WO2010032492A1 - 麹菌アルカリプロテアーゼプロモーター - Google Patents
麹菌アルカリプロテアーゼプロモーター Download PDFInfo
- Publication number
- WO2010032492A1 WO2010032492A1 PCT/JP2009/052735 JP2009052735W WO2010032492A1 WO 2010032492 A1 WO2010032492 A1 WO 2010032492A1 JP 2009052735 W JP2009052735 W JP 2009052735W WO 2010032492 A1 WO2010032492 A1 WO 2010032492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- alkaline protease
- promoter
- strain
- cassette
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/58—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
- C12N9/62—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi from Aspergillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- the present invention relates to an alkaline protease promoter of Neisseria gonorrhoeae, a method of producing a protein using the promoter, and the like.
- ⁇ -amylase As a promoter for protein expression in gonococci, ⁇ -amylase (see, for example, Patent Document 1), glucoamylase (see, for example, Non-patent Document 1), translation elongation factor TEF1 (for example, see Patent Document 1) all derived from Aspergillus oryzae
- promoters of genes such as non-patent document 2) and tyrosinase are used, and in particular, many usage examples of the ⁇ -amylase promoter have been reported.
- Aspergillus soya generally has higher alkaline protease activity and lower amylase activity than Aspergillus oryzae, in Aspergillus soya, it is desirable to use a protease promoter rather than an amylase promoter.
- a protease promoter rather than an amylase promoter.
- the alkaline protease gene of Aspergillus oryzae it has been disclosed that a region of 1.1 kb upstream thereof can function as a promoter (see, for example, Patent Documents 3 to 4).
- the upstream region is stepwise deleted with the longest of the 0.6 kb region, and the 0.4 kb shows 70% activity compared to 0.6 kb, 0 It has been shown that the activity is significantly reduced below .3 kb (see, for example, Non-Patent Document 3).
- the present invention aims to clarify the relationship between the length of the upstream region of the alkaline protease gene of Bacillus subtilis and the strength of the promoter activity, and to provide a strong promoter.
- the present inventors genetically deleted a part of the upstream region of the alkaline protease gene on the chromosome of Neisseria gonorrhoeae, and promoted promoter activity with the original upstream region where no genetic manipulation was performed. It is clarified that the region spanning about 2.5 kb upstream of the translation initiation position of the gene exhibits the same promoter activity as the entire original upstream region by conducting the comparison of It clarified that it could be used for protein expression, and completed the present invention.
- an alkaline protease promoter which is an upstream region of an alkaline protease gene of Neisseria gonorrhoeae and has a length of more than 1.1 kb and less than 2.5 kb.
- the alkaline protease promoter according to claim 1 which comprises 2.5 kb upstream region of the alkaline protease gene of Aspergillus oryzae.
- Aspect 4 The alkaline protease promoter according to any one of aspects 1 to 3, wherein the bacilli are Aspergillus soya or Aspergillus oryzae.
- a unit for gene expression comprising the alkaline protease promoter according to any one of aspects 1-4.
- “Aspect 6” A cassette for homologous recombination, comprising the unit for gene expression according to aspect 5.
- a transformed microorganism comprising the alkaline protease promoter according to any one of aspects 1 to 4 introduced into a genome gene of a host microorganism.
- Aspect 8 The transformed microorganism according to aspect 7, wherein the host microorganism is Aspergillus soya or Aspergillus oryzae.
- Aspect 9 The transformed microorganism according to claim 8, wherein the host microorganism is a strain in which a gene involved in non-homologous recombination is destroyed.
- a method for producing a protein comprising culturing the transformed microorganism according to any one of aspects 7 to 9 in a culture medium, expressing the incorporated expression target gene, and collecting the expressed protein from the culture.
- alkaline protease gene upstream region of Aspergillus oryzae can be used as a promoter for highly expressing useful proteins and the like.
- alkaline protease gene upstream region means a region adjacent to the 5'-side upstream of the translation initiation position of the gene.
- a region upstream of the alkaline protease gene which is longer than about 1.1 kb, for example, a region 1.5 kb or more in length.
- an alkaline protease gene upstream region of Neisseria gonorrhoeae for example, the region included in each cassette prepared in Example 2 of the present specification can be mentioned.
- an alkaline protease promoter consisting of about 2.5 kb in the upstream region of the alkaline protease gene is preferable, and by using such a promoter, the expression target gene can be expressed most strongly.
- the nucleotide sequence of the alkaline protease promoter consisting of about 2.5 kb upstream region of the alkaline protease gene from Aspergillus soya is shown in SEQ ID NO: 1. Furthermore, as long as it functions as a promoter, a part of the alkaline protease gene in the promoter, for example, a part of the region near the translation initiation position may be substituted or deleted.
- the Bacillus host used for transformation is also not particularly limited, but Bacillus belonging to the genus Aspergillus such as Aspergillus soya and Aspergillus oryzae is preferable. Furthermore, when a DNA fragment is introduced into a specific site of a chromosome by homologous recombination, a strain in which a gene involved in non-homologous recombination is destroyed to increase the efficiency of homologous recombination, eg, ku70 gene disruption strain, ku80 gene disruption It is desirable to use a strain, a lig4 gene disruption strain or the like.
- Homologous recombination can be efficiently performed by using the above gene disruption strain (Takahashi et al. Mol. Genet. Genomics 275, 460 (2006), Mizutani et al. Fungal Genet. Biol. 45, 878 (2008). reference).
- Aspergillus soya ASKUPTR8 strain ( ⁇ pyrG, ku70 :: ptrA) (Takahashi et al. Mol. Genet. Genetics 275, 460 (2006), see JP 2007-222055 A) is used as a gonococcal ku70 gene disruption strain. be able to.
- Aspergillus soya ASKUPTR8 strain was deposited on National Institute of Advanced Industrial Science and Technology Patent Organism Depositary on December 2, 2004, with the receipt number FERM P-20311, and then dated November 17, 2005 Has been transferred to the International Deposit under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms etc. in Patent Procedure, and has been given the Accession No. FERM BP-10453.
- the region upstream of the alkaline protease gene of Neisseria gonorrhoeae can be obtained by any method known to those skilled in the art, for example, PCR.
- the enzyme used for PCR including the process of the below-mentioned transformation cassette construction, a thing with high accuracy is desirable.
- KOD-Plus-DNA Polymerase manufactured by Toyobo Co., Ltd.
- KOD-Plus-DNA Polymerase manufactured by Toyobo Co., Ltd.
- the apparatus for PCR is not particularly limited, and examples include GeneAmp 5700 DNA Detection System (manufactured by Perkin Elmer) used in the examples.
- Bacillus subtilis chromosomal DNA as a template for PCR can be extracted by any method known to those skilled in the art, for example, the following method.
- Polypeptone dextrin medium 1% polypeptone, 2% dextrin, 0.5% KH 2 PO 4 , 0.1% NaNO 3 , 0.05% MgSO 4 ⁇ 7 H 20, 0.1% casamino
- Polypeptone dextrin medium 1% polypeptone, 2% dextrin, 0.5% KH 2 PO 4 , 0.1% NaNO 3 , 0.05% MgSO 4 ⁇ 7 H 20, 0.1% casamino
- a 150 mlenmeyer flask Prepare 30 ml of acid, pH 6.0), inoculate conidia of gonococci, and shake culture overnight at 30 ° C.
- the bacterial cells are collected from the culture solution by filtration, the moisture is removed by sandwiching them in a paper towel, and the bacterial cells are crushed while being cooled with liquid nitrogen using a mortar and pestle cooled beforehand with liquid nitrogen, Wizard Genomic DNA Purification Kit (Promega) Chromosome DNA can be extracted from the disrupted cells by using
- the specific chromosomal DNA extraction method can be referred to the protocol of Wizard Genomic DNA Purification Kit (manufactured by Promega).
- a primer for amplifying the alkaline protease gene upstream region by PCR an appropriate primer can be selected from the primers shown in the Examples.
- appropriate primers can be designed and used based on the sequence of the upstream region of the alkaline protease gene of Aspergillus soya disclosed in the present invention.
- the desired protein or the like encoded by the expression target gene can be expressed according to any method known to those skilled in the art using the alkaline protease gene upstream region of the present invention.
- it can be used in the form of a unit for gene expression (expression unit) in which an alkaline protease gene upstream region-expression target gene-terminator is connected in this order.
- a terminator a downstream region of a gene to be expressed can be used.
- any terminator known to those skilled in the art for example, the downstream region of the alkaline protease gene or the downstream region of the ⁇ -amylase gene can be used as a terminator.
- the expression unit is preferably introduced into the bacillus chromosome and used, but as another method, the expression unit may be used on an autonomously replicating vector (see Ozeki et al. Biosci. Biotechnol. Biochem. 59, 1133 (1995)). It can also be constructed and used without being introduced into a chromosome.
- the expression unit When introducing the expression unit into the gonococcal chromosome, regardless of the chromosomal site to be introduced, it may be introduced into the gonococcal chromosome by transforming the gonococci using the expression unit and a suitable transformation marker gene. it can. Although it is desirable that the expression unit and the transformation marker gene be linked, if they are not linked, they can be introduced by cotransformation.
- the expression unit When the expression unit is introduced into a specific site of the gonococcal chromosome, this can be done by homologous recombination.
- a DNA fragment for causing homologous recombination with the host chromosome is linked to one end of the ligation of the expression unit and the transformation marker gene upstream of the site to be introduced, and the other end is introduced It is necessary to connect a DNA fragment for generating homologous recombination with the host chromosome downstream of the site.
- the expression unit Even if the expression unit is not in perfect form in the cassette used for the above transformation, the expression unit will be constructed so that the complete expression unit is finally constructed on the bacillus chromosome by utilizing the sequence on the chromosome. It is also possible to use a method of constructing a part of the vector into a cassette and introducing it. For example, when an alkaline protease gene upstream region is introduced immediately upstream of the expression target gene on a chromosome, the upstream region of the expression target gene-transformation marker gene-alkaline protease gene upstream region-expression target gene (or part thereof) A cassette consisting of four DNA fragments is constructed.
- a complete expression unit consisting of the upstream region of the alkaline protease gene-the gene to be expressed-the terminator of the gene to be expressed is constructed on the chromosome Ru.
- an expression unit can be constructed using an amylase gene downstream region on a chromosome.
- a cassette for this purpose may be constructed by connecting five kinds of DNA fragments in this order: amylase gene upstream region-transformation marker gene-alkaline protease gene upstream region-expression target gene-amylase gene downstream region.
- the amylase gene upstream region and the amylase gene downstream region each function as a DNA fragment for homologous recombination.
- the amylase gene upstream region-transformation marker gene-alkaline protease gene upstream region Two kinds of cassettes are constructed respectively: an upstream cassette consisting of the following: an alkaline protease gene upstream region-an expression target gene-an amylase gene downstream region. Both cassettes have the region upstream of the alkaline protease gene as a common region. When transformation is performed using a divided cassette, the divided cassettes may be used in approximately equimolar amounts.
- Preparation of DNA fragments and ligation of DNA fragments for constructing a cassette can be carried out by any method known to those skilled in the art, for example, Yu et al., Funal Genet. Biol. 41, 973 (2004) can be performed by the double-joint PCR method. In this method, three steps of PCR are performed. First, each DNA fragment is amplified by PCR. Among the primers used at this time, for the primer to which the DNA fragment is to be ligated, the one obtained by adding the complementary sequence at the end of the DNA fragment to be ligated in the length range of 20 to 60 mer to the 5 'end of the primer. It is necessary to use This additional sequence may be provided in at least one of the DNA fragments to be linked.
- the obtained DNA fragments are mixed and PCR is performed to link the DNA fragments.
- nested PCR or hemi-nested PCR is performed using the forward primer provided in the most upstream DNA fragment and the reverse primer provided in the most downstream DNA fragment.
- the target cassette can be amplified.
- a cassette can be constructed by cloning a DNA fragment sequentially or at a time in a vector that replicates in E. coli or Saccharomyces yeast etc. (Jones et al. BioTechniques 10, 62 ( 1991), Izasa et al. BioTechniques 40, 79 (2006)).
- the constructed vector can be used as it is or after cutting out the region containing the cassette from the vector with an appropriate restriction enzyme.
- the constructed vector can be used as a template and the region containing the cassette amplified by PCR.
- a host microorganism can be transformed by any method known to those skilled in the art to produce a transformed microorganism of the present invention.
- a desired protein can be produced by culturing the thus obtained transformed microorganism in a culture medium, expressing the incorporated expression target gene, and collecting the expressed protein from the culture.
- protoplasts of Neisseria gonorrhoeae host can be prepared according to the method described in, for example, JP-A-2007-222055, and transformation can be performed by the protoplast PEG method.
- a medium for regenerating transformants an appropriate medium is used depending on the Bacillus host and transformation marker gene to be used.
- Aspergillus soya ASKUPTR8 strain is used as a gonococcal host and the pyrG gene is used as a transformation marker gene
- regeneration of the transformant is carried out, for example, Czapek-Dox containing 0.5% agar, 1.2 M sorbitol It can be performed in a minimal medium (manufactured by Difco).
- chromosomal DNA was extracted from the transformant, PCR was performed using this as a template, and it was confirmed that a PCR product capable of amplification was generated when homologous recombination occurred. It can do by doing.
- PCR is performed with a combination of a forward primer located upstream of the cassette used and a reverse primer located in a newly introduced DNA fragment (eg, transformation marker gene) to produce a product of the expected length Make sure.
- a forward primer located upstream of the cassette used and a reverse primer located in a newly introduced DNA fragment (eg, transformation marker gene) to produce a product of the expected length Make sure.
- PCR is performed with a combination of the forward primer located in the newly introduced DNA fragment (for example, transformation marker gene) and the reverse primer located downstream from the cassette used to produce a product of the expected length. Confirm.
- PCR is performed using a combination of a forward primer located upstream of the used cassette and a reverse primer located downstream of the used cassette, and the length assumed when homologous recombination occurs. It is preferable to confirm that the product of
- Such culture media include, for example, bran culture media.
- the bran culture medium is prepared, for example, by mixing 2.78 g of wheat bran (selected by bran, manufactured by Nisshin Flour Milling Co., Ltd.) and 2.22 ml of distilled water in a 150 ml Erlenmeyer flask, mixing with cotton stoppers, It can be prepared by autoclaving for 1 minute.
- the protein to be expressed is a protein secreted out of the cell
- add distilled water to a bran stir vigorously, leave at room temperature for about 3 hours, and filter with filter paper, Proteins to be expressed can be extracted.
- the protein to be expressed is a protein localized in the cell, for example, a buffer solution having a composition of 20 mM Tris-HCl, pH 7.5, 40 mM KCl, 2.5% glycerol may be used.
- the protein to be expressed is expressed by disrupting the disrupted solution obtained by intermittent operation while cooling with ice using a disrupter such as Polytron homogenizer PT3000 (manufactured by KINEMATICA), and centrifuging the obtained disrupted solution to recover the supernatant. It can be extracted.
- protease inhibitor does not affect the function of the protein to be expressed
- addition of a protease inhibitor such as phenylmethylsulfonyl fluoride during the extraction procedure prevents the degradation of the protein to be expressed by the protease of Neisseria gonorrhoeae be able to.
- the obtained extract can be tested by an appropriate method such as enzyme activity measurement according to the function of the protein to be expressed to confirm that the protein to be expressed is expressed.
- the protein to be expressed can be purified by column chromatography or the like as required.
- An Aspergillus oryzae expressing a protein to be expressed using an alkaline protease gene upstream region can be used, for example, for producing a seasoning solution obtained by degrading a protein raw material such as gluten with a koji.
- a protein raw material such as gluten with a koji.
- the protein to be expressed is an enzyme involved in the degradation of a protein or peptide, the decomposition of the raw material is further promoted by the coexistence of the alkaline protease and the protein to be expressed, and a seasoning liquid containing more nitrogen and amino acids is obtained.
- the protein to be expressed is glutaminase
- the conversion of glutamine to glutamic acid is promoted, whereby a seasoning solution with a stronger umami taste can be obtained.
- the protein to be expressed is an enzyme involved in cell wall degradation such as cellulase
- the degradation of cell wall components contained in the raw material is promoted, so that residues generated during seasoning liquid production can be reduced.
- Aspergillus soya ASKUPTR8 strain was used as a transformation Bacillus host.
- the pyrG gene was used as a transformation marker gene.
- the construction of the cassette used for transformation was performed by the double-joint PCR method.
- KOD-Plus-DNA Polymerase manufactured by Toyobo Co., Ltd.
- GeneAmp 5700 DNA Detection System manufactured by Perkin Elmer
- QIAquick PCR purification kit (manufactured by Qiagen) was used according to the attached instruction manual.
- a list of primers used for PCR in the examples is shown in Table 7.
- the list of prepared PCR products is shown in Table 8.
- the list of constructed cassettes is shown in Table 9.
- the cassette for introducing a promoter is divided into an upstream cassette consisting of an alkaline protease gene upstream region-pyrG gene, and a downstream cassette consisting of pyrG gene-promoter to be transferred-a part of alkaline protease gene, and constructed did. Both cassettes share the pyrG gene in common.
- the downstream cassette was prepared for each promoter used.
- TEF1 translation elongation factor of Aspergillus oryzae
- GPD glyceraldehyde triphosphate dehydrogenase
- PCR was performed using the primers shown in Table 7 to obtain products 2 to 6 shown in Table 8. The resulting PCR products were each purified.
- the product 1 and product 2 are mixed and subjected to PCR for 2 minutes at 94 ° C. (15 seconds at 94 ° C., 5 minutes at 56 ° C., 5 minutes at 68 ° C.) ⁇ 15 cycles, and this reaction solution is used as a template
- PCR was performed using primer Alp_-1990F and primer PyrG_1431R to obtain cassette 1 consisting of an alkaline protease gene upstream region-pyrG gene.
- cassettes were similarly produced using the combination of products shown in Table 9 and the combination of primers to obtain cassette 2 to cassette 4.
- the Bacillus subtilis host was transformed using cassette 1 and cassette 2, and among the obtained transformants, transformants in which the TEF1 promoter was introduced upstream of the alkaline protease gene by homologous recombination were selected by PCR. One of these was designated as WhPtefAlp_4.
- Bacillus subtilis host was transformed using cassette 1 and cassette 3, and transformants in which an amylase promoter was introduced upstream of the alkaline protease gene were selected.
- One of these was designated as WhPamyAlp_3.
- Bacillus subtilis hosts were transformed using cassette 1 and cassette 4, and transformants in which the GPD promoter had been introduced upstream of the alkaline protease gene were selected.
- One of these was designated as WhPgpdAlp_6.
- a control strain in which the upstream region of the alkaline protease gene was not engineered was obtained by transforming a Bacillus subtilis host with product 2 (pyrG gene). One of these was designated as WhKuP3.
- Each promoter-introduced strain and the control WhKuP3 strain were each cultured in a bran medium prepared in a 150 ml Erlenmeyer flask, 50 ml of distilled water was added to the obtained bran bowl, vigorously stirred, and left at room temperature for 3 hours
- the extract was obtained by filtration through No. 2 filter paper (manufactured by Advantec Co., Ltd.).
- Protease activity of the extract against a milk casein substrate at pH 7.0 was measured according to the method described in the soy sauce test method (edited by the Japan Soy Sauce Research Institute), and each promoter introduced strain when the protease activity of WhKuP3 strain was 1
- the relative activity value of is shown in Table 1.
- the TEF1 promoter-introduced WhPtefAlp_4 strain exhibited an activity similar to that of the control WhKuP3 strain, and the activities of the GPD promoter-introduced WhPgpdAlp_6 strain and the amylase promoter-introduced WhPamyAlp_3 strain were less than this.
- the alkaline protease promoter was found to have comparable strength to the TEF1 promoter.
- the protease activity of the obtained passage liquid was measured, and the relative activity of each promoter-introduced strain when the protease activity of the WhKuP3 strain is 1 is shown in Table 2.
- the WhPtefAlp_4 strain which is a TEF1 promoter-introduced strain, showed a slightly stronger activity than the control WhKuP3 strain.
- the GPD promoter-introduced WhPgpdAlp_6 strain showed the same activity as the WhKuP3 strain.
- the amylase promoter-introduced strain WhPamyAlp_3 showed weaker activity than the other strains.
- the strength of the alkaline protease promoter was found to be comparable to that of the GPD promoter.
- the cassette for this consists of three kinds of DNA fragments of 2.5-3.5 kb upstream of the alkaline protease gene-a region downstream of the region to be deleted-pyrG gene-and the DNA fragments at both ends are the host respectively When homologous recombination with the chromosome occurs, the pyrG gene is introduced and a specific region upstream of the alkaline protease gene is deleted (FIG. 2).
- PCR was performed using the chromosomal DNA of Aspergillus soya ATCC 42251 strain as a template and the primers shown in Table 7 to obtain Product 2 and Product 7 to Product 13 shown in Table 8.
- the resulting PCR products were each purified, and in the same manner as in Example 1, cassettes were produced using the combination of products shown in Table 9 and the combination of primers to obtain cassette 5 to cassette 10.
- the Bacillus subtilis host was transformed using cassette 5, and the pyrG gene was inserted at a position 2.5 kb upstream of the alkaline protease gene by homologous recombination from the resulting transformants, ie, the length of the upstream region Selected a transformant having a size of 2.5 kb.
- WhAlpU 2.5 k_1 One of these was designated as WhAlpU 2.5 k_1.
- Bacillus subtilis host was transformed using cassette 6, and the region extending 2.5 to 2.0 kb upstream of the alkaline protease gene was replaced by the pyrG gene, ie, the length of the upstream region was 2.0 kb A transformant was selected. One of these was designated as WhAlpU 2.0 k_1.
- Bacillus subtilis host was transformed using cassette 7, and transformants in which the length of the upstream region of the alkaline protease gene was 1.5 kb were selected. One of these was designated as WhAlpU1.5k_1 strain.
- Bacillus subtilis host was transformed using cassette 8, and transformants in which the length of the region upstream of the alkaline protease gene was 1.0 kb were selected. One of these was designated as WhAlpU 1.0 k_7.
- Bacillus subtilis host was transformed using cassette 9, and transformants having a length of the upstream region of the alkaline protease gene of 0.7 kb were selected. One of these was designated as WhAlpU0.7k_2.
- Bacillus subtilis host was transformed using cassette 10, and transformants in which the length of the region upstream of the alkaline protease gene was 0.0 kb were selected. One of these was designated as WhAlpU0.0k_1 strain.
- a bran meal is prepared in the same manner as in Example 1 and an extract is prepared to measure protease activity. did.
- Table 3 shows relative activity values of each alkaline protease gene upstream region-deleted strain when the protease activity of WhKuP3 strain is 1.
- the WhAlpU2.0k_1 strain and the 1.5 kb WhAlpU 1.5k_1 strain each having an upstream region length of 2.0 kb showed activity of slightly less than 70% and less than 40%, respectively, as compared with the WhKuP3 strain.
- the three strains in which the length of the upstream region was 1.0 kb or less showed the same low activity as each other.
- the activity exhibited by the WhAlpU0.0k_1 strain is considered to be an activity derived from an enzyme other than the alkaline protease targeted in this study, and the length of the upstream region is 2.0 kb, 1 when the activity of this portion is subtracted and compared. In the case of .5 kb, it has a promoter activity of 60% and 30% respectively compared to the original upstream region not manipulated, and in the case of 1.0 kb, only about 1% of the original activity is present. It will not be.
- a 150 ml Erlenmeyer flask was charged with 20 ml of a 1% KH 2 PO 4 solution and 0.2 g of wheat bran and autoclaved. To this, 2 ⁇ 10 7 of conidia of each alkaline protease gene upstream region-deficient strain or WhKuP3 strain were inoculated. After shaking culture at 30 ° C. for 4 days, the culture solution was filtered with No. 2 filter paper to obtain a flow through. The protease activity of the obtained passage liquid was measured, and the relative activity value of each promoter-introduced strain when the protease activity of WhKuP3 strain is 1 is shown in Table 4.
- the WhAlpU2.5k_1 strain in which the length of the upstream region is 2.5 kb, showed a protease activity that was completely comparable to the control WhKuP3 strain.
- the WhAlpU 2.0 k_1 strain and the 1.5 kb WhAlp U 1.5 k_1 strain each having an upstream region length of 2.0 kb showed activity of slightly less than 40% and less than 30%, respectively, as compared with the WhKuP3 strain.
- the three strains in which the length of the upstream region was 1.0 kb or less showed the same low activity as each other.
- the activity exhibited by the WhAlpU0.0k_1 strain is considered to be an activity derived from an enzyme other than the alkaline protease targeted in this study, and the length of the upstream region is 2.0 kb, 1 when the activity of this portion is subtracted and compared. In the case of .5 kb, it has a promoter activity of over 20% and 10%, respectively, compared to the original upstream region which has not been manipulated, and in the case of 1.0 kb, it has only about 1% of the original activity. It will not be.
- prolidase expression strain A strain expressing prolidase was prepared using 2.5 kb of the upstream region of the alkaline protease gene as a promoter. An amylase gene downstream region on the chromosome was used as a terminator. The cassette for this is divided into an upstream cassette comprising an amylase gene upstream region-pyrG gene-alkaline protease gene upstream region, and a downstream cassette comprising an alkaline protease gene upstream region-prolidase gene-amylase gene downstream region, and constructed did. Both cassettes share the region upstream of the alkaline protease gene.
- prolidase gene to be expressed an Aspergillus soya gene (proA, and a protein encoded thereby is called prolidase A) corresponding to the Aspergillus oryzae prolidase gene described in JP-A-2003-250580 was used.
- prolidase gene different from this an Aspergillus soya gene (proB, and the encoded protein as prolidase B) corresponding to the Aspergillus oryzae prolidase gene described in Japanese Patent No. 4051251 was used.
- Aspergillus soya As the region upstream of the alkaline protease gene, in addition to the sequence of Aspergillus soya, the corresponding sequence of Aspergillus oryzae was used. The following is the sequence of Aspergillus soya unless otherwise stated.
- PCR was performed using the chromosomal DNA of Aspergillus soya ATCC 42251 strain as a template and the primers shown in Table 7 to obtain Product 2, Product 14 to Product 18, and Product 20 shown in Table 8. Obtained.
- chromosomal DNA of Aspergillus oryzae RIB40 strain as a template, PCR was performed using primers AoAlp — 2510F_P and primer AoAlp — 3R to obtain product 19.
- the product 19 contains a region 2.5 kb upstream of the alkaline protease gene of Aspergillus oryzae.
- a transformant in which an expression unit comprising an alkaline protease gene upstream region-proA gene-amylase terminator was constructed by homologous recombination from among the transformants obtained by transforming a Bacillus subtilis host using cut 11 and cassette 12 Were selected by PCR. One of these was designated as WhProA_1.
- Bacillus subtilis host was transformed using the cut 11 and the cassette 13 to select a transformant in which an expression unit consisting of an alkaline protease gene upstream region-proB gene-amylase terminator was constructed.
- WhProB_1 an expression unit consisting of an alkaline protease gene upstream region-proB gene-amylase terminator was constructed.
- Bacillus subtilis host was transformed using the cut 14 and the cassette 15, and a transformant in which an expression unit consisting of an upstream region of the alkaline protease gene of Aspergillus oryzae-proA gene-amylase terminator was constructed was selected.
- WhPAoProA_2 One of these was designated as WhPAoProA_2.
- amylase gene-disrupted strain Since the amylase gene was disrupted in the prolidase expression strain, an amylase gene-disrupted strain was produced as a control strain.
- the cassette for this consists of three DNA fragments: amylase gene upstream region-pyrG gene-amylase gene downstream region. When the DNA fragments at both ends undergo homologous recombination with the host chromosome, respectively, the amylase gene on the chromosome is replaced by the pyrG gene (FIG. 4).
- PCR was performed using the chromosomal DNA of Aspergillus soya ATCC 42251 strain as a template and the primers shown in Table 7 to obtain Product 2, Product 14 and Product 21 shown in Table 8. After these products were mixed and PCR was performed, PCR was further performed using primer Amy_-2347F and primer Amy_T1605R to obtain cassette 16. The Bacillus subtilis host was transformed with this cassette, and a strain in which the amylase gene was disrupted by homologous recombination was selected. One of these was designated as WhAmy_1.
- Prolidase Activity of Prolidase Expressing Strain A bran meal was prepared in the same manner as in Example 1 for each of the prolidase expressing strains produced and the control WhAmy_1 strain. Add 20 ml of breaking buffer (20 mM Tris-HCl, pH 7.5, 40 mM KCl, 2.5% glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF)) to a bran bowl and cool on ice with a Polytron homogenizer PT3000 (KINEMATICA) Bran bran was crushed by intermittent operation for 30 seconds ⁇ 8 times at the maximum rotation speed using a company manufactured product).
- breaking buffer 20 mM Tris-HCl, pH 7.5, 40 mM KCl, 2.5% glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF)
- the disrupted suspension was centrifuged at 20,000 xg for 10 minutes and the supernatant collected.
- the supernatant was subjected to gel filtration by passing it through a PD-10 column (manufactured by GE Healthcare Biosciences).
- a disruption buffer without PMSF was used and operated according to the instruction manual for the column.
- the obtained eluate was used as an enzyme solution.
- the prolidase activity of the enzyme solution against the Leu-Pro substrate was measured according to the method described in Patent No. 4051251.
- the protein amount of the enzyme solution was measured using BCA Protein Assay Reagent Kit (manufactured by Pierce), and bovine serum albumin was used as a standard protein.
- the prolidase activity per protein amount was determined for the enzyme solution of each strain, and when the activity of the control WhAmy_1 strain was 1, the relative activity value of each prolidase expression strain is shown in Table 5.
- the WhPAoProA_2 strain in which prolidase A was expressed using the upstream region of the alkaline protease gene of Aspergillus oryzae also showed a clearly higher activity than the WhAmy_1 strain.
- a prolidase B-expressing strain WhProB_1 strain and a WhAmy_1 strain as a control were prepared, respectively, in the same manner as in Example 1.
- 18.5 g of gluten (VITEN, manufactured by Roquette) and 33 ml of 13% saline were added thereto, mixed well, and gently shaken at 40 ° C. for 7 days.
- the resulting suspension was filtered with No. 2 filter paper, and the free amino acid content of the flow through was measured with an amino acid analyzer L-8800 (manufactured by Hitachi, Ltd.). The results are shown in Table 6.
- proline and many other types of free amino acids increased, and the total amino acid amount also increased.
- the upstream region of the alkaline protease gene of Aspergillus oryzae according to the present invention can be used for expression of various proteins as a strong promoter, it is extremely useful industrially.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本発明の目的は、麹菌のアルカリプロテアーゼ遺伝子上流領域の長さとプロモーター活性の強さの関係を明らかにし、強力なプロモーターを提供すること。 本発明は、麹菌のアルカリプロテアーゼ遺伝子上流領域であって約1.1kbより長く約2.5kb以下の長さを有するアルカリプロテアーゼプロモーター、該プロモーターを含む遺伝子発現用ユニット、該遺伝子発現用ユニットを含む相同組換え用カセット、及び、該アルカリプロテアーゼプロモーターを宿主微生物のゲノム遺伝子中に導入して成る形質転換微生物等に係る。
Description
本発明は、麹菌のアルカリプロテアーゼプロモーター及び該プロモーターを利用するタンパク質の製造方法等に関する。
麹菌でのタンパク質の発現のためのプロモーターとして、いずれも麹菌アスペルギルス・オリゼに由来するα-アミラーゼ(例えば、特許文献1参照)、グルコアミラーゼ(例えば、非特許文献1参照)、翻訳伸長因子TEF1(例えば、非特許文献2参照)、チロシナーゼ(例えば、特許文献2参照)等の遺伝子のプロモーターが用いられ、特にα-アミラーゼプロモーターの利用例が多く報告されている。
麹菌アスペルギルス・ソーヤはアスペルギルス・オリゼと比べて一般的にアルカリプロテアーゼ活性が高く、アミラーゼ活性は低いことから、アスペルギルス・ソーヤにおいてはアミラーゼ系のプロモーターよりもプロテアーゼ系のプロモーターの利用が望まれる。アスペルギルス・オリゼのアルカリプロテアーゼ遺伝子に関して、その上流1.1kbの領域がプロモーターとして機能しうることが開示されている(例えば、特許文献3~4参照)。
しかし、開示されている1.1kbの領域がどの程度の強さのプロモーター活性を示すのかは不明である。アスペルギルス・ソーヤのアルカリプロテアーゼプロモーターについても、上流1.1kbの配列が開示されていて、アスペルギルス・オリゼの該当配列と非常に高い相同性を示すことが報告されている(例えば、特許文献5参照)。
しかし、プロモーター活性は確認されていない。このように、麹菌のアルカリプロテアーゼ遺伝子上流領域をプロモーターとして用いるに際し、領域の長さとプロモーター活性の強さとの関係については、これまでに全く検討されていない。さらに、他のプロモーターとの活性の比較も行われておらず、麹菌で用いられるプロモーターにおけるアルカリプロテアーゼプロモーターの位置付けは不明である。
プロモーター領域の長さとプロモーター活性の強さとの関係を調べるための従来の技術として、様々な長さの上流領域を取り出してきてこれにβ-グルクロニダーゼ等のレポーター遺伝子をつなぎ、染色体上の本来とは異なる部位に導入して、レポーターの活性を測定することにより、プロモーター活性の指標とする方法が挙げられる。
例えば、アスペルギルス・オリゼのα-アミラーゼプロモーターの解析では、0.6 kbの領域を最長として上流側を段階的に欠損させ、0.4kbでは0.6kbに比べて7割の活性を示し、0.3kb以下では活性が顕著に低下したことが示されている(例えば、非特許文献3参照)。
アスペルギルス・オリゼのα-グルコシダーゼプロモーターの解析では、1.5kbを用いた最長とし、0.7kbまで欠損してもプロモーター活性がほとんど変わらないことが示されている(例えば、非特許文献4参照)。
アスペルギルス・オリゼのカタラーゼBプロモーターの解析では、1.4kbを用いた最長とし、これよりも1.0kbの領域を用いた方がプロモーター活性は高く、使用する領域が長い方が必ずしも活性が高いとは限らないことが示されている(例えば、非特許文献5参照)。
これらの結果は、最大限にプロモーター活性を示す領域の長さはプロモーターによって異なるため、上流領域の長さとプロモーター活性の関係についてはプロモーター毎に個別に検討する必要があることを示している。
しかし、この従来技術においては、取り出してきた最長の領域が最大限のプロモーター活性を示すのに必要な領域を含んでいることの確証はないという問題がある。
特許第3005618号明細書
特開2001-46078号公報
特許第2757945号明細書
特許第2901387号明細書
特表2003-518921号公報
Ito et al. J. Gen. Appl. Microbiol. 48, 135 (2002)
Kitamoto et al. Appl. Microbiol. Biotechnol. 50, 85 (1998)
Tsuchiya et al. Biosci. Biotechnol. Biochem. 56, 1849 (1992)
Minetoki et al. Curr. Genet. 30, 432 (1996)
Hisada et al. Biosci. Biotechnol. Biochem. 72, 48 (2008)
本発明は、麹菌のアルカリプロテアーゼ遺伝子上流領域の長さとプロモーター活性の強さの関係を明らかにし、強力なプロモーターを提供することを目的とする。
本発明者は、上記課題について鋭意検討を重ねた結果、麹菌の染色体上のアルカリプロテアーゼ遺伝子上流の一部の領域を遺伝子操作で欠損させ、遺伝子操作をしていない本来の上流領域とのプロモーター活性の比較を行うことにより、該遺伝子の翻訳開始位置より上流約2.5kbに亘る領域が元の上流領域全体と同程度のプロモーター活性を示すことを明らかにし、さらに、このような上流領域をプロモーターとして用いてタンパク質発現ができることを明らかにし、本発明を完成した。
すなわち、本発明は以下の各態様に係るものである。
[態様1]
麹菌のアルカリプロテアーゼ遺伝子上流領域であって1.1kbより長く2.5kb以下の長さを有するアルカリプロテアーゼプロモーター。
[態様2]
麹菌のアルカリプロテアーゼ遺伝子上流領域2.5kbから成る、請求項1記載のアルカリプロテアーゼプロモーター。
[態様3]
麹菌のアルカリプロテアーゼ遺伝子の一部が置換又は欠損している、請求項1又は2記載のアルカリプロテアーゼプロモーター。
[態様4]
麹菌がアスペルギルス・ソーヤ又はアスペルギルス・オリゼである、態様1~3のいずれか一項に記載のアルカリプロテアーゼプロモーター。
[態様5]
態様1~4のいずれか一項に記載のアルカリプロテアーゼプロモーターを含む遺伝子発現用ユニット。
「態様6]
態様5記載の遺伝子発現用ユニットを含む、相同組換え用カセット。
[態様7]
態様1~4のいずれか一項に記載のアルカリプロテアーゼプロモーターを宿主微生物のゲノム遺伝子中に導入して成る形質転換微生物。
[態様8]
宿主微生物がアスペルギルス・ソーヤ又はアスペルギルス・オリゼである、態様7記載の形質転換微生物。
[態様9]
宿主微生物が非相同組換えに関与する遺伝子が破壊された株である、態様8記載の形質転換微生物。
[態様10]
態様5記載の遺伝子発現用ユニット又は態様6記載の相同組換え用カセットを用いて宿主微生物を形質転換することを含む、態様7~9のいずれか一項に記載の質転換微生物の作製方法。
[態様11]
態様7~9のいずれか一項に記載の形質転換微生物を培地に培養し、組み込まれた発現対象遺伝子を発現させ、発現したタンパク質を培養物より採取することを含む、タンパク質の製造法。
[態様1]
麹菌のアルカリプロテアーゼ遺伝子上流領域であって1.1kbより長く2.5kb以下の長さを有するアルカリプロテアーゼプロモーター。
[態様2]
麹菌のアルカリプロテアーゼ遺伝子上流領域2.5kbから成る、請求項1記載のアルカリプロテアーゼプロモーター。
[態様3]
麹菌のアルカリプロテアーゼ遺伝子の一部が置換又は欠損している、請求項1又は2記載のアルカリプロテアーゼプロモーター。
[態様4]
麹菌がアスペルギルス・ソーヤ又はアスペルギルス・オリゼである、態様1~3のいずれか一項に記載のアルカリプロテアーゼプロモーター。
[態様5]
態様1~4のいずれか一項に記載のアルカリプロテアーゼプロモーターを含む遺伝子発現用ユニット。
「態様6]
態様5記載の遺伝子発現用ユニットを含む、相同組換え用カセット。
[態様7]
態様1~4のいずれか一項に記載のアルカリプロテアーゼプロモーターを宿主微生物のゲノム遺伝子中に導入して成る形質転換微生物。
[態様8]
宿主微生物がアスペルギルス・ソーヤ又はアスペルギルス・オリゼである、態様7記載の形質転換微生物。
[態様9]
宿主微生物が非相同組換えに関与する遺伝子が破壊された株である、態様8記載の形質転換微生物。
[態様10]
態様5記載の遺伝子発現用ユニット又は態様6記載の相同組換え用カセットを用いて宿主微生物を形質転換することを含む、態様7~9のいずれか一項に記載の質転換微生物の作製方法。
[態様11]
態様7~9のいずれか一項に記載の形質転換微生物を培地に培養し、組み込まれた発現対象遺伝子を発現させ、発現したタンパク質を培養物より採取することを含む、タンパク質の製造法。
麹菌のアルカリプロテアーゼ遺伝子の翻訳開始位置より2.5kbに亘る上流の一部の領域が元の上流領域全体と同程度の強力なプロモーター活性を示すことが明らかとなり、このような上流領域2.5kbをプロモーターとして用いてタンパク質発現ができることが示された。
麹菌のアルカリプロテアーゼ遺伝子上流領域(アルカリプロテアーゼプロモーター)は、有用なタンパク質等を高発現させるためのプロモーターとして用いることができる。ここで、「アルカリプロテアーゼ遺伝子上流領域」とは、該遺伝子の翻訳開始位置の5′側上流に隣接する領域を意味する。
高発現が可能なプロモーターとして用いるためには、アルカリプロテアーゼ遺伝子の上流領域約1.1kbより長い領域、例えば、1.5kb以上の長さの領域を用いることが望ましい。このような麹菌のアルカリプロテアーゼ遺伝子上流領域として、例えば、本明細書の実施例2において作製した各カセットに含まれる領域を挙げることができる。特に、アルカリプロテアーゼ遺伝子上流領域約2.5kbから成るアルカリプロテアーゼプロモーターが好ましく、そのようなプロモーターを利用することによって発現対象遺伝子を最も強く発現させることができる。アスペルギルス・ソーヤ由来のアルカリプロテアーゼ遺伝子上流領域約2.5kbから成るアルカリプロテアーゼプロモーターのヌクレオチド配列を配列番号1で示す。さらに、プロモーターとして機能する限りにおいて、上記プロモーターにおいてアルカリプロテアーゼ遺伝子の一部、例えば、翻訳開始位置に近い側の領域の一部が置換又は欠損していても構わない。
本発明のアルカリプロテアーゼ遺伝子上流領域をゲノムに元来含む麹菌の種類に特に制限はないが、アスペルギルス・ソーヤ、アスペルギルス・アワモリ、アスペルギルス・タマリ、アスペルギルス・ウサミ、アスペルギルス・オリゼ、アスペルギルス・カワチ、及びアスペルギルス・サイトイ等のアスペルギルス属に属する麹菌が好ましい。
形質転換に用いる麹菌宿主に関しても特に制限はないが、アスペルギルス・ソーヤ及びアスペルギルス・オリゼ等のアスペルギルス属に属する麹菌が好ましい。さらに、相同組み換えにより染色体の特定の部位にDNA断片を導入する場合は、非相同組換えに関与する遺伝子が破壊されて相同組み換え効率が高くなった株、例えば、ku70遺伝子破壊株、ku80遺伝子破壊株、lig4遺伝子破壊株等を用いることが望ましい。
上記遺伝子破壊株を用いることにより、効率良く相同組み換えを行うことができる(Takahashi et al. Mol. Genet. Genomics 275, 460 (2006)、Mizutani et al. Fungal Genet. Biol. 45, 878(2008)参照)。
麹菌ku70遺伝子破壊株として、例えば、アスペルギルス・ソーヤ ASKUPTR8株(ΔpyrG、ku70::ptrA)(Takahashi et al. Mol. Genet. Genomics 275, 460(2006)、特開2007-222055号公報参照)を用いることができる。
アスペルギルス・ソーヤASKUPTR8株は、独立行政法人産業技術総合研究所 特許生物寄託センターに平成16年12月2日付で寄託され、受領番号FERM P-20311が付され、その後、平成17年11月17日付で、特許手続上の微生物の寄託等の国際的承認に関するブタペスト条約に基づく国際寄託に移管され、受託番号FERM BP-10453が付与されている。
麹菌のアルカリプロテアーゼ遺伝子上流領域は当業者に公知の任意の方法、例えば、PCRで取得することができる。後述の形質転換用カセット構築の過程も含め、PCRに用いる酵素は、正確性の高いものが望ましい。このような酵素として、例えば、実施例で用いたKOD-Plus-DNA Polymerase(東洋紡績社製)が挙げられる。
PCRの装置に特に制限はなく、例えば、実施例で用いたGeneAmp 5700 DNA Detection System (Perkin Elmer社製)が挙げられる。
PCRの鋳型となる麹菌染色体DNAは、当業者に公知の任意の方法、例えば、以下の方法により抽出することができる。150ml容量の三角フラスコにポリペプトンデキストリン培地(1%ポリペプトン、2%デキストリン、0.5%KH2PO4、0.1%NaNO3、0.05%MgSO4・7H20、0.1%カザミノ酸、pH6.0)30mlを調製し、麹菌の分生子を接種して30℃で一晩振とう培養する。培養液からろ過により菌体を回収し、ペーパータオルに挟んで水分を除き、予め液体窒素で冷却した乳鉢と乳棒を用いて液体窒素で冷却しながら菌体を粉砕し、Wizard Genomic DNA Purification Kit(プロメガ社製)を用いて粉砕菌体から染色体DNAを抽出することができる。
具体的な染色体DNA抽出方法は、Wizard Genomic DNA Purification Kit(プロメガ社製)のプロトコールを参照することができる。アルカリプロテアーゼ遺伝子上流領域をPCRで増幅するためのプライマーとして、実施例に示すプライマーの中から適切なものを選んで用いることができる。あるいは、本発明で開示したアスペルギルス・ソーヤのアルカリプロテアーゼ遺伝子上流領域の配列をもとに、適切なプライマーを設計して用いることができる。
アスペルギルス・オリゼRIB40株の全ゲノム情報は、独立行政法人製品評価技術基盤機構のゲノム情報データベース(NBRC 100959)において公開されており、この配列情報をもとに、適切なプライマーを設計して用いることができる。
発現対象遺伝子にコードされる所望のタンパク質等は、本発明のアルカリプロテアーゼ遺伝子上流領域を用いて、当業者に公知の任意の方法に従い発現させることができる。例えば、アルカリプロテアーゼ遺伝子上流領域-発現対象遺伝子-ターミネーターがこの順につながって構成される、遺伝子発現用ユニット(発現ユニット)の形で用いることができる。ターミネーターとしては発現対象遺伝子の下流領域を用いることができる。この他に、当業者に公知の任意のターミネーター、例えば、アルカリプロテアーゼ遺伝子の下流領域やα-アミラーゼ遺伝子の下流領域をターミネーターとして用いることができる。
発現ユニットは麹菌染色体に導入して用いることが好ましいが、この他の方法として、自律複製型のベクター(Ozeki et al. Biosci. Biotechnol. Biochem. 59, 1133 (1995)参照)上に発現ユニットを構築し、染色体に導入しない形で用いることもできる。
発現ユニットを麹菌染色体に導入するに当たり、導入する染色体の部位を問わない場合は、発現ユニットと適切な形質転換マーカー遺伝子とを用いて麹菌を形質転換することにより、麹菌の染色体に導入することができる。発現ユニットと形質転換マーカー遺伝子は連結されている方が望ましいが、連結されていない場合は、コトランスフォーメーションで導入することができる。
発現ユニットを麹菌染色体の特定の部位へ導入する場合は、相同組換えによりこれを行うことができる。このためには、発現ユニットと形質転換マーカー遺伝子を連結したものの一方の端に、導入する部位より上流側で宿主染色体と相同組換えを起こすためのDNA断片をつなぎ、もう一方の端に、導入する部位より下流側で宿主染色体と相同組換えを起こすためのDNA断片をつないでおく必要がある。このようなDNA断片から構成される相同組換え用カセットで形質転換を行い、両端に設けたそれぞれのDNA断片が染色体上の該当配列と相同組換えを起こすと、目的の部位に発現ユニットが導入された形質転換体が得られる。
上記の形質転換に用いるカセットにおいて発現ユニットが完全な形をとっていなくても、染色体上の配列を利用することにより最終的に完全な発現ユニットが麹菌染色体上に構築されるように、発現ユニットの一部をカセット中に構築してこれを導入する方法も用いることができる。例えば、染色体上の発現対象遺伝子のすぐ上流にアルカリプロテアーゼ遺伝子上流領域を導入する場合は、発現対象遺伝子の上流領域-形質転換マーカー遺伝子-アルカリプロテアーゼ遺伝子上流領域-発現対象遺伝子(あるいはその一部)の、4種のDNA断片から成るカセットを構築する。このカセットで麹菌を形質転換し、両端のDNA断片がそれぞれ染色体と相同組み換えを起こすと、アルカリプロテアーゼ遺伝子上流領域-発現対象遺伝子-発現対象遺伝子のターミネーターから成る完全な発現ユニットが染色体上に構築される。
ターミネーターとして、例えば、α-アミラーゼ(以下アミラーゼという)遺伝子下流領域を用いる場合、染色体上のアミラーゼ遺伝子下流領域を利用する形で発現ユニットを構築することができる。このためのカセットとして、アミラーゼ遺伝子上流領域-形質転換マーカー遺伝子-アルカリプロテアーゼ遺伝子上流領域-発現対象遺伝子-アミラーゼ遺伝子下流領域の、5種のDNA断片がこの順につながったものを構築すればよい。このうち、アミラーゼ遺伝子上流領域とアミラーゼ遺伝子下流領域はそれぞれ相同組み換えのためのDNA断片として機能する。
一つながりのカセットとしての構築が困難な場合は、上流側カセットと下流側カセットに分割して構築することができる。この場合、分割部分の少なくとも0.5kb以上に亘る配列を上流側カセットと下流側カセットが互いに共通に持つように構築する必要がある。
例えば、上記の染色体上のアミラーゼ遺伝子下流領域を利用する形で発現ユニットを構築するための形質転換用カセットを分割して構築する場合、アミラーゼ遺伝子上流領域-形質転換マーカー遺伝子-アルカリプロテアーゼ遺伝子上流領域から成る上流側カセット、及び、アルカリプロテアーゼ遺伝子上流領域-発現対象遺伝子-アミラーゼ遺伝子下流領域から成る下流側カセットの、2種のカセットをそれぞれ構築する。両カセットはアルカリプロテアーゼ遺伝子上流領域を共通領域として持つ。分割したカセットを用いて形質転換する場合は、分割したカセットが互いにほぼ等モル量になるように用いればよい。上流側カセット中の最上流のDNA断片と染色体との相同組換え、下流側カセット中の最下流のDNA断片と染色体との相同組換え、両カセット間での共通領域を介した相同組換えの、計3か所での相同組換えが起きた場合に、発現ユニットが染色体上に構築された目的の株が得られる。
カセットを構築するためのDNA断片の取得とDNA断片の連結は、当業者に公知の任意の方法、例えば、YuらがFungal Genet. Biol. 41, 973 (2004)で報告したdouble-joint PCR法で行うことができる。この方法では3段階のPCRを行う。まず、各DNA断片をPCRで増幅する。この際に用いるプライマーのうち、DNA断片を連結させる側のプライマーについては、プライマーの5‘末端に、連結させるDNA断片の末端の相補配列を20~60merの長さの範囲で付加した形のものを用いる必要がある。この付加配列は、連結させるDNA断片同士の少なくともいずれか一方に設ければよい。
次に、得られたそれぞれのDNA断片を混合してPCRを行うことにより、各DNA断片を連結させる。最後に、得られた反応液を鋳型に、最上流のDNA断片中に設けたフォワードプライマーと最下流のDNA断片中に設けたリバースプライマーとを用いてnested PCR、あるいはhemi-nested PCRを行うことにより、目的のカセットを増幅することができる。
カセットを構築する他の方法として、大腸菌あるいはサッカロマイセス酵母等において複製するようなベクターにDNA断片を順次、あるいは一度にクローニングすることでカセットを構築することができる(Jones et al. BioTechniques 10, 62 (1991)、Izasa et al. BioTechniques 40, 79 (2006)参照)。麹菌の形質転換に用いる際には、構築したベクターをそのまま、あるいはベクターからカセットを含む領域を適切な制限酵素で切り出してから用いることができる。あるいは、構築したベクターを鋳型として、カセットを含む領域をPCRで増幅したものを用いることができる。
こうして得られた遺伝子発現用ユニット又は相同組換え用カセットを用いて、当業者に公知の任意の方法で宿主微生物を形質転換し、本発明の形質転換微生物を作製することができる。さらに、こうして得られた形質転換微生物を培地に培養し、組み込まれた発現対象遺伝子を発現させ、発現したタンパク質を培養物より採取することによって、所望のタンパク質を製造することができる。
麹菌の形質転換は、例えば、特開2007-222055号公報に記載の方法に従い、麹菌宿主のプロトプラストを調製し、プロトプラストPEG法により形質転換を行うことができる。形質転換体を再生させるための培地は、用いる麹菌宿主と形質転換マーカー遺伝子に応じて適切なものを用いる。例えば、麹菌宿主としてアスペルギルス・ソーヤ ASKUPTR8株を用い、形質転換マーカー遺伝子としてpyrG遺伝子を用いた場合は、形質転換体の再生は、例えば、0.5%寒天、1.2Mソルビトールを含むCzapek-Dox最少培地(Difco社製)で行うことができる。
適切な相同組み換え体が取得できたかどうかの確認は、形質転換体から染色体DNAを抽出し、これを鋳型としてPCRを行い、相同組み換えが起きた場合に増幅が可能なPCR産物が生じることを確認することにより行うことができる。
例えば、用いたカセットより上流に位置するフォワードプライマーと、新たに導入したDNA断片(例えば、形質転換マーカー遺伝子)中に位置するリバースプライマーとの組み合わせでPCRを行い、想定の長さの産物が生じることを確認する。
さらに、新たに導入したDNA断片(例えば形質転換マーカー遺伝子)中に位置するフォワードプライマーと、用いたカセットより下流に位置するリバースプライマーとの組み合わせでPCRを行い、想定の長さの産物が生じることを確認する。
さらに、可能な場合には、用いたカセットより上流に位置するフォワードプライマーと、用いたカセットより下流に位置するリバースプライマーとの組み合わせでPCRを行い、相同組み換えが起きた場合に想定される長さの産物が生じることを確認することが好ましい。
分割したカセットを用いて形質転換した場合は、上記の確認に加え、さらに、カセット間で適切な相同組み換えが起きていることの確認を行うことが好ましい。この確認は、上流側カセット中(ただし、下流側カセットとの共通領域は除く)に位置するフォワードプライマーと、下流側カセット中(ただし、上流側カセットとの共通領域は除く)に位置するリバースプライマーとの組み合わせでPCRを行い、想定の長さの産物が生じることを確認することにより行うことができる。
発現ユニットが導入、あるいは構築された本発明の形質転換微生物である麹菌を培養することにより、発現対象のタンパク質を発現させる場合には、アルカリプロテアーゼが十分に発現するような培地を用いることが好ましい。
このような培地として、例えば、ふすま培地が挙げられる。ふすま培地は、例えば、150ml容量の三角フラスコに小麦ふすま(精選ふすま、日清製粉社製)2.78g及び蒸留水2.22mlを入れて混合し、綿栓をしてから、121℃で50分間オートクレーブ処理することで調製することができる。
ふすま培地での麹菌の培養は、ふすま培地に麹菌の分生子を接種し、30℃で24時間放置した後、三角フラスコを激しく振盪して内容物を小さい粒子に砕き、30℃でさらに48時間放置して菌体を生育させることにより、行うことができる。このようにして得たふすま麹から、発現対象のタンパク質の性質に応じた適切な方法で、タンパク質を抽出する。
発現対象のタンパク質が菌体外に分泌されるようなタンパク質である場合は、例えば、ふすま麹に蒸留水を加えて激しく撹拌し、室温で約3時間放置してからろ紙でろ過することにより、発現対象のタンパク質を抽出することができる。
発現対象のタンパク質が菌体内に局在するようなタンパク質である場合は、例えば、組成が20mM Tris-HCl、pH7.5、40mM KCl、2.5%グリセロールであるような緩衝液をふすま麹に加え、ポリトロンホモジナイザーPT3000(KINEMATICA社製)等の破砕装置を用いて氷冷しながら間欠運転で破砕し、得られた破砕液を遠心分離して上澄を回収することにより、発現対象のタンパク質を抽出することができる。
プロテアーゼ阻害剤が発現対象のタンパク質の機能に影響を及ぼさない場合は、抽出操作の際にフェニルメチルスルホニルフルオリド等のプロテアーゼ阻害剤を添加することにより、麹菌のプロテアーゼによる発現対象タンパク質の分解を防ぐことができる。得られた抽出液について、発現対象のタンパク質の機能に応じて酵素活性測定等の適切な方法により試験を行い、発現対象のタンパク質が発現していることを確認することができる。
発現対象のタンパク質は、必要に応じて、カラムクロマトグラフィー等で精製することができる。
アルカリプロテアーゼ遺伝子上流領域を用いて発現対象のタンパク質を発現する麹菌は、例えば、グルテン等のタンパク質原料を麹で分解して得るような、調味液の製造に用いることができる。発現対象のタンパク質がタンパク質やペプチドの分解に携わる酵素である場合は、アルカリプロテアーゼと発現対象のタンパク質が共存することにより、原料の分解がより促進され、窒素やアミノ酸がより多い調味液を得ることができる。
発現対象のタンパク質がグルタミナーゼである場合は、グルタミンのグルタミン酸への変換が促進されることにより、より旨味の強い調味液を得ることができる。
発現対象のタンパク質がセルラーゼ等の細胞壁分解に携わる酵素である場合は、原料に含まれる細胞壁成分の分解が促進されることにより、調味液製造の際に生じる残渣を低減させることができる。
以下、実施例に則して本発明を具体的に説明するが、本発明の技術的範囲はこれらの記載によって何等制限されるものではない。
なお、実施例では、形質転換の麹菌宿主として、アスペルギルス・ソーヤASKUPTR8株を用いた。形質転換マーカー遺伝子として、pyrG遺伝子を用いた。形質転換に用いるカセットの構築はdouble-joint PCR法で行った。PCRの酵素として、KOD-Plus-DNA Polymerase (東洋紡績社製)を用い、反応液の組成は添付の取扱説明書に従った。PCRの装置として、GeneAmp 5700 DNA Detection System (Perkin Elmer社製)を用いた。PCR産物の精製には、QIAquick PCR purification kit(キアゲン社製)を添付の取扱説明書に従って用いた。実施例でPCRに用いたプライマーの一覧を表7に示した。調製したPCR産物の一覧を表8に示した。構築したカセットの一覧を表9に示した。
<アルカリプロテアーゼプロモーターの強さの検討>
・プロモーター導入株の作製
アスペルギルス・ソーヤ染色体のアルカリプロテアーゼ遺伝子のすぐ上流に、各種プロモーターを相同組換えで導入することにより、導入したプロモーターの支配下でアルカリプロテアーゼが発現する株を作製した。
・プロモーター導入株の作製
アスペルギルス・ソーヤ染色体のアルカリプロテアーゼ遺伝子のすぐ上流に、各種プロモーターを相同組換えで導入することにより、導入したプロモーターの支配下でアルカリプロテアーゼが発現する株を作製した。
プロモーターを導入するためのカセットは、アルカリプロテアーゼ遺伝子上流領域-pyrG遺伝子から成る上流側カセットと、pyrG遺伝子-導入するプロモーター-アルカリプロテアーゼ遺伝子の一部、から成る下流側カセットに分割して、それぞれ構築した。両カセットはpyrG遺伝子を共通に持つ。下流側カセットは、用いるプロモーター毎に作製した。上流側カセットと下流側カセットを混ぜて麹菌宿主を形質転換した際に、上流側カセット中のアルカリプロテアーゼ遺伝子上流領域と染色体との相同組換え、下流側カセット中のアルカリプロテアーゼ遺伝子領域と染色体との相同組換え、両カセット間での共通領域を介した相同組換えの、計3か所での相同組換えが起きると、プロモーターが導入された目的の株が得られる(図1)。
導入するプロモーターとして、以下のものを用いた。
アスペルギルス・オリゼの翻訳伸長因子(TEF1)のプロモーター(Kitamoto et al. Appl. Microbiol. Biotechnol. 50, 85 (1998)参照)に相当するアスペルギルス・ソーヤの配列を、TEF1プロモーターとして用いた。
アスペルギルス・オリゼのアミラーゼプロモーター(特許3005618号、Tsuchiya et al. Biosci. Biotechnol. Biochem. 56,1849(1992)参照)に相当するアスペルギルス・ソーヤの配列を、アミラーゼプロモーターとして用いた。
アスペルギルス・オリゼのグリセルアルデヒド三リン酸デヒドロゲナーゼ(GPD)のプロモーター(特許第2995770号明細書参照)に相当するアスペルギルス・ソーヤの配列を、GPDプロモーターとして用いた。
アスペルギルス・ソーヤ ATCC42251株の染色体DNAを鋳型とし、プライマーAlp_-2513FとプライマーAlp_-1R_Pを用いて、94℃で2分、(94℃で15秒、65℃で30秒、68℃で3分)×30サイクルでPCRを行い、表8に示した産物1を得た(下流側末端には、次に調製する産物2をPCRで連結するための配列が設けてある)。
以下同様に、表7に示したプライマーを用いてPCRを行い、表8に示した産物2~6を得た。得られたPCR産物をそれぞれ精製した。
産物1と産物2を混合して、94℃で2分、(94℃で15秒、56℃で5分、68℃で5分)×15サイクルでPCRを行った後、この反応液を鋳型とし、プライマーAlp_-1990FとプライマーPyrG_1431Rを用いてPCRを行い、アルカリプロテアーゼ遺伝子上流領域-pyrG遺伝子から成る、カセット1を得た。以下、表9に示した産物の組み合わせ、及びプライマーの組み合わせでカセットの作製を同様に行い、カセット2~カセット4を得た。
カセット1とカセット2を用いて麹菌宿主を形質転換し、得られた形質転換体の中から、相同組み換えによりTEF1プロモーターがアルカリプロテアーゼ遺伝子の上流に導入された形質転換体を、PCRにより選抜した。このうちの1株をWhPtefAlp_4株とした。
同様に、カセット1とカセット3を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子の上流にアミラーゼプロモーターが導入された形質転換体を選抜した。このうちの1株をWhPamyAlp_3株とした。
同様に、カセット1とカセット4を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子の上流にGPDプロモーターが導入された形質転換体を選抜した。このうちの1株をWhPgpdAlp_6株とした。
アルカリプロテアーゼ遺伝子の上流領域が遺伝子操作されていないコントロール株は、産物2(pyrG遺伝子)で麹菌宿主を形質転換することにより得た。このうちの1株をWhKuP3株とした。
・プロモーター導入株のプロテアーゼ活性
作製した各プロモーター導入株を培養してプロテアーゼ活性を測定することにより、プロモーター活性の指標とした。アルカリプロテアーゼ遺伝子の上流領域が遺伝子操作されていない株についても同様に行い、アルカリプロテアーゼプロモーターの活性の指標とした。
作製した各プロモーター導入株を培養してプロテアーゼ活性を測定することにより、プロモーター活性の指標とした。アルカリプロテアーゼ遺伝子の上流領域が遺伝子操作されていない株についても同様に行い、アルカリプロテアーゼプロモーターの活性の指標とした。
各プロモーター導入株、及びコントロールのWhKuP3株を、150ml容量の三角フラスコに調製したふすま培地でそれぞれ培養し、得られたふすま麹に蒸留水を50ml加えて激しく撹拌し、室温で3時間放置してからNo.2ろ紙(アドバンテック社製)でろ過することにより、抽出液を得た。pH7.0でのミルクカゼイン基質に対する抽出液のプロテアーゼ活性を、しょうゆ試験法(財団法人日本醤油研究所編)記載の方法に従って測定し、WhKuP3株のプロテアーゼ活性を1としたときの各プロモーター導入株の相対活性値を表1に示す。TEF1プロモーター導入株であるWhPtefAlp_4株はコントロールのWhKuP3株と同程度の活性を示し、GPDプロモーター導入株であるWhPgpdAlp_6株、及びアミラーゼプロモーター導入株であるWhPamyAlp_3株の活性はこれには及ばなかった。ふすま培地での培養において、アルカリプロテアーゼプロモーターはTEF1プロモーターに匹敵する強さを持つことが判明した。
別の培地として、150 ml容量の三角フラスコに2%デキストリン及び1%K2HPO4から成る溶液を20 ml、及び大豆粉(パフミン、キッコーマン社製)を0.3 g入れてオートクレーブ滅菌したものを調製した。これに各プロモーター導入株、或いはWhKuP3株の分生子を2×107個接種した。30℃で4日間振とう培養した後、培養液をNo. 2ろ紙でろ過して通過液を得た。
得られた通過液のプロテアーゼ活性を測定し、WhKuP3株のプロテアーゼ活性を1としたときの各プロモーター導入株の相対活性値を表2に示す。
TEF1プロモーター導入株であるWhPtefAlp_4株はコントロールのWhKuP3株よりもやや強い活性を示した。GPDプロモーター導入株であるWhPgpdAlp_6株はWhKuP3株と同程度の活性を示した。アミラーゼプロモーター導入株であるWhPamyAlp_3株は他の株に比べて弱い活性を示した。上記組成の培地での培養において、アルカリプロテアーゼプロモーターの強さはGPDプロモーターの強さに匹敵することが判明した。
<アルカリプロテアーゼプロモーターの長さの検討>
・アルカリプロテアーゼ遺伝子上流領域欠損株の作製
アスペルギルス・ソーヤ染色体上のアルカリプロテアーゼ遺伝子の上流2.5kbの領域内を上流側から段階的に欠損した一連の株を作製した。このためのカセットは、アルカリプロテアーゼ遺伝子の上流2.5~3.5kbに亘る領域-pyrG遺伝子-欠損させる領域の下流側の領域、の3種のDNA断片から成り、両端のDNA断片がそれぞれ宿主染色体と相同組換えを起こした場合に、pyrG遺伝子が導入されると共にアルカリプロテアーゼ遺伝子上流の特定の領域が欠損する(図2)。
・アルカリプロテアーゼ遺伝子上流領域欠損株の作製
アスペルギルス・ソーヤ染色体上のアルカリプロテアーゼ遺伝子の上流2.5kbの領域内を上流側から段階的に欠損した一連の株を作製した。このためのカセットは、アルカリプロテアーゼ遺伝子の上流2.5~3.5kbに亘る領域-pyrG遺伝子-欠損させる領域の下流側の領域、の3種のDNA断片から成り、両端のDNA断片がそれぞれ宿主染色体と相同組換えを起こした場合に、pyrG遺伝子が導入されると共にアルカリプロテアーゼ遺伝子上流の特定の領域が欠損する(図2)。
実施例1と同様に、アスペルギルス・ソーヤ ATCC42251株の染色体DNAを鋳型とし、表7に示したプライマーを用いてPCRを行い、表8に示した産物2、及び産物7~産物13を得た。得られたPCR産物をそれぞれ精製し、実施例1と同様に、表9に示した産物の組み合わせ、及びプライマーの組み合わせでカセットの作製を行い、カセット5~カセット10を得た。
カセット5を用いて麹菌宿主を形質転換し、得られた形質転換体の中から、相同組み換えによりアルカリプロテアーゼ遺伝子の上流2.5 kbの位置にpyrG遺伝子が挿入された、すなわち上流領域の長さが2.5kbである形質転換体を選抜した。このうちの1株をWhAlpU2.5k_1株とした。
同様に、カセット6を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子の上流2.5~2.0kbに亘る領域がpyrG遺伝子で置換された、すなわち、上流領域の長さが2.0kbである形質転換体を選抜した。このうちの1株をWhAlpU2.0k_1株とした。
同様に、カセット7を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子上流領域の長さが1.5kbである形質転換体を選抜した。このうちの1株をWhAlpU1.5k_1株とした。
同様に、カセット8を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子上流領域の長さが1.0kbである形質転換体を選抜した。このうちの1株をWhAlpU1.0k_7株とした。
同様に、カセット9を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子上流領域の長さが0.7kbである形質転換体を選抜した。このうちの1株をWhAlpU0.7k_2株とした。
同様に、カセット10を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子上流領域の長さが0.0kbである形質転換体を選抜した。このうちの1株をWhAlpU0.0k_1株とした。
・アルカリプロテアーゼ遺伝子上流領域欠損株のプロテアーゼ活性
作製したそれぞれのアルカリプロテアーゼ遺伝子上流領域欠損株を培養してプロテアーゼ活性を測定することにより、プロモーター活性の指標とした。
作製したそれぞれのアルカリプロテアーゼ遺伝子上流領域欠損株を培養してプロテアーゼ活性を測定することにより、プロモーター活性の指標とした。
作製したそれぞれのアルカリプロテアーゼ遺伝子上流領域欠損株、及び、上流領域を遺伝子操作していないコントロールのWhKuP3株について、実施例1と同様にふすま麹を調製し、抽出液を調製してプロテアーゼ活性を測定した。WhKuP3株のプロテアーゼ活性を1としたときの各アルカリプロテアーゼ遺伝子上流領域欠損株の相対活性値を表3に示す。
上流領域の長さが2.5 kbであるWhAlpU2.5k_1株は、コントロールのWhKuP3株と比べて全く遜色の無いプロテアーゼ活性を示した。上流領域の長さが2.0 kbであるWhAlpU2.0k_1株、1.5 kbであるWhAlpU1.5k_1株は、WhKuP3株と比べてそれぞれ7割弱、4割弱の活性を示した。上流領域の長さが1.0 kb以下である3種の株は、互いに同程度の低い活性を示した。
WhAlpU0.0k_1株が示す活性は、今回対象としたアルカリプロテアーゼ以外の酵素に由来する活性であると考えられ、この分の活性を差し引いて比較すると、上流領域の長さが2.0 kb、1.5 kbの場合は、操作していない本来の上流領域と比べて、それぞれ、6割、3割弱のプロモーター活性を有し、1.0 kbの場合は本来の約1%の活性しか有していないことになる。
上流領域の長さが2.5 kbであるWhAlpU2.5k_1株は、コントロールのWhKuP3株と比べて全く遜色の無いプロテアーゼ活性を示した。上流領域の長さが2.0 kbであるWhAlpU2.0k_1株、1.5 kbであるWhAlpU1.5k_1株は、WhKuP3株と比べてそれぞれ7割弱、4割弱の活性を示した。上流領域の長さが1.0 kb以下である3種の株は、互いに同程度の低い活性を示した。
WhAlpU0.0k_1株が示す活性は、今回対象としたアルカリプロテアーゼ以外の酵素に由来する活性であると考えられ、この分の活性を差し引いて比較すると、上流領域の長さが2.0 kb、1.5 kbの場合は、操作していない本来の上流領域と比べて、それぞれ、6割、3割弱のプロモーター活性を有し、1.0 kbの場合は本来の約1%の活性しか有していないことになる。
150 ml容量の三角フラスコに1%KH2PO4溶液を20 ml、及び小麦ふすまを0.2 g入れてオートクレーブ滅菌したものを調製した。これに各アルカリプロテアーゼ遺伝子上流領域欠損株、或いはWhKuP3株の分生子を2×107個接種した。30℃で4日間振とう培養した後、培養液をNo. 2ろ紙でろ過して通過液を得た。得られた通過液のプロテアーゼ活性を測定し、WhKuP3株のプロテアーゼ活性を1としたときの各プロモーター導入株の相対活性値を表4に示す。
上流領域の長さが2.5 kbであるWhAlpU2.5k_1株は、コントロールのWhKuP3株と比べて全く遜色の無いプロテアーゼ活性を示した。上流領域の長さが2.0 kbであるWhAlpU2.0k_1株、1.5 kbであるWhAlpU1.5k_1株は、WhKuP3株と比べてそれぞれ4割弱、3割弱の活性を示した。上流領域の長さが1.0 kb以下である3種の株は、互いに同程度の低い活性を示した。WhAlpU0.0k_1株が示す活性は、今回対象としたアルカリプロテアーゼ以外の酵素に由来する活性であると考えられ、この分の活性を差し引いて比較すると、上流領域の長さが2.0 kb、1.5 kbの場合、操作していない本来の上流領域と比べて、それぞれ、2割強、1割のプロモーター活性を有し、1.0 kbの場合は本来の約1%の活性しか有していないことになる。
以上の結果から、2.5 kbの長さのアルカリプロテアーゼ遺伝子上流領域は、プロモーターとして、領域を限定しない本来の場合と同等の強さを発揮することが判明した。上流領域が短くなるに従ってプロモーター活性は弱くなり、1.0 kb以下の長さではプロモーターとしてほとんど機能しないことが判明した。
<アルカリプロテアーゼプロモーターを用いたタンパク質の発現>
・プロリダーゼ発現株の作製
アルカリプロテアーゼ遺伝子上流領域2.5 kbをプロモーターとして用い、プロリダーゼを発現する株を作製した。ターミネーターとして染色体上のアミラーゼ遺伝子下流領域を用いた。このためのカセットはアミラーゼ遺伝子上流領域-pyrG遺伝子-アルカリプロテアーゼ遺伝子上流領域から成る上流側カセットと、アルカリプロテアーゼ遺伝子上流領域-プロリダーゼ遺伝子-アミラーゼ遺伝子下流領域から成る下流側カセットに分割して、それぞれ構築した。両カセットはアルカリプロテアーゼ遺伝子上流領域を共通に持つ。上流側カセットと下流側カセットを混ぜて麹菌宿主を形質転換した際に、上流側カセット中のアミラーゼ遺伝子上流領域と染色体との相同組換え、下流側カセット中のアミラーゼ遺伝子下流領域と染色体との相同組換え、両カセット間での共通領域を介した相同組換えの、計3か所での相同組換えが起きると、発現ユニットが構築された目的の株が得られる。なお、アミラーゼ遺伝子は脱落する(図3)。
・プロリダーゼ発現株の作製
アルカリプロテアーゼ遺伝子上流領域2.5 kbをプロモーターとして用い、プロリダーゼを発現する株を作製した。ターミネーターとして染色体上のアミラーゼ遺伝子下流領域を用いた。このためのカセットはアミラーゼ遺伝子上流領域-pyrG遺伝子-アルカリプロテアーゼ遺伝子上流領域から成る上流側カセットと、アルカリプロテアーゼ遺伝子上流領域-プロリダーゼ遺伝子-アミラーゼ遺伝子下流領域から成る下流側カセットに分割して、それぞれ構築した。両カセットはアルカリプロテアーゼ遺伝子上流領域を共通に持つ。上流側カセットと下流側カセットを混ぜて麹菌宿主を形質転換した際に、上流側カセット中のアミラーゼ遺伝子上流領域と染色体との相同組換え、下流側カセット中のアミラーゼ遺伝子下流領域と染色体との相同組換え、両カセット間での共通領域を介した相同組換えの、計3か所での相同組換えが起きると、発現ユニットが構築された目的の株が得られる。なお、アミラーゼ遺伝子は脱落する(図3)。
発現対象のプロリダーゼ遺伝子として、特開2003-250580号公報に記載のアスペルギルス・オリゼのプロリダーゼ遺伝子に相当する、アスペルギルス・ソーヤの遺伝子(proAとし、コードするタンパク質をプロリダーゼAとする)を用いた。これとは異なるプロリダーゼ遺伝子として、特許4051251号に記載のアスペルギルス・オリゼのプロリダーゼ遺伝子に相当する、アスペルギルス・ソーヤの遺伝子(proBとし、コードするタンパク質をプロリダーゼBとする)を用いた。
アルカリプロテアーゼ遺伝子上流領域として、アスペルギルス・ソーヤの配列に加え、アスペルギルス・オリゼの該当配列も用いた。以下、特に断らない限りはアスペルギルス・ソーヤの配列である。
実施例1と同様に、アスペルギルス・ソーヤ ATCC42251株の染色体DNAを鋳型とし、表7に示したプライマーを用いてPCRを行い、表8に示した産物2、産物14~産物18、及び産物20を得た。アスペルギルス・オリゼ RIB40株の染色体DNAを鋳型とし、プライマーAoAlp_-2510F_PとプライマーAoAlp_3Rを用いてPCRを行い、産物19を得た。産物19はアスペルギルス・オリゼのアルカリプロテアーゼ遺伝子上流領域2.5 kbを含む。得られたPCR産物をそれぞれ精製した後、実施例1と同様に、表9に示した産物の組み合わせ、及びプライマーの組み合わせでカセットの作製を行い、カセット11~カセット15を得た。
カット11とカセット12を用いて麹菌宿主を形質転換し、得られた形質転換体の中から、相同組み換えによりアルカリプロテアーゼ遺伝子上流領域-proA遺伝子-アミラーゼターミネーターから成る発現ユニットが構築された形質転換体を、PCRにより選抜した。このうちの1株をWhProA_1株とした。
同様に、カット11とカセット13を用いて麹菌宿主を形質転換し、アルカリプロテアーゼ遺伝子上流領域-proB遺伝子-アミラーゼターミネーターから成る発現ユニットが構築された形質転換体を選抜した。このうちの1株をWhProB_1株とした。
同様に、カット14とカセット15を用いて麹菌宿主を形質転換し、アスペルギルス・オリゼのアルカリプロテアーゼ遺伝子上流領域-proA遺伝子-アミラーゼターミネーターから成る発現ユニットが構築された形質転換体を選抜した。このうちの1株をWhPAoProA_2株とした。
・アミラーゼ遺伝子破壊株の作製
プロリダーゼ発現株ではアミラーゼ遺伝子が破壊されていることから、コントロール株として、アミラーゼ遺伝子破壊株を作製した。このためのカセットは、アミラーゼ遺伝子上流領域-pyrG遺伝子-アミラーゼ遺伝子下流領域、の3種のDNA断片から成る。両端のDNA断片がそれぞれ宿主染色体と相同組換えを起こした場合に、染色体上のアミラーゼ遺伝子がpyrG遺伝子で置き換わる(図4)。
プロリダーゼ発現株ではアミラーゼ遺伝子が破壊されていることから、コントロール株として、アミラーゼ遺伝子破壊株を作製した。このためのカセットは、アミラーゼ遺伝子上流領域-pyrG遺伝子-アミラーゼ遺伝子下流領域、の3種のDNA断片から成る。両端のDNA断片がそれぞれ宿主染色体と相同組換えを起こした場合に、染色体上のアミラーゼ遺伝子がpyrG遺伝子で置き換わる(図4)。
実施例1と同様に、アスペルギルス・ソーヤ ATCC42251株の染色体DNAを鋳型とし、表7に示したプライマーを用いてPCRを行い、表8に示した産物2、産物14、及び産物21を得た。これらの産物を混合してPCRを行った後、さらにプライマーAmy_-2347FとプライマーAmy_T1605Rを用いてPCRを行い、カセット16を得た。このカセットで麹菌宿主を形質転換し、相同組換えによりアミラーゼ遺伝子が破壊された株を選抜した。このうちの1株をWhAmy_1株とした。
・プロリダーゼ発現株のプロリダーゼ活性
作製したそれぞれのプロリダーゼ発現株、及び、コントロールのWhAmy_1株について、実施例1と同様にふすま麹を調製した。ふすま麹に20mlの破砕用緩衝液(20mM Tris-HCl、pH7.5、40mM KCl、2.5%グリセロール、1mM フェニルメチルスルホニルフルオリド(PMSF))を加え、氷冷しながらポリトロンホモジナイザーPT3000(KINEMATICA社製)を用いて最高回転数で30秒×8回間欠運転することにより、ふすま麹を破砕した。この破砕懸濁液を20,000×gで10分間遠心分離し、上澄を回収した。この上澄をPD-10カラム(GEヘルスケアバイオサイエンス社製)に通すことにより、ゲルろ過を行った。
作製したそれぞれのプロリダーゼ発現株、及び、コントロールのWhAmy_1株について、実施例1と同様にふすま麹を調製した。ふすま麹に20mlの破砕用緩衝液(20mM Tris-HCl、pH7.5、40mM KCl、2.5%グリセロール、1mM フェニルメチルスルホニルフルオリド(PMSF))を加え、氷冷しながらポリトロンホモジナイザーPT3000(KINEMATICA社製)を用いて最高回転数で30秒×8回間欠運転することにより、ふすま麹を破砕した。この破砕懸濁液を20,000×gで10分間遠心分離し、上澄を回収した。この上澄をPD-10カラム(GEヘルスケアバイオサイエンス社製)に通すことにより、ゲルろ過を行った。
カラムの平衡化と試料の溶出にはPMSFを加えない破砕用緩衝液を用い、カラムの取扱説明書に従って操作した。得られた溶出液を酵素液とした。酵素液のLeu-Pro基質に対するプロリダーゼ活性を、特許4051251号に記載の方法に従って測定した。酵素液のタンパク質量は、BCA Protein Assay Reagent Kit (Pierce社製)を用いて測定し、標準タンパク質としてウシ血清アルブミンを用いた。それぞれの株の酵素液について、タンパク質量当たりのプロリダーゼ活性を求め、コントロールのWhAmy_1株の活性を1としたときの、各プロリダーゼ発現株の相対活性値を表5に示す。
アスペルギルス・ソーヤのアルカリプロテアーゼ遺伝子上流領域を用いてプロリダーゼAを発現させたWhProA_1株、同様にプロリダーゼBを発現させたWhProB_1株はいずれもコントロールのWhAmy_1株と比べて高い活性を示した。アスペルギルス・オリゼのアルカリプロテアーゼ遺伝子上流領域を用いてプロリダーゼAを発現させたWhPAoProA_2株もWhAmy_1株と比べて明らかに高い活性を示した。
これらの結果から、アスペルギルス・ソーヤ、及びアスペルギルス・オリゼのアルカリプロテアーゼ遺伝子上流領域は、いずれもプロモーターとしてタンパク質の発現に有効に利用できることが判明した。
<プロリダーゼ発現株を用いたグルテン分解>
プロリダーゼB発現株であるWhProB_1株、及びコントロールとしてWhAmy_1株のふすま麹を、実施例1と同様にそれぞれ調製した。これにグルテン(VITEN、Roquette社製)を18.5 g、13%食塩水を33 ml加えて良く混合し、40℃で7日間緩やかに振とうした。得られた懸濁液をNo. 2ろ紙でろ過し、通過液の遊離アミノ酸量をアミノ酸分析計L-8800(日立社製)で測定した結果を表6に示す。WhAmy_1株を用いた場合に比べて、WhProB_1株を用いた場合には、プロリンを始め多くの種類の遊離アミノ酸が増加し、アミノ酸総量も増加した。
プロリダーゼB発現株であるWhProB_1株、及びコントロールとしてWhAmy_1株のふすま麹を、実施例1と同様にそれぞれ調製した。これにグルテン(VITEN、Roquette社製)を18.5 g、13%食塩水を33 ml加えて良く混合し、40℃で7日間緩やかに振とうした。得られた懸濁液をNo. 2ろ紙でろ過し、通過液の遊離アミノ酸量をアミノ酸分析計L-8800(日立社製)で測定した結果を表6に示す。WhAmy_1株を用いた場合に比べて、WhProB_1株を用いた場合には、プロリンを始め多くの種類の遊離アミノ酸が増加し、アミノ酸総量も増加した。
本発明の麹菌のアルカリプロテアーゼ遺伝子上流領域は、強力なプロモーターとして各種タンパク質の発現に用いることができるため、産業上極めて有用である。
Claims (11)
- 麹菌のアルカリプロテアーゼ遺伝子上流領域であって1.1kbより長く2.5kb以下の長さを有するアルカリプロテアーゼプロモーター。
- 麹菌のアルカリプロテアーゼ遺伝子上流領域2.5kbから成る、請求項1記載のアルカリプロテアーゼプロモーター。
- 麹菌のアルカリプロテアーゼ遺伝子の一部が置換又は欠損している、請求項1又は2記載のアルカリプロテアーゼプロモーター。
- 麹菌がアスペルギルス・ソーヤ又はアスペルギルス・オリゼである、請求項1~3のいずれか一項に記載のアルカリプロテアーゼプロモーター。
- 請求項1~4のいずれか一項に記載のアルカリプロテアーゼプロモーターを含む遺伝子発現用ユニット。
- 請求項5記載の遺伝子発現用ユニットを含む、相同組換え用カセット。
- 請求項1~4のいずれか一項に記載のアルカリプロテアーゼプロモーターを宿主微生物のゲノム遺伝子中に導入して成る形質転換微生物。
- 宿主微生物がアスペルギルス・ソーヤ又はアスペルギルス・オリゼである、請求項7記載の形質転換微生物。
- 宿主微生物が非相同組換えに関与する遺伝子が破壊された株である、請求項8記載の形質転換微生物。
- 請求項5記載の遺伝子発現用ユニット又は請求項6記載の相同組換え用カセットを用いて宿主微生物を形質転換することを含む、請求項7~9のいずれか一項に記載の質転換微生物の作製方法。
- 請求項7~9のいずれか一項に記載の形質転換微生物を培地に培養し、組み込まれた発現対象遺伝子を発現させ、発現したタンパク質を培養物より採取することを含む、タンパク質の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-240116 | 2008-09-19 | ||
JP2008240116A JP2011239681A (ja) | 2008-09-19 | 2008-09-19 | 麹菌アルカリプロテアーゼプロモーター |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010032492A1 true WO2010032492A1 (ja) | 2010-03-25 |
Family
ID=42039339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052735 WO2010032492A1 (ja) | 2008-09-19 | 2009-02-18 | 麹菌アルカリプロテアーゼプロモーター |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011239681A (ja) |
WO (1) | WO2010032492A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6261039B2 (ja) * | 2014-03-04 | 2018-01-17 | キッコーマン株式会社 | 転写制御因子manR及びxlnRを二重強制発現させた麹菌を用いる多糖類の分解方法 |
US10760107B2 (en) | 2015-01-30 | 2020-09-01 | Kikkoman Corporation | Transformed fungus having enhanced ergothioneine productivity and method for producing ergothioneine |
US11306317B2 (en) | 2017-05-11 | 2022-04-19 | Nagasaki University | Method of producing isoprenoids and proteins, genes, and transformants for the same |
US11932880B2 (en) | 2018-02-27 | 2024-03-19 | Kikkoman Corporation | Enzyme and method for assaying pentosidine using same |
US20230159968A1 (en) | 2018-06-15 | 2023-05-25 | Kikkoman Corporation | Method for Producing Selenoneine |
EP4023754A4 (en) | 2019-08-27 | 2023-09-27 | Kikkoman Corporation | METHOD FOR MEASURING PENTOSIDINE AND MEASURING KIT |
KR20240133718A (ko) | 2022-01-18 | 2024-09-04 | 기꼬만 가부시키가이샤 | 재조합 발현 글루타민산 옥시다아제 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0394690A (ja) * | 1989-09-08 | 1991-04-19 | Shokuhin Sangyo Kouso Kinou Henkan Gijutsu Kenkyu Kumiai | アルカリプロテアーゼプロモーター、同ターミネーター及びこれらからなる遺伝子発現用ユニット、並びにアルカリプロテアーゼのゲノム遺伝子 |
JPH0538289A (ja) * | 1991-04-17 | 1993-02-19 | Shokuhin Sangyo Kouso Kinou Henkan Gijutsu Kenkyu Kumiai | 蛋白質の製造法 |
JP2002101888A (ja) * | 2000-09-29 | 2002-04-09 | National Institute Of Advanced Industrial & Technology | アルカリプロテアーゼ遺伝子の発現を制御するdna結合タンパク質の遺伝子とアミノ酸配列および該遺伝子を使用したアルカリプロテアーゼ生産量の増強法 |
JP2003518921A (ja) * | 1999-07-30 | 2003-06-17 | ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー | 組換えタンパク質産生のための宿主としてのアスペルギルスソジェ(Aspergillussojae)の使用 |
-
2008
- 2008-09-19 JP JP2008240116A patent/JP2011239681A/ja active Pending
-
2009
- 2009-02-18 WO PCT/JP2009/052735 patent/WO2010032492A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0394690A (ja) * | 1989-09-08 | 1991-04-19 | Shokuhin Sangyo Kouso Kinou Henkan Gijutsu Kenkyu Kumiai | アルカリプロテアーゼプロモーター、同ターミネーター及びこれらからなる遺伝子発現用ユニット、並びにアルカリプロテアーゼのゲノム遺伝子 |
JPH0538289A (ja) * | 1991-04-17 | 1993-02-19 | Shokuhin Sangyo Kouso Kinou Henkan Gijutsu Kenkyu Kumiai | 蛋白質の製造法 |
JP2003518921A (ja) * | 1999-07-30 | 2003-06-17 | ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー | 組換えタンパク質産生のための宿主としてのアスペルギルスソジェ(Aspergillussojae)の使用 |
JP2002101888A (ja) * | 2000-09-29 | 2002-04-09 | National Institute Of Advanced Industrial & Technology | アルカリプロテアーゼ遺伝子の発現を制御するdna結合タンパク質の遺伝子とアミノ酸配列および該遺伝子を使用したアルカリプロテアーゼ生産量の増強法 |
Non-Patent Citations (3)
Title |
---|
MOTOAKI SANO ET AL.: "Aspergillus oryzae Alkali Protease Idenshi no Promoter Ryoiki no Kaiseki, [lecture No.3-5Ep18]", NIPPON NOGEI KAGAKUKAI TAIKAI KOEN YOSHISHU, 2002, pages 192 * |
MOTOAKI SANO ET AL.: "Kojikin Aspergillus oryzae Alkali Protease Idenshi no Promoter Tensha Seigyo Ryoiki no Kaiseki, [lecture No.455]", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIE, - 2002, pages 64 * |
TAKASHI HIRAMATSU ET AL.: "Alkali Protease Idenshi Promoter o Mochiita Aspergillus oryzae ni Okeru Daichokin beta-Glucuronidase no Hatsugen, [lecture No.681]", NIPPON HAKKO KOGAKUKAI TAIKAI KOEN YOSHISHU, 1991, pages 257 * |
Also Published As
Publication number | Publication date |
---|---|
JP2011239681A (ja) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010032492A1 (ja) | 麹菌アルカリプロテアーゼプロモーター | |
EP1391502B1 (en) | Host microorganisms | |
WO2019142773A1 (ja) | M23aファミリープロテアーゼの製造方法 | |
JP2021514679A (ja) | 糸状真菌宿主細胞によって発現された組換えシュウ酸デカルボキシラーゼ | |
JP5297656B2 (ja) | 新規枯草菌変異株及びタンパク質の製造方法 | |
JP6599583B1 (ja) | 多重遺伝子破壊アスペルギルス属微生物及びその製造方法 | |
EP1546384A2 (en) | Construction of bacillus licheniformis t1 strain and fermentation production of crude enzyme extract therefrom | |
JP2022542835A (ja) | 組換えエンドペプチダーゼを含む酵素組成物の製造方法 | |
JP2009118783A (ja) | 糸状菌タンパク質分泌生産の改善 | |
JP6791623B2 (ja) | 組換え微生物及びその利用 | |
JP7389640B2 (ja) | アルカリプロテアーゼ | |
JP5256402B2 (ja) | 麹菌蛋白質加水分解酵素の分泌を増大する組換えベクター | |
JP4701440B2 (ja) | 麹菌蛋白質加水分解酵素の分泌を増大する組換えベクター | |
JP4942030B2 (ja) | 麹菌分生子形成を増大させる遺伝子、タンパク質、組換えベクター | |
JP2023123807A (ja) | アルカリホスファターゼの製造方法及びそれを用いて得られるアルカリホスファターゼ、並びにその製造のためのベクター及び形質転換体 | |
JP2009261251A (ja) | 麹菌の分生子形成に関与する遺伝子、及び、麹菌の分生子形成能を増大させる方法 | |
KR20170094986A (ko) | 재조합 레반슈크라제 발현 벡터 및 이를 이용한 레반의 대량 생산 방법 | |
JP5759132B2 (ja) | 糸状菌ペプチダーゼの生産方法 | |
JP2961143B2 (ja) | アミノペプチダーゼ遺伝子、該遺伝子を含むプラスミドベクターおよび形質転換体 | |
US7741094B2 (en) | Protein having prolyl oligopeptidase activity, and composition containing the same | |
JP5474448B2 (ja) | 変異バチルス属細菌 | |
JP4997420B2 (ja) | 変異微生物 | |
JP2006136221A (ja) | 胞子形成遺伝子 | |
JP2007029008A (ja) | 新規遺伝子およびその応用 | |
JP2016136843A (ja) | 加水分解酵素活性が向上した糸状菌変異体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09814337 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09814337 Country of ref document: EP Kind code of ref document: A1 |