WO2010024166A1 - 磁性シート組成物、磁性シート、及び磁性シートの製造方法 - Google Patents
磁性シート組成物、磁性シート、及び磁性シートの製造方法 Download PDFInfo
- Publication number
- WO2010024166A1 WO2010024166A1 PCT/JP2009/064531 JP2009064531W WO2010024166A1 WO 2010024166 A1 WO2010024166 A1 WO 2010024166A1 JP 2009064531 W JP2009064531 W JP 2009064531W WO 2010024166 A1 WO2010024166 A1 WO 2010024166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic sheet
- magnetic
- curing agent
- mass
- layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/0084—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/34—Monomers containing two or more unsaturated aliphatic radicals
- C08F12/36—Divinylbenzene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/70—Chelates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
- H01F1/26—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/36—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
- H01F1/37—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
- H01F1/375—Flexible bodies
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0091—Complexes with metal-heteroatom-bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
- C08L33/068—Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
Definitions
- the present invention relates to a magnetic sheet composition as a material for a magnetic sheet capable of reducing unnecessary electromagnetic waves emitted from an electronic device and suppressing electromagnetic interference generated in the electronic device, and a method for producing the magnetic sheet.
- noise suppression applications include noise suppression applications and RFID applications.
- noise suppression applications along with the rapid progress of downsizing and higher frequency of electronic devices typified by personal computers and mobile phones, noise interference caused by external electromagnetic waves in these electronic devices and occurring inside the electronic devices
- noise countermeasures are performed.
- a magnetic sheet (noise suppression sheet) is installed in the vicinity of a noise transmission source or a reception source.
- the magnetic sheet is made of an insulating material such as PET or PET that has been subjected to a magnetic coating (magnetic sheet composition) containing an alloy (magnetic powder) such as Fe-Si-Al, an epoxy resin, an acrylic resin, and a volatile solvent.
- the magnetic powder has a function as a so-called noise suppressor, which suppresses noise.
- ⁇ ′′ which is an imaginary part of the magnetic permeability is large.
- RFID Radio Frequency Identification
- various conductors such as metal casings and metal parts are disposed in the vicinity of antenna elements for transmission and reception due to the miniaturization thereof.
- the presence of the metal in the vicinity of the antenna element greatly attenuates the magnetic field that can be used for communication, shortens the RFID communication distance in the electromagnetic induction method, and transmits and receives radio frequencies by shifting the resonance frequency. Can be difficult. Therefore, in order to suppress such electromagnetic interference, a magnetic sheet is disposed between the antenna element and the conductor.
- ⁇ ′ which is a real part of magnetic permeability is large and ⁇ ′′ which is an imaginary part is small.
- a curing agent for curing a thermosetting organic resin is added to the magnetic sheet composition as the material of the magnetic sheet.
- the magnetic sheet is cured by adding a curing agent to the magnetic sheet composition.
- the polymer material in the magnetic sheet is likely to absorb moisture, the magnetic sheet can be changed depending on environmental changes in temperature and humidity. There is a problem that the thickness of the material changes.
- the curing temperature is increased and the curing time is lengthened, there is a problem that water is wasted and productivity is deteriorated because the cooling time is lengthened.
- Patent Document 1 describes photocuring of a magnetic binder containing a photocurable cationic curing agent, and discloses an electromagnetic wave absorbing sheet having a concentration distribution in which the magnetic filler changes along the thickness direction from the surface. ing. Curing of the electromagnetic wave absorbing sheet is performed using a drum type device.
- a cationic curing system using an aluminum chelate as described below has been studied.
- a complex (the following formula (2)) is formed by coordination of a lone pair of oxygen of silanol to the vacant conformation of the aluminum chelate (the following formula (1)) which is a Lewis acid.
- a cation polymerization active species (the following formula (3)) is formed by the interaction between the composite (the following formula (2)) and the epoxide as a monomer, and this cationic polymerization active species (the following formula (3) )
- an epoxide a polyethylene oxide (epoxy resin) (the following formula (4)) is obtained by advancing the cationic polymerization reaction.
- the reaction rate of the cationic polymerization reaction is very high, and when an aluminum chelate (the above formula (1)) is used for, for example, a one-pack type adhesive or film, the curing reaction proceeds even at room temperature.
- Patent Document 2 discloses that aluminum chelate is encapsulated and used as a latent curing agent. By encapsulating this aluminum chelate, the latent of the curing agent can be achieved, and although the film life can be stabilized and the solvent resistance can be imparted to the curing agent, the reactivity is lowered and the curing is performed. There was a problem that defects occurred.
- the present invention makes it a subject to solve the said problem in the past and to achieve the following objectives. That is, the present invention can reduce unwanted electromagnetic waves emitted from electronic devices and suppress electromagnetic interference generated in electronic devices, is low temperature-fast curing, and does not generate odor, and further corrodes.
- An object of the present invention is to provide a magnetic sheet composition as a magnetic sheet material, a magnetic sheet, and a method for producing the magnetic sheet.
- Ar is an aryl group which may be substituted, and R is either a hydrogen atom or a methyl group.
- n When n is plural, R may be the same or different.
- R When n is plural, R may be the same or different.
- ⁇ 2> The magnetic sheet composition according to ⁇ 1>, wherein Ar is a phenyl group.
- ⁇ 3> The magnetic sheet composition according to any one of ⁇ 1> to ⁇ 2>, wherein the silanol compound or the alkoxysilane compound is any one of triphenylsilanol, diphenylsilanediol, and diphenyldimethoxysilane.
- An aluminum chelate-based latent curing agent is an aluminum latent curing agent obtained by holding an aluminum chelating agent in a porous resin obtained by radical polymerization of divinylbenzene at the same time as interfacial polymerization of a polyfunctional isocyanate compound.
- the magnetic sheet composition according to any one of ⁇ 1> to ⁇ 3>.
- the total amount of the epoxy resin and the acrylic resin is 106.1 parts by mass, and the magnetic powder is 500 parts by mass to 1,250 parts by mass, and the total of the aluminum chelate-based latent curing agent and the silanol compound or alkoxysilane compound.
- ⁇ 6> The magnetic sheet composition according to any one of ⁇ 1> to ⁇ 5>, wherein the total amount of the aluminum chelate-based latent curing agent and the silanol compound or the alkoxysilane compound is 6.9 parts by mass to 15 parts by mass. It is. ⁇ 7> From ⁇ 1> above, wherein the mass ratio of the aluminum chelate-based latent curing agent and the silanol compound to the alkoxysilane compound (aluminum chelate-based latent curing agent / silanol compound to the alkoxysilane compound) is 1.0 or less.
- ⁇ 6> The magnetic sheet composition according to any one of the above.
- a magnetic sheet comprising a magnetic layer comprising the magnetic sheet composition according to any one of ⁇ 1> to ⁇ 7>.
- a magnetic layer forming step of forming the magnetic layer by molding the magnetic sheet composition according to any one of ⁇ 1> to ⁇ 7>, and at least one surface in the thickness direction of the magnetic layer, The concavo-convex forming layer and the transfer material are stacked in this order from the magnetic layer side, and then heated and pressed to transfer the surface shape of the transfer material to the surfaces of the concavo-convex forming layer and the magnetic layer, and
- a method for producing a magnetic sheet comprising: a shape transfer step for joining an unevenness forming layer and the magnetic layer.
- the conventional problems can be solved, unnecessary electromagnetic waves emitted from an electronic device can be reduced, and electromagnetic interference generated in the electronic device can be suppressed, low temperature-fast curing property, and odor is generated. Further, it is possible to provide a magnetic sheet composition, a magnetic sheet, and a method for producing a magnetic sheet as a magnetic sheet material that does not cause corrosion.
- FIG. 1 is a process diagram showing an example of a method for producing a magnetic sheet of the present invention.
- the magnetic sheet composition of the present invention contains at least an aluminum chelate-based latent curing agent, a silanol compound or an alkoxysilane compound represented by the following formula (A), an epoxy resin, an acrylic resin, and magnetic powder. Further, it contains other components appropriately selected as necessary.
- (Chemical formula 4) (Ar) m Si (OR) n formula (A) (In the formula, m is either 2 or 3, and the sum of m and n is 4.
- Ar is an aryl group which may be substituted, and R is either a hydrogen atom or a methyl group. When n is plural, R may be the same or different.)
- the aluminum chelate-based latent curing agent examples include those obtained by making an aluminum chelate-based curing agent latent by various known methods, for example, a microencapsulation method. Among these, a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound and an aluminum chelating agent held therein is preferable. More specifically, the aluminum chelating agent is not a microcapsule having a simple structure in which the periphery of the core of the aluminum chelate curing agent is covered with a porous resin shell, but in a large number of fine pores existing in the porous resin matrix. The thing of the structure where was hold
- the aluminum chelate-based latent curing agent will be described.
- the aluminum chelate-based latent curing agent is produced using an interfacial polymerization method, its shape is spherical, and its particle size is 0.5 ⁇ m to 100 ⁇ m from the viewpoint of curability and dispersibility.
- the pore size is preferably 5 nm to 150 nm from the viewpoint of curability and latency.
- the aluminum chelate-based latent curing agent has a tendency that if the degree of cross-linking of the porous resin to be used is too small, the latency is lowered, and if it is too large, its thermal responsiveness tends to be lowered.
- a porous resin having a controlled degree of crosslinking it is preferable to use a porous resin having a controlled degree of crosslinking.
- the degree of crosslinking of the porous resin can be measured by a micro compression test.
- the aluminum chelate-based latent curing agent does not substantially contain an organic solvent used at the time of interfacial polymerization, specifically, it is 1 ppm or less.
- the content of the porous resin and the aluminum chelating agent in the aluminum chelate-based latent curing agent is such that if the aluminum chelating agent content is too small, the thermal responsiveness is lowered, and if it is too much, the latency is lowered.
- the content of the aluminum chelating agent with respect to 100 parts by mass of the conductive resin is preferably 10 parts by mass to 200 parts by mass, and more preferably 10 parts by mass to 150 parts by mass.
- examples of the aluminum chelating agent include complex compounds in which three ⁇ -ketoenolate anions represented by the following formula (5) are coordinated to aluminum.
- R1, R2 and R3 are each independently an alkyl group or an alkoxyl group.
- the alkyl group include a methyl group and an ethyl group.
- the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
- the aluminum chelating agent represented by the formula (5) include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum monoacetylacetate. Nate bisoleyl acetoacetate, ethyl acetoacetate aluminum diisopropylate, alkyl acetoacetate aluminum diisopropylate and the like.
- polyfunctional isocyanate compound there is no restriction
- the compound which has 2 or more isocyanate groups in 1 molecule is preferable, and the compound which has 3 isocyanate groups is More preferred.
- a trifunctional isocyanate compound a TMP adduct of formula (6) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and an isocyanurate of formula (7) obtained by self-condensation of 3 mol of a diisocyanate compound.
- a burette body of the formula (8) obtained by condensing the remaining 1 mol of diisocyanate with diisocyanate urea obtained from 2 mol of 3 mol of the diisocyanate compound.
- the substituent R is a portion excluding the isocyanate group of the diisocyanate compound.
- diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. , 4'-diisocyanate and the like.
- porous resin obtained by interfacial polymerization of such a polyfunctional isocyanate compound part of the isocyanate group undergoes hydrolysis during the interfacial polymerization to become an amino group, and the amino group reacts with the isocyanate group. It is a porous polyurea that forms a urea bond to polymerize.
- An aluminum chelate-based latent curing agent composed of such a porous resin and an aluminum chelating agent held in the pores of the porous chelating agent, when heated for curing, has no clear reason, but is retained.
- the aluminum chelating agent can come into contact with the silanol compound or the alkoxysilane compound represented by the formula (A) coexisting with the latent curing agent or the thermosetting resin, and the curing reaction can proceed.
- a radical polymerizable monomer such as divinylbenzene and a radical polymerization initiator may be allowed to coexist to improve the mechanical properties of the microcapsule wall.
- the thermal response speed at the time of hardening of an epoxy resin can be increased.
- the aluminum chelating agent is also present on the surface, but it is inactivated by water present in the system during the interfacial polymerization, and the aluminum chelating agent is Only what is retained inside the porous resin retains activity, and it is considered that the resulting curing agent has acquired the potential.
- the aluminum chelate-based latent curing agent is prepared by dissolving an aluminum chelating agent and a polyfunctional isocyanate compound in a volatile organic solvent, putting the obtained solution into an aqueous phase containing a dispersant, and heating and stirring the interface. It can manufacture by the manufacturing method characterized by making it superpose
- an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent to prepare a solution that becomes an oil phase in interfacial polymerization.
- the reason for using the volatile organic solvent is as follows. That is, when a high boiling point bathing agent having a boiling point exceeding 300 ° C. as used in an ordinary interfacial polymerization tank is used, the organic solvent does not volatilize during the interfacial polymerization, so that the probability of contact with isocyanate-water increases. This is because the degree of progress of interfacial polymerization between them becomes insufficient.
- Such a volatile organic solvent is a good solvent of an aluminum chelating agent and a polyfunctional isocyanate compound (the solubility of each is preferably at least 0.1 g / ml (organic solvent)), and is substantially free from water.
- the solubility of each is preferably at least 0.1 g / ml (organic solvent)
- those having a water solubility of 0.5 g / ml (organic solvent) or less and a boiling point of 100 ° C. or less under atmospheric pressure are preferable.
- Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Of these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.
- the amount of the volatile organic solvent used is less than the total amount of 100 parts by mass of the aluminum chelating agent and the polyfunctional isocyanate compound. If the amount is too small, the latency is lowered.
- the amount is preferably 500 parts by mass.
- the viscosity of the oil phase solution can be lowered by using a relatively large amount of the volatile organic solvent within the range of the volatile organic solvent used.
- the oil phase droplets in the reaction system can be made finer and uniform, and the resulting latent hardener particle size can be controlled to a submicron to several microns, The particle size distribution can be monodispersed.
- the viscosity of the oil phase solution is preferably set to 1 mPa ⁇ s to 25 mPa ⁇ s.
- the hydroxyl group of PVA reacts with the polyfunctional isocyanate compound, so that by-products adhere around the latent curing agent particles as foreign substances. Or the particle shape itself may be deformed. In order to prevent this phenomenon, the reactivity between the polyfunctional isocyanate compound and water is promoted, or the reactivity between the polyfunctional isocyanate compound and PVA is suppressed.
- the blending amount of the aluminum chelating agent is preferably 1 ⁇ 2 or less, more preferably 3 or less by weight of the polyfunctional isocyanate compound.
- the blending amount of the aluminum chelating agent is preferably at least equal to the weight of the polyfunctional isocyanate compound, more preferably 1.0 to 2.0 times.
- concentration in the oil phase droplet surface falls.
- the polyfunctional isocyanate compound has a higher reaction rate (interfacial polymerization) with the amine formed by hydrolysis than the hydroxyl group, the reaction probability between the polyfunctional isocyanate compound and PVA can be lowered.
- the aluminum chelating agent and the polyfunctional isocyanate compound When the aluminum chelating agent and the polyfunctional isocyanate compound are dissolved in the volatile organic solvent, they may be mixed and stirred at room temperature under atmospheric pressure, but may be heated as necessary.
- an oil phase solution in which an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent is put into an aqueous phase containing a dispersant, and subjected to interfacial polymerization by heating and stirring.
- a dispersing agent what is used in normal interfacial polymerization methods, such as polyvinyl alcohol, carboxymethylcellulose, gelatin, can be used.
- the amount of the dispersant used is usually 0.1% by mass to 10.0% by mass of the aqueous phase.
- the blending amount of the oil phase solution with respect to the aqueous phase is 5 parts by mass to 50 parts by mass with respect to 100 parts by mass of the aqueous phase because polydispersion occurs when the amount of the oil phase solution is too small, and aggregation occurs due to refinement when the amount is excessive. It is preferable.
- stirring conditions such that the size of the oil phase is preferably 0.5 ⁇ m to 100 ⁇ m are usually obtained at a temperature of 30 ° C. under atmospheric pressure.
- stirring conditions heating and stirring at -80 ° C, stirring time of 2 hours to 12 hours.
- the polymer fine particles are filtered off and air-dried to obtain an aluminum chelate-based latent curing agent that can be used in the present invention.
- the curing characteristics of the aluminum chelate-based latent curing agent can be controlled by changing the type and usage of the polyfunctional isocyanate compound, the type and usage of the aluminum chelating agent, and the interfacial polymerization conditions. For example, if the polymerization temperature is lowered, the curing temperature can be lowered, and conversely, if the polymerization temperature is raised, the curing temperature can be raised.
- the content of the aluminum chelate-based latent curing agent in the magnetic sheet composition of the present invention is preferably 1 part by mass to 70 parts by mass with respect to 100 parts by mass of the magnetic sheet composition, and preferably 1 part by mass to 50 parts by mass. More preferred.
- the porous resin obtained by radically polymerizing divinylbenzene simultaneously with the porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound or the polyfunctional isocyanate compound is an aluminum chelate-based latent curing agent.
- an aluminum chelate-based latent curing agent obtained by holding an aluminum chelating agent a silanol compound or an alkoxysilane compound represented by the formula (A) described below is impregnated in order to improve low-temperature fast curing properties. Also good.
- an aluminum chelate-based latent curing agent composed of an aluminum chelate-based curing agent held in such a porous resin is dispersed in an organic solvent (for example, ethanol), and a formula ( A) A silanol compound or an alkoxysilane compound represented by A) (for example, triphenylsilanol) and, if necessary, an aluminum chelate-based curing agent (for example, an isopropanol solution of monoacetylacetonate bis (ethylacetoacetate)), A method in which stirring is continued at room temperature to about 50 ° C. for several hours to overnight can be mentioned.
- an organic solvent for example, ethanol
- a silanol compound or an alkoxysilane compound represented by A) for example, triphenylsilanol
- an aluminum chelate-based curing agent for example, an isopropanol solution of monoacetylacetonate bis (ethylacetoacetate
- the silanol compound or alkoxysilane compound has a chemical structure of the following formula (A).
- R is either a hydrogen atom or a methyl group (when n is plural, R may be the same or different), and m is 2 or 3, provided that the sum of m and n Is 4. Accordingly, the silanol compound or alkoxysilane compound represented by the formula (A) is a compound having one or two ORs (hydroxyl group or methoxy group).
- Ar is an aryl group which may be substituted, and as an aryl group, a phenyl group, a naphthyl group, an anthracenyl group, an azulenyl group, a fluorenyl group, a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, A pyridyl group etc. are mentioned. Of these, a phenyl group is preferable from the viewpoint of availability and cost.
- the m Ars may be the same or different, but are preferably the same from the viewpoint of availability.
- aryl groups can have 1 to 3 substituents such as halogens such as chloro and bromo; trifluoromethyl; nitro; sulfo; alkoxycarbonyl such as carpoxyl, methoxycarbonyl and ethoxycarbonyl; formyl and the like Electron-withdrawing groups, alkyl such as methyl, ethyl and propyl; alkoxy such as methoxy and ethoxy; hydroxy; amino; monoalkylamino such as monomethylamino; and electron-donating groups such as dialkylamino such as dimethylamino.
- substituents such as halogens such as chloro and bromo; trifluoromethyl; nitro; sulfo; alkoxycarbonyl such as carpoxyl, methoxycarbonyl and ethoxycarbonyl; formyl and the like
- Electron-withdrawing groups alkyl such as methyl, ethyl and propyl; alkoxy
- the acidity of the hydroxyl group of silanol can be increased by using an electron withdrawing group as a substituent, and conversely, the acidity can be lowered by using an electron donating group, so that the curing activity can be controlled.
- the substituents may be different for each of the m Ars, but the substituents are preferably the same for the m Ars from the viewpoint of availability. Further, only some Ar may have a substituent, and other Ar may not have a substituent.
- triphenylsilanol diphenylsilanol and diphenyldimethoxysilane are preferable, and triphenylsilanol is more preferable.
- resin properties (flexibility) Etc.) is preferably 5% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass.
- the total amount of the aluminum chelate-based latent curing agent and the silanol compound or alkoxysilane compound is preferably 2 parts by mass to 15 parts by mass with respect to the total amount 106.1 parts by mass of the epoxy resin and the acrylic resin. More preferably, it is 9 to 15 parts by mass. Furthermore, the mass ratio of the aluminum chelate-based latent curing agent and the silanol compound or alkoxysilane compound (aluminum chelate-based latent curing agent / silanol compound or alkoxysilane compound) is preferably 1.0 or less.
- the epoxy resin is used as a film forming component.
- Such an epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4,000 and has two or more epoxy groups in the molecule.
- glycidyl ether type epoxy resin, alicyclic epoxy resin, bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, ester type epoxy resin and the like can be mentioned.
- bisphenol A type epoxy resins can be preferably used from the viewpoint of resin characteristics.
- These epoxy resins also include monomers and oligomers.
- the acrylic resin preferably has an epoxy group. In this case, the reliability is improved by the reaction between the epoxy group and the aluminum chelate-based latent curing agent.
- the acrylic resin preferably further has a hydroxyl group. Adhesiveness can be improved by having this hydroxyl group.
- the weight average molecular weight of the acrylic resin is preferably 10,000 to 850,000 in terms of excellent coating properties. When the weight average molecular weight is less than 10,000, the viscosity of the magnetic sheet composition is decreased, and it may be difficult to apply a heavy magnetic powder. When the weight average molecular weight exceeds 850,000, The viscosity of the magnetic sheet composition may increase, making it difficult to apply.
- the glass transition temperature of the acrylic resin is preferably ⁇ 5 ° C.
- the glass transition temperature is less than ⁇ 5 ° C., the reliability in a high temperature or high temperature and high humidity environment may deteriorate, and when it exceeds + 15 ° C., the magnetic sheet tends to be hard.
- an oxetane compound can be used as a resin component in addition to an epoxy resin and an acrylic resin in order to sharpen an exothermic peak.
- the oxetane compound include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, 4,4′-bis [(3-ethyl-3 -Oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylic acid bis [(3-ethyl-3-oxetanyl)] methyl ester, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- (2 -Ethylhexyloxymethyl) oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, 3-ethy
- the magnetic powder there is no restriction
- the magnetic powder include soft magnetic metal, ferrite, and pure iron particles.
- the soft magnetic metal include magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—Al alloy), permalloy (Fe—Ni alloy), and silicon copper (Fe—Cu—Si alloy).
- Fe—Si alloy Fe—Si—B (—Cu—Nb) alloy, Fe—Ni—Cr—Si alloy, Fe—Si—Cr alloy, Fe—Si—Al—Ni—Cr alloy and the like.
- the ferrite include soft ferrite such as Mn—Zn ferrite, Ni—Zn ferrite, Mn—Mg ferrite, Mn ferrite, Cu—Zn ferrite, Cu—Mg—Zn ferrite, and hard ferrite that is a permanent magnet material.
- the said magnetic powder may be used individually by 1 type, and may use 2 or more types together.
- the said magnetic powder is 500 with respect to the total amount 106.1 mass parts of the said epoxy resin and an acrylic resin.
- the amount is preferably from 1 to 250 parts by mass.
- the magnetic powder contained in the magnetic sheet is preferably 60 wt% to 95 wt%.
- the content of the magnetic powder is less than 500 parts by mass with respect to the total amount of the epoxy resin and the acrylic resin of 106.1 parts by mass, excellent magnetic properties may not be obtained.
- it exceeds 1,250 parts by mass with respect to the total amount of acrylic resin 106.1 parts by mass it becomes difficult to keep the magnetic powder connected with the epoxy resin and the acrylic resin, under a high temperature and high humidity environment.
- the change in thickness of the magnetic sheet becomes large or becomes brittle, and the magnetic powder may fall (powders off) not only from the end face of the magnetic sheet but also from the surface.
- the other components are not particularly limited as long as they do not impair the effects of the present invention, and can be appropriately selected from various known additives according to the purpose, thereby improving applicability of the magnetic sheet composition ( For the purpose of adjusting the viscosity, a solvent can be added.
- the solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; methanol, ethanol, propanol, butanol, isopropyl Alcohols such as alcohol; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl lactate, and ethyl glycol acetate; ethers such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran, and dioxane; benzene, toluene, xylene Etc.
- ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
- methanol, ethanol, propanol, butanol isopropyl Alcohols such as alcohol
- esters such as methyl
- Aromatic hydrocarbon compounds methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, halogenated hydrocarbon compounds such as chlorobenzene; and the like. These may be used individually by 1 type and may use 2 or more types together.
- dispersants, stabilizers, lubricants, silane coupling agents, titanate coupling agents, fillers such as silica and mica, plasticizers, anti-aging agents, pigments, antistatic agents, flame retardants Etc. various additives may be added.
- the flame retardant By adding the flame retardant, the flame retardancy of the magnetic sheet can be improved.
- the flame retardant include melamine cyanurate containing a carboxylic acid amide.
- a halogen-based compound As a conventional flame retardant, a halogen-based compound is mainly used, but there is a problem that when it burns, a harmful substance is generated and the burden on the environment is large.
- a halogen-free flame retardant for example, melamine cyanurate that is not subjected to any surface treatment is known, but the melamine cyanurate has poor affinity with the resin component and is dispersed in the resin component.
- the melamine cyanurate is a melamine isocyanurate adduct
- melamine and isocyanurate are formed as an oligomer adduct by repeating an addition reaction as shown in the following reaction formula. It is.
- the melamine cyanurate has rigidity due to a melamine skeleton, and a hydroxyl group (OH) is generated by the addition reaction. Therefore, the melamine cyanurate is considered to exhibit flame retardancy by having a polarity due to the hydroxyl group.
- the hydroxyl group often forms a hydrogen bond between molecules, and it is presumed that the hydrogen bond by the hydroxyl group causes the isocyanurate aggregation. Therefore, by blocking this hydrogen bond, that is, by using melamine cyanurate in which some hydroxyl groups are protected, it is considered that the occurrence of aggregation is suppressed and the dispersibility in the resin component is improved. .
- the melamine cyanurate containing carboxylic acid amide (melamine cyanurate surface-treated with a fatty acid) is used as the flame retardant, it is more in comparison with melamine cyanurate (those not surface-treated). High flame retardancy is exhibited, and it is difficult for powder to fall off from the surface of the magnetic sheet.
- acrylic rubber when acrylic rubber is used as the resin component, it accelerates the curing of the resin component during pressing and increases the It was found that a magnetic sheet with good surface smoothness in which a change in thickness under a humid environment was suppressed can be obtained.
- a number average particle diameter of the melamine cyanurate containing the said carboxylic acid amide there is no restriction
- the number average particle diameter exceeds 1 ⁇ m, the magnetic powder may be prevented from being densely oriented and the magnetic properties of the magnetic sheet may be deteriorated, and the thickness change under high temperature or high temperature and high humidity environment is large. May be.
- the number average particle diameter can be measured from, for example, a particle size distribution measured using laser diffraction.
- the melamine cyanurate containing the carboxylic acid amide may be a commercially available product or an appropriately prepared product.
- Examples of the commercially available product include MC-5F (manufactured by Sakai Chemical Industry).
- a method for producing the melamine cyanurate containing the carboxylic acid amide is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a method of surface-treating melamine cyanurate using a fatty acid is preferable. It is done.
- the fatty acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include lauric acid, isostearic acid, stearic acid, palmitic acid, oleic acid, and linolenic acid. These may be used individually by 1 type and may use 2 or more types together. Among these, lauric acid is preferable in terms of high hydrophobicity and good dispersibility.
- the flame retardant preferably further contains red phosphorus in addition to the melamine cyanurate containing the carboxylic acid amide. This is advantageous in that the flame retardancy of the magnetic sheet can be further improved.
- the red phosphorus is not particularly limited and may be a commercially available product or an appropriately synthesized product, but has excellent moisture resistance, does not spontaneously ignite when mixed, and has good safety.
- the surface is preferably coated. Examples of the red phosphorus coated on the surface include those obtained by surface-treating the surface of red phosphorus with aluminum hydroxide.
- the content of red phosphorus is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is 6 to 20 parts by mass with respect to the total amount of epoxy resin and acrylic resin of 106.1 parts by mass. Preferably there is. When the content is less than 6 parts by mass, the effect of improving flame retardancy may not be obtained. When the content exceeds 20 parts by mass, the total amount of the magnetic powder and the flame retardant with respect to the resin component is large. Therefore, it becomes difficult to keep the magnetic powder and the flame retardant together by the resin component, and the content ratio of the magnetic powder in the magnetic sheet may be lowered, and the magnetic permeability may be lowered.
- the silane coupling agent is a cation of a thermosetting resin (for example, a thermosetting epoxy resin) in cooperation with an aluminum chelating agent.
- a thermosetting resin for example, a thermosetting epoxy resin
- silane coupling agent one having 1 to 3 lower alkoxy groups in the molecule, a group having reactivity with the functional group of the thermosetting resin in the molecule, such as a vinyl group, It may have a styryl group, an acryloyloxy group, a methacryloyloxy group, an epoxy group, an amino group, a mercapto group, and the like.
- a coupling agent having an amino group or a mercapto group should be used when the latent curing agent of the present invention is a cationic curing agent, so that the amino group or mercapto group does not substantially trap the generated cationic species. Can do.
- silane coupling agent examples include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -styryltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - Acryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ⁇ - (aminoethyl) ) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -amino
- the amount is 1 part by mass to 300 parts by mass, preferably 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the chelate-based latent curing agent.
- an aluminum chelate-based latent curing agent a silanol compound or an alkoxysilane compound represented by the formula (A)
- an epoxy resin an acrylic resin, a magnetic powder, and additives as necessary
- the silanol represented by the formula (A) is added to the aluminum chelate-based latent curing agent without separately mixing the aluminum chelate-based latent curing agent and the silanol compound or alkoxysilane compound represented by the formula (A). You may use what was impregnated the compound thru
- Examples of the impregnation method include a method in which an aluminum chelate-based latent curing agent is dispersed and mixed for about several hours in an alcohol (ethanol, propanol, etc.) solution of a silanol compound or an alkoxysilane compound represented by the formula (A). After mixing, it may be pulled up from the liquid and dried.
- an alcohol ethanol, propanol, etc.
- the magnetic sheet composition of the present invention uses an aluminum chelate-based latent curing agent as a curing agent, and thus is excellent in storage stability despite being a one-component type.
- the magnetic sheet composition contains a specific silanol having a high steric hindrance despite containing an epoxy resin that could not be sufficiently cured with an aluminum chelate-based latent curing agent.
- Silanol is a very unstable substance, and trimethylsilanol and the like can be easily coupled with moisture in the air to deactivate the curing activity. Therefore, by suppressing the addition reaction of the silanolate anion to the epoxy, the side reaction can be suppressed and the coupling reaction can be avoided).
- curing agent and magnetic powder (for example, aluminum alloy) is good, and can apply
- the magnetic sheet of the present invention has a magnetic layer made of the magnetic sheet composition of the present invention, and further has other layers appropriately selected as necessary.
- the magnetic layer has functions of reducing unnecessary electromagnetic waves emitted from the electronic device and suppressing electromagnetic interference caused by interference of unnecessary electromagnetic waves in the electronic device.
- the thickness of the magnetic layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferably thick from the viewpoint of obtaining high magnetic permeability, and preferably 25 ⁇ m to 500 ⁇ m. When the thickness is less than 25 ⁇ m, the magnetic permeability is low, and when the thickness exceeds 500 ⁇ m, it is not suitable for a narrow part and does not follow the recent trend of downsizing of electronic devices, and the influence of the thickness on the magnetic permeability. May become smaller. When the thickness is 70 ⁇ m or less, the magnetic permeability tends to decrease rapidly.
- the other layer is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose. Examples thereof include a concavo-convex forming layer.
- the unevenness forming layer has a function of peeling the magnetic sheet from a member in contact with the magnetic sheet, for example, in an electronic device when the magnetic sheet of the present invention is used.
- the structure may be a single layer structure or a laminated structure.
- the thickness is preferably 2 ⁇ m to 100 ⁇ m. When the thickness is less than 2 ⁇ m, workability may be deteriorated. When the thickness is more than 100 ⁇ m, heat is not easily transmitted to the magnetic layer at the time of hot pressing, and reliability may be lowered.
- the material include synthetic resins, and for example, polyethylene terephthalate (PET) is preferable.
- the concavo-convex forming layer may be a commercially available product or an appropriately produced one.
- the commercially available product include mat-treated PET (“Lumorer X44- # 25”; Toray Industries, Inc.). ), Mat-treated PET (“Lumirror 44- # 38”; manufactured by Toray Industries, Inc.), non-peeled PET (“Embred”; manufactured by Unitika Ltd.), non-silicone peel-treated PET (““ Fluorouge ”) RL “; manufactured by Mitsubishi Plastics), silicone release treated PET (“ 25GS “; manufactured by Lintec Corporation), and the like.
- a film on which characters are printed may be used for the unevenness forming layer.
- the printed surface of the character may be a surface in contact with the magnetic layer, or a surface not in contact with the magnetic layer (opposite surface).
- the method of using the magnetic sheet of the present invention is not particularly limited and can be appropriately selected depending on the purpose.
- the magnetic sheet is cut into a desired size and is used as a noise source for electronic equipment.
- the magnetic layer side can be disposed close to each other.
- the magnetic sheet of the present invention can be suitably used for electromagnetic noise suppressors, radio wave absorbers, magnetic shield materials, electronic devices having an IC tag function such as RFID (Radio Frequency Identification), non-contact IC cards, and the like.
- RFID Radio Frequency Identification
- non-contact IC cards and the like.
- it can be suitably used for a mobile phone with an RFID function.
- the magnetic sheet of the present invention can be manufactured by a low-temperature and short-time press, and the tact time can be shortened.
- sulfonium salts are used for conventional cationic curing agents, and after curing there was a smell peculiar to sulfonium salts, but the aluminum chelate-based latent curing agent is odorless, improving the working environment when manufacturing magnetic sheets
- it can also be used for parts sensitive to odor (for example, in-vehicle use).
- the magnetic sheet of the present invention may not have an adhesive layer. If the adhesive layer is not provided, it is possible to prevent the failure of the electronic device due to the leakage of the adhesive, which occurs when the electronic device is used at a high temperature. Further, as compared with the conventional magnetic sheet, the thickness of the magnetic layer can be increased by the thickness of the adhesive layer, and therefore the specific gravity is large and the magnetic permeability is high.
- the method for producing the magnetic sheet of the present invention is not particularly limited and may be appropriately selected depending on the intended purpose. However, it can be suitably produced by the following method for producing a magnetic sheet of the present invention.
- the method for producing a magnetic sheet of the present invention includes at least a magnetic layer forming step and a shape transfer step, and further includes other steps appropriately selected as necessary.
- the magnetic layer forming step includes at least an aluminum chelate-based latent curing agent, a silanol compound or an alkoxysilane compound represented by the following formula (A), an epoxy resin, an acrylic resin, and magnetic powder.
- This is a step of forming a magnetic layer by molding a magnetic sheet composition.
- (Chemical 9) Ar
- m Si OR
- n formula (A) In the formula, m is either 2 or 3, and the sum of m and n is 4.
- Ar is an aryl group which may be substituted, and R is either a hydrogen atom or a methyl group.
- the epoxy resin and the acrylic resin are preferably in an uncured state before the heat press described below.
- the magnetic layer is not sufficiently compressed and the magnetic permeability cannot be increased.
- the hardened magnetic layer is compressed, strain remains, and when it is repeatedly exposed in a room temperature, high temperature or high temperature and high humidity environment, the thickness changes or the magnetic properties decrease.
- the epoxy resin and the acrylic resin before the heating press are in an uncured state, the occurrence of these problems is suppressed.
- the magnetic sheet composition is prepared by adding the magnetic powder, the aluminum chelate-based latent curing agent, the silanol compound or the alkoxysilane compound represented by the formula (A) to the epoxy resin and the acrylic resin, and mixing them. This can be done.
- the magnetic sheet composition can be molded, for example, by applying the magnetic sheet composition on a substrate and drying it. There is no restriction
- the base material matte PET, unpeeled PET, non-silicone peeled PET (the surface on which the magnetic layer is formed is not peeled), silicone peeled PET (magnetic layer is formed) The surface may not be peeled).
- shape transfer step an unevenness forming layer and a transfer material are laminated and arranged in this order from the magnetic layer side on one surface in the thickness direction of the magnetic layer, and then heated and pressed to thereby form the surface shape of the transfer material. Is transferred to the surface of the concavo-convex formation layer and the magnetic layer, and the concavo-convex formation layer and the magnetic layer are joined together.
- the surface state of the unevenness forming layer is not particularly limited, and one surface in the thickness direction may be subjected to surface treatment or may not be subjected to any surface treatment. It is preferable that a release treatment without using a silicone resin is performed. In these cases, the slipperiness is improved as compared with those not subjected to any surface treatment. In the case of these surface treatments, since the silicone resin is not used, the silicone oligomer does not bleed out in a high temperature or high temperature and high humidity environment, and is suitable for use inside an electronic device.
- the mat treatment is not particularly limited as long as the surface of the unevenness forming layer can be roughened, and can be selected according to the purpose. For example, sand mat treatment, chemical mat treatment, surface embossing treatment Etc. By these treatments, unevenness is formed on the surface of the unevenness forming layer, and slipperiness is improved.
- the transfer material is not particularly limited in its structure, thickness, and material (material), and can be appropriately selected according to the purpose. However, the transfer material has irregularities on the surface and has good air permeability. Is preferred. In this case, when the unevenness on the surface of the transfer material is transferred to the unevenness forming layer, the unevenness is formed on the surface of the unevenness forming layer, and slipperiness is improved.
- the structure may be a single layer structure or a laminated structure.
- the thickness is preferably 25 ⁇ m to 200 ⁇ m. If the thickness is less than 25 ⁇ m, it may not be possible to obtain a magnetic sheet with improved slipperiness, and if it exceeds 200 ⁇ m, heat is not easily transferred to the magnetic layer during the hot pressing, and the reliability decreases. Sometimes. Examples of the material include paper, synthetic fiber, and natural fiber.
- the transfer material may be a commercially available product or an appropriately produced material.
- the commercially available product include high-quality paper (“OK Prince Quality 70”; manufactured by Oji Paper Co., Ltd.). , Cushion paper (“TF190” manufactured by Toyo Fiber Co., Ltd.), nylon mesh (“N-NO.110S” manufactured by Tokyo Screen Co., Ltd.), cotton cloth (“Kanakin No.
- the stacking method is not particularly limited as long as the unevenness forming layer and the transfer material are stacked in this order from the magnetic layer side on one surface in the thickness direction of the magnetic layer.
- the release layer and the transfer material are preferably further laminated in this order from the magnetic layer side on the other surface in the thickness direction of the magnetic layer.
- the release layer is not particularly limited as long as it has a function of preventing adhesion between the other surface in the thickness direction of the magnetic layer and the transfer material during the hot pressing, and is appropriately selected according to the purpose.
- a polyester film (peeled PET) having a surface subjected to a peeling treatment is preferable in that it can be easily peeled off from the magnetic layer after the hot pressing.
- the heating press method is not particularly limited and can be appropriately selected depending on the purpose.
- the magnetic layer, the concavo-convex forming layer, and the transfer material as a laminate These can be performed by sandwiching them with a laminator or a press from both sides and heating and pressurizing them.
- the surface shape (uneven shape) of the transfer material is transferred to the surface of the unevenness forming layer and the magnetic layer by the heating press, and the unevenness forming layer and the magnetic material can be transferred without using an adhesive or the like.
- the layers are joined directly.
- the heating press conditions are not particularly limited and may be appropriately selected according to the purpose.
- the pressing temperature is preferably, for example, 80 ° C. to 190 ° C.
- the pressing pressure is, for example, 5 MPa to 20 MPa.
- the press holding time is preferably 1 minute to 20 minutes, for example.
- the surface shape of the transfer material is transferred to the surfaces of the unevenness forming layer and the magnetic layer, and the unevenness forming layer and the magnetic layer are joined. As a result, a magnetic sheet having the magnetic layer and the unevenness forming layer is obtained.
- the magnetic sheet thus obtained is excellent in slipperiness because the surface shape (surface irregularities) of the transfer material is transferred to the surface of the irregularity forming layer and roughened.
- the surface shape of the transfer material is transferred to the surface of the concavo-convex forming layer and the magnetic layer by the heating press, so that the surface of the concavo-convex forming layer is roughened.
- slipperiness can be improved.
- an adhesion layer is unnecessary and a magnetic sheet can be manufactured simply and efficiently at low cost.
- Example 1 Preparation of aluminum chelate-based latent curing agent (1)- 800 parts by weight of distilled water, 0.05 part by weight of a surfactant (Newlex RT, Nippon Oil & Fats Co., Ltd.), and 4 parts by weight of polyvinyl alcohol (PVA-205, Kuraray Co., Ltd.) as a dispersant.
- a surfactant Newlex RT, Nippon Oil & Fats Co., Ltd.
- PVA-205 polyvinyl alcohol
- the polymerization reaction liquid After completion of the reaction, the polymerization reaction liquid is allowed to cool to room temperature, and the interfacially polymerized particles are separated by filtration and air-dried, whereby 100 parts by mass of a spherical aluminum chelate-based latent curing agent (1) having a particle size of about 2 ⁇ m is obtained. Obtained.
- acrylic resin (“SG80H-3”; manufactured by Nagase ChemteX Corp., number average molecular weight 150,000, weight average molecular weight 350,000) 83 mass with 270 mass parts of toluene as solvent and 120 mass parts of ethyl acetate Part, cresol novolac type polyfunctional epoxy resin (“Epicoat 1031S”; manufactured by Japan Epoxy Resin Co., Ltd.) 23.1 parts by mass, produced aluminum chelate-based latent curing agent (1) 6.21 parts by mass, silanol compound A resin composition was prepared by dissolving 0.69 parts by mass of triphenylsilanol (TPS) (manufactured by Tokyo Chemical Industry Co., Ltd.). To this, 550 parts by weight of flat magnetic powder (“JEM-S”; manufactured by Mitsubishi Materials Corporation) as the magnetic powder was added, and these were mixed to prepare a magnetic sheet composition.
- TPS triphenylsilanol
- the obtained magnetic sheet composition is placed on a polyester film (peeled PET) (“38GS”; manufactured by Lintec, thickness 38 ⁇ m) having a release treatment applied to the surface as the substrate (unevenness forming layer). Then, it was applied by a bar coater so as to have a thickness of 100 ⁇ m to 200 ⁇ m (the magnetic sheet composition was applied to the surface subjected to the peeling treatment). Next, it was dried at room temperature for 10 minutes, further dried at 60 ° C.
- the release PET having a layer (magnetic layer) made of a magnetic sheet composition formed on the surface subjected to the release treatment was cut into 250 mm ⁇ 250 mm, Three pieces of peeled PET having a 250 mm ⁇ 250 mm magnetic layer formed on the peeled surface were obtained.
- the obtained magnetic sheet composition is placed on a polyester film (peeled PET) (“38GS”; manufactured by Lintec, thickness 38 ⁇ m) having a release treatment applied to the surface as the substrate (unevenness forming layer). Then, it was applied by a bar coater so as to have a thickness of 100 ⁇ m to 200 ⁇ m (the magnetic sheet composition was applied to the surface not subjected to the peeling treatment).
- the release PET in which the layer (magnetic layer) made of the magnetic sheet composition was formed on the surface not subjected to the release treatment was cut into 250 mm ⁇ 250 mm, One piece of peeled PET having a 250 mm ⁇ 250 mm magnetic layer formed on the surface that was not peeled was obtained.
- the peeled PET was peeled from the magnetic layer to obtain two 250 mm ⁇ 250 mm magnetic layers.
- the high-quality paper (“OK Prince fine quality 70”; manufactured by Oji Paper Co., Ltd., thickness: 100 ⁇ m, Beck, respectively) Smoothness 6.2 seconds / mL).
- press holding temperature 170 ° C. press holding time (time held at the press holding temperature) 5 minutes, after reaching the press holding temperature (90 ° C. to press holding temperature) The time until the temperature decreases to 90 ° C.
- Example 2 (Examples 2 to 24) -Production of magnetic sheet-
- at least one of the blending amount of the aluminum chelate-based latent curing agent (1), the blending amount of the triphenylsilanol (TPS), the press holding temperature, the press holding time, and the pressing time is selected.
- TPS triphenylsilanol
- a magnetic sheet was produced in the same manner as in Example 1 except that the changes were made as shown in Tables 1 to 4.
- Example 25 -Production of magnetic sheet-
- TPS triphenylsilanol
- KBM-202SS diphenyldimethoxysilane
- a magnetic sheet was produced in the same manner as in Example 17 except that the above was replaced.
- Example 26 Provides magnetic sheet- In Example 17, except that triphenylsilanol (TPS) (manufactured by Tokyo Chemical Industry Co., Ltd.) as the silanol compound was replaced with diphenylsilanediol (DPSD) (manufactured by Tokyo Chemical Industry Co., Ltd.). In the same manner as in Example 17, a magnetic sheet was produced.
- TPS triphenylsilanol
- DPSD diphenylsilanediol
- Example 17 (Examples 27 to 31) -Production of magnetic sheet-
- the flat magnetic powder (“JEM-S”; manufactured by Mitsubishi Materials Corp.) as the magnetic powder is replaced with a flat magnetic powder (“EMS10”; manufactured by Mitsubishi Materials Corp.)
- EMS10 flat magnetic powder
- a magnetic sheet was produced in the same manner as in Example 17 except that the blending amount of magnetic powder (“EMS10”; manufactured by Mitsubishi Materials Corporation) was changed as shown in Table 5.
- Example 32 Provide of magnetic sheet- In Example 1, except that the blending amount of the aluminum chelate-based latent curing agent (1) and the blending amount of the triphenylsilanol (TPS) were changed as shown in Table 9, the same as in Example 1 A magnetic sheet was prepared.
- TPS triphenylsilanol
- Example 33 Provides of magnetic sheet- In Example 27, a magnetic sheet was produced in the same manner as in Example 27 except that melamine cyanurate containing red phosphorus and carboxylic acid amide was added in the amounts shown in Table 9.
- Example 34 Provide of magnetic sheet-
- the flat magnetic powder (“EMS10”; manufactured by Mitsubishi Materials Corporation) as the magnetic powder was replaced with a flat magnetic powder (“JEM-S”; manufactured by Mitsubishi Materials Corporation), and the flattened powder was further replaced.
- a magnetic sheet was produced in the same manner as in Example 33, except that the blending amount of the magnetic powder (“JEM-S”; manufactured by Mitsubishi Materials Corporation) was changed as shown in Table 9.
- Example 1 At least one of the blending amount of the aluminum chelate-based latent curing agent (1), the blending amount of the triphenylsilanol (TPS), the press holding temperature, the press holding time, and the pressing time is selected.
- TPS triphenylsilanol
- Example 1 (Comparative Example 1) -Production of magnetic sheet-
- Example 10 3.45 parts by mass of the produced aluminum chelate-based latent curing agent (1) and 3.45 parts by mass of triphenylsilanol (TPS) (manufactured by Tokyo Chemical Industry Co., Ltd.) as a silanol compound
- TPS triphenylsilanol
- a magnetic sheet was produced in the same manner as in Example 10 except that 6.9 parts by mass of a sulfonium (antimony) cationic curing agent (Sun Aid SI-100L; manufactured by Sanshin Chemical Industry Co., Ltd.) was used.
- a sulfonium (antimony) cationic curing agent (Sun Aid SI-100L; manufactured by Sanshin Chemical Industry Co., Ltd.) was used.
- Comparative Example 2 (Comparative Example 2) -Production of magnetic sheet-
- a sulfonium (antimony) cation curing agent (Sun Aid SI-100L; manufactured by Sanshin Chemical Industry Co., Ltd.) and a sulfonium (antimony) cation curing agent (Sun Aid SI-150; Sanshin Chemical Industry) were used.
- a magnetic sheet was produced in the same manner as in Comparative Example 1 except that the product was changed to “made by Co., Ltd.”.
- Comparative Example 3 (Comparative Example 3) -Production of magnetic sheet-
- a sulfonium-based (antimony-based) cationic curing agent (Sun-Aid SI-100L; manufactured by Sanshin Chemical Industry Co., Ltd.) was added to an imidazole-based curing agent (“Novacure HX3748”; Asahi Kasei Chemicals Corporation ) Made]
- a magnetic sheet was produced in the same manner as in Comparative Example 1 except that the amount was changed to 1.0 part by mass.
- Example 10 Comparative Example 10 -Production of magnetic sheet- In Example 17, except that triphenylsilanol (TPS) (manufactured by Tokyo Chemical Industry Co., Ltd.) as the silanol compound was replaced with phenyltrimethoxysilane (KBM-103) (manufactured by Shin-Etsu Chemical Co., Ltd.). In the same manner as in Example 17, a magnetic sheet was produced.
- TPS triphenylsilanol
- KBM-103 phenyltrimethoxysilane
- Example 11 (Comparative Example 11) -Production of magnetic sheet-
- Example 1 the same as Example 1 except that the prepared aluminum chelate-based latent curing agent (1) and triphenylsilanol (TPS) (manufactured by Tokyo Chemical Industry Co., Ltd.) as a silanol compound are not added.
- TPS triphenylsilanol
- the characteristic of ⁇ ′ varies depending on the purpose of use of the magnetic sheet. For example, in the case of improving communication of an RFID device, it is high ⁇ ′ and low ⁇ ′′ (imaginary part of complex permeability) at a frequency of 20 MHz or less. Is preferred.
- the magnetic sheet of the present invention is a magnetic sheet that can be used in the KHz to GHz band.
- the magnetic sheets of Examples 1 to 31 prepared using the aluminum chelate-based latent curing agent and the silanol compound or alkoxysilane compound represented by the above formula (A) are low temperature-speed It has been found that it is curable, does not generate odor, and does not cause corrosion. In the production conditions of the magnetic sheet, attention was paid to the combinations of Examples 17, 25, and 26 and Comparative Examples 9 to 10, and the reliability of the examples using the silanol compound or alkoxysilane compound represented by the above formula (A).
- the thickness change rate in the test is found to be smaller than the thickness change rate of the comparative example not using the silanol compound or the alkoxysilane compound represented by the above formula (A).
- Comparative Example 6 using an imidazole curing agent (Novacure), a low thickness change (0.79%) before and after the reliability test was obtained, but there was a problem that corrosion occurred, and sulfonium.
- Comparative Examples 1 and 2 using a system (antimony system) cationic curing agent a low change in thickness (0.39%, 0.80%) before and after a reliability test was obtained. Since an unpleasant odor remains, there is a problem that it is necessary to remove the unpleasant odor by heat treatment. Further, when an imidazole-based curing agent (Novacure) is used as a curing agent, in order to obtain a thickness change before and after a low reliability test, as shown in Comparative Example 6, a press holding temperature of 170 ° C.
- Example 24 press holding It was found that even under the pressing conditions of a temperature of 150 ° C., a press holding time of 5 minutes, and a pressing time of 20 minutes, a thickness change before and after a low reliability test can be obtained. In Reference Examples 1 to 7, since the pressing temperature was low and the pressing time was short, a curing failure occurred and the reliability test was poor.
- the magnetic sheet of the present invention can be suitably used for, for example, electromagnetic noise suppressors, radio wave absorbers, magnetic shield materials, electronic devices having IC tag functions such as RFID, non-contact IC cards, and the like. It can be suitably used for a mobile phone with a function.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Soft Magnetic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
従来の硬化剤としては、スルホニウム系カチオン硬化剤が多用されているが、このスルホニウム系カチオン硬化剤には、毒性を有するアンチモンが含有されていることから、環境に悪影響を及ぼすという問題がある。さらに、このアンチモン型のスルホニウム系カチオン硬化剤は、カウンターアニオンが、結合力が弱いSb-F結合を有することから、F-1イオンが遊離し易い。よって、アンチモン型のカチオン硬化剤を含有する磁性シートを配線周りに用いた場合には、遊離したF-1イオンが水と反応してフッ酸を生成し、配線腐食が多発するという問題があった。また、硬化反応後、磁性シートに不快臭が残り、この不快臭を取り除くためには熱処理が必要であった。
また、イミダゾール系硬化剤を用いた磁性シートは、硬化温度が高いので、プレス時間が長く、生産性が劣るという問題があるとともに、腐食が発生しやすいという問題があった。
また、例えば、特許文献1には、光硬化性カチオン硬化剤を含有した磁性バインダーの光硬化について記載され、磁性フィラーが表面から厚み方向に沿って変化する濃度分布を有する電磁波吸収シートが開示されている。この電磁波吸収シートの硬化はドラム式装置を用いて行われるものである。
上記のような事情に鑑みて、以下に示すような、アルミキレートを用いたカチオン硬化システムが検討されている。
ルイス酸であるアルミニウムキレート(下記式(1))の空配座に、シラノールの酸素の孤立電子対が配位することにより複合体(下記式(2))が形成される。続けて、複合体(下記式(2))とモノマーであるエポキサイドが相互作用することにより、カチオン重合活性種(下記式(3))が形成され、このカチオン重合活性種(下記式(3))及びエポキサイド間でカチオン重合反応が進行することにより、ポリエチレンオキサイド(エポキシ樹脂)(下記式(4))が得られる。
(化2)
(Ar)mSi(OR)n 式(A)
(式中、mは2及び3のいずれかであり、mとnとの和は4である。Arは置換されてもよいアリール基であり、Rは水素原子及びメチル基のいずれかである。nが複数である場合、Rは同一でも異なっていてもよい。)
<1> アルミニウムキレート系潜在性硬化剤と、下記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物と、エポキシ樹脂と、アクリル樹脂と、磁性粉とを含有することを特徴とする磁性シート組成物である。
(化3)
(Ar)mSi(OR)n 式(A)
(式中、mは2及び3のいずれかであり、mとnとの和は4である。Arは置換されてもよいアリール基であり、Rは水素原子及びメチル基のいずれかである。nが複数である場合、Rは同一でも異なっていてもよい。)
<2> Arが、フェニル基である前記<1>に記載の磁性シート組成物である。
<3> シラノール化合物乃至アルコキシシラン化合物が、トリフェニルシラノール、ジフェニルシランジオール、及びジフェニルジメトキシシランのいずれかである前記<1>から<2>のいずれかに記載の磁性シート組成物である。
<4> アルミニウムキレート系潜在性硬化剤が、多官能イソシアネート化合物を界面重合させると同時にジビニルベンゼンをラジカル重合させて得た多孔性樹脂にアルミニウムキレート剤を保持してなるアルミニウム潜在性硬化剤である前記<1>から<3>のいずれかに記載の磁性シート組成物である。
<5> エポキシ樹脂及びアクリル樹脂の合計量106.1質量部に対し、磁性粉が500質量部~1,250質量部であり、アルミニウムキレート系潜在性硬化剤及びシラノール化合物乃至アルコキシシラン化合物の合計量が2質量部~15質量部である前記<1>から<4>のいずれかに記載の磁性シート組成物である。
<6> アルミニウムキレート系潜在性硬化剤及びシラノール化合物乃至アルコキシシラン化合物の合計量が6.9質量部~15質量部である前記<1>から<5>のいずれかに記載の磁性シート組成物である。
<7> アルミニウムキレート系潜在性硬化剤とシラノール化合物乃至アルコキシシラン化合物との質量比(アルミニウムキレート系潜在性硬化剤/シラノール化合物乃至アルコキシシラン化合物)が、1.0以下である前記<1>から<6>のいずれかに記載の磁性シート組成物である。
<8> 前記<1>から<7>のいずれかに記載の磁性シート組成物からなる磁性層を有することを特徴とする磁性シートである。
<9> 前記<1>から<7>のいずれかに記載の磁性シート組成物を、成形して磁性層を形成する磁性層形成工程と、前記磁性層の厚み方向における少なくとも一方の面に、凹凸形成層及び転写材を、前記磁性層側からこの順に積層配置した後、加熱プレスすることにより、前記転写材の表面形状を、前記凹凸形成層及び前記磁性層の表面に転写すると共に、前記凹凸形成層と前記磁性層とを接合する形状転写工程と、を含むことを特徴とする磁性シートの製造方法である。
本発明の磁性シート組成物は、アルミニウムキレート系潜在性硬化剤と、下記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物と、エポキシ樹脂と、アクリル樹脂と、磁性粉とを少なくとも含有してなり、更に必要に応じて適宜選択した、その他の成分を含有してなる。
(化4)
(Ar)mSi(OR)n 式(A)
(式中、mは2及び3のいずれかであり、mとnとの和は4である。Arは置換されてもよいアリール基であり、Rは水素原子及びメチル基のいずれかである。nが複数である場合、Rは同一でも異なっていてもよい。)
前記アルミニウムキレート系潜在性硬化剤としては、種々の公知の手法、例えば、マイクロカプセル化法にて、アルミニウムキレート系硬化剤を潜在化したものが挙げられる。中でも、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂にアルミニウムキレート剤を保持させたものが好ましい。より具体的には、アルミニウムキレート系硬化剤のコアの周囲を多孔性樹脂のシェルで被覆した単純な構造のマイクロカプセルではなく、多孔性樹脂マトリックス中に存在する微細な多数の孔にアルミニウムキレート剤が保持された構造のものが挙げられる。以下、このアルミニウムキレート系潜在性硬化剤について説明する。
物が揮発性有機溶剤に溶解した油相溶液を、分散剤を含有する水相に投入し、加熱撹拌す
ることにより界面重合させる。ここで、分散剤としては、ポリビニルアルコール、カルボ
キシメチルセルロース、ゼラチン等の通常の界面重合法において使用されるものを使用す
ることができる。分散剤の使用量は、通常、水相の0.1質量%~10.0質量%である。
細化により凝集が生ずるので、水相100質量部に対し、5質量部~50質量部であることが好ましい。
前記シラノール化合物乃至アルコキシシラン化合物は、トリアルコキシ基を有している従来のシランカップリング剤とは異なり、以下の式(A)の化学構造を有する。
(Ar)mSi(OR)n 式(A)
さらに、アルミニウムキレート系潜在性硬化剤とシラノール化合物乃至アルコキシシラン化合物との質量比(アルミニウムキレート系潜在性硬化剤/シラノール化合物乃至アルコキシシラン化合物)が、1.0以下であることが好ましい。
前記エポキシ樹脂は、成膜成分として使用されているものである。このようなエポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100~4,000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、グリシジルエーテル型エポキシ樹脂、脂環型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エステル型エポキシ樹脂等を挙げることができる。中でも、樹脂特性の点からビスフェノールA型エポキシ樹脂を好ましく使用できる。また、これらのエポキシ樹脂にはモノマーやオリゴマーも含まれる。
前記アクリル樹脂は、エポキシ基を有しているのが好ましい。この場合、該エポキシ基と前記アルミニウムキレート系潜在性硬化剤とが反応することにより、信頼性が向上する。また、前記アクリル樹脂は、更に水酸基を有しているのが好ましい。該水酸基を有することにより、接着性を向上させることができる。
前記アクリル樹脂の重量平均分子量としては、塗布性に優れる点で、10,000~850,000が好ましい。
前記重量平均分子量が、10,000未満であると、前記磁性シート組成物の粘度が小さくなり、重量の大きな磁性粉を塗布するのが困難となることがあり、850,000を超えると、前記磁性シート組成物の粘度が大きくなり、塗布し難くなることがある。
また、前記アクリル樹脂のガラス転移温度としては、信頼性の点で、-5℃~+15℃が好ましい。
前記ガラス転移温度が、-5℃未満であると、高温あるいは高温高湿環境下での信頼性が悪くなることがあり、+15℃を超えると、前記磁性シートが硬くなる傾向がある。
前記磁性粉としては、特に制限はなく、目的に応じて適宜選択することができ、その形状としては、例えば、扁平形状、塊状、繊維状、球状、不定形状などが挙げられる。これらの中でも、前記磁性粉を所定の方向に容易に配向させることができ、高透磁率化を図ることができる点で、扁平形状が好ましい。
前記磁性粉としては、例えば、軟磁性金属、フェライト、純鉄粒子などが挙げられる。
前記軟磁性金属としては、例えば、磁性ステンレス(Fe-Cr-Al-Si合金)、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si-B(-Cu-Nb)合金、Fe-Ni-Cr-Si合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金などが挙げられる。
前記フェライトとしては、例えば、Mn-Znフェライト、Ni-Znフェライト、Mn-Mgフェライト、Mnフェライト、Cu-Znフェライト、Cu-Mg-Znフェライト等のソフトフェライト、永久磁石材料であるハードフェライトなどが挙げられる。
前記磁性粉は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記その他の成分としては、本発明の効果を害しない限り特に制限はなく、公知の各種添加剤の中から目的に応じて適宜選択することができ、前記磁性シート組成物の塗布性の向上(粘度の調整)を目的とした場合には、溶剤を添加することができ、該溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、乳酸エチル、エチルグリコールアセテート等のエステル類;ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物;メチレンクロライド、エチレンクロライド、四塩化炭素、クロロフォルム、クロロベンゼン等のハロゲン化炭化水素化合物;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。その他、必要に応じて、分散剤、安定剤、潤滑剤、シランカップリング剤、チタネート系カップリング剤、シリカ、マイカなどの充填剤、可塑剤、老化防止剤、顔料、帯電防止剤、難燃剤等、各種添加剤を添加してもよい。
前記難燃剤を添加することにより、前記磁性シートの難燃性を向上させることができる。
前記難燃剤として、例えば、カルボン酸アミドを含むメラミンシアヌレートが挙げられる。
従来の難燃剤としては、ハロゲン系化合物が主に用いられているが、燃焼すると有害物質を生成し、環境への負荷が大きいという問題がある。また、ハロゲンフリーの難燃剤としては、例えば、何ら表面処理がされていないメラミンシアヌレートが知られているが、該メラミンシアヌレートは、樹脂成分との親和性が悪く、樹脂成分中に分散し難いため、硬い磁性シートを得ることを意図する場合において、成形(プレス)直後の磁性シートの機械的強度を低下させる(軟化する)という問題がある。また、機械的強度が大幅に低下してしまうため、前記メラミンシアヌレートの添加量を増大させることは困難であり、充分な難燃性を得ることができない。更に、磁性シートの表面から、磁性粉が脱落する所謂「粉落ち」が生じ易い。
そこで、前記難燃剤として、カルボン酸アミドを含むメラミンシアヌレート(脂肪酸を用いて表面処理されたメラミンシアヌレート)を用いたところ、メラミンシアヌレート(表面処理されていないもの)に比して、より高い難燃性が発現され、また、磁性シート表面からの粉落ちが生じ難く、しかも、樹脂成分として、例えば、アクリルゴムを用いた場合に、プレス時の樹脂成分の硬化を促進させ、高温高湿環境下での厚み変化が抑制された表面平滑性が良好な磁性シートが得られることが判った。
前記カルボン酸アミドを含むメラミンシアヌレートにおける、該カルボン酸アミドの存在は、例えば、熱分解ガスクロマトグラフィー(Py-GC-MS)を用いて確認することができる。
前記個数平均粒径が、1μmを超えると、前記磁性粉が密に配向するのを阻害し、磁性シートの磁気特性を低下させることがあり、高温あるいは高温高湿環境下での厚み変化が大きくなることがある。
前記個数平均粒径は、例えば、レーザー回折を用いて測定した粒度分布より測定することができる。
前記市販品としては、例えば、MC-5F(堺化学工業製)などが挙げられる。
前記カルボン酸アミドを含むメラミンシアヌレートの作製方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、脂肪酸を用いてメラミンシアヌレートを表面処理する方法が好適に挙げられる。
なお、前記脂肪酸を用いて前記メラミンシアヌレートを表面処理すると、下記式(1)に示すように、前記メラミンシアヌレート中のアミノ基と、前記脂肪酸とが反応して、アミド化合物に変換されると考えられる。このため、前記熱分解ガスクロマトグラフィー(Py-GC-MS)を用いて分析すると、前記カルボン酸アミドの存在を確認することができる。
-NH2+R-COOH→R-CONH-・・・式(1)
前記難燃剤は、前記カルボン酸アミドを含むメラミンシアヌレートに加えて、更に赤リンを含んでいるのが好ましい。この場合、前記磁性シートの難燃性を、更に向上させることができる点で、有利である。
前記赤リンとしては、特に制限はなく、市販品であってもよいし、適宜合成したものであってもよいが、耐湿性に優れ、混合時に自然発火せず、安全性が良好である点で、その表面が、コーティングされているのが好ましい。
前記表面がコーティングされた赤リンとしては、例えば、赤リンの表面を、水酸化アルミニウムを用いて表面処理したものが挙げられる。
前記含有量が、6質量部未満であると、難燃性向上効果が得られないことがあり、20質量部を超えると、前記樹脂成分に対する前記磁性粉と前記難燃剤との合計量が大きくなり、前記樹脂成分により前記磁性粉及び前記難燃剤を繋ぎとめておくのが困難となるほか、前記磁性シート中の前記磁性粉の含有比率が低下し、透磁率が低下することがある。
前記シランカップリング剤は、特開2002―212537号公報の段落0007~0010に記載されているように、アルミニウムキレート剤と共働して熱硬化性樹脂(例えば、熱硬化性エポキシ樹脂)のカチオン重合を開始させる機能を有する。従って、このような、シランカップリング剤を少量併用することにより、エポキシ樹脂の硬化を促進するという効果が得られる。このようなシランカップリング剤としては、分子中に1~3の低級アルコキシ基を有するものであり、分子中に熱硬化性樹脂の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよい。なお、アミノ基やメルカプト基を有するカップリング剤は、本発明の潜在性硬化剤がカチオン型硬化剤であるため、アミノ基やメルカプト基が発生カチオン種を実質的に捕捉しない場合に使用することができる。
また、アルミニウムキレート系潜在性硬化剤と、磁性粉(例えば、アルミニウム合金)との配合時における混合性がよく、塗布を良好に行うことができる。
前記磁性層は、電子機器から放出される不要電磁波の低減、及び電子機器内の不要電磁波の干渉によって生じる、電磁障害を抑制する機能を有する。
前記厚みが、25μm未満であると、透磁率が低くなり、500μmを超えると、狭小部位に適さず、近年における電子機器の小型化の技術動向に沿わなくなるほか、前記厚みの透磁率への影響が小さくなってしまうことがある。なお、前記厚みは、70μm以下になると、透磁率が急激に低くなる傾向がある。
前記その他の層としては、本発明の効果を害しない限り特に制限はなく、目的に応じて適宜選択することができ、例えば、凹凸形成層等が挙げられる。
前記凹凸形成層は、本発明の前記磁性シートの使用時に、例えば、電子機器内にて、前記磁性シートを、これと接触する部材から剥離する機能を有する。
前記構造としては、単層構造であってもよいし、積層構造であってもよい。
前記厚みとしては、2μm~100μmが好ましい。
前記厚みが、2μm未満であると、作業性が悪くなることがあり、100μmを超えると、加熱プレス時に、熱が前記磁性層に伝わり難く、信頼性が低下することがある。
前記材質としては、合成樹脂が挙げられ、例えば、ポリエチレンテレフタレート(PET)が好適に挙げられる。
本発明の前記磁性シートの使用方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記磁性シートを、所望の大きさに裁断し、これを電子機器のノイズ源に、前記磁性層側が近接するように配設することができる。
本発明の前記磁性シートは、電磁ノイズ抑制体、電波吸収体、磁気シールド材、RFID(Radio Frequency Identification)等のICタグ機能を有する電子機器、非接触ICカードなどに好適に使用することができ、特に、RFID機能付携帯電話に好適に使用することができる。
本発明の磁性シートの製造方法は、磁性層形成工程と、形状転写工程とを少なくとも含み、更に必要に応じて適宜選択した、その他の工程を含む。
前記磁性層形成工程は、アルミニウムキレート系潜在性硬化剤と、下記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物と、エポキシ樹脂と、アクリル樹脂と、磁性粉とを少なくとも含有してなる磁性シート組成物を、成形して磁性層を形成する工程である。
(化9)
(Ar)mSi(OR)n 式(A)
(式中、mは2及び3のいずれかであり、mとnとの和は4である。Arは置換されてもよいアリール基であり、Rは水素原子及びメチル基のいずれかである。nが複数である場合、Rは同一でも異なっていてもよい。)
なお、前記アルミニウムキレート系潜在性硬化剤、前記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物、前記エポキシ樹脂、前記アクリル樹脂、前記磁性粉及び前記その他の成分の詳細については、上述した通りであるが、前記エポキシ樹脂及び前記アクリル樹脂としては、後述する加熱プレス前は、未硬化状態であるのが好ましい。ここで、加熱プレス前に硬化が進んでいると、前記磁性層の圧縮が充分に行われず、透磁率を大きくすることができない。また、硬化している磁性層を圧縮すると、歪が残り、室温、高温乃至高温高湿環境下にて、繰返し暴露された際に、厚みが厚くなる方向に変化したり、磁気特性が低下したりする。これに対し、前記加熱プレス前の前記エポキシ樹脂及び前記アクリル樹脂が未硬化状態であると、これらの不具合の発生が抑制される。
前記磁性シート組成物の成形は、例えば、基材上に前記磁性シート組成物を塗布し、乾燥することにより行うことができる。
前記基材としては、特に制限はなく、目的に応じて適宜選択することができるが、形成した前記磁性層を容易に剥離可能な点で、剥離処理が施されたポリエステルフィルム(剥離PET)などが好適に挙げられる。
また、前記基材としては、マットPET、剥離処理されていないPET、ノンシリコーン剥離処理PET(磁性層が形成される面が剥離処理されていない)、シリコーン剥離処理PET(磁性層が形成される面が剥離処理されていない)を用いてもよい。
以上の工程により、前記磁性シート組成物が成形されて前記磁性層が形成される。
前記形状転写工程は、前記磁性層の厚み方向における一方の面に、凹凸形成層及び転写材を、前記磁性層側からこの順に積層配置した後、加熱プレスすることにより、前記転写材の表面形状を、前記凹凸形成層及び前記磁性層の表面に転写すると共に、前記凹凸形成層と前記磁性層とを接合する工程である。
前記凹凸形成層としては、その構造、厚み、材質(材料)については、特に制限はなく、目的に応じて適宜選択することができ、これらの詳細については、上述した通りである。
前記マット処理としては、前記凹凸形成層の表面を粗面化することができる限り特に制限はなく、目的に応じて選択することができ、例えば、サンドマット処理、ケミカルマット処理、表面エンボス加工処理などが挙げられる。これらの処理により、前記凹凸形成層の表面に凹凸が形成され、滑り性を向上する。
前記転写材としては、その構造、厚み、材質(材料)については、特に制限はなく、目的に応じて適宜選択することができるが、表面に凹凸を有しており、通気性が良好であるのが好ましい。この場合、前記転写材の表面の凹凸が、前記凹凸形成層に転写されると、該凹凸形成層の表面に前記凹凸が形成され、滑り性が向上する。
前記厚みとしては、25μm~200μmが好ましい。
前記厚みが、25μm未満であると、滑り性が向上した磁性シートを得ることができないことがあり、200μmを超えると、前記加熱プレス時に、熱が前記磁性層に伝わり難く、信頼性が低下することがある。
前記材質としては、例えば、紙、合成繊維、天然繊維などが挙げられる。
前記積層配置の方法としては、前記磁性層の厚み方向における一方の面に、前記凹凸形成層及び前記転写材を、前記磁性層側からこの順に積層する限り特に制限はなく、目的に応じて適宜選択することができるが、前記磁性層の厚み方向における他方の面に、剥離層及び前記転写材を、前記磁性層側からこの順に更に積層するのが好ましい。前記剥離層を介することにより、後述する加熱プレスの際に、前記磁性層の他方の面を保護して、前記転写材との密着を防止し、前記加熱プレス後に、前記転写材を、前記剥離層と共に前記磁性層から容易に剥離することができる。また、前記転写材の表面形状が、前記剥離層側に位置する前記磁性層の表面にも転写されるが、このとき、前記磁性層における前記樹脂組成物中に存在する気泡が抜け易く、得られる磁性シートの信頼性が向上する。前記剥離層側の転写材を用いない場合は、磁性シートの透磁率を向上させることができる。
前記加熱プレスの方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、図1に示すように、前記磁性層、前記凹凸形成層及び前記転写材を積層体として、これらを両側からラミネーターやプレスで挟みこんで加熱及び加圧することにより行うことができる。
前記加熱プレスにより、前記凹凸形成層及び前記磁性層の表面に、前記転写材の表面形状(凹凸形状)が転写されると共に、粘着剤等を使用しなくても、前記凹凸形成層と前記磁性層とが、直接接合される。
このようにして得られた磁性シートは、前記凹凸形成層の表面に、前記転写材の表面形状(表面の凹凸)が転写されて、粗面化されているので、滑り性に優れる。
また、前記加熱プレスにより、前記凹凸形成層と前記磁性層とが直接接合されるので、粘着層が不要であり、簡易かつ低コストで効率よく磁性シートを製造することができる。
-アルミニウムキレート系潜在性硬化剤(1)の作製-
蒸留水800質量部と、界面活性剤(ニューレックスR-T、日本油脂(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合した。この混合液に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))100質量部と、メチレンジフェニル-4,4´-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井武田ケミカル(株))70質量部と、ジビニルベンゼン(メルク社)30質量部と、ラジカル重合開始剤(パーロイルL、日本油脂社)0.30質量部とを、酢酸エチル100質量部に溶解した抽相溶液を投入し、ホモジナイザー(10,000rpm/5分)で乳化混合後、80℃で6時間界面重合させた。
まず、溶剤としてのトルエン270質量部及び酢酸エチル120質量部に、アクリル樹脂(「SG80H-3」;ナガセケムテックス(株)製、数平均分子量150,000、重量平均分子量350,000)83質量部、クレゾールノボラック型多官能エポキシ樹脂(「エピコート1031S」;ジャパンエポキシレジン(株)製)23.1質量部、作製されたアルミニウムキレート系潜在性硬化剤(1)6.21質量部、シラノール化合物としてのトリフェニルシラノール(TPS)(東京化成工業(株)製)0.69質量部を溶解させて樹脂組成物を調製した。これに、前記磁性粉としての扁平磁性粉末(「JEM-S」;三菱マテリアル(株)製)550質量部を添加し、これらを混合して磁性シート組成物を調製した。
次いで、室温で10分間乾燥させ、さらに60℃で10分間乾燥し、剥離処理されている面に磁性シート組成物からなる層(磁性層)が形成された剥離PETを250mm×250mmに裁断し、剥離処理されている面に250mm×250mmの磁性層が形成された剥離PETを3枚得た。
次に、得られた磁性シート組成物を、前記基材(凹凸形成層)としての、剥離処理が表面に施されたポリエステルフィルム(剥離PET)(「38GS」;リンテック製、厚み38μm)上に、バーコーターにより、厚みが100μm~200μmとなるように塗布した(剥離処理されていない面に磁性シート組成物を塗布した)。
次いで、室温で10分間乾燥させ、さらに60℃で10分間乾燥し、剥離処理されていない面に磁性シート組成物からなる層(磁性層)が形成された剥離PETを250mm×250mmに裁断し、剥離処理されていない面に250mm×250mmの磁性層が形成された剥離PETを1枚得た。
次に、剥離処理されている面に250mm×250mmの磁性層が形成された剥離PET2枚について、剥離PETを磁性層から剥離して、250mm×250mmの磁性層を2枚得た。次に、剥離処理されている面に250mm×250mmの磁性層が形成された剥離PETの磁性層側に、250mm×250mmに裁断された磁性層を2枚重ねて、更に、剥離処理されていない面に250mm×250mmの磁性層が形成された剥離PETを1枚重ね(磁性層と磁性層が向き合うように)、両面を剥離PETで挟持され、且つ磁性層が4枚積層された剥離PETを得た。
次いで、4枚積層された磁性層を挟持するように配置された剥離PETの両面に、それぞれ前記緩衝材として、上質紙(「OKプリンス上質70」;王子製紙(株)製、厚み100μm、ベック平滑度6.2秒/mL)を積層した。そして、真空プレス(北川精機(株)製)を用いて、プレス保持温度170℃、プレス保持時間(プレス保持温度で保持した時間)5分間、プレス時間(90℃からプレス保持温度まで到達した後90℃まで下がってくるまでの時間)38分間、プレス圧力9MPaの条件で、前記緩衝材を介してプレス板により加熱プレスし、剥離PET(剥離処理されている面に磁性層が形成される剥離PET)1枚を4枚積層された磁性層から剥離して、磁性シートを得た。
-磁性シートの作製-
実施例1において、前記アルミニウムキレート系潜在性硬化剤(1)の配合量、前記トリフェニルシラノール(TPS)の配合量、前記プレス保持温度、前記プレス保持時間、及び前記プレス時間の少なくともいずれかを、表1~4に示すように変えた以外は、実施例1と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例17において、前記シラノール化合物としてのトリフェニルシラノール(TPS)(東京化成工業(株)製)を、前記アルコキシシラン化合物としてのジフェニルジメトキシシラン(KBM-202SS)(信越化学工業(株)製)に代えた以外は、実施例17と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例17において、前記シラノール化合物としてのトリフェニルシラノール(TPS)(東京化成工業(株)製)を、ジフェニルシランジオール(DPSD)(東京化成工業(株)製)に代えた以外は、実施例17と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例17において、前記磁性粉としての扁平磁性粉末(「JEM-S」;三菱マテリアル(株)製)を扁平磁性粉末(「EMS10」;三菱マテリアル(株)製)に代え、さらに、その扁平磁性粉末(「EMS10」;三菱マテリアル(株)製)の配合量を表5に示すように変えた以外は、実施例17と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例1において、前記アルミニウムキレート系潜在性硬化剤(1)の配合量、前記トリフェニルシラノール(TPS)の配合量を、表9に示すように変えた以外は、実施例1と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例27において、赤燐及びカルボン酸アミドを含むメラミンシアヌレートを、表9に示す量添加した以外は、実施例27と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例33において、前記磁性粉としての扁平磁性粉末(「EMS10」;三菱マテリアル(株)製)を扁平磁性粉末(「JEM-S」;三菱マテリアル(株)製)に代え、さらに、その扁平磁性粉末(「JEM-S」;三菱マテリアル(株)製)の配合量を表9に示すように変えた以外は、実施例33と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例1において、前記アルミニウムキレート系潜在性硬化剤(1)の配合量、前記トリフェニルシラノール(TPS)の配合量、前記プレス保持温度、前記プレス保持時間、及び前記プレス時間の少なくともいずれかを、表6に示すように変えた以外は、実施例1と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例10において、作製されたアルミニウムキレート系潜在性硬化剤(1)3.45質量部及びシラノール化合物としてのトリフェニルシラノール(TPS)(東京化成工業(株)製)3.45質量部を、スルホニウム系(アンチモン系)カチオン硬化剤(サンエイドSI-100L;三新化学工業(株)製)6.9質量部に代えた以外は、実施例10と同様にして、磁性シートを作製した。
-磁性シートの作製-
比較例1において、スルホニウム系(アンチモン系)カチオン硬化剤(サンエイドSI-100L;三新化学工業(株)製)を、スルホニウム系(アンチモン系)カチオン硬化剤(サンエイドSI-150;三新化学工業(株)製)に代えた以外は、比較例1と同様にして、磁性シートを作製した。
-磁性シートの作製-
比較例1において、スルホニウム系(アンチモン系)カチオン硬化剤(サンエイドSI-100L;三新化学工業(株)製)6.9質量部を、イミダゾール系硬化剤(「ノバキュアHX3748」;旭化成ケミカルズ(株)製)1.0質量部に代えた以外は、比較例1と同様にして、磁性シートを作製した。
-磁性シートの作製-
比較例3において、イミダゾール系硬化剤(「ノバキュアHX3748」;旭化成ケミカルズ(株)製)の配合量、前記プレス保持温度、前記プレス保持時間、及び前記プレス時間の少なくともいずれかを、表7~8に示すように変えた以外は、比較例3と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例17において、前記シラノール化合物としてのトリフェニルシラノール(TPS)(東京化成工業(株)製)を、γ-グリシドキシプロピルトリメトキシシラン(A187)(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)に代えた以外は、実施例17と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例17において、前記シラノール化合物としてのトリフェニルシラノール(TPS)(東京化成工業(株)製)を、フェニルトリメトキシシラン(KBM-103)(信越化学工業(株)製)に代えた以外は、実施例17と同様にして、磁性シートを作製した。
-磁性シートの作製-
実施例1において、作製されたアルミニウムキレート系潜在性硬化剤(1)及びシラノール化合物としてのトリフェニルシラノール(TPS)(東京化成工業(株)製)を添加しないこと以外は、実施例1と同様にして、磁性シートを作製した。
〔透磁率〕
まず、外径7.05mm、内径2.945mmに抜き加工したリング状サンプル(磁性層サンプル)を作製し、これに導線を5ターン巻き、端子に半田付けした。ここで、前記端子の根元から前記リング状サンプル(磁性層サンプル)の下までの長さを20mmとした。そして、インピーダンスアナライザー(「4294A」;アジレントテクノロジー社製)を用いて、1MHzにおけるインダクタンスと抵抗値とを測定し、透磁率(磁性層の透磁率)に換算した。
なお、μ’は、複素透磁率の実数部を表す。
μ’の特性は、磁性シートの使用目的によって異なり、例えば、RFIDデバイスの通信改善の場合には、20MHz以下の周波数で、高μ’かつ低μ’’(複素透磁率の虚数部)であるのが好ましい。
なお、本発明の磁性シートは、KHz~GHz帯において使用可能な磁性シートである。
-厚み変化-
まず、磁性シートにおける磁性層の厚み(PETを含まない厚み)を測定した。次いで、磁性シートをオーブンに入れ、85℃/60%の条件で96時間加熱し、オーブンから取り出した後の磁性シートにおける磁性層の厚み(PETを含まない厚み)を測定し、加熱前後の磁性シートにおける磁性層の厚み(PETを含まない厚み)変化率を測定した。
得られた磁性シートについて、不快臭の有無について判定した。
実施例20及び比較例6から得られた磁性シートサンプル(PET付き)約0.2gを、それぞれ、50mLの水道水が入ったデスカップに投入し、これを85℃/85%に設定されたオーブンに30時間放置し、磁性シートサンプル(PET付き)を取り出して目視で評価した。
磁性シートの作製条件において、実施例17、25、26及び比較例9~10の組合せについて注目したところ、上記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物を用いた実施例の信頼性試験における厚み変化率が、上記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物を用いていない比較例の厚み変化率よりも小さくなっていることから判る。
なお、イミダゾール系硬化剤(ノバキュア)を用いた比較例6では、低い信頼性試験前後の厚み変化(0.79%)が得られているが、腐食が発生するという問題があり、また、スルホニウム系(アンチモン系)カチオン硬化剤を用いた比較例1及び2では、低い信頼性試験前後の厚み変化(0.39%、0.80%)が得られているが、硬化後の磁性シートに不快臭が残るので、熱処理して不快臭を取り除く必要があるという問題がある。
また、硬化剤としてイミダゾール系硬化剤(ノバキュア)を用いた場合、低い信頼性試験前後の厚み変化を得るためには、比較例6に示すように、プレス保持温度170℃、プレス保持時間10分間、プレス時間43分間が必要であるが、アルミニウムキレート系潜在性硬化剤及び上記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物を用いた場合は、実施例24に示すように、プレス保持温度150℃、プレス保持時間5分間、プレス時間20分間のプレス条件であっても、低い信頼性試験前後の厚み変化を得ることができることが判った。
なお、参考例1~7は、プレス温度が低く、プレス時間が短いため、硬化不良が起こり、信頼性試験が不良であった。
20 凹凸形成層
22 剥離層
30 転写材
40 積層体
50 プレス板
Claims (9)
- アルミニウムキレート系潜在性硬化剤と、下記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物と、エポキシ樹脂と、アクリル樹脂と、磁性粉とを含有することを特徴とする磁性シート組成物。
(化10)
(Ar)mSi(OR)n 式(A)
(式中、mは2及び3のいずれかであり、mとnとの和は4である。Arは置換されてもよいアリール基であり、Rは水素原子及びメチル基のいずれかである。nが複数である場合、Rは同一でも異なっていてもよい。) - Arが、フェニル基である請求項1に記載の磁性シート組成物。
- シラノール化合物乃至アルコキシシラン化合物が、トリフェニルシラノール、ジフェニルシランジオール、及びジフェニルジメトキシシランのいずれかである請求項1から2のいずれかに記載の磁性シート組成物。
- アルミニウムキレート系潜在性硬化剤が、多官能イソシアネート化合物を界面重合させると同時にジビニルベンゼンをラジカル重合させて得た多孔性樹脂にアルミニウムキレート剤を保持してなるアルミニウム潜在性硬化剤である請求項1から3のいずれかに記載の磁性シート組成物。
- エポキシ樹脂及びアクリル樹脂の合計量106.1質量部に対し、磁性粉が500質量部~1,250質量部であり、アルミニウムキレート系潜在性硬化剤及びシラノール化合物乃至アルコキシシラン化合物の合計量が2質量部~15質量部である請求項1から4のいずれかに記載の磁性シート組成物。
- アルミニウムキレート系潜在性硬化剤及びシラノール化合物乃至アルコキシシラン化合物の合計量が6.9質量部~15質量部である請求項1から5のいずれかに記載の磁性シート組成物。
- アルミニウムキレート系潜在性硬化剤とシラノール化合物乃至アルコキシシラン化合物との質量比(アルミニウムキレート系潜在性硬化剤/シラノール化合物乃至アルコキシシラン化合物)が、1.0以下である請求項1から6のいずれかに記載の磁性シート組成物。
- 請求項1から7のいずれかに記載の磁性シート組成物からなる磁性層を有することを特徴とする磁性シート。
- 請求項1から7のいずれかに記載の磁性シート組成物を、成形して磁性層を形成する磁性層形成工程と、
前記磁性層の厚み方向における少なくとも一方の面に、凹凸形成層及び転写材を、前記磁性層側からこの順に積層配置した後、加熱プレスすることにより、前記転写材の表面形状を、前記凹凸形成層及び前記磁性層の表面に転写すると共に、前記凹凸形成層と前記磁性層とを接合する形状転写工程と、
を含むことを特徴とする磁性シートの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980133469XA CN102131867B (zh) | 2008-08-27 | 2009-08-19 | 磁性片组合物、磁性片及磁性片的制备方法 |
HK11112117.0A HK1157806A1 (en) | 2008-08-27 | 2011-11-09 | Magnetic sheet composition, magnetic sheet, and process for producing magnetic sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008218287 | 2008-08-27 | ||
JP2008-218287 | 2008-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010024166A1 true WO2010024166A1 (ja) | 2010-03-04 |
Family
ID=41721335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064531 WO2010024166A1 (ja) | 2008-08-27 | 2009-08-19 | 磁性シート組成物、磁性シート、及び磁性シートの製造方法 |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5469956B2 (ja) |
KR (1) | KR20110056504A (ja) |
CN (1) | CN102131867B (ja) |
HK (1) | HK1157806A1 (ja) |
TW (1) | TWI402289B (ja) |
WO (1) | WO2010024166A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102888079A (zh) * | 2011-07-22 | 2013-01-23 | 台达电子工业股份有限公司 | 磁热装置的制造方法 |
WO2013021039A1 (en) * | 2011-08-11 | 2013-02-14 | Basf Se | Microwave absorbing composition |
WO2019026555A1 (ja) * | 2017-07-31 | 2019-02-07 | 北川工業株式会社 | 電磁波抑制シート |
CN113811174A (zh) * | 2021-10-20 | 2021-12-17 | 齐盛时代(广州)科技有限公司 | 一种抗高功率电磁波的透明防护薄膜及生产方法 |
WO2022065183A1 (ja) * | 2020-09-24 | 2022-03-31 | 富士フイルム株式会社 | 組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5738085B2 (ja) * | 2011-06-17 | 2015-06-17 | 株式会社デンソー | コイル封止型リアクトル |
JP2013239571A (ja) * | 2012-05-15 | 2013-11-28 | C I Kasei Co Ltd | 電波吸収体 |
EP2933900A1 (de) * | 2014-04-16 | 2015-10-21 | Siemens Aktiengesellschaft | Stator und/oder Rotor einer dynamoelektrischen Maschine insbesondere für Erdgaskompressoren |
JP6489494B2 (ja) * | 2014-09-09 | 2019-03-27 | デクセリアルズ株式会社 | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 |
JP6520688B2 (ja) * | 2015-12-15 | 2019-05-29 | Tdk株式会社 | 磁性シート |
JP6891638B2 (ja) * | 2017-05-31 | 2021-06-18 | Tdk株式会社 | 圧粉磁心 |
CN107233852A (zh) * | 2017-06-28 | 2017-10-10 | 常州汉唐文化传媒有限公司 | 一种磁性自修复微胶囊的制备方法 |
CN115746502B (zh) * | 2022-11-09 | 2024-04-12 | 华中科技大学 | 一种基于电磁感应加热的环氧树脂快速固化成型工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132650A (ja) * | 1991-11-13 | 1993-05-28 | Kansai Paint Co Ltd | 低温硬化性塗料組成物 |
JPH08319342A (ja) * | 1995-05-25 | 1996-12-03 | Dainippon Ink & Chem Inc | 硬化性樹脂組成物 |
JPH09100349A (ja) * | 1995-10-02 | 1997-04-15 | Shin Etsu Chem Co Ltd | 熱硬化性樹脂組成物 |
JP2006070051A (ja) * | 2003-09-08 | 2006-03-16 | Sony Chem Corp | 潜在性硬化剤 |
JP2006073949A (ja) * | 2004-09-06 | 2006-03-16 | Showa Denko Kk | 電磁波吸収体 |
JP2008135724A (ja) * | 2006-10-31 | 2008-06-12 | Sony Chemical & Information Device Corp | シート状軟磁性材料及びその製造方法 |
JP2008183779A (ja) * | 2007-01-29 | 2008-08-14 | Sony Chemical & Information Device Corp | 磁性シートの製造方法及び磁性シート |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3802373B2 (ja) * | 2001-06-06 | 2006-07-26 | ソニーケミカル株式会社 | 潜在性硬化剤、潜在性硬化剤の製造方法及び接着剤 |
CN101143998B (zh) * | 2002-12-05 | 2011-03-09 | 索尼化学株式会社 | 潜在性硬化剂、其制造方法和粘接剂 |
-
2009
- 2009-08-18 JP JP2009189319A patent/JP5469956B2/ja active Active
- 2009-08-19 KR KR1020117005388A patent/KR20110056504A/ko not_active Application Discontinuation
- 2009-08-19 WO PCT/JP2009/064531 patent/WO2010024166A1/ja active Application Filing
- 2009-08-19 CN CN200980133469XA patent/CN102131867B/zh active Active
- 2009-08-25 TW TW098128542A patent/TWI402289B/zh active
-
2011
- 2011-11-09 HK HK11112117.0A patent/HK1157806A1/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132650A (ja) * | 1991-11-13 | 1993-05-28 | Kansai Paint Co Ltd | 低温硬化性塗料組成物 |
JPH08319342A (ja) * | 1995-05-25 | 1996-12-03 | Dainippon Ink & Chem Inc | 硬化性樹脂組成物 |
JPH09100349A (ja) * | 1995-10-02 | 1997-04-15 | Shin Etsu Chem Co Ltd | 熱硬化性樹脂組成物 |
JP2006070051A (ja) * | 2003-09-08 | 2006-03-16 | Sony Chem Corp | 潜在性硬化剤 |
JP2006073949A (ja) * | 2004-09-06 | 2006-03-16 | Showa Denko Kk | 電磁波吸収体 |
JP2008135724A (ja) * | 2006-10-31 | 2008-06-12 | Sony Chemical & Information Device Corp | シート状軟磁性材料及びその製造方法 |
JP2008183779A (ja) * | 2007-01-29 | 2008-08-14 | Sony Chemical & Information Device Corp | 磁性シートの製造方法及び磁性シート |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102888079A (zh) * | 2011-07-22 | 2013-01-23 | 台达电子工业股份有限公司 | 磁热装置的制造方法 |
WO2013021039A1 (en) * | 2011-08-11 | 2013-02-14 | Basf Se | Microwave absorbing composition |
WO2019026555A1 (ja) * | 2017-07-31 | 2019-02-07 | 北川工業株式会社 | 電磁波抑制シート |
EP3664589A4 (en) * | 2017-07-31 | 2021-05-05 | Kitagawa Industries Co., Ltd. | ELECTROMAGNETIC WAVE SUPPRESSION SHEET |
US11161947B2 (en) | 2017-07-31 | 2021-11-02 | Kitagawa Industries Co., Ltd. | Electromagnetic wave suppression sheet |
WO2022065183A1 (ja) * | 2020-09-24 | 2022-03-31 | 富士フイルム株式会社 | 組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料 |
CN113811174A (zh) * | 2021-10-20 | 2021-12-17 | 齐盛时代(广州)科技有限公司 | 一种抗高功率电磁波的透明防护薄膜及生产方法 |
CN113811174B (zh) * | 2021-10-20 | 2022-03-11 | 齐盛时代(广州)科技有限公司 | 一种抗高功率电磁波的透明防护薄膜及生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102131867A (zh) | 2011-07-20 |
TWI402289B (zh) | 2013-07-21 |
TW201022322A (en) | 2010-06-16 |
CN102131867B (zh) | 2013-03-27 |
HK1157806A1 (en) | 2012-07-06 |
JP2010077405A (ja) | 2010-04-08 |
KR20110056504A (ko) | 2011-05-30 |
JP5469956B2 (ja) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5469956B2 (ja) | 磁性シート組成物、磁性シート、及び磁性シートの製造方法 | |
JP4962220B2 (ja) | 難燃化ノイズ抑制シート | |
TWI400724B (zh) | 磁性片 | |
JP2009059753A (ja) | 難燃化ノイズ抑制シート | |
JP7103413B2 (ja) | コンパウンド及び成形体 | |
US20140212578A1 (en) | Magnetic sheet composition, magnetic sheet, and method for producing magnetic sheet | |
JP2011026383A (ja) | 熱硬化型熱伝導性接着組成物 | |
JP7318422B2 (ja) | 樹脂組成物および成形品 | |
JP2009295671A (ja) | 磁性シート及び磁性シートの製造方法 | |
WO2023157398A1 (ja) | コンパウンド粉、成形体、ボンド磁石、及び圧粉磁心 | |
JP7070672B2 (ja) | 封止材、電子部品、電子回路基板、及び封止材の製造方法 | |
JP2012212791A (ja) | 磁性シート | |
WO2022050170A1 (ja) | コンパウンド、成形体、及びコンパウンドの硬化物 | |
WO2021112135A1 (ja) | コンパウンド及び成形体 | |
JP5102704B2 (ja) | 磁性シート及び磁性シートの製造方法 | |
JP5570105B2 (ja) | 磁性シート | |
WO2023157139A1 (ja) | コンパウンド粉、成形体、ボンド磁石、及び圧粉磁心 | |
WO2023157138A1 (ja) | コンパウンド粉、成形体、ボンド磁石、及び圧粉磁心 | |
KR20190139198A (ko) | 봉지용 필름, 봉지 구조체 및 봉지 구조체의 제조 방법 | |
JP5285840B2 (ja) | 軟磁性シート | |
JP5138623B2 (ja) | 磁性シート及びその製造方法 | |
WO2021241513A1 (ja) | コンパウンド、成型体、及び硬化物 | |
JP2022166615A (ja) | 配線基板の製造方法 | |
TW202104408A (zh) | 樹脂組成物 | |
JP2022042742A (ja) | コンパウンド、成形体、及びコンパウンドの硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980133469.X Country of ref document: CN |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09809818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 898/KOLNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20117005388 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09809818 Country of ref document: EP Kind code of ref document: A1 |