WO2013088701A1 - 撮像レンズおよびこれを備えた撮像装置 - Google Patents

撮像レンズおよびこれを備えた撮像装置 Download PDF

Info

Publication number
WO2013088701A1
WO2013088701A1 PCT/JP2012/007903 JP2012007903W WO2013088701A1 WO 2013088701 A1 WO2013088701 A1 WO 2013088701A1 JP 2012007903 W JP2012007903 W JP 2012007903W WO 2013088701 A1 WO2013088701 A1 WO 2013088701A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
object side
positive
imaging lens
convex surface
Prior art date
Application number
PCT/JP2012/007903
Other languages
English (en)
French (fr)
Inventor
鈴木 隆
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280062138.3A priority Critical patent/CN103998968B/zh
Priority to JP2013549115A priority patent/JP5633892B2/ja
Publication of WO2013088701A1 publication Critical patent/WO2013088701A1/ja
Priority to US14/295,368 priority patent/US9019623B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/06Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components
    • G02B9/08Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components arranged about a stop
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an image pickup lens and an image pickup apparatus including the image pickup lens.
  • the present invention relates to an image pickup lens that can be suitably used as a standard lens of a film camera or a digital camera, and an image pickup apparatus including the image pickup lens.
  • a standard lens for a camera is often used as a double Gauss type having a substantially symmetric lens structure with a diaphragm interposed therebetween, or a modified type thereof (for example, see Patent Document 1 below).
  • aspherical lenses have been used to further improve spherical aberration (see, for example, Patent Documents 2 and 3 below).
  • the nearly symmetric double Gauss type lens system is the sum of the spherical aberrations of the object-side lens group and the image-side lens group from the stop. Even if an aspherical surface is used, it is difficult to reduce chromatic coma and the like in addition to spherical aberration. In recent years, the price competition and downsizing of cameras have progressed, and there is a strong demand for the lens system to be mounted with high performance and small size and low cost. It was becoming.
  • the present invention has been made in view of such problems, and its purpose is to achieve high optical performance by satisfactorily correcting various aberrations such as spherical aberration and chromatic aberration while achieving downsizing and cost reduction. It is an object of the present invention to provide an imaging lens having an imaging lens and an imaging device including the imaging lens.
  • the imaging lens of the present invention is composed of, in order from the object side, a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power.
  • a positive meniscus lens having a convex surface facing the surface and a negative meniscus lens having a convex surface facing the object side, and the rear group includes an aspheric lens and a three-piece cemented lens in order from the object side. It is characterized by.
  • the three-piece cemented lens in the rear group of the imaging lens of the present invention is obtained by cementing a positive lens having a convex surface toward the image side, a negative lens, and a positive lens having a convex surface toward the image side in this order from the object side. Preferably there is.
  • the front group of the imaging lens of the present invention includes, in order from the object side, a positive meniscus lens having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. It is preferable to have.
  • the rear cemented three-lens lens of the imaging lens of the present invention preferably has a positive lens, preferably satisfies the following conditional expression (1), and more preferably satisfies the following conditional expression (1 ′). preferable.
  • Nd2: Average value of refractive index for d-line of positive lens in three-piece cemented lens Nd2 is as described above when the three-piece cemented lens has a plurality of positive lenses. In the case of having only a positive lens, Nd2 is a refractive index with respect to the d-line of the positive lens.
  • the three-joint lens of the imaging lens of the present invention is obtained by cementing a positive lens, a negative lens, and a positive lens in this order from the object side, and preferably satisfies the following conditional expression (2). It is more preferable that the following conditional expression (2 ′) is satisfied. ⁇ d2p ⁇ d2n> 10 (2) ⁇ d2p ⁇ d2n> 12 (2 ′) However, ⁇ d2p: Of the two positive lenses in the three-piece cemented lens, the Abbe number of the lens having the larger Abbe number with respect to the d-line ⁇ d2n: The Abbe number of the negative lens in the three-piece cemented lens with respect to the d-line
  • the imaging lens of the present invention preferably satisfies the following conditional expression (3), and more preferably satisfies the following conditional expression (3 ′).
  • the imaging lens of the present invention preferably satisfies the following conditional expression (4), and more preferably satisfies the following conditional expression (4 ′). 2 ⁇ f / Y ⁇ 5 (4) 2.1 ⁇ f / Y ⁇ 3.5 (4 ′)
  • f focal length of entire system
  • Y maximum image height on the image plane Note that the maximum image height can be determined by, for example, the specifications of the imaging lens, the specifications of the imaging device on which the imaging lens is mounted, and the like.
  • the front group of the imaging lens of the present invention includes, in order from the object side, a positive meniscus lens having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side.
  • a negative meniscus lens having a convex surface facing the object side may be used.
  • substantially in the above “substantially composed of” means a lens having substantially no power, a lens other than a lens such as an aperture, a cover glass, a filter, etc. in addition to the above-described constituent requirements. It is intended that an optical element, a lens flange, a lens barrel, an image pickup device, a mechanism portion such as a camera shake correction mechanism, and the like may be included.
  • the surface shape of the lens and the sign of refractive power are considered in the paraxial region for those including an aspherical surface.
  • the imaging apparatus of the present invention is characterized by including the imaging lens of the present invention.
  • the lens configuration included in the front group and the rear group is suitably set.
  • an imaging lens having high optical performance in which various aberrations such as spherical aberration and chromatic aberration are favorably corrected, and an imaging apparatus including the imaging lens.
  • Sectional drawing which shows the lens structure and optical path of the imaging lens of Example 1 of this invention.
  • Sectional drawing which shows the lens structure and optical path of the imaging lens of Example 2 of this invention.
  • Sectional drawing which shows the lens structure and optical path of the imaging lens of Example 3 of this invention.
  • 4A to 4D are aberration diagrams of the imaging lens of Example 1 of the present invention.
  • 5A to 5D are lateral aberration diagrams of the imaging lens of Example 1 of the present invention.
  • 6A to 6D are graphs showing aberrations of the imaging lens according to Example 2 of the present invention.
  • 7A to 7D are lateral aberration diagrams of the image pickup lens of Example 2 of the present invention.
  • FIGS. 8A to 8D are diagrams showing aberrations of the image pickup lens of Example 3 of the present invention.
  • 9A to 9D are lateral aberration diagrams of the image pickup lens of Example 3 of the present invention.
  • 10A and 10B are perspective views showing the configuration of the imaging apparatus according to the embodiment of the
  • FIG. 1 to 3 are cross-sectional views showing the configuration of an imaging lens according to an embodiment of the present invention, and correspond to Examples 1 to 3 described later, respectively.
  • 1 to 3 the left side is the object side
  • the right side is the image side
  • the axial light beam 2 and the maximum image height light beam 3 from an object at an infinite distance are also shown.
  • a symbol Ri (i is an integer) shown in FIG. 1 to FIG. 3 indicates a radius of curvature, which will be described in detail in the description of an embodiment described later. Since the basic configuration and the method of illustration of the example shown in FIGS. 1 to 3 are the same, the following description will be given mainly with reference to the configuration example shown in FIG.
  • the imaging lens according to the embodiment of the present invention includes, in order from the object side along the optical axis Z, a front group GF having a positive refractive power as a whole, an aperture stop St, and a rear having a positive refractive power as a whole. It consists of group GR.
  • the aperture stop St shown in FIGS. 1 to 3 does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • the front group GF of the imaging lens of the example shown in FIG. 1 includes, in order from the object side, a positive meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and an object side. It consists of four lenses, a negative meniscus lens L13 having a convex surface and a negative meniscus lens L14 having a convex surface facing the object side.
  • the rear group GR is a biconcave lens L21 in the paraxial region in order from the object side.
  • the lens L4 includes a plano-convex lens L22 having a convex surface facing the image side, a negative meniscus lens L23 having a convex surface facing the image side, and a positive meniscus lens L24 having a convex surface facing the image side.
  • the lens L21 is an aspheric lens.
  • the three lenses L22, L23, and L24 are cemented, and the other lenses are single lenses that are not cemented.
  • FIG. 1 shows an example in which a parallel plate-like optical member PP assuming these is arranged between the lens surface closest to the image side and the image plane Sim.
  • the imaging lens of the present embodiment can be regarded as a lens system in which further improvements are mainly added to the rear group starting from the double Gauss type.
  • the front group GF includes a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and the rear group GR is aspherical in order from the object side.
  • the lens is configured to include a lens and a three-lens cemented lens in which three lenses are cemented.
  • the front group GF has a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, so that spherical aberration can be corrected well in an optical system having a small F-number. Especially advantageous.
  • the order of arrangement of the three meniscus lenses in the front group GF is as follows: a positive meniscus lens having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side Are preferably arranged in this order from the object side. Such an arrangement is further advantageous for satisfactorily correcting spherical aberration in an optical system having a small F value.
  • the rear group GR having the three-piece cemented lens is advantageous for correcting chromatic aberration, and is advantageous for removing the secondary spectrum, for example. Furthermore, since the rear group GR includes an aspheric lens on the object side of the three-piece cemented lens, the light beam after the spherical aberration is effectively corrected by the aspheric lens can be incident on the three-piece cemented lens. As a result, it is possible to satisfactorily correct spherical aberration, chromatic coma aberration, and lateral chromatic aberration.
  • the aspherical lens in the rear group GR is preferably a single lens whose both surfaces are air contact surfaces, and preferably has a biconcave shape in the paraxial region, for good aberration correction. .
  • the diameter of the aspheric lens can be made smaller than in the case where the aspheric lens is arranged on the image side from the three-piece cemented lens. Can contribute.
  • the aspheric lens is preferably arranged immediately after the image side of the aperture stop St. In this case, it is advantageous to reduce the diameter of the aspheric lens.
  • the lens surface immediately after the image side of the aperture stop often has a small absolute value of the radius of curvature, and in such a case, the amount of aberration increases and flare is likely to occur. It was.
  • the absolute value of the radius of curvature of this surface can be made relatively large. Can be suppressed and contribute to the realization of high optical performance.
  • the three-group cemented lens of the rear group GR is composed of a positive lens having a convex surface facing the image side, a negative lens, and a positive lens having a convex surface facing the image side in this order from the object side. It is advantageous to construct the positive rear group GR with as few lenses as possible by using three-piece cemented lenses instead of negative, positive, and negative lenses, instead of positive, negative, and positive lenses.
  • the shape of the two positive lenses of the three-group cemented lens of the rear group GR is set as described above, thereby reducing the curvature of field. This is advantageous for good correction.
  • the negative lens has a shape with a convex surface facing the image side. This is advantageous for correction.
  • the negative lens of the three-piece cemented lens may have a shape with a concave surface facing the image side as in the example shown in FIG. 3, and this is advantageous for correcting lateral chromatic aberration.
  • the surface closest to the object side of the three-piece cemented lens may be a flat surface as in the example shown in FIG. 1, and in this case, a low-cost lens system with excellent manufacturability can be provided.
  • the front group GF is composed of four lenses
  • the rear group GR is also composed of four lenses.
  • the front group GF in the example shown in FIG. 1 includes, in order from the object side, a positive meniscus lens having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. And a negative meniscus lens having a convex surface facing the object side.
  • a lens system with good symmetry can be obtained by using four lenses for both the front group GF and the rear group GR.
  • the example shown in FIG. 2 has the same lens configuration as the example shown in FIG.
  • the front group GF includes three lenses
  • the rear group GR includes five aspherical lenses, three cemented lenses, and a positive meniscus lens having a convex surface facing the image side in order from the object side. It consists of a lens.
  • All of the examples shown in FIGS. 1 to 3 are configured with a comparatively small number of lenses of 8 in the entire system.
  • the number of lenses can be reduced, and the cost and size can be reduced. It is possible to realize a high-performance lens system in which various aberrations such as spherical aberration and chromatic coma are well corrected.
  • the imaging lens of the present embodiment preferably satisfies the following conditional expression (1).
  • Nd2 Average refractive index with respect to d-line of the positive lens in the three-piece cemented lens
  • conditional expression (1) makes it possible to satisfactorily correct mainly spherical aberration and curvature of field. If the lower limit of conditional expression (1) is not reached, the amount of spherical aberration increases, and the burden of correcting spherical aberration carried by an aspheric lens increases, resulting in difficult correction of field curvature.
  • the three-group cemented lens of the rear group GR is obtained by cementing a positive lens, a negative lens, and a positive lens in this order from the object side, it is preferable that the following conditional expression (2) is satisfied.
  • ⁇ d2p Of the two positive lenses in the three-piece cemented lens, the Abbe number of the lens having the larger Abbe number with respect to the d-line
  • ⁇ d2n The Abbe number of the negative lens in the three-piece cemented lens with respect to the d-line
  • conditional expression (2) By satisfying conditional expression (2), axial chromatic aberration and lateral chromatic aberration can be corrected favorably. If the lower limit of the conditional expression (2) is not satisfied, the amount of chromatic coma will increase if the axial chromatic aberration is corrected well.
  • Nd1 Average refractive index of the positive lens in the front group with respect to d-line
  • conditional expression (3) makes it possible to satisfactorily correct mainly spherical aberration and curvature of field. If the lower limit of conditional expression (3) is not reached, the amount of spherical aberration increases, and the burden of correcting spherical aberration carried by an aspheric lens increases, resulting in difficult correction of curvature of field.
  • conditional expression (4) is satisfied with respect to the maximum image height in the image plane Sim. 2 ⁇ f / Y ⁇ 5 (4)
  • f focal length of entire system
  • Y maximum image height on the image plane
  • conditional expression (4) makes it possible to correct the curvature of field well and make the lens system compact. If the lower limit of conditional expression (4) is not reached, it will be difficult to satisfactorily correct field curvature. If the upper limit of conditional expression (4) is exceeded, it will be difficult to make the lens system compact.
  • conditional expressions (1 ′) to (4 ′) are substituted for the conditional expressions (1) to (4).
  • the imaging lens of the present invention can selectively adopt one or any combination of the above-described preferred modes as appropriate.
  • the imaging lens of the present invention is provided with light shielding means for suppressing the occurrence of flare, and various filters are provided between the lens system and the image plane Sim. Or you may.
  • Example 1 A lens sectional view of the imaging lens of Example 1 is shown in FIG. Since the method of illustration is as described above, duplicate explanation is omitted here.
  • the schematic configuration of the imaging lens of Example 1 is as follows. That is, in order from the object side, the front group GF having a positive refractive power, an aperture stop St, and a rear group GR having a positive refractive power.
  • the front group GF is convex from the object side to the object side.
  • the rear group GR is composed of four lenses L14, in order from the object side, a biconcave lens L21 in the paraxial region, a planoconvex lens L22 having a convex surface on the image side, and a negative lens having a convex surface on the image side. It consists of four lenses, a meniscus lens L23 and a positive meniscus lens L24 with a convex surface facing the image side. Aspheric surfaces are formed on both surfaces of the lens L21.
  • the three lenses L22, L23, and L24 are joined to form a three-joint lens, and the other lenses are single lenses that are not joined.
  • Table 1 shows basic lens data of the imaging lens of Example 1.
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the column ⁇ dj indicates the Abbe number of the j-th optical element with respect to the d-line.
  • the lens data includes the aperture stop St and the optical member PP, and the surface number and the phrase (St) are described in the surface number column of the surface corresponding to the aperture stop St.
  • a surface numbered with * in Table 1 is an aspherical surface, and the value of the paraxial radius of curvature is shown in the column of the radius of curvature of the aspherical surface.
  • Table 2 shows the aspheric coefficients of these aspheric surfaces.
  • the column of Si in Table 2 indicates the surface number of the aspheric surface.
  • the numerical value “En” (n: integer) of the aspheric coefficient in Table 2 means “ ⁇ 10 ⁇ n ”.
  • Zd C ⁇ h 2 / ⁇ 1+ (1-K ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ h m
  • Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis to the lens surface)
  • C Paraxial curvature K
  • Table 7 shows the specifications of the imaging lens of Example 1, the maximum image height, and the corresponding values of conditional expressions (1) to (4) together with those of other Examples 2 and 3.
  • FIGS. 4A to 4D show aberration diagrams of the spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the imaging lens of Example 1, respectively.
  • 5A to 5D show lateral aberration diagrams of the imaging lens of Example 1.
  • FIG. Fno Of spherical aberration diagram. Means F value, and ⁇ in other aberration diagrams means half angle of view. Each aberration diagram shows the aberration with the d-line (587.56 nm) as the reference wavelength.
  • the spherical aberration diagram and the lateral aberration diagram show the g-line (wavelength 435.84 nm) and the C-line (wavelength 656.27 nm).
  • the chromatic aberration diagram for magnification shows aberrations for the g-line and the C-line.
  • the sagittal direction is indicated by a solid line
  • the tangential direction is indicated by a dotted line.
  • the lateral aberration diagram relates to the tangential direction.
  • Example 2 A lens cross-sectional view of the imaging lens of Example 2 is shown in FIG.
  • the schematic configuration of the imaging lens of Example 2 is the same as that of Example 1.
  • Tables 3 and 4 show basic lens data and aspherical coefficients of the imaging lens of Example 2, respectively.
  • 6A to 6D and FIGS. 7A to 7D show aberration diagrams of the image pickup lens of Example 2.
  • FIG. 1 A lens cross-sectional view of the imaging lens of Example 2 is shown in FIG.
  • Tables 3 and 4 show basic lens data and aspherical coefficients of the imaging lens of Example 2, respectively.
  • 6A to 6D and FIGS. 7A to 7D show aberration diagrams of the image pickup lens of Example 2.
  • FIG. 1 A lens cross-sectional view of the imaging lens of Example 2 is shown in FIG.
  • Example 3 A lens cross-sectional view of the imaging lens of Example 3 is shown in FIG.
  • the schematic configuration of the imaging lens of Example 3 is as follows. That is, in order from the object side, the front group GF having a positive refractive power, an aperture stop St, and a rear group GR having a positive refractive power.
  • the front group GF is convex from the object side to the object side.
  • a positive meniscus lens L11 with a convex surface facing the object side a positive meniscus lens L12 with a convex surface facing the object side, and a negative meniscus lens L13 with a convex surface facing the object side.
  • a biconcave lens L21, a biconvex lens L22, a biconcave lens L23, a biconvex lens L24, and a positive meniscus lens L25 having a convex surface facing the image side It consists of sheets. Aspheric surfaces are formed on both surfaces of the lens L21.
  • the three lenses L22, L23, and L24 are joined to form a three-joint lens, and the other lenses are single lenses that are not joined.
  • Tables 5 and 6 show basic lens data and aspherical coefficients of the imaging lens of Example 3, respectively.
  • FIGS. 8A to 8D and FIGS. 9A to 9D show aberration diagrams of the imaging lens of Example 3.
  • FIGS. 8A to 8D show aberration diagrams of the imaging lens of Example 3.
  • Table 7 shows the specifications, maximum image height, and corresponding values of conditional expressions (1) to (4) of the imaging lenses of Examples 1 to 3 above.
  • f is the focal length of the entire system
  • BF is the back focus
  • 2 ⁇ is the full angle of view
  • Fno is the F value
  • Y is the maximum image height in the image plane. The values shown in Table 7 are based on the d line.
  • FIGS. 10 (A) and 10 (B) A camera 30 whose perspective shape is shown in FIGS. 10A and 10B is a so-called mirrorless single-lens digital camera to which the interchangeable lens 20 is detachably attached.
  • FIG. FIG. 10B shows an appearance of the camera 30 viewed from the back side.
  • the camera 30 includes a camera body 31 on which a shutter button 32 and a power button 33 are provided.
  • operation units 34 and 35 and a display unit 36 are provided on the back surface of the camera body 31.
  • the display unit 36 is for displaying a captured image or an image within an angle of view before being captured.
  • a photographing opening through which light from a photographing object enters is provided at the center of the front surface of the camera body 31, and a mount 37 is provided at a position corresponding to the photographing opening, and the interchangeable lens 20 is connected to the camera body via the mount 37. 31 is attached.
  • the interchangeable lens 20 is obtained by housing the imaging lens 1 according to the embodiment of the present invention in a lens barrel.
  • the camera body 31 receives an object image formed by the interchangeable lens 20 and outputs an imaging signal corresponding to the subject image, and processes an imaging signal output from the imaging element.
  • a signal processing circuit for generating an image and a recording medium for recording the generated image are provided.
  • a still image for one frame is shot by pressing the shutter button 32, and image data obtained by this shooting is recorded on the recording medium.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, the aspherical coefficient, etc. of each lens are not limited to the values shown in the above numerical examples, and can take other values.
  • the imaging device an example applied to a mirrorless single-lens digital camera has been described with reference to the drawings.
  • the present invention is not limited to this application.
  • a single-lens reflex camera a video
  • the present invention can also be applied to cameras and film cameras.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

撮像レンズにおいて、小型化および低コスト化を図りながら、球面収差や色収差を始めとする諸収差を良好に補正し、高い光学性能を実現する。 撮像レンズは、物体側から順に、正の屈折力を有する前群(GF)と、絞りと、負の屈折力を有する後群(GR)とから実質的に構成される。前群(GF)は、2枚の物体側に凸面を向けた正メニスカスレンズと、1枚の物体側に凸面を向けた負メニスカスレンズとを有する。後群(GR)は、物体側から順に、非球面レンズと、3枚接合レンズとを有する。

Description

撮像レンズおよびこれを備えた撮像装置
 本発明は、撮像レンズおよびこれを備えた撮像装置に関し、例えば、フィルムカメラやデジタルカメラの標準レンズとして好適に使用可能な撮像レンズ、および該撮像レンズを備えた撮像装置に関するものである。
 一般に、カメラ用の標準レンズでは、F値が小さく球面収差の少ないレンズ系を得るために、絞りを挟んで略対称のレンズ構成を有するダブルガウスタイプか、その変形タイプが多く用いられていた(例えば、下記特許文献1参照)。また、これらのようなレンズタイプにおいてさらなる球面収差の改善のために、非球面レンズが用いられていた(例えば、下記特許文献2、3参照)。
特開2010-14895号公報 特開2007-333790号公報 特開2008-32921号公報
 しかしながら、略対称のダブルガウスタイプのレンズ系は、絞りより物体側のレンズ群と像側のレンズ群それぞれの球面収差を加えたものが全系の球面収差となることから球面収差の補正には限界があり、非球面を用いても球面収差の他に色コマ収差等を小さくすることは困難であった。また、近年ではカメラの価格競争と小型化が進んでいることから、搭載されるレンズ系に対しても高性能でありながら小型で低コスト化が図られていることが強く要求されるようになってきていた。
 本発明はかかる問題点に鑑みてなされたものであり、その目的は、小型化および低コスト化を図りながら、球面収差や色収差を始めとする諸収差が良好に補正されて、高い光学性能を有する撮像レンズ、および該撮像レンズを備えた撮像装置を提供することにある。
 本発明の撮像レンズは、物体側から順に、正の屈折力を有する前群と、絞りと、正の屈折力を有する後群とから実質的に構成され、前群が、2枚の物体側に凸面を向けた正メニスカスレンズと、1枚の物体側に凸面を向けた負メニスカスレンズとを有し、後群が、物体側から順に、非球面レンズと、3枚接合レンズとを有することを特徴とするものである。
 本発明の撮像レンズの後群の3枚接合レンズは、像側に凸面を向けた正レンズと、負レンズと、像側に凸面を向けた正レンズとを物体側からこの順に接合したものであることが好ましい。
 本発明の撮像レンズの前群は、物体側から順に、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズとを有することが好ましい。
 本発明の撮像レンズの後群の3枚接合レンズは、正レンズを有し、以下の条件式(1)を満足することが好ましく、さらに以下の条件式(1’)を満足することがより好ましい。
   Nd2>1.8 … (1)
   Nd2>1.85 … (1’)
ただし、
Nd2:3枚接合レンズの中の正レンズのd線に対する屈折率の平均値
なお、3枚接合レンズが複数の正レンズを有する場合はNd2は上記のとおりであり、3枚接合レンズが1枚のみの正レンズを有する場合はNd2は該正レンズのd線に対する屈折率とする。
 本発明の撮像レンズの3枚接合レンズは、正レンズと、負レンズと、正レンズとを物体側からこの順に接合したものであり、以下の条件式(2)を満足することが好ましく、さらに以下の条件式(2’)を満足することがより好ましい。
   νd2p-νd2n>10 … (2)
   νd2p-νd2n>12 … (2’)
ただし、
νd2p:3枚接合レンズの中の2枚の正レンズのうち、d線に対するアッベ数が大きい方のレンズの該アッベ数
νd2n:3枚接合レンズの中の負レンズのd線に対するアッベ数
 本発明の撮像レンズは以下の条件式(3)を満足することが好ましく、さらに以下の条件式(3’)を満足することがより好ましい。
   Nd1>1.7 … (3)
   Nd1>1.75 … (3’)
ただし、
Nd1:前群の中の正レンズのd線に対する屈折率の平均値
 本発明の撮像レンズは以下の条件式(4)を満足することが好ましく、さらに以下の条件式(4’)を満足することがより好ましい。
   2<f/Y<5 … (4)
   2.1<f/Y<3.5 … (4’)
ただし、
f:全系の焦点距離
Y:像面における最大像高
なお、最大像高は例えば、撮像レンズの仕様、撮像レンズが搭載される撮像装置の仕様等により決めることができる。
 本発明の撮像レンズの前群は、物体側から順に、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズとからなるように構成してもよい。
 なお、上記の「~とから実質的に構成され」の「実質的に」とは、挙げた構成要件以外に、実質的にパワーを有さないレンズ、絞りやカバーガラスやフィルタ等のレンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手ぶれ補正機構等の機構部分、等を含んでもよいことを意図するものである。
 なお、上記のレンズの面形状や屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 本発明の撮像装置は、本発明の撮像レンズを備えたことを特徴とするものである。
 本発明によれば、物体側から順に、正の前群、絞り、正の後群というレンズ系において、前群および後群が有するレンズ構成を好適に設定しているため、小型化および低コスト化を図りながら、球面収差や色収差を始めとする諸収差が良好に補正されて、高い光学性能を有する撮像レンズ、および該撮像レンズを備えた撮像装置を提供することができる。
本発明の実施例1の撮像レンズのレンズ構成と光路を示す断面図 本発明の実施例2の撮像レンズのレンズ構成と光路を示す断面図 本発明の実施例3の撮像レンズのレンズ構成と光路を示す断面図 図4(A)~図4(D)は本発明の実施例1の撮像レンズの各収差図 図5(A)~図5(D)は本発明の実施例1の撮像レンズの横収差図 図6(A)~図6(D)は本発明の実施例2の撮像レンズの各収差図 図7(A)~図7(D)は本発明の実施例2の撮像レンズの横収差図 図8(A)~図8(D)は本発明の実施例3の撮像レンズの各収差図 図9(A)~図9(D)は本発明の実施例3の撮像レンズの横収差図 図10(A)、図10(B)は本発明の実施形態にかかる撮像装置の構成を示す斜視図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1~図3は、本発明の実施形態にかかる撮像レンズの構成を示す断面図であり、それぞれ後述の実施例1~3に対応している。図1~図3においては、左側が物体側、右側が像側であり、無限遠の距離にある物体からの軸上光束2、最大像高の光束3も合わせて示している。図1~図3に示す符号Ri(iは整数)は、曲率半径を示すものであり、これについては、後述の実施例の説明において詳述する。なお、図1~図3に示す例の基本構成や図示方法は同じため、以下では主に、図1に示す構成例を代表的に参照しながら説明する。
 本発明の実施形態にかかる撮像レンズは、光軸Zに沿って、物体側から順に、全体として正の屈折力を有する前群GFと、開口絞りStと、全体として正の屈折力を有する後群GRとからなる。なお、図1~図3に示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 図1に示す例の撮像レンズの前群GFは、物体側から順に、物体側に凸面を向けた正メニスカス形状のレンズL11、物体側に凸面を向けた正メニスカス形状のレンズL12、物体側に凸面を向けた負メニスカス形状のレンズL13、物体側に凸面を向けた負メニスカス形状のレンズL14の4枚からなり、後群GRは、物体側から順に、近軸領域で両凹形状のレンズL21、像側に凸面を向けた平凸形状のレンズL22、像側に凸面を向けた負メニスカス形状のレンズL23、像側に凸面を向けた正メニスカス形状のレンズL24の4枚からなる。レンズL21は非球面レンズである。レンズL22、L23、L24の3枚のレンズは接合されており、その他のレンズは接合されていない単レンズである。
 なお、撮像レンズが撮像装置に搭載される際には、撮像素子を保護するためのカバーガラスや、撮像装置の仕様に応じたローパスフィルタや赤外線カットフィルタ等の各種フィルタを適宜備えるように撮像装置を構成することが考えられるため、図1ではこれらを想定した平行平板状の光学部材PPを最も像側のレンズ面と像面Simとの間に配置した例を示している。
 本実施形態の撮像レンズは、ダブルガウスタイプを起点として、さらなる改良を主に後群に加えたレンズ系と捉えることができる。開口絞りStの物体側の前群GF、像側の後群GRをともに正レンズ群とすることで軸外収差を効果的に補正することができる。前群GFは、2枚の物体側に凸面を向けた正メニスカスレンズと、1枚の物体側に凸面を向けた負メニスカスレンズとを有し、後群GRは、物体側から順に、非球面レンズと、3枚のレンズが接合された3枚接合レンズとを有するように構成される。
 物体側から順に、正の前群GF、開口絞りSt、後群GRが配置された構成において、各レンズ群が有するレンズを上記のように設定することで、小型化を図りながら、球面収差および色コマ収差が良好に補正されたF値が小さなレンズ系を実現することに有利となる。
 前群GFが2枚の物体側に凸面を向けた正メニスカスレンズと1枚の物体側に凸面を向けた負メニスカスレンズを有することで、F値が小さな光学系において球面収差を良好に補正することに有利となる。
 なお、前群GFの上記3枚のメニスカスレンズの配列順としては、物体側に凸面を向けた正メニスカスレンズ、物体側に凸面を向けた正メニスカスレンズ、物体側に凸面を向けた負メニスカスレンズが物体側からこの順に配列されていることが好ましい。このように配列することで、F値が小さな光学系において球面収差を良好に補正することにさらに有利となる。
 また、後群GRが3枚接合レンズを備えることで色収差の補正に有利となり、例えば二次スペクトルの除去に有利となる。さらに、後群GRが3枚接合レンズより物体側に非球面レンズを備えることで、非球面レンズで効果的に球面収差を補正した後の光線を3枚接合レンズに入射させることができ、結果として球面収差、色コマ収差、倍率色収差を良好に補正することができる。
 後群GRの非球面レンズは、良好な収差補正のためには、両側の面がともに空気接触面である単レンズであることが好ましく、また、近軸領域で両凹形状であることが好ましい。
 また、非球面レンズを3枚接合レンズより物体側に配置することで、3枚接合レンズより像側に配置した場合より非球面レンズの径を小さくすることができ、小型化および低コスト化に貢献できる。非球面レンズは開口絞りStの像側直後に配置されていることが好ましく、この場合には非球面レンズの小径化により有利となる。
 なお、従来のダブルガウスタイプのレンズ系では、開口絞りの像側直後のレンズ面は曲率半径の絶対値の小さいものが多く、このようなものでは収差の発生量が多くなりフレアも発生しやすかった。これに対し本実施形態の撮像レンズでは、開口絞りStの像側直後のレンズ面を非球面とすることで、この面の曲率半径の絶対値を比較的大きくすることが可能となり、収差やフレアの発生量を抑制でき、高い光学性能の実現に貢献できる。
 後群GRの3枚接合レンズは、像側に凸面を向けた正レンズと、負レンズと、像側に凸面を向けた正レンズとを物体側からこの順に接合したものであることが好ましい。3枚接合レンズを負、正、負レンズの貼り合わせではなく、正、負、正レンズの貼り合わせとすることで、極力少ないレンズ枚数で正の後群GRを構成することに有利となる。
 また、前群GFが物体側に凸面を向けたメニスカスレンズを有するレンズ系において、後群GRの3枚接合レンズの2枚の正レンズの形状を上記のようにすることで、像面湾曲の良好な補正に有利となる。
 さらに図1に示す例のように、後群GRの3枚接合レンズにおいて、2枚の正レンズに加え負レンズも像側に凸面を向けた形状とした場合は、像面湾曲のより良好な補正に有利となる。なお、3枚接合レンズの負レンズは、図3に示す例のように、像側に凹面を向けた形状としてもよく、このようにした場合は倍率色収差の補正に有利となる。
 3枚接合レンズの最も物体側の面は、図1に示す例のように、平面としてもよく、このようにした場合は製造性に優れた低コストのレンズ系を提供できる。
 図1に示す例では、前群GFが4枚のレンズからなり、後群GRも4枚のレンズからなる。図1に示す例の前群GFは、物体側から順に、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズとからなる4枚構成である。このような構成を採る場合は、F値が小さな光学系において球面収差を良好に補正することに有利となる。また、前群GF、後群GRともに4枚構成とすることで対称性の良いレンズ系となる。
 図2に示す例は、図1に示す例と同様のレンズ構成を採っている。図3に示す例は、前群GFが3枚のレンズからなり、後群GRが、物体側から順に、非球面レンズ、3枚接合レンズ、像側に凸面を向けた正メニスカスレンズの5枚のレンズからなる。
 図1~図3に示す例全て、全系で8枚という比較的少ないレンズ枚数で構成されており、本実施形態の撮像レンズによれば、レンズ枚数を抑えて、低コスト化および小型化を図りながら、球面収差および色コマ収差等の諸収差が良好に補正された高性能のレンズ系を実現することができる。
 本実施形態の撮像レンズは、以下の条件式(1)を満足することが好ましい。
   Nd2>1.8 … (1)
ただし、
Nd2:3枚接合レンズの中の正レンズのd線に対する屈折率の平均値
 条件式(1)を満足することで、主に球面収差と像面湾曲を良好に補正することができる。条件式(1)の下限を下回ると、球面収差量が増加し、非球面レンズが担う球面収差の補正の負担が大きくなり、結果として像面湾曲の良好な補正が困難となる。
 また、後群GRの3枚接合レンズが、正レンズと、負レンズと、正レンズとを物体側からこの順に接合したものである場合、以下の条件式(2)を満足することが好ましい。
   νd2p-νd2n>10 … (2)
ただし、
νd2p:3枚接合レンズの中の2枚の正レンズのうち、d線に対するアッベ数が大きい方のレンズの該アッベ数
νd2n:3枚接合レンズの中の負レンズのd線に対するアッベ数
 条件式(2)を満足することで、主に軸上色収差と倍率色収差を良好に補正することができる。条件式(2)の下限を満足しない場合、軸上色収差を良好に補正しようとすると、色コマ収差の量が増大してしまう。
 また、前群GFが有する正レンズについて以下の条件式(3)を満足することが好ましい。
   Nd1>1.7 … (3)
ただし、
Nd1:前群の中の正レンズのd線に対する屈折率の平均値
 条件式(3)を満足することで、主に球面収差と像面湾曲を良好に補正することができる。条件式(3)の下限を下回ると、球面収差量が増加し、非球面レンズが担う球面収差の補正の負担が大きくなり、結果として像面湾曲の良好な補正が困難となる。
 また、像面Simにおける最大像高について以下の条件式(4)を満足することが好ましい。
   2<f/Y<5 … (4)
ただし、
f:全系の焦点距離
Y:像面における最大像高
 条件式(4)を満足することで、良好な像面湾曲の補正が可能となり、レンズ系をコンパクトにすることができる。条件式(4)の下限を下回ると、像面湾曲の良好な補正が困難となる。条件式(4)の上限を上回ると、レンズ系をコンパクトにすることが困難となる。
 上述した条件式(1)~(4)それぞれを満足した場合に得られる効果をさらに高めるためには、条件式(1)~(4)それぞれに代わり下記条件式(1’)~(4’)それぞれを満足することがより好ましい。
   Nd2>1.85 … (1’)
   νd2p-νd2n>12 … (2’)
   Nd1>1.75 … (3’)
   2.1<f/Y<3.5 … (4’)
 なお、本発明の撮像レンズは、上述した好ましい態様の1つまたは任意の組合せを適宜選択的に採用することが可能である。また、図1~図3には示していないが、本発明の撮像レンズは、フレアの発生を抑制するための遮光手段を設けたり、レンズ系と像面Simとの間に各種フィルタ等を設けたりしてもよい。
 次に、本発明の撮像レンズの数値実施例について説明する。
[実施例1]
 実施例1の撮像レンズのレンズ断面図は図1に示したものである。その図示方法については上述したとおりであるので、ここでは重複説明を省略する。
 実施例1の撮像レンズの概略構成は以下のようになっている。すなわち、物体側から順に、正の屈折力を有する前群GFと、開口絞りStと、正の屈折力を有する後群GRとからなり、前群GFは、物体側から順に、物体側に凸面を向けた正メニスカス形状のレンズL11、物体側に凸面を向けた正メニスカス形状のレンズL12、物体側に凸面を向けた負メニスカス形状のレンズL13、物体側に凸面を向けた負メニスカス形状のレンズL14の4枚からなり、後群GRは、物体側から順に、近軸領域で両凹形状のレンズL21、像側に凸面を向けた平凸形状のレンズL22、像側に凸面を向けた負メニスカス形状のレンズL23、像側に凸面を向けた正メニスカス形状のレンズL24の4枚からなる。レンズL21の両側の面には非球面が形成されている。レンズL22、L23、L24の3枚のレンズは接合されて3枚接合レンズを構成しており、その他のレンズは接合されていない単レンズである。
 実施例1の撮像レンズの基本レンズデータを表1に示す。表1において、Siの欄は最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄はi番目の面の曲率半径を示し、Diの欄はi番目の面とi+1番目の面との光軸Z上の面間隔を示している。なお、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。
 表1において、Ndjの欄は最も物体側の構成要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線(波長587.56nm)に対する屈折率を示し、νdjの欄はj番目の光学要素のd線に対するアッベ数を示している。なお、レンズデータには、開口絞りStと光学部材PPも含めて示しており、開口絞りStに相当する面の面番号の欄には面番号と(St)という語句を記載している。
 表1の面番号に*印が付いた面は非球面であり、非球面の曲率半径の欄には近軸の曲率半径の数値を示している。表2にこれら非球面の非球面係数を示す。表2のSiの欄は非球面の面番号を示している。表2の非球面係数の数値の「E-n」(n:整数)は「×10-n」を意味する。非球面係数は、下式で表される非球面式における各係数K、Am(m=3、4、5、…20)の値である。
 Zd=C・h/{1+(1-K・C・h1/2}+ΣAm・h
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率
K、Am:非球面係数(m=3、4、5、…20)
 また、後掲の表7に実施例1の撮像レンズの諸元、最大像高、条件式(1)~(4)の対応値を他の実施例2、3のものと合わせて示す。
 以下に示す各表では、角度の単位には度を用い、長さの単位にはmmを用いているが、光学系は比例拡大又は比例縮小しても使用可能なため他の適当な単位を用いることも可能である。また、以下に示す各表では所定の桁でまるめた数値を記載している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図4(A)~図4(D)にそれぞれ、実施例1の撮像レンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。また、図5(A)~図5(D)に実施例1の撮像レンズの横収差図を示す。球面収差図のFno.はF値を意味し、その他の収差図のωは半画角を意味する。各収差図には、d線(587.56nm)を基準波長とした収差を示すが、球面収差図、横収差図には、g線(波長435.84nm)、C線(波長656.27nm)についての収差も示し、倍率色収差図ではg線、C線についての収差を示している。非点収差図ではサジタル方向については実線で、タンジェンシャル方向については点線で示している。横収差図はタンジェンシャル方向に関するものである。
 上記の実施例1のものに関する図示方法、各表中の記号、意味、記載方法は、特に断りがない限り以下の実施例2、3のものについても同様であるため、以下では重複説明を省略する。
[実施例2]
 実施例2の撮像レンズのレンズ断面図は図2に示したものである。実施例2の撮像レンズの概略構成は実施例1のものと同様である。表3、表4にそれぞれ実施例2の撮像レンズの基本レンズデータ、非球面係数を示す。図6(A)~図6(D)、図7(A)~図7(D)に実施例2の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[実施例3]
 実施例3の撮像レンズのレンズ断面図は図3に示したものである。実施例3の撮像レンズの概略構成は以下のようになっている。すなわち、物体側から順に、正の屈折力を有する前群GFと、開口絞りStと、正の屈折力を有する後群GRとからなり、前群GFは、物体側から順に、物体側に凸面を向けた正メニスカス形状のレンズL11、物体側に凸面を向けた正メニスカス形状のレンズL12、物体側に凸面を向けた負メニスカス形状のレンズL13の3枚からなり、後群GRは、物体側から順に、近軸領域で両凹形状のレンズL21、両凸形状のレンズL22、両凹形状のレンズL23、両凸形状のレンズL24、像側に凸面を向けた正メニスカス形状のレンズL25の5枚からなる。レンズL21の両側の面には非球面が形成されている。レンズL22、L23、L24の3枚のレンズは接合されて3枚接合レンズを構成しており、その他のレンズは接合されていない単レンズである。
 表5、表6にそれぞれ実施例3の撮像レンズの基本レンズデータ、非球面係数を示す。図8(A)~図8(D)、図9(A)~図9(D)に実施例3の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表7に上記実施例1~実施例3の撮像レンズの諸元、最大像高、条件式(1)~(4)の対応値を示す。表7のfは全系の焦点距離、BFはバックフォーカス、2ωは全画角、Fno.はF値、Yは像面における最大像高である。表7に示す値はd線を基準とするものである。
Figure JPOXMLDOC01-appb-T000007
 次に、図10(A)、図10(B)を参照しながら本発明にかかる撮像装置の一実施形態について説明する。図10(A)、図10(B)に斜視形状を示すカメラ30は、交換レンズ20が取り外し自在に装着される、いわゆるミラーレス一眼形式のデジタルカメラであり、図10(A)はこのカメラ30を前側から見た外観を示し、図10(B)はこのカメラ30を背面側から見た外観を示している。
 このカメラ30はカメラボディ31を備え、その上面にはシャッターボタン32と電源ボタン33とが設けられている。またカメラボディ31の背面には、操作部34、35と表示部36とが設けられている。表示部36は、撮像された画像や、撮像される前の画角内にある画像を表示するためのものである。
 カメラボディ31の前面中央部には、撮影対象からの光が入射する撮影開口が設けられ、その撮影開口に対応する位置にマウント37が設けられ、このマウント37を介して交換レンズ20がカメラボディ31に装着されるようになっている。交換レンズ20は、本発明の実施形態にかかる撮像レンズ1を鏡筒内に収納したものである。
 そしてカメラボディ31内には、交換レンズ20によって形成された被写体像を受け、それに応じた撮像信号を出力するCCD等の撮像素子(不図示)、その撮像素子から出力された撮像信号を処理して画像を生成する信号処理回路、およびその生成された画像を記録するための記録媒体等が設けられている。このカメラ30では、シャッターボタン32を押すことにより1フレーム分の静止画の撮影がなされ、この撮影で得られた画像データが上記記録媒体に記録される。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズの曲率半径、面間隔、屈折率、アッベ数、非球面係数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。
 また、撮像装置の実施形態では、ミラーレス一眼形式のデジタルカメラに適用した例について図を示して説明したが、本発明はこの用途に限定されるものではなく、例えば、一眼レフカメラや、ビデオカメラや、フィルムカメラ等にも適用可能である。

Claims (13)

  1.  物体側から順に、正の屈折力を有する前群と、絞りと、正の屈折力を有する後群とから実質的に構成され、
     前記前群が、2枚の物体側に凸面を向けた正メニスカスレンズと、1枚の物体側に凸面を向けた負メニスカスレンズとを有し、
     前記後群が、物体側から順に、非球面レンズと、3枚接合レンズとを有することを特徴とする撮像レンズ。
  2.  前記3枚接合レンズが、像側に凸面を向けた正レンズと、負レンズと、像側に凸面を向けた正レンズとを物体側からこの順に接合したものであることを特徴とする請求項1記載の撮像レンズ。
  3.  前記前群が、物体側から順に、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズとを有することを特徴とする請求項1または2記載の撮像レンズ。
  4.  以下の条件式(1)を満足するように構成されていることを特徴とする請求項1から3のうちいずれか1項記載の撮像レンズ。
       Nd2>1.8 … (1)
    ただし、
    Nd2:前記3枚接合レンズの中の正レンズのd線に対する屈折率の平均値
  5.  以下の条件式(1’)を満足するように構成されていることを特徴とする請求項4記載の撮像レンズ。
       Nd2>1.85 … (1’)
  6.  前記3枚接合レンズが、正レンズと、負レンズと、正レンズとを物体側からこの順に接合したものであり、
     以下の条件式(2)を満足するように構成されていることを特徴とする請求項1から5のうちいずれか1項記載の撮像レンズ。
       νd2p-νd2n>10 … (2)
    ただし、
    νd2p:前記3枚接合レンズの中の2枚の前記正レンズのうち、d線に対するアッベ数が大きい方のレンズの該アッベ数
    νd2n:前記3枚接合レンズの中の前記負レンズのd線に対するアッベ数
  7.  以下の条件式(2’)を満足するように構成されていることを特徴とする請求項6記載の撮像レンズ。
       νd2p-νd2n>12 … (2’)
  8.  以下の条件式(3)を満足するように構成されていることを特徴とする請求項1から7のうちいずれか1項記載の撮像レンズ。
       Nd1>1.7 … (3)
    ただし、
    Nd1:前記前群の中の正レンズのd線に対する屈折率の平均値
  9.  以下の条件式(3’)を満足するように構成されていることを特徴とする請求項8記載の撮像レンズ。
       Nd1>1.75 … (3’)
  10.  以下の条件式(4)を満足するように構成されていることを特徴とする請求項1から9のうちいずれか1項記載の撮像レンズ。
       2<f/Y<5 … (4)
    ただし、
    f:全系の焦点距離
    Y:像面における最大像高
  11.  以下の条件式(4’)を満足するように構成されていることを特徴とする請求項10記載の撮像レンズ。
       2.1<f/Y<3.5 … (4’)
  12.  前記前群が、物体側から順に、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズとからなることを特徴とする請求項1から11のうちいずれか1項記載の撮像レンズ。
  13.  請求項1から12のうちいずれか1項記載の撮像レンズを備えたことを特徴とする撮像装置。
PCT/JP2012/007903 2011-12-16 2012-12-11 撮像レンズおよびこれを備えた撮像装置 WO2013088701A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280062138.3A CN103998968B (zh) 2011-12-16 2012-12-11 摄像透镜和具备它的摄像装置
JP2013549115A JP5633892B2 (ja) 2011-12-16 2012-12-11 撮像レンズおよびこれを備えた撮像装置
US14/295,368 US9019623B2 (en) 2011-12-16 2014-06-04 Imaging zoom lens and imaging apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011275177 2011-12-16
JP2011-275177 2011-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/295,368 Continuation US9019623B2 (en) 2011-12-16 2014-06-04 Imaging zoom lens and imaging apparatus including the same

Publications (1)

Publication Number Publication Date
WO2013088701A1 true WO2013088701A1 (ja) 2013-06-20

Family

ID=48612175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007903 WO2013088701A1 (ja) 2011-12-16 2012-12-11 撮像レンズおよびこれを備えた撮像装置

Country Status (4)

Country Link
US (1) US9019623B2 (ja)
JP (1) JP5633892B2 (ja)
CN (1) CN103998968B (ja)
WO (1) WO2013088701A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076494A (zh) * 2014-07-03 2014-10-01 福建福光数码科技有限公司 宽光谱强光力摄像镜头
JP2015141384A (ja) * 2014-01-30 2015-08-03 富士フイルム株式会社 撮像レンズおよび撮像装置
CN108196353A (zh) * 2014-03-28 2018-06-22 三星电机株式会社 镜头模块

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360457B (zh) * 2014-11-06 2016-09-21 中国科学院光电技术研究所 一种宽波段光纤-ccd耦合成像镜头
TWI586998B (zh) * 2015-08-11 2017-06-11 大立光電股份有限公司 攝像用光學系統、取像裝置及電子裝置
US9851542B2 (en) * 2016-04-08 2017-12-26 Young Optics Inc. Imaging lens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888931A (ja) * 1972-01-31 1973-11-21 Optische Ind De Oude Delft Nv
JPS62200316A (ja) * 1986-02-28 1987-09-04 Canon Inc ズ−ムレンズ
JPH01193709A (ja) * 1988-11-30 1989-08-03 Minolta Camera Co Ltd 広角域を含む高変倍率ズームレンズ系
JP2001083421A (ja) * 1999-09-17 2001-03-30 Nikon Corp ズームレンズ
JP2004258511A (ja) * 2003-02-27 2004-09-16 Nikon Corp ズームレンズ
JP2007025653A (ja) * 2005-06-15 2007-02-01 Canon Inc 光学系
JP2007264600A (ja) * 2006-02-28 2007-10-11 Canon Inc ズームレンズ及びそれを有する光学機器
JP2013019993A (ja) * 2011-07-08 2013-01-31 Nikon Corp 光学系、この光学系を有する撮像装置、及び、光学系の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289779A (en) * 1940-05-17 1942-07-14 Eastman Kodak Co Photographic objective
US2574995A (en) * 1950-08-11 1951-11-13 Eastman Kodak Co Photographic objective consisting of three simple elements and a cemented triplet therebehind
JPS53134425A (en) * 1977-04-28 1978-11-24 Nippon Chemical Ind Large aperture ratio telescopic lens
US7312935B2 (en) 2005-06-15 2007-12-25 Canon Kabushiki Kaisha Optical system and optical apparatus having the same
JP4921045B2 (ja) 2006-06-12 2012-04-18 キヤノン株式会社 光学系及びそれを有する光学機器
JP4929902B2 (ja) 2006-07-27 2012-05-09 株式会社ニコン 単焦点レンズと、これを有する撮像装置
JP5217693B2 (ja) 2008-07-02 2013-06-19 株式会社ニコン レンズ系及び光学装置
JP5510770B2 (ja) * 2008-09-18 2014-06-04 株式会社ニコン 撮影レンズ、この撮影レンズを備えた光学機器
JP2013109025A (ja) * 2011-11-17 2013-06-06 Nikon Corp 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888931A (ja) * 1972-01-31 1973-11-21 Optische Ind De Oude Delft Nv
JPS62200316A (ja) * 1986-02-28 1987-09-04 Canon Inc ズ−ムレンズ
JPH01193709A (ja) * 1988-11-30 1989-08-03 Minolta Camera Co Ltd 広角域を含む高変倍率ズームレンズ系
JP2001083421A (ja) * 1999-09-17 2001-03-30 Nikon Corp ズームレンズ
JP2004258511A (ja) * 2003-02-27 2004-09-16 Nikon Corp ズームレンズ
JP2007025653A (ja) * 2005-06-15 2007-02-01 Canon Inc 光学系
JP2007264600A (ja) * 2006-02-28 2007-10-11 Canon Inc ズームレンズ及びそれを有する光学機器
JP2013019993A (ja) * 2011-07-08 2013-01-31 Nikon Corp 光学系、この光学系を有する撮像装置、及び、光学系の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141384A (ja) * 2014-01-30 2015-08-03 富士フイルム株式会社 撮像レンズおよび撮像装置
CN108196353A (zh) * 2014-03-28 2018-06-22 三星电机株式会社 镜头模块
CN108196353B (zh) * 2014-03-28 2020-09-11 三星电机株式会社 镜头模块
US10871634B2 (en) 2014-03-28 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Lens module
CN104076494A (zh) * 2014-07-03 2014-10-01 福建福光数码科技有限公司 宽光谱强光力摄像镜头

Also Published As

Publication number Publication date
CN103998968A (zh) 2014-08-20
JP5633892B2 (ja) 2014-12-03
JPWO2013088701A1 (ja) 2015-04-27
US20140285903A1 (en) 2014-09-25
CN103998968B (zh) 2016-04-06
US9019623B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
JP5638702B2 (ja) 撮像レンズおよび撮像装置
JP5616535B2 (ja) 撮像レンズおよび撮像装置
CN104238086B (zh) 摄像透镜和摄像装置
JP5642891B2 (ja) 撮像レンズおよび撮像装置
JP6204896B2 (ja) 撮像レンズおよび撮像装置
JP6392148B2 (ja) 撮像レンズおよび撮像装置
WO2014034040A1 (ja) 撮像レンズおよび撮像装置
JP6042768B2 (ja) 撮像レンズおよび撮像装置
WO2013099211A1 (ja) 撮像レンズおよび撮像装置
WO2014155463A1 (ja) ズームレンズおよび撮像装置
US9377607B2 (en) Zoom lens and imaging apparatus
JP5633892B2 (ja) 撮像レンズおよびこれを備えた撮像装置
JP5974101B2 (ja) 広角レンズおよび撮像装置
JP2016173397A (ja) 撮像レンズおよび撮像装置
JP2019060918A (ja) 撮像レンズ及び撮像装置
JP2019152690A (ja) 撮像レンズおよび撮像装置
JP2023178472A (ja) 撮像レンズおよび撮像装置
JP2015141384A (ja) 撮像レンズおよび撮像装置
JP5749866B2 (ja) 広角レンズおよび撮像装置
JP2016004192A (ja) ズームレンズおよび撮像装置
JP2019152691A (ja) 撮像レンズおよび撮像装置
WO2014141349A1 (ja) 広角レンズおよび撮像装置
JP2018060003A (ja) 撮像レンズおよび撮像装置
JP5796919B2 (ja) レトロフォーカス型広角レンズおよび撮像装置
WO2014155462A1 (ja) 撮像レンズおよびこれを備えた撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280062138.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858484

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013549115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858484

Country of ref document: EP

Kind code of ref document: A1