WO2019142773A1 - M23aファミリープロテアーゼの製造方法 - Google Patents

M23aファミリープロテアーゼの製造方法 Download PDF

Info

Publication number
WO2019142773A1
WO2019142773A1 PCT/JP2019/000894 JP2019000894W WO2019142773A1 WO 2019142773 A1 WO2019142773 A1 WO 2019142773A1 JP 2019000894 W JP2019000894 W JP 2019000894W WO 2019142773 A1 WO2019142773 A1 WO 2019142773A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sequence
region
protease
polynucleotide
Prior art date
Application number
PCT/JP2019/000894
Other languages
English (en)
French (fr)
Inventor
貴大 日置
大智 山下
正敏 東畑
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018005194A external-priority patent/JP7158149B2/ja
Priority claimed from JP2018005193A external-priority patent/JP7057140B2/ja
Priority claimed from JP2018219142A external-priority patent/JP7233203B2/ja
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US16/961,459 priority Critical patent/US11371034B2/en
Priority to EP19741539.1A priority patent/EP3741856A4/en
Priority to CN201980008312.8A priority patent/CN111601894B/zh
Publication of WO2019142773A1 publication Critical patent/WO2019142773A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus

Definitions

  • the present invention relates to a method for producing M23A family proteases.
  • the M23 family of proteases is a protease family defined in the MEROPS database as proteases capable of breaking Gly-Gly bonds. M23 family proteases also have the activity of degrading elastin and proteoglycans of bacterial cell walls, and are also known as lytic enzymes. The M23 family proteases are divided into two subfamilies, the M23A subfamily and the M23B subfamily, each subfamily comprising several types of enzymes.
  • a host such as E. coli into which a gene of a target protein has been introduced is cultured to express the protein, and a mature protein produced by the host is recovered.
  • a proprotein is first expressed, which is converted to a mature protein through self-processing, accumulated in a cell or a culture, and recovered as a target.
  • conversion of the M23A subfamily protease into a mature form by self-processing does not occur, and recovery of a mature protein from an E. coli host is impossible (Non-patent Documents 1 and 2).
  • Non-Patent Document 1 describes a method for producing a M23A subfamily protease in a wild-type strain that naturally produces the desired M23A subfamily protease, and further reduces the production cost to improve the protease production efficiency.
  • the culture conditions to be used are being investigated.
  • Non-Patent Document 3 a strain showing higher productivity than existing M23A subfamily protease-producing bacteria is obtained from nature because of a reduction in production cost.
  • Patent Document 1 describes a ⁇ -lytic protease belonging to the M23A subfamily isolated from Achromobacter lyticus, and the enzyme is expressed in a host such as E. coli or Bacillus. It is described that it manufactures. However, Patent Document 1 does not describe that the enzyme was actually produced using a heterologous host. Patent Document 1 points out the possibility that the ⁇ -lytic protease self-processes.
  • the matured enzyme can be obtained only by culturing the naturally occurring M23A subfamily protease producing strain due to lack of self-processing and lytic activity. It is not done. In fact, no examples of successful heterologous expression in the mature form of the M23A subfamily protease have been reported so far.
  • Patent Document 1 JP-A-4-108387 (Non-Patent Document 1) Molecules, 2014, 19: 4779-4790 (Non-patent document 2) Journal of bacteriology, 1996, 178: 6608-6617 (Non-Patent Document 3) Journal of bioscience and bioengineering, 2003, 95: 27-34
  • the present invention is a method for producing a M23A family protease, which comprises culturing a Bacillus bacterium into which a polynucleotide encoding a proprotein of the M23A family protease has been introduced and producing a mature M23A family protease outside the Bacillus bacterium extracellularly. Provide a way.
  • FRET-GGGGG degrading activity of culture supernatant of recombinant Bacillus subtilis SDS-PAGE image of culture supernatant of recombinant Bacillus subtilis.
  • nucleotide sequences and amino acid sequences is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, it is calculated by performing analysis with Unit size to compare (ktup) of 2 using a homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
  • amino acid sequence or nucleotide sequence is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, more preferably 96 % Or more, more preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more.
  • corresponding position or “corresponding region” on the amino acid sequence and nucleotide sequence refers to the target sequence and the reference sequence (eg, the nucleotide sequence of SEQ ID NO: 1) in each amino acid sequence or nucleotide sequence
  • the amino acid residues can be determined by aligning them so as to give maximum homology to conserved amino acid residues or nucleotides present in Alignment can be performed using known algorithms, the procedures of which are known to those skilled in the art. For example, alignment can be performed using the Clustal W multiple alignment program (Nucleic Acids Res., 1994, 22: 4673-4680) with default settings. Alternatively, Clustal W2 or Clustal omega, which is a revised version of Clustal W, can be used.
  • Clustal W, Clustal W2 and Clustal omega are, for example, Japanese DNA data operated by the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the National Institute of Genetics. It can be used on the bank (DDBJ [www.ddbj.nig.ac.jp/Welcome-j.html]) website.
  • the position or region of the target sequence aligned corresponding to an arbitrary region of the reference sequence by the alignment described above is regarded as "corresponding position" or "corresponding region” to the arbitrary region.
  • control region As used herein, "operably linked" between a control region and a gene means that the gene and the control region are linked such that the gene can be expressed under the control of the control region. . Procedures for "operably linking" genes and control regions are well known to those skilled in the art.
  • upstream and downstream with respect to a gene refers to upstream and downstream of the transcription direction of the gene.
  • a gene located downstream of a promoter means that the gene is present 3 'of the promoter in the DNA sense strand, and upstream of the gene is 5' of the gene in the DNA sense strand. Means the side area.
  • a “foreign” gene or polynucleotide is a gene or polynucleotide that has been introduced into the cell from the outside.
  • the foreign gene or polynucleotide may be from an organism homologous to the cell into which it has been introduced, or may be from a different organism (i.e., a heterologous gene or polynucleotide).
  • Bacillus subtilis gene described in the present specification is published on the Japan Functional Analysis Network for Bacillus subtilis (BSORF DB) on the Internet ([bacillus.genome.ad.jp/], updated on January 18, 2006). It is described based on the B. subtilis genome data.
  • the Bacillus subtilis gene numbers described herein represent the gene numbers registered in the BSORF DB.
  • the present invention provides methods for producing M23A family proteases.
  • the present inventors have surprisingly found that the M23A family protease gene is a Bacillus spp. Host in contrast to the conventional finding (for example, non-patent documents 1 and 2) that the M23A subfamily protease is not converted to a mature form in a heterologous host. It has been found that by introducing and culturing it, it is possible to efficiently recover the mature M23A family protease from the culture.
  • the M23A subfamily protease has a cleaning power of corneum stain in addition to the degradation activity of elastin and bacterial cell wall, and various industrial applications are expected from its excellent characteristics (Japanese Patent Application No. 2018-005193).
  • the mature M23A family protease can be efficiently produced by a simple procedure by using a Bacillus genus host.
  • it is possible to overcome the problems in conventional M23A family protease production such as low productivity in wild type strains naturally expressing mature M23A family protease and lack of mature body in E. coli host .
  • the method for producing the M23A subfamily protease of the present invention comprises culturing a Bacillus bacterium into which a polynucleotide encoding a proprotein of the target M23A subfamily protease has been introduced.
  • the M23A subfamily protease produced by the present invention is a mature enzyme having the activity of degrading glycine-glycine bond in the peptide sequence.
  • Preferred examples of the M23A subfamily protease produced according to the present invention include beta-lytic metalloprotease (BLP), LasA protein (Las A protein; also called LasA, also referred to as Staphylolysin), and Aeromonas hydrophila proteinase (Aeromonas hydrophila proteinase; AhP, also referred to as Mername-AA291 peptidedase). These are disclosed in the MEROPS database ([http://merops.sanger.ac. Uk]) as proteases belonging to the M23A subfamily.
  • BLP (MEROPS ID: M23.001) is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
  • LasA (MEROPS ID: M23.002) is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 4.
  • AhP (MEROPS ID: M23.003) is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 7.
  • BLP, LasA and AhP are enzymes having the activity of degrading glycine-glycine bond in the peptide sequence.
  • M23A subfamily protease produced according to the present invention includes polypeptides having functions equivalent to those of BLP, LasA and AhP described above.
  • Examples of the polypeptide having the same function as the BLP, LasA and AhP include an amino acid sequence having at least 80% identity with the amino acid sequence of any of SEQ ID NOs: 1, 4 and 7, and in the peptide sequence And a polypeptide having the activity of degrading glycine-glycine bond.
  • a preferred example of a polypeptide having a function equivalent to BLP is an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 1, preferably at position 22 and 121 of the amino acid sequence of SEQ ID NO: 1.
  • polypeptide having a function equivalent to that of LasA is an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 4, preferably at positions 23 and 120 of the amino acid sequence of SEQ ID NO: 4.
  • a preferred example of the polypeptide having the same function as AhP is an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 7, preferably at positions 21 and 118 of the amino acid sequence of SEQ ID NO: 7 And a polypeptide comprising an amino acid sequence having His at the position corresponding to position 120 and Asp at the position corresponding to position 34, and a polypeptide having a glycine-glycine bond degrading activity in the peptide sequence.
  • M23A subfamily proteases produced according to the present invention include BLP homologs from Lysobacter gummosus (WP_057941690.1, hereinafter referred to as LgBLP in the present specification), and Lysobacter antibios. And BLP homologs derived from Lysobacter antibioticus (WP_057970430.1, hereinafter referred to as LaBLP).
  • LgBLP is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 10.
  • LaBLP is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 13.
  • LgBLP and LaBLP are enzymes having the activity of degrading glycine-glycine bond in the peptide sequence.
  • M23A subfamily protease prepared according to the present invention includes polypeptides having functions equivalent to the above LgBLP and LaBLP.
  • a preferred example of a polypeptide having a function equivalent to LgBLP is an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 10, and a poly having glycine-glycine bond degradation activity in the peptide sequence.
  • a preferred example of a polypeptide having a function equivalent to that of LaBLP is an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 13, and a poly having glycine-glycine bond decomposing activity in the peptide sequence. And peptides.
  • the M23A subfamily protease produced according to the present invention is at least one selected from the group consisting of BLP, LasA, AhP, LgBLP, LaBLP, and polypeptides having equivalent functions as described above.
  • a polynucleotide encoding a proprotein of the M23A subfamily protease which is introduced into Bacillus of the present invention, has a sequence encoding the pro region of the M23A subfamily protease of interest produced by the method of the present invention described above
  • the pro region of the M23A subfamily protease refers to a region that contributes to the formation of a three-dimensional structure of the M23A subfamily protease mature protein region located downstream of the pro region on the proprotein.
  • polynucleotide encoding the proprotein examples include a polynucleotide encoding the proprotein of BLP (SEQ ID NO: 2), a polynucleotide encoding the proprotein of LasA (SEQ ID NO: 5), a proprotein of AhP A polynucleotide (SEQ ID NO: 8), a polynucleotide encoding a proprotein of LgBLP (SEQ ID NO: 11), and a polynucleotide encoding a proprotein of LaBLP (SEQ ID NO: 14) can be mentioned.
  • polynucleotide encoding the proprotein As another example of the polynucleotide encoding the proprotein, a polynucleotide encoding the proprotein of BLP containing a secretion signal (SEQ ID NO: 3), a polynucleotide encoding the proprotein of LasA containing the secretion signal (SEQ ID NO: 3) 6), a polynucleotide encoding an AhP proprotein including a secretion signal (SEQ ID NO: 9), a polynucleotide encoding an LgBLP proprotein including a secretion signal (SEQ ID NO: 12), and a LaBLP proprotein including a secretion signal (SEQ ID NO: 15).
  • the 523 to 1062 nucleotide region encodes the mature protein of BLP and the upstream thereof encodes the pro region.
  • the 595th to 1134th nucleotide region encodes a mature protein of BLP
  • the coding region of the pro region is upstream thereof
  • the upstream thereof encodes a secretory signal.
  • the region encoding a secretion signal can be determined using a tool such as SignalP (www.cbs.dtu.dk/services/SignalP/).
  • the secretion signal coding region of BLP on the polynucleotide of SEQ ID NO: 3 based on SignalP prediction is a 1-72 nucleotide region.
  • the nucleotide regions 616 to 1164 encode the mature protein of LasA and the upstream thereof encodes the pro region.
  • the nucleotide region of 709 to 1257 encodes the mature protein of LasA
  • the coding region of the pro region is upstream thereof
  • the upstream thereof encodes the secretory signal.
  • the secretion signal coding region of LasA on the polynucleotide of SEQ ID NO: 6 based on SignalP prediction is the 1-93 nucleotide region.
  • nucleotide regions 565 to 1104 encode a mature protein of AhP and its upstream region encodes a pro region.
  • nucleotide region of nucleotides 625 to 1164 encodes a mature protein of AhP
  • the coding region of the pro region is upstream thereof
  • the upstream thereof encodes a secretory signal.
  • the secretion signal coding region of AhP on the polynucleotide of SEQ ID NO: 9 based on SignalP prediction is a 1 to 60 nucleotide region.
  • the 529 to 1065 nucleotide region encodes a mature protein of LgBLP, and the upstream thereof encodes a pro region.
  • the 628th to 1164th nucleotide region encodes a mature protein of LgBLP
  • the coding region of the pro region is upstream thereof, and the upstream thereof encodes a secretory signal.
  • the secretion signal coding region of LgBLP on the polynucleotide of SEQ ID NO: 12 based on SignalP prediction is a 1- to 99-nucleotide region.
  • the 550th to 1086th nucleotide region encodes the mature protein of LaBLP, and the upstream thereof encodes the pro region.
  • the 628th to 1164th nucleotide region encodes the mature protein of LaBLP
  • the coding region of the pro region is upstream thereof, and the upstream thereof encodes the secretory signal.
  • the secretion signal coding region of LaBLP on the polynucleotide of SEQ ID NO: 15 based on SignalP prediction is the 1-78th nucleotide region.
  • the pro region encoded by the above polynucleotide contributes to the formation of a three-dimensional structure of the mature protein region located downstream thereof.
  • polynucleotide encoding the proprotein of the M23A subfamily protease of interest a polynucleotide encoding the pro region of the M23A subfamily protease and the mature protein of the M23A subfamily protease linked downstream thereof And a polynucleotide encoding the same.
  • the sequence of the 1st to 522nd nucleotide region of SEQ ID NO: 2 the sequence of the 1st to 615th nucleotide region of SEQ ID NO: 5, 1 to 6 of SEQ ID NO: 8
  • the pro region encoded by these polynucleotides contributes to the formation of the three-dimensional structure of the mature protein region of the M23A subfamily protease located downstream thereof.
  • Examples of the polynucleotide encoding a mature protein of the M23A subfamily protease include the polynucleotides encoding BLP, LasA, AhP, LgBLP, LaBLP, and polypeptides having the same function as those described above.
  • polynucleotides encoding proproteins of the M23A subfamily protease of interest include: A region consisting of a nucleotide sequence at least 80% identical to the nucleotide sequence of SEQ ID NO: 2 and having a function equivalent to BLP, LasA, AhP, LgBLP, LaBLP, or the like in a region corresponding to the 523 to 1062 nucleotide region of SEQ ID NO: 2 A polynucleotide having a nucleotide sequence encoding a polypeptide having (preferably, BLP or a polypeptide having a function equivalent to that); M23A subfamily protease mature protein (SEQ ID NO: 2) or a sequence which is at least 80% identical to it and which encodes a pro region of the M23A subfamily protease and which is linked downstream thereof A polynucleotide encoding a sequence encoding BLP, LasA, AhP, LgBLP, LaBLP, or
  • nucleotide sequences encoding BLP, LasA, AhP, LgBLP and LaBLP, and polypeptides having the same function as them, which are included in the above-mentioned polynucleotides are the sequence of 523 to 1062 of SEQ ID NO: 2, the sequence The sequence of 616 to 1164 of the number 5, the sequence of 565 to 1104 of the sequence number 8, the sequence of the sequence 529 to 1065 of the sequence number 11, and the sequence of the sequence 550 to 1086 of the sequence number 14 and any of them and at least Nucleotide sequences having 80% identity are included.
  • the polypeptides encoded by these nucleotide sequences all have glycine-glycine bond degradation activity in the peptide sequence.
  • the polynucleotide encoding the proprotein can be prepared according to a conventional method.
  • a polynucleotide encoding the proprotein is prepared by extracting genomic DNA from a microorganism which originally produces the desired M23A subfamily protease by a conventional method, or extracting RNA and synthesizing cDNA by reverse transcription. can do.
  • polynucleotides (SEQ ID NOS: 2 and 3) encoding proproteins of BLP may be prepared from Lysobacter sp. (NBRC 12725 or NBRC 12726), Achromobacter lyticus M497-1, Lysobacter sp.
  • Polynucleotides encoding LasA proproteins can be prepared from Pseudomonas aeruginosa PA01, Pseudomonas aeruginosa ATCC 10145, Pseudomonas aeruginosa FRD1 and the like.
  • the polynucleotides (SEQ ID NOS: 8 and 9) encoding the AhP proprotein can be prepared from Aeromonas hydrophila subsp. Hydrophila ATCC 7966, Aeromonas hydrophila (Chester) Stanier (ATCC 51307), and the like.
  • Polynucleotides encoding LgBLP proproteins can be prepared from Lysobacter gummosus et al.
  • the polynucleotides encoding the proprotein of LaBLP can be prepared from Lysobacter antibioticus et al.
  • the above microorganism can be purchased from a public microorganism preservation organization.
  • the polynucleotide encoding the proprotein of the target M23A subfamily protease may be prepared by further performing site-directed mutagenesis on the polynucleotide encoding the proprotein obtained by the above-mentioned procedure.
  • a polynucleotide encoding a proprotein of the desired M23A subfamily protease may be chemically synthesized based on the amino acid sequence of the proprotein.
  • control region has a function of controlling the expression in the cell of the gene located downstream thereof, preferably constitutively expressing or highly expressing the gene located downstream It is an area having a function to More specifically, it can be defined as a region located upstream of the coding region of a gene and having a function to interact with RNA polymerase to control transcription of the coding region.
  • control region herein refers to a region of about 200 to 600 nucleotides upstream of the coding region of a gene.
  • the control region includes a transcription initiation regulatory region and / or a translation initiation regulatory region, or a region from the transcription initiation regulatory region to the translation initiation regulatory region.
  • the transcription initiation regulatory region is a region including a promoter and a transcription initiation point
  • the translation initiation regulatory region is a site corresponding to the Shine-Dalgarno (SD) sequence that forms a ribosome binding site with the initiation codon (Shine, J., Dalgarno , L., Proc. Natl. Acad. Sci. USA., 1974, 71: 1342-1346).
  • SD Shine-Dalgarno
  • control region include a control region that functions in Bacillus, for example, a control region of an ⁇ -amylase gene derived from Bacillus bacteria, a protease gene, an aprE gene or a spoVG gene, Bacillus sp. KSM-S237 strain.
  • Control region of cellulase gene Japanese Patent Laid-Open No. 2000-210081
  • control region of cellulase gene of Bacillus sp. KSM-64 strain Japanese Patent Laid-Open No.
  • control region of kanamycin resistance gene or chloramphenicol resistance gene (for all, see JP-A-2009-089708) and the like, but are not particularly limited. More preferable examples of the control region include a promoter of cellulase gene of Bacillus sp. KSM-S237 strain (SEQ ID NO: 16) and a promoter of cellulase gene of Bacillus sp. KSM-64 strain (SEQ ID NO: 17). In addition, preferable control regions include nucleotide sequences having at least 80% identity to SEQ ID NO: 16 or 17 and having a function of controlling transcription and translation of a gene.
  • the polynucleotide encoding the proprotein may be operably linked to a sequence encoding a secretory signal (referred to as a secretory signal sequence) having a function of causing the expressed protein to be secreted extracellularly.
  • a secretory signal sequence include a secretory signal sequence that functions in Bacillus, for example, a secretory signal sequence derived from Bacillus.
  • Preferred examples of the secretion signal sequence derived from Bacillus spp. include the secretion signal sequence of the cellulase gene of Bacillus sp. KSM-S237 strain (SEQ ID NO: 18), the secretion signal sequence of the cellulase gene of Bacillus sp.
  • secretion signal sequences derived from Bacillus bacteria include nucleotide sequences having at least 80% identity to any of SEQ ID NOs: 18-20 and having the function of extracellularly secreting the expressed protein.
  • sequence encoding the proprotein linked to the secretion signal sequence derived from these Bacillus bacteria is a secretion signal sequence of a naturally occurring M23A subfamily protease (eg, SEQ ID NO: 3, 6, 9, 12 or 15 described above)
  • the secretory signal sequence may or may not be included.
  • the polynucleotide encoding the proprotein may comprise, in addition to the open reading frame (ORF), the nucleotide sequence of the untranslated region (UTR).
  • the polynucleotide may include the above-described promoter, secretory signal sequence, and terminator.
  • a polynucleotide encoding the proprotein into Bacillus bacteria can be performed according to a conventional method.
  • a polynucleotide encoding the proprotein or a vector containing the same can be introduced into a host Bacillus cell to integrate the polynucleotide into the genome of the host cell.
  • an expression vector containing the polynucleotide may be introduced into host Bacillus cells.
  • transformation techniques such as competent cell method, electroporation method, protoplast method, particle gun method and PEG method can be applied. .
  • a vector containing a polynucleotide encoding the proprotein is constructed by inserting and ligating the polynucleotide encoding the proprotein and, if necessary, a control region or a secretion signal sequence into any vector by a conventional method. can do.
  • the type of the vector is not particularly limited, and may be any vector such as plasmid, phage, phagemid, cosmid, virus, YAC vector, shuttle vector and the like.
  • the vector is preferably a vector that can be amplified in a host cell, more preferably an expression vector. Examples of preferred vectors include, but are not limited to, pHA3040SP64, pHSP64R or pASP64 (Patent No.
  • pHY300PLK expression vector capable of transforming both E. coli and B. subtilis
  • Jpn J Genet, 1985, 60: 235-243 shuttle vectors such as pAC3 (Nucleic Acids Res, 1988, 16: 8732); pUB110 (J Bacteriol, 1978, 134: 318-329), pTA 10607 (Plasmid, 1987, 18: 8-15), etc.
  • pAC3 Nucleic Acids Res, 1988, 16: 8732
  • pUB110 J Bacteriol, 1978, 134: 318-329
  • pTA 10607 Plasmid, 1987, 18: 8-15
  • coli-derived plasmids for example, pET22b (+), pBR322, pBR325, pUC57, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.
  • pET22b (+) pBR322
  • pBR325 pUC57, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.
  • the Bacillus bacteria to which the polynucleotide encoding the proprotein is introduced are not particularly limited, but Bacillus subtilis or a mutant thereof is preferable.
  • the Bacillus bacterium secretes extracellularly or releases a protease other than the M23A subfamily protease of interest (hereinafter, this process is simply referred to as "release") in association with lysis.
  • the other proteases include at least one selected from the group consisting of aprE, epr, wprA, mpr, nprB, bpr, nprE, vpr, aprX, and extracellular proteases encoded by genes corresponding thereto. Can be mentioned.
  • these extracellular proteases have been known to be a factor that reduces the productivity of recombinant enzymes, and it has also been shown that Bacillus subtilis strains deficient in these extracellular proteases have improved the productivity of recombinant enzymes. It is reported (Unexamined-Japanese-Patent No. 2006-174707).
  • Bacillus bacteria carrying these extracellular proteases are preferably used as a host for enzyme production.
  • AprE, epr, wprA, mpr, nprB, bpr, nprE, vpr and aprX are Bacillus subtilis genes. The gene numbers of these genes and the functions of the proteins encoded are shown in Table 1.
  • the genes corresponding to aprE, epr, wprA, mpr, nprB, bpr, nprE, vpr, and aprX include at least 80 in the nucleotide sequences of epr, wprA, mpr, nprB, bpr, nprE, vpr, and aprX, respectively. Examples include genes derived from Bacillus which have% identity and encode proteins of the same function (described in Table 1). These genes can be searched in the BSORF DB described above.
  • the Bacillus bacteria into which a polynucleotide encoding the proprotein is introduced preferably has extracellular protease activity.
  • the extracellular protease activity of the microorganism can be detected by measuring the azocaseinolytic activity of the culture supernatant of the microorganism, and the azocaseinolytic activity of the culture supernatant is shown in Example 5 (5-2) described later. It can be measured according to the method. A microorganism whose culture supernatant has azocaseinolytic activity is judged to have extracellular protease activity.
  • the Bacillus bacterium into which a polynucleotide encoding the proprotein is introduced is aprE or a gene corresponding thereto, epr or a gene corresponding thereto, wprA or a gene corresponding thereto, mpr or the like Selected from the group consisting of the following genes, nprB or corresponding gene, bpr or corresponding gene, nprE or corresponding gene, vpr or corresponding gene, and aprX or corresponding gene B. subtilis or a mutant thereof, which expresses at least one gene and secretes or releases extracellular protease encoded by the gene.
  • said Bacillus is aprE or a gene corresponding thereto, epr or a gene corresponding thereto, wprA or a gene corresponding thereto, mpr or a gene corresponding thereto, nprB or a gene corresponding thereto, Expresses bpr or a corresponding gene, nprE or a corresponding gene, vpr or a corresponding gene, and aprX or a corresponding gene, and extracellularly secretes extracellular protease encoded by the gene Bacillus subtilis or a mutant strain thereof that releases or releases.
  • a recombinant Bacillus bacterium into which a polynucleotide encoding a proprotein of the desired M23A subfamily protease obtained by the above-described procedure is introduced is cultured.
  • the bacillus may be cultured according to a general bacillus culture method.
  • a culture medium for culturing Bacillus bacteria contains a carbon source and a nitrogen source necessary for growth of the bacteria.
  • a carbon source for example, glucose, dextran, soluble starch, sucrose, methanol and the like can be mentioned.
  • the nitrogen source examples include ammonium salts, nitrates, amino acids, corn steep liquor, peptone, casein, meat extract, soybean meal, potato extract and the like.
  • the medium may contain other nutrients such as inorganic salts (eg sodium chloride, calcium chloride, sodium dihydrogen phosphate, magnesium chloride), vitamins, antibiotics (eg tetracycline, neomycin, kanamycin, spectino) And the like may be included.
  • Culture conditions such as temperature, aeration and agitation conditions, pH of culture medium, culture time and the like may be appropriately selected according to bacterial species and traits, culture scale and the like.
  • the culture of the recombinant Bacillus genus expresses a proprotein of the desired M23A subfamily protease.
  • the expressed proprotein is secreted or released extracellularly, where it is processed by the action of another extracellular protease secreted or released by the Bacillus bacteria and converted to a mature M23A subfamily protease having enzymatic activity .
  • a mature M23A family protease is produced extracellularly of the recombinant Bacillus.
  • the produced mature M23A subfamily proteases accumulate in the extracellular component of the culture.
  • the mature M23A subfamily protease is produced by the method of the present invention.
  • the produced M23A subfamily protease can be recovered from the culture according to a conventional method.
  • the method of the present invention since the produced M23A subfamily protease accumulates extracellularly, it is possible to recover the target enzyme without destroying the cells.
  • cells are removed from the culture by centrifugation or filtration, and the collected supernatant or filtrate is precipitated with a salt such as ammonium sulfate or an organic solvent such as ethanol, concentrated using an ultrafiltration membrane, etc.
  • the enzyme can be recovered by a conventional method such as purification using various chromatographies such as ion exchange or gel filtration.
  • the present invention also includes the following substances, production methods, uses, methods and the like as exemplary embodiments. However, the present invention is not limited to these embodiments.
  • a method for producing an M23A family protease comprising culturing a Bacillus bacterium into which a polynucleotide encoding a proprotein of M23A family protease has been introduced, and producing a mature M23A family protease outside the Bacillus bacterium extracellularly .
  • the M23A family protease is a polypeptide consisting of the amino acids of SEQ ID NO: 1, 4, 7, 10 or 13, or any of SEQ ID NOs: 1, 4, 7, 10 and 13
  • the method according to [1] which is a polypeptide consisting of an amino acid sequence having at least 80% identity to the amino acid sequence and having the activity of degrading glycine-glycine bond in the peptide sequence.
  • polynucleotide encoding a proprotein of said M23A family protease is the following: A polynucleotide consisting of the nucleotide sequence of any one of SEQ ID NOs: 2, 3, 5, 6, 8, 9, 11, 12, 14, and 15; or a polynucleotide encoding the pro region of the M23A subfamily protease and the downstream thereof A polynucleotide encoding an M23A subfamily protease linked to Preferably, the polynucleotide encoding the pro region of the M23A subfamily protease is the sequence of the 1st to 522nd nucleotide region of SEQ ID NO: 2, the sequence of the 1st to 615th nucleotide region of SEQ ID NO: 5, the 1 to 6th sequence of SEQ ID NO: 8 The sequence of the 564th nucleotide region, the sequence of the 1st to 528th nu
  • polynucleotide encoding a proprotein of said M23A family protease is the following: A polynucleotide comprising a nucleotide sequence at least 80% identical to the nucleotide sequence of SEQ ID NO: 2 and having a nucleotide sequence encoding the M23A family protease in a region corresponding to the 523 to 1062 nucleotide region of SEQ ID NO: 2; SEQ ID NO: 2 nucleotide sequence of SEQ ID NO: 2 or a sequence which is at least 80% identical to this and encodes a pro region of M23A subfamily protease, and a sequence encoding said M23A family protease linked downstream thereof , Having a polynucleotide; A polynucleotide comprising a nucleotide sequence at least 80% identical to the nucleotide sequence of SEQ ID NO: 3 and having
  • the secretory signal region is a secretory signal region derived from Bacillus.
  • the protease is at least one selected from the group consisting of aprE, epr, wprA, mpr, nprB, bpr, nprE, vpr, aprX, and extracellular proteases encoded by genes corresponding thereto.
  • the method according to [7] or [8], which is [10] Preferably, the method according to any one of [1] to [9], wherein said Bacillus is Bacillus subtilis or a mutant thereof.
  • the method according to any one of [1] to [10] further comprising recovering M23A family protease from the obtained culture.
  • Example 1 BLP production by recombinant Bacillus subtilis (1-1) Construction of BLP expression plasmid
  • the BLP gene (SEQ ID NO: 3) was inserted into plasmid pUC57 (BLP / pUC57) using artificial gene synthesis service from GenScript Made. PCR was performed using primer pair BLP_S237 signal_F / BLP_S 237 signal_R (SEQ ID NOS: 21 and 22) and PrimeSTAR Max Premix (Takara Bio) using BLP / pUC57 as a template.
  • PCR was performed using the plasmid pHY-S237 described in Example 7 of WO2006 / 068148A1 as a template and the primer pair vector-F / vector-sig-R (SEQ ID NOS: 23 and 24).
  • Each PCR product was DpnI treated with DpnI (New England Biolabs).
  • the resulting fragments were used to carry out In-Fusion reaction according to the protocol of In-Fusion, HD Cloning kit (Clontech).
  • In-Fusion reaction solution ECOS TM Competent E. E. coli DH5 ⁇ was transformed to construct a plasmid (pHY-BLP).
  • pHY-BLP2 PCR was performed using pHY-BLP as a template and the primer pair ⁇ BLPsig_F / ⁇ BLPsig_R (SEQ ID NOS: 25 and 26).
  • the PCR product was purified from E. coli.
  • E. coli HST08 Premium Competent Cells (Takara Bio) were transformed to construct a plasmid (pHY-BLP2).
  • pHY-BLP2 is for expression of BLP gene linked in the order of S237 promoter sequence (SEQ ID NO: 16), S237 secretion signal sequence (SEQ ID NO: 18), sequence encoding BLP proprotein (pro region + mature body), S237 terminator sequence It consists of the sequence and the pHY300 PLK vector sequence.
  • pHY-BLP3 PCR was performed using pHY-BLP as a template and the primer pair BLPsig_F / BLPsig_R (SEQ ID NOS: 27 and 28).
  • the PCR product was purified from E. coli.
  • E. coli HST08 Premium Competent Cells (Takara Bio) were transformed to construct a plasmid (pHY-BLP3).
  • pHY-BLP3 comprises the sequence for BLP gene expression linked in the order of S237 promoter sequence (SEQ ID NO: 16), sequence encoding BLP preproprotein (secretory signal + pro region + mature body), S237 terminator sequence, and pHY300 PLK vector sequence become.
  • pHY-BLP4 PCR was performed using pHY-BLP2 as a template and the primer pair ⁇ pro_F / ⁇ pro_R (SEQ ID NOS: 29 and 30).
  • the PCR product was purified from E. coli.
  • E. coli HST08 Premium Competent Cells (Takara Bio) were transformed to construct a plasmid (pHY-BLP4).
  • pHY-BLP4 comprises the sequence for expression of BLP gene linked in the order of S237 promoter sequence (SEQ ID NO: 16), S237 secretion signal sequence (SEQ ID NO: 18), sequence encoding BLP mature protein, S237 terminator sequence, and pHY300 PLK vector sequence become.
  • pHY-BLP5 PCR was performed using pHY-BLP as a template and the primer pair ⁇ BLPsig2_F / BLPsig_R (SEQ ID NOS: 31 and 28).
  • Bacillus subtilis 168 strain Bacillus subtilis Marburg No. 168 strain: Nature, 1997, 390, p. 249) The genomic DNA was used as a template, and the primer pair amyEsig (BLP) _F / amyEsig (BLP) _R (SEQ ID NOS: 32 and 33)
  • the PCR was performed similarly using. In-Fusion reaction was performed using the obtained fragment to construct a plasmid (pHY-BLP5).
  • pHY-BLP5 is for expression of BLP gene linked in the order of S237 promoter sequence (SEQ ID NO: 16), amyE secretion signal sequence (SEQ ID NO: 20), sequence encoding BLP proprotein (pro region + mature body), S237 terminator sequence It consists of the sequence and the pHY300 PLK vector sequence.
  • Bacillus subtilis strains were used as a host.
  • Each of the BLP expression plasmid pHY-BLP2-5 obtained in (1-1) and the empty vector pHY300 PLK (Takara Bio) was introduced into a host according to the following method.
  • Bacillus subtilis 168 strain was inoculated in 1 mL of LB medium, and shake cultured at 30 ° C. and 200 spm overnight. 10 ⁇ L of the obtained culture broth was inoculated into 1 mL of fresh LB medium and cultured at 37 ° C. and 200 spm for 3 hours. The culture was centrifuged to recover the pellet.
  • SMMP 0.5 M sucrose, 20 mM disodium maleate, 20 mM magnesium chloride hexahydrate, 35% (w / v) Antibiotic medium 3 (Difco)) containing 4 mg / mL lysozyme (SIGMA) was added to the pellet And incubated at 37.degree. C. for 1 hour. The pellet was then collected by centrifugation and suspended in 400 ⁇ L of SMMP. After 33 ⁇ L of the suspension and 20 ng of each plasmid were mixed, 100 ⁇ L of 40% (w / v) PEG was added and stirred, 350 ⁇ L of SMMP was further added, and the mixture was shaken at 30 ° C. for 1 hour.
  • SIGMA Antibiotic medium 3
  • a DM3 regeneration agar medium (0.8% agar (Wako Pure Chemical Industries) containing 0.5% disodium succinate hexahydrate 0.5% casamino acid) containing tetracycline (15 ⁇ g / mL, SIGMA) Technical (Difco) 0.5% yeast extract, 0.35% potassium monophosphate, 0.15% potassium diphosphate, 0.5% glucose, 0.4% magnesium chloride hexahydrate, 0.01% Bovine serum albumin (SIGMA), 0.5% carboxymethylcellulose, 0.005% trypan blue (Merck) and amino acid mixed solution (tryptophan, lysine, methionine each 10 ⁇ g / mL); smeared on% (w / v)% Incubate at 30 ° C. for 3 days to obtain formed colonies.
  • FRET-GGGGG a FRET substrate [hereinafter FRET-GGGGG] (made-to-order manufactured by PIT Japan) in which between the fluorescent group Nma and the quenching group Lys (Dpn) is pentaglycine
  • Nma 2- (N-methylamino) benzoyl (Nma).
  • Lys (Dpn) refers to one having 2,4-dinitrophenyl (Dnp) in the side chain of lysine (Lys).
  • FRETS-25-STD1 and FRETS-25-STD2 Peptide Research Institute, Inc.
  • the fluorescence intensity of the reaction solution was measured to prepare a calibration curve.
  • the activity of 1 unit (U) is the amount of enzyme necessary to show the change in fluorescence intensity of X / min, where X is the fluorescence intensity of a solution containing 1 ⁇ mol FRETS-25-STD1 and 1 ⁇ mol FRETS-25-STD2
  • the FRET-GGGGG degrading activity (U / mL) of the culture supernatant was determined.
  • the plasmid containing the S237 secretion signal (pHY-BLP2) and the plasmid containing the amyE secretion signal (pHY-BLP5) In the recombinant strain into which was introduced, the FRET-GGGGG degrading activity of the culture supernatant was high. From this, it was shown that BLP productivity is improved by linking a secretion signal that works efficiently in B. subtilis to a proprotein.
  • the pro region is essential for the production of BLP mature bodies. It was shown to be.
  • Example 2 Effect of Extracellular Protease on Mature BLP Production (2-1) Construction of BLP-FLAG Expression Plasmid
  • the plasmid pHY-BLP2 obtained in (1-1) was used as a template for the primer pair BLP_FLAG_F / BLP_FLAG_R (SEQ ID NO: 34 and 35) and PCR was performed using PrimeSTAR Max Premix (Takara Bio). Performs DpnI treated PCR products by DpnI (New England Biolabs), and the reaction solution ECOS TM Competent E. E. coli DH5 ⁇ (Nippon Gene, 310-06236) was transformed to construct a plasmid (pHY-BLP-FLAG).
  • the plasmid HY-BLP-FLAG encodes a BLP proprotein to which S237 promoter sequence (SEQ ID NO: 16), S237 secretion signal sequence (SEQ ID NO: 18), FLAG (registered trademark) tag (amino acid sequence of DYKDDDDK) added at C terminus And the sequence for expression of the BLP-FLAG gene linked in the order of the S237 terminator sequence, and the pHY300 PLK vector sequence.
  • Bacillus subtilis 168 strain and nine kinds of extracellular protease genes (aprE, epr, wprA, mpr, nprB, bpr, nprE, vpr)
  • Bacillus subtilis 168 strain and nine kinds of extracellular protease genes (aprE, epr, wprA, mpr, nprB, bpr, nprE, vpr)
  • Bacillus subtilis 168 strain and nine kinds of extracellular protease genes (aprE, epr, wprA, mpr, nprB, bpr, nprE, vpr)
  • Bacillus subtilis 168 strain and nine kinds of extracellular protease genes (aprE, epr, wprA, mpr, nprB, bpr, nprE, vpr)
  • the plasmid pHY-BLP-FLAG obtained in (2-1) and the empty vector pHY300PLK (Takara Bio) were each introduced into a host by the same procedure as (1-2) to obtain a colony of recombinant Bacillus subtilis. .
  • the obtained recombinant Bacillus subtilis colony was cultured in the same manner as (1-3) to obtain a culture supernatant.
  • all nine of the protease-deficient strains are all culture supernatants of recombinants of the strains.
  • the FRET-GGGGG degradation activity was measured from Among them, the activity of 8 strains was 80% or more against 168 strains. The remaining one strain also had 50% or more of FRET-GGGGG degradation activity to 168 strains.
  • Example 3 Production of Various M23A Subfamily Proteases by Recombinant Bacillus subtilis-1 (3-1) Construction of LasA Expression Plasmid
  • a LasA gene (SEQ ID NO: 6) was inserted into plasmid pUC57 (LasA / pUC57) was prepared using an artificial gene synthesis service from GenScript. PCR was performed according to the protocol of PrimeSTAR Max Premix (Takara Bio) using LasA / pUC57 as a template and the primer pair LasA_F / LasA_CR (SEQ ID NOS: 36 and 37).
  • PCR was performed using pHY-S237 (WO2006 / 068148A1) as a template and the primer pair pHY_just_F / pHY_just_R_NEW (SEQ ID NOS: 38 and 39).
  • Each PCR product was DpnI treated with DpnI (New England Biolabs).
  • the resulting fragments were used to carry out In-Fusion reaction according to the protocol of In-Fusion, HD Cloning kit (Clontech).
  • the reaction solution was treated with E. coli.
  • E. coli HST08 Premium Competent Cells (Takara Bio) was transformed to construct a plasmid (pHY-LasA).
  • PCR, DpnI digestion, and ligation were performed using pHY-LasA as a template and the primer pair pHY_just_F / LasA_Chis_n_R (SEQ ID NOS: 38 and 40) and KOD-Plus-Mutagenesis Kit (TOYOBO).
  • the reaction solution was treated with E. coli.
  • E. coli HST08 Premium Competent Cells (Takara Bio) were transformed to construct a plasmid (pHY-LasA2).
  • pHY-LasA2 is for expression of the LasA gene linked in the order of S237 promoter sequence (SEQ ID NO: 16), S237 secretion signal sequence (SEQ ID NO: 18), sequence encoding LasA proprotein (pro region + mature body), S237 terminator sequence It consists of the sequence and the pHY300 PLK vector sequence.
  • pHY-AhP comprises an S237 promoter sequence (SEQ ID NO: 16), an AhP secretion signal sequence, a sequence encoding an AhP proprotein (pro region + mature body), a sequence for AhP gene expression linked in sequence with the S237 terminator sequence, and a pHY300 PLK vector It consists of an array.
  • LgBLP Lysobacter gummosus derived BLP homolog
  • GenScript Inc plasmid pUC57
  • the artificial gene synthesis service of PCR was performed according to the protocol of PrimeSTAR Max Premix (Takara Bio) using LgBLP / pUC57 as a template and the primer pair LgBLP_F / LgBLP_R (SEQ ID NOS: 44 and 45).
  • PCR was performed using pHY-S237 (WO2006 / 068148A1) as a template and the primer pair pHY_just_F / pHY_just_R_NEW (SEQ ID NOS: 38 and 39).
  • Each PCR product was DpnI treated with DpnI (New England Biolabs).
  • the resulting fragments were used to carry out In-Fusion reaction according to the protocol of In-Fusion, HD Cloning kit (Clontech).
  • the reaction solution was treated with E. coli.
  • E. coli HST08 Premium Competent Cells (Takara Bio) was transformed to construct a plasmid (pHY-LgBLP).
  • pHY-LgBLP is for expression of LgBLP gene linked in the order of S237 promoter sequence (SEQ ID NO: 16), S237 secretion signal sequence (SEQ ID NO: 18), LgBLP proprotein (pro region + mature body), S237 terminator sequence It consists of the sequence and the pHY300 PLK vector sequence.
  • LaBLP expression plasmid A gene (LaBLP gene, SEQ ID NO: 14) of a BLP homolog (WP_057970430.1, hereinafter referred to as LaBLP) derived from Lysobacter antibioticus is inserted into plasmid pUC57 (LaBLP / pUC57) by GenScript Inc.
  • the artificial gene synthesis service of PCR was performed according to the protocol of PrimeSTAR Max Premix (Takara Bio) using LaBLP / pUC57 as a template and the primer pair LaBLP_F / LaBLP_R (SEQ ID NOS: 46 and 47).
  • PCR was performed using pHY-S237 (WO2006 / 068148A1) as a template and the primer pair pHY_just_F / pHY_just_R_NEW (SEQ ID NOS: 38 and 39).
  • Each PCR product was DpnI treated with DpnI (New England Biolabs).
  • the resulting fragments were used to carry out In-Fusion reaction according to the protocol of In-Fusion, HD Cloning kit (Clontech).
  • the reaction solution was treated with E. coli.
  • E. coli HST08 Premium Competent Cells (Takara Bio) were transformed to construct a plasmid (pHY-LaBLP).
  • pHY-LaBLP is for expression of LaBLP gene linked in the order of S237 promoter sequence (SEQ ID NO: 16), S237 secretion signal sequence (SEQ ID NO: 18), sequence coding for LaBLP proprotein (pro region + mature body), S237 terminator sequence It consists of the sequence and the pHY300 PLK vector sequence.
  • Example 4 Production of Various M23A Subfamily Proteases by Recombinant Bacillus subtilis-2 (4-1) Preparation of culture supernatant containing BLP (4-1-1) Preparation of expression vector A gene (BLP / pUC57) obtained by inserting the BLP gene (SEQ ID NO: 3) into the plasmid pUC57 was synthesized by GenScript artificial gene synthesis Made using the service. The PCR reaction was performed using primer pair BLP_S237 signal_F / BLP_S 237 signal_R (SEQ ID NOS: 21 and 22) and PrimeSTAR Max Premix (Takara Bio) using BLP / pUC57 as a template.
  • a PCR reaction was carried out in the same manner using plasmid pHY-S237 described in Example 7 of WO2006 / 068148 A1 as a template and primer pair vector-F / vector-sig-R (SEQ ID NOS: 23 and 24). Each PCR product was subjected to DpnI treatment with DpnI (New England Biolabs). Subsequently, the In-Fusion reaction was performed according to the protocol of In-Fusion, HD Cloning kit (Clontech).
  • E. coli DH5 ⁇ (Nippon Gene, 310-06236) was transformed. Transformed cells were plated on LB plates containing ampicillin and cultured at 37 ° C. overnight. Colonies formed on the plate are inoculated into LB medium containing ampicillin and cultured overnight, then the cells are recovered and plasmid (BLP / pHY) is extracted using High Pure Plasmid Isolation Kit (Roche) did. A PCR reaction was performed using the extracted BLP / pHY as a template and the primer pair ⁇ S237N_fw / ⁇ S237N_rv (SEQ ID NOS: 48 and 49). This PCR product was purified by E. coli. E.
  • coli HST08 Premium Competent Cells (Takara Bio) were transformed. Transformed cells were plated on LB plates containing ampicillin and cultured at 37 ° C. overnight. The colonies formed on the plate are inoculated into LB medium containing ampicillin and cultured overnight, and then the cells are recovered and the plasmid (BLP2 / pHY) is extracted using High Pure Plasmid Isolation Kit (Roche). did.
  • Bacillus subtilis 168 strain (Bacillus subtilis Marburg No. 168 strain: Nature, 390, 1997, p. 249) is inoculated in 1 mL of LB medium, and the mixture is incubated at 30 ° C. Shake culture overnight at 200 rpm. 10 ⁇ L of this culture solution was inoculated in 1 mL of fresh LB medium and cultured at 37 ° C., 200 rpm for 3 hours. The culture was centrifuged to recover the pellet.
  • SMMP 0.5 M sucrose, 20 mM disodium maleate, 20 mM magnesium chloride hexahydrate, 35% (w / v) Antibiotic Medium 3 (Difco)
  • SIGMA 4 mg / mL lysozyme
  • a PCR reaction was carried out in the same manner using plasmid pHY-S237 described in Example 7 of WO2006 / 068148 A1 as a template and primer pair pHY_just_F / pHY_just_R_NEW (SEQ ID NOS: 38 and 39).
  • Each PCR product was subjected to DpnI treatment with DpnI (New England Biolabs).
  • DpnI New England Biolabs
  • the plasmid (LasA / pHY) solution was obtained by performing In-Fusion reaction according to the protocol of In-Fusion, HD Cloning kit (Clontech).
  • the Bacillus subtilis prsA gene expression-enhancing strain was prepared in the same manner as the above (4-1-2) (in Example 1 of JP-A-2007-49986)
  • the prsA-Kc strain was transformed to obtain a Bacillus subtilis transformant colony.
  • Tetracycline was added to 2 ⁇ L liquid medium to a final concentration of 15 ppm.
  • a Bacillus subtilis transformant colony was inoculated into 5 mL of this medium, and then cultured overnight at 30 ° C. and 250 rpm. The pellet was recovered from the culture solution, and plasmid LasA / pHY was extracted from the pellet.
  • a PCR reaction was carried out in the same manner using plasmid pHY-S237 described in Example 7 of WO2006 / 068148 A1 as a template and primer pair vector-F / vector-R (SEQ ID NOS: 23 and 43). Each PCR product was subjected to DpnI treatment with DpnI (New England Biolabs). Subsequently, the plasmid (AhP / pHY) solution was obtained by performing the In-Fusion reaction according to the protocol of the In-Fusion, HD Cloning kit (Clontech).
  • transformation was performed in the same manner as the above (4-1-2).
  • Bacillus subtilis strain 168 was used as a host.
  • the obtained transformant was cultured in the same manner as (4-1-3), and the culture supernatant containing the enzyme produced from the cells was recovered.
  • the collected fraction solution is subjected to Size Exclusion Chromatography using column 2 equilibrated with a solution of 20 mM Tris-HCl (pH 7.5) and 200 mM NaCl, and a fraction solution showing the decomposition activity of FRET-GGGGG.
  • the collected fractions were buffer-exchanged with 20 mM Tris-HCl (pH 7.5) solution using Amicon Ultra Fractionated molecular weight 10 K to obtain an enzyme solution containing the target protease.
  • the buffer A, buffer B, column 1 and column 2 used for each culture supernatant were as shown in Table 3.
  • Example 5 Measurement of Bacillus subtilis Extracellular Protease Activity (5-1) Culture of Bacillus subtilis and Acquisition of Culture Supernatant Bacillus subtilis 168 strains, 9 extracellular protease deficient strains ( ⁇ epr strain, ⁇ wprA strain, ⁇ mpr strain, ⁇ nprB The strain, ⁇ bpr strain, ⁇ nprE strain, ⁇ vpr strain, ⁇ aprE strain, and ⁇ aprX strain) and strain Dpr9 were each inoculated into 1 mL of LB medium, and then cultured overnight at 30 ° C. and 150 spm.
  • the supernatant was properly diluted and the absorbance at 340 nm was measured using a 1 cm path length cuvette.
  • a control was obtained by reversing the addition order of the culture supernatant and the 5% trichloroacetic acid aqueous solution.
  • Culture supernatants for which a statistically significant (t-test, p ⁇ 0.05) increase in absorbance was detected compared to controls were determined to have azocaseinolytic activity.
  • azocasein was obtained from the culture supernatant of 168 and 9 extracellular protease-deficient strains ( ⁇ epr strain, ⁇ wprA strain, ⁇ mpr strain, ⁇ nprB strain, ⁇ bpr strain, ⁇ nprE strain, ⁇ vpr strain, ⁇ aprE strain and ⁇ aprX strain) Degradation activity was detected, while it was not detected in the culture supernatant of strain Dpr9 (below detection limit). These results were consistent with the active BLP producing ability of each strain (Table 4).
  • Example 6 Comparison of BLP Productivity with Natural BLP-Producing Bacteria (6-1) Culture of BLP-Producing Bacteria and Acquisition of Culture Supernatant So far, as a method for producing active BLP, isolated natural Only methods for cultivating BLP producing bacteria have been demonstrated. In this example, natural BLP-producing bacteria were made to produce BLP, and the productivity was compared with the BLP-producing recombinant Bacillus subtilis of Example 1.
  • a natural BLP producing strain Achromobacter lyticus M497-1 strain was inoculated into 1 mL of LB medium, and then cultured overnight at 30 ° C. and 150 spm. The next day, 400 ⁇ L of culture solution was added to 2 ⁇ L-maltose medium (2% tryptone, 1% yeast extract, 1% NaCl, 7.5% maltose, 7.5 ppm manganese sulfate pentahydrate, 21 ⁇ M ZnSO 4 ; (V)%) was inoculated in 5 mL and cultured at 30 ° C. and 150 spm for 2 days, and then the culture supernatant was collected by centrifugation.
  • 2 ⁇ L-maltose medium 2% tryptone, 1% yeast extract, 1% NaCl, 7.5% maltose, 7.5 ppm manganese sulfate pentahydrate, 21 ⁇ M ZnSO 4 ; (V)% was inoculated in 5 mL and culture
  • the present invention is a technology having a significant advantage over existing technologies not only in heterologous expression but also in its productivity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

M23Aファミリープロテアーゼを効率よく製造する方法の提供。M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドを導入したバチルス属菌を培養し、該バチルス属菌の細胞外に成熟型M23Aファミリープロテアーゼを製造させることを含む、M23Aファミリープロテアーゼの製造方法。

Description

M23Aファミリープロテアーゼの製造方法
 本発明は、M23Aファミリープロテアーゼの製造方法に関する。
 プロテアーゼのM23ファミリーは、MEROPSデータベースにおいて、Gly-Gly結合を分解できるプロテアーゼとして定義されるプロテアーゼファミリーである。M23ファミリープロテアーゼはまた、エラスチンやバクテリア細胞壁のプロテオグリカンの分解活性を有し、溶菌酵素としても知られている。M23ファミリープロテアーゼは、M23AサブファミリーとM23Bサブファミリーの2つのサブファミリーに分類され、各サブファミリーは、それぞれいくつかのタイプの酵素を含む。
 酵素等のタンパク質の商業的生産においては、一般に、目的タンパク質の遺伝子を導入した大腸菌等の宿主を培養して該タンパク質を発現させ、宿主により生産された成熟型タンパク質を回収する。多くのプロテアーゼでは、最初にプロタンパク質が発現し、これが自己プロセシングを経て成熟型タンパク質に変換され、細胞又は培養物中に蓄積し、目的物として回収される。しかしながら、M23Aサブファミリープロテアーゼは、自己プロセシングによる成熟体への変換が起こらず、大腸菌宿主からの成熟型タンパク質の回収は不可能である(非特許文献1、2)。そのため、M23Aサブファミリープロテアーゼの生産方法としては、天然のM23Aサブファミリープロテアーゼ生産菌株を培養する方法が検討されている。非特許文献1では、目的とするM23Aサブファミリープロテアーゼを天然に生産する野生型菌株に該M23Aサブファミリープロテアーゼを生産させる方法が記載されており、さらに生産コストの低下のため、プロテアーゼ生産効率が向上する培養条件が検討されている。また非特許文献3では、生産コストの低下のため、既存のM23Aサブファミリープロテアーゼ生産菌よりも高い生産性を示す菌株を天然から取得している。
 一方、特許文献1には、アクロモバクター・リティカス(Achromobacter lyticus)から単離されたM23Aサブファミリーに属するβ-リティックプロテアーゼが記載され、また当該酵素を大腸菌やバチルス属菌などの宿主に発現させて製造することが記載されている。しかしながら、特許文献1には実際に異種宿主を用いて当該酵素を生産させたことは記載されていない。特許文献1では、β-リティックプロテアーゼが自己プロセシングする可能性が指摘されている。しかし、上述した非特許文献1、2に開示されるとおり、その後の研究でM23Aサブファミリープロテアーゼは自己プロセシングできないことが報告されていることから、特許文献1が上述した異種発現系におけるM23Aサブファミリープロテアーゼの自己プロセシング欠如の問題を解決していないことは明らかである。さらに非特許文献3に記載されているように、特許文献1の後、β-リティックプロテアーゼが枯草菌等のグラム陽性菌に対して強い溶菌活性を有していることが報告された。したがって、非特許文献1~3に示される知見は、特許文献1におけるβ-リティックプロテアーゼの大腸菌やバチルス属菌での異種発現の開示が現実的でなく、むしろそのような異種発現は困難であったことを示している。
 以上のように、M23Aサブファミリープロテアーゼは、その優れた特徴があるにもかかわらず、自己プロセシング欠如や溶菌活性のために天然のM23Aサブファミリープロテアーゼ生産菌株を培養する方法でしか成熟型酵素を得られていない。実際にM23Aサブファミリープロテアーゼの成熟型での異種発現に成功した例はこれまで報告されていない。
(特許文献1)特開平4-108387号公報
(非特許文献1)Molecules, 2014, 19:4779-4790
(非特許文献2)Journal of bacteriology, 1996, 178:6608-6617
(非特許文献3)Journal of bioscience and bioengineering, 2003, 95:27-34
発明の詳細な説明
 本発明は、M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドを導入したバチルス属菌を培養し、該バチルス属菌の細胞外に成熟型M23Aファミリープロテアーゼを製造させることを含む、M23Aファミリープロテアーゼの製造方法を提供する。
組換え枯草菌の培養上清のFRET-GGGGG分解活性。 組換え枯草菌の培養上清のSDS-PAGE像。 組換え枯草菌168株及びDpr9株の培養上清のFRET-GGGGG分解活性。 組換え枯草菌168株及びDpr9株の培養上清のウェスタンブロッティング像。 各種M23Aサブファミリープロテアーゼのプロタンパク質をコードする遺伝子を導入した組換え枯草菌の培養上清のFRET-GGGGG分解活性。
 本明細書において、ヌクレオチド配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 本明細書において、アミノ酸配列又はヌクレオチド配列に関する「少なくとも80%の同一性」とは、80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、さらに好ましくは96%以上、さらに好ましくは97%以上、さらに好ましくは98%以上、さらに好ましくは99%以上の同一性をいう。
 本明細書において、アミノ酸配列及びヌクレオチド配列上の「相当する位置」又は「相当する領域」は、目的配列と参照配列(例えば、配列番号1のヌクレオチド配列)とを、各アミノ酸配列又はヌクレオチド配列中に存在する保存アミノ酸残基又はヌクレオチドに最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Nucleic Acids Res.,1994,22:4673-4680)をデフォルト設定で用いることにより行うことができる。あるいは、Clustal Wの改訂版であるClustal W2やClustal omegaを使用することもできる。Clustal W、Clustal W2及びClustal omegaは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute:EBI[www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ[www.ddbj.nig.ac.jp/Welcome-j.html])のウェブサイト上で利用することができる。上述のアラインメントにより参照配列の任意の領域に対応してアラインされた目的配列の位置又は領域は、当該任意の領域に「相当する位置」又は「相当する領域」とみなされる。
 本明細書において、制御領域と遺伝子との「作動可能な連結」とは、遺伝子と制御領域とが、該遺伝子が該制御領域の制御の下で発現し得るように連結されていることをいう。遺伝子と制御領域との「作動可能な連結」の手順は当業者に周知である。
 本明細書において、遺伝子に関する「上流」及び「下流」とは、該遺伝子の転写方向の上流及び下流をいう。例えば、「プロモーターの下流に配置された遺伝子」とは、DNAセンス鎖においてプロモーターの3’側に該遺伝子が存在することを意味し、遺伝子の上流とは、DNAセンス鎖における該遺伝子の5’側の領域を意味する。
 本明細書において、細胞の機能や性状、形質に対して使用する用語「本来」とは、当該機能や性状、形質が当該細胞に元から存在していることを表すために使用される。対照的に、用語「外来」とは、当該細胞に元から存在するのではなく、外部から導入された機能や性状、形質を表すために使用される。例えば、「外来」遺伝子又はポリヌクレオチドとは、細胞に外部から導入された遺伝子又はポリヌクレオチドである。外来遺伝子又はポリヌクレオチドは、それが導入された細胞と同種の生物由来であっても、異種の生物由来(すなわち異種遺伝子又はポリヌクレオチド)であってもよい。
 本明細書に記載の枯草菌の遺伝子の名称は、JAFAN:Japan Functional Analysis Network for Bacillus subtilis(BSORF DB)でインターネット公開([bacillus.genome.ad.jp/]、2006年1月18日更新)された枯草菌ゲノムデータに基づいて記載されている。本明細書に記載される枯草菌の遺伝子番号は、BSORF DBに登録されている遺伝子番号を表す。
 本発明は、M23Aファミリープロテアーゼの製造方法を提供する。
 本発明者らは、M23Aサブファミリープロテアーゼが異種宿主中で成熟体に変換されないという従来の知見(例えば非特許文献1、2)に対して驚くべきことに、M23Aファミリープロテアーゼ遺伝子をバチルス属菌宿主に導入し、培養することで、培養物中から成熟型M23Aファミリープロテアーゼを効率よく回収可能であることを見出した。
 M23Aサブファミリープロテアーゼは、エラスチンやバクテリア細胞壁の分解活性に加えて角質汚れの洗浄力も有しており、その優れた特徴から様々な産業上の応用が期待される(特願2018-005193)。本発明の方法によれば、バチルス属菌宿主を用いることにより、簡便な手順で成熟型M23Aファミリープロテアーゼを効率よく製造することができる。本発明によれば、天然に成熟型M23Aファミリープロテアーゼを発現する野生型菌株における生産性の低さや、大腸菌宿主における成熟体の欠如などの、従来のM23Aファミリープロテアーゼ生産における問題を打開することができる。
 本発明のM23Aサブファミリープロテアーゼの製造方法は、目的のM23Aサブファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドを導入したバチルス属菌(Bacillus)を培養することを含む。
 本発明により製造されるM23Aサブファミリープロテアーゼは、ペプチド配列中のグリシン-グリシン結合の分解活性を有する成熟体酵素である。本発明により製造されるM23Aサブファミリープロテアーゼの好ましい例としては、β-リティックメタロプロテアーゼ(beta-lytic metallopeptidase;BLP)、LasAタンパク質(Las A protein;LasA、Staphylolysinとも呼ばれる)、及びアエロモナス・ハイドロフィラプロテイナーゼ(Aeromonas hydrophila proteinase;AhP、Mername-AA291 peptidaseとも呼ばれる)が挙げられる。これらは、MEROPSデータベース([http://merops.sanger.ac.uk])においてM23Aサブファミリーに属するプロテアーゼとして開示されている。BLP(MEROPS ID:M23.001)は、配列番号1のアミノ酸配列からなるポリペプチドである。LasA(MEROPS ID:M23.002)は、配列番号4のアミノ酸配列からなるポリペプチドである。AhP(MEROPS ID:M23.003)は、配列番号7のアミノ酸配列からなるポリペプチドである。BLP、LasA及びAhPは、ペプチド配列中のグリシン-グリシン結合の分解活性を有する酵素である。
 本発明により製造されるM23Aサブファミリープロテアーゼの別の好ましい例としては、上記BLP、LasA及びAhPと同等の機能を有するポリペプチドが挙げられる。該BLP、LasA及びAhPと同等の機能を有するポリペプチドの例としては、配列番号1、4及び7のいずれかのアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチドが挙げられる。BLPと同等の機能を有するポリペプチドの好ましい例としては、配列番号1のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、好ましくは配列番号1のアミノ酸配列の22位、121位及び123位に相当する位置にHis、36位に相当する位置にAspを有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。LasAと同等の機能を有するポリペプチドの好ましい例としては、配列番号4のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、好ましくは配列番号4のアミノ酸配列の23位、120位及び122位に相当する位置にHis、36位に相当する位置にAspを有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。AhPと同等の機能を有するポリペプチドの好ましい例としては、配列番号7のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、好ましくは配列番号7のアミノ酸配列の21位、118位及び120位に相当する位置にHis、34位に相当する位置にAspを有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。
 本発明により製造されるM23Aサブファミリープロテアーゼのさらに別の好ましい例としては、リゾバクター・グモサス(Lysobacter gummosus)由来のBLPホモログ(WP_057941690.1、以下の本明細書においてLgBLPという)、及びリゾバクター・アンティビオティカス(Lysobacter antibioticus)由来のBLPホモログ(WP_057970430.1、以下の本明細書においてLaBLPという)が挙げられる。LgBLPは、配列番号10のアミノ酸配列からなるポリペプチドである。LaBLPは、配列番号13のアミノ酸配列からなるポリペプチドである。LgBLP及びLaBLPは、ペプチド配列中のグリシン-グリシン結合の分解活性を有する酵素である。
 本発明により製造されるM23Aサブファミリープロテアーゼのさらに別の好ましい例としては、上記LgBLP及びLaBLPと同等の機能を有するポリペプチドが挙げられる。LgBLPと同等の機能を有するポリペプチドの好ましい例としては、配列番号10のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。LaBLPと同等の機能を有するポリペプチドの好ましい例としては、配列番号13のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。
 好ましくは、本発明により製造されるM23Aサブファミリープロテアーゼは、上記のBLP、LasA、AhP、LgBLP、LaBLP、及びそれらと同等の機能を有するポリペプチドからなる群より選択される少なくとも1種である。
 本発明で用いるバチルス属菌に導入される、M23Aサブファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドは、上述した本発明の方法で製造される目的のM23Aサブファミリープロテアーゼのプロ領域をコードする配列と成熟型タンパク質をコードする配列とを含むポリヌクレオチドである。M23Aサブファミリープロテアーゼのプロ領域とは、プロタンパク質上で該プロ領域の下流に位置するM23Aサブファミリープロテアーゼ成熟型タンパク質領域の、立体構造の形成に寄与する領域をいう。当該プロタンパク質をコードするポリヌクレオチドの例としては、BLPのプロタンパク質をコードするポリヌクレオチド(配列番号2)、LasAのプロタンパク質をコードするポリヌクレオチド(配列番号5)、AhPのプロタンパク質をコードするポリヌクレオチド(配列番号8)、LgBLPのプロタンパク質をコードするポリヌクレオチド(配列番号11)、及びLaBLPのプロタンパク質をコードするポリヌクレオチド(配列番号14)が挙げられる。当該プロタンパク質をコードするポリヌクレオチドの別の例としては、分泌シグナルを含むBLPのプロタンパク質をコードするポリヌクレオチド(配列番号3)、分泌シグナルを含むLasAのプロタンパク質をコードするポリヌクレオチド(配列番号6)、分泌シグナルを含むAhPのプロタンパク質をコードするポリヌクレオチド(配列番号9)、分泌シグナルを含むLgBLPのプロタンパク質をコードするポリヌクレオチド(配列番号12)、及び分泌シグナルを含むLaBLPのプロタンパク質をコードするポリヌクレオチド(配列番号15)が挙げられる。
 配列番号2のポリヌクレオチドでは、523~1062番ヌクレオチド領域がBLPの成熟型タンパク質をコードし、その上流がプロ領域をコードする。配列番号3のポリヌクレオチドでは、595~1134番ヌクレオチド領域がBLPの成熟型タンパク質をコードし、その上流にプロ領域のコード領域があり、さらにその上流が分泌シグナルをコードする。分泌シグナルをコードする領域は、SignalP(www.cbs.dtu.dk/services/SignalP/)等のツールを用いて決定することができる。SignalPでの予測に基づく配列番号3のポリヌクレオチド上のBLPの分泌シグナルコード領域は、1~72番ヌクレオチド領域である。
 配列番号5のポリヌクレオチドでは、616~1164番ヌクレオチド領域がLasAの成熟型タンパク質をコードし、その上流がプロ領域をコードする。配列番号6のポリヌクレオチドでは、709~1257番ヌクレオチド領域がLasAの成熟型タンパク質をコードし、その上流にプロ領域のコード領域があり、さらにその上流が分泌シグナルをコードする。SignalPでの予測に基づく配列番号6のポリヌクレオチド上のLasAの分泌シグナルコード領域は、1~93番ヌクレオチド領域である。
 配列番号8のポリヌクレオチドでは、565~1104番ヌクレオチド領域がAhPの成熟型タンパク質をコードし、その上流がプロ領域をコードする。配列番号9のポリヌクレオチドでは、625~1164番ヌクレオチド領域がAhPの成熟型タンパク質をコードし、その上流にプロ領域のコード領域があり、さらにその上流が分泌シグナルをコードする。SignalPでの予測に基づく配列番号9のポリヌクレオチド上のAhPの分泌シグナルコード領域は、1~60番ヌクレオチド領域である。
 配列番号11のポリヌクレオチドは、529~1065番ヌクレオチド領域がLgBLPの成熟型タンパク質をコードし、その上流がプロ領域をコードする。配列番号12のポリヌクレオチドでは、628~1164番ヌクレオチド領域がLgBLPの成熟型タンパク質をコードし、その上流にプロ領域のコード領域があり、さらにその上流が分泌シグナルをコードする。SignalPでの予測に基づく配列番号12のポリヌクレオチド上のLgBLPの分泌シグナルコード領域は、1~99番ヌクレオチド領域である。
 配列番号14のポリヌクレオチドは、550~1086番ヌクレオチド領域がLaBLPの成熟型タンパク質をコードし、その上流がプロ領域をコードする。配列番号15のポリヌクレオチドでは、628~1164番ヌクレオチド領域がLaBLPの成熟型タンパク質をコードし、その上流にプロ領域のコード領域があり、さらにその上流が分泌シグナルをコードする。SignalPでの予測に基づく配列番号15のポリヌクレオチド上のLaBLPの分泌シグナルコード領域は、1~78番ヌクレオチド領域である。
 上記のポリヌクレオチドにコードされるプロ領域は、その下流に位置する成熟型タンパク質領域の立体構造の形成に寄与する。
 したがって、目的のM23Aサブファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドのさらなる例としては、M23Aサブファミリープロテアーゼのプロ領域をコードするポリヌクレオチドと、その下流に連結されたM23Aサブファミリープロテアーゼの成熟型タンパク質をコードするポリヌクレオチドとを含むポリヌクレオチドが挙げられる。該M23Aサブファミリープロテアーゼのプロ領域をコードするポリヌクレオチドの例としては、配列番号2の1~522番ヌクレオチド領域の配列、配列番号5の1~615番ヌクレオチド領域の配列、配列番号8の1~564番ヌクレオチド領域の配列、配列番号11の1~528番ヌクレオチド領域の配列、配列番号14の1~549番ヌクレオチド領域の配列、又はこれらと少なくとも80%同一な配列からなるポリヌクレオチドが挙げられる。これらポリヌクレオチドにコードされるプロ領域は、その下流に位置するM23Aサブファミリープロテアーゼの成熟型タンパク質領域の立体構造の形成に寄与する。該M23Aサブファミリープロテアーゼの成熟型タンパク質をコードするポリヌクレオチドの例としては、上述したBLP、LasA、AhP、LgBLP、LaBLP、及びそれらと同等の機能を有するポリペプチドをコードするポリヌクレオチドが挙げられる。
 目的のM23Aサブファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドのさらなる例としては、以下が挙げられる:
 配列番号2のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号2の523~1062番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはBLP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号2の1~522番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはBLP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号3のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号3の595~1134番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはBLP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号3の1~594番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはBLP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号5のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号5の616~1164番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはLasA又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号5の1~615番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはLasA又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号6のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号6の709~1257番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはLasA又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号6の1~708番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはLasA又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号8のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号8の565~1104番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはAhP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号8の1~564番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはAhP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号9のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号9の625~1164番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはAhP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号9の1~624番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはAhP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号11のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号11の529~1065番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはLgBLP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号11の1~528番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはLgBLP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号12のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号12の628~1164番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはLgBLP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号12の1~627番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはLgBLP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号14のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号14の550~1086番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはLaBLP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号14の1~549番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはLaBLP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド;
 配列番号15のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号15の628~1164番ヌクレオチド領域に相当する領域にBLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド(好ましくはLaBLP又はそれと同等の機能を有するポリペプチド)をコードするヌクレオチド配列を有する、ポリヌクレオチド;及び、
 配列番号15の1~627番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された、M23Aサブファミリープロテアーゼ成熟型タンパク質(BLP、LasA、AhP、LgBLP、LaBLP、又はそれらと同等の機能を有するポリペプチド、好ましくはLaBLP又はそれと同等の機能を有するポリペプチド)をコードする配列と、を有するポリヌクレオチド。
 上記のポリヌクレオチドに含まれる、BLP、LasA、AhP、LgBLP及びLaBLP、ならびにそれらと同等の機能を有するポリペプチドをコードするヌクレオチド配列の例としては、配列番号2の523~1062番の配列、配列番号5の616~1164番の配列、配列番号8の565~1104番の配列、配列番号11の529~1065番の配列、及び配列番号14の550~1086番の配列、ならびにそれらのいずれかと少なくとも80%の同一性を有するヌクレオチド配列が挙げられる。これらのヌクレオチド配列にコードされるポリペプチドは、いずれもペプチド配列中のグリシン-グリシン結合分解活性を有する。
 当該プロタンパク質をコードするポリヌクレオチドは、常法に従って調製することができる。例えば、該プロタンパク質をコードするポリヌクレオチドは、目的のM23Aサブファミリープロテアーゼを本来生産する微生物から常法によりゲノムDNAを抽出するか、又はRNAを抽出し逆転写によりcDNAを合成することによって、調製することができる。例えば、BLPのプロタンパク質をコードするポリヌクレオチド(配列番号2及び3)は、Lysobacter sp. (NBRC 12725又はNBRC 12726)、Achromobacter lyticus M497-1、Lysobacter sp. IB-9374、Lysobacter gummosus DSMZ 6980等から調製することができる。LasAのプロタンパク質をコードするポリヌクレオチド(配列番号5及び6)は、Pseudomonas aeruginosa PA01、Pseudomonas aeruginosa ATCC 10145、Pseudomonas aeruginosa FRD1等から調製することができる。AhPのプロタンパク質をコードするポリヌクレオチド(配列番号8及び9)は、Aeromonas hydrophila subsp. hydrophila ATCC 7966、Aeromonas hydrophila (Chester) Stanier (ATCC 51307)等から調製することができる。LgBLPのプロタンパク質をコードするポリヌクレオチド(配列番号11及び12)は、Lysobacter gummosus等から調製することができる。LaBLPのプロタンパク質をコードするポリヌクレオチド(配列番号14及び15)は、Lysobacter antibioticus等から調製することができる。上記微生物は、公的微生物保存機関より購入することができる。
 上記の手順で得られたプロタンパク質をコードするポリヌクレオチドに対して、さらに部位特異的変異導入を行うことにより、目的のM23Aサブファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドを調製してもよい。あるいは、目的のM23Aサブファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドは、該プロタンパク質のアミノ酸配列に基づいて化学合成してもよい。
 当該プロタンパク質をコードするポリヌクレオチドは、制御領域と作動可能に連結されていてもよい。本明細書において、「制御領域」とは、その下流に配置された遺伝子の細胞内における発現を制御する機能を有し、好ましくは、該下流に配置された遺伝子を構成的に発現又は高発現させる機能を有する領域である。より具体的には、遺伝子のコーディング領域の上流に存在し、RNAポリメラーゼが相互作用して該コーディング領域の転写を制御する機能を有する領域と定義され得る。好ましくは、本明細書における制御領域とは、遺伝子のコーディング領域の上流200~600ヌクレオチド程度の領域をいう。制御領域は、転写開始制御領域及び/又は翻訳開始制御領域、あるいは転写開始制御領域から翻訳開始制御領域に至るまでの領域を含む。転写開始制御領域はプロモーター及び転写開始点を含む領域であり、翻訳開始制御領域は開始コドンと共にリボソーム結合部位を形成するShine-Dalgarno(SD)配列に相当する部位である(Shine,J.,Dalgarno,L.,Proc.Natl.Acad.Sci.USA.,1974,71:1342-1346)。
 当該制御領域の好ましい例としては、バチルス属菌で機能する制御領域、例えば、バチルス属細菌由来のα-アミラーゼ遺伝子、プロテアーゼ遺伝子、aprE遺伝子又はspoVG遺伝子の制御領域、バチルス・エスピーKSM-S237株のセルラーゼ遺伝子(特開2000-210081号公報)の制御領域、バチルス・エスピーKSM-64株のセルラーゼ遺伝子(特開2011-10387公報)の制御領域、ならびに、スタフィロコッカス・アウレウス(Staphylococcus aureus)由来のカナマイシン耐性遺伝子又はクロラムフェニコール耐性遺伝子の制御領域(いずれも、特開2009-089708号公報を参照)、などが挙げられるが、特に限定されない。該制御領域のより好ましい例として、バチルス・エスピーKSM-S237株のセルラーゼ遺伝子のプロモーター(配列番号16)、バチルス・エスピーKSM-64株のセルラーゼ遺伝子のプロモーター(配列番号17)が挙げられる。また、好ましい制御領域としては、配列番号16又は17と少なくとも80%の同一性を有し、かつ遺伝子の転写及び翻訳を制御する機能を有するヌクレオチド配列が挙げられる。
 また当該プロタンパク質をコードするポリヌクレオチドは、発現されたタンパク質を細胞外へ分泌させる機能を有する分泌シグナルをコードする配列(分泌シグナル配列と呼ぶ)と作動可能に連結されていてもよい。当該分泌シグナル配列の好ましい例としては、バチルス属菌で機能する分泌シグナル配列、例えばバチルス属菌由来の分泌シグナル配列が挙げられる。バチルス属菌由来の分泌シグナル配列の好ましい例としては、バチルス・エスピーKSM-S237株のセルラーゼ遺伝子の分泌シグナル配列(配列番号18)、バチルス・エスピーKSM-64株のセルラーゼ遺伝子の分泌シグナル配列(配列番号19)、枯草菌アミラーゼ遺伝子amyEの分泌シグナル配列(配列番号20)などが挙げられる。バチルス属菌由来の分泌シグナル配列のさらなる例としては、配列番号18~20のいずれかと少なくとも80%の同一性を有し、かつ発現されたタンパク質を細胞外へ分泌させる機能を有するヌクレオチド配列が挙げられる。これらのバチルス属菌由来の分泌シグナル配列に連結される該プロタンパク質をコードする配列は、天然型M23Aサブファミリープロテアーゼの分泌シグナル配列(例えば、上述した配列番号3、6、9、12又は15に含まれる分泌シグナル配列)を含んでいてもいなくてもよい。
 したがって、当該プロタンパク質をコードするポリヌクレオチドは、オープンリーディングフレーム(ORF)に加えて、非翻訳領域(UTR)のヌクレオチド配列を含んでいてもよい。例えば、該ポリヌクレオチドは、上述したプロモーター、分泌シグナル配列、及びターミネーターを含んでいてもよい。
 バチルス属菌への当該プロタンパク質をコードするポリヌクレオチドの導入は、定法に従って行うことができる。例えば、該プロタンパク質をコードするポリヌクレオチド又はそれを含むベクターを宿主バチルス属菌細胞に導入して、該宿主細胞のゲノムに該ポリヌクレオチドを組み込むことができる。又は、該ポリヌクレオチドを含む発現ベクターを、宿主バチルス属菌細胞に導入してもよい。
 宿主バチルス属菌細胞へのポリヌクレオチドやベクターの導入には、例えば、コンピテントセル法、エレクトロポレーション法、プロトプラスト法、パーティクルガン法、PEG法等の公知の形質転換技術を適用することができる。
 当該プロタンパク質をコードするポリヌクレオチドを含むベクターは、該プロタンパク質をコードするポリヌクレオチド、及び必要に応じて制御領域もしくは分泌シグナル配列を、常法により任意のベクター中に挿入し連結することにより構築することができる。該ベクターの種類は特に限定されず、プラスミド、ファージ、ファージミド、コスミド、ウイルス、YACベクター、シャトルベクター等の任意のベクターであってよい。また該ベクターは、好ましくは、宿主細胞内で増幅可能なベクターであり、より好ましくは発現ベクターである。好ましいベクターの例としては、限定するものではないが、pHA3040SP64、pHSP64R又はpASP64(特許第3492935号)、pHY300PLK(大腸菌と枯草菌の両方を形質転換可能な発現ベクター;Jpn J Genet,1985,60:235-243)、pAC3(Nucleic Acids Res,1988,16:8732)等のシャトルベクター;pUB110(J Bacteriol,1978,134:318-329)、pTA10607(Plasmid,1987,18:8-15)等のバチルス属細菌の形質転換に利用可能なプラスミド、等が挙げられる。また大腸菌由来のプラスミド(例えばpET22b(+)、pBR322、pBR325、pUC57、pUC118、pUC119、pUC18、pUC19、pBluescript等)を用いることもできる。
 当該プロタンパク質をコードするポリヌクレオチドを導入されるバチルス属菌としては、特に制限されないが、枯草菌又はその変異株が好ましい。好ましくは、該バチルス属菌は、目的のM23Aサブファミリープロテアーゼ以外の他のプロテアーゼを、細胞外に分泌するか又は溶菌に伴って放出(以下、この過程を単に「放出」と呼ぶ)する。当該他のプロテアーゼの例としては、aprE、epr、wprA、mpr、nprB、bpr、nprE、vpr、aprX、及びこれらに相当する遺伝子にコードされる細胞外プロテアーゼからなる群より選択される少なくとも1種が挙げられる。従来、これらの細胞外プロテアーゼは組換え酵素の生産性を低下させる要因であることが知られており、これらの細胞外プロテアーゼを欠損させた枯草菌株で組換え酵素の生産性が向上したことも報告されている(特開2006-174707号公報)。これに対し、本発明によるM23Aファミリープロテアーゼの製造方法では、これらの細胞外プロテアーゼを保持するバチルス属菌を酵素生産用の宿主としてむしろ好ましく利用する。
 aprE、epr、wprA、mpr、nprB、bpr、nprE、vpr及びaprXは、枯草菌遺伝子である。これらの遺伝子の遺伝子番号とコードするタンパク質の機能を表1に示す。aprE、epr、wprA、mpr、nprB、bpr、nprE、vpr、及びaprXに相当する遺伝子としては、それぞれ、epr、wprA、mpr、nprB、bpr、nprE、vpr、及びaprXと、ヌクレオチド配列において少なくとも80%の同一性を有し、かつ(表1に記載される)同じ機能のタンパク質をコードするバチルス属菌由来の遺伝子が挙げられる。これらの遺伝子は、上述したBSORF DBで検索することができる。
Figure JPOXMLDOC01-appb-T000001
 
 したがって、当該プロタンパク質をコードするポリヌクレオチドを導入される当該バチルス属菌は、好ましくは細胞外プロテアーゼ活性を有する。微生物の細胞外プロテアーゼ活性は、該微生物の培養上清のアゾカゼイン分解活性を測定することで検出することができ、培養上清のアゾカゼイン分解活性は、後述する実施例5(5-2)に示す方法に従って測定することができる。培養上清がアゾカゼイン分解活性を有する微生物は、細胞外プロテアーゼ活性を有すると判断される。
 好ましくは、当該プロタンパク質をコードするポリヌクレオチドを導入される当該バチルス属菌は、aprE又はこれに相当する遺伝子、epr又はこれに相当する遺伝子、wprA又はこれに相当する遺伝子、mpr又はこれに相当する遺伝子、nprB又はこれに相当する遺伝子、bpr又はこれに相当する遺伝子、nprE又はこれに相当する遺伝子、vpr又はこれに相当する遺伝子、及びaprX又はこれに相当する遺伝子からなる群より選択される少なくとも1種の遺伝子を発現し、該遺伝子にコードされる細胞外プロテアーゼを細胞外に分泌するか又は放出する枯草菌又はその変異株である。より好ましくは、該バチルス属菌は、aprE又はこれに相当する遺伝子、epr又はこれに相当する遺伝子、wprA又はこれに相当する遺伝子、mpr又はこれに相当する遺伝子、nprB又はこれに相当する遺伝子、bpr又はこれに相当する遺伝子、nprE又はこれに相当する遺伝子、vpr又はこれに相当する遺伝子、及びaprX又はこれに相当する遺伝子を発現し、該遺伝子にコードされる細胞外プロテアーゼを細胞外に分泌するか又は放出する枯草菌又はその変異株である。
 本発明の方法においては、上記のような手順で得られた、目的のM23Aサブファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドを導入した組換えバチルス属菌を培養する。該バチルス属菌は、一般的なバチルス属菌の培養方法に従って培養すればよい。例えば、バチルス属菌の培養のための培地は、菌の生育に必要な炭素源及び窒素源を含む。炭素源としては、例えばグルコース、デキストラン、可溶性デンプン、ショ糖、メタノールなどが挙げられる。窒素源としては、例えばアンモニウム塩類、硝酸塩類、アミノ酸、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などが挙げられる。必要に応じて、該培地は、他の栄養素、例えば無機塩(例えば、塩化ナトリウム、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウム)、ビタミン類、抗生物質(例えばテトラサイクリン、ネオマイシン、カナマイシン、スペクチノマイシン、エリスロマイシン等)などを含んでいてもよい。培養条件、例えば温度、通気撹拌条件、培地のpH及び培養時間等は、菌種や形質、培養スケール等に応じて適宜選択され得る。
 本発明の方法において、当該組換えバチルス属菌の培養により、目的のM23Aサブファミリープロテアーゼのプロタンパク質が発現される。発現したプロタンパク質は、細胞外に分泌又は放出され、そこで該バチルス属菌が分泌又は放出した他の細胞外プロテアーゼの作用によりプロセシングされ、酵素活性を有する成熟型M23Aサブファミリープロテアーゼへと変換される。したがって、本発明の方法では、成熟型M23Aファミリープロテアーゼが、該組換えバチルス属菌の細胞外に製造される。製造された成熟型M23Aサブファミリープロテアーゼは、培養物の細胞外成分中に蓄積する。
 以上の手順で、本発明の方法により成熟型M23Aサブファミリープロテアーゼが製造される。製造されたM23Aサブファミリープロテアーゼは、常法に従って培養物中から回収することができる。本発明の方法では、製造されたM23Aサブファミリープロテアーゼは細胞外に蓄積するので、細胞を破壊することなく目的の酵素を回収することが可能である。例えば、培養物から遠心分離又はろ過などによって細胞を除去し、集めた上清又はろ液から、硫酸アンモニウム等の塩又はエタノール等の有機溶媒による沈殿、限外ろ過膜等を用いた濃縮や脱塩、イオン交換又はゲルろ過等の各種クロマトグラフィーを用いた精製、などの通常の方法により、酵素を回収することができる。
 本発明はまた、例示的実施形態として以下の物質、製造方法、用途、方法等を包含する。但し、本発明はこれらの実施形態に限定されない。
〔1〕M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドを導入したバチルス属菌を培養し、該バチルス属菌の細胞外に成熟型M23Aファミリープロテアーゼを製造させることを含む、M23Aファミリープロテアーゼの製造方法。
〔2〕好ましくは、前記M23Aファミリープロテアーゼが、配列番号1、4、7、10もしくは13のアミノ酸からなるポリペプチドであるか、又は、配列番号1、4、7、10及び13のいずれかのアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなりかつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチドである、〔1〕記載の方法。
〔3〕好ましくは、前記M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドが以下である、〔2〕記載の方法:
 配列番号2、3、5、6、8、9、11、12、14、及び15のいずれかのヌクレオチド配列からなるポリヌクレオチド;又は
 M23Aサブファミリープロテアーゼのプロ領域をコードするポリヌクレオチドと、その下流に連結されたM23Aサブファミリープロテアーゼをコードするポリヌクレオチドと、を含むポリヌクレオチド、
 好ましくは、該M23Aサブファミリープロテアーゼのプロ領域をコードするポリヌクレオチドが、配列番号2の1~522番ヌクレオチド領域の配列、配列番号5の1~615番ヌクレオチド領域の配列、配列番号8の1~564番ヌクレオチド領域の配列、配列番号11の1~528番ヌクレオチド領域の配列、配列番号14の1~549番ヌクレオチド領域の配列、又はこれらと少なくとも80%同一な配列からなりかつその下流に位置するM23Aサブファミリープロテアーゼの成熟型タンパク質領域の立体構造の形成に寄与するポリヌクレオチドである。
〔4〕好ましくは、前記M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドが以下である、〔2〕記載の方法:
 配列番号2のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号2の523~1062番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号2の1~522番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号3のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号3の595~1134番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号3の1~594番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号5のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号5の616~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号5の1~615番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号6のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号6の709~1257番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号6の1~708番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号8のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号8の565~1104番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号8の1~564番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号9のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号9の625~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号9の1~624番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号11のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号11の529~1065番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号11の1~528番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号12のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号12の628~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号12の1~627番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号14のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号14の550~1086番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
 配列番号14の1~549番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
 配列番号15のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号15の628~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
又は、
 配列番号15の1~627番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド。
〔5〕好ましくは、前記M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドが分泌シグナル領域をさらに含む、〔1〕~〔4〕のいずれか1項記載の方法。
〔6〕好ましくは、前記分泌シグナル領域がバチルス属菌由来の分泌シグナル領域である、〔5〕記載の方法。
〔7〕好ましくは、前記バチルス属菌が、プロテアーゼを細胞外に分泌するか又は溶菌に伴って放出する菌である、〔1〕~〔6〕のいずれか1項記載の方法。
〔8〕好ましくは、前記バチルス属菌が細胞外プロテアーゼ活性を有する、〔7〕記載の方法。
〔9〕好ましくは、前記プロテアーゼがaprE、epr、wprA、mpr、nprB、bpr、nprE、vpr、aprX、及びこれらに相当する遺伝子にコードされる細胞外プロテアーゼからなる群より選択される少なくとも1種である、〔7〕又は〔8〕記載の方法。
〔10〕好ましくは、前記バチルス属菌が枯草菌又はその変異株である、〔1〕~〔9〕のいずれか1項記載の方法。
〔11〕好ましくは、得られた培養物からM23Aファミリープロテアーゼを回収することをさらに含む、〔1〕~〔10〕のいずれか1項記載の方法。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
 以下の実施例で用いたプライマーの配列を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
実施例1 組換え枯草菌によるBLP生産
(1-1)BLP発現プラスミドの構築
 BLP遺伝子(配列番号3)をプラスミドpUC57に挿入したもの(BLP/pUC57)を、GenScript社の人工遺伝子合成サービスを利用して作製した。BLP/pUC57を鋳型としてプライマーペアBLP_S237signal_F/BLP_S237signal_R(配列番号21及び22)及びPrimeSTAR Max Premix(タカラバイオ)を使用してPCRを行った。WO2006/068148A1の実施例7に記載のプラスミドpHY-S237を鋳型とし、プライマーペアvector-F/vector-sig-R(配列番号23及び24)を使用して、同様にPCRを行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理した。得られた断片を用いて、In-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行った。In-Fusion反応液をECOSTM Competent E.coli DH5α(ニッポンジーン、310-06236)に形質転換してプラスミド(pHY-BLP)を構築した。
(A)pHY-BLP2
 pHY-BLPを鋳型としてプライマーペアΔBLPsig_F/ΔBLPsig_R(配列番号25及び26)を用いてPCRを行った。PCR産物をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換して、プラスミド(pHY-BLP2)を構築した。pHY-BLP2は、S237プロモーター配列(配列番号16)、S237分泌シグナル配列(配列番号18)、BLPプロタンパク質(プロ領域+成熟体)をコードする配列、S237ターミネーター配列の順に連結したBLP遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(B)pHY-BLP3
 pHY-BLPを鋳型としてプライマーペアBLPsig_F/BLPsig_R(配列番号27及び28)を用いてPCRを行った。PCR産物をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換して、プラスミド(pHY-BLP3)を構築した。pHY-BLP3は、S237プロモーター配列(配列番号16)、BLPプレプロタンパク質(分泌シグナル+プロ領域+成熟体)をコードする配列、S237ターミネーター配列の順に連結したBLP遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(C)pHY-BLP4
 pHY-BLP2を鋳型としてプライマーペアΔpro_F/Δpro_R(配列番号29及び30)を用いてPCRを行った。PCR産物をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換して、プラスミド(pHY-BLP4)を構築した。pHY-BLP4は、S237プロモーター配列(配列番号16)、S237分泌シグナル配列(配列番号18)、BLP成熟タンパク質をコードする配列、S237ターミネーター配列の順に連結したBLP遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(D)pHY-BLP5
 pHY-BLPを鋳型としてプライマーペアΔBLPsig2_F/BLPsig_R(配列番号31及び28)を用いてPCRを行った。枯草菌168株(Bacillus subtilis Marburg No.168株:Nature,1997,390,p.249)ゲノムDNAを鋳型とし、プライマーペアamyEsig(BLP)_F/amyEsig(BLP)_R(配列番号32及び33)を使用して、同様にPCRを行った。得られた断片を用いてIn-Fusion反応を行い、プラスミド(pHY-BLP5)を構築した。pHY-BLP5は、S237プロモーター配列(配列番号16)、amyE分泌シグナル配列(配列番号20)、BLPプロタンパク質(プロ領域+成熟体)をコードする配列、S237ターミネーター配列の順に連結したBLP遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(1-2)組換え枯草菌の作製
 宿主には、枯草菌168株を使用した。(1-1)で得たBLP発現プラスミドpHY-BLP2~5及び空ベクターpHY300PLK(タカラバイオ)のそれぞれを、以下の方法によって宿主に導入した。1mLのLB培地に枯草菌168株を植菌し、30℃、200spmで一晩振盪培養した。得られた培養液10μLを1mLの新たなLB培地に植菌して37℃、200spmで3時間培養した。培養液を遠心分離してペレットを回収した。ペレットに4mg/mLのリゾチーム(SIGMA)を含むSMMP(0.5Mシュークロース、20mMマレイン酸二ナトリウム、20mM塩化マグネシウム6水塩、35%(w/v)Antibiotic medium 3(Difco))を500μL添加し、37℃で1時間インキュベートした。次に遠心分離によりペレットを回収し、400μLのSMMPに懸濁した。懸濁液33μL、各プラスミド20ngを混合し、さらに100μLの40%(w/v)PEGを加え攪拌し、さらにSMMPを350μL加えた後、30℃で1時間振盪した。得られた液200μLをテトラサイクリン(15μg/mL、SIGMA)を含むDM3再生寒天培地(0.8%寒天(和光純薬)、0.5%コハク酸2ナトリウム6水塩、0.5%カザミノ酸テクニカル(Difco)、0.5%酵母エキス、0.35%リン酸1カリウム、0.15%リン酸2カリウム、0.5%グルコース、0.4%塩化マグネシウム6水塩、0.01%牛血清アルブミン(SIGMA)、0.5%カルボキメチルセルロース、0.005%トリパンブルー(Merck)及びアミノ酸混液(トリプトファン、リジン、メチオニン各10μg/mL);%は(w/v)%)に塗抹して30℃で3日間インキュベートし、形成したコロニーを取得した。
(1-3)組換え枯草菌の培養及び培養上清の取得
 終濃度15ppmとなるようにテトラサイクリンを添加したLB培地1mLに(1-2)で得た組換え枯草菌コロニーを植菌した後、30℃、150spmで一晩培養した。翌日、培養液400μLを2×L-マルトース培地(2%トリプトン、1%酵母エキス、1%NaCl、7.5%マルトース、7.5ppm硫酸マンガン五水和物、21μM ZnSO4、15ppmテトラサイクリン;%は(w/v)%)5mLに植菌し、30℃、150spmで2日間培養した後、培養上清を遠心分離により回収した。
(1-4)培養上清における酵素活性の測定
 基質として、蛍光基Nmaと消光基Lys(Dpn)の間がペンタグリシンであるFRET基質[以下FRET-GGGGG](ピーエイチジャパンにて受注生産)を用いた。ここでNmaとは2-(N-メチルアミノ)ベンゾイル(Nma)を指す。またLys(Dpn)とは2,4-ジニトロフェニル(Dnp)をリシン(Lys)の側鎖に有するものを指す。96穴のアッセイプレ-ト(AGCテクノグラス、3881-096)に(1-3)で得た培養上清(適宣希釈)を2μL、20mM Tris-HCl(pH7.5)を200μL添加し、さらにFRET-GGGGG溶液(1mM FRET-GGGGG、100mM Tris-HCl(pH7.5))を10μL添加して反応液を調製した。infinite M200(TECAN)を用いて温度30℃、励起波長340nm、測定波長440nmにて反応液の蛍光強度を経時で測定した。同じ反応条件で、酵素溶液の代わりに20mM Tris-HCl(pH7.5)、FRET-GGGGGの代わりにFRETS-25-STD1及びFRETS-25-STD2(株式会社ペプチド研究所)の等モル溶液を用いた反応液の蛍光強度を測定し、検量線を作成した。1ユニット(U)の活性は、1μmol FRETS-25-STD1及び1μmol FRETS-25-STD2を含む溶液の蛍光強度をXとしたとき、X/minの蛍光強度の変化を示すのに必要な酵素量とした。培養上清のFRET-GGGGG分解活性(U/mL)を求めた。
 測定の結果を図1に示す。空ベクターを導入した組換え株の培養上清ではFRET-GGGGG分解活性は検出されなかったが、BLPプロタンパク質をコードするプラスミド(pHY-BLP2、3、5)を導入した組換え株の培養上清では、FRET-GGGGG分解活性が検出された。このことから、BLPプロタンパク質をコードするポリヌクレオチドを導入した組換え枯草菌の培養上清中に、グリシン-グリシン結合の分解活性を有する酵素が存在することが示された。また、BLPの本来の分泌シグナルを含むプラスミド(pHY-BLP3)を導入した組換え株と比較して、S237分泌シグナルを含むプラスミド(pHY-BLP2)及びamyE分泌シグナルを含むプラスミド(pHY-BLP5)を導入した組換え株では、培養上清のFRET-GGGGG分解活性は高かった。このことから、枯草菌で効率的に働く分泌シグナルをプロタンパク質に連結することで、BLPの生産性が向上することが示された。また、BLPのプロ領域を含まないプラスミド(pHY-BLP4)を導入した組換え株の培養上清ではFRET-GGGGG分解活性が検出されなかったことから、BLP成熟体の生産にはプロ領域が必須であることが示された。
(1-5)SDS-PAGE
 (1-3)で得た培養上清に終濃度2mMのフッ化フェニルメチルスルホニル(ナカライテスク)を混合した。この混合液を25mMのジチオトレイトール(Thermo Fisher Scientific)を添加した2×Laemmli Sample Buffer(Bio-Rad)と1:1で混合し、100℃で5分間加熱した。得られた溶液をサンプルとして、Any kDTMミニプロティアンTGXTMステインフリーゲル(Bio-Rad)を用いてSDS-PAGEを行った。マーカーにはプレシジョンPlusプロテインTM未着色スタンダード(Bio-Rad)を使用した。
 SDS-PAGEの結果、BLPプロタンパク質をコードするプラスミド(pHY-BLP2、3)を導入した組換え枯草菌の培養上清では、BLP成熟体(19.3kDa)の位置にバンドが検出された(図2)。
実施例2 細胞外プロテアーゼが成熟BLP生産に与える影響
(2-1)BLP-FLAG発現プラスミドの構築
 (1-1)で得たプラスミドpHY-BLP2を鋳型としてプライマーペアBLP_FLAG_F/BLP_FLAG_R(配列番号34及び35)及びPrimeSTAR Max Premix(タカラバイオ)を使用してPCRを行った。PCR産物をDpnI(New England Biolabs)にてDpnI処理を行い、反応液をECOSTM Competent E.coli DH5α(ニッポンジーン、310-06236)に形質転換してプラスミド(pHY-BLP-FLAG)を構築した。プラスミドHY-BLP-FLAGは、S237プロモーター配列(配列番号16)、S237分泌シグナル配列(配列番号18)、C末端にFLAG(登録商標)タグ(DYKDDDDKのアミノ酸配列)を付加したBLPプロタンパク質をコードする配列、S237ターミネーター配列の順に連結したBLP-FLAG遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(2-2)組換え枯草菌の作製及び培養上清の取得
 宿主には、枯草菌168株、及び9種の細胞外プロテアーゼ遺伝子(aprE、epr、wprA、mpr、nprB、bpr、nprE、vpr及びaprX)を欠損した枯草菌Dpr9株(特開2006-174707号公報の実施例1~5において作製されたKao9株)を使用した。(2-1)で得たプラスミドpHY-BLP-FLAG及び空ベクターpHY300PLK(タカラバイオ)のそれぞれを、(1-2)と同様の手順によって宿主に導入し、組換え枯草菌のコロニーを取得した。得られた組換え枯草菌コロニーを(1-3)と同様の手順で培養し、培養上清を得た。
(2-3)培養上清における酵素活性の測定及びウェスタンブロッティング
 (2-2)で得た培養上清の酵素活性を(1-4)と同様の手順で測定した。また(2-2)で得た培養上清を用いて、(1-5)と同様の手順でSDS-PAGEを行った。SDS-PAGE後のゲルを、トランスブロットTurboTMシステム(Bio-Rad)とトランスブロットTurboTMミニPVDF転写パック(Bio-Rad)を使用してPVDF膜へ転写した。転写後のメンブレンをiBind Western System(Life Technologies)を用いてHRP標識抗DYKDDDDK抗体(CST)と反応させた後、イムノスターTMゼータ(富士フイルム和光純薬)を用いて目的タンパク質を検出した。
 酵素活性の測定の結果、168株の組換え体ではFRET-GGGGG分解活性が検出されたが、細胞外プロテアーゼを欠損したDpr9株の組換え体ではFRET-GGGGG分解活性が検出されなかった(図3)。またウェスタンブロットの結果、168株の組換え体ではBLP成熟体(19.3kDa)の位置にバンドが検出されたが、Dpr9株の組換え体ではBLPプロタンパク質(38.1kDa)の位置にバンドが検出された(図4)。これらの結果から、培養物中の細胞外プロテアーゼが、活性型BLP成熟体の生産において重要な役割を担っており、とりわけ、BLPの成熟化に働いていることが示された。
 一方、9株のプロテアーゼ欠損株(Δepr株、ΔwprA株、Δmpr株、ΔnprB株、Δbpr株、ΔnprE株、Δvpr株、ΔaprE株、及びΔaprX株)については、全て株の組換え体の培養上清からFRET-GGGGG分解活性が測定された。そのうち8株の活性は168株に対して80%以上であった。残り1株も168株に対して50%以上のFRET-GGGGG分解活性を有していた。これら及び上記のDpr9株での結果から、細胞外プロテアーゼが活性型BLP成熟体の生産に寄与していることが示唆された。
実施例3 組換え枯草菌による各種M23Aサブファミリープロテアーゼの生産-1
(3-1)LasA発現プラスミドの構築
 LasA遺伝子(配列番号6)をプラスミドpUC57に挿入したもの(LasA/pUC57)をGenScript社の人工遺伝子合成サービスを利用して作製した。LasA/pUC57を鋳型とし、プライマーペアLasA_F/LasA_CR(配列番号36及び37)を使用して、PrimeSTAR Max Premix(タカラバイオ)のプロトコルに従いPCRを行った。pHY-S237(WO2006/068148A1)を鋳型とし、プライマーペアpHY_just_F/pHY_just_R_NEW(配列番号38及び39)を使用して、同様にPCRを行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理した。得られた断片を用いて、In-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行った。反応液をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換してプラスミド(pHY-LasA)を構築した。pHY-LasAを鋳型として、プライマーペアpHY_just_F/LasA_Chis_n_R(配列番号38及び40)、及びKOD-Plus-Mutagenesis Kit(TOYOBO)を使用して、PCR、DpnI消化、及びライゲーションを行った。反応液をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換して、プラスミド(pHY-LasA2)を構築した。pHY-LasA2は、S237プロモーター配列(配列番号16)、S237分泌シグナル配列(配列番号18)、LasAプロタンパク質(プロ領域+成熟体)をコードする配列、S237ターミネーター配列の順に連結したLasA遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(3-2)AhP発現プラスミドの構築
 AhP遺伝子(配列番号9)をプラスミドpUC57に挿入したもの(AhP/pUC57)をGenScript社の人工遺伝子合成サービスを利用して作製した。AhP/pUC57を鋳型とし、プライマーペアAhP_F/AhP_R(配列番号41及び42)を使用して、PrimeSTAR Max Premix(タカラバイオ)のプロトコルに従いPCRを行った。pHY-S237(WO2006/068148A1)を鋳型とし、プライマーペアvector-F/vector-R(配列番号23及び43)を使用して、同様にPCRを行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理した。得られた断片を用いて、In-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行った。反応液をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換して、プラスミド(pHY-AhP)を構築した。pHY-AhPは、S237プロモーター配列(配列番号16)、AhP分泌シグナル配列、AhPプロタンパク質(プロ領域+成熟体)をコードする配列、S237ターミネーター配列の順に連結したAhP遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(3-3)LgBLP発現プラスミドの構築
 Lysobacter gummosus由来のBLPホモログ(WP_057941690.1、以下LgBLPという)の遺伝子(LgBLP遺伝子、配列番号11)をプラスミドpUC57に挿入したもの(LgBLP/pUC57)をGenScript社の人工遺伝子合成サービスを利用して作製した。LgBLP/pUC57を鋳型とし、プライマーペアLgBLP_F/LgBLP_R(配列番号44及び45)を使用して、PrimeSTAR Max Premix(タカラバイオ)のプロトコルに従いPCRを行った。pHY-S237(WO2006/068148A1)を鋳型とし、プライマーペアpHY_just_F/pHY_just_R_NEW(配列番号38及び39)を使用して、同様にPCRを行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理した。得られた断片を用いて、In-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行った。反応液をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換して、プラスミド(pHY-LgBLP)を構築した。pHY-LgBLPは、S237プロモーター配列(配列番号16)、S237分泌シグナル配列(配列番号18)、LgBLPプロタンパク質(プロ領域+成熟体)をコードする配列、S237ターミネーター配列の順に連結したLgBLP遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(3-4)LaBLP発現プラスミドの構築
 Lysobacter antibioticus由来のBLPホモログ(WP_057970430.1、以下LaBLPという)の遺伝子(LaBLP遺伝子、配列番号14)をプラスミドpUC57に挿入したもの(LaBLP/pUC57)をGenScript社の人工遺伝子合成サービスを利用して作製した。LaBLP/pUC57を鋳型とし、プライマーペアLaBLP_F/LaBLP_R(配列番号46及び47)を使用して、PrimeSTAR Max Premix(タカラバイオ)のプロトコルに従いPCRを行った。pHY-S237(WO2006/068148A1)を鋳型とし、プライマーペアpHY_just_F/pHY_just_R_NEW(配列番号38及び39)を使用して、同様にPCRを行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理した。得られた断片を用いて、In-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行った。反応液をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換して、プラスミド(pHY-LaBLP)を構築した。pHY-LaBLPは、S237プロモーター配列(配列番号16)、S237分泌シグナル配列(配列番号18)、LaBLPプロタンパク質(プロ領域+成熟体)をコードする配列、S237ターミネーター配列の順に連結したLaBLP遺伝子発現用配列と、pHY300PLKベクター配列からなる。
(3-5)組換え枯草菌の作製
 宿主には、枯草菌168株を使用した。(3-1)~(3-4)で得た各プラスミド及び空ベクターpHY300PLK(タカラバイオ)のそれぞれを、(1-2)と同様の手順によって宿主に導入し、組換え枯草菌のコロニーを取得した。
(3-6)組換え枯草菌の培養及び培養上清の取得
 (3-5)で得た組換え枯草菌コロニーを(1-3)と同様の手順で培養し、培養上清を得た。
(3-7)培養上清の酵素活性測定
 (3-6)で得た培養上清の酵素活性を(1-4)と同様の手順で測定した。なおLasA活性の測定においては、空ベクター導入株及びLasA発現プラスミド導入株の培養上清をアミコンウルトラ10K(Merck Millipore)により20倍に濃縮したものを使用した。測定の結果、全てのM23Aサブファミリープロテアーゼについて、プロタンパク質をコードするポリヌクレオチドを導入した組換え枯草菌の培養上清では、空ベクター導入枯草菌の培養上清よりも高いFRET-GGGGG分解活性が検出された(図5)。 
実施例4 組換え枯草菌による各種M23Aサブファミリープロテアーゼの生産-2
(4-1)BLPを含む培養上清の調製
(4-1-1)発現ベクターの作製
 BLP遺伝子(配列番号3)をプラスミドpUC57に挿入したもの(BLP/pUC57)をGenScript社の人工遺伝子合成サービスを利用して作製した。BLP/pUC57を鋳型としてプライマーペアBLP_S237signal_F/BLP_S237signal_R(配列番号21及び22)及びPrimeSTAR Max Premix(タカラバイオ)を使用してPCR反応を行った。WO2006/068148 A1の実施例7に記載のプラスミドpHY-S237を鋳型とし、プライマーペアvector-F/vector-sig-R(配列番号23及び24)を使用して、同様にPCR反応を行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理を行った。続いてIn-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行った。
 In-Fusion反応液を用いてECOSTMCompetent E.coli DH5α(ニッポンジーン、310-06236)を形質転換した。形質転換処理した細胞をアンピシリンを含有するLBプレートに塗抹し、37℃で一晩培養した。プレート上に形成したコロニーをアンピシリンを含むLB培地に植菌して、一晩培養した後、菌体を回収してHigh Pure Plasmid Isolation Kit(Roche)を使用してプラスミド(BLP/pHY)を抽出した。抽出したBLP/pHYを鋳型としてプライマーペアΔS237N_fw/ΔS237N_rv(配列番号48及び49)を用いてPCR反応を行った。このPCR産物をE.coli HST08 Premium Competent Cells(タカラバイオ)に形質転換した。形質転換処理した細胞をアンピシリンを含有するLBプレートに塗抹し、37℃で一晩培養した。プレート上に形成したコロニーをアンピシリンを含むLB培地に植菌して、一晩培養した後、菌体を回収してHigh Pure Plasmid Isolation Kit(Roche)を使用してプラスミド(BLP2/pHY)を抽出した。
(4-1-2)酵素生産形質転換株の作製
 1mLのLB培地に枯草菌168株(Bacillus subtilis Marburg No.168株:Nature,390,1997,p.249)を植菌し、30℃、200rpmで一晩振盪培養した。1mLの新たなLB培地にこの培養液を10μL植菌して37℃、200rpmで3時間培養した。この培養液を遠心分離してペレットを回収した。ペレットに4mg/mLのリゾチーム(SIGMA)を含むSMMP[0.5Mシュークロース、20mMマレイン酸二ナトリウム、20mM塩化マグネシウム6水塩、35%(w/v)Antibiotic Medium 3(Difco)]を500μL添加し、37℃で1時間インキュベートした。次に遠心分離によりペレットを回収し、400μLのSMMPに懸濁した。懸濁液13μL、(4-1-1)で得たプラスミドBLP2/pHY溶液(10mM Tris-HCl pH8.5、34.2ng/μL)2μL、SMMP20μLを混合し、さらに100μLの40%PEGを加え攪拌し、さらにSMMPを350μL加えた後、30℃で1時間振盪した。この液200μLをテトラサイクリン(15μg/mL、SIGMA)を含むDM3再生寒天培地[0.8%寒天(和光純薬)、0.5%コハク酸2ナトリウム6水塩、0.5%カザミノ酸テクニカル(Difco)、0.5%酵母エキス、0.35%リン酸1カリウム、0.15%リン酸2カリウム、0.5%グルコース、0.4%塩化マグネシウム6水塩、0.01%牛血清アルブミン(SIGMA)、0.5%カルボキメチルセルロース、0.005%トリパンブルー(Merck)及びアミノ酸混液(トリプトファン、リジン、メチオニン各10μg/mL);%は(w/v)%]に塗抹して30℃で3日間インキュベートし、形成したコロニーを取得した。
(4-1-3)形質転換株による酵素製造
 LB培地に終濃度15ppmとなるようにテトラサイクリンを添加した。この培地5mLに(4-1-2)で得た枯草菌形質転換体コロニーを植菌した後、30℃、250rpmで一晩培養した。翌日この培養液400μLを2×L-マルトース培地(2%トリプトン、1%酵母エキス、1%NaCl、7.5%マルトース、7.5ppm硫酸マンガン五水和物、15ppmテトラサイクリン、6ppm硫酸亜鉛七水和物;%は(w/v)%)20mLに植菌し、32℃、230rpmで2日間培養した後、菌体から産生された酵素を含む培養上清を遠心分離により回収した。
(4-2)LasAを含む培養上清の調製
 LasA遺伝子(配列番号6)をプラスミドpUC57に挿入したもの(LasA/pUC57)をGenScript社の人工遺伝子合成サービスを利用して作製した。LasA/pUC57を鋳型とし、プライマーペアLasA_F/LasA_CR(配列番号36及び37)を使用して、PrimeSTAR Max Premix(タカラバイオ)のプロトコルに従いPCR反応を行った。WO2006/068148 A1の実施例7に記載のプラスミドpHY-S237を鋳型とし、プライマーペアpHY_just_F/pHY_just_R_NEW(配列番号38及び39)を使用して、同様にPCR反応を行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理を行った。続いてIn-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行うことでプラスミド(LasA/pHY)溶液を得た。
 得られたプラスミド(LasA/pHY)溶液を用いて、上記(4-1-2)と同様の手順で枯草菌prsA遺伝子発現強化株(特開2007-49986号公報の実施例1において作製されたprsA-Kc株)の形質転換を行い、枯草菌形質転換体コロニーを取得した。2×L液体培地に終濃度15ppmとなるようにテトラサイクリンを添加した。この培地5mLに枯草菌形質転換体コロニーを植菌した後、30℃、250rpmで一晩培養した。培養液からペレットを回収し、ペレットからプラスミドLasA/pHYを抽出した。抽出したプラスミドLasA/pHYを鋳型として、プライマーペアpHY_just_F/LasA_Chis_n_R(配列番号38及び40)、ならびにKOD-Plus-Mutagenesis Kit(TOYOBO)を使用して、PCR反応、Dpn Iによるプラスミドの消化、及びライゲーションを行い、プラスミド(LasA2/pHY)を得た。
 得られたプラスミド(LasA2/pHY)を使用して、上記(4-1-2)と同様の方法で形質転換を行った。このとき宿主として枯草菌prsA遺伝子発現強化株(特開2007-49986号公報の実施例1において作製されたprsA-Kc株)を使用した。次いで、得られた形質転換株を(4-1-3)と同様の手順で培養し、菌体から産生された酵素を含む培養上清を回収した。
(4-3)AhPを含む培養上清の調製
 AhP遺伝子(配列番号9)をプラスミドpUC57に挿入したもの(AhP/pUC57)をGenScript社の人工遺伝子合成サービスを利用して作製した。AhP/pUC57を鋳型とし、プライマーペアAhP_F/2R_bacillus-Chis(配列番号41及び50)を使用して、PrimeSTAR Max Premix(タカラバイオ)のプロトコルに従いPCR反応を行った。WO2006/068148 A1の実施例7に記載のプラスミドpHY-S237を鋳型とし、プライマーペアvector-F/vector-R(配列番号23及び43)を使用して、同様にPCR反応を行った。それぞれのPCR産物をDpnI(New England Biolabs)にてDpnI処理を行った。続いてIn-Fusion,HD Cloning kit(Clontech)のプロトコルに従ってIn-Fusion反応を行うことでプラスミド(AhP/pHY)溶液を得た。
 得られたプラスミド(AhP/pHY)を使用して、上記(4-1-2)と同様の方法で形質転換を行った。このとき宿主として枯草菌168株を使用した。次いで、得られた形質転換株を(4-1-3)と同様の手順で培養し、菌体から産生された酵素を含む培養上清を回収した。
(4-4)培養上清からのプロテアーゼの調製
 (4-1)~(4-3)で得た培養上清から目的のプロテアーゼを調製した。培養上清をアミコンウルトラ 分画分子量10K(メルクミリポア)を用いてBufferAでバッファー交換した。バッファー交換後の液から、AKTA explorer 10S(GEヘルスケア)を用いて酵素を調製した。まず該バッファー交換で得られた液をカラム1に通し、次いでBufferBを使用してカラム1の吸着成分を溶出させた。溶出分画のうちFRET-GGGGGの分解活性が認められる分画液を回収した。続いて、回収した分画液を、20mM Tris-HCl(pH7.5)、200mM NaClの溶液で平衡化したカラム2を用いてSize Exclusion Chromatographyにかけ、FRET-GGGGGの分解活性が認められる分画液を回収した。回収した分画液をアミコンウルトラ 分画分子量10Kを用いて20mM Tris-HCl(pH7.5)溶液でバッファー交換し、目的のプロテアーゼを含む酵素溶液を得た。各培養上清に使用したBufferA、BufferB、カラム1、及びカラム2は、表3のとおりとした。
Figure JPOXMLDOC01-appb-T000003
実施例5 枯草菌細胞外プロテアーゼ活性の測定
(5-1)枯草菌の培養及び培養上清の取得
 枯草菌168株、9株の細胞外プロテアーゼ欠損株(Δepr株、ΔwprA株、Δmpr株、ΔnprB株、Δbpr株、ΔnprE株、Δvpr株、ΔaprE株、及びΔaprX株)及びDpr9株をLB培地1mLにそれぞれ植菌した後、30℃、150spmで一晩培養した。翌日、培養液400μLを2×L-マルトース培地(2%トリプトン、1%酵母エキス、1%NaCl、7.5%マルトース、7.5ppm硫酸マンガン五水和物、21μM ZnSO4;%は(w/v)%)5mLに植菌し、30℃、150spmで2日間培養した後、培養上清を遠心分離により回収した。
(5-2)培養上清のアゾカゼイン分解活性測定
 培養上清中に含まれるプロテアーゼの活性を測定する基質として、アゾカゼイン(SIGMA)を用いた。基質溶液(1%(w/v)アゾカゼイン、50mM Tris-HCl(pH7.5))に(5-1)で得た培養上清を50μL添加して37℃で18時間反応させた。5%トリクロロ酢酸水溶液2mLを添加して反応を停止し、15000rpm、4℃で5分間遠心した。上清を適宣希釈して光路長1cmのキュベットを用いて340nmの吸光度を測定した。培養上清と5%トリクロロ酢酸水溶液の添加順を逆にしたものを対照とした。対照と比較して統計学的に有意(t検定、p<0.05)な吸光度の増加が検出された培養上清を、アゾカゼイン分解活性ありと判定した。測定の結果、168株及び9株の細胞外プロテアーゼ欠損株(Δepr株、ΔwprA株、Δmpr株、ΔnprB株、Δbpr株、ΔnprE株、Δvpr株、ΔaprE株、及びΔaprX株)の培養上清ではアゾカゼイン分解活性が検出され、一方、Dpr9株の培養上清では検出されなかった(検出限界以下)。これらの結果は、それぞれの株の活性型BLP生産能と一致した(表4)。
Figure JPOXMLDOC01-appb-T000004
 
実施例6 天然のBLP生産菌とのBLP生産性比較
(6-1)BLP生産菌の培養及び培養上清の取得
 これまで、活性型のBLPを生産する方法としては、単離された天然のBLP生産菌を培養する方法のみが実証されている。本実施例では、天然のBLP生産菌にBLPを生産させ、その生産性を実施例1のBLP生産性組換え枯草菌と比較した。
 天然のBLP生産菌であるAchromobacter lyticus M497-1株をLB培地1mLに植菌した後、30℃、150spmで一晩培養した。翌日、培養液400μLを2×L-マルトース培地(2%トリプトン、1%酵母エキス、1%NaCl、7.5%マルトース、7.5ppm硫酸マンガン五水和物、21μM ZnSO4;%は(w/v)%)5mLに植菌し、30℃、150spmで2日間培養した後、培養上清を遠心分離により回収した。
(6-2)培養上清の酵素活性測定
 (6-1)で得た培養上清の酵素活性を(1-4)と同様の手順で測定した。測定の結果、Achromobacter lyticus M497-1株の培養上清からは14U/mLのFRET-GGGGG分解活性が検出された。これは実施例1の成熟BLP発現組換え枯草菌による活性(図1、それぞれ43、594及び613U/mL)と比較して大幅に小さい値であった。なお、これまでの報告で最も効率的にBLPを生産する菌株は、非特許文献3に記載のLysobacter sp. IB-9374株である。しかし、その生産性はAchromobacter lyticus M497-1株の2.4倍とされており、実施例1の組換え枯草菌によるBLP生産性には遠く及ばないものと思われる。以上のことから、本発明は、異種発現というだけでなくその生産性においても既存技術に対して大きく優位性を持つ技術である。
 以上、本発明の実施形態を説明したが、これらが、本発明を、説明した特定の実施形態に限定することを意図するものではないことを理解すべきである。本発明の範囲内にある様々な他の変更及び修正は当業者には明白である。本明細書に引用されている文献及び特許出願は、あたかもそれが本明細書に完全に記載されているかのように参考として援用される。

Claims (11)

  1.  M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドを導入したバチルス属菌を培養し、該バチルス属菌の細胞外に成熟型M23Aファミリープロテアーゼを製造させることを含む、M23Aファミリープロテアーゼの製造方法。
  2.  前記M23Aファミリープロテアーゼが、配列番号1、4、7、10もしくは13のアミノ酸からなるポリペプチドであるか、又は、配列番号1、4、7、10及び13のいずれかのアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなりかつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチドである、請求項1記載の方法。
  3.  前記M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドが以下である、請求項2記載の方法:
     配列番号2、3、5、6、8、9、11、12、14、及び15のいずれかのヌクレオチド配列からなるポリヌクレオチド;又は
     M23Aサブファミリープロテアーゼのプロ領域をコードするポリヌクレオチドと、その下流に連結されたM23Aサブファミリープロテアーゼをコードするポリヌクレオチドと、を含むポリヌクレオチド。
  4.  前記M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドが以下である、請求項2記載の方法:
     配列番号2のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号2の523~1062番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号2の1~522番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号3のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号3の595~1134番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号3の1~594番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号5のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号5の616~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号5の1~615番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号6のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号6の709~1257番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号6の1~708番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号8のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号8の565~1104番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号8の1~564番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号9のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号9の625~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号9の1~624番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号11のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号11の529~1065番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号11の1~528番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号12のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号12の628~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号12の1~627番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号14のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号14の550~1086番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
     配列番号14の1~549番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼのプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド;
     配列番号15のヌクレオチド配列と少なくとも80%同一なヌクレオチド配列からなり、かつ配列番号15の628~1164番ヌクレオチド領域に相当する領域に前記M23Aファミリープロテアーゼをコードするヌクレオチド配列を有する、ポリヌクレオチド;
    又は、
     配列番号15の1~627番ヌクレオチド領域の配列又はこれと少なくとも80%同一でありかつM23Aサブファミリープロテアーゼの分泌シグナル及びプロ領域をコードする配列と、その下流に連結された前記M23Aファミリープロテアーゼをコードする配列と、を有するポリヌクレオチド。
  5.  前記M23Aファミリープロテアーゼのプロタンパク質をコードするポリヌクレオチドが分泌シグナル領域をさらに含む、請求項1~4のいずれか1項記載の方法。
  6.  前記分泌シグナル領域がバチルス属菌由来の分泌シグナル領域である、請求項5記載の方法。
  7.  前記バチルス属菌が、プロテアーゼを細胞外に分泌するか又は溶菌に伴って放出する菌である、請求項1~6のいずれか1項記載の方法。
  8.  前記バチルス属菌が細胞外プロテアーゼ活性を有する、請求項7記載の方法。
  9.  前記プロテアーゼがaprE、epr、wprA、mpr、nprB、bpr、nprE、vpr、aprX、及びこれらに相当する遺伝子にコードされる細胞外プロテアーゼからなる群より選択される少なくとも1種である、請求項7又は8記載の方法。
  10.  前記バチルス属菌が枯草菌又はその変異株である、請求項1~9のいずれか1項記載の方法。
  11.  得られた培養物からM23Aファミリープロテアーゼを回収することをさらに含む、請求項1~10のいずれか1項記載の方法。 
PCT/JP2019/000894 2018-01-16 2019-01-15 M23aファミリープロテアーゼの製造方法 WO2019142773A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/961,459 US11371034B2 (en) 2018-01-16 2019-01-15 Production method for protease of M23A subfamily
EP19741539.1A EP3741856A4 (en) 2018-01-16 2019-01-15 MANUFACTURING METHOD FOR PROTEASE OF THE M23A FAMILY
CN201980008312.8A CN111601894B (zh) 2018-01-16 2019-01-15 M23a家族蛋白酶的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-005193 2018-01-16
JP2018005194A JP7158149B2 (ja) 2018-01-16 2018-01-16 角質汚れ分解能の評価方法
JP2018005193A JP7057140B2 (ja) 2018-01-16 2018-01-16 角質汚れ洗浄剤
JP2018-005194 2018-01-16
JP2018219142A JP7233203B2 (ja) 2018-11-22 2018-11-22 M23aファミリープロテアーゼの製造方法
JP2018-219142 2018-11-22

Publications (1)

Publication Number Publication Date
WO2019142773A1 true WO2019142773A1 (ja) 2019-07-25

Family

ID=67301498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000894 WO2019142773A1 (ja) 2018-01-16 2019-01-15 M23aファミリープロテアーゼの製造方法

Country Status (4)

Country Link
US (1) US11371034B2 (ja)
EP (1) EP3741856A4 (ja)
CN (1) CN111601894B (ja)
WO (1) WO2019142773A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085563A1 (ja) 2019-10-30 2021-05-06 花王株式会社 皮革改質剤
EP3741857A4 (en) * 2018-01-16 2021-12-22 Kao Corporation DETERGENT FOR SPOTS DERIVED FROM THE CORNEAL LAYER, AND METHOD OF EVALUATING THE ABILITY TO DEGRADE SPOTS DERIVED FROM THE CORNEAL LAYER
WO2022091723A1 (ja) 2020-10-30 2022-05-05 花王株式会社 変異プロテアーゼ及びその利用
WO2023027066A1 (ja) * 2021-08-26 2023-03-02 花王株式会社 硬質表面処理剤

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492935B1 (ja) 1968-10-07 1974-01-23
JPH04108387A (ja) 1990-08-29 1992-04-09 Wako Pure Chem Ind Ltd β―リティック プロテアーゼ遺伝子及びその遺伝子産物の製造法
JP2000210081A (ja) 1999-01-21 2000-08-02 Kao Corp 耐熱性アルカリセルラ―ゼ遺伝子
JP2003116563A (ja) * 2001-10-11 2003-04-22 Wako Pure Chem Ind Ltd キサントモナス産生β−溶菌酵素産生遺伝子及びその用途
WO2006068148A1 (ja) 2004-12-20 2006-06-29 Kao Corporation 組換え微生物
JP2007049986A (ja) 2005-07-21 2007-03-01 Kao Corp 組換え微生物
JP2009089708A (ja) 2007-09-20 2009-04-30 Kao Corp 組換え微生物及びポリ−ガンマ−グルタミン酸の製造方法
JP2011010387A (ja) 2009-06-23 2011-01-13 Diamond Electric Mfg Co Ltd フルブリッジ型電力変換回路及びフルブリッジ型dc−dcコンバータ
JP2018005193A (ja) 2016-07-08 2018-01-11 富士ゼロックス株式会社 画像形成装置および定着装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300117B1 (en) * 1997-09-15 2001-10-09 Genencor International, Inc. Proteases from gram-positive organisms
ATE463563T1 (de) * 2003-06-19 2010-04-15 Novozymes As Verbesserte proteasen und verfahren zu ihrer herstellung
WO2005009378A2 (en) * 2003-07-24 2005-02-03 Merck & Co., Inc. Polypeptides for inducing a protective immune response against staphylococcus aureus
WO2009059054A2 (en) * 2007-10-30 2009-05-07 The Trustees Of The University Of Pennsylvania Bacteria strains an d bacteriocin produced therefrom
EP2396344A2 (en) * 2009-02-13 2011-12-21 Novartis AG Nucleic acid molecule of a biosynthetic cluster encoding non ribosomal peptide synthases and uses thereof
WO2012128628A1 (en) * 2011-03-22 2012-09-27 Mucosis B.V. Immunogenic compositions in particulate form and methods for producing the same
EP2689015B1 (en) * 2011-03-23 2015-01-07 Novozymes A/S Methods for producing secreted polypeptides
CN104630123B (zh) * 2013-11-12 2018-09-14 华中农业大学 地衣芽胞杆菌表达宿主
EP3102669B1 (en) * 2014-02-07 2019-06-12 DSM IP Assets B.V. Improved bacillus host
WO2015158719A1 (en) 2014-04-15 2015-10-22 Aalborg Universitet Composition and method for degradation of keratinaceous materials
JP7218090B2 (ja) * 2018-01-12 2023-02-06 花王株式会社 タンパク質の製造方法
JP7034724B2 (ja) 2018-01-16 2022-03-14 花王株式会社 ケラチン断片の製造方法
CN111615559B (zh) * 2018-01-16 2024-01-16 花王株式会社 角质污垢清洁剂及角质污垢分解能力的评价方法
JP7057140B2 (ja) * 2018-01-16 2022-04-19 花王株式会社 角質汚れ洗浄剤
JP7158149B2 (ja) * 2018-01-16 2022-10-21 花王株式会社 角質汚れ分解能の評価方法
WO2021085563A1 (ja) * 2019-10-30 2021-05-06 花王株式会社 皮革改質剤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492935B1 (ja) 1968-10-07 1974-01-23
JPH04108387A (ja) 1990-08-29 1992-04-09 Wako Pure Chem Ind Ltd β―リティック プロテアーゼ遺伝子及びその遺伝子産物の製造法
JP2000210081A (ja) 1999-01-21 2000-08-02 Kao Corp 耐熱性アルカリセルラ―ゼ遺伝子
JP2003116563A (ja) * 2001-10-11 2003-04-22 Wako Pure Chem Ind Ltd キサントモナス産生β−溶菌酵素産生遺伝子及びその用途
WO2006068148A1 (ja) 2004-12-20 2006-06-29 Kao Corporation 組換え微生物
JP2006174707A (ja) 2004-12-20 2006-07-06 Kao Corp 組換え微生物
JP2007049986A (ja) 2005-07-21 2007-03-01 Kao Corp 組換え微生物
JP2009089708A (ja) 2007-09-20 2009-04-30 Kao Corp 組換え微生物及びポリ−ガンマ−グルタミン酸の製造方法
JP2011010387A (ja) 2009-06-23 2011-01-13 Diamond Electric Mfg Co Ltd フルブリッジ型電力変換回路及びフルブリッジ型dc−dcコンバータ
JP2018005193A (ja) 2016-07-08 2018-01-11 富士ゼロックス株式会社 画像形成装置および定着装置

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProt 17 February 2016 (2016-02-17), "Beta-lytic metalloendopeptidase", Database accession no. AOAOS2FCI9_9GAMM *
GOKCEN, A. ET AL.: "Biofilm-degrading enzymes from Lysobacter gummosus", VIRULENCE, vol. 5, no. 3, 1 April 2014 (2014-04-01), pages 378 - 387, XP055625383 *
HOHMANN, HANS-PETER ET AL.: "Host Organisms: Bacillus subtilis", INDUSTRIAL BIOTECHNOLOGY: MICROORGANISMS, vol. 1, 25 November 2016 (2016-11-25) - 2017, pages 221 - 297, XP055625397 *
J BACTERIOL, vol. 134, 1978, pages 318 - 329
JOURNAL OF BACTERIOLOGY, vol. 178, 1996, pages 6608 - 6617
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 95, 2003, pages 27 - 34
JPN J GENET, vol. 60, 1985, pages 235 - 243
LOEWY, AG ET AL.: "Purification and characterization of a novel zinc-proteinase from cultures of Aeromonas hydrophila", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 12, 25 April 1993 (1993-04-25), pages 9071 - 9078, XP055625373 *
MOLECULES, vol. 19, 2014, pages 4779 - 4790
NATURE, vol. 390, 1997, pages 249
NUCLEIC ACIDS RES, vol. 16, 1988, pages 8732
NUCLEIC ACIDS RES., vol. 22, 1994, pages 4673 - 4680
PLASMID, vol. 18, 1987, pages 8 - 15
SCIENCE, vol. 227, 1985, pages 1435 - 1441
See also references of EP3741856A4
SHINE, J.DALGARNO, L., PROC. NATL. ACAD. SCI. USA., vol. 71, 1974, pages 1342 - 1346
SPENCER, J. ET AL.: "Crystal structure of the LasA virulence factor from Pseudomonas aeruginosa: substrate specificity and mechanism of M23 metallopeptidases", JOURNAL OF MOLECULAR BIOLOGY, vol. 396, no. 4, 2010, pages 908 - 923, XP027234820, doi:10.1016/j.jmb.2009.12.021 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741857A4 (en) * 2018-01-16 2021-12-22 Kao Corporation DETERGENT FOR SPOTS DERIVED FROM THE CORNEAL LAYER, AND METHOD OF EVALUATING THE ABILITY TO DEGRADE SPOTS DERIVED FROM THE CORNEAL LAYER
US11891590B2 (en) 2018-01-16 2024-02-06 Kao Corporation Detergent for corneum-derived stains, and method for evaluating ability to degrade corneum-derived stains
WO2021085563A1 (ja) 2019-10-30 2021-05-06 花王株式会社 皮革改質剤
WO2022091723A1 (ja) 2020-10-30 2022-05-05 花王株式会社 変異プロテアーゼ及びその利用
WO2023027066A1 (ja) * 2021-08-26 2023-03-02 花王株式会社 硬質表面処理剤

Also Published As

Publication number Publication date
EP3741856A4 (en) 2021-10-27
US20210207116A1 (en) 2021-07-08
CN111601894A (zh) 2020-08-28
CN111601894B (zh) 2024-05-14
US11371034B2 (en) 2022-06-28
EP3741856A1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2019142773A1 (ja) M23aファミリープロテアーゼの製造方法
US7585674B2 (en) Host microorganisms
JP5753419B2 (ja) 遺伝子欠損株及びそれを用いたタンパク質の製造方法
WO2010032492A1 (ja) 麹菌アルカリプロテアーゼプロモーター
JP7233203B2 (ja) M23aファミリープロテアーゼの製造方法
JP4839144B2 (ja) 宿主微生物
JP6059416B2 (ja) 溶菌が抑制された微生物、当該微生物の製造方法、当該微生物を用いたタンパク質等の製造方法、及び微生物の溶菌抑制方法
JP2004173598A (ja) 宿主微生物
JP4839143B2 (ja) 組換え微生物
JP5881352B2 (ja) σD因子抑制解除株及びそれを用いたタンパク質の製造方法
JP5695325B2 (ja) 新規枯草菌変異株
JP2006345860A (ja) 組換えバチルス属細菌
JP4736085B2 (ja) 宿主微生物
JP7389640B2 (ja) アルカリプロテアーゼ
JP6791623B2 (ja) 組換え微生物及びその利用
JP5841749B2 (ja) 組換え微生物
Jeong et al. Improvement of fibrinolytic activity of Bacillus subtilis 168 by integration of a fibrinolytic gene into the chromosome
JP5520498B2 (ja) タンパク質又はポリペプチドの製造方法
JP2009038985A (ja) 微生物及びこれを用いたタンパク質又ポリペプチドの製造方法
CN111278979B (zh) 重组大肠杆菌天冬酰胺酶的生产方法
JP2020092616A (ja) モノアシルグリセロールリパーゼの製造方法
JP5474448B2 (ja) 変異バチルス属細菌
JP5828634B2 (ja) 組換え微生物を用いたタンパク質の製造方法
JP5739114B2 (ja) 組換え微生物
JP4842750B2 (ja) 組換え微生物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019741539

Country of ref document: EP

Effective date: 20200817