービン設備118のタービン169との間に蒸気供給ライン171が設けられると共に、蒸気回収ライン172が設けられ、蒸気回収ライン172に復水器173が設けられている。従って、蒸気タービン設備118では、排熱回収ボイラ120から供給された蒸気によりタービン169が駆動し、回転軸164を回転することで発電機119を駆動することができる。
そして、排熱回収ボイラ120で熱が回収された排ガスは、ガス浄化装置174により有害物質を除去され、浄化された排ガスは、煙突175から大気へ放出される。
ここで、実施例1の石炭ガス化複合発電設備100の作動について説明する。
実施例1の石炭ガス化複合発電設備100において、給炭装置111にて、原炭(褐炭)が原炭バンカ121に貯留されており、この原炭バンカ121の褐炭が石炭供給機122によりクラッシャ123に投下され、ここで所定の大きさに破砕される。そして、破砕された褐炭は、排気装置8において非凝縮性ガスが排気された後、流動層乾燥装置1に投入される。投入された褐炭は、流動層乾燥装置1により加熱乾燥された後、冷却器131により冷却され、乾燥炭バンカ132に貯留される。また、流動層乾燥装置1から排出された蒸気は、乾燥炭サイクロン133および乾燥炭電気集塵機134により乾燥炭の粒子が分離され、蒸気圧縮機135で圧縮されてから流動層乾燥装置1の伝熱管33に熱媒として戻される。一方、蒸気から分離された乾燥炭の粒子は、乾燥炭バンカ132に貯留される。
乾燥炭バンカ132に貯留される乾燥炭は、石炭供給機136により微粉炭機113に投入され、ここで、細かい粒子状に粉砕されて微粉炭が製造され、微粉炭バグフィルタ137a,137bを介して微粉炭供給ホッパ138a,138bに貯留される。この微粉炭供給ホッパ138a,138bに貯留される微粉炭は、空気分離装置142から供給される窒素により第1窒素供給ライン143を通して石炭ガス化炉114に供給される。また、後述するチャー回収装置115で回収されたチャーが、空気分離装置142から供給される窒素により第2窒素供給ライン145を通して石炭ガス化炉114に供給される。更に、後述するガスタービン設備117から抽気された圧縮空気が昇圧機168で昇圧された後、空気分離装置142から供給される酸素と共に圧縮空気供給ライン141を通して石炭ガス化炉114に供給される。
石炭ガス化炉114では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、二酸化炭素を主成分とする可燃性ガス(石炭ガス)を生成することができる。そして、この可燃性ガスは、石炭ガス化炉114からガス生成ライン149を通して排出され、チャー回収装置115に送られる。
このチャー回収装置115にて、可燃性ガスは、まず、集塵装置151に供給され、集塵装置151は、可燃性ガスに含まれるチャーを分離する。そして、チャーが分離された可燃性ガスは、ガス排出ライン153を通してガス精製装置116に送られる。一方、可燃性ガスから分離した微粒チャーは、供給ホッパ152に堆積され、チャー戻しライン146を通して石炭ガス化炉114に戻されてリサイクルされる。
チャー回収装置115によりチャーが分離された可燃性ガスは、ガス精製装置116にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。そして、ガスタービン設備117では、圧縮機161が圧縮空気を生成して燃焼器162に供給すると、この燃焼器162は、圧縮機161から供給される圧縮空気と、ガス精製装置116から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成し、この燃焼ガスによりタービン163を駆動することで、回転軸164を介して発電機119を駆動し、発電を行うことができる。
そして、ガスタービン設備117におけるタービン163から排出された排気ガスは、排熱回収ボイラ120にて、空気と熱交換を行うことで蒸気を生成し、この生成した蒸気を蒸気タービン設備118に供給する。蒸気タービン設備118では、排熱回収ボイラ120から供給された蒸気によりタービン169を駆動することで、回転軸164を介して発電機119を駆動し、発電を行うことができる。
その後、ガス浄化装置174では、排熱回収ボイラ120から排出された排気ガスの有害物質が除去され、浄化された排ガスが煙突175から大気へ放出される。
以下、上述した石炭ガス化複合発電設備100に設けられた排気装置8について詳細に説明する。図2は、実施例1に係る排気装置を模式的に表した概略構成図である。実施例1の排気装置8は、給炭装置111により投入された褐炭と共に混入した非凝縮性ガスを排気している。先ず、排気装置8に接続された流動層乾燥装置1について説明する。
図2に示すように、流動層乾燥装置1は、内部に褐炭が供給される乾燥炉5と、乾燥炉5の内部に設けられたガス分散板6と、を備えている。乾燥炉5は、長方体の箱状に形成されている。ガス分散板6は、乾燥炉5内部の空間を、鉛直方向下方側(図示下側)に位置する風室11と、鉛直方向上方側(図示上側)に位置する乾燥室12とに区分けしている。ガス分散板6には、多数の貫通孔が形成され、風室11には、流動化蒸気が導入される。
乾燥炉5の乾燥室12には、褐炭を投入する褐炭投入口31と、褐炭を加熱乾燥した乾燥炭を排出する乾燥炭排出口34と、流動化蒸気および乾燥時に発生する発生蒸気を排出する蒸気排出口35と、褐炭を加熱する伝熱管33とが設けられている。
褐炭投入口31は、乾燥室12の一端側(図示左側)に形成されている。褐炭投入口31には、排気装置8が接続されており、給炭装置111から供給され排気装置8を通過した褐炭が、乾燥室12に供給される。
乾燥炭排出口34は、乾燥室12の他端側(図示右側)の下部に形成されている。乾燥炭排出口34からは、乾燥室12内において乾燥された褐炭が、乾燥炭として排出され、排出された乾燥炭は上記した冷却器131へ向けて供給される。
蒸気排出口35は、乾燥室12の他端側における上面に形成されている。蒸気排出口35は、褐炭の乾燥時において、乾燥室12に供給された流動化蒸気と共に、湿潤燃料が加熱されることによって発生する発生蒸気を排出している。なお、蒸気排出口35から排出された流動化蒸気および発生蒸気は、上記した集塵装置139へ向けて供給された後、蒸気圧縮機135に供給される。
伝熱管33は、パネル状に構成され、流動層3の内部に設けられている。伝熱管33には、蒸気圧縮機135の流出側が接続されており、管内に蒸気圧縮機135で圧縮された蒸気が乾燥用蒸気として供給される。このため、伝熱管33は、管内に乾燥用蒸気が供給されると、乾燥用蒸気の潜熱を利用して、流動層3の褐炭を加熱し、これにより、流動層3の褐炭中の水分を除去することで、乾燥室12内の褐炭を乾燥させる。この後、乾燥に利用された乾燥用蒸気は、乾燥室12の外部に排出される。
従って、褐炭投入口31を介して乾燥室12に供給された褐炭は、ガス分散板6を介して供給される流動化蒸気により流動することで、乾燥室12内に流動層3を形成すると共に、流動層3の上方にフリーボード部Fを形成する。乾燥室12に形成される流動層3は、その流動方向が、乾燥室12の一端側から他端側へ向かう方向となる。そして、流動層3となった褐炭は、伝熱管33により加熱されることで、褐炭に含まれる水分が発生蒸気となって、流動化蒸気と共に蒸気排出口35から排出される。蒸気排出口35から排出された蒸気は、集塵装置139で蒸気に含まれる乾燥炭の粒子が集塵された後、蒸気圧縮機135に供給され、蒸気圧縮機135によって圧縮されることで昇温される。昇温した蒸気は、乾燥用蒸気として伝熱管33に供給され、潜熱を利用して、褐炭を加熱する。
排気装置8は、給炭装置111と流動層乾燥装置1との間に設けられている。排気装置8は、給炭装置111から供給される褐炭を貯留する燃料貯留ホッパ(燃料貯留部)41を有している。燃料貯留ホッパ41は、その一方側(図示上側)が第1燃料供給ラインL1を介して給炭装置111に接続され、その他方側(図示下側)が第2燃料供給ラインL2を介して流動層乾燥装置1に接続されている。また、排気装置8は、第1燃料供給ラインL1に介設された第1ロータリーフィーダ44と、第2燃料供給ラインL2に介設された第2ロータリーフィーダ45とを有している。第1ロータリーフィーダ44は、作動することで、給炭装置111から燃料貯留ホッパ41へ向けて褐炭を供給する。一方で、第1ロータリーフィーダ44は、作動を停止することで、第1燃料供給ラインL1を閉塞し、給炭装置111と燃料貯留ホッパ41との間を仕切る仕切り部として機能する。同様に、第2ロータリーフィーダ45は、作動することで、燃料貯留ホッパ41から流動層乾燥装置1へ向けて褐炭を供給する。一方で、第2ロータリーフィーダ45は、作動を停止することで、第2燃料供給ラインL2を閉塞し、燃料貯留ホッパ41と流動層乾燥装置1との間を仕切る仕切り部として機能する。なお、第1ロータリーフィーダ44および第2ロータリーフィーダ45による仕切りは、密封性を要求されない。
また、燃料貯留ホッパ41には、その下部に蒸気供給ライン(蒸気供給部)L3が接続され、その上部にガス排出ライン(ガス排出部)L4が接続されている。蒸気供給ラインL3は、燃料貯留ホッパ41の内部へ向けて蒸気を供給している。蒸気供給ラインL3に供給される蒸気は、例えば、外部の補助蒸気供給装置から供給される。また、一定時間運転後の乾燥炉5内の非凝縮性ガスの濃度が低下した蒸気を、圧縮機135出口から一部抽気して供給することもできる。ガス排出ラインL4は、燃料貯留ホッパ41の内部の窒素等の非凝縮性ガスを排出可能となっている。つまり、ガス排出ラインL4は、蒸気供給ラインL3で燃料貯留ホッパ41内に蒸気が供給された分、燃料貯留ホッパ41の内部の非凝縮性ガスを排出している。そして、蒸気供給ラインL3およびガス排出ラインL4は、燃料貯留ホッパ41内の非凝縮性ガスを排気するガス排気部として機能している。なお、ガス排出ラインL4から排出された非凝縮性ガスは、各種熱源として有効活用される。
従って、上記のように構成された排気装置8では、第2ロータリーフィーダ45の作動を停止させる一方で、第1ロータリーフィーダ44を作動させることにより、給炭装置111から燃料貯留ホッパ41に褐炭を供給する。供給された褐炭は、燃料貯留ホッパ41に貯留される(燃料貯留工程)。この後、排気装置8は、第1ロータリーフィーダ44および第2ロータリーフィーダ45の作動を停止させることで、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切り、これにより、燃料貯留ホッパ41内の褐炭を隔離した状態とする(燃料隔離工程)。そして、蒸気供給ラインL3から燃料貯留ホッパ41内に蒸気を供給する。すると、燃料貯留ホッパ41は、その内部の非凝縮性ガスがガス排出ラインL4から排気されつつ、内部の非凝縮性ガスが蒸気で満たされる。このため、燃料貯留ホッパ41内に蒸気が満たされることで、非凝縮性ガスが蒸気に置換され、これにより、燃料貯留ホッパ41内の非凝縮性ガスが排気される(排気工程)。このとき、蒸気供給ラインL3を通って燃料貯留ホッパ41に蒸気が供給されると、燃料貯留ホッパ41内に貯留した褐炭は、蒸気により流動しながら予熱される。この後、排気装置200は、第2ロータリーフィーダ45を作動させて、燃料貯留ホッパ41から流動層乾燥装置1に褐炭を供給する。
次に、図3および図4を参照して、排気装置8が接続されていない従来の流動層乾燥装置1の伝熱管33に流通する乾燥用蒸気のクオリティと、排気装置8が接続された実施例1の流動層乾燥装置1の伝熱管33に流通する乾燥用蒸気のクオリティとを比較する。図3は、従来に係る流動層乾燥装置における乾燥用蒸気のクオリティに関するグラフである。図4は、実施例1に係る流動層乾燥装置における乾燥用蒸気のクオリティに関するグラフである。
図3および図4に示すグラフは、その横軸が乾燥用蒸気のクオリティであり、その縦軸が乾燥用蒸気の温度である。なお、クオリティとは、蒸気の全量に対する気相の蒸気の割合であり、クオリティが低ければ低いほど、気相の蒸気の割合が少なく、液相の蒸気の割合が多くなる。
図3のグラフでは、排気装置8が接続されていないため、乾燥炉5内の雰囲気中に含まれる非凝縮性ガスの混入率は、5wt%となっている。一方で、図4のグラフでは、排気装置8が接続されているため、乾燥炉5内の雰囲気中に含まれる非凝縮性ガスの混入率は、1wt%となっている。このとき、図3および図4において、乾燥炉5内の雰囲気の圧力は、0.1MPaとなっており、また、乾燥炉5内の露点温度T1は、100℃前後となっている。なお、乾燥炉5内の露点温度T1が100℃前後であるため、伝熱管33に供給される乾燥用蒸気の温度T2は100℃以上となっており、露点温度T1と乾燥用蒸気(伝熱管33)の温度T2との温度差が、所定の温度差ΔTとなっている。
また、図3において、乾燥炉5から排出された蒸気は、蒸気圧縮機135により再圧縮されて伝熱管33に供給されることから、伝熱管33を流通する乾燥用蒸気に含まれる非凝縮性ガスの混入率は、5wt%となっている。同様に、図4においても、乾燥炉5から排出された蒸気は、蒸気圧縮機135により再圧縮して伝熱管33に供給されることから、伝熱管33を流通する乾燥用蒸気に含まれる非凝縮性ガスの混入率は、1wt%となっている。このとき、図3および図4の乾燥用蒸気が流通する伝熱管33内の圧力は、0.49MPaとなっている。
図3に示すように、従来の流動層乾燥装置1では、乾燥用蒸気の非凝縮性ガスの混入率が高いため、伝熱管33に供給される乾燥用蒸気のクオリティが0.2よりも小さくなると、乾燥用蒸気の気相中における非凝縮性ガスの割合がより多くなる。このため、低クオリティ域での乾燥用蒸気の温度T2が急低下し、温度差ΔTも小さくなり、潜熱を回収し難くなる。これにより、従来の流動層乾燥装置1では、クオリティが0.2よりも小さくなる乾燥用蒸気を用いることが困難となる。
一方で、図4に示すように、実施例1の流動層乾燥装置1では、乾燥用蒸気の非凝縮性ガスの混入率が低いため、伝熱管33に供給される乾燥用蒸気のクオリティが0.2より小さくなっても、乾燥用蒸気の気相中における非凝縮性ガスの割合が、従来に比して少なくなる。このため、乾燥用蒸気の温度T2の急低下を抑制し、温度差ΔTを確保できることから、実施例1の流動層乾燥装置1では、従来に比してより低クオリティの乾燥用蒸気を用いることが可能となる。なお、実施例1の流動層乾燥装置1では、乾燥用蒸気のクオリティが0.1以上であれば、乾燥用蒸気の温度T2の低下を抑制でき、乾燥用蒸気の潜熱の回収を効率よく行うことが可能となる。
以上のように、実施例1の構成によれば、排気装置8は、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切った状態で、褐炭と共に混入する非凝縮性ガスを排気することができる。このため、排気装置8は、非凝縮性ガスの混入を抑制しつつ、褐炭を流動層乾燥装置1に供給することができる。これにより、流動層乾燥装置1から排出される蒸気は、非凝縮性ガスの混入量が少ないものとすることができるため、再圧縮される乾燥用蒸気が低クオリティとなったとしても、乾燥用蒸気の温度低下を抑制でき、乾燥用蒸気の潜熱を効率よく回収することができる。
また、実施例1の構成によれば、排気装置8は、燃料貯留ホッパ41内に貯留した褐炭を、蒸気供給ラインL3から供給した蒸気により予熱することができる。このため、予熱された褐炭を流動層乾燥装置1へ供給することができるため、流動層乾燥装置1の供給側において蒸気の再凝縮を抑制することができ、凝縮水により褐炭が凝集して流動化不良が発生することを抑制することができる。
また、実施例1の構成によれば、排気装置8は、燃料貯留ホッパ41に褐炭を貯留し、第1ロータリーフィーダ44および第2ロータリーフィーダ45により、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切った状態で、蒸気供給ラインL3から燃料貯留ホッパ41内に蒸気を供給し、ガス排出ラインL4から燃料貯留ホッパ41内の非凝縮性ガスを排出することで、燃料貯留ホッパ41内の非凝縮性ガスを好適に排気することができる。
次に、図5を参照して、実施例2に係る排気装置200について説明する。図5は、実施例2に係る排気装置を模式的に表した概略構成図である。なお、実施例2では、重複した記載を避けるべく、実施例1と異なる部分について説明すると共に、実施例1と同様の構成である部分については、同じ符号を付す。実施例2に係る排気装置200では、実施例1のガス排出ラインL4に吸気装置(ガス吸気部)201を介設している。以下、実施例2に係る排気装置200について説明する。
実施例2の排気装置200において、ガス排出ラインL4に介設された吸気装置201は、燃料貯留ホッパ41内の非凝縮性ガスを吸引すると共に、吸引した非凝縮性ガスを燃料貯留ホッパ41の外部に排気している。そして、蒸気供給ラインL3、雰囲気排出ラインL4および吸気装置201は、燃料貯留ホッパ41内の非凝縮性ガスを排気するガス排気部として機能している。
従って、上記のように構成された排気装置200では、第2ロータリーフィーダ45の作動を停止させる一方で、第1ロータリーフィーダ44を作動させることにより、給炭装置111から燃料貯留ホッパ41に褐炭を供給する。供給された褐炭は、燃料貯留ホッパ41に貯留される(燃料貯留工程)。この後、排気装置200は、第1ロータリーフィーダ44および第2ロータリーフィーダ45の作動を停止させることで、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切り、これにより、燃料貯留ホッパ41内の褐炭を隔離した状態とする(燃料隔離工程)。この状態で、吸気装置201は、燃料貯留ホッパ41の内部の非凝縮性ガスを吸引することで、ガス排出ラインL4を介して燃料貯留ホッパ41内の非凝縮性ガスを排気する(排気工程)。
吸気装置201により燃料貯留ホッパ41の内部の非凝縮性ガスを吸引すると、燃料貯留ホッパ41の内部は負圧となる。このため、蒸気供給ラインL3から燃料貯留ホッパ41に蒸気を供給し、燃料貯留ホッパ41内と流動層乾燥装置1内とを均圧にすることで、燃料貯留ホッパ41内の褐炭を流動層乾燥装置1内へ供給することができる。また、燃料貯留ホッパ41は、その内部の非凝縮性ガスが蒸気で満たされる。これにより、排気装置200は、非凝縮性ガスの燃料貯留ホッパ41への流入を抑制できる。この後、排気装置200は、第2ロータリーフィーダ45を作動させて、燃料貯留ホッパ41から流動層乾燥装置1に褐炭を供給する。
以上のように、実施例2の構成においても、排気装置200は、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切った状態で、褐炭と共に混入する非凝縮性ガスを排気することができる。これにより、排気装置200は、非凝縮性ガスの混入を抑制することができ、乾燥用蒸気が低クオリティとなったとしても、乾燥用蒸気の温度低下を抑制でき、乾燥用蒸気の潜熱を効率よく回収することができる。
また、実施例2の構成によれば、排気装置200は、燃料貯留ホッパ41に褐炭を貯留し、第1ロータリーフィーダ44および第2ロータリーフィーダ45により、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切った状態で、吸気装置201によりガス排出ラインL4から燃料貯留ホッパ41内の非凝縮性ガスを吸気した後、蒸気供給ラインL3から燃料貯留ホッパ41内に蒸気を供給することで、燃料貯留ホッパ41内の非凝縮性ガスを好適に排気することができる。
なお、実施例2において、第1ロータリーフィーダ44および第2ロータリーフィーダ45は、密封性の高いものを用いることが好ましい。
次に、図6を参照して、実施例3に係る排気装置210について説明する。図6は、実施例3に係る排気装置を模式的に表した概略構成図である。なお、実施例3でも、重複した記載を避けるべく、実施例2と異なる部分について説明すると共に、実施例2と同様の構成である部分については、同じ符号を付す。実施例2に係る排気装置200では、実施例1のガス排出ラインL4に吸気装置201を介設した。実施例3に係る排気装置210では、蒸気供給ラインL3を廃すると共に、第1ロータリーフィーダ44および第2ロータリーフィーダ45に代えて、第1ボール弁211および第2ボール弁212を設けている。以下、実施例3に係る排気装置210について説明する。
実施例3の排気装置210において、第1ボール弁211および第2ボール弁212(仕切り部)は、開閉弁の一種であり、開弁時において、第1燃料供給ラインL1および第2燃料供給ラインL2の褐炭の流通をそれぞれ許容する。一方で、第1ボール弁211および第2ボール弁212は、閉弁時において、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ閉止する。これにより、第1ボール弁211および第2ボール弁212を閉弁することで、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切ることができ、燃料貯留ホッパ41内の褐炭を隔離した状態にできる。このとき、第1ボール弁211および第2ボール弁212は、密封性の高いものとなっている。なお、吸気装置201については、実施例2と同様であるため、説明を省略する。また、ガス排出ラインL4および吸気装置201は、燃料貯留ホッパ41内の非凝縮性ガスを排気するガス排気部として機能している。
従って、上記のように構成された排気装置210では、第2ボール弁212を閉弁する一方で、第1ボール弁211を開弁させることにより、給炭装置111から燃料貯留ホッパ41に褐炭を供給する。供給された褐炭は、燃料貯留ホッパ41に貯留される(燃料貯留工程)。この後、排気装置210は、第1ボール弁211および第2ボール弁212が閉弁されることで、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切り、これにより、燃料貯留ホッパ41内の褐炭を隔離した状態とする(燃料隔離工程)。この状態で、吸気装置201は、燃料貯留ホッパ41の内部の非凝縮性ガスを吸引することで、ガス排出ラインL4を介して燃料貯留ホッパ41内の非凝縮性ガスを排気する(排気工程)。この後、排気装置210は、第2ボール弁212が開弁されると、燃料貯留ホッパ41から流動層乾燥装置1に褐炭を供給する。
以上のように、実施例3の構成においても、排気装置210は、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切った状態で、褐炭と共に混入する非凝縮性ガスを排気することができる。これにより、排気装置210は、非凝縮性ガスの混入を抑制することができ、乾燥用蒸気が低クオリティとなったとしても、乾燥用蒸気の温度低下を抑制でき、乾燥用蒸気の潜熱を効率よく回収することができる。
また、実施例3の構成によれば、排気装置210は、燃料貯留ホッパ41に褐炭を貯留し、第1ボール弁211および第2ボール弁212により、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切った状態で、吸気装置201によりガス排出ラインL4から燃料貯留ホッパ41内の非凝縮性ガスを吸気することで、燃料貯留ホッパ41内の非凝縮性ガスを好適に排気することができる。
なお、実施例1から実施例3の排気装置8,200,210では、複数の仕切り部として、第1ロータリーフィーダ44および第2ロータリーフィーダ45、または第1ボール弁211および第2ボール弁212を適用したが、この構成に限定されない。すなわち、第1燃料供給ラインL1および第2燃料供給ラインL2をそれぞれ仕切る一方で、第1燃料供給ラインL1および第2燃料供給ラインL2における褐炭の流通を許容可能なものであれば、いずれであってもよい。
1 流動層乾燥装置
3 流動層
5 乾燥炉
6 ガス分散板
8 排気装置
11 風室
12 乾燥室
31 褐炭投入口
33 伝熱管
34 乾燥炭排出口
35 蒸気排出口
41 燃料貯留ホッパ
44 第1ロータリーフィーダ
45 第2ロータリーフィーダ
200 排気装置(実施例2)
201 吸気装置
210 排気装置(実施例3)
211 第1ボール弁
212 第2ボール弁
L1 第1燃料供給ライン
L2 第2燃料供給ライン
L3 蒸気供給ライン
L4 ガス排出ライン
F フリーボード部

Claims (5)

  1. 湿潤燃料を流動化蒸気により流動させながら、前記湿潤燃料を乾燥可能な流動層乾燥装置と、前記流動層乾燥装置へ向けて前記湿潤燃料を供給可能な燃料供給装置との間に設けられ、前記燃料供給装置との間および前記流動層乾燥装置との間をそれぞれ仕切った状態で、前記燃料供給装置から供給された前記湿潤燃料と共に混入する非凝縮性ガスを排気することを特徴とする非凝縮性ガスの排気装置。
  2. 前記燃料供給装置から供給された前記湿潤燃料を貯留する燃料貯留部と、
    前記燃料供給装置と前記燃料貯留部との間および前記燃料貯留部と前記流動層乾燥装置との間にそれぞれ設けられた複数の仕切り部と、
    前記燃料貯留部内の前記非凝縮性ガスを排気するガス排気部と、を有していることを特徴とする請求項1に記載の非凝縮性ガスの排気装置。
  3. 前記ガス排気部は、
    前記燃料貯留部内に蒸気を供給する蒸気供給部と、
    前記燃料貯留部内の前記非凝縮性ガスを排出するガス排出部と、を有していることを特徴とする請求項2に記載の非凝縮性ガスの排気装置。
  4. 前記ガス排気部は、
    前記燃料貯留部内の前記非凝縮性ガスを吸気するガス吸気部を有していることを特徴とする請求項2または3に記載の非凝縮性ガスの排気装置。
  5. 湿潤燃料を流動化蒸気により流動させながら、前記湿潤燃料を乾燥可能な流動層乾燥装置と、
    前記流動層乾燥装置へ向けて前記湿潤燃料を供給可能な燃料供給装置と、
    前記流動層乾燥装置と前記燃料供給装置との間に設けられた請求項1ないし4のいずれか1項に記載の非凝縮性ガスの排気装置と、
    前記流動層乾燥装置から供給された乾燥後の前記湿潤燃料を処理してガス化ガスに変換するガス化炉と、
    前記ガス化ガスを燃料として運転されるガスタービンと、
    前記ガスタービンからのタービン排ガスを導入する排熱回収ボイラで生成した蒸気により運転される蒸気タービンと、
    前記ガスタービンおよび前記蒸気タービンと連結された発電機とを備えたことを特徴とするガス化複合発電設備。
JP2012042229A 2012-02-28 2012-02-28 非凝縮性ガスの排気装置およびガス化複合発電設備 Expired - Fee Related JP5851883B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012042229A JP5851883B2 (ja) 2012-02-28 2012-02-28 非凝縮性ガスの排気装置およびガス化複合発電設備
AU2013201145A AU2013201145B2 (en) 2012-02-28 2013-02-27 Flue device of non-condensable gas, integrated gasification combined cycle, and flue method of non-condensable gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042229A JP5851883B2 (ja) 2012-02-28 2012-02-28 非凝縮性ガスの排気装置およびガス化複合発電設備

Publications (2)

Publication Number Publication Date
JP2013178027A JP2013178027A (ja) 2013-09-09
JP5851883B2 true JP5851883B2 (ja) 2016-02-03

Family

ID=49115636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042229A Expired - Fee Related JP5851883B2 (ja) 2012-02-28 2012-02-28 非凝縮性ガスの排気装置およびガス化複合発電設備

Country Status (2)

Country Link
JP (1) JP5851883B2 (ja)
AU (1) AU2013201145B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912464B (zh) * 2014-04-11 2016-09-14 武汉凯迪工程技术研究总院有限公司 太阳能光热与bigcc集成的联合发电系统
CN117848009B (zh) * 2024-03-06 2024-05-07 诸城兴贸玉米开发有限公司 用于农业产品处理的玉米粉干燥机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4029525A1 (de) * 1990-09-18 1992-03-19 Umwelt & Energietech Verfahren und vorrichtung zum trocknen von feststoffmaterialien in einem indirekt beheizten wirbelschichtbett
JP5419340B2 (ja) * 2007-12-03 2014-02-19 大川原化工機株式会社 連続式常圧過熱水蒸気乾燥方法及び装置
BRPI0804349A2 (pt) * 2008-10-16 2010-07-13 Rm Materiais Refratarios Ltda aparelho e processo para decomposição térmica de qualquer tipo de material orgánico
US8394240B2 (en) * 2009-07-14 2013-03-12 C2O Technologies, Llc Process for treating bituminous coal by removing volatile components
JP2011201944A (ja) * 2010-03-24 2011-10-13 Mitsubishi Heavy Ind Ltd 低品位炭乾燥装置およびこれを備えた石炭焚き火力発電設備
JP5634100B2 (ja) * 2010-04-02 2014-12-03 三菱重工業株式会社 流動層乾燥装置及び流動層乾燥設備

Also Published As

Publication number Publication date
AU2013201145B2 (en) 2015-02-12
AU2013201145A1 (en) 2013-09-12
JP2013178027A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
AU2012248415B2 (en) Fluidized bed drying apparatus and integrated coal gasification combined cycle system
JP5851884B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP5851883B2 (ja) 非凝縮性ガスの排気装置およびガス化複合発電設備
JP5748559B2 (ja) 流動層乾燥装置
JP5896821B2 (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP5959879B2 (ja) 乾燥システム
JP2014173789A (ja) 低品位炭乾燥設備及びガス化複合発電システム
AU2012243826B2 (en) Fluidized bed drying apparatus
WO2012133549A1 (ja) 湿潤原料供給設備及び湿潤原料を用いたガス化複合発電システム
JP5812896B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP5931505B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP2012241992A (ja) 乾燥システム
JP5777402B2 (ja) 流動層乾燥装置
JP2012241120A (ja) ガス化システム
JP2013210179A (ja) 湿潤燃料の減圧乾燥装置
JP2014173790A (ja) 低品位炭乾燥設備及びガス化複合発電システム
JP2013167378A (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP2012233634A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
JP5916426B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
WO2012161130A1 (ja) 流動層乾燥装置
JP2013044461A (ja) 流動層乾燥装置
JP5683380B2 (ja) 流動層乾燥装置
JP2012241994A (ja) 流動層乾燥装置
JP2012233635A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
JP2013173086A (ja) 流動層冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5851883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees