JP2022042742A - コンパウンド、成形体、及びコンパウンドの硬化物 - Google Patents

コンパウンド、成形体、及びコンパウンドの硬化物 Download PDF

Info

Publication number
JP2022042742A
JP2022042742A JP2020148307A JP2020148307A JP2022042742A JP 2022042742 A JP2022042742 A JP 2022042742A JP 2020148307 A JP2020148307 A JP 2020148307A JP 2020148307 A JP2020148307 A JP 2020148307A JP 2022042742 A JP2022042742 A JP 2022042742A
Authority
JP
Japan
Prior art keywords
compound
group
epoxy resin
resin
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020148307A
Other languages
English (en)
Inventor
翔平 山口
Shohei Yamaguchi
貴一 稲葉
Takakazu Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Materials Co Ltd filed Critical Showa Denko Materials Co Ltd
Priority to JP2020148307A priority Critical patent/JP2022042742A/ja
Publication of JP2022042742A publication Critical patent/JP2022042742A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】成形時の流動性に優れると共に、高温での機械特性に優れる成形体を形成することができるコンパウンド、それを用いた成形体、及びコンパウンドの硬化物を提供すること。【解決手段】本発明の一側面に係るコンパウンドは、金属粉と、エポキシ樹脂、硬化剤、及びカップリング剤を含有する樹脂組成物と、を備え、カップリング剤が、アミノ基保護型シラン化合物、メルカプト基保護型シラン化合物、及びイソシアネート基保護型シラン化合物からなる群より選ばれる少なくとも一種のシラン化合物を含む。【選択図】なし

Description

本発明は、コンパウンド、成形体、及びコンパウンドの硬化物に関する。
金属粉末及び樹脂組成物を含むコンパウンドは、金属粉末の諸物性に応じて、多様な工業製品の原材料として利用される。例えば、コンパウンドは、インダクタ、封止材、電磁波シールド(EMIシールド)、又はボンド磁石等の原材料として利用される(下記特許文献1参照。)。
特開2014-13803号公報
コンパウンドから工業製品が製造される場合、コンパウンドが流路を通じて型内へ供給及び充填されたり、コイル等の部品が型内のコンパウンド中に埋め込まれたりする。これらの工程ではコンパウンドの流動性が要求される。また、コンパウンドから作製される成形体を加熱する工程では、クラックが成形体に形成されることがある。そのため、コンパウンドには、成形時の流動性に優れると共に、成形体の高温における機械特性(例えば、高温曲げ特性等)を向上することが求められる。
本発明は、上記事情に鑑みてなされたものであり、成形時の流動性に優れると共に、高温での機械特性に優れる成形体を形成することができるコンパウンド、それを用いた成形体、及びコンパウンドの硬化物を提供することを目的とする。
本発明の一側面に係るコンパウンドは、金属粉と、エポキシ樹脂、硬化剤、及びシランカップリング剤を含有する樹脂組成物とを備え、上記シランカップリング剤が、アミノ基保護型シラン化合物、メルカプト基保護型シラン化合物、及びイソシアネート基保護型シラン化合物からなる群より選ばれる少なくとも一種のシラン化合物を含む。
本発明の一側面に係る成形体は、上記のコンパウンドを含む。本発明の一側面に係る硬化物は、上記コンパウンドの硬化物である。
本発明によれば、成形時の流動性に優れると共に、高温での機械特性に優れる成形体を形成することができるコンパウンド、それを用いた成形体、及びコンパウンドの硬化物が提供される。
以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。
[コンパウンド]
本実施形態に係るコンパウンドは、金属粉と、樹脂組成物と、を備える。金属粉は、例えば、金属単体、合金、アモルファス粉及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。樹脂組成物は、少なくともエポキシ樹脂、硬化剤及びカップリング剤を含有する。カップリング剤は、アミノ基保護型シラン化合物、メルカプト基保護型シラン化合物、及びイソシアネート基保護型シラン化合物からなる群より選ばれる少なくとも一種のシラン化合物を含む。コンパウンドにおいて、金属粉、エポキシ樹脂、硬化剤及びカップリング剤は混合されている。樹脂組成物は、他の成分として硬化促進剤、離型剤、添加剤等を更に含有してよい。樹脂組成物は、エポキシ樹脂、硬化剤、カップリング剤、硬化促進剤、離型剤及び添加剤を包含し得る成分であって、有機溶媒と金属粉とを除く残りの成分(不揮発性成分)であってよい。添加剤とは、樹脂組成物のうち、樹脂、離型剤、硬化剤、硬化促進剤、及びカップリング剤を除く残部の成分である。添加剤は、例えば、難燃剤、潤滑剤等である。コンパウンドは、粉末(コンパウンド粉)であってよい。
コンパウンドは、金属粉と、当該金属粉を構成する個々の金属粒子の表面に付着した樹脂組成物と、を備えてよい。樹脂組成物は、当該粒子の表面の全体を覆っていてもよく、当該粒子の表面の一部のみを覆っていてもよい。コンパウンドは、未硬化の樹脂組成物と、金属粉とを備えてよい。コンパウンドは、樹脂組成物の半硬化物(例えばBステージの樹脂組成物)と、金属粉とを備えてもよい。コンパウンドは、未硬化の樹脂組成物、及び樹脂組成物の半硬化物の両方を備えてもよい。コンパウンドは、金属粉と樹脂組成物とからなっていてよい。
コンパウンドにおける金属粉の含有量は、コンパウンド全体の質量に対して、90質量%以上100質量%未満であることが好ましい。金属粉の含有量が多くなると、成形体の離型性が担保し難く、作業性に劣る傾向がある。成形体の磁気特性の観点から、金属粉の含有量は、92質量%以上が好ましく、94質量%以上がより好ましく、95質量%以上が更に好ましく、96質量%以上が特に好ましい。金属粉の含有量の上限値は、99質量%以下、98質量%以下、又は97.5質量%以下であってよい。
(樹脂組成物)
樹脂組成物は、金属粉を構成する金属粒子の結合材(バインダ)としての機能を有し、コンパウンドから形成される成形体に機械的強度を付与する。例えば、コンパウンドに含まれる樹脂組成物は、金型を用いてコンパウンドが高圧で成形される際に、金属粒子の間に充填され、当該粒子を互いに結着する。成形体中の樹脂組成物を硬化させることにより、樹脂組成物の硬化物が金属粒子同士をより強固に結着して、成形体の機械的強度が向上する。
本実施形態に係る樹脂組成物は、熱硬化性樹脂としてエポキシ樹脂を含有することにより、コンパウンドの流動性を向上することができる。エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。エポキシ樹脂の種類は特に制限されず、樹脂組成物の所望の特性等に応じて選択できる。
エポキシ樹脂として、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を含有するエポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、並びにオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂が挙げられる。
流動性の観点において、エポキシ樹脂は、ビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を有するエポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、及びナフトールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。
機械強度の観点において、エポキシ樹脂は、ビフェニレンアラルキル型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。
エポキシ樹脂は、結晶性のエポキシ樹脂であってもよい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。
結晶性のエポキシ樹脂の市販品としては、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM-091、エピクロンHM-101、エピクロンN-730A、エピクロンN-740、エピクロンN-770、エピクロンN-775、エピクロンN-865、エピクロンHP-4032D、エピクロンHP-7200L、エピクロンHP-7200、エピクロンHP-7200H、エピクロンHP-7200HH、エピクロンHP-7200HHH、エピクロンHP-4700、エピクロンHP-4710、エピクロンHP-4770、エピクロンHP-5000、エピクロンHP-6000、N500P-2、及びN500P-10(以上、DIC株式会社製の商品名);NC-3000、NC-3000-L、NC-3000-H、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000-L、NC-7300-L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、及びBREN-10S(以上、日本化薬株式会社製の商品名);YX-4000、YX-4000H、YL4121H、及びYX-8800(以上、三菱ケミカル株式会社製の商品名)が挙げられる。
樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。樹脂組成物は、上記のエポキシ樹脂の中でも、ビフェニル骨格を含むエポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、2個以上のエポキシ基を含む多官能型エポキシ樹脂を含有してよい。
硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型の硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタン等である。加熱硬化型の硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)等である。硬化剤の種類は特に制限されず、組成物の所望の特性等に応じて選択できる。
低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、コンパウンドから形成された成形体も軟らかくなり易い。一方、成形体の耐熱性を向上させる観点から、硬化剤は、好ましくは加熱硬化型の硬化剤、より好ましくはフェノール樹脂、更に好ましくはフェノールノボラック樹脂であってよい。特に硬化剤としてフェノールノボラック樹脂を用いることで、ガラス転移点が高いエポキシ樹脂の硬化物が得られ易い。その結果、成形体の耐熱性及び機械的強度が向上し易い。
フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。フェノール樹脂は、上記のうちの二種以上から構成される共重合体であってもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP-850N等を用いてもよい。
フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、及びアミノフェノールからなる群より選ばれる少なくとも一種を含んでいてよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α-ナフトール、β-ナフトール、及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種を含んでいてよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒドからなる群より選ばれる少なくとも一種を含んでいてよい。
硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種を含んでいてよい。
樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を備えてもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。
エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中のエポキシ基1当量に対して、好ましくは0.5~1.5当量、より好ましくは0.6~1.4当量、更に好ましくは0.7~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物の充分な弾性率が得られ難い。一方、硬化剤中の活性基の比率が1.5当量を超える場合、コンパウンドから形成された成形体の硬化後の機械的強度が低下する傾向がある。ただし、硬化剤中の活性基の比率が上記範囲外である場合であっても、本発明に係る効果は得られる。
カップリング剤は、樹脂組成物と、金属粉を構成する金属元素含有粒子との密着性を向上させ、コンパウンドから形成される成形体の可撓性及び機械的強度を向上させることができる。本実施形態に係る樹脂組成物は、カップリング剤として特定のシラン化合物を含有することにより、コンパウンドの流動性及び硬化特性を向上することができる。カップリング剤は、アミノ基保護型シラン化合物、メルカプト基保護型シラン化合物、及びイソシアネート基保護型シラン化合物からなる群より選ばれる少なくとも一種のシラン化合物(以下、「第1のシラン化合物」という。)を含む。
樹脂組成物が第1のシラン化合物を含むことで、高温下における強度と弾性率とのバランスに優れる成形体を形成することができる。上記シラン化合物は、エポキシ樹脂又は硬化剤と反応することができる官能基であるアミノ基、メルカプト基、又はイソシアネート基が保護されているため、コンパウンドの流動性を向上することができる。そして、コンパウンドを成形する際の熱、水分等で保護基が脱離して、アミノ基、メルカプト基、又はイソシアネート基が生成して樹脂組成物の硬化を促進し、高温下における強度と弾性率とのバランスに優れる成形体を形成することができる。
第1のシラン化合物は、下記式(1)、(2)、(3)又は(4)で表される基を有するシラン化合物であってもよい。
式(1)で表される基を有するシラン化合物は、アミノ基保護型シラン化合物である。式(1)中、R及びRはそれぞれ独立に水素原子又は炭素数が1~6の炭化水素基を示す。炭素数が1~6の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、イソブチル基、ヘキシル基、シクロヘキシル基、及びフェニル基が挙げられる。
Figure 2022042742000001
式(1)で表される基を有するシラン化合物として、例えば、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン及び3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンが挙げられる。
式(2)で表される基を有するシラン化合物は、メルカプト基保護シラン化合物である。式(2)中、Rは炭素数が1~3の炭化水素基を示し、Rは炭素数が1~6の炭化水素基を示し、mは1~3の整数である。Rとしては、例えば、メチル基、エチル基、プロピル基、及びイソプロピル基が挙げられ、メチル基又はエチル基が好ましく、メチル基がより好ましい。Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、イソブチル基、ヘキシル基、シクロヘキシル基、及びフェニル基が挙げられる。mは、2又は3であることが好ましく、3であることがより好ましい。
Figure 2022042742000002
式(2)で表される基を有するシラン化合物として、例えば、トリメトキシシリルチオプロピルトリメトキシシラン、トリエトキシシリルチオプロピルトリメトキシシラン、トリメトキシシリルチオプロピルメチルジメトキシシラン、トリメトキシシリルチオプロピルメチルジエトキシシラン、トリエトキシシリルチオプロピルメチルジメトキシシラン、及びトリエトキシシリルチオプロピルメチルジエトキシシランが挙げられる。
式(3)又は(4)で表される基を有するシラン化合物は、イソシアネート基保護型シラン化合物である。式(3)中、R、R及びR10はそれぞれ独立に水素原子又は炭素数が1~6の炭化水素基を示す。炭素数が1~6の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、イソブチル基、ヘキシル基、シクロヘキシル基、及びフェニル基が挙げられる。
Figure 2022042742000003
Figure 2022042742000004
第1のシラン化合物の含有量は、流動性と高温下での機械的特性とを両立する観点から、エポキシ樹脂の100質量部に対して0.5質量部以上、1質量部以上、又は1.5質量部以上であってもよく、10質量部以下、6質量部以下、又は4質量部以下であってもよい。第1のシラン化合物は、一種を単独で又は二種以上を混合して用いてもよい。
カップリング剤は、第2のシラン化合物として、第1のシラン化合物とは異なる構造を有するシラン化合物を更に含んでもよい。第2のシラン化合物は、エポキシ基、アミノ基、ウレイド基、イソシアネート基、及びメルカプト基から選ばれる官能基を有してもよい。第2のシラン化合物は、一種を単独で又は二種以上を混合して用いてもよい。
エポキシ基を有する第2のシラン化合物として、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、及び3-グリシドキシプロピルトリエトキシシランが挙げられる。
アミノ基を有する第2のシラン化合物として、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルメチルジエトキシシラン、及びN-フェニル-3-アミノプロピルトリメトキシシランが挙げられる。
ウレイド基を有する第2のシラン化合物として、例えば、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルメチルジメトキシシラン、及び3-ウレイドプロピルメチルジエトキシシランが挙げられる。
イソシアネート基を有する第2のシラン化合物としては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、及び3-イソシアネートプロピルメチルジエトキシシランが挙げられる。
メルカプト基を有する第2のシラン化合物として、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、及び3-メルカプトプロピルメチルジトキシシランが挙げられる。
硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。硬化促進剤は、例えば、リン系硬化促進剤、イミダゾール系硬化促進剤又はウレア系硬化促進剤であってよい。樹脂組成物は硬化促進剤を含有することで、コンパウンドの成形性及び離型性を向上することができる。また、樹脂組成物が硬化促進剤を含有することにより、コンパウンドを用いて製造された成形体(例えば、電子部品)の機械的強度が向上したり、高温・高湿な環境下におけるコンパウンドの保存安定性が向上したりする。
リン系硬化促進剤としては、例えば、ホスフィン化合物及びホスホニウム塩化合物が挙げられる。
イミダゾール系硬化促進剤の市販品としては、例えば、2MZ-H、C11Z、C17Z、1,2DMZ、2E4MZ、2PZ-PW、2P4MZ、1B2MZ、1B2PZ、2MZ-CN、C11Z-CN、2E4MZ-CN、2PZ-CN、C11Z-CNS、2P4MHZ、TPZ、及びSFZ(以上、四国化成工業株式会社製の商品名)からなる群より選ばれる少なくとも一種を用いてよい。
ウレア系硬化促進剤としては、ウレア基を有する硬化促進剤であれば特に限定されないが、保存安定性の向上の観点から、アルキルウレア基を有するアルキルウレア系硬化促進剤であることが好ましい。アルキルウレア基を有するアルキルウレア系硬化促進剤としては、芳香族アルキルウレア及び脂肪族アルキルウレアが挙げられる。アルキルウレア系硬化促進剤の市販品としては、例えば、U-CAT3512T(商品名、サンアプロ株式会社製、芳香族ジメチルウレア)及びU-CAT3513N(商品名、サンアプロ株式会社製、脂肪族ジメチルウレア)が挙げられる。これらの中でも、開裂温度が適度に低く、コンパウンドを効率的に硬化させ易いことから、芳香族アルキルウレアが好ましい。
硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。樹脂組成物の吸湿時の硬化性及び流動性を改善する観点から、硬化促進剤の配合量は、エポキシ樹脂の100質量部に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは1質量部以上15質量部以下であってよい。硬化促進剤の配合量が0.1質量部以上である場合、十分な硬化促進効果が得られ易い。硬化促進剤の配合量が30質量部以下であると、コンパウンドの保存安定性が低下し難い。硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の質量の合計100質量部に対して0.001質量部以上5質量部以下であることが好ましい。ただし、硬化促進剤の配合量及び含有量が上記範囲外である場合であっても、本発明に係る効果は得られる。
コンパウンドの成形収縮率が低減され易く、成形体の耐熱性及び耐電圧性が向上し易いことから、樹脂組成物は、添加剤としてシロキサン結合を有する化合物(シロキサン化合物)を含有してもよい。シロキサン結合は、2つのケイ素原子(Si)と1つの酸素原子(O)とを含む結合であり、-Si-O-Si-で表されてよい。シロキサン結合を有する化合物はポリシロキサン化合物であってよい。
コンパウンドの環境安全性、リサイクル性、成形加工性及び低コストのために、コンパウンドは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、リン系難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物、及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、上記のうち一種の難燃剤を含有してよく、上記のうち複数種の難燃剤を含有してもよい。
金型を用いてコンパウンドから成形体を形成する場合、樹脂組成物は、ワックスを含有してよい。ワックスは、コンパウンドの成形(例えばトランスファー成形)におけるコンパウンドの流動性を高めると共に、離型剤として機能する。ワックスは、高級脂肪酸等の脂肪酸、及び脂肪酸エステルのうち少なくともいずれか一つであってよい。
ワックスは、例えば、モンタン酸、ステアリン酸、12-オキシステアリン酸、ラウリン酸等の脂肪酸類又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアエン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N-ステアリルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル、シリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、ポリエチレンワックス、アマイドワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってよい。
(金属粉)
金属粉(金属元素含有粒子)は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。金属元素含有粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種からなっていてよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。合金とは、例えば、ステンレス鋼(Fe-Cr系合金、Fe-Ni-Cr系合金等)であってよい。金属化合物とは、例えば、フェライト等の酸化物であってよい。金属粉は、一種の金属元素又は複数種の金属元素を含んでよい。金属粉に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。コンパウンドは、一種の金属元素含有粉を含んでよく、組成が異なる複数種の金属元素含有粉を含んでもよい。
金属粉に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、ニオブ(Nb)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。金属粉は、金属元素以外の元素を更に含んでもよい。金属粉は、例えば、炭素(C)、酸素(О)、ベリリウム(Be)、リン(P)、硫黄(S)、ホウ素(B)、又はケイ素(Si)を含んでもよい。
金属粉は、磁性粉であってよい。金属粉は、軟磁性合金又は強磁性合金であってよい。金属粉は、例えば、Fe-Si系合金、Fe-Si-Al系合金(センダスト)、Fe-Ni系合金(パーマロイ)、Fe-Cu-Ni系合金(パーマロイ)、Fe-Co系合金(パーメンジュール)、Fe-Cr-Si系合金(電磁ステンレス鋼)、Nd-Fe-B系合金(希土類磁石)、Sm-Fe-N系合金(希土類磁石)、Al-Ni-Co系合金(アルニコ磁石)、及びフェライトからなる群より選ばれる少なくとも一種からなる磁性粉であってよい。フェライトは、例えば、スピネルフェライト、六方晶フェライト、又はガーネットフェライトであってよい。金属粉は、Cu-Sn系合金、Cu-Sn-P系合金、Cu-Ni系合金、又はCu-Be系合金等の銅合金であってもよい。金属粉は、上記の元素及び組成物のうち一種を含んでよく、上記の元素及び組成物のうち複数種を含んでもよい。
金属粉は、Fe単体であってもよい。金属粉は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe-Si-Cr系合金、又はNd-Fe-B系合金であってよい。金属元素含有粉は、アモルファス系鉄粉及びカルボニル鉄粉のうちの少なくともいずれかであってもよい。金属粉がFe単体及びFe系合金のうちの少なくともいずれかを含む場合、高い占積率を有し、且つ磁気特性に優れる成形体をコンパウンドから作製し易い。金属粉は、Feアモルファス合金であってもよい。
Feアモルファス合金粉の市販品としては、例えば、AW2-08、KUAMET-6B2(以上、エプソンアトミックス株式会社製の商品名)、DAP MS3、DAP MS7、DAP MSA10、DAP PB、DAP PC、DAP MKV49、DAP 410L、DAP 430L、DAP HYBシリーズ(以上、大同特殊鋼株式会社製の商品名)、MH45D、MH28D、MH25D、及びMH20D(以上、神戸製鋼株式会社製の商品名)からなる群より選ばれる少なくとも一種が用いられてよい。
<コンパウンドの製造方法>
コンパウンドの製造では、金属粉と樹脂組成物(樹脂組成物を構成する各成分)とを加熱しながら混合する。例えば、金属粉と樹脂組成物とを加熱しながらニーダー、ロール、攪拌機などで混練してよい。金属粉及び樹脂組成物の加熱及び混合により、樹脂組成物が金属粉を構成する金属元素含有粒子の表面の一部又は全体に付着して金属元素含有粒子を被覆し、樹脂組成物中のエポキシ樹脂の一部又は全部が半硬化物になる。その結果、コンパウンドが得られる。金属粉及び樹脂組成物の加熱及び混合によって得られた粉末に、更にワックスを加えることによって、コンパウンドを得てもよい。予め樹脂組成物とワックスとが混合されていてもよい。
混練では、金属粉、エポキシ樹脂、硬化剤、硬化促進剤、及びカップリング剤を槽内で混練してよい。金属粉及びカップリング剤を槽内に投入して混合した後、エポキシ樹脂、硬化剤、及び硬化促進剤を槽内へ投入して、槽内の原料を混練してもよい。シロキサン化合物、エポキシ樹脂、硬化剤、及びカップリング剤を槽内で混練した後、硬化促進剤を槽内に入れて、更に槽内の原料を混練してもよい。予めエポキシ樹脂、硬化剤、及び硬化促進剤の混合粉(樹脂混合粉)を作製して、続いて、金属粉とカップリング剤とを混練して金属混合粉を作製して、続いて、金属混合粉と上記の樹脂混合粉とを混練してもよい。
混練時間は、混練機械の種類、混練機械の容積、コンパウンドの製造量にもよるが、例えば、1分以上であることが好ましく、2分以上であることがより好ましく、3分以上であることが更に好ましい。また、混練時間は、20分以下であることが好ましく、15分以下であることがより好ましく、10分以下であることが更に好ましい。混練時間が1分未満である場合、混練が不十分であり、コンパウンドの成形性が損なわれ、コンパウンドの硬化度にばらつきが生じる。混練時間が20分を超える場合、例えば、槽内で樹脂組成物(例えば、エポキシ樹脂及びフェノール樹脂)の硬化が進み、コンパウンドの流動性及び成形性が損なわれ易い。
槽内の原料を加熱しながらニーダーで混練する場合、加熱温度は、例えば、エポキシ樹脂の半硬化物(Bステージのエポキシ樹脂)が生成し、且つエポキシ樹脂の硬化物(Cステージのエポキシ樹脂)の生成が抑制される温度であればよい。加熱温度は、硬化促進剤の活性化温度よりも低い温度であってよい。加熱温度は、例えば、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることが更に好ましい。加熱温度は、150℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることが更に好ましい。加熱温度が上記の範囲内である場合、槽内の樹脂組成物が軟化して金属粉を構成する金属元素含有粒子の表面を被覆し易く、エポキシ樹脂の半硬化物が生成し易く、混練中のエポキシ樹脂の完全な硬化が抑制され易い。
[成形体]
本実施形態に係る成形体は、上記のコンパウンドを備えてよい。本実施形態に係る成形体は、上記のコンパウンドの硬化物を備えてよい。成形体は、未硬化の樹脂組成物、樹脂組成物の半硬化物(Bステージの樹脂組成物)、及び樹脂組成物の硬化物(Cステージの樹脂組成物)からなる群より選ばれる少なくとも一種を含んでいてよい。本実施形態に係る成形体は、電子部品又は電子回路基板用の封止材として用いられてよい。本実施形態によれば、電子部品又は電子回路基板が備える金属部材と、成形体(封止材)との熱膨張率差に起因する成形体のクラックを抑制することができる。
コンパウンドの硬化物は、金属粉と樹脂組成物との硬化物であり、金属粉の含有量が90質量%以上100質量%未満である。硬化物の250℃における曲げ強度は、硬化物の強度を高める観点から6.5MPa以上であることが好ましく、7.0MPa以上であることがより好ましく、7.5MPa以上であることが更に好ましい。曲げ強度の上限値は、10MPa程度である。硬化物の250℃における曲げ弾性率は、硬化物に柔軟性を付与する観点から1.3GPa以下、1.2GPa以下、又は1.1GPa以下であってよい。曲げ弾性率の下限値は、0.1GPa程度である。250℃における曲げ強度(MPa)を250℃における曲げ弾性率(GPa)で除した値を硬化物の信頼性の指標とすることができる。当該指標は、9.5×10-3以上であることが好ましく、10×10-3以上であることがより好ましく、11×10-3以上であることが更に好ましい。当該指標の上限値は特に限定されず、例えば、5×10-2以下であってもよい。
<成形体の製造方法>
本実施形態に係る成形体の製造方法は、コンパウンドを金型中で加圧する工程を備えてよい。成形体の製造方法は、金属部材の表面の一部又は全体を覆うコンパウンドを金型中で加圧する工程を備えてよい。成形体の製造方法は、コンパウンドを金型中で加圧する工程のみを備えてよく、当該工程に加えてその他の工程を備えてもよい。成形体の製造方法は、第一工程、第二工程及び第三工程を備えてもよい。以下では、各工程の詳細を説明する。
第一工程では、上記の方法でコンパウンドを作製する。
第二工程では、コンパウンドを金型中で加圧することにより、成形体(Bステージの成形体)を得る。第二工程では、金属部材の表面の一部又は全体を覆うコンパウンドを金型中で加圧することにより、成形体(Bステージの成形体)を得てよい。第二工程において、樹脂組成物が、金属元素含有粉を構成する個々の金属元素含有粒子間に充填される。そして樹脂組成物は、結合材(バインダ)として機能し、金属元素含有粒子同士を互いに結着する。
第二工程として、コンパウンドのトランスファー成形を実施してもよい。トランスファー成形では、コンパウンドを5MPa以上50MPa以下で加圧してよい。成形圧力が高いほど、機械的強度に優れた成形体が得られ易い傾向がある。成形体の量産性及び金型の寿命を考慮した場合、成形圧力は8MPa以上20MPa以下であることが好ましい。トランスファー成形によって形成される成形体の密度は、コンパウンドの真密度に対して、好ましくは75%以上86%以下、より好ましくは80%以上86%以下であってよい。成形体の密度が75%以上86%以下である場合、機械的強度に優れた成形体が得られ易い。トランスファー成形において、第二工程と第三工程とを一括して実施してもよい。
第三工程では、成形体を熱処理によって硬化させ、Cステージの成形体を得る。熱処理の温度は、成形体中の樹脂組成物が十分に硬化する温度であればよい。熱処理の温度は、好ましくは100℃以上300℃以下、より好ましくは110℃以上250℃以下であってよい。成形体中の金属粉の酸化を抑制するために、熱処理を不活性雰囲気下で行うことが好ましい。熱処理温度が300℃を超える場合、熱処理の雰囲気に不可避的に含まれる微量の酸素によって金属粉が酸化されたり、樹脂硬化物が劣化したりする。金属粉の酸化、及び樹脂硬化物の劣化を抑制しながら樹脂組成物を十分に硬化させるためには、熱処理温度の保持時間は、好ましくは数分以上10時間以下、より好ましくは3分以上8時間以下であってよい。
以下では実施例により本発明を更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
実施例及び参考例のコンパウンドの調製に使用した各成分の詳細を以下に示す。
(エポキシ樹脂)
ビフェニレンアラルキル型エポキシ樹脂(日本化薬株式会社製の商品名:NC-3000、エポキシ当量:275g/eq)
多官能型エポキシ樹脂(株式会社プリンテック製の商品名:TECHMORE VG3101L、エポキシ当量:215g/eq)
(硬化剤)
トリフェニルメタン型フェノール樹脂(エア・ウォーター株式会社製の商品名:HE910-09、水酸基当量:101g/eq)
ビフェニレンアラルキル型フェノール樹脂(明和化成株式会社製の商品名:MEHC-7851SS、水酸基当量:202g/eq)
(カップリング剤)
3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製の商品名:KBM-803)
メタクリロキシオクチルトリメトキシシラン(信越化学工業株式会社製の商品名:KBM-5803)
トリエトキシシリルチオプロピルトリメトキシシラン(信越化学工業株式会社製の商品名:X-12-1056ES)
3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(信越化学工業株式会社製の商品名:KBE-9103P)
(硬化促進剤)
イミダゾール系硬化促進剤(四国化成工業株式会社製の商品名:C17Z)
イミダゾール系硬化促進剤(四国化成工業株式会社製の商品名:2P4MZ)
(離型剤)
ラウリン酸亜鉛(日油株式会社製の商品名:パウダーベースL)
部分ケン化モンタン酸エステルワックス(クラリアントケミカルズ株式会社製の商品名:Licowax-OP)
(添加剤)
カプロラクトン変性ジメチルシリコーン(Gelest株式会社製の商品名:DBL-C32)
(金属粉)
アモルファス系鉄粉(エプソンアトミックス株式会社製の商品名:9A4-II、平均粒径24μm)
アモルファス系鉄粉(エプソンアトミックス株式会社製の商品名:AW2-08、平均粒径5.3μm)
[コンパウンドの調製]
表1に示すエポキシ樹脂、硬化剤、硬化促進剤、及び離型剤を、同表に示す配合量(単位:g)でポリ容器に投入した。これらの材料をポリ容器内で10分間混合することにより、樹脂混合物を調製した。樹脂混合物とは、樹脂組成物のうちカップリング剤及び添加剤を除く他の全成分に相当する。
表1に示す2種類のアモルファス系鉄粉を、加圧式2軸ニーダー(日本スピンドル製造株式会社製、容量5L)で5分間均一に混合して、金属粉を調製した。表1に示すカップリング剤及び添加剤を2軸ニーダー内の金属粉へ添加した。続いて、2軸ニーダーの内容物を90℃になるまで加熱し、その温度を保持しながら、2軸ニーダーの内容物を10分間混合した。続いて、上記の樹脂混合物を2軸ニーダーの内容物へ添加して、内容物の温度を120℃に保持しながら、内容物を15分間溶融・混練した。以上の溶融・混練によって得られた混練物を室温まで冷却した後、混練物が所定の粒度を有するようになるまで混練物をハンマーで粉砕した。なお、上記の「溶融」とは、2軸ニーダーの内容物のうち樹脂組成物の少なくとも一部の溶融を意味する。コンパウンド中の金属粉は、コンパウンドの調製過程において溶融しない。以上の方法により、実施例及び参考例のコンパウンドを調製した。
[コンパウンドの評価]
実施例及び参考例で得られたコンパウンドについて、以下の評価を行った。結果を表1に示す。
(流動性)
流動性の評価は、株式会社島津製作所製のフローテスタCFT-100を用いて行った。コンパウンド7gを成形して、タブレットを作製した。タブレットを用いて、130℃、余熱20秒、荷重100kgの条件にて、流動性の評価を実施した。コンパウンドの流動が停止するまでのプランジャーの押し込み距離(単位:mm)をフローテスターストロークとし、コンパウンドの流動が停止するまでの時間をフロータイムとして測定し、流動性の指標とした。
(ゲルタイム)
コンパウンドのゲルタイムを、以下の方法で測定した。キュラストメータ(JSRトレーディング株式会社製)を用い、試料量1.5mL、140℃の条件でゲルタイムを測定した。得られたチャートのトルクの立ち上がり開始の時間をゲルタイムとした。ゲルタイムが短いほど硬化性が高いことを意味する。
(曲げ試験)
コンパウンドを、成形金型温度140℃、成形圧力13.5MPa、硬化時間360秒の条件でトランスファー成形した後、180℃で2時間ポストキュアすることによって、試験片を得た。試験片の寸法は、縦幅80mm×横幅10mm×厚さ3.0mmであった。
恒温槽付きオートグラフを用いて、試験片に対して3点支持型の曲げ試験を250℃で実施した。オートグラフとしては、株式会社島津製作所製のAGS-500Aを用いた。曲げ試験では、2つの支点により試験片の一方の面を支持した。試験片の他方の面における2つの支点間の中央の位置に荷重を加えた。試験片が破壊されたときの荷重を測定した。曲げ試験の測定条件は、以下のとおりであった。
2つの支点間の距離Lv:64.0±0.5mm
ヘッドスピード:2.0±0.2mm/分
チャートスピード:100mm/分
チャートフルスケール:490N(50kgf)
下記数式(A)に基づいて、曲げ強度σ(単位:MPa)を算出した。下記数式(B)に基づいて、曲げ弾性率E(単位:GPa)を算出した。下記数式において、「P」は、試験片が破壊されたときの荷重(単位:N)である。「Lv」は、2つの支点間の距離(単位:mm)である。「W」は、試験片の横幅(単位:mm)である。「t」は、試験片の厚さ(単位:mm)である。「F/Y」は、荷重-たわみ曲線の直線部分の勾配(単位:N/mm)である。
σ=(3×P×Lv)/(2×W×t) (A)
E=[Lv/(4×W×t)]×(F/Y) (B)
(信頼性)
250℃における曲げ強度(MGa)を250℃における曲げ弾性率(GPa)で除した値を信頼性の評価の指標とした。この値が大きいほど、強度と弾性率とのバランスに優れることを意味する。
Figure 2022042742000005

Claims (6)

  1. 金属粉と、エポキシ樹脂、硬化剤、及びカップリング剤を含有する樹脂組成物と、を備え、
    前記カップリング剤が、アミノ基保護型シラン化合物、メルカプト基保護型シラン化合物、及びイソシアネート基保護型シラン化合物からなる群より選ばれる少なくとも一種のシラン化合物を含む、コンパウンド。
  2. 前記シラン化合物が、下記式(1)、(2)、(3)又は(4)で表される基を有する、請求項1に記載のコンパウンド。
    Figure 2022042742000006

    [式(1)中、R及びRはそれぞれ独立に水素原子又は炭素数が1~6の炭化水素基を示し、式(2)中、Rは炭素数が1~3の炭化水素基を示し、Rは炭素数が1~6の炭化水素基を示し、mは1~3の整数であり、式(3)中、R、R及びR10はそれぞれ独立に水素原子又は炭素数が1~6の炭化水素基を示す。]
  3. 前記カップリング剤が、エポキシ基、アミノ基、ウレイド基、イソシアネート基、及びメルカプト基から選ばれる官能基を有するシラン化合物を更に含む、請求項1又は2に記載のコンパウンド。
  4. 前記金属粉の含有量が、90質量%以上100質量%未満である、請求項1~3のいずれか一項に記載のコンパウンド。
  5. 請求項1~4のいずれか一項に記載のコンパウンドを含む、成形体。
  6. 請求項1~4のいずれか一項に記載のコンパウンドの硬化物。
JP2020148307A 2020-09-03 2020-09-03 コンパウンド、成形体、及びコンパウンドの硬化物 Pending JP2022042742A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020148307A JP2022042742A (ja) 2020-09-03 2020-09-03 コンパウンド、成形体、及びコンパウンドの硬化物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020148307A JP2022042742A (ja) 2020-09-03 2020-09-03 コンパウンド、成形体、及びコンパウンドの硬化物

Publications (1)

Publication Number Publication Date
JP2022042742A true JP2022042742A (ja) 2022-03-15

Family

ID=80641467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020148307A Pending JP2022042742A (ja) 2020-09-03 2020-09-03 コンパウンド、成形体、及びコンパウンドの硬化物

Country Status (1)

Country Link
JP (1) JP2022042742A (ja)

Similar Documents

Publication Publication Date Title
JP7103413B2 (ja) コンパウンド及び成形体
US11732124B2 (en) Compound and tablet
JP7081611B2 (ja) コンパウンド粉
JPWO2019198237A1 (ja) コンパウンド及び成形体
WO2022050170A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP7484371B2 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021112135A1 (ja) コンパウンド及び成形体
JP7120304B2 (ja) コンパウンド、成形体、及び電子部品
JP2023047606A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2022042742A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2022042696A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP7480565B2 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021153688A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2021120432A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021241513A1 (ja) コンパウンド、成型体、及び硬化物
WO2021153691A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2021172686A (ja) コンパウンドの製造方法、コンパウンド用マスターバッチ、コンパウンド、成形体、及びコンパウンドの硬化物
JP2022149538A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2022167046A (ja) コンパウンド及び成形体
JP2023049648A (ja) 成形体の製造方法及び半導体装置の製造方法
TW202307064A (zh) 複合物、成形體及複合物的固化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230705