WO2010032358A1 - 撮影レンズ、この撮影レンズを備えた光学機器および製造方法 - Google Patents

撮影レンズ、この撮影レンズを備えた光学機器および製造方法 Download PDF

Info

Publication number
WO2010032358A1
WO2010032358A1 PCT/JP2009/003606 JP2009003606W WO2010032358A1 WO 2010032358 A1 WO2010032358 A1 WO 2010032358A1 JP 2009003606 W JP2009003606 W JP 2009003606W WO 2010032358 A1 WO2010032358 A1 WO 2010032358A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
image
object side
image side
Prior art date
Application number
PCT/JP2009/003606
Other languages
English (en)
French (fr)
Inventor
武俊典
泉水隆之
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US13/119,716 priority Critical patent/US8896941B2/en
Priority to CN200980136794.1A priority patent/CN102159981B/zh
Publication of WO2010032358A1 publication Critical patent/WO2010032358A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a photographing lens, an optical apparatus including the photographing lens, and a manufacturing method.
  • the conventional lens is not sufficiently miniaturized, and it is difficult to hold the camera in the usage state, and a minute camera shake (for example, when the photographer presses the release button) occurs during shooting.
  • a minute camera shake for example, when the photographer presses the release button
  • an optical system that can shift the image of the photographic lens a detection system that detects camera shake, an arithmetic system that controls the shift lens group according to a value output from the detection system, and a drive system that shifts the shift lens group
  • a detection system that detects camera shake an arithmetic system that controls the shift lens group according to a value output from the detection system
  • a drive system that shifts the shift lens group A method of correcting image blur by driving a shift lens group so as to compensate for image blur caused by camera blur is known.
  • An object of the present invention is to provide a photographic lens having excellent optical performance, an optical apparatus including the photographic lens, and a manufacturing method.
  • the photographic lens of the present invention has, in order from the object side, an object side lens group, and an image side lens group disposed with an air gap from the object side lens group, By moving at least a part of the image-side lens group along the optical axis direction as a focusing lens group, focusing from a long-distance object to a short-distance object, and at least a part of the image-side lens group is performed. Anti-vibration is performed by moving the shift lens group so as to have a component substantially orthogonal to the optical axis.
  • the image side lens group preferably has a positive refractive power.
  • the focusing lens group is the shift lens group.
  • the focal length of the entire photographing lens system is f and the length on the optical axis from the most object side lens surface to the most image side lens surface of the image side lens group is ⁇ d2, the following expression 0 It is preferable that the condition of .27 ⁇ d2 / f ⁇ 0.60 is satisfied.
  • the focal length of the object side lens unit is f1 and the focal length of the image side lens unit is f2, the following expression 0.06 ⁇
  • ⁇ 0.49 is satisfied. It is preferable.
  • the object side lens group has a positive refractive power.
  • the focusing lens group is preferably the shift lens group.
  • the focal length of the photographing lens is not changed.
  • the image side lens group preferably has a positive lens component, and the positive lens component preferably includes at least one aspheric surface.
  • an aperture stop is disposed between the object side lens group and the image side lens group.
  • the image side lens group has a negative lens component closest to the object side and a positive lens component on the image side of the negative lens component.
  • the image-side lens group preferably includes a cemented lens having the negative lens component and the positive lens component and having a positive or negative refractive power.
  • the image-side lens group preferably includes a cemented lens having a negative meniscus lens having a concave surface facing the object side and a positive meniscus lens having a convex surface facing the image side.
  • the optical apparatus of the present invention includes the above lens as a photographing lens that forms an image of an object on a predetermined image plane.
  • the object side lens group, and the image side lens group arranged with an air interval from the object side lens group are arranged, At the time of focusing on a short distance object, at least a part of the image side lens group is moved along the optical axis direction as a focusing lens group, and at the time of performing image stabilization, at least a part of the image side lens group is shifted.
  • the lens group is moved so as to have a component substantially perpendicular to the optical axis.
  • An optical apparatus including a photographic lens and a manufacturing method can be provided.
  • FIG. 4 is a diagram illustrating the configuration of a photographic lens according to the first example and how each lens moves in a change in focusing state from an infinitely focused state to a short-distance focused state.
  • (A) is an aberration diagram of the first example in the infinite focus state
  • (b) is a lateral aberration diagram of the lens shift state (0.2 mm) of the first example.
  • FIG. 6 shows various aberration diagrams in the short distance focusing state of the first example.
  • FIG. 10 is a diagram illustrating the configuration of a photographic lens according to a second example and how each lens moves when the focus state changes from an infinite focus state to a short-range focus state.
  • FIG. 10 is a diagram illustrating the configuration of a photographic lens according to a third example and how each lens moves when the focus state changes from an infinite focus state to a short-range focus state.
  • (A) is an aberration diagram in the infinite focus state of the third example
  • (b) is a lateral aberration diagram in the lens shift state (0.2 mm) of the third example.
  • FIG. 10 shows various aberration diagrams in the short distance focusing state of the third example.
  • FIG. 10 is a diagram illustrating the configuration of a photographic lens according to a fourth example and how each lens moves in a change in focus state from an infinite focus state to a short distance focus state.
  • (A) is an aberration diagram of the fourth example in the infinite focus state
  • (b) is a lateral aberration diagram of the lens shift state (0.2 mm) of the fourth example.
  • FIG. 10 shows various aberration diagrams in the short distance focusing state of the fourth example.
  • FIG. 10 is a diagram illustrating the configuration of a photographic lens according to a fifth example and how each lens moves in a change in focus state from an infinite focus state to a short distance focus state.
  • FIG. 10 shows various aberration diagrams in the short distance focusing state of the fifth example. It is a figure which shows the mode of a photographic lens which concerns on 6th Example, and the mode of movement of each lens in the change of the focus state from an infinite focus state to a short-distance focus state.
  • (A) is an aberration diagram of the sixth example in the infinite focus state
  • (b) is a lateral aberration diagram of the lens shift state (0.15 mm) of the sixth example.
  • FIG. 10 shows various aberration diagrams in the short distance focusing state of the sixth example.
  • FIG. 10 shows various aberration diagrams in the short distance focusing state of the seventh example. It is a figure which shows the mode of a photographic lens which concerns on 8th Example, and the mode of movement of each lens in the change of the focusing state from an infinite focus state to a short-distance focusing state.
  • FIG. 18 shows various aberration diagrams in the short distance focusing state of Example 8.
  • FIG. It is a block diagram of the photographic lens according to Example 9, and a diagram showing how each lens moves in the change of the focus state from the infinity focus state to the short distance focus state.
  • (A) is an aberration diagram of the ninth example in the infinite focus state
  • (b) is a lateral aberration diagram of the lens shift state (0.15 mm) of the ninth example.
  • FIG. 10 shows various aberration diagrams in the short-distance focusing state of the ninth example. It is a section lineblock diagram of a digital single-lens reflex camera which has a photography lens concerning this embodiment. It is a flowchart for demonstrating the manufacturing method of the imaging lens which concerns on this embodiment.
  • the photographing lens according to the present embodiment includes an object side lens group G1 and an image side lens group G2 arranged in order from the object side and spaced apart from the object side lens group G1. And moving at least a part of the image-side lens group G2 along the optical axis direction as a focusing lens group, focusing from a long-distance object to a short-distance object, and the image-side lens group G2 It is possible to perform image stabilization by moving at least a part of the shift lens group so as to have a component substantially orthogonal to the optical axis.
  • the photographic lens according to the present embodiment is small in size and can obtain excellent imaging performance over the entire screen.
  • the image side lens group G2 has a positive refractive power.
  • it is preferable that at least a part of the focusing lens group is a shift lens group.
  • the partial lens group closest to the object side of the focusing lens group is the shift lens group.
  • the focal length of the entire photographing lens system is f, and the most object side lens surface of the image side lens group G2 (in FIG. 1).
  • the length on the optical axis from the surface number 8) to the most image side lens surface (surface number 15 in FIG. 1) is ⁇ d2, it is preferable to satisfy the condition of the following expression (1).
  • the conditional expression (1) is a conditional expression for appropriately defining the total thickness ⁇ d2 on the optical axis of the image side lens group G2 in order to achieve both high imaging performance and light weight of the focusing lens group. It is.
  • the upper limit value of conditional expression (1) is exceeded, the total thickness ⁇ d2 on the optical axis of the image side lens group G2 becomes too large.
  • the lens portion of the image side lens group G2 and the lens barrel member that supports the lens portion are large and heavy, and the movement stroke of the focusing lens group is also limited.
  • the focal length of the object side lens group G1 is f1
  • the focal length of the image side lens group G2 is f2
  • the conditional expression (2) is a conditional expression for defining an optimum focal length ratio range between the object side lens group G1 and the image side lens group G2.
  • the refractive power of the object side lens group G1 becomes relatively strong (relative to the image side lens group G2), and is generated only by the object side lens group G1. It becomes difficult to correct spherical aberration and coma. Further, the refractive power of the image side lens group G2 becomes relatively weak, and the field curvature cannot be corrected well, which is not preferable.
  • conditional expression (2) when the lower limit value of conditional expression (2) is not reached, the refractive power of the object side lens group G1 becomes relatively weak (relative to the image side lens group G2), and the correction of spherical aberration is insufficient. Therefore, it is not preferable. Further, since the refractive power of the image side lens group G2 becomes relatively strong, coma generated in the image side lens group G2 becomes too large, and it becomes impossible to obtain excellent optical performance.
  • the upper limit of conditional expression (2) In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.45. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.43. Furthermore, in order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.40.
  • conditional expression (2) In order to ensure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (2) to 0.10. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.12. Furthermore, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.14.
  • f is the focal length of the entire photographing lens system and fs is the focal length of the shift lens group.
  • the conditional expression (3) is a conditional expression for defining the focal length fs of the shift lens group. If the upper limit of conditional expression (3) is exceeded, the refractive power of the shift lens group becomes strong, and the spherical aberration that occurs in the image side lens group G2 alone becomes large, which is not preferable. On the other hand, if the lower limit of conditional expression (3) is not reached, the refractive power of the shift lens group becomes weak and afocal is lost, so the change in field curvature increases when the lens is shifted. This is not preferable.
  • the radius of curvature of the image side of the most object side lens (lens L1 in FIG. 1) of the object side lens group G1 is set.
  • r1R is set and the curvature radius on the object side of the lens (lens L2 in FIG. 1) located on the image side of the lens closest to the object is set to r2F, it is preferable that the condition of the following expression (4) is satisfied.
  • the conditional expression (4) is a conditional expression for satisfactorily correcting coma and curvature of field that occur only in the object-side lens group G1. If the upper limit value of the conditional expression (4) is exceeded, coma aberration and field curvature generated by the object side lens group G1 alone cannot be corrected. Also, distortion is increased, which is not preferable. On the other hand, if the lower limit value of conditional expression (4) is not reached, the coma aberration generated by the object side lens group G1 alone becomes too large, and the performance at the shortest shooting distance deteriorates.
  • conditional expression (4) it is preferable to set the upper limit value of conditional expression (4) to 22.80. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 20.80. Furthermore, in order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 19.00.
  • conditional expression (4) In order to ensure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (4) to 2.00. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 3.50. Furthermore, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 5.00.
  • the total length of the photographing lens (the distance on the optical axis from the object side surface of the lens disposed closest to the object side to the image plane) is TL, and the object side lens group G1
  • the length on the optical axis from the most object side lens surface (surface number 1 in FIG. 1) to the most image side lens surface (surface number 15 in FIG. 1) of the image side lens group G2 is ⁇ d, It is preferable to satisfy the condition of Formula (5).
  • conditional expression (5) is a conditional expression for defining an appropriate total length TL of the photographing lens for achieving a balance between miniaturization and high performance.
  • Exceeding the upper limit value of conditional expression (5) is advantageous in terms of aberration correction, but it is not preferable because the overall length of the photographic lens becomes large and the balance between miniaturization and high performance cannot be achieved.
  • the lower limit value of conditional expression (5) is not reached, it is advantageous for downsizing, but spherical aberration, coma aberration, and field curvature generated in the entire lens system cannot be corrected well. In addition, it is not preferable because it is difficult to increase the back focus.
  • the object side lens group G1 has a positive refractive power in order to ensure a long back focus while being small.
  • a weak positive refractive power in the object side lens group G1 it is possible to achieve a long back focus with respect to the entire length of the lens system, and also correct coma and field curvature well. be able to.
  • a lens (lens L1 in FIG. 1) located closest to the object side of the object side lens group G1 is replaced with a concave meniscus lens having a convex surface facing the object side. More preferably.
  • the focusing lens group is preferably the shift lens group. Further, it is preferable that the focal length of the photographing lens is not changed.
  • the image side lens group G2 has a positive lens component, and the positive lens component includes at least one aspherical surface.
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • an object side lens group G1 having a positive refractive power (in order from the object side), an aperture stop S, and an image side lens group G2 having a positive refractive power are brought close to a symmetrical refractive power arrangement. Further, it is possible to satisfactorily correct field curvature and distortion.
  • the image side lens group G2 preferably has a negative lens component closest to the object side and a positive lens component on the image side of the negative lens component. Furthermore, it is preferable that the image side lens group G2 includes a cemented lens including the negative lens component and the positive lens component and having a positive or negative refractive power. With this configuration, chromatic aberration and curvature of field can be favorably corrected.
  • the cemented lens of the image side lens group G2 preferably includes a negative meniscus lens having a concave surface facing the object side and a positive meniscus lens having a convex surface facing the image side. With such a configuration, the curvature of field can be corrected more favorably.
  • FIG. 28 shows a schematic cross-sectional view of a digital single-lens reflex camera 1 (optical apparatus) provided with a photographic lens having the above-described configuration.
  • a digital single-lens reflex camera 1 optical apparatus
  • FIG. 28 shows a schematic cross-sectional view of a digital single-lens reflex camera 1 (optical apparatus) provided with a photographic lens having the above-described configuration.
  • light from an object (subject) (not shown) is collected by the taking lens 2 and focused on the focusing screen 4 via the quick return mirror 3.
  • the light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6.
  • the photographer can observe the object (subject) image as an erect image through the eyepiece 6.
  • the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 2 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1.
  • the camera 1 shown in FIG. 28 may be one that holds the photographic lens 2 in a detachable manner or may be molded integrally with the photographic lens 2.
  • the lens groups G1 and G2 are assembled in a cylindrical barrel (step S1).
  • the lenses may be incorporated into the lens barrel one by one in the order along the optical axis, or a part or all of the lenses may be integrally held by the holding member and then assembled with the lens barrel member. Good.
  • step S2 After each lens is incorporated in the lens barrel, it is confirmed whether an object image is formed in a state where each lens is incorporated in the lens barrel, that is, whether the centers of the lenses are aligned (step) S2). Subsequently, various operations of the photographing lens are confirmed (step S3).
  • Examples of various operations include a focusing operation in which a lens (in this embodiment, the image-side lens group G2) that focuses from a long-distance object to a short-distance object moves along the optical axis direction, at least some of the lenses.
  • Examples include a camera shake correction operation in which the image side lens group G2 in this embodiment moves so as to have a component orthogonal to the optical axis. Note that the order of confirming the various operations is arbitrary.
  • the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels
  • r is the radius of curvature of each lens surface
  • d is the next optical surface from each optical surface (or The distance between the surfaces, which is the distance on the optical axis to the image plane)
  • nd is the refractive index for the d-line (wavelength 587.6 nm)
  • ⁇ d is the Abbe number for the d-line.
  • mm is generally used as the focal length f, radius of curvature r, surface interval d, and other length units.
  • the unit is not limited to “mm”, and other appropriate units can be used.
  • FIG. 1 is a diagram illustrating the configuration of the photographic lens according to the first example and how each lens moves when the focus state changes from the infinity focus state to the short distance focus state.
  • the short distance means a photographing distance of -0.025 times.
  • the photographing lens according to the first example includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the distance between the object side lens group G1 and the image side lens group G2 (on-axis air distance d7 in Table 1) and the distance between the image side lens group G2 and the filter group FL (on-axis air distance in Table 1) d15) changes.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a negative meniscus lens L3 having a convex surface facing the object side, which are arranged in order from the object side. .
  • the image side lens group G2 includes a negative cemented lens L45 formed by bonding a negative meniscus lens L4 having a concave surface facing the object side and a positive meniscus lens L5 having a convex surface facing the image side. It has a positive meniscus lens L6 having an aspheric surface on the object side and a convex surface facing the image side, and a positive meniscus lens L7 having a convex surface facing the image side.
  • camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • Table 1 below shows each item in the first embodiment.
  • the surface numbers 1 to 17 in Table 1 correspond to the surfaces 1 to 17 shown in FIG.
  • FIG. 2 is a diagram showing various aberrations of the first example
  • FIG. 2A is a diagram showing various aberrations in the infinitely focused state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.2 mm).
  • FIG. 3 shows various aberration diagrams (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram) in order from the left in the short distance focusing state of the first example.
  • FNO is an F number
  • A is a half angle of view with respect to each image height
  • H0 is an object height with respect to each image height.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. All aberration curves are for the d-line (wavelength 587.6 nm). The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.
  • FIG. 4 is a diagram illustrating the configuration of the photographing lens according to the second embodiment and how each lens moves in the change of the focusing state from the infinity focusing state to the short-distance focusing state.
  • the short distance means a photographing distance of -0.020 times.
  • the photographing lens according to the second example includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the distance between the object side lens group G1 and the image side lens group G2 (on-axis air distance d7 in Table 2) and the distance between the image side lens group G2 and the filter group FL (on-axis air distance in Table 2) d14) changes.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a negative meniscus lens L3 having a convex surface facing the object side, which are arranged in order from the object side. .
  • the image-side lens group G2 includes a negative meniscus lens L4 having a concave surface facing the object side, a positive meniscus lens L5 having a convex surface facing the image side, and a biconvex lens having an aspheric surface on the object side. And a positive lens L6 having a shape. Note that camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • Table 2 below shows each item in the second embodiment.
  • the surface numbers 1 to 16 in Table 2 correspond to the surfaces 1 to 16 shown in FIG.
  • FIG. 5 is a diagram showing various aberrations of the second example
  • FIG. 5A is a diagram showing various aberrations in the infinite focus state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.2 mm).
  • FIG. 6 shows various aberration diagrams (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram in order from the left) in the short distance in-focus state of the second embodiment.
  • FIG. 7 is a diagram showing the configuration of the taking lens according to the third example and how each lens moves in the change of the focus state from the infinity focus state to the short distance focus state.
  • the short distance means a photographing distance of -0.025 times.
  • the photographing lens according to the third example includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a negative meniscus lens L3 having a convex surface facing the object side, which are arranged in order from the object side. .
  • the image side lens group G2 includes a negative cemented lens L45 formed by bonding a negative meniscus lens L4 having a concave surface facing the object side and a positive meniscus lens L5 having a convex surface facing the image side. And a biconvex positive lens L6 having an aspheric surface on the object side. Note that camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • Table 3 below shows each item in the third example.
  • the surface numbers 1 to 15 in Table 3 correspond to the surfaces 1 to 15 shown in FIG.
  • FIG. 8 is a diagram of various aberrations of the third example
  • FIG. 8A is a diagram of various aberrations in the infinite focus state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.2 mm).
  • FIG. 9 shows various aberration diagrams (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram in order from the left) in the close focus state of the third example.
  • various aberrations are excellently corrected in the infinite focus state, the lens shift state, and the short distance focus state. It can be seen that it has imaging performance.
  • FIG. 10 is a diagram illustrating the configuration of the photographing lens according to the fourth example and how each lens moves in the change of the focusing state from the infinity focusing state to the short-distance focusing state.
  • the short distance means a photographing distance of -0.025 times.
  • the photographing lens according to the fourth example includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the distance between the object side lens group G1 and the image side lens group G2 (on-axis air distance d7 in Table 4) and the distance between the image side lens group G2 and the filter group FL (on-axis air distance in Table 4) d13) changes.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. L3.
  • the image-side lens group G2 includes a negative meniscus lens L4 having a concave surface facing the object side, a positive meniscus lens L5 having an aspheric surface on the object side, and a convex surface facing the image side, and biconvex. And a positive lens L6 having a shape. Note that camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • Table 4 below shows each item in the fourth example.
  • the surface numbers 1 to 15 in Table 4 correspond to the surfaces 1 to 15 shown in FIG.
  • FIG. 11 is a diagram showing various aberrations of the fourth example
  • FIG. 11A is a diagram showing various aberrations in the infinite focus state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.2 mm).
  • FIG. 12 shows various aberration diagrams (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram in order from the left) in the close focus state of the fourth example.
  • various aberrations are well corrected both in the infinitely focused state and in the lens shift state, and in the short distance focused state, and thus excellent. It can be seen that it has imaging performance.
  • FIG. 13 is a diagram illustrating the configuration of the photographing lens according to the fifth example and how each lens moves when the focus state changes from the infinity focus state to the short distance focus state.
  • the short distance means a photographing distance of -0.015 times.
  • the photographing lens according to Example 5 includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the distance between the object side lens group G1 and the image side lens group G2 (on-axis air distance d6 in Table 5) and the distance between the image side lens group G2 and the filter group FL (on-axis air distance in Table 5) d12) changes.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 has a negative meniscus lens L1 having a convex surface facing the object side and a positive meniscus lens L2 having a convex surface facing the object side, which are arranged in order from the object side.
  • the image side lens group G2 includes, in order from the object side, a cemented lens L34 formed by bonding a negative meniscus lens L3 having a concave surface toward the object side and a positive meniscus lens L4 having a convex surface toward the image side, and biconvex. And a positive lens L5 having a shape.
  • camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • Table 5 below shows each item in the fifth example.
  • the surface numbers 1 to 18 in Table 5 correspond to the surfaces 1 to 18 shown in FIG.
  • FIG. 14 is a diagram showing various aberrations of the fifth example
  • FIG. 14A is a diagram showing various aberrations in the infinite focus state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.15 mm).
  • FIG. 15 shows various aberration diagrams (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram in order from the left) in the close focus state of the fifth example.
  • various aberrations are corrected well in the infinite focus state, the lens shift state, and the short distance focus state, and excellent. It can be seen that it has imaging performance.
  • FIG. 16 is a diagram illustrating the configuration of a photographic lens according to the sixth example and how each lens moves when the focus state changes from the infinity focus state to the short distance focus state.
  • the short distance means a photographing distance of -0.015 times.
  • the photographing lens according to the sixth example has an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 has a negative meniscus lens L1 having a convex surface facing the object side and a positive meniscus lens L2 having a convex surface facing the object side, which are arranged in order from the object side.
  • the image side lens group G2 includes, in order from the object side, a cemented lens L34 formed by bonding a negative meniscus lens L3 having a concave surface toward the object side and a positive meniscus lens L4 having a convex surface toward the image side, and biconvex. And a positive lens L5 having a shape.
  • camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • Table 6 below shows each item in the sixth example.
  • the surface numbers 1 to 18 in Table 6 correspond to the surfaces 1 to 18 shown in FIG.
  • FIG. 17 is a diagram showing various aberrations of the sixth example
  • FIG. 17A is a diagram showing various aberrations in the infinite focus state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.15 mm).
  • FIG. 18 shows various aberration diagrams (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram) in this order from the left in the sixth embodiment at close focus.
  • various aberrations were corrected well in the infinitely focused state and the lens shift state, and in the close range focused state, and excellent. It can be seen that it has imaging performance.
  • FIG. 19 is a diagram illustrating the configuration of the photographing lens according to the seventh example and how each lens moves when the focusing state changes from the infinity focusing state to the short-distance focusing state.
  • the short distance means a photographing distance of -0.010 times.
  • the photographing lens according to the seventh example includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the distance between the object side lens group G1 and the image side lens group G2 (on-axis air distance d6 in Table 7) and the distance between the image side lens group G2 and the filter group FL (on-axis air distance in Table 7) d12) changes.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 has a negative meniscus lens L1 having a convex surface facing the object side and a positive meniscus lens L2 having a convex surface facing the object side, which are arranged in order from the object side.
  • the image side lens group G2 includes, in order from the object side, a cemented lens L34 formed by bonding a negative meniscus lens L3 having a concave surface toward the object side and a positive meniscus lens L4 having a convex surface toward the image side, and biconvex. And a positive lens L5 having a shape.
  • camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • the flare stop FS1 and the flare stop FS2 are arranged before and after the aperture stop S.
  • Table 7 below shows each item in the seventh example.
  • the surface numbers 1 to 18 in Table 7 correspond to the surfaces 1 to 18 shown in FIG.
  • FIG. 20 is a diagram showing various aberrations of the seventh example
  • FIG. 20A is a diagram showing various aberrations in the infinite focus state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.15 mm).
  • FIG. 21 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, and coma diagram) in order from the left in the close focus state according to the seventh example.
  • various aberrations are well corrected both in the infinitely focused state and in the lens shift state, and in the close range focused state, and thus excellent. It can be seen that it has imaging performance.
  • FIG. 22 is a diagram illustrating the configuration of the photographing lens according to the eighth example and how each lens moves when the focus state changes from the infinity focus state to the short distance focus state.
  • the short distance means a photographing distance of -0.015 times.
  • the photographing lens according to the eighth example includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 has a negative meniscus lens L1 having a convex surface facing the object side and a positive meniscus lens L2 having a convex surface facing the object side, which are arranged in order from the object side.
  • the image side lens group G2 includes, in order from the object side, a cemented lens L34 formed by bonding a negative meniscus lens L3 having a concave surface toward the object side and a positive meniscus lens L4 having a convex surface toward the image side, and biconvex. And a positive lens L5 having a shape.
  • camera shake correction is achieved by performing image shift on the image plane I when camera shake occurs by moving the image-side lens group G2 so as to have a component substantially perpendicular to the optical axis. .
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • the flare stop FS1 and the flare stop FS2 are arranged before and after the aperture stop S.
  • Table 8 below shows each item in the eighth example.
  • the surface numbers 1 to 18 in Table 8 correspond to the surfaces 1 to 18 shown in FIG.
  • FIG. 23 is a diagram of various aberrations of the eighth example
  • FIG. 23A is a diagram of various aberrations in the infinite focus state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.15 mm).
  • FIG. 24 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, and coma aberration diagram in order from the left) in the short distance in-focus state of the eighth example.
  • various aberrations are excellently corrected in the infinite focus state, the lens shift state, and the short distance focus state. It can be seen that it has imaging performance.
  • FIG. 25 is a diagram illustrating the configuration of the photographing lens according to Example 9, and the movement of each lens when the focus state changes from the infinity focus state to the short-range focus state.
  • the short distance means a photographing distance of -0.025 times.
  • the photographing lens according to the ninth example includes an object side lens group G1 having a positive refractive power, an image side lens group G2 having a positive refractive power, arranged in order from the object side, And a filter group FL including a low-pass filter and an infrared cut filter.
  • the object side lens group G1 is fixed with respect to the image plane I and the image side lens group G2 is fixed to the image plane I during the change of the focusing state from the infinity focusing state to the short distance focusing state, that is, focusing.
  • the distance between the object side lens group G1 and the image side lens group G2 (on-axis air distance d7 in Table 9) and the distance between the image side lens group G2 and the filter group FL (on-axis air distance in Table 9) d13) changes.
  • the image plane I is formed on the image sensor 7 shown in FIG. 28, and the image sensor is composed of a CCD, a CMOS, or the like.
  • the object side lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a negative meniscus lens L3 having a convex surface facing the object side, which are arranged in order from the object side. .
  • the image side lens group G2 includes a negative cemented lens L45 formed by bonding a negative meniscus lens L4 having a concave surface facing the object side and a positive meniscus lens L5 having a convex surface facing the image side. And a biconvex positive lens L6 having an aspheric surface on the object side.
  • image stabilization is performed by moving the cemented lens L45, which is a part of the image-side lens group G2, so as to have a component in a direction substantially orthogonal to the optical axis, thereby shifting the image on the image plane I when camera shake occurs. It is achieved by doing.
  • the filter group FL includes a low-pass filter, an infrared cut filter, and the like.
  • the aperture stop S is disposed between the object side lens group G1 and the image side lens group G2.
  • the aperture stop S is fixed with respect to the object side lens group G1 during focusing from the infinity in-focus state to the short-distance in-focus state.
  • Table 9 below shows each item in the ninth example.
  • the surface numbers 1 to 15 in Table 9 correspond to the surfaces 1 to 15 shown in FIG.
  • FIG. 26 is a diagram showing various aberrations of the ninth example
  • FIG. 26A is a diagram showing various aberrations in an infinitely focused state (in order from the left, spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram).
  • B is a lateral aberration diagram at the time of lens shift in the infinitely focused state (lens shift state) (movement amount in this embodiment is 0.15 mm).
  • FIG. 27 shows various aberration diagrams (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram) in this order from the left in the ninth example in the short distance in-focus state.
  • various aberrations are corrected well in the infinitely focused state and the lens shift state, and in the close range focused state, and excellent. It can be seen that it has imaging performance.
  • a configuration of 5 to 7 lenses is shown, but a configuration in which a lens is added to the most object side or a configuration in which a lens is added to the most image side may be used.
  • a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction so as to focus on an object at infinity from a near object.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the image side lens group is preferably a focusing lens group.
  • the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis direction, or is rotated and moved (oscillated) in the in-plane direction including the optical axis.
  • An anti-vibration lens group that corrects image blur caused by blur may be used.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the aspherical surface is either an aspherical surface by grinding, a glass-molded aspherical surface that is made of glass with an aspherical shape, or a composite-type aspherical surface that is formed on a glass surface with resin aspherically shaped.
  • An aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • the aperture stop S is preferably disposed between the object-side lens group G1 and the image-side lens group G2, but the role of the aperture stop S is not provided by a lens frame. You may substitute.
  • the flare cut stops FS1 and FS2 are preferably arranged in the vicinity of the aperture stop S.
  • the role of the flare cut stops may be replaced by a lens frame without providing a member as the flare cut stop. .
  • each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.
  • the object side lens group G1 has one positive lens component and one negative lens component.
  • the lens components in the order of negative positive / negative or negative positive / positive with an air gap interposed.
  • the image side lens group G2 has two positive lens components and one negative lens component.
  • a positive or negative lens L0 may be added on the object side of the object side lens closest to the object side lens group G1.
  • the total length TL of the photographic lens is a distance from the object side lens surface of the lens L0 located closest to the object side.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 物体側から順に並んだ、物体側レンズ群G1と、物体側レンズ群G1と空気間隔を隔てて配置された像側レンズ群G2とを有し、像側レンズ群G2の少なくとも一部を合焦レンズ群として光軸方向に沿って移動させることによって、遠距離物体から近距離物体への合焦を行い、像側レンズ群G2の少なくとも一部をシフトレンズ群として光軸に略直交方向の成分を持つように移動させることによって、防振を行う。

Description

撮影レンズ、この撮影レンズを備えた光学機器および製造方法
 本発明は、撮影レンズ、この撮影レンズを備えた光学機器および製造方法に関する。
 従来、写真用カメラやビデオカメラ等に用いられる大口径の標準レンズとして、開口絞りを挟んで略対称な屈折力配置である、所謂ガウスタイプのレンズが数多く提案されている(例えば、特許文献1参照)。
 しかしながら、従来のレンズでは、小型化が十分に図られておらず、使用状態においてカメラのホールディングが難しく、撮影時に発生する微小なカメラのブレ(例えば、撮影者がレリーズボタンを押す際に発生するカメラのブレ)により、露光中に像ブレが引き起こされて画質が劣化してしまうという問題があった。
 そこで、撮影レンズを像シフト可能な光学系として、カメラのブレを検出する検出系と、検出系より出力される値に従ってシフトレンズ群を制御する演算系と、シフトレンズ群をシフトさせる駆動系とを組み合わせ、カメラのブレに起因する像ブレを補償するようにシフトレンズ群を駆動することにより像ブレを補正する方法が知られている。
特開平1-155310号公報
 しかしながら、従来のカメラでは、像ブレを補正しようとした場合、諸収差を良好に補正することと、レンズシフト時の性能変化を抑えることを両立することが困難であった。
 本発明は、このような問題に鑑みてなされたものであり、諸収差を良好に補正することができ、且つ、レンズシフト時に性能変化を最低限に抑えることができ、さらに小型で、画面全体にわたり優れた光学性能を有する撮影レンズ、この撮影レンズを備えた光学機器および製造方法を提供することを目的とする。
 このような目的を達成するため、本発明の撮影レンズは、物体側から順に、物体側レンズ群と、前記物体側レンズ群と空気間隔を隔てて配置された像側レンズ群とを有し、前記像側レンズ群の少なくとも一部を合焦レンズ群として光軸方向に沿って移動させることによって、遠距離物体から近距離物体への合焦を行い、前記像側レンズ群の少なくとも一部をシフトレンズ群として光軸に略直交方向の成分を持つように移動させることによって、防振を行う。
 なお、前記像側レンズ群は、正の屈折力を有することが好ましい。
 また、前記合焦レンズ群の少なくとも一部は前記シフトレンズ群であることが好ましい。
 また、前記撮影レンズ全系の焦点距離をfとし、前記像側レンズ群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さをΣd2としたとき、次式0.27<Σd2/f<0.60の条件を満足することが好ましい。
 また、前記物体側レンズ群の焦点距離をf1とし、前記像側レンズ群の焦点距離をf2としたとき、次式0.06<|f2|/|f1|<0.49の条件を満足することが好ましい。
 また、前記撮影レンズ全系の焦点距離をfとし、前記シフトレンズ群の焦点距離をfsとしたとき、次式0.80<f/|fs|<1.10の条件を満足することが好ましい。
 また、前記物体側レンズ群の最も物体側のレンズの像側の曲率半径をr1Rとし、前記最も物体側のレンズの像側に位置するレンズの物体側の曲率半径をr2Fとしたとき、次式0.0<(r2F+r1R)/(r2F-r1R)<24.8の条件を満足することが好ましい。
 また、前記撮影レンズの全長をTLとし、前記物体側レンズ群の最も物体側のレンズ面から前記像側レンズ群の最も像側のレンズ面までの光軸上の長さをΣdとしたとき、次式1.5<TL/Σd<2.3の条件を満足することが好ましい。
 また、前記物体側レンズ群は、正の屈折力を持つことが好ましい。
 また、前記合焦レンズ群は、前記シフトレンズ群であることが好ましい。
 また、前記撮影レンズの焦点距離は、不変であることが好ましい。
 また、前記像側レンズ群は、正レンズ成分を有し、前記正レンズ成分は、少なくとも1つの非球面を含むことが好ましい。
 また、開口絞りが、前記物体側レンズ群と前記像側レンズ群との間に配置されていることが好ましい。
 また、前記像側レンズ群は、最も物体側に負レンズ成分と、前記負レンズ成分の像側に正レンズ成分とを有することが好ましい。
 また、前記像側レンズ群は、前記負レンズ成分と前記正レンズ成分とを有し、正または負の屈折力を持つ接合レンズを有することが好ましい。
 また、前記像側レンズ群は、物体側に凹面を向けた負メニスカスレンズと、像側に凸面を向けた正メニスカスレンズとを有する接合レンズを有することが好ましい。
 また、本発明の光学機器(本実施形態ではデジタル一眼レフカメラ1)は、物体の像を所定の像面上に結像させる撮影レンズとして、上記レンズを備える。
 また、本発明の撮影レンズの製造方法は、物体側から順に、物体側レンズ群と、前記物体側レンズ群と空気間隔を隔てて配置された像側レンズ群とを配置し、遠距離物体から近距離物体への合焦に際し、前記像側レンズ群の少なくとも一部を合焦レンズ群として光軸方向に沿って移動させ、防振を行うに際し、前記像側レンズ群の少なくとも一部をシフトレンズ群として光軸に略直交方向の成分を持つように移動させる。
 本発明によれば、諸収差を良好に補正することができ、且つ、レンズシフト時に性能変化を最低限に抑えることができ、さらに小型で、画面全体にわたり優れた光学性能を有する撮影レンズ、この撮影レンズを備えた光学機器および製造方法を提供することができる。
第1実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第1実施例の無限遠合焦状態における諸収差図であり、(b)は第1実施例のレンズシフト状態(0.2mm)の横収差図である。 第1実施例の近距離合焦状態における諸収差図を示す。 第2実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第2実施例の無限遠合焦状態における諸収差図であり、(b)は第2実施例のレンズシフト状態(0.2mm)の横収差図である。 第2実施例の近距離合焦状態における諸収差図を示す。 第3実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第3実施例の無限遠合焦状態における諸収差図であり、(b)は第3実施例のレンズシフト状態(0.2mm)の横収差図である。 第3実施例の近距離合焦状態における諸収差図を示す。 第4実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第4実施例の無限遠合焦状態における諸収差図であり、(b)は第4実施例のレンズシフト状態(0.2mm)の横収差図である。 第4実施例の近距離合焦状態における諸収差図を示す。 第5実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第5実施例の無限遠合焦状態における諸収差図であり、(b)は第5実施例のレンズシフト状態(0.15mm)の横収差図である。 第5実施例の近距離合焦状態における諸収差図を示す。 第6実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第6実施例の無限遠合焦状態における諸収差図であり、(b)は第6実施例のレンズシフト状態(0.15mm)の横収差図である。 第6実施例の近距離合焦状態における諸収差図を示す。 第7実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第7実施例の無限遠合焦状態における諸収差図であり、(b)は第7実施例のレンズシフト状態(0.15mm)の横収差図である。 第7実施例の近距離合焦状態における諸収差図を示す。 第8実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第8実施例の無限遠合焦状態における諸収差図であり、(b)は第8実施例のレンズシフト状態(0.15mm)の横収差図である。 第8実施例の近距離合焦状態における諸収差図を示す。 第9実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。 (a)は第9実施例の無限遠合焦状態における諸収差図であり、(b)は第9実施例のレンズシフト状態(0.15mm)の横収差図である。 第9実施例の近距離合焦状態における諸収差図を示す。 本実施形態に係る撮影レンズを有するデジタル一眼レフカメラの断面構成図である。 本実施形態に係る撮影レンズの製造方法を説明するためのフローチャートである。
 以下、好ましい実施形態について、図面を用いて説明する。図1に示すように、本実施形態に係る撮影レンズは、物体側から順に並んだ、物体側レンズ群G1と、物体側レンズ群G1と空気間隔を隔てて配置された像側レンズ群G2とを有し、像側レンズ群G2の少なくとも一部を合焦レンズ群として光軸方向に沿って移動させることによって、遠距離物体から近距離物体への合焦を行い、像側レンズ群G2の少なくとも一部をシフトレンズ群として光軸に略直交方向の成分を持つように移動させることによって、防振を行うことが可能である。この構成により、近距離合焦時の像面湾曲の変動が少なく、レンズシフト時のコマ収差および像面湾曲の性能劣化も最小限に抑えることができる。よって、本実施形態に係る撮影レンズは、小型で、画面全体にわたり優れた結像性能を得ることができる。
 なお、本実施形態の効果を確実にするために、像側レンズ群G2は正の屈折力を有することが好ましい。また、本実施形態の効果を確実にするために、合焦レンズ群の少なくとも一部はシフトレンズ群であることが好ましい。特に、合焦レンズ群の一部をシフトレンズ群とする場合、合焦レンズ群の最も物体側の部分レンズ群をシフトレンズ群とするのが好ましい。
 本実施形態においては、上記構成の基で、小型化と高性能化を図るために、撮影レンズ全系の焦点距離をfとし、像側レンズ群G2の最も物体側のレンズ面(図1では面番号8)から最も像側のレンズ面(図1では面番号15)までの光軸上の長さをΣd2としたとき、次式(1)の条件を満足することが好ましい。
 0.27<Σd2/f<0.60 …(1)
 上記条件式(1)は、高い結像性能の確保と合焦レンズ群の軽量化を両立するために、像側レンズ群G2の光軸上の総厚Σd2を適切に規定するための条件式である。この条件式(1)の上限値を上回った場合、像側レンズ群G2の光軸上の総厚Σd2が大きくなり過ぎる。すると、像側レンズ群G2のレンズ部分およびこれを支持する鏡筒部材も大きく、重くなり、さらに、合焦レンズ群の移動ストロークも制限されてしまう。そして、小さな移動ストロークで合焦レンズ群により近距離物体への合焦を行おうとすると、像側レンズ群G2の屈折力を強くしなくてはならず、結果として球面収差およびコマ収差の補正が困難となり、好ましくない。逆に、条件式(1)の下限値を下回った場合、像側レンズ群G2の光軸上の総厚Σd2が小さくなり過ぎる。その結果、小型化には有利であるが、像側レンズ群G2を構成するレンズ枚数を削減しなくてはならず、レンズ系全体で発生する球面収差、コマ収差および像面湾曲が良好に補正できなくなり、好ましくない。
 なお、本実施形態の効果を確実にするために、条件式(1)の上限値を0.57にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(1)の上限値を0.53にすることが好ましい。
 また、本実施形態の効果を確実にするために、条件式(1)の下限値を0.29にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(1)の下限値を0.31にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(1)の下限値を0.33にすることが好ましい。
 また、物体側レンズ群G1の焦点距離をf1とし、像側レンズ群G2の焦点距離をf2としたとき、次式(2)の条件を満足することが好ましい。
 0.06<|f2|/|f1|<0.49 …(2)
 上記条件式(2)は、物体側レンズ群G1と像側レンズ群G2との最適な焦点距離比の範囲を規定するための条件式である。この条件式(2)の上限値を上回った場合、物体側レンズ群G1の屈折力が(像側レンズ群G2に対して)相対的に強くなってしまい、物体側レンズ群G1単独で発生する球面収差およびコマ収差の補正が困難となってしまう。また、像側レンズ群G2の屈折力が相対的に弱くなってしまい、像面湾曲が良好に補正できなくなり、好ましくない。逆に、条件式(2)の下限値を下回った場合、物体側レンズ群G1の屈折力が(像側レンズ群G2に対して)相対的に弱くなってしまい、球面収差の補正が不足するため、好ましくない。さらに、像側レンズ群G2の屈折力が相対的に強くなることにより、該像側レンズ群G2で発生するコマ収差が大きくなり過ぎてしまい、優れた光学性能を得ることができなくなってしまう。
 なお、本実施形態の効果を確実にするために、条件式(2)の上限値を0.45にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(2)の上限値を0.43にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(2)の上限値を0.40にすることが好ましい。
 また、本実施形態の効果を確実にするために、条件式(2)の下限値を0.10にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(2)の下限値を0.12にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(2)の下限値を0.14にすることが好ましい。
 また、撮影レンズ全系の焦点距離をfとし、シフトレンズ群の焦点距離をfsとしたとき、次式(3)の条件を満足することが好ましい。
 0.80<f/|fs|<1.10 …(3)
 上記条件式(3)は、シフトレンズ群の焦点距離fsを規定するための条件式である。この条件式(3)の上限値を上回った場合、シフトレンズ群の屈折力が強くなってしまい、像側レンズ群G2単体で発生する球面収差が大きくなってしまい、好ましくない。逆に、条件式(3)の下限値を下回った場合、シフトレンズ群の屈折力が弱くなってしまい、アフォーカルでなくなってしまうので、レンズシフトさせた際に像面湾曲の変化が大きくなってしまい、好ましくない。
 なお、本実施形態の効果を確実にするために、条件式(3)の上限値を1.07にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(3)の上限値を1.05にすることが好ましい。
 また、本実施形態の効果を確実にするために、条件式(3)の下限値を0.83にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(3)の下限値を0.86にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(3)の下限値を0.90にすることが好ましい。
 また、物体側レンズ群G1単独で発生するコマ収差および像面湾曲を最低限に抑えるために、物体側レンズ群G1の最も物体側のレンズ(図1ではレンズL1)の像側の曲率半径をr1Rとし、前記最も物体側のレンズの像側に位置するレンズ(図1ではレンズL2)の物体側の曲率半径をr2Fとしたとき、次式(4)の条件を満足することが好ましい。
 0.0<(r2F+r1R)/(r2F-r1R)<24.8 …(4)
 上記条件式(4)は、物体側レンズ群G1単独で発生するコマ収差および像面湾曲を良好に補正するための条件式である。この条件式(4)の上限値を上回った場合、物体側レンズ群G1単独で発生するコマ収差および像面湾曲が補正できなくなってしまう。また、歪曲収差も増大してしまい、好ましくない。逆に、条件式(4)の下限値を下回った場合、物体側レンズ群G1単独で発生するコマ収差が大きくなり過ぎて、最短撮影距離での性能が悪化してしまい、好ましくない。
 なお、本実施形態の効果を確実にするために、条件式(4)の上限値を22.80にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(4)の上限値を20.80にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(4)の上限値を19.00にすることが好ましい。
 また、本実施形態の効果を確実にするために、条件式(4)の下限値を2.00にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(4)の下限値を3.50にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(4)の下限値を5.00にすることが好ましい。
 また、小型化と高性能化を図るために、撮影レンズの全長(最も物体側に配置されたレンズの物体側面から像面までの光軸上の距離)をTLとし、物体側レンズ群G1の最も物体側のレンズ面(図1では面番号1)から像側レンズ群G2の最も像側のレンズ面(図1では面番号15)までの光軸上の長さをΣdとしたとき、次式(5)の条件を満足することが好ましい。
 1.5<TL/Σd<2.3 …(5)
 上記条件式(5)は、小型化と高性能化のバランスを取るための適切な撮影レンズの全長TLを規定するための条件式である。この条件式(5)の上限値を上回った場合、収差補正上は有利になるが、撮影レンズ全長が大きくなってしまい、小型化と高性能化のバランスが取れなくなってしまうため、好ましくない。逆に、条件式(5)の下限値を下回った場合、小型化には有利であるが、レンズ系全体で発生する球面収差、コマ収差および像面湾曲が良好に補正できなくなってしまう。また、バックフォーカスを長くすることが困難になってしまうため、好ましくない。
 なお、本実施形態の効果を確実にするために、条件式(5)の上限値を2.25にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(5)の上限値を2.20にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(5)の上限値を2.15にすることが好ましい。
 また、本実施形態の効果を確実にするために、条件式(5)の下限値を1.55にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(5)の下限値を1.60にすることが好ましい。さらに、本実施形態の効果を確実にするために、条件式(5)の下限値を1.65にすることが好ましい。
 また、物体側レンズ群G1は、小型でありながら長いバックフォーカスを確保するために、正の屈折力を持つことが好ましい。本実施形態では、物体側レンズ群G1に弱い正の屈折力を配置することにより、レンズ系全長に対して長いバックフォーカスを達成することができるとともに、コマ収差および像面湾曲も良好に補正することができる。なお、本実施形態においては、これら効果を十分に発揮するため、物体側レンズ群G1の最も物体側に位置するレンズ(図1ではレンズL1)を、物体側に凸面を向けた凹メニスカスレンズとすることがより好ましい。
 また、前記合焦レンズ群は、前記シフトレンズ群であることが好ましい。さらに、前記撮影レンズの焦点距離は不変であることが好ましい。
 また、高性能化を図るため、像側レンズ群G2は、正レンズ成分を有し、前記正レンズ成分は、少なくとも1つの非球面を含むことが好ましい。この構成により、フォーカシングの際に発生する、歪曲収差および像面湾曲の変動を良好に補正することができる。
 また、高性能化を図るため、開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されていることが好ましい。この構成によれば、(物体側より順に)正の屈折力を有する物体側レンズ群G1、開口絞りS、正の屈折力を有する像側レンズ群G2という、対称型の屈折力配置に近付けて、像面湾曲および歪曲収差を良好に補正することができる。
 また、像側レンズ群G2は、最も物体側に負レンズ成分と、前記負レンズ成分の像側に正レンズ成分とを有することが好ましい。さらには、像側レンズ群G2は、これら負レンズ成分と正レンズ成分とからなり、正または負の屈折力を持つ接合レンズを有することが好ましい。この構成により、色収差および像面湾曲を良好に補正することができる。また、像側レンズ群G2の接合レンズは、物体側に凹面を向けた負メニスカスレンズと、像側に凸面を向けた正メニスカスレンズとを有することが好ましい。このような構成により、像面湾曲をより良好に補正することができる。
 図28に、上記構成の撮影レンズを備えたデジタル一眼レフカメラ1(光学機器)の略断面図を示す。この図28に示すデジタル一眼レフカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図28に記載のカメラ1は、撮影レンズ2を着脱可能に保持するものでもよく、撮影レンズ2と一体に成形されるものでもよい。
 図29を参照しながら、上記構成の撮影レンズの製造方法について説明する。まず、円筒状の鏡筒内に各レンズ群G1、G2を組み込む(ステップS1)。レンズを鏡筒内に組み込む際、光軸に沿った順にレンズを1つずつ鏡筒内に組み込んでもよく、一部または全てのレンズを保持部材で一体保持してから鏡筒部材と組み立ててもよい。次に、鏡筒内に各レンズが組み込まれた後、鏡筒内に各レンズが組み込まれた状態で物体の像が形成されるか、すなわち各レンズの中心が揃っているかを確認する(ステップS2)。続いて、撮影レンズの各種動作を確認する(ステップS3)。各種動作の一例としては、遠距離物体から近距離物体への合焦を行うレンズ(本実施形態では像側レンズ群G2)が光軸方向に沿って移動する合焦動作、少なくとも一部のレンズ(本実施形態では像側レンズ群G2)が光軸と直交方向の成分を持つように移動する手ブレ補正動作などが挙げられる。なお、各種動作の確認順番は任意である。
 以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1~表8を示すが、これらは第1実施例~第8実施例における各諸元の表である。[全体諸元]において、fは本撮影レンズの焦点距離を、FNOはFナンバーを、2ωは画角を、Yは像高を、TLはレンズ全長を示す。[レンズデータ]においては、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、rは各レンズ面の曲率半径を、dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔を、ndはd線(波長587.6nm)に対する屈折率を、νdはd線に対するアッベ数を示す。また、レンズ面が非球面である場合には、面番号に*印を付し、曲率半径rの欄には近軸曲率半径を示す。なお、曲率半径の「0.0000」は平面又は開口を示す。また、空気の屈折率「1.00000」の記載は省略している。[可変間隔データ]において、di(但し、iは整数)は第i面の可変の面間隔を示す。[レンズ群データ]において、各群の初面および焦点距離を示す。[条件式]において、上記の条件式(1)~(5)に対応する値を示す。
 [非球面データ]には、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。すなわち、光軸に垂直な方向の高さをyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐係数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で示している。なお、各実施例において、2次の非球面係数A2は0であり、その記載を省略している。また、Enは、×10nを表す。例えば、1.234E-05=1.234×10-5である。
  S(y)=(y2/r)/{1+(1-κ・y2/r21/2
        +A4×y4+A6×y6+A8×y8+A10×y10 …(a)
 なお、表中において、焦点距離f、曲率半径r、面間隔d、その他の長さの単位は、一般に「mm」が使われている。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 以上の表の説明は、他の実施例においても同様とし、その説明を省略する。
(第1実施例)
 第1実施例について、図1~図3および表1を用いて説明する。図1は、第1実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.025倍の撮影距離を示す。
 図1に示すように、第1実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表1における軸上空気間隔d7)および像側レンズ群G2とフィルタ群FLとの間隔(表1における軸上空気間隔d15)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、両凸形状の正レンズL2と、物体側に凸面を向けた負メニスカスレンズL3とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL4と像側に凸面を向けた正メニスカスレンズL5との貼り合わせからなる負の接合レンズL45と、物体側に非球面を備えた像側に凸面を向けた正メニスカスレンズL6と、像側に凸面を向けた正メニスカスレンズL7とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 以下の表1は、第1実施例における各諸元を示す。なお、表1における面番号1~17は、図1に示す面1~17に対応している。
(表1)
[全体諸元]
 f=36.01
 FNO=1.85
 2ω=43.77
 Y=14.10
 TL=92.00
[レンズ諸元]
 面番号   r     d    nd    νd
  1   132.7002   1.40   1.58913   61.18
  2   25.8526   9.59
  3   29.7335   5.09   1.77250   49.61
  4   -801.6732  0.10
  5   20.3542   4.65   1.83400   37.17
  6   15.3218   5.97
  7   0.0000   (d7)   (開口絞りS)
  8   -15.0395  1.50   1.84666   23.78
  9   -662.9579  4.50   1.80400   46.58
  10   -27.5128  0.69
 *11   -100.0000  0.05   1.55389   38.09
  12   -100.0000  4.39   1.80400   46.58
  13   -29.2280   0.10
  14   -289.2477   3.73   1.80400   46.58
  15   -38.0644   (d15)
  16   0.0000    1.50   1.51633   64.15
  17   0.0000    0.50
[非球面データ]
第11面
r=-100.0000,κ=+1.0000,
C4=-8.7071-06,C6=+5.0224E-09,C8=-4.5994E-12,C10=+0.0000E-00
[合焦時における可変間隔]
      無限遠   近距離
 d7    11.2452   10.3029
 d15   37.0000   37.9423
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    160.3373
  G2    8    36.5875
[条件式]
f=36.0091
f1=160.3373
f2=36.5875
fs=36.5875
r1R=25.8526
r2F=29.7335
TL=91.9995
Σd=53.0001
Σd2=14.9549
条件式(1)Σd2/f=0.4153
条件式(2)|f2|/|f1|=0.2282
条件式(3)f/|fs|=0.9842
条件式(4)(r2F+r1R)/(r2F-r1R)=14.3231
条件式(5)TL/Σd=1.7358
 表1に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図2は、第1実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.2mm)。また、図3は、第1実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。なお、各収差図において、FNOはFナンバー、Aは各像高に対する半画角、H0は各像高に対する物体高を示す。また、非点収差を示す収差図において、実線はサジタル像面を示し、破線はメリジオナル像面を示す。また、いずれの収差曲線もd線(波長587.6nm)に対するものである。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。
 各収差図から明らかなように、第1実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第2実施例)
 第2実施例について、図4~図6および表2を用いて説明する。図4は、第2実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.020倍の撮影距離を示す。
 図4に示すように、第2実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表2における軸上空気間隔d7)および像側レンズ群G2とフィルタ群FLとの間隔(表2における軸上空気間隔d14)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、両凸形状の正レンズL2と、物体側に凸面を向けた負メニスカスレンズL3とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL4と、像側に凸面を向けた正メニスカスレンズL5と、物体側に非球面を備えた両凸形状の正レンズL6とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 以下の表2は、第2実施例における各諸元を示す。なお、表2における面番号1~16は、図4に示す面1~16に対応している。
(表2)
[全体諸元]
 f=36.00
 FNO=1.85
 2ω=45.58
 Y=14.10
 TL=86.50
[レンズ諸元]
 面番号   r     d    nd    νd
  1   424.2496   1.40   1.51633   64.15
  2   23.2189   5.29
  3   26.1583   5.92   1.72916   54.68
  4   -273.1932   0.10
  5   14.9149   2.48   1.77250   49.60
  6   12.3301   7.58
  7   0.0000   (d7)   (開口絞りS)
  8   -15.0479   3.00   1.84666   23.78
  9   -274.2622  0.24
  10  -155.0749   6.00   1.77250   49.60
  11  -22.0079   0.10
 *12  164.5291   0.10   1.55389   38.09
  13  164.5291   4.87   1.80400   46.58
  14  -31.2668   (d14)
  15   0.0000   1.50   1.51633   64.15
  16   0.0000   0.50
[非球面データ]
第12面
r=+164.5291,κ=+1.0000,
C4=-7.0870-06,C6=+8.6197E-10,C8=+1.4544E-11,C10=+0.0000E-00
[合焦時における可変間隔]
      無限遠   近距離
 d7    10.4271   9.6606
 d14   37.0000   37.7665
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    140.0061
  G2    8    36.1855
[条件式]
f=36.0001
f1=140.0061
f2=36.1855
fs=36.1855
r1R=23.2189
r2F=26.1583
TL=86.5000
Σd=47.4999
Σd2=14.3094
条件式(1)Σd2/f=0.3975
条件式(2)|f2|/|f1|=0.2585
条件式(3)f/|fs|=0.9949
条件式(4)(r2F+r1R)/(r2F-r1R)=16.7985
条件式(5)TL/Σd=1.8211
 表2に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図5は、第2実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.2mm)。図6は、第2実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第2実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第3実施例)
 第3実施例について、図7~図9および表3を用いて説明する。図7は、第3実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.025倍の撮影距離を示す。
 図7に示すように、第3実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表3における軸上空気間隔d7)および像側レンズ群G2とフィルタ群FLとの間隔(表3における軸上空気間隔d13)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、両凸形状の正レンズL2と、物体側に凸面を向けた負メニスカスレンズL3とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL4と像側に凸面を向けた正メニスカスレンズL5との貼り合わせからなる負の接合レンズL45と、物体側に非球面を備えた両凸形状の正レンズL6とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 以下の表3は、第3実施例における各諸元を示す。なお、表3における面番号1~15は、図7に示す面1~15に対応している。
(表3)
[全体諸元]
 f=36.00
 FNO=1.85
 2ω=45.60
 Y=14.10
 TL=92.00
[レンズ諸元]
 面番号   r     d    nd    νd
  1   176.0137   1.40   1.58913   61.18
  2   27.3013   9.07
  3   33.2143   4.94   1.77250   49.61
  4   -347.2568   0.10
  5   18.6027   4.45   1.84666   23.78
  6   14.2382   6.90
  7   0.0000   (d7)   (開口絞りS)
  8   -14.5276   1.10   1.84666   23.78
  9   -77.2310   5.59   1.77250   49.61
  10   -18.6999   1.67
 *11   172.8130   0.10   1.55389   38.09
  12   172.8130   5.65   1.80400   46.58
  13   -34.0594   (d13)
  14   0.0000   1.50   1.51633   64.14
  15   0.0000   0.50
[非球面データ]
第11面
r=+172.8130,κ=+1.0000,
C4=-7.1412-06,C6=+2.6456E-09,C8=+4.0280E-12,C10=+0.0000E-00
[合焦時における可変間隔]
      無限遠   近距離
 d7    11.9969   11.0759
 d13   37.0217   37.9427
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    218.5857
  G2    8    36.0921
[条件式]
f=35.9951
f1=218.5857
f2=36.0921
fs=36.0921
r1R=27.3014
r2F=33.2143
TL=91.9897
Σd=52.6810
Σd2=14.1100
条件式(1)Σd2/f=0.3920
条件式(2)|f2|/|f1|=0.1651
条件式(3)f/|fs|=0.9973
条件式(4)(r2F+r1R)/(r2F-r1R)=10.2344
条件式(5)TL/Σd=1.7462
 表3に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図8は、第3実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.2mm)。図9は、第3実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第3実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第4実施例)
 第4実施例について、図10~図12および表4を用いて説明する。図10は、第4実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.025倍の撮影距離を示す。
 図10に示すように、第4実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表4における軸上空気間隔d7)および像側レンズ群G2とフィルタ群FLとの間隔(表4における軸上空気間隔d13)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL4と、物体側に非球面を備えた像側に凸面を向けた正メニスカスレンズL5と、両凸形状の正レンズL6とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 以下の表4は、第4実施例における各諸元を示す。なお、表4における面番号1~15は、図10に示す面1~15に対応している。
(表4)
[全体諸元]
 f=35.90
 FNO=1.85
 2ω=45.72
 Y=14.10
 TL=91.12
[レンズ諸元]
 面番号   r     d    nd    νd
  1   115.2190   1.40   1.58913   61.18
  2   26.7689   9.51
  3   29.8387   4.91   1.80400   46.58
  4   703.4539   0.10
  5   21.2098   4.32   1.84666  23.78
  6   15.9246   5.69
  7   0.0000   (d7)   (開口絞りS)
  8   -13.6299   1.46   1.84666   23.78
  9   -73.5907   0.15
 *10   -87.6775   5.91   1.74443   49.55
  11   -18.4345   0.10
  12   601.1271   4.87   1.80400   46.58
  13   -29.8090   (d13)
  14   0.0000   1.50   1.51633   64.15
  15   0.0000   0.50
[非球面データ]
第10面
r=-87.6775,κ=+1.0000,
C4=-1.7876-05,C6=+3.0218E-08,C8=-2.3459E-11,C10=+0.0000E-00
[合焦時における可変間隔]
      無限遠   近距離
 d7    13.3490   12.4207
 d13   37.3663   38.2946
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    218.5857
  G2    8    36.0921
[条件式]
f=35.9049
f1=183.9771
f2=35.9800
fs=35.9800
r1R=26.7689
r2F=29.8387
TL=91.1222
Σd=51.7561
Σd2=12.4848
条件式(1)Σd2/f=0.3477
条件式(2)|f2|/|f1|=0.1956
条件式(3)f/|fs|=0.9979
条件式(4)(r2F+r1R)/(r2F-r1R)=18.4402
条件式(5)TL/Σd=1.7607
 表4に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図11は、第4実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.2mm)。図12は、第4実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第4実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第5実施例)
 第5実施例について、図13~図15および表5を用いて説明する。図13は、第5実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.015倍の撮影距離を示す。
 図13に示すように、第5実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表5における軸上空気間隔d6)および像側レンズ群G2とフィルタ群FLとの間隔(表5における軸上空気間隔d12)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL3と像側に凸面を向けた正メニスカスレンズL4との貼り合わせからなる接合レンズL34と、両凸形状の正レンズL5とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 以下の表5は、第5実施例における各諸元を示す。なお、表5における面番号1~18は、図13に示す面1~18に対応している。
(表5)
[全体諸元]
 f=23.65
 FNO=2.83
 2ω=62.12
 Y=14.10
 TL=52.26
[レンズ諸元]
 面番号   r     d    nd    νd
  1   20.8248   1.49   1.67790   54.89
 *2   8.4932   1.33
  3   11.9898   3.15   1.88300   40.76
  4   41.9602   1.33
  5   0.0000   2.32
  6   0.0000   (d6)   (開口絞りS)
  7   0.0000   1.66
  8   -8.5583   1.49   1.80810   22.76
  9   -25.0429   4.40   1.75500   52.32
  10   -10.8285   0.33
  11   41.5491   4.48   1.58913   61.16
 *12   -32.8459  (d12)
  13   0.0000   1.66   1.51633   64.14
  14   0.0000   2.49
  15   0.0000   3.10   1.51633   64.14
  16   0.0000   0.66
  17   0.0000   1.16   1.51633   64.14
  18   0.0000   0.84
[非球面データ]
第2面
r=+8.4932,κ=+0.9952,
C4=-7.7765-05,C6=-1.1015E-06,C8=-1.8637E-09,C10=-2.9666E-10
第12面
r=-32.8459,κ=+5.2781,
C4=+4.8095-05,C6=+8.4234E-09,C8=+8.5569E-12,C10=-2.8256E-12
[合焦時における可変間隔]
      無限遠   近距離
 d6    3.0711   2.7029
 d12   17.2992   17.6675
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    96.5825
  G2    8    24.8384
[条件式]
f=23.6481
f1=96.5825
f2=24.8384
fs=24.8384
r1R=8.4932
r2F=11.9898
TL=52.2625
Σd=25.0505
Σd2=10.6994
条件式(1)Σd2/f=0.4524
条件式(2)|f2|/|f1|=0.2572
条件式(3)f/|fs|=0.9521
条件式(4)(r2F+r1R)/(r2F-r1R)=5.8579
条件式(5)TL/Σd=2.0863
 表5に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図14は、第5実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.15mm)。図15は、第5実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第5実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第6実施例)
 第6実施例について、図16~図18および表6を用いて説明する。図16は、第6実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.015倍の撮影距離を示す。
 図16に示すように、第6実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表6における軸上空気間隔d6)および像側レンズ群G2とフィルタ群FLとの間隔(表6における軸上空気間隔d12)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL3と像側に凸面を向けた正メニスカスレンズL4との貼り合わせからなる接合レンズL34と、両凸形状の正レンズL5とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 以下の表6は、第6実施例における各諸元を示す。なお、表6における面番号1~18は、図16に示す面1~18に対応している。
(表6)
[全体諸元]
 f=23.65
 FNO=2.92
 2ω=62.12
 Y=14.10
 TL=49.76
[レンズ諸元]
 面番号   r     d    nd    νd
  1   15.5132   1.49   1.67790   54.89
 *2   7.9969   0.75
  3   9.8164   3.07   1.81600   46.62
  4   26.4969   0.58
  5   0.0000   3.23
  6   0.0000   (d6)   (開口絞りS)
  7   0.0000   2.65
  8   -7.7711   1.49   1.80810   22.76
  9   -30.7203   5.04   1.81600   46.62
  10   -11.2008   0.33
  11   32.3560   5.14   1.66910   55.42
 *12   -46.7559  (d12)
  13   0.0000   1.66   1.51633   64.14
  14   0.0000   2.49
  15   0.0000   3.10   1.51633   64.14
  16   0.0000   0.66
  17   0.0000   1.16   1.51633   64.14
  18   0.0000   0.83
[非球面データ]
第2面
r=+7.9969,κ=-2.2502,
C4=+7.1979-04,C6=-8.7714E-06,C8=+1.8061E-07,C10=-1.6854E-09
第12面
r=-46.7559,κ=+3.4098,
C4=+3.2772-05,C6=-2.7331E-08,C8=+1.4554E-10,C10=-6.2922E-13
[合焦時における可変間隔]
      無限遠   近距離
 d6    2.6794   2.2766
 d12   13.3970   13.7998
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    61.3133
  G2    8    23.2327
[条件式]
f=23.6481
f1=61.3133
f2=23.2327
fs=23.2327
r1R=7.9969
r2F=9.8164
TL=49.7627
Σd=26.4644
Σd2=12.0064
条件式(1)Σd2/f=0.5077
条件式(2)|f2|/|f1|=0.3789
条件式(3)f/|fs|=1.0179
条件式(4)(r2F+r1R)/(r2F-r1R)=9.7902
条件式(5)TL/Σd=1.8804
 表6に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図17は、第6実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.15mm)。図18は、第6実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第6実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第7実施例)
 第7実施例について、図19~図20および表7を用いて説明する。図19は、第7実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.010倍の撮影距離を示す。
 図19に示すように、第7実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表7における軸上空気間隔d6)および像側レンズ群G2とフィルタ群FLとの間隔(表7における軸上空気間隔d12)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL3と像側に凸面を向けた正メニスカスレンズL4との貼り合わせからなる接合レンズL34と、両凸形状の正レンズL5とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 また、フレア絞りFS1とフレア絞りFS2が、開口絞りSの前後に配置されている。
 以下の表7は、第7実施例における各諸元を示す。なお、表7における面番号1~18は、図19に示す面1~18に対応している。
(表7)
[全体諸元]
 f=23.65
 FNO=2.92
 2ω=62.50
 Y=14.10
 TL=53.68
[レンズ諸元]
 面番号   r     d    nd    νd
  1   23.2362   2.16   1.67790   54.89
 *2   8.9464   1.00
  3   12.5597   3.23   1.88300   40.76
  4   47.0545   0.41
  5   0.0000   2.90
  6   0.0000   (d6)   (開口絞りS)
  7   0.0000   2.07
  8   -8.6712   1.63   1.80810   22.76
  9   -25.1262   4.77   1.75500   52.32
  10   -11.1163   0.33
  11   38.1602   4.88   1.59201   67.02
 *12   -34.3949  (d12)
  13   0.0000   0.83   1.51633   64.14
  14   0.0000   7.63
  15   0.0000   3.10   1.51633   64.14
  16   0.0000   0.50
  17   0.0000   1.16   1.51633   64.14
  18   0.0000   0.89
[非球面データ]
第2面
r=+8.9464,κ=+1.7327,
C4=-2.0039-04,C6=-3.5129E-06,C8=+2.5209E-08,C10=-2.8849E-09
第12面
r=-34.3949,κ=-19.0000,
C4=-3.1738-05,C6=+3.5586E-07,C8=-1.6131E-09,C10=+3.2862E-12
[合焦時における可変間隔]
      無限遠   近距離
 d6   3.3800   3.0173
 d12   12.8065   13.1693
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    111.5776
  G2    8    23.8131
[条件式]
f=23.6481
f1=111.5776
f2=23.8131
fs=23.8131
r1R=8.9464
r2F=12.5597
TL=53.6827
Σd=26.7682
Σd2=11.6106
条件式(1)Σd2/f=0.4910
条件式(2)|f2|/|f1|=0.2134
条件式(3)f/|fs|=0.9931
条件式(4)(r2F+r1R)/(r2F-r1R)=5.9520
条件式(5)TL/Σd=2.0055
 表7に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図20は、第7実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.15mm)。図21は、第7実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第7実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第8実施例)
 第8実施例について、図22~図24および表8を用いて説明する。図22は、第8実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.015倍の撮影距離を示す。
 図22に示すように、第8実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表8における軸上空気間隔d6)および像側レンズ群G2とフィルタ群FLとの間隔(表8における軸上空気間隔d12)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL3と像側に凸面を向けた正メニスカスレンズL4との貼り合わせからなる接合レンズL34と、両凸形状の正レンズL5とを有する。なお、手ぶれ補正は、像側レンズ群G2を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 また、フレア絞りFS1とフレア絞りFS2が、開口絞りSの前後に配置されている。
 以下の表8は、第8実施例における各諸元を示す。なお、表8における面番号1~18は、図22に示す面1~18に対応している。
(表8)
[全体諸元]
 f=23.65
 FNO=2.88
 2ω=62.12
 Y=14.10
 TL=51.43
[レンズ諸元]
 面番号   r     d    nd    νd
  1   19.6173   1.49   1.67790   54.89
 *2   8.3120   1.08
  3   11.6554   3.07   1.88300   40.76
  4   38.7445   1.16
  5   0.0000   2.32
  6   0.0000   (d6)   (開口絞りS)
  7   0.0000   1.66
  8   -8.4037   1.49   1.80810   22.76
  9   -24.2702   4.48   1.75500   52.32
  10   -10.6126   0.33
  11   39.0310   4.48   1.58913   61.16
 *12   -35.5806  (d12)
  13   0.0000   1.66   1.51633   64.14
  14   0.0000   2.49
  15   0.0000   3.10   1.51633   64.14
  16   0.0000   0.66
  17   0.0000   1.16   1.51633   64.14
  18   0.0000   0.84
[非球面データ]
第2面
r=+8.3120,κ=+0.1277,
C4=+1.0621-04,C6=+4.4647E-07,C8=+3.3097E-09,C10=+2.8274E-11
第12面
r=-35.5806,κ=-5.6807,
C4=+1.4640-05,C6=-5.4585E-09,C8=+6.7083E-10,C10=-3.8102E-12
[合焦時における可変間隔]
      無限遠   近距離
 d6   3.0702   2.7011
 d12   16.8854   17.2545
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    94.3582
  G2    8    24.4901
[条件式]
f=23.6482
f1=94.3582
f2=24.4901
fs=24.4901
r1R=8.3120
r2F=11.6554
TL=51.4350
Σd=24.6349
Σd2=10.7823
条件式(1)Σd2/f=0.4559
条件式(2)|f2|/|f1|=0.2595
条件式(3)f/|fs|=0.9656
条件式(4)(r2F+r1R)/(r2F-r1R)=5.9722
条件式(5)TL/Σd=2.0879
 表8に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図23は、第8実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.15mm)。図24は、第8実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第8実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第9実施例)
 第9実施例について、図25~図27および表9を用いて説明する。図25は、第9実施例に係る撮影レンズの構成図および無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズの移動の様子を示す図である。なお、本実施例において、近距離とは-0.025倍の撮影距離を示す。
 図25に示すように、第9実施例に係る撮影レンズは、物体側から順に並んだ、正の屈折力を有する物体側レンズ群G1と、正の屈折力を有する像側レンズ群G2と、ローパスフィルターや赤外カットフィルター等からなるフィルタ群FLとを有する。そして、無限遠合焦状態から近距離合焦状態への合焦状態の変化、すなわちフォーカシングに際して、物体側レンズ群G1は像面Iに対して固定され、像側レンズ群G2は像面Iに対して移動し、物体側レンズ群G1と像側レンズ群G2との間隔(表9における軸上空気間隔d7)および像側レンズ群G2とフィルタ群FLとの間隔(表9における軸上空気間隔d13)が変化する。なお、像面Iは、図28に示す撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。
 物体側レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、両凸形状の正レンズL2と、物体側に凸面を向けた負メニスカスレンズL3とを有する。
 像側レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL4と像側に凸面を向けた正メニスカスレンズL5との貼り合わせからなる負の接合レンズL45と、物体側に非球面を備えた両凸形状の正レンズL6とを有する。なお、手ぶれ補正は、像側レンズ群G2の一部である接合レンズL45を光軸に対して略直交方向の成分を持つように移動させることにより、手ぶれ発生時の像面I上における像シフトを行うことで達成している。さらに、フィルター群FLは、ローパスフィルターや赤外カットフィルター等から構成されている。
 開口絞りSが、物体側レンズ群G1と像側レンズ群G2との間に配置されている。なお、開口絞りSは、無限遠合焦状態から近距離合焦状態へのフォーカシングに際して、物体側レンズ群G1に対して固定である。
 以下の表9は、第9実施例における各諸元を示す。なお、表9における面番号1~15は、図25に示す面1~15に対応している。
(表9)
[全体諸元]
 f=36.00
 FNO=1.85
 2ω=45.60
 Y=14.10
 TL=92.00
[レンズ諸元]
 面番号   r     d    nd    νd
  1   176.0137   1.40   1.58913   61.18
  2   27.3013   9.07
  3   33.2143   4.94   1.77250   49.61
  4   -347.2568   0.10
  5   18.6027   4.45   1.84666   23.78
  6   14.2382   6.90
  7   0.0000   (d7)   (開口絞りS)
  8   -14.5276   1.10   1.84666   23.78
  9   -77.2310   5.59   1.77250   49.61
  10   -18.6999   1.67
 *11   172.8130   0.10   1.55389   38.09
  12   172.8130   5.65   1.80400   46.58
  13   -34.0594   (d13)
  14   0.0000   1.50   1.51633   64.14
  15   0.0000   0.50
[非球面データ]
第11面
r=+172.8130,κ=+1.0000,
C4=-7.1412-06,C6=+2.6456E-09,C8=+4.0280E-12,C10=+0.0000E-00
[合焦時における可変間隔]
      無限遠   近距離
 d7    11.9969   11.0759
 d13   37.0217   37.9427
[レンズ群データ]
 群番号   群初面  群焦点距離
  G1    1    218.5857
  G2    8    36.0921
[条件式]
f=35.9951
f1=218.5857
f2=36.0921
fs=-141.282
r1R=27.3014
r2F=33.2143
TL=91.9897
Σd=52.6810
Σd2=14.1100
条件式(1)Σd2/f=0.3920
条件式(2)|f2|/|f1|=0.1651
条件式(3)f/|fs|=0.2548
条件式(4)(r2F+r1R)/(r2F-r1R)=10.2344
条件式(5)TL/Σd=1.7462
 表9に示す諸元の表から、本実施例に係る撮影レンズでは、上記条件式(1)~(5)を全て満たすことが分かる。
 図26は、第9実施例の諸収差図であり、(a)は無限遠合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示し、(b)は無限遠合焦状態におけるレンズシフト時(レンズシフト状態)の横収差図を示す(本実施例における移動量は0.15mm)。図27は、第9実施例の近距離合焦状態における諸収差図(左から順に、球面収差図、非点収差図、歪曲収差図、コマ収差図)を示す。各収差図から明らかなように、第9実施例に係る撮影レンズでは、無限遠合焦状態およびレンズシフト状態においても、また近距離合焦状態においても、諸収差が良好に補正され、優れた結像性能を有することが分かる。
 なお、上記の実施形態において以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 各実施例では、5枚~7枚構成を示したが、最も物体側にレンズを追加した構成や、最も像側にレンズを追加した構成でも構わない。
 また、本実施形態において、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。なお、前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。特に像側レンズ群を合焦レンズ群とするのが好ましい。
 また、本実施形態において、レンズ群または部分レンズ群を光軸方向に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、像側レンズ群の少なくとも一部を防振レンズ群とするのが好ましい。
 また、本実施形態において、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズが非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 また、本実施形態において、開口絞りSは、物体側レンズ群G1と像側レンズ群G2との間に配置されるのが好ましいが、開口絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。
 また、本実施形態において、フレアカット絞りFS1およびFS2は、開口絞りSの近傍に配置されるのが好ましいが、フレアカット絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。
 また、本実施形態において、各レンズ面には、フレアやゴーストを軽減して高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
 本実施形態において、物体側レンズ群G1が、正のレンズ成分を1つと、負のレンズ成分を1つ有するのが好ましい。また、物体側から順に、負正負または負正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。
 本実施形態において、像側レンズ群G2が、正のレンズ成分を2つと、負のレンズ成分を1つ有するのが好ましい。また、物体側から順に、負正正または負正正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。また、像側レンズ群G2において、開口絞りSの像側に接合レンズを配置することがより好ましい。
 また、本実施形態において、物体側レンズ群G1の最も物体側レンズの物体側に、正または負のレンズL0を追加してもよい。その場合、撮影レンズの全長TLは、最も物体側に位置する前記レンズL0の物体側レンズ面からの距離をいう。
 なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。
 1 デジタル一眼レフカメラ(光学機器)
 2 撮影レンズ
 G1 物体側レンズ群
 G2 像側レンズ群
 S 開口絞り
 I 像面

Claims (18)

  1.  物体側から順に、物体側レンズ群と、前記物体側レンズ群と空気間隔を隔てて配置された像側レンズ群とを有し、
     前記像側レンズ群の少なくとも一部を合焦レンズ群として光軸方向に沿って移動させることによって、遠距離物体から近距離物体への合焦を行い、
     前記像側レンズ群の少なくとも一部をシフトレンズ群として光軸に略直交方向の成分を持つように移動させることによって、防振を行うことを特徴とする撮影レンズ。
  2.  前記像側レンズ群は、正の屈折力を有することを特徴とする請求項1に記載の撮影レンズ。
  3.  前記合焦レンズ群の少なくとも一部は、前記シフトレンズ群であることを特徴とする請求項1に記載の撮影レンズ。
  4.  前記撮影レンズ全系の焦点距離をfとし、前記像側レンズ群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さをΣd2としたとき、次式
     0.27<Σd2/f<0.60
    の条件を満足することを特徴とする請求項1に記載の撮影レンズ。
  5.  前記物体側レンズ群の焦点距離をf1とし、前記像側レンズ群の焦点距離をf2としたとき、次式
     0.06<|f2|/|f1|<0.49
    の条件を満足することを特徴とする請求項1に記載の撮影レンズ。
  6.  前記撮影レンズ全系の焦点距離をfとし、前記シフトレンズ群の焦点距離をfsとしたとき、次式
     0.80<f/|fs|<1.10
    の条件を満足することを特徴とする請求項1に記載の撮影レンズ。
  7.  前記物体側レンズ群の最も物体側のレンズの像側の曲率半径をr1Rとし、前記最も物体側のレンズの像側に位置するレンズの物体側の曲率半径をr2Fとしたとき、次式
     0.0<(r2F+r1R)/(r2F-r1R)<24.8
    の条件を満足することを特徴とする請求項1に記載の撮影レンズ。
  8.  前記撮影レンズの全長をTLとし、前記物体側レンズ群の最も物体側のレンズ面から前記像側レンズ群の最も像側のレンズ面までの光軸上の長さをΣdとしたとき、次式
     1.5<TL/Σd<2.3
    の条件を満足することを特徴とする請求項1に記載の撮影レンズ。
  9.  前記物体側レンズ群は、正の屈折力を持つことを特徴とする請求項1に記載の撮影レンズ。
  10.  前記合焦レンズ群は、前記シフトレンズ群であることを特徴とする請求項1に記載の撮影レンズ。
  11.  前記撮影レンズの焦点距離は、不変であることを特徴とする請求項1に記載の撮影レンズ。
  12.  前記像側レンズ群は、正レンズ成分を有し、
     前記正レンズ成分は、少なくとも1つの非球面を含むことを特徴とする請求項1に記載の撮影レンズ。
  13.  開口絞りが、前記物体側レンズ群と前記像側レンズ群との間に配置されていることを特徴とする請求項1に記載の撮影レンズ。
  14.  前記像側レンズ群は、最も物体側に負レンズ成分と、前記負レンズ成分の像側に正レンズ成分とを有することを特徴とする請求項1に記載の撮影レンズ。
  15.  前記像側レンズ群は、前記負レンズ成分と前記正レンズ成分とを有し、正または負の屈折力を持つ接合レンズを有することを特徴とする請求項1に記載の撮影レンズ。
  16.  前記像側レンズ群は、物体側に凹面を向けた負メニスカスレンズと、像側に凸面を向けた正メニスカスレンズとを有する接合レンズを有することを特徴とする請求項1に記載の撮影レンズ。
  17.  物体の像を所定の像面上に結像させる撮影レンズを備えた光学機器において、前記撮影レンズが請求項1に記載の撮影レンズであることを特徴とする光学機器。
  18.  物体側から順に、物体側レンズ群と、前記物体側レンズ群と空気間隔を隔てて配置された像側レンズ群とを配置し、
     遠距離物体から近距離物体への合焦に際し、前記像側レンズ群の少なくとも一部を合焦レンズ群として光軸方向に沿って移動させ、
     防振を行うに際し、前記像側レンズ群の少なくとも一部をシフトレンズ群として光軸に略直交方向の成分を持つように移動させることを特徴とする撮影レンズの製造方法。
PCT/JP2009/003606 2008-09-18 2009-07-30 撮影レンズ、この撮影レンズを備えた光学機器および製造方法 WO2010032358A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/119,716 US8896941B2 (en) 2008-09-18 2009-07-30 Image capturing lens, optical apparatus having same, and method for manufacturing image-capturing lens
CN200980136794.1A CN102159981B (zh) 2008-09-18 2009-07-30 摄像镜头、具有其的光学设备和用于制造摄像镜头的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008239014A JP5510770B2 (ja) 2008-09-18 2008-09-18 撮影レンズ、この撮影レンズを備えた光学機器
JP2008-239014 2008-09-18

Publications (1)

Publication Number Publication Date
WO2010032358A1 true WO2010032358A1 (ja) 2010-03-25

Family

ID=42039211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003606 WO2010032358A1 (ja) 2008-09-18 2009-07-30 撮影レンズ、この撮影レンズを備えた光学機器および製造方法

Country Status (4)

Country Link
US (1) US8896941B2 (ja)
JP (1) JP5510770B2 (ja)
CN (1) CN102159981B (ja)
WO (1) WO2010032358A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681141A (zh) * 2011-03-08 2012-09-19 株式会社腾龙 定焦镜头

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350163B2 (ja) * 2009-10-02 2013-11-27 キヤノン株式会社 画像投射装置
JP2012042663A (ja) * 2010-08-18 2012-03-01 Nikon Corp 撮影レンズ、光学装置、撮影レンズの調整方法
JP2012220804A (ja) * 2011-04-12 2012-11-12 Nikon Corp レンズ系、光学機器及びレンズ系の製造方法
WO2013088701A1 (ja) * 2011-12-16 2013-06-20 富士フイルム株式会社 撮像レンズおよびこれを備えた撮像装置
KR102060658B1 (ko) 2012-07-25 2019-12-30 삼성전자주식회사 촬상 렌즈 및 이를 포함한 촬상 장치
CN105074529B (zh) 2013-02-28 2017-05-10 富士胶片株式会社 摄像透镜及摄像装置
TWI480664B (zh) * 2013-06-14 2015-04-11 Sintai Optical Shenzhen Co Ltd 光學裝置
JP2016126277A (ja) * 2015-01-08 2016-07-11 株式会社タムロン 光学系及び撮像装置
JP6816370B2 (ja) * 2016-03-11 2021-01-20 株式会社ニコン 光学系及び光学機器
JP6769054B2 (ja) * 2016-03-11 2020-10-14 株式会社ニコン 光学系および光学機器
US10451850B2 (en) * 2017-12-04 2019-10-22 AAC Technologies Pte. Ltd. Camera optical lens
CN110806681A (zh) * 2019-11-01 2020-02-18 中国科学院光电技术研究所 一种表面等离子体光刻机的高光功率密度照明系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236742A (ja) * 1996-02-29 1997-09-09 Minolta Co Ltd 光学系
JP2003043348A (ja) * 2001-08-03 2003-02-13 Canon Inc 防振機能を有した光学系
JP2007286596A (ja) * 2006-03-23 2007-11-01 Nikon Corp レトロフォーカスレンズ、撮像装置
JP2007292994A (ja) * 2006-04-25 2007-11-08 Sony Corp 可変焦点距離レンズ系及び撮像装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155310A (ja) 1987-12-14 1989-06-19 Canon Inc ガウス型レンズ
JP3735909B2 (ja) * 1995-10-13 2006-01-18 株式会社ニコン レトロフォーカス型レンズ
JPH09189856A (ja) 1995-11-10 1997-07-22 Asahi Optical Co Ltd 撮影レンズ
US6512633B2 (en) 1996-02-08 2003-01-28 Minolta Co., Ltd Optical system for compensation of image shake
JPH09218348A (ja) * 1996-02-14 1997-08-19 Minolta Co Ltd 撮影レンズ
JPH1152228A (ja) * 1997-08-05 1999-02-26 Nikon Corp 広角レンズ
JP4367581B2 (ja) * 1999-03-08 2009-11-18 株式会社ニコン 高解像の撮影レンズ系
JP4378960B2 (ja) * 2003-01-23 2009-12-09 株式会社ニコン 広角レンズ
US7239456B2 (en) * 2004-03-31 2007-07-03 Nikon Corporation Super wide-angle lens system and image-capturing device using the same
JP4862263B2 (ja) * 2004-03-31 2012-01-25 株式会社ニコン 超広角レンズ、該超広角レンズを備えた撮影装置
JP4982786B2 (ja) * 2006-03-28 2012-07-25 コニカミノルタアドバンストレイヤー株式会社 撮像光学系および撮像装置
JP4924003B2 (ja) * 2006-12-15 2012-04-25 株式会社ニコン 広角レンズ、撮像装置、広角レンズの合焦方法
JP5104084B2 (ja) * 2007-07-12 2012-12-19 株式会社ニコン 広角レンズ、光学装置、広角レンズのフォーカシング方法
JP5167724B2 (ja) * 2007-08-21 2013-03-21 株式会社ニコン 光学系
JP5115102B2 (ja) * 2007-08-30 2013-01-09 株式会社ニコン レンズ系及び光学装置
JP5380811B2 (ja) * 2007-09-28 2014-01-08 株式会社ニコン 広角レンズ、および撮像装置
US8000035B2 (en) * 2008-01-18 2011-08-16 Nikon Corporation Wide-angle lens, optical apparatus, and method for focusing
US7924511B2 (en) * 2008-03-31 2011-04-12 Nikon Corporation Optical system, method for focusing, and imaging apparatus equipped therewith
US7940478B2 (en) * 2008-04-11 2011-05-10 Nikon Corporation Imaging lens, optical apparatus and method for forming image using this imaging lens
JP5170659B2 (ja) 2008-04-11 2013-03-27 株式会社ニコン 撮影レンズ、この撮影レンズを備えた光学機器及び結像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236742A (ja) * 1996-02-29 1997-09-09 Minolta Co Ltd 光学系
JP2003043348A (ja) * 2001-08-03 2003-02-13 Canon Inc 防振機能を有した光学系
JP2007286596A (ja) * 2006-03-23 2007-11-01 Nikon Corp レトロフォーカスレンズ、撮像装置
JP2007292994A (ja) * 2006-04-25 2007-11-08 Sony Corp 可変焦点距離レンズ系及び撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681141A (zh) * 2011-03-08 2012-09-19 株式会社腾龙 定焦镜头
US8848291B2 (en) 2011-03-08 2014-09-30 Tamron Co., Ltd. Fixed focus lens

Also Published As

Publication number Publication date
JP5510770B2 (ja) 2014-06-04
US20110169974A1 (en) 2011-07-14
US8896941B2 (en) 2014-11-25
CN102159981A (zh) 2011-08-17
JP2010072276A (ja) 2010-04-02
CN102159981B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5510770B2 (ja) 撮影レンズ、この撮影レンズを備えた光学機器
JP5510113B2 (ja) 撮影レンズ、撮影レンズを備えた光学機器、撮影レンズの製造方法
JP5402015B2 (ja) リアフォーカス光学系、撮像装置、リアフォーカス光学系の合焦方法
JP5641680B2 (ja) ズームレンズ、これを有する光学機器
JP5257734B2 (ja) ズームレンズ、これを搭載する光学機器および結像方法
JP2011017912A (ja) 変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法
JP5110451B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5448574B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5217832B2 (ja) レンズ系及び光学装置
JP2010044225A (ja) ズームレンズ系、このズームレンズ系を備えた光学機器、及び、ズームレンズ系を用いた変倍方法
JP5510784B2 (ja) ズームレンズ、光学機器
JP2010044226A (ja) ズームレンズ系、このズームレンズ系を備えた光学機器、及び、ズームレンズ系を用いた変倍方法
JP2012220754A (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP2011076021A (ja) 広角レンズ、光学機器、および広角レンズの製造方法
JP5217694B2 (ja) レンズ系及び光学装置
JP2011076022A (ja) 広角レンズ、光学機器、および広角レンズの製造方法
JP2009258159A (ja) 撮影レンズ、この撮影レンズを備えた光学機器及び結像方法
JP5278799B2 (ja) ズームレンズ、これを搭載する光学機器および製造方法
JP5212813B2 (ja) ズームレンズ、これを搭載する光学機器および製造方法
JP5292894B2 (ja) 光学系と、光学系の合焦方法と、これらを有する撮像装置
JP5386868B2 (ja) ズームレンズ、光学機器
JP5434006B2 (ja) ズームレンズ、撮像装置、および変倍方法
JP5115871B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5115870B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5500415B2 (ja) ズームレンズ、光学機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136794.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13119716

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814204

Country of ref document: EP

Kind code of ref document: A1