WO2010032722A1 - シールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法 - Google Patents

シールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法 Download PDF

Info

Publication number
WO2010032722A1
WO2010032722A1 PCT/JP2009/066084 JP2009066084W WO2010032722A1 WO 2010032722 A1 WO2010032722 A1 WO 2010032722A1 JP 2009066084 W JP2009066084 W JP 2009066084W WO 2010032722 A1 WO2010032722 A1 WO 2010032722A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
radical
gate opening
seal member
seal plate
Prior art date
Application number
PCT/JP2009/066084
Other languages
English (en)
French (fr)
Inventor
真人 濱出
吉田 勉
延博 吉田
和明 辻
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Priority to KR1020117007994A priority Critical patent/KR101269267B1/ko
Priority to JP2010529759A priority patent/JP5355578B2/ja
Priority to US13/119,473 priority patent/US8888106B2/en
Publication of WO2010032722A1 publication Critical patent/WO2010032722A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/104Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/0218Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with only one sealing face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/0227Packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • F16K51/02Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1043Subsequent to assembly

Definitions

  • the present invention relates to a seal plate provided in a vacuum gate valve used in a semiconductor manufacturing apparatus or the like, a seal member used in the seal plate, and a manufacturing method thereof.
  • the vacuum gate valve 104 is used to seal the gate opening 110 for taking in and out the wafer between the process chamber 106 and the transfer chamber 108.
  • the seal plate 102 used for the vacuum gate valve 104 is made of a metal such as aluminum, and the seal member 100 is made of an elastic member such as fluorine rubber.
  • the seal plate 102 When closing the gate opening 110, the seal plate 102 is moved to a position facing the valve seat surface 112 of the gate opening 110, and then the seal plate 102 is moved toward the gate opening 110, thereby The inside of the process chamber 106 is sealed by bringing the valve seat surface 112 of the portion 110 into contact with the seal member 100 of the seal plate 102.
  • such a seal plate is formed by mounting a seal member 100a having a substantially circular cross section in a groove 114 formed in the outer edge of the seal plate 102a as shown in FIG.
  • a seal member 100b having a substantially rectangular cross section is bonded in a recess 116 formed on the outer edge of the seal plate 102b.
  • Such seal plates 102a and 102b are exposed to the processing gas such as corrosive gas and active gas used in the process chamber 106 when the seal members 100a and 100b are used in the semiconductor manufacturing apparatus as described above. Will be.
  • the seal plates 102a and 102b of the vacuum gate valve 104 have been used in harsh environments. Therefore, the seal members 100a and 100b made of a material that is more excellent in plasma resistance than conventional ones have been used. However, at present, the durability is not sufficient, and the cost is high.
  • the groove is located near the gate opening 210 of the sheet plate 202 separately from the seal member 200 mounted in the groove 214 at the outer edge of the seal plate 202. 216 is formed, and an auxiliary seal member 218 made of a fluororesin having resistance to the processing gas is disposed therein, so that a so-called double seal structure is formed.
  • Patent Document 2 As shown in FIG. 15, in the seal member 300 mounted in the groove 314 at the outer edge of the seal plate 302, the side close to the gate opening 310 of the seal member 300 is exposed to the processing gas.
  • a so-called jacket seal structure is provided that is covered with a fluorine resin member 318 having resistance.
  • auxiliary seal member 218 made of fluororesin does not have elasticity or flexibility like rubber, there may be a case where sufficient sealability cannot be exhibited against distortion and dimensional variation of the valve seat surface 212. It was.
  • the auxiliary seal member 218 may be worn and particles may be generated.
  • seal member 200 is only mounted in the groove 214, there is a problem that the seal member 200 is fixed to the valve seat surface 212 and the seal member 200 falls out of the groove 214.
  • the seal member 300 having the jacket seal structure described in Patent Document 2 cannot prevent the seal member 300 from being exposed to the processing gas when the seal member 300 rolls in the groove 314 even a little. There was a problem that it was difficult to obtain the effect.
  • seal member 300 is only mounted in the groove 314 formed in the seal plate 302 as in Patent Document 1, the seal member 300 is fixed to the valve seat surface 312 and is sealed from the groove 314. There was a problem that 300 would fall out.
  • the present invention prevents the seal member used for the seal plate from being exposed to the processing gas to extend the life of the seal member, and the seal member falls out of the groove or rolls. It is an object of the present invention to provide a seal plate, a seal member used for the seal plate, and a manufacturing method thereof.
  • the seal member of the present invention is In a vacuum gate valve, a seal that is bonded to the outer edge of a flat seal plate disposed so as to face the valve seat surface of the gate opening and seals the gate opening by contacting the valve seat surface A member,
  • the sealing member bonded to the outer edge portion is A vacuum seal portion that is located on the side far from the gate opening and maintains the sealing performance of the gate opening when the gate opening is closed;
  • a radical seal portion that is located on a side closer to the gate opening and prevents the seal member from being eroded by a processing gas in the gate opening when the gate opening is closed;
  • the vacuum seal portion is made of a rubber elastic body,
  • the radical seal part is formed by disposing a radical-resistant body having excellent radical resistance on a rubber elastic body.
  • the seal member is provided with both the vacuum seal portion and the radical seal portion as described above, the process gas can be sealed by the radical seal portion, so that the vacuum seal portion is not exposed to the process gas.
  • the gate opening can be reliably sealed at the portion, and the life of the seal member can be greatly extended.
  • the seal member is premised on being bonded to the outer edge portion of the seal plate, there is no problem that the seal member falls out of the groove or rolls when used in a vacuum gate valve. . For this reason, when this seal member is applied to the vacuum gate valve of the semiconductor manufacturing apparatus, the semiconductor can be efficiently manufactured without stopping the semiconductor manufacturing.
  • the seal member is manufactured from such a material, the gate opening can be reliably sealed in the vacuum seal portion, and the vacuum seal portion can be protected from the processing gas in the radical seal portion. Can do.
  • the radical seal portion has a structure in which a radical resistant body is disposed on a rubber elastic body, the radical resistant body does not have elasticity if the thickness of the radical resistant body is reduced with respect to the rubber elastic body.
  • the load applied to the radical resistant body can be absorbed by the deformation of the rubber elastic body by the rubber elastic body below.
  • the sealing member of the present invention is The radical-resistant body is The radical seal portion extends from the rubber elastic body to the seal plate.
  • a radical-proof body will protect the junction edge part of the seal plate located in the gate opening part side, and the rubber elastic body of a radical seal part, and process gas will be between a seal plate and a seal member. Can be prevented from flowing in, and the vacuum seal portion can be reliably protected from the processing gas.
  • the sealing member of the present invention is The vacuum seal part and the rubber elastic body of the radical seal part are integrally configured, It is bonded to a recess formed in an outer edge portion of the seal plate.
  • the seal plate can be made too large because the space of the seal portion can be reduced in the seal plate to which the seal member is bonded. It is easy to install.
  • seal member is integral, only one molding die is required, and the productivity is good.
  • the sealing member of the present invention is The rubber elastic body and radical resistant body of the radical seal portion are It is characterized by being adhered to each other.
  • the sealing member of the present invention is The rubber elastic body and radical resistant body of the radical seal portion are It is characterized by being laminated in a separable manner.
  • the sealing member of the present invention is The vacuum seal part is It is configured to be in contact with the valve seat surface at least before the radical seal portion.
  • the vacuum seal portion is configured to contact the valve washer before the radical seal portion in this way, a strong load is not applied to the radical seal portion, which is the original role of the radical seal portion. Protecting the vacuum seal from the process gas can be maintained for a long time.
  • the sealing member of the present invention is In the longitudinal cross-sectional shape of the sealing member, A substantially symmetrical valley is formed on each of the left and right sides of the radical seal portion.
  • the radical seal part is inclined to one side in order to deform the radical seal part evenly when the radical seal part abuts against the valve seat surface. Can be prevented from being crushed.
  • the seal member may move in the left-right direction, but if the trough part is provided on both sides, the movement in the left-right direction may occur. It is possible to prevent the wear of the radical-resistant body.
  • the seal plate of the present invention is The sealing member according to any of the above is adhered to the outer edge of the sealing plate, In the vacuum gate valve, the gate opening is disposed so as to face the valve seat surface of the gate opening, and the gate opening is sealed by contacting the valve seat and the seal member.
  • the seal plate is formed by adhering the seal member having the vacuum seal portion and the radical seal portion as described above to the outer edge portion, the vacuum seal portion can be reliably protected from the processing gas, Since the seal member does not fall off from the outer edge, the predetermined function as the vacuum gate valve can be repeatedly maintained.
  • the seal plate of the present invention is A small step portion is provided at the edge of the concave portion of the seal plate.
  • the small step portion is provided in this way, it is possible to reduce the rapid expansion of the rubber elastic body that thermally expands when heat is applied, and thus it is possible to prevent the radical resistant body from peeling off.
  • the seal plate of the present invention is The top portion of the radical seal portion that contacts the valve seat surface is a flat surface substantially parallel to the valve seat surface.
  • the contact area with the valve seat surface is larger than in the case of a normal arc shape, so the load per unit area received from the valve seat surface is small. It is possible to suppress the wear of the radical-resistant body.
  • the manufacturing method of the sealing member of the present invention is as follows.
  • the gate opening is bonded to a recess formed in an outer edge portion of a flat seal plate disposed so as to face the valve seat surface of the gate opening portion, and comes into contact with the valve seat surface.
  • a method for producing a sealing member for sealing a part The manufacturing method of the sealing member is: Preparing the seal plate; Adhering the raw material of the seal member in the recess of the seal plate; A step of disposing a radical-resistant body on the raw material of the seal member on the inner side of the recess of the seal plate; Heat pressing with a pressing member from above the radical-resistant body disposed on the raw material of the sealing member, and thermocompression bonding the seal plate and at least a part of the radical-resistant body; Above the raw material of the seal member in which the radical resistant body is disposed, A recess for forming a vacuum seal portion located on the outer side of the recess of the seal plate and maintaining the sealing performance of the gate opening when the gate opening is closed; and on the inner side of the recess of the seal plate Disposing a mold having a recess for forming a radical seal portion that is positioned and prevents the seal member from being eroded from a processing gas in the gate opening when the gate opening is closed;
  • the sealing member is manufactured by such a manufacturing method, the seal plate and at least a part of the radical-resistant body are thermocompression bonded, and then the vacuum seal part and the radical seal part are formed by the mold. Sometimes, the raw material of the seal member can be prevented from flowing out to the inside of the seal plate.
  • the rubber material does not flow out to the inside of the seal plate and burrs are not generated, so that the productivity is good.
  • the vacuum seal portion can be reliably protected from the processing gas, and the seal member does not fall off from the concave portion of the outer edge portion.
  • the predetermined function as the gate valve can be maintained repeatedly.
  • the manufacturing method of the seal plate of the present invention has the process of forming a sealing member with the manufacturing method as described above.
  • the vacuum seal part can be reliably protected from the processing gas, and the seal member does not fall off from the concave portion of the outer edge part.
  • the predetermined function as the vacuum gate valve can be maintained repeatedly.
  • the seal member includes the vacuum seal portion and the radical seal portion, and the rubber elastic body constituting both portions is bonded to the outer edge portion of the seal plate.
  • a seal plate used for the seal plate and a seal member used for the seal plate and the manufacturing method of the seal plate which prevents the exposure of the seal member from extending and extends the life of the seal member and prevents the seal member from falling out of the groove or rolling. be able to.
  • the radical seal part has a structure in which the rubber elastic body is covered with a radical-resistant body excellent in corrosion resistance and radical resistance, so it has an excellent protection function against processing gases such as corrosive gas and active gas. And a seal member used for the seal plate and a method for manufacturing the same.
  • FIG. 1 is a schematic cross-sectional view of a vacuum gate valve using the seal member of the present invention.
  • FIG. 2 is a front view of a seal plate using the seal member of the present invention.
  • FIG. 3 is a schematic sectional view of a seal plate using the seal member according to the first embodiment of the present invention.
  • FIG. 4 is a schematic sectional view of a seal plate using a seal member according to a second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a seal plate using a seal member according to a third embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a seal plate using a seal member according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a vacuum gate valve using the seal member of the present invention.
  • FIG. 2 is a front view of a seal plate using the seal member of the present invention.
  • FIG. 3 is a schematic sectional view of a seal
  • FIG. 7 is a schematic sectional view of a seal plate using a seal member according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic sectional view of a seal plate using a seal member according to a sixth embodiment of the present invention.
  • FIG. 9 is a manufacturing process diagram for explaining a method of manufacturing a seal plate using the seal member of the present invention.
  • FIG. 10 is a manufacturing process diagram for explaining a method of manufacturing a seal plate using the seal member of the present invention.
  • FIG. 11 is a schematic cross-sectional view of a conventional vacuum gate valve.
  • FIG. 12 is a schematic cross-sectional view of a conventional seal plate in which a seal member is mounted in the groove.
  • FIG. 13 is a schematic cross-sectional view of a conventional seal plate in which a seal member is bonded in a groove.
  • FIG. 14 is a schematic cross-sectional view of a conventional seal plate having a double seal structure.
  • FIG. 15 is a schematic cross-sectional view of a conventional seal plate having a jacket seal structure.
  • FIG. 1 is a schematic sectional view of a vacuum gate valve using the seal member of the present invention
  • FIG. 2 is a front view of a seal plate using the seal member of the present invention
  • FIG. 3 is a first embodiment of the present invention.
  • FIGS. 4 to 8 are schematic cross-sectional views of a seal plate using seal members according to second to sixth embodiments of the present invention.
  • the seal plate of the present invention and the seal member used therefor are used for a vacuum gate valve formed in a gate opening serving as a work insertion / removal part in a semiconductor manufacturing apparatus or the like.
  • seal member of the present invention and the seal plate formed by bonding the seal member to the recess will be described.
  • seal member 10a and the seal plate 12 of the present invention are used to seal the gate opening 16 for taking in and out the wafer between the process chamber 18 and the transfer chamber 20 in, for example, a semiconductor manufacturing apparatus.
  • the vacuum gate valve 24 is used.
  • the seal plate 12 provided in such a vacuum gate valve 24 is made of a metal such as aluminum, and a seal member 10a made of a rubber elastic body such as fluoro rubber in a recess 14 formed on the peripheral edge of the seal plate 12. Are bonded via an adhesive.
  • the adhesive is not particularly limited, but, for example, if a silane coupling agent or a polyimide-based adhesive is used, it is preferable that the adhesive is not peeled even if it is repeatedly used as the vacuum gate valve 24.
  • the seal plate 12 When the gate opening 16 is closed, the seal plate 12 is moved to a position facing the valve seat surface 22 of the gate opening 16, and then the seal plate 12 is moved toward the gate opening 16. The inside of the process chamber 18 is sealed by bringing the 16 valve seat surfaces 22 into contact with the seal member 10a of the seal plate 12.
  • the seal plate 12 is a substantially rectangular plate-like body as shown in FIG. 2, and the seal member 10a bonded to the concave portion 14 formed in the peripheral edge portion is formed in an annular shape.
  • the seal member 10 a is appropriately formed according to the size of the seal plate 12.
  • the gate opening 16 can be hermetically sealed.
  • such a seal plate 12 is located on the side farther from the gate opening 16 (on the outer peripheral side of the seal plate 12) in the recess 14 formed on the outer edge of the seal plate 12.
  • a vacuum seal portion 26 that maintains the sealing performance of the gate opening portion 16 when the gate opening portion 16 is closed is formed, and on the side closer to the gate opening portion 16 (inner peripheral side of the seal plate 12), the gate opening portion 16 is formed.
  • a radical seal portion 28 is formed to prevent the seal member 10a from being attacked by the processing gas in the gate opening 16 when the gate is closed.
  • the vacuum seal portion 26 is composed of a rubber elastic body.
  • rubber elastic bodies include FKM (vinylidene fluoride fluoroelastomer) and FFKM (tetrafluoroethylene-perfluoroalkyl vinyl ether perfluoroelastomer).
  • FKM is particularly preferable in consideration of the permeability and cost of the processing gas.
  • the radical seal portion 28 is provided with a radical-resistant body 30 that extends to the top of the seal plate 12 on a rubber elastic body, thereby contacting the valve seat surface 22 when the gate opening portion 16 is closed.
  • the vacuum seal portion 26 can be protected from processing gases such as corrosive gas and active gas.
  • This radical-resistant body 30 is preferably made of a material having excellent resistance to the processing gas, and for example, PTFE, PFA, polyimide, metal thin film, FFKM, etc. can be used. Among them, PTFE having excellent radical resistance is used. Is optimal.
  • the radical resistant body 30 is made of a material that does not have rubber elasticity
  • the radical resistant body 30 is formed in a sheet shape and disposed on the rubber elastic body so that the gate opening 16 is closed. Most of the load applied to the radical resistant body 30 is absorbed by the rubber elastic body located in the lower layer.
  • the radical resistant body 30 does not cause permanent compression deformation even in a severe environment where compression and release are repeated, and can be used for a long period of time. Further, since no wear occurs even when the valve seat surface 22 is contacted, there is no problem caused by particles that have been generated conventionally.
  • the thickness of the radical resistant body 30 is preferably set to a thickness capable of absorbing a load by the rubber elastic body.
  • the thickness H1 of the radical resistant body 30 is preferably set to 10 ⁇ m to 300 ⁇ m.
  • the radical resistant body 30 extends from the rubber elastic body of the radical seal portion 28 to the seal plate 12, the radical resistant body 30 is connected to the seal plate 12 positioned on the gate opening 16 side.
  • the joint end portion of the radical seal portion 28 with the rubber elastic body is protected, and it is possible to prevent the processing gas from flowing between the seal plate 12 and the rubber elastic body of the seal member 10a.
  • the vacuum seal portion 26 can be protected from the gas.
  • the position of one end (the right end in FIG. 3) of the radical seal portion 28 is such that when the radical seal portion 28 contacts the valve seat surface 22, this end contacts the valve seat surface 22. It is preferable to provide up to the bottom of the trough formed between the radical seal portion 28 and the vacuum seal portion 26 so that peeling does not easily occur.
  • the position of the other end is a corrosive gas or active gas from the position immediately below the side end 52 of the valve seat surface 22 (the left side in FIG. 3). In order to be exposed to a processing gas such as the above, it is preferable to be just below the side end portion 52 of the valve seat surface 22.
  • the seal member 10a in the present embodiment has a mountain shape in which the vacuum seal portion 26 and the radical seal portion 28 protrude, and the distance T1 from the valve seat surface 22 to the top of the vacuum seal portion 26 is the valve seat surface. It is set to be shorter than the distance T2 from 22 to the top of the radical seal portion 28.
  • the seal plate 12 formed by bonding such a seal member 10a to the recess 14 is such that when the gate opening 16 is closed, the vacuum seal portion 26 is first brought into contact with the valve seat surface 22, and then the radical seal portion 28 is By abutting against the seat surface 22, the vacuum seal portion 26 seals the inside of the process chamber 18, and the radical seal portion 28 protects the vacuum seal portion 26 from the processing gas in the process chamber 18, so that it can be repeatedly used.
  • the sealing property can be kept good, and the predetermined sealing property can be maintained for a long time.
  • seal member 10a of the present invention may have, for example, the forms described in FIGS. 4 to 8 below in addition to the form of FIG. 3 used in the above description.
  • seal members 10b to 10f shown in FIGS. 4 to 8 have basically the same configuration as the seal member 10a of the first embodiment shown in FIGS. 1 to 3, the same reference is made to the same components. Numbers are assigned and detailed description thereof is omitted.
  • the seal member 10b in the second embodiment shown in FIG. 4 is provided with valleys 48, 48 on both sides of the radical seal portion 28, respectively.
  • the second embodiment is different from the first embodiment in that a small step portion 50 is provided at a boundary end portion extending from the concave portion 14 of the seal plate 12 to the seal plate 12.
  • the radical seal portion 28 is deformed equally to the left and right when the radical seal portion 28 contacts the valve seat surface 22. Therefore, it is possible to prevent the radical seal portion 28 from being inclined and crushed to one side.
  • valley portion 48 is provided only on one side of the radical seal portion 28, a force is applied to one side and the seal member 10b may move in the left-right direction, but the valley portions 48, 48 are formed on both sides. If it is provided, it is deformed equally to the left and right, so that movement in the left and right direction can be prevented, and wear of the radical resistant body 30 can be suppressed.
  • the trough parts 48 and 48 provided in the both sides of the radical seal part 28 are made into a substantially symmetrical shape for the reason mentioned above.
  • the installation surface can be set longer than the radical resistant body 30 of the first embodiment.
  • the radical resistant body 30 is very thin, it is easily rounded by heat at the time of molding, but if the installation surface is long, it can be molded while returning the roundness along the mold. For this reason, the radical resistant body 30 can be affixed on the rubber elastic body without causing wrinkles.
  • the length of the radical resistant body 30 is such that one side end portion (the right end portion in FIG. 4) crosses the top of the rubber elastic body that serves as the radical seal portion 28, and preferably crosses the bottom of the valley portion 48.
  • the position is set such that the other end (the left end in FIG. 4) exceeds the small step portion 50 of the recess 14 of the seal plate 12 and is directly below the side end 52 of the valve seat surface 22.
  • the small step portion 50 formed in the concave portion 14 of the seal plate 12 is also for preventing the radical resistant body 30 from peeling off due to the thermal expansion of the rubber elastic body.
  • the small step portion 50 is provided in this way, it is possible to reduce the rapid expansion of the rubber elastic body that thermally expands when heat is applied, and in particular, the radical resistant body 30 that is extended on the seal plate 12. Peeling of the part can be effectively prevented.
  • the top portion of the radical seal portion 28 that contacts the valve seat surface 22 may be a flat surface (not shown) substantially parallel to the valve seat surface 22.
  • the contact area with the valve seat surface 22 is wider than in the case of an arc shape, and therefore the load per unit area received from the valve seat surface 22 is reduced. It is possible to reduce the size and the wear of the radical resistant body 30 can be suppressed.
  • the seal member 10 c in the third embodiment shown in FIG. 5 is different from the first embodiment in that the radical seal portion 28 is configured separately from the vacuum seal portion 26.
  • the radical seal portion 28 is adhered in a groove 54 formed inward from the recess 14 of the seal plate 12.
  • the seal member 10 d in the fourth embodiment shown in FIG. 6 is configured such that a part of the radical-resistant body 30 is fitted in a groove 56 formed inward of the recess 14 of the seal plate 12. This is different from the first embodiment.
  • radical resistant body 30 and the rubber elastic body are not joined, only the radical resistant body 30 portion can be exchanged.
  • the material of the radical-resistant body 30 can be changed depending on the type of the processing gas.
  • the seal member 10e in the fifth embodiment shown in FIG. 7 is configured such that a part of the radical-resistant body 30 is fitted in a groove 58 formed inward of the recess 14 of the seal plate 12. Further, the second embodiment is different from the first embodiment in that the form is a lump shape.
  • the radical resistant body 30 when the radical resistant body 30 is in a lump shape, it is more resistant to the processing gas, so that it is particularly suitable for use in a highly corrosive processing gas. Moreover, since the radical resistant body 30 and the rubber elastic body are not joined, only the radical resistant body 30 portion can be exchanged.
  • the seal member 10f in the sixth embodiment shown in FIG. 8 is different from the first embodiment in that the radical seal portion 28 does not protrude like the vacuum seal portion 26.
  • the vacuum seal portion 26 when the gate opening portion 16 is closed, the vacuum seal portion 26 is in contact with and pressed against the valve seat surface 22, that is, when the valve seat surface 22 and the vacuum seal portion 26 are brought into contact with each other.
  • the radical resistant body 30 By extending the radical resistant body 30 to a position where the vacuum seal portion 26 is not exposed to the processing gas from the gate opening 16 side, the vacuum seal portion 26 is prevented from being exposed to the processing gas.
  • seal member 10a and the seal plate 12 including the seal member 10a are manufactured by, for example, the following manufacturing method.
  • a rubber elastic body which is a raw material 32 of the seal member, is disposed in the recess 14 of the seal plate 12.
  • An adhesive is applied to the adhesive surface 34 of the seal plate 12.
  • the radical resistant body 30 is installed on the upper surface of the raw material 32 of the seal member.
  • the radical resistant body 30 is coated with an adhesive.
  • the radical-resistant body 30 is extended and installed on the seal plate 12 and is not located on the entire upper surface of the raw material 32 of the seal member, but up to a middle position.
  • the mold 36 is disposed on the side end portion 46 of the seal plate 12, and in this state, from above the portion of the radical resistant body 30 extending on the seal plate 12. Pressing with the pressing member 38, whereby the seal plate 12 and the radical resistant body 30 are thermocompression bonded.
  • the temperature of the pressing member 38 at the time of thermocompression bonding is preferably determined by the material of the raw material 32 of the sealing member, but is preferably about 150 ° C. or higher, more preferably 150 ° C. to 250 ° C.
  • the pressing force at this time is preferably 80 kgf / cm 2 , more preferably 50 to 100 kgf / cm 2 .
  • the seal member raw material 32 flows out to the inner peripheral side of the seal plate 12 when the seal member raw material 32 is formed in a process described later. Thus, it is possible to reliably prevent the occurrence of burrs.
  • a mold 40 having a recess 42 for a vacuum seal portion and a recess 44 for a radical seal portion is disposed above the seal plate 12.
  • the raw material 32 of the seal member and the radical resistant body 30 are simultaneously formed.
  • the manufacturing method described above corresponds to the form of the seal member 10a of the first embodiment.
  • the other seal members 10b to 10f shown in FIGS. 4 to 8 can be manufactured by the same method as in the first embodiment.
  • sealing member is comprised from several members like the form of FIG.5, FIG.6, FIG.7, what is necessary is just to shape

Abstract

半導体製造装置などに使用される真空用ゲート弁に関し、シール部材が処理ガスに曝されることを防止してシール部材の寿命を延ばすとともに、該シール部材がシールプレートの溝内より抜け落ちたり転動したりすることがないようにする。ゲート開口部の弁座面と対向するように配置された平板状のシールプレートの外縁部に、前記弁座面と当接することで前記ゲート開口部をシールするシール部材を接着する。前記シール部材は、前記ゲート開口部から遠い側に位置し、前記ゲート開口部の閉塞時に前記ゲート開口部のシール性を維持する真空シール部と、前記ゲート開口部から近い側に位置し、前記ゲート開口部の閉塞時に前記ゲート開口部内の処理ガスから前記シール部材が侵されることを防止するラジカルシール部と、を有し、前記真空シール部が、ゴム弾性体よりなり、前記ラジカルシール部が、ゴム弾性体上に耐ラジカル性に優れる耐ラジカル体を配設してなる。

Description

シールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法
 本発明は、半導体製造装置などに使用される真空用ゲート弁に具備されるシールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法に関する。
 従来よりシリコンウェハなどの半導体製造装置などにおいては、クリーンで高い真空環境下、イオンプレーティングやプラズマエッチングなどのワークの加工や処理が行われ、このようなワークの出し入れ部となるゲート開口部には、真空用ゲート弁が用いられている。
 例えば図11に示した半導体製造装置においては、プロセスチャンバー106とトランスファーチャンバー108との間のウェハ出し入れ用のゲート開口部110をシールするのに、この真空用ゲート弁104が用いられている。
 なお、真空用ゲート弁104に用いられるシールプレート102は、アルミニウムなどの金属からなり、シール部材100は、フッ素ゴムなどの弾性部材からなるものである。
 そして、ゲート開口部110を閉じる際においては、ゲート開口部110の弁座面112と対向する位置までシールプレート102を移動させ、次いでゲート開口部110に向かってシールプレート102を移動させ、ゲート開口部110の弁座面112とシールプレート102のシール部材100とを当接させることで、プロセスチャンバー106内が密封されるようになっている。
 ところで、このようなシールプレートは、図12に示したようにシールプレート102aの外縁部に形成された溝114内に、断面略円形状のシール部材100aが装着されて成るものや、図13に示したようにシールプレート102bの外縁部に形成された凹部116内に、断面略矩形状のシール部材100bが接着されて成るものなどがある。
 このようなシールプレート102a,102bは、特に上記したように半導体製造装置にて使用される場合、プロセスチャンバー106内で用いられる腐食性ガスや活性ガスなどの処理ガスにシール部材100a,100bが曝されることとなる。
 シール部材100a,100bは、このような処理ガスに曝されると、反応が生じて次第にシール性能が落ち、最終的にはシール性を維持できなくなってしまう。
 近年、真空用ゲート弁104のシールプレート102a,102bは、使用環境が厳しくなっていることから、従来よりもさらに耐プラズマ性に優れた材質からなるシール部材100a,100bを使用するようになっているが、現状では耐久性は充分ではなく、またコスト高になってしまっている。
 このため、特許文献1では、図14に示したように、シールプレート202の外縁部の溝214内に装着されたシール部材200とは別に、シートプレート202のゲート開口部210に近い位置に溝216を形成し、そこに処理ガスに対して耐性を有するフッ素樹脂製の補助シール部材218を配設し、所謂二重シール構造としている。
 このような構造とすることで、シール部材200と弁座面212とを当接させてシールする際に、補助シール部材218が弁座面212と当接して、シール部材200がゲート開口部210側からの処理ガスに曝されることを防止できるようになっている。
 また特許文献2では、図15に示したように、シールプレート302の外縁部の溝314内に装着されたシール部材300において、シール部材300のゲート開口部310に近い側を、処理ガスに対して耐性を有するフッ素樹脂部材318などで覆う所謂ジャケットシール構造としている。
 この構造の場合には、シール部材300と弁座面312とを当接させてシールする際に、シール部材300がゲート開口部310からの処理ガスに曝されることを防止できるようになっている。
特開2002-228043号公報 特開平11-002328号公報
 しかしながら、特許文献1に記載された二重シール構造を有するシールプレート202は、補助シール部材218の分だけパーツ点数が増えるとともに、二つの溝214,216が必要であるため、シール部分のスペースが広がり、シールプレート202が大型になってしまう問題がある。
 また、フッ素樹脂製の補助シール部材218は、ゴムのような弾性や柔軟性がないため、弁座面212の歪みや寸法のばらつきに対して充分なシール性を発揮することができない場合があった。
 さらにシール時には、この補助シール部材218に直接に弁座面212が当接して荷重が加わるため、補助シール部材218が磨耗してパーティクルが発生する場合も生じていた。
 またシール部材200は、溝214内に装着されているだけであるため、シール部材200が弁座面212に固着して溝214内からシール部材200が抜け落ちてしまうなどの問題も生じていた。
 一方、特許文献2に記載にされたジャケットシール構造を有するシール部材300は、シール部材300が溝314内で少しでも転動すると、処理ガスにシール部材300が曝されることを防止できず、効果が得られ難いという問題があった。
 またシール時には、シール部材300とフッ素樹脂部材318との境目が弁座面312と当接するため、シール部材300からフッ素樹脂部材318が剥離し易いという問題も生じていた。
 さらにシール部材300は、特許文献1と同様、シールプレート302に形成された溝314内に装着されているだけであるため、シール部材300が弁座面312に固着して溝314内からシール部材300が抜け落ちてしまう問題が生ずるものであった。
 本発明は、このような現状に鑑み、シールプレートに用いられるシール部材が処理ガスに曝されることを防止してシール部材の寿命を延ばすとともに、シール部材が溝内より抜け落ちたり転動したりすることのないシールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法を提供することを目的とする。
 本発明は、前述したような従来技術における課題および目的を達成するために発明されたものであって、
 本発明のシール部材は、
 真空用ゲート弁において、ゲート開口部の弁座面と対向するように配置された平板状のシールプレートの外縁部に接着され、前記弁座面と当接することで前記ゲート開口部をシールするシール部材であって、
 前記外縁部に接着された前記シール部材は、
 前記ゲート開口部から遠い側に位置し、前記ゲート開口部の閉塞時に前記ゲート開口部のシール性を維持する真空シール部と、
 前記ゲート開口部から近い側に位置し、前記ゲート開口部の閉塞時に前記ゲート開口部内の処理ガスから前記シール部材が侵されることを防止するラジカルシール部と、を有し、
 前記真空シール部が、ゴム弾性体よりなり、
 前記ラジカルシール部が、ゴム弾性体上に耐ラジカル性に優れる耐ラジカル体を配設してなることを特徴とする。
 このように真空シール部とラジカルシール部の両方が設けられたシール部材とすれば、ラジカルシール部で処理ガスをシールすることができるため、真空シール部を処理ガスに曝すことがなく、真空シール部でゲート開口部のシールを確実に行い、シール部材の寿命を飛躍的に延ばすことができる。
 またシール部材は、シールプレートの外縁部に接着されることが前提であるため、真空用ゲート弁に使用した際に、シール部材が溝内より抜け落ちたり転動したりする問題を生ずることがない。このため、半導体製造装置の真空用ゲート弁に本シール部材を適用した際には、半導体の製造を止めることなく、効率良く半導体の製造を行うことができる。
 さらに、このような材質からシール部材が製造されていれば、真空シール部において、確実にゲート開口部のシールを行うことができ、またラジカルシール部において、処理ガスから真空シール部を保護することができる。
 しかも、ラジカルシール部は、ゴム弾性体上に耐ラジカル体が配設された構造であるため、ゴム弾性体に対して耐ラジカル体の厚みを小さくすれば、耐ラジカル体が弾性を有しなくても下方のゴム弾性体により、耐ラジカル体に加えられる荷重をゴム弾性体の変形で吸収可能である。
 このため、繰り返しの使用により耐ラジカル体に繰り返し荷重が加えられても、永久変形を生ずることなく、長期に渡って使用することができる。
 また、本発明のシール部材は、
 前記耐ラジカル体が、
 前記ラジカルシール部のゴム弾性体上から前記シールプレート上に渡って延設されていることを特徴とする。
 このように構成されていれば、耐ラジカル体が、ゲート開口部側に位置するシールプレートとラジカルシール部のゴム弾性体との接合端部を保護し、シールプレートとシール部材の間に処理ガスが流入してしまうことを防止することができ、確実に処理ガスから真空シール部を保護することができる。
 また、本発明のシール部材は、
 前記真空シール部とラジカルシール部のゴム弾性体とが一体的に構成され、
 前記シールプレートの外縁部に形成された凹部に接着されていることを特徴とする。
 このように真空シール部とラジカルシール部のゴム弾性体とが一体的に構成されていれば、シール部材を接着するシールプレートにおいて、シール部分のスペースを小さくできるので、シールプレートが大きくなりすぎることがなく、設置が容易である。
 また、シール部材が一体的であれば、成形用の金型も一つで良く、生産性が良好である。
 さらに、シールプレートの凹部も一つで良く、加工が容易で生産コストを抑えることができる。
 また、本発明のシール部材は、
 前記ラジカルシール部のゴム弾性体と耐ラジカル体とが、
 互いに接着されていることを特徴とする。
 このようにラジカルシール部のゴム弾性体と耐ラジカル体とが接着されていれば、脱落の問題を生ずることがなく、シール部材の取扱い性が良好である。
 また、本発明のシール部材は、
 前記ラジカルシール部のゴム弾性体と耐ラジカル体とが、
 分離可能に積層されていることを特徴とする。
 このようにラジカルシール部のゴム弾性体と耐ラジカル体とが分離可能に積層されていれば、耐ラジカル体部分のみの交換が可能であるため、交換にかかるコストを抑えることができる。
 また、本発明のシール部材は、
 前記真空シール部が、
 少なくとも前記ラジカルシール部よりも先に前記弁座面と当接するように構成されていることを特徴とする。
 このように真空シール部が、ラジカルシール部よりも先に弁座金と当接するように構成されていれば、ラジカルシール部に強い荷重が加えられることがないため、ラジカルシール部本来の役割である処理ガスから真空シール部を保護することを長期に渡って維持することができる。
 また、本発明のシール部材は、
 前記シール部材の縦断面形状において、
 前記ラジカルシール部の左右両側に、それぞれ略対称形状の谷部が形成されていることを特徴とする。
 このようにラジカルシール部の両側に谷部が設けられていれば、弁座面にラジカルシール部が当接した際に、ラジカルシール部を左右均等に変形するため、ラジカルシール部が片側に傾いて潰されてしまうことを防止することができる。
 さらに、ラジカルシール部の片側にだけ谷部が設けられていると、シール部材が左右方向に移動してしまう場合があるが、両側に谷部が設けられていれば、左右方向への移動を防止することができ、耐ラジカル体の磨耗を抑制することができる。
 また、本発明のシールプレートは、
 上記のいずれかに記載のシール部材がシールプレートの外縁部に接着され、
 真空用ゲート弁において、ゲート開口部の弁座面と対向するように配置され、前記弁座面と前記シール部材とが当接することで前記ゲート開口部をシールすることを特徴とする。
 このように上記したような真空シール部とラジカルシール部とを備えたシール部材を外縁部に接着してなるシールプレートであれば、確実に処理ガスから真空シール部を保護することができるとともに、外縁部からシール部材が脱落することがないため、真空用ゲート弁としての所定の機能を繰り返し維持することができる。
 また、本発明のシールプレートは、
 前記シールプレートの凹部の縁に小段差部が設けられていることを特徴とする。
 このように小段差部が設けられていれば、熱が加わった際に熱膨張するゴム弾性体が急激に膨らむことを低減できるため、耐ラジカル体の剥がれを防止することができる。
 また、本発明のシールプレートは、
 前記弁座面と当接するラジカルシール部の頂上部分が、前記弁座面と略平行なフラット面であることを特徴とする。
 このようにラジカルシール部の頂上部分をフラット面とした場合には、通常の円弧形状の場合と比べて弁座面との接触面積が広いため、弁座面から受ける単位面積当りの荷重を小さくでき、耐ラジカル体の磨耗を抑制することができる。
 また、本発明のシール部材の製造方法は、
 真空用ゲート弁において、ゲート開口部の弁座面と対向するように配置された平板状のシールプレートの外縁部に形成された凹部に接着され、前記弁座面と当接することで前記ゲート開口部をシールするシール部材の製造方法であって、
 前記シール部材の製造方法は、
 前記シールプレートを準備する工程と、
 前記シールプレートの凹部内に前記シール部材の原材料を接着する工程と、
 前記シール部材の原材料上であって、前記シールプレートの凹部の内方側に耐ラジカル体を配設する工程と、
 前記シール部材の原材料上に配設された耐ラジカル体の上から押圧部材で熱プレスし、シールプレートと少なくとも耐ラジカル体の一部とを熱圧着する工程と、
 前記耐ラジカル体が配設されたシール部材の原材料の上方に、
 前記シールプレートの凹部の外方側に位置し前記ゲート開口部の閉塞時に前記ゲート開口部のシール性を維持する真空シール部を形成するための凹部と、前記シールプレートの凹部の内方側に位置し前記ゲート開口部の閉塞時に前記ゲート開口部内の処理ガスから前記シール部材が侵されることを防止するラジカルシール部を形成するための凹部と、を有する金型を配設する工程と、
 前記配設された金型を熱するとともに、前記金型をシールプレート方向に移動させて前記シール部材の真空シール部とラジカルシール部とを形成する工程と、
 を少なくとも有することを特徴とする。
 このような製造方法でシール部材を製造すれば、シールプレートと少なくとも耐ラジカル体の一部とを熱圧着した後、金型により真空シール部とラジカルシール部とを形成するため、金型による成形時にシール部材の原材料がシールプレートの内側に流出してしまうことを防止することができる。
 また、このような製造方法であれば、ゴム材料がシールプレートの内側に流出し、バリを生ずることがないため、生産性が良好である。
 さらに、このような製造方法で得られたシールプレートであれば、確実に処理ガスから真空シール部を保護することができるとともに、外縁部の凹部からシール部材が脱落することがないため、真空用ゲート弁としての所定の機能を繰り返し維持することができる。
 また、本発明のシールプレートの製造方法は、
 上記に記載の製造方法によってシール部材を形成する工程を有することを特徴とする。
 このように上記したような製造方法で得られたシールプレートであれば、確実に処理ガスから真空シール部を保護することができるとともに、外縁部の凹部からシール部材が脱落することがないため、真空用ゲート弁としての所定の機能を繰り返し維持することができる。
 本発明によれば、シール部材が真空シール部とラジカルシール部とを備えているとともに、両部を構成するゴム弾性体がシールプレートの外縁部と接着されているので、シール部材が処理ガスに曝されることを防止してシール部材の寿命を延ばすとともに、シール部材が溝内より抜け落ちたり転動したりすることのないシールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法を提供することができる。
 またラジカルシール部は、ゴム弾性体を耐腐食性、耐ラジカル性に優れた耐ラジカル体で覆った構成となっているため、腐食性ガス、活性ガスなどの処理ガスに対して優れた保護機能を備え、飛躍的に寿命を延ばすことのできるシールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法を提供することができる。
図1は、本発明のシール部材を用いた真空用ゲート弁の概略断面図である。 図2は、本発明のシール部材を用いたシールプレートの正面図である。 図3は、本発明の第1の実施例によるシール部材を用いたシールプレートの概略断面図である。 図4は、本発明の第2の実施例によるシール部材を用いたシールプレートの概略断面図である。 図5は、本発明の第3の実施例によるシール部材を用いたシールプレートの概略断面図である。 図6は、本発明の第4の実施例によるシール部材を用いたシールプレートの概略断面図である。 図7は、本発明の第5の実施例によるシール部材を用いたシールプレートの概略断面図である。 図8は、本発明の第6の実施例によるシール部材を用いたシールプレートの概略断面図である。 図9は、本発明のシール部材を用いたシールプレートの製造方法を説明する製造工程図である。 図10は、本発明のシール部材を用いたシールプレートの製造方法を説明する製造工程図である。 図11は、従来の真空用ゲート弁の概略断面図である。 図12は、溝内にシール部材を装着した従来のシールプレートの概略断面図である。 図13は、溝内にシール部材を接着した従来のシールプレートの概略断面図である。 図14は、二重シール構造を有する従来のシールプレートの概略断面図である。 図15は、ジャケットシール構造を有する従来のシールプレートの概略断面図である。
 以下、本発明の実施の形態について、図面に基づいてより詳細に説明する。
 図1は、本発明のシール部材を用いた真空用ゲート弁の概略断面図、図2は、本発明のシール部材を用いたシールプレートの正面図、図3は、本発明の第1の実施例によるシール部材を用いたシールプレートの概略断面図、図4~図8は、本発明の第2から第6の実施例によるシール部材を用いたシールプレートの概略断面図である。
 本発明のシールプレートおよびこれに用いられるシール部材は、半導体製造装置などにおいて、ワークの出し入れ部となるゲート開口部に形成された真空用ゲート弁に用いられるものである。
 以下、本発明のシール部材とこのシール部材を凹部に接着して成るシールプレートについて説明する。
 <シール部材10aおよびシールプレート12>
 図1に示したように、本発明のシール部材10aおよびシールプレート12は、例えば半導体製造装置において、プロセスチャンバー18とトランスファーチャンバー20との間のウェハ出し入れ用のゲート開口部16をシールするのに用いられる真空用ゲート弁24に具備されるものである。
 このような真空用ゲート弁24に具備されるシールプレート12は、アルミニウムなどの金属からなり、シールプレート12の周縁部に形成された凹部14内にフッ素ゴムなどのゴム弾性体からなるシール部材10aが接着剤を介して接着されて構成されている。ここで接着剤としては特に限定されるものではないが、例えばシランカップリング剤やポリイミド系接着剤を用いれば、真空用ゲート弁24として繰り返し使用しても剥離することがなく好適である。
 そして、ゲート開口部16を閉じる際において、ゲート開口部16の弁座面22と対向する位置までシールプレート12を移動させ、次いでゲート開口部16に向かってシールプレート12を移動させ、ゲート開口部16の弁座面22とシールプレート12のシール部材10aとを当接させることで、プロセスチャンバー18内が密封させるようになっている。
 なお、シールプレート12は、図2に示したように略長方形の板状体であって、周縁部に形成された凹部14に接着されたシール部材10aは、環状に構成されており、環状のシール部材10aは、シールプレート12の大きさに合わせて適宜形成されたものである。ここでシール部材10aを環状とすることにより、ゲート開口部16を気密にシールすることができる。
 このようなシールプレート12は、詳細には図3に示したように、シールプレート12の外縁部に形成された凹部14内において、ゲート開口部16から遠い側(シールプレート12の外周側)に、ゲート開口部16の閉塞時にゲート開口部16のシール性を維持する真空シール部26が形成され、またゲート開口部16から近い側(シールプレート12の内周側)には、ゲート開口部16の閉塞時にゲート開口部16内の処理ガスからシール部材10aが侵されることを防止するラジカルシール部28が形成されている。
 真空シール部26はゴム弾性体から構成されており、このようなゴム弾性体としては、FKM(フッ化ビニリデン系フルオロエラストマー),FFKM(四フッ化エチレン-パーフルオロアルキルビニルエーテル系パーフルオロエラストマー)を用いることが好ましいが、特に処理ガスの透過性やコスト面を考慮するとFKMが好適である。
 一方、ラジカルシール部28は、ゴム弾性体上にシールプレート12上まで延設された耐ラジカル体30が配設されており、これによりゲート開口部16の閉塞時に弁座面22と当接して腐食性ガスや活性ガスなどの処理ガスから真空シール部26を保護できるようになっている。
 この耐ラジカル体30は、処理ガスに対して優れた耐性を有する材質からなることが好ましく、例えばPTFE,PFA,ポリイミド,金属薄膜,FFKMなどを用いることができ、中でも耐ラジカル性に優れるPTFEが最適である。
 なお、耐ラジカル体30がゴム弾性を有しない材質の場合、本実施例においては耐ラジカル体30をシート状とし、これをゴム弾性体上に配設することで、ゲート開口部16の閉塞時に、耐ラジカル体30に加わる荷重のほとんどが下層に位置するゴム弾性体によって吸収されるようになっている。
 このため耐ラジカル体30は、圧縮・開放が繰り返される過酷な環境下においても圧縮永久変形を生じず、長期に渡って使用が可能である。さらに、弁座面22と当接しても磨耗が生ずることがないため、従来生じていたパーティクルによる問題を生ずることがない。
 この耐ラジカル体30の厚さは、ゴム弾性体による荷重吸収が可能な厚さに設定することが好ましく、例えば耐ラジカル体30の厚さH1は10μm~300μmに設定することが好ましい。
 さらに、耐ラジカル体30は、ラジカルシール部28のゴム弾性体上からシールプレート12上に渡って延設されているため、耐ラジカル体30が、ゲート開口部16側に位置するシールプレート12とラジカルシール部28のゴム弾性体との接合端部を保護し、シールプレート12とシール部材10aのゴム弾性体との間に処理ガスが流入してしまうことを防止することができ、確実に処理ガスから真空シール部26を保護することができる。
 なお、ラジカルシール部28の一方側端部(図3では右側の端部)の位置は、ラジカルシール部28が弁座面22と当接した際に、この端部が弁座面22と接触せず剥離が生じ難いよう、ラジカルシール部28と真空シール部26との間で形成される谷部の最底部まで設けることが好ましい。
 さらに、他方側端部(図3では左側の端部)の位置は、弁座面22の側端部52の真下の位置から先(図3ではこの位置から左側)が腐食性ガスや活性ガスなどの処理ガスに曝されるため、弁座面22の側端部52の真下までとすることが好ましい。
 また、本実施例におけるシール部材10aは、真空シール部26およびラジカルシール部28がそれぞれ突出した山形状をしており、弁座面22から真空シール部26頂上までの距離T1が、弁座面22からラジカルシール部28頂上までの距離T2よりも短く設定されている。
 このようなシール部材10aを凹部14に接着してなるシールプレート12は、ゲート開口部16の閉塞時において、まず真空シール部26が弁座面22と当接され、次いでラジカルシール部28が弁座面22と当接し、これにより真空シール部26がプロセスチャンバー18内を密封するとともに、ラジカルシール部28がプロセスチャンバー18内の処理ガスから真空シール部26を保護することにより、繰り返しの使用によってもシール性を良好に保ち、長期間、所定のシール性を維持することができる。
 なお本発明のシール部材10aは、上記説明に用いた図3の形態の他にも、例えば下記図4から図8に記載された形態とすることができる。
 図4から図8に示したシール部材10b~10fは、図1から図3に示した第1の実施例のシール部材10aと基本的には同じ構成であるので、同じ構成部材には同じ参照番号を付してその詳細な説明を省略する。
 まず図4に示した第2の実施例におけるシール部材10bは、ラジカルシール部28の両側にそれぞれ谷部48,48が設けられており、さらにシールプレート12の凹部14において、耐ラジカル体30がシールプレート12の凹部14上からシールプレート12上に延設される境界端部に小段差部50が設けられている点で、第1の実施例と異なっている。
 このようにラジカルシール部28の両側に谷部48,48が設けられていると、弁座面22にラジカルシール部28が当接した際に、ラジカルシール部28が左右均等に変形するようになるため、ラジカルシール部28が片側に傾いて潰されてしまうことを防止することができる。
 さらに、ラジカルシール部28の片側にだけ谷部48が設けられていると、片側に力が加わるためシール部材10bが左右方向に移動してしまう場合があるが、両側に谷部48,48が設けられていれば、左右均等に変形するため左右方向への移動を防止することができ、耐ラジカル体30の磨耗を抑制することができる。
 なお、上記した理由からラジカルシール部28の両側に設けられた谷部48,48は、略対称形状とすることが好ましい。
 また、谷部48,48が設けられていれば、実施例1の耐ラジカル体30よりも設置面を長く設定することができる。
 特に耐ラジカル体30は非常に薄いため、成形時に熱で丸まり易いが、設置面が長ければ金型に沿って丸まりを戻しながら成形が可能である。このため、しわを生ずることなく、ゴム弾性体上に耐ラジカル体30を貼り付け可能である。
 ここで耐ラジカル体30の長さは、一方側端部(図4では右側の端部)がラジカルシール部28となるゴム弾性体の頂点を越す位置、好ましくは谷部48の最底部を越す位置に設定し、他方側端部(図4では左側の端部)がシールプレート12の凹部14の小段差部50を越え、弁座面22の側端部52の真下までの位置である。
 特に耐ラジカル体30の一方側端部が谷部48の最底部に位置するとき、応力が最もかかり難いため、耐ラジカル体30がゴム弾性体から剥れてしまうことを効果的に防止することができる。
 また、シールプレート12の凹部14に形成された小段差部50についても、ゴム弾性体の熱膨張による耐ラジカル体30の剥がれを防止するためのものである。
 このように小段差部50が設けられていれば、熱が加わった際に熱膨張するゴム弾性体が急激に膨らむことを低減できるため、特にシールプレート12上に延設された耐ラジカル体30部分の剥がれを効果的に防止することができる。
 なお本実施例におけるシール部材10bは、弁座面22と当接するラジカルシール部28の頂上部分が、弁座面22と略平行なフラット面(図示せず)であっても良い。
 このようにラジカルシール部28の頂上部分をフラット面とした場合には、円弧形状の場合と比べて弁座面22との接触面積が広いため、弁座面22から受ける単位面積当りの荷重を小さくでき、耐ラジカル体30の磨耗を抑制することができる。
 次いで図5に示した第3の実施例におけるシール部材10cは、ラジカルシール部28が真空シール部26とは別に構成されている点で第1の実施例と異なっている。
 この場合、ラジカルシール部28は、シールプレート12の凹部14よりも内方に形成された溝54内に接着されるようになっている。
 次いで図6に示した第4の実施例におけるシール部材10dは、耐ラジカル体30の一部がシールプレート12の凹部14よりも内方に形成された溝56内に嵌め込まれて構成されている点で第1の実施例と異なっている。
 この場合には、耐ラジカル体30とゴム弾性体とが接合されていないため、耐ラジカル体30部分のみを交換することができるようになっている。また、処理ガスの種類に応じて耐ラジカル体30の材質を替えて使用することもできる。
 次いで図7に示した第5の実施例におけるシール部材10eは、耐ラジカル体30の一部がシールプレート12の凹部14よりも内方に形成された溝58内に嵌め込まれて構成されており、さらに形態が塊形状である点で第1の実施例と異なっている。
 このように耐ラジカル体30が塊形状の場合には、処理ガスに対してより耐性を有することとなるため、特に強腐食性の処理ガス時に使用することが好適である。また、耐ラジカル体30とゴム弾性体とが接合されていないため、耐ラジカル体30部分のみを交換することができる。
 次いで図8に示した第6の実施例におけるシール部材10fは、ラジカルシール部28が真空シール部26のように突出していない点で第1の実施例と異なっている。
 この場合には、ゲート開口部16の閉塞時において真空シール部26が弁座面22と当接されて押圧される位置、つまり弁座面22と真空シール部26とを当接させた際にゲート開口部16側からの処理ガスに真空シール部26が曝されない位置まで耐ラジカル体30を延設することで、真空シール部26が処理ガスに曝されることを防止している。
 <シール部材10を配設して成るシールプレート12の製造方法>
 上記したシール部材10aおよびこのシール部材10aを配設して成るシールプレート12は、例えば下記のような製造方法により製造されている。
 まず、図9(a)に示したように、シールプレート12の凹部14内にシール部材の原材料32であるゴム弾性体を配設する。なお、シールプレート12の接着面34に接着剤が塗布されている。
 次いで、シール部材の原材料32の上面に耐ラジカル体30を設置する。なお、耐ラジカル体30は接着剤が塗布されている。
 この時、耐ラジカル体30は、シールプレート12上にまで延設されて設置されるとともに、シール部材の原材料32の上面全てには位置せず、中程程度の位置までとする。
 さらに図9(b)に示したように、まずはシールプレート12の側端部46に金型36を配設し、この状態でシールプレート12上に延設された耐ラジカル体30部分の上から押圧部材38で押圧し、これによりシールプレート12と耐ラジカル体30とを熱圧着する。熱圧着時の押圧部材38の温度はシール部材の原材料32の材質により決定することが好ましいが、おおよそ150℃以上であることが好ましく、さらに好ましくは150℃~250℃である。
 またこの時の押圧力は、好ましくは80kgf/cm2、さらに好ましくは50~100kgf/cm2である。
 ここでシールプレート12と耐ラジカル体30とを熱圧着しておくと、後述する工程においてシール部材の原材料32を成形する際に、シール部材の原材料32がシールプレート12の内周側へ流出してバリが生ずることを確実に防止できる。
 次いで図10(a)に示したように、シールプレート12の上方に、真空シール部用の凹部42とラジカルシール部用の凹部44とを有する金型40を配設し、この金型40をシールプレート12の方向に移動させて、シール部材の原材料32および耐ラジカル体30とを同時に成形する。
 最後に図10(b)に示したように、金型40および金型36を取り除き、押圧部材38を取り除くことで、本願発明のシール部材10aを凹部14に接着して成るシールプレート12を得ることができる。
 このような製造方法であれば、確実に真空シール部26とラジカルシール部28とを有するシール部材10aを凹部14に接着して成るシールプレート12を得ることができる。
 なお、上記した製造方法は、実施例1のシール部材10aの形態に対応するものである。
 図4~図8に記した他のシール部材10b~10fの形態についても、実施例1と基本的には同様の方法で製造が可能なものである。
 なお、図5,図6,図7の形態のようにシール部材が複数の部材から構成されている場合には、それらの部材を別々に成形し、後で組み合わせるなどすれば良いものである。
 以上、本発明の好ましい形態について説明したが、本発明は上記の形態に限定されるものではなく、上記した実施例を組み合わせたものであってもよく、本発明の目的を逸脱しない範囲での種々の変更が可能なものである。
 10・・・シール部材
 10a・・シール部材
 10b・・シール部材
 10c・・シール部材
 10d・・シール部材
 10e・・シール部材
 10f・・シール部材
 12・・・シールプレート
 14・・・凹部
 16・・・ゲート開口部
 18・・・プロセスチャンバー
 20・・・トランスファーチャンバー
 22・・・弁座面
 24・・・真空用ゲート弁
 26・・・真空シール部
 28・・・ラジカルシール部
 30・・・耐ラジカル体
 32・・・シール部材の原材料
 34・・・接着面
 36・・・金型
 38・・・押圧部材
 40・・・金型
 42・・・真空シール部用凹部
 44・・・ラジカルシール部用凹部
 46・・・シールプレートの側端部
 48・・・谷部
 50・・・小段差部
 52・・・側端部
 54・・・溝
 56・・・溝
 58・・・溝
  H1・・耐ラジカル体の厚さ
  T1・・弁座面から真空シール部頂上までの距離
  T2・・弁座面からラジカルシール部頂上までの距離
100・・・シール部材
100a・・シール部材
100b・・シール部材
102・・・シールプレート
102a・・シールプレート
102b・・シールプレート
104・・・真空用ゲート弁
106・・・プロセスチャンバー
108・・・トランスファーチャンバー
110・・・ゲート開口部
112・・・弁座面
114・・・溝
116・・・凹部
200・・・シール部材
202・・・シールプレート
210・・・ゲート開口部
212・・・弁座面
214・・・溝
216・・・溝
218・・・補助シール部材
300・・・シール部材
302・・・シールプレート
310・・・ゲート開口部
312・・・弁座面
314・・・溝
318・・・フッ素樹脂部材

Claims (12)

  1.  真空用ゲート弁において、ゲート開口部の弁座面と対向するように配置された平板状のシールプレートの外縁部に接着され、前記弁座面と当接することで前記ゲート開口部をシールするシール部材であって、
     前記外縁部に接着された前記シール部材は、
     前記ゲート開口部から遠い側に位置し、前記ゲート開口部の閉塞時に前記ゲート開口部のシール性を維持する真空シール部と、
     前記ゲート開口部から近い側に位置し、前記ゲート開口部の閉塞時に前記ゲート開口部内の処理ガスから前記シール部材が侵されることを防止するラジカルシール部と、を有し、
     前記真空シール部が、ゴム弾性体よりなり、
     前記ラジカルシール部が、ゴム弾性体上に耐ラジカル性に優れる耐ラジカル体を配設してなることを特徴とするシール部材。
  2.  前記耐ラジカル体が、
     前記ラジカルシール部のゴム弾性体上から前記シールプレート上に渡って延設されていることを特徴とする請求項1に記載のシール部材。
  3.  前記真空シール部とラジカルシール部のゴム弾性体とが一体的に構成され、
     前記シールプレートの外縁部に形成された凹部に接着されていることを特徴とする請求項1または2に記載のシール部材。
  4.  前記ラジカルシール部のゴム弾性体と耐ラジカル体とが、
     互いに接着されていることを特徴とする請求項2または3に記載のシール部材。
  5.  前記ラジカルシール部のゴム弾性体と耐ラジカル体とが、
     分離可能に積層されていることを特徴とする請求項2または3に記載のシール部材。
  6.  前記真空シール部が、
     少なくとも前記ラジカルシール部よりも先に前記弁座面と当接するように構成されていることを特徴とする請求項1から5のいずれかに記載のシール部材。
  7.  前記シール部材の縦断面形状において、
     前記ラジカルシール部の左右両側に、それぞれ略対称形状の谷部が形成されていることを特徴とする請求項1から6のいずれかに記載のシール部材。
  8.  請求項1から7のいずれかに記載のシール部材がシールプレートの外縁部に接着され、
     真空用ゲート弁において、ゲート開口部の弁座面と対向するように配置され、前記弁座面と前記シール部材とが当接することで前記ゲート開口部をシールすることを特徴とするシールプレート。
  9.  前記シールプレートの凹部の縁に小段差部が設けられていることを特徴とする請求項8に記載のシールプレート。
  10.  前記弁座面と当接するラジカルシール部の頂上部分が、前記弁座面と略平行なフラット面であることを特徴とする請求項8または9に記載のシールプレート。
  11.  真空用ゲート弁において、ゲート開口部の弁座面と対向するように配置された平板状のシールプレートの外縁部に形成された凹部に接着され、前記弁座面と当接することで前記ゲート開口部をシールするシール部材の製造方法であって、
     前記シール部材の製造方法は、
     前記シールプレートを準備する工程と、
     前記シールプレートの凹部内に前記シール部材の原材料を接着する工程と、
     前記シール部材の原材料上であって、前記シールプレートの凹部の内方側に耐ラジカル体を配設する工程と、
     前記シール部材の原材料上に配設された耐ラジカル体の上から押圧部材で熱プレスし、シールプレートと少なくとも耐ラジカル体の一部とを熱圧着する工程と、
     前記耐ラジカル体が配設されたシール部材の原材料の上方に、
     前記シールプレートの凹部の外方側に位置し前記ゲート開口部の閉塞時に前記ゲート開口部のシール性を維持する真空シール部を形成するための凹部と、前記シールプレートの凹部の内方側に位置し前記ゲート開口部の閉塞時に前記ゲート開口部内の処理ガスから前記シール部材が侵されることを防止するラジカルシール部を形成するための凹部と、を有する金型を配設する工程と、
     前記配設された金型を熱するとともに、前記金型をシールプレート方向に移動させて前記シール部材の真空シール部とラジカルシール部とを形成する工程と、
     を少なくとも有することを特徴とするシール部材の製造方法。
  12.  請求項11に記載の製造方法によってシール部材を形成する工程を有することを特徴とするシールプレートの製造方法。
PCT/JP2009/066084 2008-09-18 2009-09-15 シールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法 WO2010032722A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117007994A KR101269267B1 (ko) 2008-09-18 2009-09-15 실링 플레이트, 실링 플레이트에 사용되는 실링 부재 및 이들의 제조방법
JP2010529759A JP5355578B2 (ja) 2008-09-18 2009-09-15 シールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法
US13/119,473 US8888106B2 (en) 2008-09-18 2009-09-15 Seal plate, seal member that is used in seal plate, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008239669 2008-09-18
JP2008-239669 2008-09-18

Publications (1)

Publication Number Publication Date
WO2010032722A1 true WO2010032722A1 (ja) 2010-03-25

Family

ID=42039546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066084 WO2010032722A1 (ja) 2008-09-18 2009-09-15 シールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法

Country Status (5)

Country Link
US (1) US8888106B2 (ja)
JP (1) JP5355578B2 (ja)
KR (1) KR101269267B1 (ja)
TW (1) TWI378201B (ja)
WO (1) WO2010032722A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036948A (ja) * 2010-08-05 2012-02-23 Nippon Valqua Ind Ltd シールプレートおよびこれに用いられるシール材
CN102751173A (zh) * 2011-04-20 2012-10-24 东京毅力科创株式会社 处理装置
JP2013033815A (ja) * 2011-08-01 2013-02-14 Tokyo Electron Ltd 処理装置
WO2013077164A1 (ja) * 2011-11-25 2013-05-30 日本バルカー工業株式会社 ゲート弁
CN105370979A (zh) * 2014-08-11 2016-03-02 Vat控股公司 用于真空阀的带有被压平的硫化密封的封闭件
JP2021044302A (ja) * 2019-09-09 2021-03-18 日本特殊陶業株式会社 保持装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308679B2 (ja) * 2008-01-22 2013-10-09 東京エレクトロン株式会社 シール機構、シール溝、シール部材及び基板処理装置
KR101252970B1 (ko) * 2011-06-28 2013-04-15 임종화 보호용 실 플레이트 및 이를 포함하는 전자 부품 제조 장치
AT512134B1 (de) * 2011-11-07 2013-08-15 Bernecker & Rainer Ind Elektronik Gmbh Hygienegerechtes anzeige- und bediengerät
US9752703B2 (en) * 2014-05-29 2017-09-05 Applied Materials, Inc. Methods and apparatus to reduce shock in a slit valve door
US11085564B2 (en) * 2015-11-11 2021-08-10 Greene, Tweed Technologies, Inc. Sealing rings and sealing ring assemblies for high temperature end applications
USD819187S1 (en) * 2016-01-26 2018-05-29 Nippon Valqua Industries, Ltd. Seal
US9976657B2 (en) * 2016-04-01 2018-05-22 Cameron International Corporation Double slip seal profile for plug valves
EP3348885B1 (de) * 2017-01-16 2019-12-11 VAT Holding AG Dichtung eines vakuumventils und diesbezügliches herstellungsverfahren
KR20200041316A (ko) * 2017-08-16 2020-04-21 배트 홀딩 아게 시일 배열체
JP1605760S (ja) * 2017-10-26 2018-06-04
USD897504S1 (en) * 2017-11-17 2020-09-29 Valqua, Ltd. Seal member for use in semiconductor production apparatus
USD898170S1 (en) * 2017-12-01 2020-10-06 Valqua, Ltd. Composite seal member for semiconductor production apparatus
USD898171S1 (en) * 2017-12-19 2020-10-06 Valqua, Ltd. Seal members for use in semiconductor production apparatuses
JP1605779S (ja) * 2017-12-19 2018-06-04
JP1605780S (ja) * 2017-12-19 2018-06-04
USD905761S1 (en) 2018-07-24 2020-12-22 Valqua, Ltd. Seal member for semiconductor production apparatus
US11174958B2 (en) 2019-01-24 2021-11-16 Jet Oilfield Services, LLC Gate valve and method of repairing same
JP6999614B2 (ja) * 2019-07-26 2022-01-18 株式会社バルカー 支持部材
CN112268141A (zh) * 2020-10-23 2021-01-26 中国科学院上海高等研究院 用于真空封合之密封碟盘
KR102411376B1 (ko) * 2021-11-25 2022-06-22 주식회사 에스에스케이 진공 게이트밸브용 밸브플레이트의 실링 장착구조

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138271A (ja) * 1984-07-31 1986-02-24 Fuji Seikou Kk メタルシ−ルを有するゲ−ト弁
JPH08227876A (ja) * 1994-04-29 1996-09-03 Applied Materials Inc プラズマエッチングリアクタ内の真空シール用保護カラー
JPH112328A (ja) * 1997-06-11 1999-01-06 Seiko Epson Corp Oリング及びこれを具備する装置
JP2001512897A (ja) * 1997-07-11 2001-08-28 アプライド マテリアルズ インコーポレイテッド 真空処理システム用の現場込めシールを備えた2ピース式スリットバルブドア
JP2002228043A (ja) * 2001-01-11 2002-08-14 Vat Holding Ag 真空バルブ
JP2003056724A (ja) * 2001-07-30 2003-02-26 Applied Materials Inc ゲートバルブの封止システムおよび封止方法
WO2006130546A2 (en) * 2005-06-02 2006-12-07 Dupont Performance Elastomers L.L.C. Plasma resistant seal assembly with replaceable barrier shield
JP2007120738A (ja) * 2005-09-30 2007-05-17 Tokyo Electron Ltd シール部品及び基板処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322433A (en) * 1964-03-10 1967-05-30 Minnesota Rubber Co Sealing ring and method of making same
US4375290A (en) * 1980-11-24 1983-03-01 Westinghouse Electric Corp. Sliding compression air seal for removable electronic units
US4968854A (en) * 1988-11-10 1990-11-06 Vanguard Products Corporation Dual elastomer gasket shield for electronic equipment
AU645680B2 (en) * 1991-04-25 1994-01-20 Nippondenso Co. Ltd. Heat-resistant and oil-resistant sealing member
US5558741A (en) * 1994-06-28 1996-09-24 Acheson Industries, Inc. Method for making a weatherstrip
US6173970B1 (en) * 1998-10-02 2001-01-16 Instrument Specialties Co., Inc. Gasket and method of making a gasket
KR100677835B1 (ko) * 1999-11-01 2007-02-05 미쓰이 가가쿠 가부시키가이샤 올레핀계 열가소성 엘라스토머 적층체 및 건축용 개스킷
ATE380311T1 (de) * 2000-03-06 2007-12-15 Interface Solutions Inc Flachdichtungen mit kontrollierten haftungseigenschaften an den flanschoberflächen
KR100909332B1 (ko) * 2002-01-31 2009-07-24 듀폰 퍼포먼스 엘라스토머스 엘.엘.씨. 게이트 밸브용 씰 조립체
US6755422B2 (en) * 2002-08-16 2004-06-29 Visteon Global Technologies, Inc. Low permeation sealing member
US20040232627A1 (en) * 2003-02-11 2004-11-25 Corbett Bradford G. Abrasion and oil resistant pipe gasket and coating
DE102005014297A1 (de) * 2005-03-24 2006-10-05 Endress + Hauser Gmbh + Co. Kg Gehäuse für ein elektronisches Gerät und Dichtring für ein Gehäuse
US8608856B2 (en) 2005-09-30 2013-12-17 Tokyo Electron Limited Sealing part and substrate processing apparatus
US20070182106A1 (en) * 2006-02-06 2007-08-09 Biesenberger Jeffrey J Lubeless pipe gasket and method of fabrication
JP4774549B2 (ja) * 2006-06-29 2011-09-14 日本バルカー工業株式会社 真空用ゲート弁およびこれに用いられるシール部材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138271A (ja) * 1984-07-31 1986-02-24 Fuji Seikou Kk メタルシ−ルを有するゲ−ト弁
JPH08227876A (ja) * 1994-04-29 1996-09-03 Applied Materials Inc プラズマエッチングリアクタ内の真空シール用保護カラー
JPH112328A (ja) * 1997-06-11 1999-01-06 Seiko Epson Corp Oリング及びこれを具備する装置
JP2001512897A (ja) * 1997-07-11 2001-08-28 アプライド マテリアルズ インコーポレイテッド 真空処理システム用の現場込めシールを備えた2ピース式スリットバルブドア
JP2002228043A (ja) * 2001-01-11 2002-08-14 Vat Holding Ag 真空バルブ
JP2003056724A (ja) * 2001-07-30 2003-02-26 Applied Materials Inc ゲートバルブの封止システムおよび封止方法
WO2006130546A2 (en) * 2005-06-02 2006-12-07 Dupont Performance Elastomers L.L.C. Plasma resistant seal assembly with replaceable barrier shield
JP2007120738A (ja) * 2005-09-30 2007-05-17 Tokyo Electron Ltd シール部品及び基板処理装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036948A (ja) * 2010-08-05 2012-02-23 Nippon Valqua Ind Ltd シールプレートおよびこれに用いられるシール材
TWI506718B (zh) * 2011-04-20 2015-11-01 Tokyo Electron Ltd 處理裝置
CN102751173A (zh) * 2011-04-20 2012-10-24 东京毅力科创株式会社 处理装置
US9496158B2 (en) 2011-04-20 2016-11-15 Tokyo Electron Limited Processing apparatus
JP2013131729A (ja) * 2011-04-20 2013-07-04 Tokyo Electron Ltd 処理装置
JP2013033815A (ja) * 2011-08-01 2013-02-14 Tokyo Electron Ltd 処理装置
JP2013113327A (ja) * 2011-11-25 2013-06-10 Nippon Valqua Ind Ltd ゲート弁
US20150176713A1 (en) * 2011-11-25 2015-06-25 Nippon Valqua Industries, Ltd. Gate valve
KR20140087055A (ko) 2011-11-25 2014-07-08 닛폰 바루카 고교 가부시키가이샤 게이트 밸브
WO2013077164A1 (ja) * 2011-11-25 2013-05-30 日本バルカー工業株式会社 ゲート弁
US9611940B2 (en) 2011-11-25 2017-04-04 Nippon Valqua Industries, Ltd. Gate valve
CN105370979A (zh) * 2014-08-11 2016-03-02 Vat控股公司 用于真空阀的带有被压平的硫化密封的封闭件
US10274088B2 (en) 2014-08-11 2019-04-30 Vat Holding Ag Closure element for a vacuum valve with pressed-off, vulcanized-on seal
CN105370979B (zh) * 2014-08-11 2019-07-12 Vat控股公司 用于真空阀的带有被压平的硫化密封的封闭件
JP2021044302A (ja) * 2019-09-09 2021-03-18 日本特殊陶業株式会社 保持装置
JP7332400B2 (ja) 2019-09-09 2023-08-23 日本特殊陶業株式会社 保持装置

Also Published As

Publication number Publication date
US20110169229A1 (en) 2011-07-14
JPWO2010032722A1 (ja) 2012-02-09
TWI378201B (en) 2012-12-01
US8888106B2 (en) 2014-11-18
JP5355578B2 (ja) 2013-11-27
KR101269267B1 (ko) 2013-05-29
KR20110061614A (ko) 2011-06-09
TW201020436A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
JP5355578B2 (ja) シールプレートおよびシールプレートに用いられるシール部材ならびにこれらの製造方法
US20150369545A1 (en) Heat exchanger and method for manufacturing same
JP4774549B2 (ja) 真空用ゲート弁およびこれに用いられるシール部材
KR101587441B1 (ko) 스테인리스 파이프와 수지 파이프의 접착을 위한 후랜지, 수지 접착 방법 및 이중구조 파이프
US11231108B2 (en) Composite seal member
WO2003064900A1 (en) Gate valve seal assembly
JP2009144735A (ja) 密封構造
TW200741934A (en) Wafer-shaped measuring apparatus and method for manufacturing the same
TWI666748B (zh) 半導體模組
JP4855356B2 (ja) 密封構造体
CN103047433A (zh) 阀门密封件
JP2012087855A (ja) 複合シール材
JP5592727B2 (ja) シールプレートおよびこれに用いられるシール材
TWM593528U (zh) 均溫板結構
JP2007032652A (ja) メカニカルシール装置
JP2005265066A (ja) 弁装置用のシールプレート
JP2003343727A (ja) 耐プラズマ性シール
JP2004218737A (ja) 金属ガスケット及びシール構造体
JP2004044621A (ja) 金属シール
JP5239983B2 (ja) 縦型ウエハ処理装置
KR101471766B1 (ko) 불소수지 본디드 씨일링 및 그 제조방법
KR101041148B1 (ko) 반도체 제조장치의 공정챔버 클로징 조립체의 슬릿밸브
JPH03260072A (ja) 半導体製造装置用の耐食バルブ
JP2013065605A (ja) 半導体装置
JP2023124553A (ja) 放熱シート及び放熱シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529759

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13119473

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007994

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09814567

Country of ref document: EP

Kind code of ref document: A1