WO2021085563A1 - 皮革改質剤 - Google Patents

皮革改質剤 Download PDF

Info

Publication number
WO2021085563A1
WO2021085563A1 PCT/JP2020/040704 JP2020040704W WO2021085563A1 WO 2021085563 A1 WO2021085563 A1 WO 2021085563A1 JP 2020040704 W JP2020040704 W JP 2020040704W WO 2021085563 A1 WO2021085563 A1 WO 2021085563A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
glycine
seq
acid sequences
leather
Prior art date
Application number
PCT/JP2020/040704
Other languages
English (en)
French (fr)
Inventor
貴大 日置
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP20881726.2A priority Critical patent/EP4053295A4/en
Priority to US17/768,311 priority patent/US20240117454A1/en
Priority to CN202080075751.3A priority patent/CN114616348B/zh
Publication of WO2021085563A1 publication Critical patent/WO2021085563A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C1/00Chemical treatment prior to tanning
    • C14C1/08Deliming; Bating; Pickling; Degreasing

Definitions

  • the present invention relates to a leather modifier used in the production of natural leather.
  • Natural animal leather includes footwear such as shoes, bags, handbags, clothing such as clothing, gloves and belts, furniture such as chairs, interiors and car seats, sporting goods, horse gear, drums, handicrafts, etc. Widely used in daily life, it is an important material for daily necessities.
  • the production of natural leather can be roughly divided into four processes: 1) preparatory work, 2) tanning process, 3) retanning / dyeing / greasing process, and 4) finishing process.
  • preparatory work blood, dirt, salt, meat pieces, fat, etc. adhering to the raw leather are removed, the skin is swollen with lime and sulfide, collagen fibers are loosened and hair is decomposed and removed, and unnecessary proteins are removed by batting. Is decomposed and removed, and the grain surface is smoothed.
  • Bating is also called fermentation, and is applied to the lime-pickled and decalcified skin, i) removal of hair roots, proteolytic substances, fats, etc. remaining on the skin, ii) removal of interfiber substances in the skin, iii) skin.
  • This is an enzyme treatment step performed for the purpose of removing elastin fibers and the like that contract the protein, iv) smoothing the grain surface of the skin, and v) slight bundling of collagen fibers.
  • the enzyme used for baking is required to bring about the above effects.
  • the shrinkage of leather can be suppressed and the area can be expanded by decomposing elastin in leather by an enzyme having elastin decomposing power (Patent Document 1), but at the same time, collagen, which is the main component of leather, is decomposed. If this happens, there will be a problem that the strength will decrease.
  • Patent Document 2 a method of treating with a mixture of protease and elastase after chrome tanning has been proposed (Patent Document 2).
  • Patent Document 2 a method of treating with a mixture of protease and elastase after chrome tanning has been proposed.
  • the type of tanning process is limited, and it becomes necessary to change the manufacturing process itself.
  • the M23 family of proteases is a protease family defined in the MEROPS database as a protease capable of degrading Gly-Gly bonds, has activity of degrading elastin and proteoglycan of bacterial cell wall, and is also known as a bacteriolytic enzyme. .. Among them, ⁇ -lytic protease (BLP) belonging to the M23A subfamily has been reported to have strong lytic activity against Gram-positive bacteria such as Bacillus subtilis (Patent Document 3). Further, it has recently been found that the M23A subfamily protease can be efficiently produced from a culture by introducing the M23A family protease gene into a Bacillus host and culturing it (Patent Document 4). ..
  • M23A family protease as an enzyme for leather production has not been reported so far.
  • Patent Document 1 International Publication No. 2001/035901
  • Patent Document 2 International Publication No. 2002/088397
  • Patent Document 3 Japanese Patent Application Laid-Open No. 4-108387
  • Patent Document 4 International Publication No. 2019/142773
  • the present invention relates to the following 1) to 4).
  • a leather treatment method comprising a step of contacting an M23A subfamily protease or an enzyme composition containing the same with the skin.
  • a leather modifier containing M23A subfamily protease as an active ingredient e.g., a leather modifier containing M23A subfamily protease as an active ingredient.
  • Use of M23A subfamily protease to produce leather modifiers 4) Use of M23A subfamily proteases to modify leather.
  • Elastin and collagen degrading activity of BLP (relative to sabinase). Elastin-degrading effect of cowhide (without enzyme treatment). Elastin-degrading effect of cowhide (sabinase treatment). Red line: The boundary between the elastin-decomposed part and the remaining part. Elastin decomposition effect of cowhide (PPE treatment). Red line: The boundary between the elastin-decomposed part and the remaining part. Elastin decomposition effect of cowhide (BLP treatment). Elastin-degrading effect of cowhide (without enzyme treatment). Elastin-degrading effect of cowhide (sabinase treatment).
  • Red line The boundary between the elastin-decomposed part and the remaining part. Elastin decomposition effect of cowhide (PPE treatment). Red line: The boundary between the elastin-decomposed part and the remaining part. Elastin decomposition effect of cowhide (LgBLP treatment).
  • the present invention relates to a leather modifier that suppresses shrinkage of leather and exerts an area expansion effect, and a leather treatment method using the same.
  • the present inventor has found that the M23A subfamily protease represented by BLP can efficiently decompose deep elastin in the skin with almost no decomposition of collagen, and is useful as an enzyme that exerts a contraction-suppressing effect on the skin. It was.
  • the enzyme M23A subfamily protease provided by the present invention has almost no collagen-degrading activity and is excellent in the ability to efficiently decompose deep elastin in the skin. By using the enzyme in the leather treatment step, it is possible to suppress the shrinkage of the leather and expand the area.
  • skin means the skin of animals such as cows, pigs, deer, sheep, horses, goats, kangaroos, and crocodiles.
  • At least 80% identity with respect to a nucleotide sequence or an amino acid sequence is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, still more preferably. It refers to 97% or more, more preferably 98% or more, and even more preferably 99% or more identity.
  • nucleotide sequences or amino acid sequences can be calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-41). Specifically, the analysis is performed using the homology analysis (Search homology) program of the genetic information processing software Genetyx-Win (Ver.5.1.1; software development) with Unit size to homology as 2. Can be calculated by
  • the "corresponding position" on an amino acid sequence and a nucleotide sequence is a preservation in which the target sequence and the reference sequence (for example, the amino acid sequence shown by SEQ ID NO: 2) are present in each amino acid sequence or nucleotide sequence. It can be determined by aligning the amino acid residues or nucleotides to give maximum homology. Alignment can be performed using known algorithms and the procedure is known to those of skill in the art. For example, alignment can be performed by using the Clustal W multiple alignment program (Thompson, J. D. et al, 1994, Nucleic Acids Res., 22: 4673-4680) with default settings.
  • Clustal W2 or Clustal omega which is a revised version of Clustal W
  • Clustal W, Clustal W2 and Clustal omega are, for example, the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the DNA data of Japan operated by the National Institute of Genetics. It can be used on the website of the bank (DDBJ [www.ddbj.nig.ac.jp/Welcome-j.html]).
  • the position of the amino acid residue or nucleotide of the target sequence aligned to the position corresponding to any position of the reference sequence by the above alignment is regarded as the "position corresponding to" the arbitrary position.
  • operable linkage between a control region and a gene means that the gene and the control region are linked so that the gene can be expressed under the control of the control region. .. Procedures for "operable linkage" between genes and regulatory regions are well known to those of skill in the art.
  • the M23A subfamily protease has the activity of degrading the glycine-glycine bond in the peptide sequence, and is classified by the MEROPS database (Rawlings, Neil D., et al. "MEROPS: the database of proteolytic enzymes, their communicating and inhibitors". . "Nucleic acids research 42. D1 (2013): D503-D509) refers to proteases classified into the M23A subfamily, which is a subfamily of metalloproteases belonging to the M23 family.
  • Proteases belonging to the M23A subfamily currently include ⁇ -lytic metalloproteinase (BLP), Las A protein (also known as Las A, Staphyloly sin), and Aeromonas hydrophila proteinase (Ae romonas).
  • hydrophila proteinase also called AhP, Mername-AA291 peptidase
  • BLP homologue WP_0547141690.1, hereinafter referred to as LgBLP
  • LgBLP BLP homologue
  • BLP homolog WP_057970430.1, hereinafter referred to as LaBLP
  • the protease belonging to the M23A subfamily of the present invention includes BLP, LasA, AhP, LgBLP and LaBLP, and polypeptides having the same functions as these, and one or more of these is appropriately selected and used. However, it is more preferable to use BLP or a polypeptide having a function equivalent to that of BLP.
  • BLP (MEROPS ID: M23.001) is a polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 2.
  • LasA (MEROPS ID: M23.002) is a polypeptide consisting of the amino acid sequences 1 to 182 of SEQ ID NO: 4.
  • AhP (MEROPSID: M23.003) is a polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 6.
  • LgBLP is a polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 8.
  • LaBLP is a polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 10.
  • any of the amino acids 1 to 179 of SEQ ID NO: 2, 1-182 of SEQ ID NO: 4 and 1 to 179 of SEQ ID NO: 6 examples thereof include a polypeptide consisting of an amino acid sequence having at least 80% identity with the sequence and having a degrading activity of a glycine-glycine bond in the peptide sequence.
  • a preferred example of a polypeptide having the same function as BLP is an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 179 of SEQ ID NO: 2, preferably 1-179 of SEQ ID NO: 2.
  • a preferred example of a polypeptide having the same function as LasA is an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 182 of SEQ ID NO: 4, preferably 1-182 of SEQ ID NO: 4.
  • a preferred example of a polypeptide having the same function as AhP is an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 179 of SEQ ID NO: 6, preferably 1-179 of SEQ ID NO: 6.
  • the polypeptide having the same function as LgBLP is an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO: 8, and glycine-glycine bond degradation in the peptide sequence. Examples include active polypeptides.
  • the polypeptide having the same function as LaBLP is an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO: 10, and has a glycine-glycine bond-degrading activity in the peptide sequence. Examples thereof include polypeptides having.
  • the presence or absence of glycine-glycine binding degrading activity can be determined by testing the degradability of, for example, an oligoglycine peptide or the Fret-GGGGGG substrate described in Examples. However, the method is not limited to this method.
  • the M23A subfamily proteases listed above can be extracted or prepared from the microorganisms that produce them or their cultures.
  • BLP can be extracted or prepared from Lysobacter sp. (NBRC 12725 or NBRC 12726), Achromobacter lyticus M497-1, Lysobacter sp. IB-9374, Lysobacter gummosus DSMZ 6980, etc., or a culture thereof, and LAS can be extracted or prepared.
  • Pseudomonas aeruginosa PA01 Pseudomonas aeruginosa ATCC 10145, Pseudomonas aeruginosa FRD1, etc.
  • AhP is Aeromonas hydrophila subsp.
  • Hydrophila ATCC 7966, Aeromonas hydrophila Or can be extracted or prepared from the culture.
  • the above microorganisms can be purchased from public microbial storage institutions.
  • the microorganism that produces the M23A subfamily protease may be cultured under appropriate conditions using a medium containing a carbon source, a nitrogen source, a metal salt, a vitamin, etc. that can be assimilated.
  • an enzyme can be collected and prepared by a general method, and further, a required enzyme form can be obtained by freeze-drying, spray-drying, crystallization and the like.
  • the recovery and preparation of the enzyme from the culture is carried out by separating the microorganism by centrifugation or filtration, precipitating the enzyme in the supernatant or filtrate by adding a salt such as ammonium sulfate, or adding an organic solvent such as ethanol. It can be carried out by using ordinary methods such as precipitation by, concentration and desalting using an ultrafiltration membrane, purification using various chromatographies such as ion exchange and gel filtration, and the like.
  • the M23A subfamily protease can be produced by a chemical synthesis or a biological method using the above-mentioned amino acid sequence (SEQ ID NOs: 2, 4, 6).
  • genomic DNA is extracted from a microorganism that originally produces the target M23A subfamily protease by a conventional method, or RNA is extracted and cDNA is synthesized by reverse transcription.
  • the M23A subfamily protease can be obtained by culturing Bacillus spp. Transformed to express the polynucleotide encoding the protein and preparing the desired enzyme from the culture. As the transformed Bacillus spp.
  • the M23A subfamily protease gene (SEQ ID NOs: 1, 3, 5) operably linked to the control region is introduced into the genome or plasmid of the host cell.
  • the M23A subfamily protease gene (SEQ ID NOs: 1, 3, 5) operably linked to the control region is introduced into the genome or plasmid of the host cell.
  • examples thereof include Bacillus spp., Which Bacillus spp. In which an expression vector in which a target gene is incorporated at an appropriate position are introduced.
  • the "regulatory region" of a gene is a region having a function of controlling the intracellular expression of a gene downstream of the region, and preferably a region having a function of constitutively expressing or highly expressing the downstream gene. is there. Specifically, it can be defined as a region that exists upstream of the coding region in the gene and has a function of interacting with RNA polymerase to control transcription of the gene.
  • the control region of a gene refers to a region of about 200 to 600 nucleotides upstream of the coding region in the gene.
  • the control region includes a transcription initiation control region and / or a translation initiation control region of a gene, or a region from the transcription initiation control region to the translation initiation control region.
  • the transcription initiation control region is a region containing a promoter and a transcription initiation site
  • the translation initiation control region is a site corresponding to the Shine-Dalgarno (SD) sequence that forms a ribosome binding site together with the start codon (Shine, J., Dalgarno). , L., Proc.Natl.Acad.Sci.USA.,1974,71:1342-1346).
  • An expression vector containing the M23A subfamily protease gene is a vector capable of stably retaining the gene, maintaining replication in a host microorganism, and stably expressing the M23A subfamily protease, in the M23A subfamily. It can be prepared by incorporating a protease gene. Examples of such a vector include pHA3040SP64, pHSP64R or pASP64 (Patent No. 3492935), pHY300PLK (expression vector capable of transforming both Escherichia coli and bacilli; Shuttle vectors such as E.
  • Bacillus bacteria such as pUB110 (J Bacteriol, 1978, 134: 318-329), pTA10607 (Plasmid, 1987, 18: 8-15).
  • Examples include available plasmids.
  • plasmids derived from Escherichia coli for example, pET22b (+), pBR322, pBR325, pUC57, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.
  • Escherichia coli for example, pET22b (+), pBR322, pBR325, pUC57, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.
  • Transformation of the host Bacillus can be performed by using a protoplast method, a competent cell method, an electroporation method, or the like.
  • the host Bacillus is preferably Bacillus subtilis or a mutant strain thereof.
  • Bacillus subtilis strain in which extracellular protease production is reduced within a sufficient range of M23A maturation ability can be mentioned.
  • the obtained transformant may be cultured under appropriate conditions using a medium containing a carbon source, a nitrogen source, a metal salt, a vitamin, etc. that can be assimilated.
  • an enzyme can be collected and prepared by a general method, and further, a required enzyme form can be obtained by freeze-drying, spray-drying, crystallization and the like.
  • the recovery and preparation of the enzyme from the culture may be performed by separating the recombinant microorganism by centrifugation or filtration, precipitating the enzyme in the supernatant or filtrate by adding a salt such as ammonium sulfate, or using an organic solvent such as ethanol. It can be carried out by using a usual method such as precipitation by addition, concentration or desalting using an ultrafiltration membrane or the like, purification using various chromatographies such as ion exchange or gel filtration.
  • the M23A subfamily protease can be prepared from an enzyme composition or the like containing the same.
  • BLP can be prepared from achromopeptidase.
  • Achromopeptidase is a lytic enzyme derived from Lysozyme enzymes, and contains BLP. Achromopeptidase is commercially available from Wako Pure Chemical Industries, Ltd. and others.
  • the M23A subfamily protease such as BLP
  • BLP has the same level of elastin-degrading activity as the commercially available general batting enzyme and elastin-degrading sabinase (S8 family protease), but BLP. It was shown that can decompose elastin in the deep part of the skin as compared with sabinase, and hardly decomposes collagen.
  • Patent Document 2 it is mentioned that treatment with elastase alone may be effective as a method for decomposing elastin while suppressing collagen decomposition.
  • the M23A subfamily protease is useful as a leather modifying enzyme, preferably a batting enzyme, for suppressing the shrinkage of the skin or imparting an area expansion effect, and becomes a leather modifying agent, preferably a batting agent. obtain.
  • leather reforming means decomposing deep elastin in the skin and exerting a shrinkage suppressing effect or an area expanding effect on the skin.
  • the usage mode of the "leather modifier” is not limited as long as it can impart a shrinkage suppressing effect or an area expanding effect to the leather, and it can be used before, after, or during each step of leather production. Although it can be used at the timing, it is preferably used in the batting process.
  • the batting step means an enzyme treatment step performed in leather production.
  • the leather modifier of the present invention may be the M23A subfamily protease alone, or may be an enzyme composition containing the M23A subfamily protease.
  • Such an enzyme composition may be a solid composition such as powder or a liquid composition.
  • the enzyme composition containing the M23A subfamily protease includes a surfactant, a chelating agent, a water-soluble polymer, a water-soluble organic solvent, an alkaline agent, an organic acid or a salt thereof, and the M23A subfamily.
  • Enzymes other than protease enzyme stabilizers, antioxidants, solubilizers, pH adjusters, buffers, preservatives, fragrances, salts, alcohols, sugars, shavings, clay and the like can be appropriately added.
  • any surfactant such as anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, and biphasic surfactant may be used alone or. Two or more types can be used in combination.
  • the content of the surfactant in the enzyme composition is preferably 0.05 to 20% by mass, more preferably 0.1 to 10% by mass.
  • the nonionic surfactant has, for example, a hydrocarbon group having 8 or more and 22 or less carbon atoms, preferably a linear alkyl group having 8 or more and 18 or less carbon atoms, and an average ethyleneoxy group of 1 mol or more and 20 mol or less.
  • Polyoxyethylene chains bonded by number and alkyleneoxy groups selected from propyleneoxy groups and butyleneoxy groups, if necessary, are randomly or block-bonded to ethyleneoxy groups in an average number of 0 mol or more and 5 mol or less.
  • Polyoxyethylene methyl (polyoxyethylene methyl) obtained by reacting a chained polyoxyethylene (polyoxyalkylene) alkyl ether, a methyl or ethyl esterified product of a fatty acid having 8 to 22 carbon atoms with 1 mol or more and 20 mol or less of ethylene oxide.
  • ethyl) ether fatty acid ester one or two alkanol groups having 2 or 3 carbon atoms bonded to a nitrogen atom which may have a polyoxyethylene chain having an average addition molar number of 1 or more and 6 or less to an alkanol group.
  • a fatty acid alkanolamide having an amide bond of one fatty acid having 8 or more and 18 or less carbon atoms to a primary or secondary alkanolamine which may have an alkyl group having 1 or more and 3 or less carbon atoms, and having 8 or more carbon atoms.
  • Alkyl (poly) glucosides having a linear or branched hydrocarbon group of 22 or less, preferably a linear alkyl group, and an average degree of condensation of glucose of 1 or more and 3 or less, and glycerin and penta as polyhydric alcohols.
  • Examples thereof include glycerin fatty acid esters, pentaerythritol fatty acid esters, sorbitan fatty acid esters, and ethylene oxide adducts thereof, which are mainly composed of monoesters in which erythritol or sorbitan and a fatty acid are ester-bonded.
  • anionic surfactant examples include a linear alkylbenzene sulfonate, an alkyl or alkenyl sulfate ester salt, and a polyoxy, which are compounds having an alkyl group or an alkenyl group having 8 or more and 22 or less carbon atoms and an anionic group.
  • examples of the salt include a salt with an alkali metal and a salt with an alkaline earth metal.
  • a salt with an alkali metal In addition to potassium, sodium, calcium and magnesium, ammonia and mono or tri having an alkanol group having 2 or more and 4 or less carbon atoms.
  • It may be a salt such as alkanolamine, preferably monoethanolamine, or may be mixed with an acid and neutralized by adding a strong base weak acid salt such as an alkaline agent or sodium carbonate in the system.
  • the cationic surfactant includes, for example, one or more long-chain alkyl groups or alkenyl groups having 8 or more and 25 or less carbon atoms which may be separated by an ester bond, an ether bond, or an amide bond between carbon bonds.
  • a quaternary ammonium salt having one or less, having a short chain group selected from methyl, ethyl, and hydroxyethyl as the remaining group, and having a chlorine ion, a bromine ion, a methyl sulfate ion, and an ethyl sulfate ion as a counter ion, described above.
  • Tertiary amines having groups and their acid salts monolong-chain alkyls or alkenyltrimethylammonium salts having alkyl groups or alkenyl groups having 8 or more and 25 or less carbon atoms, di-long-chain alkyls or alkenyldimethylammonium salts, mono-long-chain alkyls
  • an alkenylpyridinium salt, a monolong-chain alkyl or an alkenylamide propyldimethylamine or an acid salt thereof and the like can be mentioned.
  • amphoteric surfactant examples include compounds having an alkyl group or an alkenyl group having 8 or more and 22 or less carbon atoms, an anionic group and a cationic group, for example, alkyl acetate betaine, alkanolamide propyl acetate betaine, alkyl imidazoline, alkyl.
  • sulfobetaine or carbobetaine having an alkyl group having 10 to 18 carbon atoms can be mentioned.
  • Zwitterionic surfactants may be classified as nonionic surfactants, and examples thereof include compounds having an alkyl group or an alkenyl group having 8 or more and 22 or less carbon atoms and an amine oxide group, which are polar depending on the pH. be able to.
  • the bond to the nitrogen atom constituting the amine oxide has one or two alkyl groups or alkenyl groups having 8 or more and 22 or less carbon atoms which may be via an amide propylene group, and 1 or more and 3 or less carbon atoms.
  • Amine oxide can be mentioned.
  • the chelating agent examples include nitrilo triacetic acid, imino diacetic acid, ethylene diamine acetic acid, diethylene triamine pentaacetic acid, glycol ether diamine tetraacetic acid, hydroxyethyl imino diacetic acid, triethylene tetraamine hexaacetic acid, diencoric acid, methylglycine diacetic acid and the like.
  • Aminopolyacetic acid or salts thereof diglycolic acid, oxydisuccinic acid, carboxymethyloxysuccinic acid, citric acid, lactic acid, tartaric acid, oxalic acid, malic acid, oxydisuccinic acid, gluconic acid, carboxymethylsuccinic acid, carboxymethyl tartrate acid and other organic substances. Acids and salts thereof, as well as aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), and salts thereof.
  • the content of the chelating agent in the enzyme composition of the present invention is preferably 0.001 to 5% by mass, more preferably 0.005 to 4% by mass in terms of acid type.
  • water-soluble polymer examples include (i) a polyether chain moiety composed of a polymerization unit derived from an epoxide having 2 to 5 carbon atoms and (ii) one or more selected from acrylic acid, methacrylic acid and maleic acid.
  • Polymer compounds having Japanese Patent Laid-Open No.
  • water-soluble polymers having an alkylene terephthalate unit and / or an alkylene isophthalate unit and an oxyalkylene unit and / or a polyoxyalkylene unit (Japanese Patent Laid-Open No. 2010-275468); Japanese Unexamined Patent Publication No. 2009-155606), and the like.
  • the content of the water-soluble polymer in the enzyme composition of the present invention is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass.
  • water-miscible organic solvent examples include alkanols, alkylene glycols, glycerin, polyalkylene glycols, (poly) alkylene glycol (mono or di) alkyl ethers, alkyl glyceryl ethers, and aromatics of (poly) alkylene glycol.
  • examples include ethers.
  • alkanols methanol, ethanol, propanol and the like are preferable, and as the alkylene glycols, ethylene glycol, propylene glycol, butylene glycol, hexylene glycol and the like are preferable, and ethylene glycol or propylene glycol is more preferable.
  • Glycerin is more preferable, and as the polyalkylene glycols, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol, polypropylene glycol or polyethylene glycol, which may be random or block polymerization, polypropylene glycol is preferable, and diethylene glycol and dipropylene. Glycols, polyethylene glycols or polypropylene glycols are more preferred.
  • the (poly) alkylene glycol (mono or di) alkyl ether a polyoxyethylene monobutyl ether having an average addition molar number of 1 or more and 3 or less, a polyoxypropylene monopropyl ether having an average addition molar number of 1 or more and 3 or less, or the like is preferable.
  • diethylene glycol monobutyl ether is more preferable, and as alkyl glyceryl ethers, alkyl (poly) glyceryl ether having an alkyl group having 1 or more and 8 or less carbon atoms is preferable, and 2-ethylhexyl glyceryl ether or isoamyl glyceryl ether is more preferable.
  • aromatic ethers of (poly) alkylene glycol examples include (poly) oxyethylene monophenyl ether having an average addition molar number of 1 or more and 3 or less, or (poly) oxyethylene benzyl ether having an average addition molar number of 1 or more and 3 or less. More preferably, monoethylene glycol monophenyl ether, diethylene glycol monophenyl ether, triethylene glycol ether monophenyl ether, ethylene glycol monobenzyl ether, and diethylene glycol monobenzyl ether are more preferable.
  • the content of the water-miscible organic solvent in the enzyme composition of the present invention is preferably 0.1 to 40% by mass, more preferably 0.5 to 35% by mass.
  • alkaline agent examples include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like as an inorganic alkaline agent, and monoethanolamine and diethanolamine as alkanolamines having 1 to 3 C2-C4 alkanols. , Triethanolamine, polyoxyalkylene amine, dimethylaminopropylamine and the like. Monoethanolamine and triethanolamine are preferable.
  • the content of the alkaline agent in the enzyme composition of the present invention is preferably 0 to 20% by mass, more preferably 0 to 10% by mass.
  • organic acid or a salt thereof examples include the above-mentioned chelating agent, but other organic acids or salts thereof may be used.
  • Polyvalent carboxylic acids such as saturated fatty acids, succinic acid, maleic acid, fumaric acid, or salts thereof; hydroxycarboxylic acids such as citric acid, malic acid, glycolic acid, p-hydroxybenzoic acid, benzoic acid or salts thereof. Acids and the like can be mentioned.
  • the content of the organic acid or a salt thereof in the enzyme composition of the present invention is preferably 0 to 5% by mass, more preferably 0 to 3% by mass.
  • enzymes other than the M23A subfamily protease include proteolytic enzymes such as papaya enzyme, subtilisin, and pancreatin, which is a crude enzyme extracted from the pancreas of cows and pigs, which is used as a general batting enzyme. Be done.
  • Examples of the enzyme stabilizer include a boron compound, a calcium ion source (calcium ion supply compound), a hydroxy compound, formic acid and the like, and examples of the antioxidant include butyl hydroxytoluene, disstyrene cresol, sodium sulfite and sodium hydrogen sulfite.
  • examples of the solubilizer include paratoluenesulfonic acid, cumenesulfonic acid, metaxylenesulfonic acid, benzoate (which also has an effect as an antiseptic) and the like.
  • the enzyme composition of the present invention includes paraffins such as octane, decane, dodecane and tridecane, olefins such as decene and dodecane, alkyl halides such as methylene chloride and 1,1,1-trichloroethane, and D-lymonene. It may contain a water-incompatible organic solvent such as terpenes such as, pigments, fragrances, antibacterial preservatives, defoaming agents such as silicone, and the like.
  • paraffins such as octane, decane, dodecane and tridecane
  • olefins such as decene and dodecane
  • alkyl halides such as methylene chloride and 1,1,1-trichloroethane
  • D-lymonene D-lymonene.
  • It may contain a water-incompatible organic solvent such as terpenes such as, pigments, fragrances, antibacterial pre
  • the content of the M23A subfamily protease in the enzyme composition of the present invention is not particularly limited as long as the protease exhibits activity, but is preferably 0.01 to 500 g per 1 kg of the enzyme composition, preferably 0.1 to 200 g. More preferably, 1 to 100 g is further preferable.
  • the present invention provides a leather treatment method using the M23A subfamily protease.
  • the method comprises contacting the M23A subfamily protease or an enzyme composition containing the M23A subfamily protease or an enzyme composition containing the same with the leather either before, after or during each step of leather production.
  • one embodiment is to bring the M23A subfamily protease or an enzyme composition containing the same into contact with a lime-pickled and decalcified skin.
  • the mode of contact between the M23A subfamily protease and the skin may be appropriately selected depending on the type and site of the leather, and the treatment temperature, treatment time, and amount of enzyme used can be arbitrarily set according to the treatment mode.
  • a solution containing M23A subfamily protease or an enzyme composition containing the same is applied or sprayed on the floor surface of the skin and left at a temperature of 15 to 40 ° C. for a certain period of time (1 to 5 hours), or The skin is immersed in the solution and left at a temperature of 15 to 40 ° C. for a certain period of time (1 to 5 hours).
  • M23A subfamily proteases are the following a) to e): a) Glycine consisting of a polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 2 or an amino acid sequence having at least 80% identity with the amino acid sequence 1 to 179 of SEQ ID NO: 2 and in the peptide sequence.
  • polypeptide having glycine-binding degrading activity b) A polypeptide consisting of the amino acid sequences 1 to 182 of SEQ ID NO: 4, glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 182 of SEQ ID NO: 4 and glycine in the peptide sequence.
  • Polypeptides with glycine-binding degrading activity c) A polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 6 and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 179 of SEQ ID NO: 6 and in the peptide sequence- Polypeptides with glycine-binding degrading activity, d) A polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 8 and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO: 8 and in the peptide sequence- Polypeptides with glycine-binding degrading activity, e) A polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 10, and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO:
  • the method according to ⁇ 1> wherein the method is one or more selected from the group consisting of a polypeptide having a glycine-binding degrading activity.
  • the M23A subfamily protease is at least one selected from the group consisting of the above a), c), d) and e).
  • the leather modifier according to ⁇ 4> which is a batting agent.
  • M23A subfamily proteases are the following a) to e): a) Glycine consisting of a polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 2 or an amino acid sequence having at least 80% identity with the amino acid sequence 1 to 179 of SEQ ID NO: 2 and in the peptide sequence.
  • -A polypeptide having glycine-binding degrading activity b) A polypeptide consisting of the amino acid sequences 1 to 182 of SEQ ID NO: 4, glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 182 of SEQ ID NO: 4 and glycine in the peptide sequence.
  • Polypeptides with glycine-binding degrading activity c) A polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 6 and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 179 of SEQ ID NO: 6 and in the peptide sequence- Polypeptides with glycine-binding degrading activity, d) A polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 8 and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO: 8 and in the peptide sequence- Polypeptides with glycine-binding degrading activity, e) A polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 10, and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO:
  • the leather modifier according to ⁇ 4> or ⁇ 5> which is one or more selected from the group consisting of polypeptides having glycine-binding degrading activity.
  • ⁇ 7> The leather modifier according to ⁇ 6>, wherein the M23A subfamily protease is at least one selected from the group consisting of the above a), c), d) and e).
  • M23A subfamily proteases are the following a) to e): a) Glycine consisting of a polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 2 or an amino acid sequence having at least 80% identity with the amino acid sequence 1 to 179 of SEQ ID NO: 2 and in the peptide sequence.
  • polypeptide having glycine-binding degrading activity b) A polypeptide consisting of the amino acid sequences 1 to 182 of SEQ ID NO: 4, glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 182 of SEQ ID NO: 4 and glycine in the peptide sequence.
  • Polypeptides with glycine-binding degrading activity c) A polypeptide consisting of the amino acid sequences 1 to 179 of SEQ ID NO: 6 and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 179 of SEQ ID NO: 6 and in the peptide sequence- Polypeptides with glycine-binding degrading activity, d) A polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 8 and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO: 8 and in the peptide sequence- Polypeptides with glycine-binding degrading activity, e) A polypeptide consisting of the amino acid sequences 1 to 178 of SEQ ID NO: 10, and a glycine consisting of an amino acid sequence having at least 80% identity with the amino acid sequences 1 to 178 of SEQ ID NO:
  • ⁇ 8> to ⁇ 9> which is one or more selected from the group consisting of polypeptides having glycine-binding degrading activity.
  • ⁇ 12> The use according to ⁇ 11>, wherein the M23A subfamily protease is at least one selected from the group consisting of the above a), c), d) and e).
  • Example 1 Preparation of BLP and LgBLP (1-1) Preparation of transformant Strain 168 Bacillus subtilis Marbulg No. 168 strain: Nature, 390, 1997, p.249 was used as a host.
  • the plasmids pHY-BLP2 and pHY-LgBLP described in Example 1 of Patent Document 4 were introduced by the following methods, respectively.
  • the Bacillus subtilis strain 168 was inoculated into 1 mL of LB medium and cultured with shaking at 30 ° C. and 200 rpm overnight. 10 ⁇ L of this culture solution was inoculated into 1 mL of fresh LB medium and cultured at 37 ° C. and 200 rpm for 3 hours. The culture was centrifuged to collect pellets.
  • SMMP 0.5 M shoe cloth, 20 mM disodium maleate, 20 mM magnesium chloride hexahydrate, 35% (w / v) Antibiotic medium 3 (Difco)) containing 4 mg / mL lysozyme (SIGMA) to the pellet. And incubated at 37 ° C. for 1 hour. The pellet was then collected by centrifugation and suspended in 400 ⁇ L SMMP. 33 ⁇ L of the suspension and 20 ng of each plasmid were mixed, 100 ⁇ L of 40% PEG was further added and stirred, and 350 ⁇ L of SMMP was further added, and then the mixture was shaken at 30 ° C. for 1 hour.
  • SMMP 0.5 M shoe cloth, 20 mM disodium maleate, 20 mM magnesium chloride hexahydrate, 35% (w / v) Antibiotic medium 3 (Difco)
  • SIGMA lysozyme
  • yeast extract 0.5% yeast extract, 0.35% 1 potassium phosphate, 0.15% 2 potassium phosphate, 0.5% glucose, 0.4% magnesium chloride hexahydrate, 0.01% bovine serum Smear 30 with albumin (SIGMA), 0.5% carboquimethylcellulose, 0.005% tryptophan blue (Merck) and amino acid mixture (tryptophan, lysine, methionine 10 ⁇ g / mL each;% is (w / v)%). Incubation was carried out at ° C. for 3 days to obtain the formed colonies.
  • the fractions in which the decomposition activity of FRET-GGGGG were collected.
  • the recovered fractionation solution was buffer-exchanged with a 20 mM Tris-HCl (pH 7.5) solution using Amicon Ultra fractionation molecular weight of 10 K to obtain each enzyme solution containing BLP and LgBLP.
  • FRET-GGGGG A FRET substrate [hereinafter referred to as FRET-GGGGG] (made-to-order by PH Japan) in which the phosphorescent group Nma and the quenching group Lys (Dpn) are pentaglycin was used as a substrate.
  • Nma refers to 2- (N-methylamino) benzoyl (Nma).
  • Lys (Dpn) refers to one having 2,4-dinitrophenyl (Dnp) in the side chain of lysine (Lys).
  • FRET-GGGGG Reaction using 20 mM Tris-HCl (pH 7.5) instead of enzyme solution and equimolar solutions of FRETS-25-STD1 and FRETS-25-STD2 (Peptide Institute) instead of FRET-GGGGG under the same reaction conditions.
  • the fluorescence intensity of the solution was measured and a calibration curve was prepared.
  • the activity of 1 unit (U) is the amount of enzyme required to show a change in fluorescence intensity of X / min, where X is the fluorescence intensity of a solution containing 1 ⁇ mol FRETS-25-STD1 and 1 ⁇ mol FRETS-25-STD2. And said.
  • the FRET-GGGGG degrading activity (U / mL) of the enzyme solution was determined.
  • Example 2 Measurement of elastin and collagen degrading activity
  • BLP, LgBLP, sabinase (SIGMA, P3111) and purified elastase derived from porcine pancreas (PPE) (Worthington Biochemical, ESFF) were used as proteases.
  • Subtilisin from the genus Bacillus, including sabinase, is a common baking enzyme (Tanning Chemistry: The Science of Leather).
  • substrates elastin derived from bovine neck ligament (SIGMA, E1625) and collagen derived from Usiachilles tendon (SIGMA, C9879) were used.
  • Each enzyme was added to 1 mL of 50 mM Tris-HCl pH 7.5 containing 20 mg of substrate to a final concentration of 1 mg / L. After the reaction at 30 ° C. for 1 hour, the supernatant was collected by centrifugation at 4 ° C. and 15000 rpm for 5 minutes. The peptide in the supernatant was quantified using the TakaRa BCA Protein Assay Kit (TaKaRa). The amount of peptide released by protease activity was calculated by subtracting the value of the blank, using the one not added as a blank. This value is taken as the decomposition activity and is shown in FIG. 1 as a relative value with respect to sabinase.
  • BLP showed the same elastin-degrading activity as sabinase, but the collagen-degrading activity was significantly lower than that of sabinase.
  • LgBLP showed lower elastin-degrading activity compared to sabinase, but its selectivity for elastin was as high as BLP.
  • PPE showed low elastin-degrading activity and collagen-degrading activity as compared with sabinase.
  • the selectivity of PPE for elastin and collagen was similar to that of sabinase.
  • Example 4 Skin pieces were prepared in the same manner as in the cowhide decomposition test (3-1) by LgBLP. Prepared skin pieces were placed one by one in a 12-well microplate dispensed with 2 mL of 50 mM Tris-HCl pH 7.5. Proteases (Sabinase, PPE, LgBLP) were added to each well to initiate the reaction. The added concentration was set to a concentration showing elastin-degrading activity equivalent to 50 mg / L of sabinase (calculated from the results of Example 2). After incubating at 30 ° C. and 150 spm for 4 hours, the reaction was stopped by transferring each skin piece to 10 mL of 0.1 M sulfuric acid.
  • Orcein-stained specimens were prepared in the same manner as in (3-3) and observed under a microscope.
  • the sample treated only with the buffer (Fig. 6)
  • the distribution of elastin was observed on the grain surface.
  • the sabinase-treated sample (Fig. 7)
  • the PPE-treated sample (Fig. 8)
  • it was observed that elastin was decomposed only on the surface portion of the grain surface (a red line was drawn at the boundary between the elastin-decomposed portion and the remaining portion).
  • the LgBLP-treated sample (FIG. 9) deep elastin was decomposed, and no residual elastin was observed below the visual field in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)

Abstract

皮の収縮を抑制し面積拡大効果を奏する皮革改質剤、及びそれを用いた皮革処理方法を提供する。 M23Aサブファミリープロテアーゼを有効成分とする皮革改質剤。

Description

皮革改質剤
 本発明は、天然皮革の製造に使用される皮革改質剤に関する。
 動物の天然皮革は、靴等の履物類、かばん、ハンドバッグ、衣類・手袋・ベルト等の服飾類、椅子・インテリア・カーシート等の家具類、スポーツ用品の他、馬具、太鼓、手芸用等、日常生活において幅広く使用され、生活用品の重要な素材となっている。
 天然皮革の製造は、大別すると、1)準備作業、2)なめし工程、3)再なめし・染色・加脂工程、4)仕上げ工程の4工程に分けることができる。準備作業では、原皮に付着している血液、汚れ、塩分、肉片、脂肪等を除去し、石灰と硫化物で皮を膨潤させ、コラーゲン繊維をほぐすとともに毛を分解除去し、ベーチングによって不要なタンパク質を分解除去し、銀面がなめらかにされる。
 ベーチングは、酵解とも云われ、石灰漬け、脱灰の済んだ皮に、i)皮に残存する毛根、タンパク質分解物、脂肪等の除去、ii)皮の線維間物質の除去、iii)皮を収縮させるエラスチン線維等の除去、iv)皮の銀面を平滑にする、v)コラーゲン線維の軽微な解束等を目的として行われる酵素処理工程である。
 したがって、ベーチングに用いられる酵素としては上記の効果を齎すことが求められる。例えば、エラスチン分解力を有する酵素によって皮革中のエラスチンを分解することで皮革の収縮を抑え面積を拡張できることが知られているが(特許文献1)、同時に皮の主成分であるコラーゲンが分解されてしまうと強度が低下すると云う問題が生じる。従来、コラーゲン分解を抑制しつつ、皮の収縮を抑え面積拡張を図るための技術として、クロム鞣し後に、プロテアーゼ及びエラスターゼの混合物で処理する方法が提案されている(特許文献2)。しかしながら、当該方法では、鞣し工程の種類が限定され、また製造工程自体を変更する必要性が生じる。
 一方、プロテアーゼのM23ファミリーは、MEROPSデータベースにおいて、Gly-Gly結合を分解できるプロテアーゼとして定義されるプロテアーゼファミリーであり、エラスチンやバクテリア細胞壁のプロテオグリカンの分解活性を有し、溶菌酵素としても知られている。中でも、M23Aサブファミリーに属するβ-リティックプロテアーゼ(BLP)は枯草菌等のグラム陽性菌に対して強い溶菌活性を有していることが報告されている(特許文献3)。また、M23Aサブファミリープロテアーゼは、最近、M23Aファミリープロテアーゼ遺伝子をバチルス属菌宿主に導入し、培養することで、培養物中から効率よく生産可能であることが見出されている(特許文献4)。
 しかしながら、M23Aファミリープロテアーゼを皮革製造の酵素として利用することはこれまでに報告されていない。
  〔特許文献1〕国際公開第2001/035901号
  〔特許文献2〕国際公開第2002/088397号
  〔特許文献3〕特開平4-108387号公報
  〔特許文献4〕国際公開第2019/142773号
 本発明は、以下の1)~4)に係るものである。
 1)M23Aサブファミリープロテアーゼ又はこれを含有する酵素組成物を皮と接触させる工程を含む皮革処理方法。
 2)M23Aサブファミリープロテアーゼを有効成分とする皮革改質剤。
 3)皮革改質剤を製造するための、M23Aサブファミリープロテアーゼの使用。
 4)皮革を改質するための、M23Aサブファミリープロテアーゼの使用。
BLPのエラスチン及びコラーゲン分解活性(サビナーゼに対する相対値)。 牛皮のエラスチン分解効果(酵素処理なし)。 牛皮のエラスチン分解効果(サビナーゼ処理)。赤線:エラスチン分解部分と残存部分の境界。 牛皮のエラスチン分解効果(PPE処理)。赤線:エラスチン分解部分と残存部分の境界。 牛皮のエラスチン分解効果(BLP処理)。 牛皮のエラスチン分解効果(酵素処理なし)。 牛皮のエラスチン分解効果(サビナーゼ処理)。赤線:エラスチン分解部分と残存部分の境界。 牛皮のエラスチン分解効果(PPE処理)。赤線:エラスチン分解部分と残存部分の境界。 牛皮のエラスチン分解効果(LgBLP処理)。
発明の詳細な説明
 本発明は、皮の収縮を抑制し面積拡大効果を奏する皮革改質剤、及びそれを用いた皮革処理方法を提供することに関する。
 本発明者は、BLPに代表されるM23Aサブファミリープロテアーゼが、コラーゲンを殆ど分解すること無く、皮の深部エラスチンを効率よく分解でき、皮の収縮抑制効果を発揮する酵素として有用であることを見出した。
 本発明により提供される酵素M23Aサブファミリープロテアーゼは、コラーゲン分解活性を殆ど有さず皮の深部エラスチンを効率よく分解する能力に優れている。当該酵素を皮革処理工程に用いることによって、皮の収縮を抑え面積拡張が可能となる。
 本明細書において、「皮」とは、牛、豚、鹿、羊、馬、やぎ、カンガルー、ワニ等の動物の皮を意味する。
 本明細書において、ヌクレオチド配列又はアミノ酸配列に関する「少なくとも80%の同一性」とは、80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは97%以上、なお好ましくは98%以上、さらになお好ましくは99%以上の同一性をいう。
 本明細書において、ヌクレオチド配列又はアミノ酸配列間の同一性は、リップマン-パーソン法(Lipman-Pearson法;Science,1985,227:1435-41)によって計算することができる。具体的には、遺伝情報処理ソフトウェアGenetyx-Win(Ver.5.1.1;ソフトウェア開発)のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行なうことにより算出できる。
 本明細書において、アミノ酸配列及びヌクレオチド配列上の「相当する位置」は、目的配列と参照配列(例えば、配列番号2で示されるアミノ酸配列)とを、各アミノ酸配列またはヌクレオチド配列中に存在する保存アミノ酸残基またはヌクレオチドに最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Thompson, J. D. et al, 1994, Nucleic Acids Res., 22:4673-4680)をデフォルト設定で用いることにより行うことができる。あるいは、Clustal Wの改訂版であるClustal W2やClustal omegaを使用することもできる。Clustal W、Clustal W2及びClustal omegaは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute: EBI [www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ [www.ddbj.nig.ac.jp/Welcome-j.html])のウェブサイト上で利用することができる。上述のアラインメントにより参照配列の任意の位置に対応する位置にアラインされた目的配列のアミノ酸残基又はヌクレオチドの位置は、当該任意の位置に「相当する位置」とみなされる。
 本明細書において、制御領域と遺伝子との「作動可能な連結」とは、遺伝子と制御領域とが、該遺伝子が該制御領域の制御の下で発現し得るように連結されていることをいう。遺伝子と制御領域との「作動可能な連結」の手順は当業者に周知である。
 M23Aサブファミリープロテアーゼとは、ペプチド配列中のグリシン-グリシン結合の分解活性を有し、MEROPSデータベースの分類法(Rawlings, Neil D., et al. "MEROPS: the database of proteolytic enzymes, their substrates and inhibitors." Nucleic acids research 42.D1 (2013): D503-D509)に従って分類した際に、M23ファミリーに属するメタロプロテアーゼのサブファミリーである、M23Aサブファミリーに分類されるプロテアーゼをいう。
 M23Aサブファミリーに属するプロテアーゼには、現時点では、β-リティックメタロプロテアーゼ(beta-lytic metallopeptida se;BLP)、LasAタンパク質(Las A protein;LasA、Staphyloly sinとも呼ばれる)、アエロモナス・ハイドロフィラプロテイナーゼ(Ae romonas hydrophila proteinase;AhP、Mername-AA291 peptidaseとも呼ばれる)、更には、リゾバクター・グモサス(Lysobacter gummosus)由来のBLPホモログ(WP_057941690.1、以下LgBLPという)、及びリゾバクター・アンティビオティカス(Lysob acter antibioticus)由来のBLPホモログ(WP_057970430.1、以下LaBLPという)等が知られている。
 したがって、本発明のM23Aサブファミリーに属するプロテアーゼとしては、BLP、LasA、AhP、LgBLP及びLaBLP、並びにこれらと同等の機能を有するポリペプチドが包含され、これらの1種以上を適宜選択して使用するのが好ましいが、BLP又はBLPと同等の機能を有するポリペプチドを使用するのがより好ましい。
 BLP(MEROPS ID:M23.001)は、配列番号2の1~179番のアミノ酸配列からなるポリペプチドである。LasA(MEROPS ID:M23.002)は、配列番号4の1~182番のアミノ酸配列からなるポリペプチドである。AhP(MEROP S ID:M23.003)は、配列番号6の1~179番のアミノ酸配列からなるポリペプチドである。また、LgBLPは、配列番号8の1~178番のアミノ酸配列からなるポリペプチドである。LaBLPは、配列番号10の1~178番のアミノ酸配列からなるポリペプチドである。
 また、該BLP、LasA及びAhPと同等の機能を有するポリペプチドとしては、配列番号2の1~179番、配列番号4の1~182番及び配列番号6の1~179番のいずれかのアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチドが挙げられる。
 BLPと同等の機能を有するポリペプチドの好ましい例としては、配列番号2の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、好ましくは配列番号2の1~179番のアミノ酸配列の22位、121位及び123位に相当する位置にHis、36位に相当する位置にAspを有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。
 LasAと同等の機能を有するポリペプチドの好ましい例としては、配列番号4の1~182番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、好ましくは配列番号4の1~182番のアミノ酸配列の23位、120位及び122位に相当する位置にHis、36位に相当する位置にAspを有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。
 AhPと同等の機能を有するポリペプチドの好ましい例としては、配列番号6の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、好ましくは配列番号6の1~179番のアミノ酸配列の21位、118位及び120位に相当する位置にHis、34位に相当する位置にAspを有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。
 また、LgBLPと同等の機能を有するポリペプチドとしては、配列番号8の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。LaBLPと同等の機能を有するポリペプチドとしては、配列番号10の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列であって、かつペプチド配列中のグリシン-グリシン結合分解活性を有するポリペプチドが挙げられる。なおグリシン-グリシン結合分解活性の有無は、例えばオリゴグリシンペプチドや、実施例に記載のFret-GGGGG基質などの分解性を試験することで判定できる。ただしこの方法に限定されるものではない。
 上記に挙げたM23Aサブファミリープロテアーゼは、それを生産する微生物又はその培養物から抽出又は調製することができる。例えば、BLPは、Lysobacter sp. (NBRC 12725又はNBRC 12726)、Achromobacter lyticus M497-1、Lysobacter sp. IB-9374、Lysobacter gummosus DSMZ 6980等、又はその培養物から抽出又は調製することができ、LASは、Pseudomonas aeruginosa PA01、Pseudomonas aeruginosa ATCC 10145、Pseudomonas aeruginosa FRD1等、又はその培養物から抽出又は調製することができ、AhPは、Aeromonas hydrophila subsp. hydrophila ATCC 7966、Aeromonas hydrophila (Chester) Stanier (ATCC 51307)等、又はその培養物から抽出又は調製することができる。上記微生物は公的微生物保存機関より購入することができる。
 当該M23Aサブファミリープロテアーゼを生産する微生物は、資化しうる炭素源、窒素源、金属塩、ビタミン等を含む培地を用いて適当な条件下で培養すればよい。かくして得られた微生物又は培養液から、一般的な方法によって酵素の採取、調製を行い、さらに凍結乾燥、噴霧乾燥、結晶化等により必要な酵素形態を得ることができる。例えば、培養物からの酵素の回収及び調製は、遠心分離又はろ過による微生物の分離、上清又はろ液中の酵素の、硫酸アンモニウム等の塩を加えることによる沈殿又はエタノール等の有機溶媒を加えることによる沈殿、限外ろ過膜等を用いた濃縮や脱塩、イオン交換又はゲルろ過等の各種クロマトグラフィーを用いた精製、等の通常の方法を用いて行うことができる。
 あるいは、当該M23Aサブファミリープロテアーゼは、上述したアミノ酸配列(配列番号2,4,6)を利用して、化学合成又は生物学的手法により製造することができる。例えば、前記特許文献3に記載の方法に準じ、目的のM23Aサブファミリープロテアーゼを本来生産する微生物から常法によりゲノムDNAを抽出するか、又はRNAを抽出し逆転写によりcDNAを合成することによって調製したタンパク質をコードするポリヌクレオチドを発現するように形質転換したバチルス属菌を培養し、培養物から目的の酵素を調製することで、M23Aサブファミリープロテアーゼを得ることができる。ここで調製される形質転換バチルス属菌としては、例えば、制御領域と作動可能に連結されたM23Aサブファミリープロテアーゼ遺伝子(配列番号1、3,5)を、宿主細胞のゲノム中若しくはプラスミド中に導入して得られたバチルス属菌、適切な位置に目的遺伝子が組み込まれた発現ベクターを導入したバチルス属菌、等が挙げられる。
 ここで、遺伝子の「制御領域」とは、該領域の下流の遺伝子の細胞内における発現を制御する機能を有し、好ましくは、下流遺伝子を構成的に発現又は高発現させる機能を有する領域である。具体的には、当該遺伝子におけるコーディング領域の上流に存在し、RNAポリメラーゼが相互作用して当該遺伝子の転写を制御する機能を有する領域と定義され得る。好ましくは、遺伝子の制御領域とは、当該遺伝子におけるコーディング領域の上流200~600ヌクレオチド程度の領域をいう。制御領域は、遺伝子の転写開始制御領域及び/又は翻訳開始制御領域、あるいは転写開始制御領域から翻訳開始制御領域に至るまでの領域を含む。転写開始制御領域はプロモーター及び転写開始点を含む領域であり、翻訳開始制御領域は開始コドンと共にリボソーム結合部位を形成するShine-Dalgarno(SD)配列に相当する部位である(Shine,J.,Dalgarno,L.,Proc.Natl.Acad.Sci.USA.,1974,71:1342-1346)。
 M23Aサブファミリープロテアーゼ遺伝子を含む発現ベクターは、該遺伝子を安定に保持でき、宿主微生物内で複製維持が可能であり、かつ該M23Aサブファミリープロテアーゼを安定に発現させることができるベクターに、M23Aサブファミリープロテアーゼ遺伝子を組込むことで作製することができる。斯かるベクターとしては、例えばpHA3040SP64、pHSP64R又はpASP64(特許第3492935号)、pHY300PLK(大腸菌と枯草菌の両方を形質転換可能な発現ベクター;Jpn J Genet,1985,60:235-243)、pAC3(Nucleic Acids Res,1988,16:8732)等のシャトルベクター;pUB110(J Bacteriol,1978,134:318-329)、pTA10607(Plasmid,1987,18:8-15)等のバチルス属細菌の形質転換に利用可能なプラスミド、等が挙げられる。また大腸菌由来のプラスミド(例えばpET22b(+)、pBR322、pBR325、pUC57、pUC118、pUC119、pUC18、pUC19、pBluescript等)を用いることもできる。
 宿主バチルス属菌の形質転換は、プロトプラスト法、コンピテントセル法、エレクトロポレーション法等を用いて行うことができる。宿主バチルス属菌としては、好ましくは枯草菌又はその変異株である。例えば、M23A成熟化能が十分な範囲で細胞外プロテアーゼ生産を減少させた枯草菌株等が挙げられる。
 得られた形質転換体は、資化しうる炭素源、窒素源、金属塩、ビタミン等を含む培地を用いて適当な条件下で培養すればよい。かくして得られた培養物から、一般的な方法によって酵素の採取、調製を行い、さらに凍結乾燥、噴霧乾燥、結晶化等により必要な酵素形態を得ることができる。例えば、培養物からの酵素の回収及び調製は、遠心分離又はろ過による組換え微生物の分離、上清又はろ液中の酵素の、硫酸アンモニウム等の塩を加えることによる沈殿又はエタノール等の有機溶媒を加えることによる沈殿、限外ろ過膜等を用いた濃縮や脱塩、イオン交換又はゲルろ過等の各種クロマトグラフィーを用いた精製、等の通常の方法を用いて行うことができる。
 あるいは、当該M23Aサブファミリープロテアーゼは、それを含む酵素組成物等から調製することができる。例えば、BLPは、アクロモペプチダーゼから調製することができる。アクロモペプチダーゼは、Lysobacter enzymogenes由来の溶菌酵素であり、BLPを含有する。アクロモペプチダーゼは、和光純薬工業(株)等から市販されている。
 後述の実施例に示すとおり、M23Aサブファミリープロテアーゼ、例えばBLPは、市販されている一般的なベーチング酵素でありエラスチン分解を有するサビナーゼ(S8ファミリープロテアーゼ)と同程度のエラスチン分解活性を有するが、BLPはサビナーゼに比べて皮の深部のエラスチンまで分解することでき、且つコラーゲンを殆ど分解しないことが示された。
 前記特許文献2においては、コラーゲン分解を抑制しながらエラスチンを分解する方法として、エラスターゼ単独での処理が有効である可能性が言及されている。しかしながら、実施例に示すように、最も一般的なエラスターゼのひとつであるブタ膵臓由来エラスターゼの精製品(PPE(S1ファミリープロテアーゼ))を用いても、BLPと同様のエラスチン選択性や皮革深部エラスチン分解活性は得られないことが確認された。
 したがって、M23Aサブファミリープロテアーゼは、皮の収縮を抑制するため或いは面積拡大効果を付与するための皮革改質用酵素、好ましくはベーチング用酵素として有用であり、皮革改質剤、好ましくはベーチング剤となり得る。
 本発明において、「皮革改質」とは、皮の深部エラスチンを分解し、皮に対して収縮抑制効果或いは面積拡大効果を発揮させることを意味する。また、「皮革改質剤」は、皮に対して収縮抑制効果或いは面積拡大効果を付与することができればその使用態様は限定されず、皮革製造の各工程の前、後或いは行程中の何れのタイミングでも使用できるが、ベーチング工程で使用されるのが好ましい。
 なお、ベーチング工程とは、皮革製造において行われる酵素処理工程を意味する。
 本発明の皮革改質剤は、M23Aサブファミリープロテアーゼ単体であってもよく、また、これを含有する酵素組成物であってもよい。
 斯かる酵素組成物は、粉末等の固形組成物であっても液体組成物であってもよい。
 M23Aサブファミリープロテアーゼを含有する酵素組成物には、M23Aサブファミリープロテアーゼに加えて、界面活性剤、キレート剤、水溶性ポリマー、水混和性有機溶剤、アルカリ剤、有機酸又はその塩、M23Aサブファミリープロテアーゼ以外の他の酵素、酵素安定化剤、酸化防止剤、可溶化剤、pH調製剤、緩衝剤、防腐剤、香料、塩、アルコール、糖類、おが屑、粘土等を適宜配合することができる。
 界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、及び双性界面活性剤等の任意の界面活性剤を1種で又は2種以上を組み合わせて用いることができる。当該酵素組成物における当該界面活性剤の含有量は、好ましくは0.05~20質量%、より好ましくは0.1~10質量%%である。
 非イオン性界面活性剤としては、例えば炭素数8以上22以下の炭化水素基、好ましくは炭素数8以上18以下の直鎖アルキル基を有し、エチレンオキシ基を平均1モル以上20モル以下の数で結合したポリオキシエチレン鎖と、必要ならばプロピレンオキシ基及びブチレンオキシ基から選ばれるアルキレンオキシ基とが平均0モル以上5モル以下の数でエチレンオキシ基とランダム又はブロック結合したポリアルキレンオキシ鎖を有するポリオキシエチレン(ポリオキシアルキレン)アルキルエーテル、炭素数8以上22以下の脂肪酸のメチル又はエチルエステル化物に、エチレンオキサイドを1モル以上20モル以下反応させて得られる、ポリオキシエチレンメチル(又はエチル)エーテル脂肪酸エステル、アルカノール基に平均付加モル数が1以上6以下のポリオキシエチレン鎖を有していてもよい窒素原子に結合する炭素数2又は3のアルカノール基を1つ又は2つ有し、炭素数1以上3以下のアルキル基を有していてもよい、1級又は2級アルカノールアミンに炭素数8以上18以下の脂肪酸が1つアミド結合した脂肪酸アルカノールアミド、炭素数8以上22以下の直鎖又は分岐鎖の炭化水素基、好ましくは直鎖アルキル基を有し、グルコースの平均縮合度が1以上3以下であるアルキル(ポリ)グルコシド、並びに多価アルコールとしてのグリセリン、ペンタエリスリトール又はソルビタンと脂肪酸がエステル結合した主にモノエステル体を主体とするグリセリン脂肪酸エステルペンタエリスリトール脂肪酸エステル、ソルビタン脂肪酸エステル及びそれらのエチレンオキシド付加物等を挙げることができる。
 陰イオン性界面活性剤としては、例えば炭素数8以上22以下のアルキル基又はアルケニル基と陰イオン性基を有する化合物であって、直鎖アルキルベンゼンスルホン酸塩、アルキル又はアルケニル硫酸エステル塩、ポリオキシエチレン(ポリオキシプロピレン)アルキル又はアルケニル硫酸エステル塩、ポリオキシエチレン(ポリオキシプロピレン)アルキル又はアルケニルエーテルカルボン酸塩、α-オレフィンスルホン酸塩、不飽和結合を2位以上、好ましくは8位以下に有する内部オレフィンをスルホン酸化したものの塩である内部オレフィンスルホン酸塩(HAS体を含む)、α-スルホ脂肪酸塩、α-スルホ脂肪酸メチルエステル塩、脂肪酸塩、リン酸エステル塩系界面活性剤、アシルアラニネート、アシルタウレート等が挙げられる。
 ここで、塩はアルカリ金属との塩、アルカリ土類金属との塩が挙げられ、カリウム、ナトリウム、カルシウム及びマグネシウムの他に、アンモニアや炭素数が2以上4以下のアルカノール基を有するモノないしトリアルカノールアミン、好ましくはモノエタノールアミン等の塩でもよく、酸で配合して系内でアルカリ剤や炭酸ナトリウム等の強塩基弱酸塩を配合して中和してもよい。
 陽イオン性界面活性剤としては、例えば炭素結合の間にエステル結合、エーテル結合、アミド結合で分断されていてもよい炭素数が8以上25以下の長鎖アルキル基又はアルケニル基を1つ以上3つ以下有し、残りの基としてメチル、エチル、ヒドロキシエチルから選ばれる短鎖基を有し、塩素イオン、臭素イオン、メチル硫酸イオン、エチル硫酸イオンを対イオンとする第4級アンモニウム塩、前記と同様のエステル結合、エーテル結合、アミド結合で分断されていてもよい長鎖アルキル基又はアルケニル基を1つ以上3つ以下有し、残りの基としてメチル、エチル、ヒドロキシエチルから選ばれる短鎖基を有する3級アミン及びその酸塩、炭素数が8以上25以下のアルキル基又はアルケニル基を有するモノ長鎖アルキルもしくはアルケニルトリメチルアンモニウム塩、ジ長鎖アルキルもしくはアルケニルジメチルアンモニウム塩、モノ長鎖アルキルもしくはアルケニルピリジニウム塩、モノ長鎖アルキル又はアルケニルアミドプロピルジメチルアミン又はその酸塩等が挙げられる。好ましくは炭素数8~22の長鎖アルキル基を1つ又は2つ有するアルキル(ジもしくはトリ)メチル第4級アンモニウムの塩素塩もしくはエチルスルホン酸塩、又は炭素数が11~25のアルカノイルオキシエチレン基を1つ以上3つ以下有し、炭素数1又は2のアルキル基又はヒドロキシエチル基を有する、第4級アンモニウムの塩素塩又はエチル硫酸塩、炭素数8~22の長鎖アルキル基を1つ有する脂肪酸アミドプロピルジメチルアミン又はその酸塩が挙げられる。
 両性界面活性剤としては、例えば炭素数8以上22以下のアルキル基又はアルケニル基、陰イオン性基及び陽イオン性基とを有する化合物、例えばアルキル酢酸ベタイン、アルカノールアミドプロピル酢酸ベタイン、アルキルイミダゾリン、アルキルアラニン等、アルキルベタイン型、アルキルアミドベタイン型、イミダゾリン型、アルキルアミノスルホン型、アルキルアミノカルボン酸型、アルキルアミドカルボン酸型、アミドアミノ酸型又はリン酸型の両性界面活性剤等が挙げられる。好ましくは炭素数10~18のアルキル基を有するスルホベタイン又はカルボベタインを挙げることができる。
 双性界面活性剤は、非イオン性界面活性剤に分類される場合もあるが、pHにより極性を有する、炭素数8以上22以下のアルキル基又はアルケニル基とアミンオキシド基とを有する化合物を挙げることができる。好ましくは、アミンオキシドを構成する窒素原子への結合がアミドプロピレン基を介していてもよい炭素数8以上22以下のアルキル基又はアルケニル基を1つ又は2つ有し及び炭素数1以上3以下のアルキル基を2つ有するアルキルアミンオキシドが挙げられ、更に好ましくは、炭素数8以上18以下のアルキル基を有するアルキルジメチルアミンオキシド又は炭素数8以上18の脂肪酸残基を有する脂肪族アミドプロピルジメチルアミンオキシドを挙げることができる。
 キレート剤としては、例えば、ニトリロ三酢酸、イミノ二酢酸、エチレンジアミン酢酸、ジエチレントリアミン五酢酸、グリコールエーテルジアミン四酢酸、ヒドロキシエチルイミノ二酢酸、トリエチレンテトラアミン六酢酸、ジエンコル酸、メチルグリシン二酢酸等のアミノポリ酢酸又はこれらの塩、ジグリコール酸、オキシジコハク酸、カルボキシメチルオキシコハク酸、クエン酸、乳酸、酒石酸、シュウ酸、リンゴ酸、オキシジコハク酸、グルコン酸、カルボキシメチルコハク酸、カルボキシメチル酒石酸等の有機酸及びこれらの塩、ならびにアミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、及びこれらの塩が挙げられ、塩の場合は、陰イオン界面活性剤の項で説明した通りであり、酸性のpH調整剤としても使用してもよい。
 本発明の酵素組成物における当該キレート剤の含有量は酸型に換算して、好ましくは0.001~5質量%、より好ましくは0.005~4質量%である。
 水溶性ポリマーとしては、例えば、(i)炭素数2~5のエポキシド由来の重合単位を含んで構成されるポリエーテル鎖部分と(ii)アクリル酸、メタクリル酸及びマレイン酸から選ばれる一種以上の不飽和カルボン酸単量体由来の重合単位を含んで構成されるポリマー鎖部分とを有し、(i)又は(ii)のいずれかが幹鎖となり、他方が枝鎖となったグラフト構造を有する高分子化合物(特開2010-275468号公報、特開平10-060496号公報);アルキレンテレフタレート単位及び/又はアルキレンイソフタレート単位と、オキシアルキレン単位及び/又はポリオキシアルキレン単位を有する水溶性ポリマー(特開2009-155606号公報)、等が挙げられる。
 本発明の酵素組成物における当該水溶性ポリマーの含有量は、好ましくは0.01~10質量%、より好ましくは0.05~5質量%である。
 水混和性有機溶剤としては、例えばアルカノール類、アルキレングリコール類やグリセリン、ポリアルキレングリコール類、(ポリ)アルキレングリコール(モノ又はジ)アルキルエーテル類、アルキルグリセリルエーテル類、(ポリ)アルキレングリコールの芳香族エーテル類が挙げられる。アルカノール類としては、メタノール、エタノール又、はプロパノール等が好ましく、アルキレングリコール類としては、エチレングリコール、プロピレングリコール、ブチレングリコール、又はヘキシレングリコール等が好ましく、更にはエチレングリコール、又はプロピレングリコールがより好ましく、グリセリンがより好ましく、ポリアルキレングリコール類としては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール又はランダムもしくはブロック重合でもよいポリエチレングリコールポリプロピレングリコールが好ましく、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール又はポリプロピレングリコールがより好ましい。(ポリ)アルキレングリコール(モノ又はジ)アルキルエーテル類としては、平均付加モル数1以上3以下のポリオキシエチレンモノブチルエーテル、又は平均付加モル数1以上3以下のポリオキシプロピレンモノプロピルエーテル等が好ましく、更にはジエチレングリコールモノブチルエーテルがより好ましく、アルキルグリセリルエーテル類としては、炭素数1以上8以下のアルキル基を有するアルキル(ポリ)グリセリルエーテルが好ましく、2-エチルヘキシルグリセリルエーテル又はイソアミルグリセリルエーテルがより好ましい。(ポリ)アルキレングリコールの芳香族エーテル類としては、平均付加モル数1以上3以下の(ポリ)オキシエチレンモノフェニルエーテル、又は平均付加モル数1以上3以下の(ポリ)オキシエチレンベンジルエーテル等が好ましく、更にはモノエチレングリコールモノフェニルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールエーテルモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコールモノベンジルエーテルがより好ましい。
 本発明の酵素組成物における当該水混和性有機溶剤の含有量は、好ましくは0.1~40質量%、より好ましくは0.5~35質量%である。
 アルカリ剤としては、例えば、無機性アルカリ剤として水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等があげられ、C2-C4のアルカノールを1~3個有するアルカノールアミンとして、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ポリオキシアルキレンアミン、ジメチルアミノプロピルアミン等が挙げられる。モノエタノールアミン、トリエタノールアミンが好ましい。
 本発明の酵素組成物における当該アルカリ剤の含有量は、好ましくは0~20質量%、より好ましくは0~10質量%である。
 有機酸又はその塩としては、前記したキレート剤を挙げることができるが、その他の有機酸又はその塩であってもよい。例えば、飽和脂肪酸、コハク酸、マレイン酸、フマル酸、又はそれらの塩等の多価カルボン酸類;クエン酸、リンゴ酸、グリコール酸、p-ヒドロキシ安息香酸、安息香酸又はそれらの塩等のヒドロキシカルボン酸類等が挙げられる。
 本発明の酵素組成物における当該有機酸又はその塩の含有量は、好ましくは0~5質量%、より好ましくは0~3質量%である。
 M23Aサブファミリープロテアーゼ以外の他の酵素としては、例えば、一般のベーチング酵素として用いられる、パパイヤ酵素、ズブチリシン、牛や豚等の膵臓から抽出される粗酵素であるパンクレアチン等のタンパク分解酵素が挙げられる。
 酵素安定化剤としては、例えばホウ素化合物、カルシウムイオン源(カルシウムイオン供給化合物)、ヒドロキシ化合物、蟻酸等が挙げられ、酸化防止剤としては、ブチルヒドロキシトルエン、ジスチレン化クレゾール、亜硫酸ナトリウム及び亜硫酸水素ナトリウム等が挙げられ、可溶化剤としては、パラトルエンスルホン酸、クメンスルホン酸、メタキシレンスルホン酸、安息香酸塩(防腐剤としての効果もある)等が挙げられる。さらに、本発明の酵素組成物は、オクタン、デカン、ドデカン、トリデカン等のパラフィン類、デセン、ドデセン等のオレフィン類、塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化アルキル類、D-リモネン等のテルペン類等の水非混和性有機溶剤、色素、香料、抗菌防腐剤、シリコーン等の消泡剤等を含有していてもよい。
 本発明の酵素組成物におけるM23Aサブファミリープロテアーゼの含有量は、該プロテアーゼが活性を示す量であれば特に制限されないが、酵素組成物1kg当たり0.01~500gが好ましく、0.1~200gがより好ましく、1~100gがさらに好ましい。
 別の一態様において、本発明は、M23Aサブファミリープロテアーゼを用いた皮革処理方法を提供する。当該方法は、皮革製造の各工程の前、後或いは行程中の何れかにおいて、M23Aサブファミリープロテアーゼ又はこれを含有する酵素組成物を皮と接触させることを含む。例えば、一態様として、M23Aサブファミリープロテアーゼ又はこれを含有する酵素組成物を、石灰漬け、脱灰の済んだ皮と接触させることが挙げられる。
 M23Aサブファミリープロテアーゼと皮の接触の態様は、皮革の種類や部位によって適宜選択すればよく、処理温度、処理時間、酵素の使用量も処理の態様に応じて任意に設定することができる。例えば、皮の床面に、M23Aサブファミリープロテアーゼ又はこれを含有する酵素組成物を含む溶液を塗布又は散布し15~40℃の温度で、一定時間(1時間~5時間)放置すること、或いは当該溶液に皮を浸漬し、15~40℃の温度で、一定時間(1時間~5時間)放置することが挙げられる。
 上述した実施形態に関し、本発明はさらに以下の態様を開示する。
 <1>M23Aサブファミリープロテアーゼ又はこれを含有する酵素組成物を皮と接触させる工程を含む皮革処理方法。
 <2>M23Aサブファミリープロテアーゼが下記のa)~e):
 a)配列番号2の1~179番のアミノ酸配列からなるポリペプチド、又は配列番号2の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 b)配列番号4の1~182番のアミノ酸配列からなるポリペプチド、配列番号4の1~182番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 c)配列番号6の1~179番のアミノ酸配列からなるポリペプチド、配列番号6の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 d)配列番号8の1~178番のアミノ酸配列からなるポリペプチド、配列番号8の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 e)配列番号10の1~178番のアミノ酸配列からなるポリペプチド、配列番号10の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、からなる群より選択される1種以上である、<1>記載の方法。
 <3>M23Aサブファミリープロテアーゼが前記a)、c)、d)及びe)からなる群より選択される1種以上である、<2>記載の方法。
 <4>M23Aサブファミリープロテアーゼを有効成分とする皮革改質剤。
 <5>ベーチング剤である、<4>記載の皮革改質剤。
 <6>M23Aサブファミリープロテアーゼが下記のa)~e):
 a)配列番号2の1~179番のアミノ酸配列からなるポリペプチド、又は配列番号2の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 b)配列番号4の1~182番のアミノ酸配列からなるポリペプチド、配列番号4の1~182番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 c)配列番号6の1~179番のアミノ酸配列からなるポリペプチド、配列番号6の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 d)配列番号8の1~178番のアミノ酸配列からなるポリペプチド、配列番号8の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 e)配列番号10の1~178番のアミノ酸配列からなるポリペプチド、配列番号10の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、からなる群より選択される1種以上である、<4>又は<5>記載の皮革改質剤。
 <7>M23Aサブファミリープロテアーゼが前記a)、c)、d)及びe)からなる群より選択される1種以上である、<6>記載の皮革改質剤。
 <8>皮革改質剤を製造するための、M23Aサブファミリープロテアーゼの使用。
 <9>皮革改質剤がベーチング剤である、<8>記載の使用。
 <10>皮革を改質するための、M23Aサブファミリープロテアーゼの使用。
 <11>M23Aサブファミリープロテアーゼが下記のa)~e):
 a)配列番号2の1~179番のアミノ酸配列からなるポリペプチド、又は配列番号2の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 b)配列番号4の1~182番のアミノ酸配列からなるポリペプチド、配列番号4の1~182番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 c)配列番号6の1~179番のアミノ酸配列からなるポリペプチド、配列番号6の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 d)配列番号8の1~178番のアミノ酸配列からなるポリペプチド、配列番号8の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
 e)配列番号10の1~178番のアミノ酸配列からなるポリペプチド、配列番号10の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、からなる群より選択される1種以上である、<8>~<9>のいずれかに記載の使用。
 <12>M23Aサブファミリープロテアーゼが前記a)、c)、d)及びe)からなる群より選択される1種以上である、<11>記載の使用。
実施例1 BLP及びLgBLPの調製
(1-1)形質転換株の作製
 宿主には、枯草菌168株(Bacillus subtilis Marburg No.168株:Nature,390,1997,p.249)を使用した。前記特許文献4の実施例1に記載のプラスミドpHY-BLP2及びpHY-LgBLPを、それぞれ以下の方法によって導入した。1mLのLB培地に枯草菌168株を植菌し、30℃、200rpmで一晩振盪培養した。1mLの新たなLB培地にこの培養液を10μL植菌して37℃、200rpmで3時間培養した。この培養液を遠心分離してペレットを回収した。ペレットに4mg/mLのリゾチーム(SIGMA)を含むSMMP(0.5Mシュークロース、20mMマレイン酸二ナトリウム、20mM塩化マグネシウム6水塩、35%(w/v)Antibiotic medium 3(Difco))を500μL添加し、37℃で1時間インキュベートした。次に遠心分離によりペレットを回収し、400μLのSMMPに懸濁した。懸濁液33μL、各プラスミド20ngを混合し、さらに100μLの40%PEGを加え攪拌し、さらにSMMPを350μL加えた後、30℃で1時間振盪した。この液200μLをテトラサイクリン(15μg/mL、SIGMA)を含むDM3再生寒天培地(0.8%寒天(和光純薬)、0.5%コハク酸2ナトリウム6水塩、0.5%カザミノ酸テクニカル(Difco)、0.5%酵母エキス、0.35%リン酸1カリウム、0.15%リン酸2カリウム、0.5%グルコース、0.4%塩化マグネシウム6水塩、0.01%牛血清アルブミン(SIGMA)、0.5%カルボキメチルセルロース、0.005%トリパンブルー(Merck)及びアミノ酸混液(トリプトファン、リジン、メチオニン各10μg/mL);%は(w/v)%)に塗抹して30℃で3日間インキュベートし、形成したコロニーを取得した。
(1-2)酵素生産培養
 終濃度15ppmとなるようにテトラサイクリンを添加したLB培地1mLに(1-1)で得た組換え枯草菌コロニーを植菌した後、30℃、150spmで一晩培養した。翌日、培養液400μLを2×L-マルトース培地(2%トリプトン、1%酵母エキス、1%NaCl、7.5%マルトース、7.5ppm硫酸マンガン五水和物、21μM ZnSO4、15ppmテトラサイクリン;%は(w/v)%)5mLに植菌し、30℃、150spmで2日間培養した後、菌体から産生された酵素を含む培養上清を遠心分離により回収した。
(1-3)培養上清からの酵素精製
 (1-2)で得た培養上清からBLP、LgBLPをそれぞれ精製した。培養上清をアミコンウルトラ 分画分子量10K(メルクミリポア)を用いて10mM クエン酸-Na pH6でバッファー交換した。バッファー交換後の液から、AKTA explorer 10S(GEヘルスケア)を用いて酵素を精製した。まず該バッファー交換で得られた液をTOYOPEARL Gigacap CM-650Mカラム(東ソー)に通し、次いで溶出バッファー(10mM クエン酸-Na pH6、200mM NaCl)を使用して吸着成分を溶出させた。溶出分画のうちFRET-GGGGGの分解活性(実施例1-4)が認められる分画液を回収した。回収した分画液をアミコンウルトラ 分画分子量10Kを用いて20mM Tris-HCl(pH7.5)溶液でバッファー交換し、BLP、LgBLPを含む各酵素溶液を得た。
(1-4)酵素活性の測定
 基質として、蛍光基Nmaと消光基Lys(Dpn)の間がペンタグリシンであるFRET基質[以下FRET-GGGGG](ピーエイチジャパンにて受注生産)を用いた。ここでNmaとは2-(N-メチルアミノ)ベンゾイル(Nma)を指す。またLys(Dpn)とは2,4-ジニトロフェニル(Dnp)をリシン(Lys)の側鎖に有するものを指す。96穴の黒色プレ-トに酵素溶液(適宣希釈)を2μL、20mM Tris-HCl(pH7.5)を200μL添加し、さらにFRET-GGGGG溶液(1mM FRET-GGGGG、100mM Tris-HCl(pH7.5))を10μL添加して反応液を調製した。infinite M200(TECAN)を用いて温度30℃、励起波長340nm、測定波長440nmにて反応液の蛍光強度を経時で測定した。同じ反応条件で、酵素溶液の代わりに20mM Tris-HCl(pH7.5)、FRET-GGGGGの代わりにFRETS-25-STD1及びFRETS-25-STD2(ペプチド研究所)の等モル溶液を用いた反応液の蛍光強度を測定し、検量線を作成した。1ユニット(U)の活性は、1μmol FRETS-25-STD1及び1μmol FRETS-25-STD2を含む溶液の蛍光強度をXとしたとき、X/minの蛍光強度の変化を示すのに必要な酵素量とした。酵素溶液のFRET-GGGGG分解活性(U/mL)を求めた。
(1-5)酵素溶液の濃度測定
 酵素溶液の濃度測定にはDCプロテインアッセイキット(Bio-Rad)を用いた。タンパク質量算出のための標準液にはBSA Standard Solution(WAKO)を用いた。
実施例2 エラスチン及びコラーゲン分解活性の測定
 プロテアーゼとしてはBLP、LgBLP、サビナーゼ(SIGMA、P3111)及びブタ膵臓由来精製エラスターゼ(以下PPE)(Worthington Biochemical、ESFF)を用いた。サビナーゼを含むBacillus属由来ズブチリシンは一般的なベーチング酵素である(Tanning Chemistry:The Science of Leather)。
 基質として、ウシ首靱帯由来エラスチンン(SIGMA、E1625)、ウシアキレス腱由来コラーゲン(SIGMA、C9879)を用いた。各々の酵素を20mgの基質を含む1mLの50mM Tris-HCl pH7.5に終濃度1mg/Lとなるよう添加した。30℃、1時間の反応の後、4℃、15000rpmで5分間遠心し上清を回収した。TaKaRa BCA Protein Assay Kit(TaKaRa)を用いて上清中のペプチドを定量した。添加しないものをブランクとし、ブランクの値を引くことでプロテアーゼ活性によって遊離したペプチド量を算出した。この値を分解活性として、サビナーゼに対する相対値で図1に示す。
 BLPはサビナーゼと同等のエラスチン分解活性を示したが、コラーゲン分解活性はサビナーゼと比較して顕著に低かった。LgBLPはサビナーゼと比較して低いエラスチン分解活性を示したが、エラスチンに対する選択性はBLPと同様に高かった。PPEはサビナーゼと比較して低いエラスチン分解活性及びコラーゲン分解活性を示した。また、PPEのエラスチン及びコラーゲンに対する選択性はサビナーゼと同等であった。
実施例3 BLPによる牛皮分解試験
(3-1)ベーチング用牛皮の調製
 裏打ち、脱毛、石灰漬けが完了した牛皮を1.5cm角に切断して用いた。12個の皮片を1つの遠沈管に入れ、皮重量の3%(w/w)の塩化アンモニウムを含む塩化アンモニウム水溶液40mLに浸して室温で60分間インキュベートすることで脱灰を行った。脱灰後の皮片を50mM Tris-HCl pH7.5で一度すすいだものを以下の試験に用いた。
(3-2)牛皮のプロテアーゼ処理
 5mLの50mM Tris-HCl pH7.5が入ったスクリュー管瓶(27mm×55mm)に(3-1)で作製した皮片を2つずつ入れた。このスクリュー管瓶にプロテアーゼ(サビナーゼ、PPE、BLP)を終濃度50mg/Lとなるように添加して反応を開始した。30℃、150spmで4時間インキュベートした後、各皮片を10mLの0.1M硫酸に移すことで反応を停止した。
(3-3)組織染色
 (3-2)のプロテアーゼ処理済み皮片を用いてパラフィンブロックを作製した。パラフィンブロックを薄切後、オルセイン染色標本を作製し顕微鏡観察を行った。オルセイン染色ではエラスチンが黒褐色に染色される。バッファーのみで処理したサンプル(図2)では銀面にエラスチンの分布が観察された。サビナーゼ処理したサンプル(図3)及びPPE処理したサンプル(図4)では銀面の表面部分のみエラスチンが分解されていることが観察された(エラスチン分解部分と残存部分の境界に赤線を引いた)。BLP処理したサンプル(図5)では深部のエラスチンまで分解されており、図5の視野より下側にもエラスチンの残存は観察されなかった。図2~5にはそれぞれ独立にプロテアーゼ処理を行った2つの皮片の組織染色像を1つずつ載せた(各右図と左図)。
実施例4 LgBLPによる牛皮分解試験
 (3-1)と同様の方法で皮片を調製した。2mLの50mM Tris-HCl pH7.5を分注した12穴マイクロプレートに調整した皮片を1つずつ入れた。各ウェルにプロテアーゼ(サビナーゼ、PPE、LgBLP)を添加して反応を開始した。添加濃度は各々サビナーゼ50mg/Lと同等のエラスチン分解活性を示す濃度とした(実施例2の結果から計算)。30℃、150spmで4時間インキュベートした後、各皮片を10mL の0.1M硫酸に移すことで反応を停止した。(3-3)と同様の方法でオルセイン染色標本を作製し顕微鏡観察を行った。バッファーのみで処理したサンプル(図6)では銀面にエラスチンの分布が観察された。サビナーゼ処理したサンプル(図7)及びPPE処理したサンプル(図8)では銀面の表面部分のみエラスチンが分解されていることが観察された(エラスチン分解部分と残存部分の境界に赤線を引いた)。LgBLP処理したサンプル(図9)では深部のエラスチンまで分解されており、図9の視野より下側にもエラスチンの残存は観察されなかった。

Claims (10)

  1.  M23Aサブファミリープロテアーゼ又はこれを含有する酵素組成物を皮と接触させる工程を含む皮革処理方法。
  2.  M23Aサブファミリープロテアーゼが下記のa)~e):
     a)配列番号2の1~179番のアミノ酸配列からなるポリペプチド、又は配列番号2の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     b)配列番号4の1~182番のアミノ酸配列からなるポリペプチド、配列番号4の1~182番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     c)配列番号6の1~179番のアミノ酸配列からなるポリペプチド、配列番号6の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     d)配列番号8の1~178番のアミノ酸配列からなるポリペプチド、配列番号8の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     e)配列番号10の1~178番のアミノ酸配列からなるポリペプチド、配列番号10の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、からなる群より選択される1種以上である、請求項1記載の方法。
  3.  M23Aサブファミリープロテアーゼが前記a)、c)、d)及びe)からなる群より選択される1種以上である、請求項2記載の方法。
  4.  M23Aサブファミリープロテアーゼを有効成分とする皮革改質剤。
  5.  ベーチング剤である、請求項4記載の皮革改質剤。
  6.  M23Aサブファミリープロテアーゼが下記のa)~e):
     a)配列番号2の1~179番のアミノ酸配列からなるポリペプチド、又は配列番号2の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     b)配列番号4の1~182番のアミノ酸配列からなるポリペプチド、配列番号4の1~182番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     c)配列番号6の1~179番のアミノ酸配列からなるポリペプチド、配列番号6の1~179番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     d)配列番号8の1~178番のアミノ酸配列からなるポリペプチド、配列番号8の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、
     e)配列番号10の1~178番のアミノ酸配列からなるポリペプチド、配列番号10の1~178番のアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列からなり、かつペプチド配列中のグリシン-グリシン結合の分解活性を有するポリペプチド、からなる群より選択される1種以上である、請求項4又は5記載の皮革改質剤。
  7.  M23Aサブファミリープロテアーゼが前記a)、c)、d)及びe)からなる群より選択される1種以上である、請求項6記載の皮革改質剤。
  8.  皮革改質剤を製造するための、M23Aサブファミリープロテアーゼの使用。
  9.  皮革改質剤がベーチング剤である、請求項8記載の使用。
  10.  皮革を改質するための、M23Aサブファミリープロテアーゼの使用。
     
PCT/JP2020/040704 2019-10-30 2020-10-29 皮革改質剤 WO2021085563A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20881726.2A EP4053295A4 (en) 2019-10-30 2020-10-29 LEATHER IMPROVEMENT AGENTS
US17/768,311 US20240117454A1 (en) 2019-10-30 2020-10-29 Leather improving agent
CN202080075751.3A CN114616348B (zh) 2019-10-30 2020-10-29 皮革改性剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019197738 2019-10-30
JP2019-197738 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021085563A1 true WO2021085563A1 (ja) 2021-05-06

Family

ID=75712013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040704 WO2021085563A1 (ja) 2019-10-30 2020-10-29 皮革改質剤

Country Status (5)

Country Link
US (1) US20240117454A1 (ja)
EP (1) EP4053295A4 (ja)
JP (1) JP2021069378A (ja)
CN (1) CN114616348B (ja)
WO (1) WO2021085563A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027066A1 (ja) * 2021-08-26 2023-03-02 花王株式会社 硬質表面処理剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142773A1 (ja) * 2018-01-16 2019-07-25 花王株式会社 M23aファミリープロテアーゼの製造方法
CN117947227B (zh) * 2023-12-20 2024-08-02 山东君成皮业有限公司 一种绿色环保的皮革软化方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492935B1 (ja) 1968-10-07 1974-01-23
JPH04108387A (ja) 1990-08-29 1992-04-09 Wako Pure Chem Ind Ltd β―リティック プロテアーゼ遺伝子及びその遺伝子産物の製造法
JPH1060496A (ja) 1996-08-23 1998-03-03 Kao Corp 濃厚系液体洗浄剤組成物
WO2001035901A2 (en) 1999-11-19 2001-05-25 Reva Amir Use of enzymes for skin expansion
WO2002088397A1 (en) 2001-05-01 2002-11-07 Blc Leathersellers Research Centre Ltd. Improvements in leather processing
JP2004043660A (ja) * 2002-07-12 2004-02-12 Toto Ltd 酵素脱毛処理剤および酵素脱毛法
JP2009155606A (ja) 2007-12-28 2009-07-16 Lion Corp 液体洗浄剤組成物
JP2010275468A (ja) 2009-05-29 2010-12-09 Kao Corp 液体洗浄剤組成物
CN103060487A (zh) * 2011-10-20 2013-04-24 江南大学 减小皮革损伤的脱毛酶制剂
JP2016527876A (ja) * 2013-05-29 2016-09-15 ダニスコ・ユーエス・インク 新規メタロプロテアーゼ
WO2019142773A1 (ja) 2018-01-16 2019-07-25 花王株式会社 M23aファミリープロテアーゼの製造方法
JP2019122301A (ja) * 2018-01-16 2019-07-25 花王株式会社 ケラチン断片の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105524906A (zh) * 2014-09-29 2016-04-27 湖南新鸿鹰生物工程有限公司 一种含酸性蛋白酶的皮革软化复合酶及其制备方法
CN105132600B (zh) * 2015-08-21 2017-05-31 四川大学 调控蛋白酶对动物皮内胶原蛋白和弹性蛋白选择性作用的方法
JP7057140B2 (ja) * 2018-01-16 2022-04-19 花王株式会社 角質汚れ洗浄剤

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492935B1 (ja) 1968-10-07 1974-01-23
JPH04108387A (ja) 1990-08-29 1992-04-09 Wako Pure Chem Ind Ltd β―リティック プロテアーゼ遺伝子及びその遺伝子産物の製造法
JPH1060496A (ja) 1996-08-23 1998-03-03 Kao Corp 濃厚系液体洗浄剤組成物
WO2001035901A2 (en) 1999-11-19 2001-05-25 Reva Amir Use of enzymes for skin expansion
WO2002088397A1 (en) 2001-05-01 2002-11-07 Blc Leathersellers Research Centre Ltd. Improvements in leather processing
JP2004043660A (ja) * 2002-07-12 2004-02-12 Toto Ltd 酵素脱毛処理剤および酵素脱毛法
JP2009155606A (ja) 2007-12-28 2009-07-16 Lion Corp 液体洗浄剤組成物
JP2010275468A (ja) 2009-05-29 2010-12-09 Kao Corp 液体洗浄剤組成物
CN103060487A (zh) * 2011-10-20 2013-04-24 江南大学 减小皮革损伤的脱毛酶制剂
JP2016527876A (ja) * 2013-05-29 2016-09-15 ダニスコ・ユーエス・インク 新規メタロプロテアーゼ
WO2019142773A1 (ja) 2018-01-16 2019-07-25 花王株式会社 M23aファミリープロテアーゼの製造方法
JP2019122301A (ja) * 2018-01-16 2019-07-25 花王株式会社 ケラチン断片の製造方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
J BACTERIOL, vol. 134, 1978, pages 318 - 329
JPN JGENET, vol. 60, 1985, pages 235 - 243
NATURE, vol. 390, 1997, pages 249
NUCLEIC ACIDS RES, vol. 16, 1988, pages 8732
PLASMID, vol. 18, 1987, pages 8 - 15
RAWLINGS, NEIL D. ET AL.: "MEROPS: the database of proteolytic enzymes, their substrates and inhibitors", NUCLEIC ACIDS RESEARCH, vol. 42, no. D1, 2013, pages D503 - D509
SCIENCE, vol. 227, 1985, pages 1435 - 41
See also references of EP4053295A4
SHINE, J.DALGARNO, L, PROC. NATL. ACAD. SCI. USA., vol. 71, 1974, pages 1342 - 1346
THOMPSON, J.D. ET AL., NUCLEIC ACIDS RES., vol. 22, 1994, pages 4673 - 4680

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027066A1 (ja) * 2021-08-26 2023-03-02 花王株式会社 硬質表面処理剤

Also Published As

Publication number Publication date
JP2021069378A (ja) 2021-05-06
EP4053295A1 (en) 2022-09-07
EP4053295A4 (en) 2024-03-13
US20240117454A1 (en) 2024-04-11
CN114616348A (zh) 2022-06-10
CN114616348B (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
WO2021085563A1 (ja) 皮革改質剤
US6190904B1 (en) High-alkaline protease and its use arginine-substituted subtilisin composition and use
CN1906303B (zh) 丝氨酸蛋白酶、编码丝氨酸酶的核酸以及包含它们的载体和宿主细胞
EP3227443B1 (de) Proteasevarianten mit verbesserter waschleistung
CN100376679C (zh) 一种蛋白酶,其基因和其用途
CN101646761B (zh) 皮脱脂的酶促处理
KR20050099566A (ko) 알카리 프로테아제
US20080177040A1 (en) Alkaline protease
JP7057140B2 (ja) 角質汚れ洗浄剤
CN111615559B (zh) 角质污垢清洁剂及角质污垢分解能力的评价方法
JP6067409B2 (ja) アルカリプロテアーゼの溶解性向上方法
JP4030603B2 (ja) アルカリプロテアーゼ、その製造方法、用途及びそのプロテアーゼを生産する微生物
WO2017213168A1 (ja) 変異アルカリプロテアーゼ
Goshev et al. Characterization of the enzyme complexes produced by two newly isolated thermophylic actinomycete strains during growth on collagen-rich materials
DE10328887A1 (de) Alkalische Protease
WO2020184410A1 (ja) 変異プロテアーゼ
JP6289711B2 (ja) 変異アルカリプロテアーゼ
WO2017089162A1 (de) Proteasevarianten mit verbesserter enzymstabilität in wasch- und reinigungsmitteln
US20080220499A1 (en) Novel protease for industrial applications
JP5666816B2 (ja) 変異アルカリセルラーゼ
WO2017174536A1 (de) Neue protease mit verbesserter waschleistung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881726

Country of ref document: EP

Effective date: 20220530