WO2010021135A1 - 洗濯機 - Google Patents

洗濯機 Download PDF

Info

Publication number
WO2010021135A1
WO2010021135A1 PCT/JP2009/003972 JP2009003972W WO2010021135A1 WO 2010021135 A1 WO2010021135 A1 WO 2010021135A1 JP 2009003972 W JP2009003972 W JP 2009003972W WO 2010021135 A1 WO2010021135 A1 WO 2010021135A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
unbalance
motor
unit
washing machine
Prior art date
Application number
PCT/JP2009/003972
Other languages
English (en)
French (fr)
Inventor
高祖洋
蒲生健
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801328612A priority Critical patent/CN102131976B/zh
Priority to EP09808071.6A priority patent/EP2330244A4/en
Publication of WO2010021135A1 publication Critical patent/WO2010021135A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/48Preventing or reducing imbalance or noise
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Unbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a washing machine for washing laundry such as clothes.
  • the current flowing through the motor for generating the rotational driving force is detected, and the motor is vector-controlled based on the detected current.
  • the generated torque is controlled to be optimal in each mode other than the dehydration operation.
  • abnormal vibrations that occur during the dehydration operation are detected based on the q-axis current that directly reflects the torque generated by the motor (see, for example, Patent Document 1).
  • Patent Document 1 estimates the unbalance by measuring the loss torque due to the unbalance with the average value of the motor current.
  • the estimation error increases due to the influence of the load individual difference.
  • dynamic imbalance is difficult to detect at low speed rotation such as at the start of dehydration operation.
  • vibration is larger in a dynamic unbalance than in a static unbalance at a high speed such as the number of rotations of resonance.
  • the static unbalance also has different vibration characteristics depending on the position of the support mechanism system and the unbalance in the front and rear of the washing tub, and the vibration cannot be detected with a single threshold with high accuracy. .
  • the magnitude of vibration is estimated and detected by the magnitude of the control current (torque current component) at a steady rotational speed lower than the resonant rotational speed.
  • the vibration cannot be estimated with high accuracy because the unbalance changes as the rotational speed increases.
  • the dynamic imbalance causes a sudden increase in vibration at the resonance rotational speed in the rotational vibration mode, and the load on the motor also increases. Therefore, a dynamic imbalance cannot be detected at a low rotational speed as in the technique described in Patent Document 2.
  • the present invention relates to a washing tub for rotating clothing, a motor for rotating the washing tub, a receiving cylinder that accommodates the washing tub and is elastically supported in a housing by a support section, a control section that controls the motor, and a receiving cylinder
  • An unbalanced vibration detection unit that detects the unbalanced vibration of the housing or the unbalanced vibration of the housing, and an unbalanced vibration estimation unit that estimates the magnitude of the unbalanced vibration and the rotation phase of the motor according to the output of the control unit
  • the control unit includes a cloth unwinding adjustment unit that determines a cloth unwinding operation based on at least one of the output of the unbalance vibration detection unit and the output of the unbalance vibration estimation unit.
  • the fabric bias can be reduced and unbalanced vibration in the dehydration process can be reduced. Therefore, it is possible to reduce the noise accompanying the vibration, improve the spin speed and shorten the spin time.
  • FIG. 1 is a block configuration diagram of a control device for a washing machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of the washing machine according to the embodiment.
  • FIG. 3 is a sequence diagram of the dewatering speed of the washing machine in the embodiment.
  • FIG. 4 is an explanatory diagram of vibration characteristics of the washing machine according to the embodiment.
  • FIG. 5 is a block diagram showing details of a control unit of the washing machine in the embodiment.
  • FIG. 6 is a block configuration diagram of the control device for the washing machine in the second embodiment of the present invention.
  • FIG. 7 is a block diagram of a washing machine control apparatus according to Embodiment 3 of the present invention.
  • FIG. 1 is a block configuration diagram of a washing machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of the washing machine.
  • FIG. 3 is a sequence diagram showing the number of rotations at the start-up in the dehydration process of the washing machine.
  • FIG. 4 is an explanatory diagram of vibration characteristics at startup in the dehydration process of the washing machine.
  • FIG. 5 is a block diagram showing details of a control unit of the washing machine.
  • a washing machine mechanism 10 has a rotating drum 11 as a washing tub for storing and rotating laundry such as clothes.
  • the motor 12 that rotates the rotating drum 11 while controlling the speed thereof is constituted by a brushless motor.
  • the washing machine mechanism section 10 includes a rotating drum 11 that is rotatable and includes a receiving cylinder 13 into which clothes that are laundry and water are placed.
  • the washing machine mechanism 10 has a housing 17 that houses the motor 12 and the receiving cylinder 13 therein.
  • An input port 18 through which clothes are put in and out is provided on the front side of the housing 17.
  • a seal packing 14 is provided between the receiving tube 13 and the housing 17 so as to eliminate the gap.
  • the receiving tube 13 is supported by a support spring 15 in order to support a forwardly raised posture.
  • the damper mechanism 16 includes a spring element and a damper element for reducing vibration generated during washing (when the motor rotates) and reducing vibration transmission to the housing 17 and the floor.
  • the anti-vibration rubber 19 is used for installing the casing 17 of the washing machine mechanism 10 on the floor.
  • the control unit 20 controls the rotational drive of the motor 12.
  • the speed detector 21 is composed of a Hall IC that detects the rotational speed of the motor 12.
  • the control amount calculation unit 22 is composed of a control microcomputer that calculates the control amount by calculating an error from the target rotation speed based on the rotation speed of the motor 12 that is the output of the speed detection unit 21.
  • the drive unit 23 includes an inverter circuit that applies a motor control current or a motor rotation speed to the motor 12 based on the control amount calculated by the control amount calculation unit 22. In the present embodiment, a case where a motor control current is applied to the motor 12 will be described.
  • the unbalance vibration estimation unit 30 generates motor control current or motor rotation speed output from the drive unit 23 as unbalance vibration of the rotation drum 11 or the housing 17 caused by the bias of clothes to be washed in the rotation drum 11. Estimated by In the present embodiment, the case where the unbalanced vibration estimation unit 30 performs estimation based on the motor control current output from the drive unit 23 will be described.
  • the unbalance vibration detection unit 31 includes, for example, a three-axis acceleration sensor (hereinafter referred to as a 3D sensor), and directly detects unbalance vibration.
  • the unbalanced vibration estimation unit 30 can be estimated not only from the motor control current output from the drive unit 23 but also from the variation in the motor control current or the motor rotation speed.
  • the unbalance vibration estimator 30 estimates the magnitude of the unbalance vibration based on the motor control current or the motor speed, and determines acceleration / stop of the motor 12 or the motor 12 according to the magnitude. The acceleration for increasing the rotation and the target rotation speed are determined.
  • the unbalance vibration estimation unit 30 estimates the rotational phase of the motor 12. That is, the unbalance vibration estimation unit 30 follows the output of the unbalance vibration detection unit 31 for each time, and detects the rotational position of the rotary drum 11 when the vibration becomes the largest. With the detected rotation position as the center, the rotary drum 11 is reversely rotated forward and backward (rapid forward and sudden reverse) to perform cloth unraveling described later.
  • control amount calculation unit 22 is instructed via a cloth unwinding adjustment unit 24 described later.
  • the unbalance vibration detection unit 31 also determines acceleration / stop of the motor 12, acceleration determination for increasing the rotation of the motor 12, and target according to the direct detection value of the unbalance vibration of the rotating drum 11 or the casing 17. Determine the number of revolutions. Thereafter, the control amount calculation unit 22 is instructed via the cloth loosening adjustment unit 24. As will be described later, the cloth unraveling adjustment unit 24 determines the cloth unwinding operation based on the estimation result in the unbalance vibration estimation unit 30 or the detection result in the unbalance vibration detection unit 31. That is, the reversing operation of the rotary drum 11 is controlled for cloth unraveling.
  • the value of the unbalanced vibration estimation unit 30 and the value of the unbalanced vibration detection unit 31 the value of the normal unbalanced vibration detection unit 31 is given priority, and there is no output from the unbalanced vibration detection unit 31 (including the case of almost zero). In this case, or when the output signal of the unbalance vibration detection unit 31 is constant, only the estimated value of the unbalance vibration estimation unit 30 is used for estimation.
  • FIG. 3 is a sequence diagram showing the number of rotations at start-up in the dehydration process.
  • the rotation speed is increased at a constant rotation speed of 80 rpm and 120 rpm for a certain period of time, and then the rotation speed is increased again to 400 rpm that has passed through the resonance rotation speed of the support mechanism system of the receiving cylinder 13, and then rotated at high speed until dehydration rotation.
  • the support mechanism system of the receiving cylinder 13 includes a support spring 15 and a damper mechanism 16.
  • the waveform A generates a large vibration in the vicinity of 350 rpm.
  • large vibrations are generated in the vicinity of 160 rpm and 220 rpm.
  • the vibration of 160 rpm is a resonance in which the translational vibration modes in three directions of XYZ are coupled.
  • the vibration at 220 rpm is a resonance in which rotational vibration modes around the X axis and the Y axis are coupled.
  • the vibration of 350 rpm is a resonance in a rotational vibration mode around the Z axis.
  • the X-axis, Y-axis, and Z-axis have the same large amplitude.
  • the amplitude of the X axis and the Y axis is greater than that of the Z axis.
  • the Z-axis amplitude appears larger than the X-axis Y-axis amplitude.
  • the time T2 and the time T3 differ in how the amplitude of each axis appears during dynamic unbalance and static unbalance. Therefore, it can be seen which axis should be viewed when determining what kind of imbalance (dynamic or static).
  • the center of gravity including the motor 12, the washing tub 11, and the receiving cylinder 13 is placed on the rotation axis of the washing tub 11 and above the rear damper mechanism 16, It seems that the characteristics shown in FIG. 4 can be obtained.
  • FIG. 5 is a block diagram showing details of the feedback control system of the control unit 20 that controls the rotation of the motor 12 that rotates the rotary drum 11.
  • the rotational speed of the motor 12 is controlled by the speed control gain Kv according to the difference between the target rotational speed ⁇ ref and the actual rotational speed ⁇ m.
  • a motor drive current is obtained.
  • the motor drive current is controlled by the current control gain Kc according to the difference between the target motor drive current and the actual motor drive current output from the microcomputer 51, and an appropriate motor drive current I is obtained.
  • the motor drive current I is calculated as the torque constant Kt of the motor 12.
  • the result is calculated as the moment of inertia Js of the rotating drum 11 and the motor 12 to calculate the rotational speed of the motor 12.
  • the torque disturbance TL due to clothing imbalance affects the target rotational speed ⁇ ref, and the actual rotational speed becomes ⁇ m.
  • the present embodiment has the following configuration.
  • the vibration of the receiving tube 13 generated by the imbalance of the clothes is substantially the same in amplitude between the front vibration at the point A and the rear vibration at the point B shown in FIG.
  • the center of gravity including the motor 12, the washing tub 11, and the receiving cylinder 13 is placed on the rotation axis of the washing tub 11 and above the rear damper mechanism 16.
  • the amplitude of the rear vibration of the point B substantially coincide with each other.
  • the rear vibration of the receiving cylinder 13 becomes a torque fluctuation to the motor 12, and the fluctuation is detected by a control parameter.
  • the front side erroneously detects vibrations that are extremely large with respect to the rear side.
  • the relationship between the amplitudes of the front vibration and the rear vibration is linear, such erroneous detection does not occur.
  • the translational vibration mode in which the three are coupled the rotational vibration mode in which the X axis and the Y axis are coupled, and the rotational vibration about the Z axis are determined according to the position of the center of gravity.
  • Three of the modes are composed of independent support mechanism systems.
  • the magnitude of the resonance speed that does not affect the torque fluctuation is in the order of translational vibration mode ⁇ rotational vibration mode around the X and Y axes ⁇ rotational vibration mode around the Z axis.
  • fluctuation refers to detecting the current fluctuation value for each rotation.
  • the unbalanced vibration estimation unit 30 detects that the fluctuation value is greater than or equal to a threshold value during acceleration, that is, (static) unbalanced vibration is greater than or equal to the threshold value, the controller 20 is instructed to stop the motor rotation. Then, after de-clothing, start dehydration again.
  • the controller 20 is instructed to stop the rotation of the motor in the same manner as described above, and the dehydration start operation is performed again after the cloth is loosened The operation to perform is performed.
  • the cloth unraveling adjustment unit 24 determines that the vibration in the left-right direction and the front-rear direction is greater than that in the up-down direction and is equal to the front imbalance. Further, when the vibration in the vertical direction is greater than that in the left-right direction or the front-rear direction, it is determined that the rear imbalance is present. Based on the result, the cloth unwinding adjusting unit 24 performs unraveling by rapid acceleration and sudden reversal of less than 2 revolutions in the case of front imbalance, and sudden acceleration and sudden reversal of 2 revolutions or more in the case of rear imbalance. Loosen it.
  • the cloth unwinding adjusting unit 24 determines the cloth unwinding operation by detecting unbalanced vibration from the magnitude and phase relationship of the three signals of the 3D sensor. In addition to this, the cloth unwinding adjusting unit 24 may detect unbalance vibration and determine the cloth unwinding operation from the three signals of the 3D sensor and the magnitude and phase relationship of the rotation speed signal or the control current signal. Is possible.
  • the unbalance vibration estimation unit 30 Detect fluctuations. If a static imbalance of the clothing occurs during acceleration, the torque fluctuation increases in proportion to the magnitude, and it can be detected as a current fluctuation.
  • fluctuation means detecting the current fluctuation value for each rotation.
  • the control unit 20 is instructed to stop the motor rotation. Then start dehydration again after loosening the cloth.
  • the detected resonance is a resonance in the rotational vibration mode around the X axis and around the Y axis.
  • the controller 20 is instructed to stop the motor rotation and the dehydration is started again after the cloth is loosened in the same manner as described above. Do. Again, since vibration due to static unbalance is larger than vibration due to dynamic unbalance, detection of unbalance vibration in the rotational vibration mode around the X and Y axes is performed by detecting static unbalance. It will be.
  • the cloth unwinding adjustment unit 24 has a front unbalance when the vibration in the left and right direction and the front and rear direction are large and equal, and a rear side when the vibration in the vertical direction is large. Judged as unbalanced. Based on the result, the cloth unwinding adjustment unit 24 performs unwinding by rapid acceleration and rapid reversal of less than 2 rotations in the case of front imbalance, and rapid acceleration of 2 rotations or more in the case of rear imbalance. Unravel by sudden reversal.
  • the fluctuation of the motor control current is detected in the acceleration state in the section where the rotation speed reaches from 250 rpm to 400 rpm.
  • the torque fluctuation increases in proportion to the magnitude, and can be detected as a current fluctuation.
  • fluctuation means detecting the current fluctuation value for each rotation. If the unbalance estimation unit 30 detects that the fluctuation value is greater than or equal to the threshold value during acceleration, that is, if the dynamic unbalance vibration is greater than or equal to the threshold value, the controller 20 is instructed to stop the motor rotation, Start dehydration again after loosening the cloth.
  • the resonance detected here is the resonance in the rotational vibration mode around the Z axis (motor rotation axis).
  • Z axis motor rotation axis
  • the controller 20 is instructed to stop the motor rotation and the dehydration is started again after the cloth is loosened in the same manner as described above. Do.
  • vibration due to dynamic unbalance is larger than vibration due to static unbalance, detection of unbalance vibration in the rotation vibration mode around the Z axis will detect dynamic unbalance. .
  • the cloth loosening adjustment unit 24 performs loosening by gentle inversion.
  • the rotational speed is increased to a high-speed dehydration rotation of 400 rpm or more, it is determined according to the unbalanced form of dynamic unbalance or static unbalance and the size thereof.
  • the resonance mode around the Z axis is the largest in the vibration estimation based on the fluctuation value, it is determined as dynamic imbalance and acceleration is performed slowly at 10 rpm / sec.
  • the rotation speed is set to 830 rpm.
  • acceleration is performed at 15 rpm / sec and the high-speed dewatering rotation speed is set to 900 rpm.
  • the maximum number of rotations is determined according to the unbalanced state and the vibration state at the time when the high-speed dewatering rotation is reached. For example, even if the maximum rotational speed is 1600 rpm, the maximum rotational speed is set to 1200 rpm when the unbalanced state at the high-speed dehydrating rotational speed is determined to be dynamic unbalance, and the maximum rotational speed is determined to be static unbalance. Is 1300 rpm.
  • the cloth unraveling adjustment unit 24 responds to the determined clothing bias. Perform cloth unraveling. Thereby, the unevenness of the cloth can be reduced, and unbalance vibration in the dehydration process can be reduced. At the same time, it is possible to reduce the noise associated with the vibration, improve the spin speed and shorten the spin time.
  • FIG. 6 is a block configuration diagram of the control device for the washing machine in the second embodiment of the present invention.
  • the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the detailed description of the first embodiment is used.
  • the control unit 20 decelerates without stopping the rotation of the motor 12 based on the signal from the unbalance vibration detection unit 31 or the unbalance vibration estimation unit 30.
  • the rotation speed correction unit 25 includes a cloth unwinding command unit 26 that decelerates without stopping the rotation and commands the cloth unwinding operation of the cloth unwinding adjustment unit 24. That is, in the first embodiment, the rotation of the motor 12 is temporarily stopped based on the signal from the unbalance vibration detection unit 31 or the unbalance vibration estimation unit 30, and then the cloth unwinding operation is performed. Then, the rotation of the motor 12 is attenuated without stopping, and then the cloth unwinding operation is performed.
  • the rotation speed correction unit 25 is activated based on the determination value.
  • the rotational speed is corrected so as to reduce the rotational speed at the time. In the case of static unbalance, correction is made so that the speed is reduced to 45 rpm / min, and in the case of dynamic unbalance, the speed is reduced to 60 rpm / min.
  • the reason why the static unbalance has a lower rotational speed is to perform forward and reverse sudden reversal operation.
  • the cloth unraveling command unit 26 commands a cloth unwinding operation according to the unbalanced state.
  • the clothes are rotating around the bottom of the washing tub 11, or the clothes fall after reaching the upper side of the washing tub 11. Therefore, the motor torque changes due to the impact transmitted from the clothes to the washing tub 11, and a situation occurs in which the rotation speed of the washing tub 11 cannot be controlled to be constant. Therefore, the number of repetitions of loosening clothes is increased or decreased according to the rotational speed fluctuation in such a situation.
  • the low-speed rotation is continued in one direction for a predetermined time so that the clothes are rotated around or fall after reaching the upper part of the washing tub 11. Alternatively, it is performed by repeating the normal rotation inversion operation.
  • FIG. 7 is a block configuration diagram of a washing machine control apparatus according to Embodiment 3 of the present invention.
  • the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the detailed description of the first embodiment is used.
  • This embodiment is different from the first embodiment in that the dehydration rotation speed (in this embodiment, the rotation speed after 400 rpm) is based on the signal from the unbalance vibration detection unit 31 or the unbalance vibration estimation unit 30.
  • the dehydration rotation speed determining unit 27 is controlled.
  • the unbalance vibration and the unbalance amount can be detected even at 80 to 120 rpm and 120 to 400 rpm.
  • the dehydration speed is determined based on the result. 3 and 4, when the unbalance amount up to the rotational speed of 400 r / min is less than 300 g (regardless of static imbalance or dynamic unbalance), the initial steady rotational speed (400 rpm in this embodiment) is Accelerate as 1000 r / min.
  • the maximum number of revolutions is determined.
  • the initial steady rotational speed is set to 900 r / min for acceleration. In other cases, the initial steady rotational speed is accelerated to 800 r / min. In this case, the maximum rotation speed is set to 1300 rpm and 1200 rpm, respectively.
  • the maximum rotation speed is determined by determining the unbalance from the initial steady rotation speed (400 rpm) and determining the steady rotation speed, and then determining the unbalance.
  • the dehydration rotation speed determination unit 27 determines the initial steady rotation speed and the maximum rotation speed. As a result, it is possible to reduce unbalanced vibration in the dehydration process, and to reduce noise associated with the vibration, increase the dehydration speed, and shorten the dehydration time. That is, when some imbalance occurs, the magnitude of vibration increases in proportion to the rotational speed when the rotational speed is increased. Therefore, determining the dehydration rotation speed according to the magnitude of unbalance leads to suppression of vibration.
  • each embodiment there are three unbalanced modes: three coupled translational vibration modes, rotational vibration modes about the X and Y axes, and rotational vibration mode about the motor rotation axis (Z axis).
  • the vibration is estimated.
  • the same effect can be obtained by estimating in two modes, ie, a translational vibration mode and a rotational vibration mode around the Z axis, or a rotational vibration mode around the X or Y axis and a rotational vibration mode around the Z axis. can get.
  • the present invention controls a washing tub for rotating clothes, a motor for rotationally driving the washing tub, a receiving cylinder that accommodates the washing tub and is elastically supported in the housing by the support portion, and the motor.
  • Control unit unbalanced vibration detection unit for detecting unbalanced vibration of the receiving cylinder or housing, and unbalance for estimating the magnitude of the unbalanced vibration and the rotation phase of the motor according to the output of the control unit
  • a vibration estimation unit and the control unit includes a cloth unwinding adjustment unit that determines a cloth unwinding operation based on at least one output of the output of the unbalance vibration detection unit and the output of the unbalance vibration estimation unit.
  • the fabric bias can be reduced and unbalanced vibration in the dehydration process can be reduced. Therefore, it is possible to reduce the noise accompanying the vibration, improve the spin speed and shorten the spin time.
  • the unbalance estimation unit has a configuration for estimating the magnitude of the unbalance vibration based on the rotation speed of the motor or the control current for each vibration mode of the receiving cylinder.
  • control unit includes a rotation speed correction unit that controls the rotation speed of the motor so as to decelerate without stopping the rotation of the motor, and a cloth unraveling command unit that commands an adjustment operation of the cloth unraveling adjustment unit.
  • the cloth can be loosened according to the unevenness of the clothing and the unevenness of the cloth can be reduced. Therefore, it is possible to reduce unbalance vibration in the dehydration process, to reduce noise accompanying the vibration, to improve the dehydration rotation speed and to shorten the dehydration time. In addition, since no starting current is required, power consumption is reduced and energy is saved.
  • the unbalanced vibration detection unit is configured by an acceleration sensor capable of detecting vibrations in three directions
  • the cloth unwinding adjustment unit is configured with the magnitudes of three signals in the three directions of the acceleration sensor, the rotational phase of the motor, From this relationship, the cloth unwinding operation is determined by estimating the state of the unbalanced vibration.
  • the unbalanced vibration detection unit is configured by an acceleration sensor capable of detecting vibrations in three directions
  • the cloth unwinding adjustment unit is configured with the magnitudes of the three signals in the three directions of the acceleration sensor and the rotation speed signal of the motor. From the relationship between the magnitude of the control current signal and the rotation phase of the motor, the cloth unwinding operation is determined by estimating the state of unbalanced vibration.
  • the unbalance vibration detection unit includes an acceleration sensor capable of detecting vibrations in three directions
  • the cloth unwinding adjustment unit includes the magnitudes of three signals in the three directions of the acceleration sensor of the unbalance vibration detection unit. The cloth unwinding operation is determined from the magnitude of the unbalance vibration estimated by the unbalance estimation unit.
  • the present invention has a configuration in which the cloth unwinding adjustment unit determines the cloth unwinding operation only with the signal of the unbalance vibration estimation unit when the output of the unbalance vibration detection unit is constant or near zero.
  • the unbalance vibration detection unit has a configuration for detecting the vibration on the front side of the receiving cylinder.
  • the present invention has a configuration in which the unbalanced vibration estimation unit estimates the magnitude of unbalanced vibration based on at least one of fluctuations in the rotational speed of the motor, fluctuations in the motor control current, and motor control current.
  • control unit includes a dehydration rotation number determination unit that determines a dehydration rotation number based on at least one of the output of the unbalance vibration detection unit and the output of the unbalance vibration estimation unit.
  • the fabric bias can be reduced and unbalanced vibration in the dehydration process can be reduced. Therefore, it is possible to reduce the noise accompanying the vibration, improve the spin speed and shorten the spin time.
  • the washing machine according to the present invention can reduce the unbalanced vibration of the cloth and reduce the unbalanced vibration in the dehydration process, and can reduce the noise caused by the vibration, improve the spin speed and shorten the spin time. It can be useful as a washing machine.

Abstract

受け筒(13)のアンバランス振動または筐体(17)のアンバランス振動を検知するアンバランス振動検出部(31)と、モータ(12)を制御する制御部(20)の出力に応じてアンバランス振動の大きさとモータ(12)の回転位相を推定するアンバランス振動推定部(30)とを備え、制御部(20)は、アンバランス振動検出部(31)の出力およびアンバランス振動推定部(30)の出力のうち少なくともひとつの出力に基づいて布ほぐし動作を決定する布ほぐし調整部(24)を有することにより、布の偏りを小さくして脱水工程におけるアンバランス振動を低減する。

Description

洗濯機
 本発明は、衣類などの洗濯物の洗濯をおこなう洗濯機に関するものである。
 一般に、洗濯機は衣類などの洗濯物と洗濯水を攪拌して衣類を洗濯するパルセータ式と、衣類を落下させて衣類を洗濯(たたき洗い)するドラム式に大別される。パルセータ式は、洗濯する衣類の出し入れは上側から行い、洗濯槽の向きが縦方向であり縦型と呼ばれる。それに対してドラム式は、洗濯槽の向きが横方向であり横型と呼ばれる。また、一般に乾燥機も横型である。
 このようなドラム式洗濯機は、回転槽内における衣類の分布状態に偏りがあると、脱水運転を行う場合に大きな振動が発生しやすくなる。そのような大きな振動が発生した場合に運転を停止させるために、脱水運転の開始時に衣類の偏り分布状態を検出する洗濯機がある。たとえば、最近のドラム式洗濯機においては、脱水時のアンバランスによる振動騒音を低減するため、アンバランスの検知を、モータのベクトル制御の際に電流から推定して検知する技術が知られている。
 すなわち、すすぎ運転および脱水運転の時、回転駆動力を発生させるためのモータに流れる電流を検出し、検出した電流に基づいてモータをベクトル制御する。これにより、発生トルクが脱水運転ほか各々のモードにおいて最適となるように制御している。この技術によれば、モータの発生トルクを直接反映したq軸電流に基づいて、脱水運転時に発生する異常振動を検出している(例えば、特許文献1参照)。
 また、支持機構系の共振回転数以下で定常回転させて、そのときの電流変動からアンバランスの検知を行う技術が知られている。すなわち、ドラムの周方向に適当に衣類を分散させ、その衣類に作用する遠心力と重力とが均衡する回転数よりやや高い回転数100rpmと200rpmでドラムを回転させる。その状態でモータ電流のトルク電流成分にもとづいて偏心量(アンバランス)を検知する。その偏心量が所定の許容値以下である場合、回転数を上昇させて脱水工程を行なっている(例えば、特許文献2参照)。
 しかしながら、従来のドラム式洗濯機のアンバランス検知においては、特許文献1に記載の技術では、モータ電流の平均値でアンバランスによるロストルクを測定して、アンバランスを推定している。しかし、この場合、負荷個体差の影響を受け推定誤差が大きくなる。
 また、脱水運転の開始時のような低速回転では動的アンバランスは検出されにくい。ドラム式洗濯機では、共振の回転数のような高速回転で、静的なアンバランスよりも動的なアンバランスの方が振動が大きくなる。さらに、静的なアンバランスも、支持機構系の特性とアンバランスが洗濯槽の前後どの位置に存在するかで、振動の特性が異なり、一つの閾値で振動を高精度に検知することができない。
 また、特許文献2に記載の技術によれば、共振回転数以下の回転数で定常回転させて、そのときの電流変動でアンバランスを測定している。しかし、この技術では、布量や個体差などによって共振回転数は異なり、共振の感度も異なるため、推定誤差が発生する。
 この場合も、共振回転より低い定常回転数において、制御電流(トルク電流成分)の大きさで振動の大きさを推定検知している。しかし、回転数上昇によってアンバランスが変化していくため高精度には振動を推定できない。また、動的なアンバランスは回転振動モードの共振回転数で急激に振動が大きくなり、モータへの負荷も大きくなる。そのため、特許文献2に記載の技術のような低速回転数で動的なアンバランスを検知することができない。
特開2002-360970号公報 特開2001-276468号公報
 本発明は、衣類の偏り量とその位置を推定して、衣類の偏りに応じた布ほぐしを行うことにより、布の偏りを小さくして脱水工程におけるアンバランス振動を低減することを目的とする。
 本発明は、衣類を回転させる洗濯槽と、洗濯槽を回転駆動するモータと、洗濯槽を収容し支持部により筐体内に弾性支持される受け筒と、モータを制御する制御部と、受け筒のアンバランス振動または筐体のアンバランス振動を検知するアンバランス振動検出部と、制御部の出力に応じてアンバランス振動の大きさとモータの回転位相を推定するアンバランス振動推定部とを備え、制御部は、アンバランス振動検出部の出力およびアンバランス振動推定部の出力うち少なくともひとつの出力に基づいて布ほぐし動作を決定する布ほぐし調整部を有するものである。
 この構成により、衣類の偏りに応じた布ほぐし動作を行うことによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することができる。したがって、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することができる。
図1は、本発明の実施の形態1における洗濯機の制御装置のブロック構成図である。 図2は、同実施の形態における洗濯機の概略構成図である。 図3は、同実施の形態における洗濯機の脱水回転数のシーケンス図である。 図4は、同実施の形態における洗濯機の振動特性説明図である。 図5は、同実施の形態における洗濯機の制御部の詳細を示すブロック図である。 図6は、本発明の実施の形態2における洗濯機の制御装置のブロック構成図である。 図7は、本発明の実施の形態3における洗濯機の制御装置のブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における洗濯機のブロック構成図である。図2は、同洗濯機の概略構成図である。図3は、同洗濯機の脱水工程における起動時の回転数を示すシーケンス図である。図4は、同洗濯機の脱水工程における起動時の振動特性説明図である。図5は、同洗濯機の制御部の詳細を示すブロック図である。
 図1において、洗濯機機構部10は、衣類などの洗濯物を収容し回転させる洗濯槽としての回転ドラム11を有している。回転ドラム11を速度制御しながら回転させるモータ12は、ブラシレスモータにより構成されている。洗濯機機構部10は、回転ドラム11を回転自在に内装し、洗濯物である衣類と水が入れられる受け筒13を有している。洗濯機機構部10は、モータ12および受け筒13を内部に収容する筐体17を有している。筐体17の前面側に衣類を出し入れする投入口18が設けられている。受け筒13と筐体17との間には、これらの隙間をなくして接続するためのシールパッキン14が設けられている。受け筒13は、前上がりの姿勢を支持するために支持ばね15で支持されている。ダンパ機構16は、洗濯時(モータ回転時)に発生する振動を低減して筐体17や床への振動伝達を小さくするためのばね要素とダンパ要素で構成される。防振ゴム19は、洗濯機機構部10の筐体17を床に設置するために用いられる。制御部20は、モータ12の回転駆動を制御する。
 速度検出部21は、モータ12の回転速度を検出するホールICから構成される。制御量演算部22は、速度検出部21の出力であるモータ12の回転速度をもとに、目標回転速度との誤差を演算して制御量を演算する制御マイコンから構成される。駆動部23は、制御量演算部22で演算された制御量に基づいて、モータ12へモータ制御電流またはモータ回転数を印加するインバータ回路から構成される。本実施の形態では、モータ12へモータ制御電流を印加する場合について説明する。アンバランス振動推定部30は、回転ドラム11内で洗濯される衣類の偏りによって発生する、回転ドラム11または筐体17のアンバランス振動を、駆動部23から出力されるモータ制御電流もしくはモータ回転数により推定する。本実施の形態では、アンバランス振動推定部30は、駆動部23から出力されるモータ制御電流により推定する場合について説明する。アンバランス振動検出部31は、例えば3軸加速度センサ(以下、3Dセンサと称する)から構成され、アンバランス振動を直接検知する。なお、アンバランス振動推定部30は、駆動部23から出力されるモータ制御電流により推定するだけではなく、モータ制御電流の変動またはモータ回転数の変動から推定することも可能である。
 アンバランス振動推定部30は、モータ制御電流もしくはモータ回転数をもとにアンバランス振動の大きさを推定して、その大きさに応じて、モータ12の加速/停止の決定や、モータ12の回転を上昇させる加速度の決定、目標回転数の決定を行う。
 さらに、アンバランス振動推定部30は、モータ12の回転位相を推定する。すなわち、アンバランス振動推定部30は、アンバランス振動検出部31の出力を時間ごとに追っていき、振動が最も大きくなるときの回転ドラム11の回転位置を検出する。検出した回転位置を中心として、回転ドラム11を左右に正転反転(急正転急反転)させて後述する布ほぐしを行う。
 その後、後述する布ほぐし調整部24を介して制御量演算部22に指令する。
 アンバランス振動検出部31も、回転ドラム11または筐体17のアンバランス振動の直接の検出値に応じて、モータ12の加速/停止の決定や、モータ12の回転を上昇させる加速度の決定、目標回転数の決定を行う。その後、布ほぐし調整部24を介して制御量演算部22に指令する。布ほぐし調整部24は、後述するように、アンバランス振動推定部30での推定結果またはアンバランス振動検出部31での検出結果に基づき、布ほぐし動作を決定する。すなわち、布ほぐしのために回転ドラム11の反転動作の制御を行う。
 アンバランス振動推定部30の値とアンバランス振動検出部31の値は、通常アンバランス振動検出部31の値が優先され、アンバランス振動検出部31の出力がない(ほぼゼロの場合も含む)場合、またはアンバランス振動検出部31の出力信号が一定の場合、アンバランス振動推定部30の推定値のみが推定に使用される。
 図2に示すように、本実施の形態では、ドラム式洗濯機における振動の方向を、直交する3つの軸(X軸、Y軸、Z軸)で定義している。モータ12の回転軸をZ軸、洗濯機を正面から見て受け筒13の左右方向をX軸、同上下方向をY軸と定義する。図2において、点Aは受け筒13の前側最上端部を示し、点Bは受け筒13の後側最上端部を示す。したがって、点Aでは受け筒13の前側振動を、点Bでは受け筒13の後側振動を検出できる。
 図3は、脱水工程における起動時の回転数を示すシーケンス図である。回転数を80rpmと120rpmで一定時間、定常回転させながら回転数を上昇させて、受け筒13の支持機構系の共振回転数を通過した400rpmで再び定常回転させた後、脱水回転まで高速回転させている。なお、本実施の形態では、受け筒13の支持機構系は、支持ばね15およびダンパ機構16で構成される。
 図4は、図3のシーケンスでモータ12の回転数を上昇させた場合の、受け筒13の点Bで検出した後側振動の振幅を示す振動特性図である。図4において、波形A、Bは、受け筒13の振動の振幅を示している。波形Aは動的アンバランスを示し、波形Bは静的アンバランスを示している。波形Cはモータ12の回転数の時間的変化を示しており、時刻T1で回転数が160rpm、時刻T2で回転数が220rpm、時刻T3で回転数が350rpmである。
 静的アンバランスの例としては、回転ドラム11の前片側(図2の点A)に衣類の偏りが500gあるような場合である。なお、前片側であれば上下のいずれでもかまわない。動的アンバランスの例としては、衣類の偏りが前下側(図2の点Aの下側)に300gと、対向した後下側(図2の点B下側)に300gあるような場合である。
 図4からわかるように、波形Aは350rpm近傍で大きな振動を発生している。また、波形Bは、160rpmと220rpm近傍で大きな振動が発生している。160rpmの振動はXYZの3方向の並進振動モードの連成した共振である。また、220rpmの振動はX軸周りとY軸周りの回転振動モードの連成した共振である。また、350rpmの振動は、Z軸周りの回転振動モードの共振である。時刻T1ではX軸Y軸Z軸の振幅がどれも同じように大きな振幅である。時刻T2ではX軸Y軸の振幅がZ軸よりも大きい。時刻T3ではZ軸の振幅がX軸Y軸の振幅より大きく現れる。特に、時刻T2と時刻T3では、動的アンバランスと静的アンバランスのときに、各軸の振幅の現われかたが異なる。したがって、どのようなアンバランスか(動的か静的か)を判定するときに、どの軸の振幅をみればよいかということがわかる。本実施の形態では、モータ12、洗濯槽11、受け筒13を含めた重心を、洗濯槽11の回転軸上であって、かつ後方ダンパ機構16の上方に置く構成を有しているので、図4に示すような特性が得られると思われる。
 図5は、回転ドラム11を回転させるモータ12を回転制御する制御部20のフィードバック制御系の詳細を示すブロック図である。図5において、制御量演算部22を構成するマイコン51内では、目標回転数ωrefと実際の回転数ωmとの差に応じて、速度制御ゲインKvでモータ12の回転数が制御され、目標となるモータ駆動電流が得られる。目標となるモータ駆動電流とマイコン51から出力される実際のモータ駆動電流との差に応じて、電流制御ゲインKcによりモータ駆動電流が制御され、適正なモータ駆動電流Iが得られる。モータ駆動電流Iは、モータ12のトルク定数Ktと演算される。その結果は、回転ドラム11とモータ12の慣性モーメントJsと演算されて、モータ12の回転数を算出する。このとき、衣類のアンバランスによるトルク外乱TLが目標回転数ωrefに対して影響し、実際の回転数がωmになる。
 ここで、振動検知のメカニズムについて説明する。回転ドラム11内で衣類のアンバランスが発生すると、モータ12による回転ドラム11の回転は楕円回転となる。そのため、アンバランス振動による力が支持機構系の共振回転数(周波数)と一致する場合、大きな振動を発生させることになる。一方、アンバランス振動によってモータ12がトルク方向の外乱を受け、モータ制御系ではトルク変動、速度変動が発生する。
 振動によるトルク変動を速度変動として検出する場合は(式1)より得られる。
ωm/TL=(1/J)/(S+Kv×Kc×Kt/(J(1+Kc)))   (式1)
 振動によるトルク変動を電流変動として検出する場合は(式2)より得られる。
Iq/TL=Kv×Kc/(J(1+Kc))/(S+Kv×Kc×Kt/(J(1+Kc)))(式2)
 高精度検出のためには、原理的にはゲインを大きくすればいい。しかしながら、ゲインを大きくすると信号のノイズが増加する。そのため、ゲイン増加に対して、検知精度(ばらつき)は極大値を有することになる。このように、振動によるモータ12へのトルク変動を、モータ制御系のパラメータで検出して、振動を推定検知する場合、振動とモータ12へのトルク変動が線形であることが重要となる。
 そのために、本実施の形態では、以下の構成を有している。第1に、衣類のアンバランスによって発生する受け筒13の振動は、図2に示すA点の前側振動とB点の後側振動の振幅が略一致している。本実施の形態では、モータ12、洗濯槽11、受け筒13を含めた重心を、洗濯槽11の回転軸上であって、かつ後方ダンパ機構16の上方に置く構成によって、A点の前側振動とB点の後側振動の振幅が略一致している。受け筒13の後側振動がモータ12へのトルク変動となって、その変動を制御パラメータで検出している。すなわち、前側振動と後側振動の振幅の関係が非線形であると、トルク変動による測定では、前側が後側に対して極端に大きな振動などを誤検知してしまうことになる。しかし、本実施の形態では、前側振動と後側振動の振幅の関係が線形であるので、このような誤検知は生じない。
 第2に、アンバランス振動による共振モードは、3つの軸のそれぞれに並進モードと回転モードがある。そのため、共振モードは6つの振動モードを有していて、この6つの振動モードの中で、1番トルク変動に影響を与える振動モードはZ軸まわりの回転振動モードである。そのため、本実施の形態では、上記した重心の位置により、各振動モードが発生する回転数(共振周波数)が、Z軸まわりの回転振動モードと連成しない構成となっている。
 第3に、本実施の形態では、同様に上記した重心の位置により、3つが連成した並進振動モードと、X軸とY軸まわりの連成した回転振動モードと、Z軸まわりの回転振動モードの3つが独立した支持機構系で構成されている。共振の回転数でトルク変動に影響を与えない大きさは、並進振動モード<X軸とY軸まわりの回転振動モード<Z軸まわりの回転振動モードの順である。
 振動検知シーケンスを説明する。はじめに、図3に示すように、80rpmから120rpmへ回転数を上昇していく工程の加速状態でモータ制御電流の変動を検出する。加速中、衣類の静的アンバランスが生じると、その大きさに比例してトルク変動も大きくなり、電流変動として検出することが可能となる。加速度は5rpm/secとする。
 ここで、変動とは1回転ごとの電流変動値を検出している。加速中に変動値が閾値以上の場合、すなわち(静的)アンバランス振動が閾値以上の場合であることを、アンバランス振動推定部30が検知した場合、制御部20へモータ回転停止を指令して、布ほぐし後再度脱水起動運転を行う。
 また、アンバランス振動検出部31である3Dセンサも、3方向のうち1つでも閾値以上の場合、上記と同様に、制御部20へモータ回転停止を指令して、布ほぐし後再度脱水起動運転を行う動作を行う。
 この回転数、すなわち80rpmから120rpmの回転数では、動的アンバランスが生じていても、ほとんど振動がなく、トルク変動も小さい。そのため、並進振動モードでのアンバランス振動検知は静的アンバランスの検知を行っていることになる。
 布ほぐし調整部24は、3Dセンサの出力をもとに、左右方向と前後方向の振動が上下方向よりも大きく、かつ同等の場合は前側のアンバランスと判定する。また、上下方向の振動が左右方向または前後方向よりも大きい場合は後側のアンバランスと判定する。その結果をもとに、布ほぐし調整部24は、前側のアンバランスの場合は2回転未満の急加速急反転でほぐしを行い、後側のアンバランスの場合は2回転以上の急加速急反転でほぐしを行う。
 すなわち、布ほぐし調整部24は、3Dセンサの3つの信号の大きさと位相関係から、アンバランス振動を検出して布ほぐし動作を決定する。また、これ以外にも、布ほぐし調整部24は、3Dセンサの3つの信号と回転数信号もしくは制御電流信号の大きさと位相関係から、アンバランス振動を検出して布ほぐし動作を決定することも可能である。
 次に、図3に示す120rpmから400rpmへ回転数を上昇していく工程のうち、回転数が150rpm付近から250rpmに到達する区間において、アンバランス振動推定部30は、加速状態でモータ制御電流の変動を検出する。加速中、衣類の静的アンバランスが生じると、その大きさに比例してトルク変動も大きくなり、電流変動として検出することが可能となる。
 ここでも、変動とは1回転ごとの電流変動値を検出している。加速中に変動値が閾値以上の場合、すなわち(静的)アンバランス振動が閾値以上の場合であることを、アンバランス推定部30が検知した場合、制御部20へモータ回転停止を指令して、布ほぐし後再度脱水起動を行う。
 ここで、検知する共振はX軸まわりとY軸まわりの回転振動モードの共振である。静的アンバランスがある場合に大きな振動、大きなトルク変動が発生して、それを電流変動として高精度に検知することが可能となる。
 また、アンバランス振動検出部30である3Dセンサも、3方向のうち1つでも閾値以上の場合、上記と同様に、制御部20へモータ回転停止を指令して、布ほぐし後再度脱水起動を行う。ここでも、動的アンバランスによる振動よりも静的アンバランスによる振動が大きいので、X軸とY軸まわりの回転振動モードでのアンバランス振動の検知は、静的アンバランスの検知を行っていることになる。
 また、同様に、布ほぐし調整部24は3Dセンサの出力をもとに、左右方向と前後方向の振動が大きくかつ同等の場合は前側のアンバランス、上下方向の振動が大きい場合は後側のアンバランスと判定する。そして、その結果をもとに、布ほぐし調整部24は、前側のアンバランスの場合は2回転未満の急加速急反転でほぐしを行い、後側のアンバランスの場合は2回転以上の急加速急反転でほぐしを行う。
 最後に120rpmから400rpmへ回転数を上昇していく工程のうち、250rpmから400rpmの回転数に到達する区間において、加速状態でモータ制御電流の変動を検出する。加速中、衣類の動的アンバランスが生じると、その大きさに比例してトルク変動も大きくなり、電流変動として検出することが可能となる。
 ここでも変動とは1回転ごとの電流変動値を検出している。加速中に変動値が閾値以上の場合、すなわち、動的アンバランス振動が閾値以上の場合であることを、アンバランス推定部30が検知した場合、制御部20へモータ回転停止を指令して、布ほぐし後再度脱水起動を行う。
 ここで検知する共振はZ軸(モータ回転軸)まわりの回転振動モードの共振である。動的アンバランスがある場合に、大きな振動、大きなトルク変動が発生して、それを電流変動として高精度に検知することが可能となる。
 また、アンバランス振動検出部30である3Dセンサも、3方向のうち1つでも閾値以上の場合、上記と同様に、制御部20へモータ回転停止を指令して、布ほぐし後再度脱水起動を行う。ここでは、動的アンバランスによる振動の方が静的アンバランスによる振動よりも大きいので、Z軸まわりの回転振動モードでのアンバランス振動の検知は、動的アンバランスの検知を行うことになる。布ほぐし調整部24はゆるやかな反転でほぐしを行う。
 このように、動的アンバランスか静的アンバランスかを共振の発生する回転数で判別するため、アンバランス振動が閾値以上の場合に行う布ほぐし動作も、これら原因によって区別して行うことが可能となる。すなわち、250rpm未満の回転数で変動値が閾値を超えた場合は静的アンバランスと判定して、布ほぐし動作を急加速急反転で行う。また、250rpm以上の回転数で変動値が閾値を超えた場合動的アンバランスと判定して、布ほぐし動作はゆるやかな反転で行う。
 また、400rpm以上の高速脱水回転に回転数を上昇させる場合も、動的アンバランスか静的アンバランスかというアンバランスの形態とその大きさに応じて決定する。
 変動値が閾値以下であっても、変動値による振動推定で、Z軸まわりの共振モードが1番大きい場合、動的アンバランスと判定して、加速をゆるやかに10rpm/secで行い、高速脱水回転数を830rpmとする。しかし、変動値による振動推定で、静的アンバランスと判定した場合は、加速を15rpm/secで行い、高速脱水回転数を900rpmする。これらの判断は、アンバランス振動推定部30で行われる。
 なお、最高回転数は、高速脱水回転に到達した時点でのアンバランス状態、振動状態に応じて決定する。例えば、最高回転数が1600rpmであっても、高速脱水回転数でのアンバランス状態が動的アンバランスと判定した場合は最高回転数を1200rpmとし、静的アンバランスと判定した場合は最高回転数を1300rpmとする。
 以上より、本実施の形態は、アンバランス振動検出部31の出力およびアンバランス推定部30の出力うち少なくともひとつの出力に基づいて、布ほぐし調整部24は、決められた衣類の偏りに応じた布ほぐし動作を行う。これによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することが可能となる。これとともに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 (実施の形態2)
 図6は、本発明の実施の形態2における洗濯機の制御装置のブロック構成図である。図6において、基本的な構成は実施の形態1と同様であり、同一の構成要素については同一の符号を付して、その詳細な説明は実施の形態1のものを援用する。
 本実施の形態が実施の形態1と異なるところは、制御部20が、アンバランス振動検出部31またはアンバランス振動推定部30の信号をもとに、モータ12の回転を停止することなく減速するようにモータ12の回転数を制御する回転数補正部25を有することである。さらに、この回転数補正部25によって、回転を停止することなく減速して布ほぐし調整部24の布ほぐし動作を指令する布ほぐし指令部26を有することである。すなわち、実施の形態1では、アンバランス振動検出部31またはアンバランス振動推定部30の信号をもとに、モータ12の回転を一旦停止してその後布ほぐし動作を行ったが、本実施の形態では、モータ12の回転を停止することなく減衰し、その後布ほぐし動作を行う。
 アンバランス振動検出部31である3Dセンサもしくはアンバラス振動推定部30で、アンバランス振動の量が閾値を超えていると判定された場合、回転数補正部25が、その判定値をもとに起動時の回転数を減速させるように回転数を補正する。静的アンバランスの場合は45rpm/minまで、動的アンバランスの場合60rpm/minまで減速させるように補正する。静的アンバランスの方が低い回転数である理由は、正逆急反転動作をするためである。
 さらに、目標回転数(45rpm/min、60rpm/min)で回転したことを確認して、布ほぐし指令部26が、アンバランス状態に応じた布ほぐし動作を指令する。このような低速回転の場合、衣類が洗濯槽11の下のほうでゴロゴロと回転していたり、衣類が洗濯槽11の上方に到達したあと落ちてきたりする。したがって、衣類から洗濯槽11に伝わる衝撃でモータトルクが変わり、洗濯槽11の回転数を一定に制御することができない状況が発生する。そのため、このような状況での回転数変動に応じて、衣類をほぐす繰り返し回数を増減させる。回転数変動が大きい場合、アンバランス振動の量が大きいと判断して、繰り返し回数を増加させる。衣類をほぐすには、例えば、低速回転を一方向に所定時間継続させて衣類をゴロゴロと回転させたり洗濯槽11の上方に到達したあと落ちてきたりさせることにより行う。または、正転反転動作を繰り返すことにより行う。
 以上より、本実施の形態では、回転数補正部25によってモータ12の回転を停止することなく低減するように回転数を決める。その後、布ほぐし指令部26によって、反転の繰り返し回数を決める。これによって、本実施の形態では、決められた衣類の偏りに応じた布ほぐし動作を行う。これによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することが可能となる。さらに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 (実施の形態3)
 図7は、本発明の実施の形態3における洗濯機の制御装置のブロック構成図である。図7において、基本的な構成は実施の形態1と同様であり、同一の構成要素については同一の符号を付して、その詳細な説明は実施の形態1のものを援用する。
 本実施の形態が実施の形態1と異なるところは、アンバランス振動検出部31またはアンバランス振動推定部30の信号をもとに、脱水回転数(本実施の形態では、400rpm以降の回転数)を制御する脱水回転数決定部27を有することである。
 3Dセンサであるアンバランス振動検出部31とアンバランス振動推定部30の信号により、定常回転数領域(本実施の形態では、80、120、400rpm)だけでなく、回転数加速領域(本実施の形態では、80~120rpm、120~400rpm)でも、アンバランス振動、アンバランス量を検知することが可能である。本実施の形態では、その結果をもとに脱水回転数を決定する。図3、図4より回転数400r/minまでのアンバランス量が300g未満の場合(静的アンバランスや動的アンバランスにかかわらない)、初期の定常回転数(本実施の形態では400rpm)を1000r/minとして加速する。定常回転後(本実施の形態では1000rpm)、最高回転数を決定する。また、アンバランス量が300g以上500g未満の場合(動的アンバランスや動的アンバランスにかかわらない)、初期の定常回転数を900r/minとして加速する。その他の場合、初期の定常回転数を800r/minとして加速する。この場合、最高回転数をそれぞれ1300rpm、1200rpmに設定する。最高回転数は、初期の定常回転数(400rpm)からアンバランスを判定して定常回転数を決定した後、アンバランスを判定して決定する。
 以上より、本実施の形態では、脱水回転数決定部27によって、初期の定常回転数と最高回転数が決められる。このことによって、脱水工程におけるアンバランス振動を低減することが可能となるとともに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。すなわち、何らかのアンバランスが発生した場合、回転数を上昇させると振動の大きさは回転数に比例して大きくなる。したがって、アンバランスの大きさに応じて脱水回転数を決定することは振動を抑制することにつながる。
 なお、各実施の形態において、3つの連成した並進振動モードと、X軸とY軸まわりの回転振動モードと、モータ回転軸(Z軸)まわりの回転振動モードとの3つのモードでアンバランス振動を推定している。しかし、並進振動モードとZ軸周りの回転振動モードの2つのモード、あるいはX軸またはY軸まわりの回転振動モードとZ軸まわりの回転振動モードの2つのモードで推定しても同様の効果が得られる。
 また、各実施の形態では、3つの並進振動モードが連成し、X軸とY軸まわりの回転振動モードが連成しているが、Z軸まわりの回転振動モードと他のモードが連成しなければ同様の効果がある。
 以上説明してきたように、本発明は、衣類を回転させる洗濯槽と、洗濯槽を回転駆動するモータと、洗濯槽を収容し支持部により筐体内に弾性支持される受け筒と、モータを制御する制御部と、受け筒のアンバランス振動または筐体のアンバランス振動を検知するアンバランス振動検出部と、制御部の出力に応じてアンバランス振動の大きさとモータの回転位相を推定するアンバランス振動推定部とを備え、制御部は、アンバランス振動検出部の出力およびアンバランス振動推定部の出力うち少なくともひとつの出力に基づいて布ほぐし動作を決定する布ほぐし調整部を有するものである。
 この構成により、衣類の偏りに応じた布ほぐし動作を行うことによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することができる。したがって、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することができる。
 また、本発明は、アンバランス推定部は、受け筒の振動モードごとのモータの回転速度または制御電流によりアンバランス振動の大きさを推定する構成を有する。
 このことにより、衣類の偏りに応じた布ほぐし動作を行うとともに、布の偏りを小さくすることができる。これとともに、脱水工程におけるアンバランス振動を低減することができ、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することができる。
 また、本発明は、制御部は、モータの回転を停止することなく減速するようにモータの回転数を制御する回転数補正部と、布ほぐし調整部の調整動作を指令する布ほぐし指令部とを有する。
 かかる構成により、衣類の偏りに応じた布ほぐしを行い、布の偏りを小さくすることができる。したがって、脱水工程におけるアンバランス振動を低減することができるとともに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することができる。また、起動電流が不要になり消費電力を少なくして省エネルギーがはかれる。
 また、本発明は、アンバランス振動検出部は、3方向の振動が検出できる加速度センサから構成され、布ほぐし調整部は、加速度センサの3方向の3つの信号の大きさと、モータの回転位相との関係から、アンバランス振動の状態を推定して布ほぐし動作を決定する構成を有する。
 かかる構成により、衣類の偏り状態を精度良く推定できるとともに、衣類の偏りに応じた布ほぐしを行うことができる。これによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することが可能となる。さらに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 また、本発明は、アンバランス振動検出部は、3方向の振動が検出できる加速度センサから構成され、布ほぐし調整部は、加速度センサの3方向の3つの信号の大きさとモータの回転数信号もしくは制御電流信号の大きさとモータの回転位相との関係から、アンバランス振動の状態を推定して布ほぐし動作を決定する構成を有する。
 かかる構成により、衣類の偏り状態とモータへの負荷量を精度良く推定できるとともに、衣類の偏りに応じた布ほぐしを行うことができる。これによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することが可能となる。さらに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 また、本発明は、アンバランス振動検出部は、3方向の振動が検出できる加速度センサから構成され、布ほぐし調整部は、アンバランス振動検出部の加速度センサの3方向の3つの信号の大きさと、アンバランス推定部で推定したアンバランス振動の大きさとから布ほぐし動作を決定する構成を有する。
 かかる構成により、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することが可能となるとともに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 また、本発明は、布ほぐし調整部は、アンバランス振動検出部の出力が一定、またはゼロ近傍である場合、アンバランス振動推定部の信号のみで布ほぐし動作を決定する構成を有する。
 かかる構成により、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することが可能となるとともに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 また、本発明は、アンバランス振動検出部は、受け筒の前側の振動を検知する構成を有する。
 かかる構成により、少量衣類の場合であっても高精度にアンバランスを検知することができる。したがって、衣類の偏りに応じた布ほぐし動作を行うことによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することが可能となる。さらに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 また、本発明は、アンバランス振動推定部は、モータの回転数の変動、モータの制御電流の変動、およびモータの制御電流のうち少なくともひとつによりアンバランス振動の大きさを推定する構成を有する。
 かかる構成により、アンバランス振動を精度良く推定することができ、衣類の偏りに応じた布ほぐしを行うことによって、布の偏りを小さくすることができる。したがって、脱水工程におけるアンバランス振動を低減することが可能となるとともに、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することが可能となる。
 また、本発明は、制御部は、アンバランス振動検出部の出力およびアンバランス振動推定部の出力うち少なくともひとつの出力に基づいて脱水回転数を決定する脱水回転数決定部を有する。
 この構成により、衣類の偏りに応じた布ほぐし動作を行うことによって、布の偏りを小さくすることができ、脱水工程におけるアンバランス振動を低減することができる。したがって、その振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することができる。
 以上のように、本発明にかかる洗濯機は、布の偏りを小さくして脱水工程におけるアンバランス振動を低減することができ、振動に伴う騒音の低減、脱水回転数向上と脱水時間短縮を実現することができるので、洗濯機として有用である。
 10  洗濯機機構部
 11  洗濯槽
 12  モータ
 13  受け筒
 14  シールパッキン
 15  支持ばね
 16  ダンパ機構
 17  筐体
 18  投入口
 19  防振ゴム
 20  制御部
 21  速度検出部
 22  制御量演算部
 23  駆動部
 24  布ほぐし調整部
 25  回転数補正部
 26  布ほぐし指令部
 27  脱水回転数決定部
 30  アンバランス振動推定部
 31  アンバランス振動検出部

Claims (10)

  1. 衣類を回転させる洗濯槽と、前記洗濯槽を回転駆動するモータと、前記洗濯槽を収容し支持部により筐体内に弾性支持される受け筒と、前記モータを制御する制御部と、前記受け筒のアンバランス振動または前記筐体のアンバランス振動を検知するアンバランス振動検出部と、前記制御部の出力に応じて前記アンバランス振動の大きさと前記モータの回転位相を推定するアンバランス振動推定部とを備え、前記制御部は、前記アンバランス振動検出部の出力および前記アンバランス振動推定部の出力のうち少なくともひとつの出力に基づいて布ほぐし動作を決定する布ほぐし調整部を有する洗濯機。
  2. 前記アンバランス推定部は、前記受け筒の振動モードごとの前記モータの回転速度または制御電流により前記アンバランス振動の大きさを推定する請求項1記載の洗濯機。
  3. 前記制御部は、前記モータの回転を停止することなく減速するように前記モータの回転数を制御する回転数補正部と、前記布ほぐし調整部の布ほぐし動作を指令する布ほぐし指令部とを有する請求項1記載の洗濯機。
  4. 前記アンバランス振動検出部は、3方向の振動が検出できる加速度センサから構成され、前記布ほぐし調整部は、前記加速度センサの前記3方向の3つの信号の大きさと、前記モータの回転位相との関係から、前記アンバランス振動の状態を推定して布ほぐし動作を決定する請求項1記載の洗濯機。
  5. 前記アンバランス振動検出部は、3方向の振動が検出できる加速度センサから構成され、前記布ほぐし調整部は、前記加速度センサの前記3方向の3つの信号の大きさと前記モータの回転数信号もしくは制御電流信号の大きさと前記モータの回転位相との関係から、前記アンバランス振動の状態を推定して布ほぐし動作を決定する請求項1記載の洗濯機。
  6. 前記アンバランス振動検出部は、3方向の振動が検出できる加速度センサから構成され、前記布ほぐし調整部は、前記アンバランス振動検出部の前記加速度センサの前記3方向の3つの信号の大きさと、前記アンバランス推定部で推定した前記アンバランス振動の大きさとから前記布ほぐし動作を決定する請求項1記載の洗濯機。
  7. 前記布ほぐし調整部は、前記アンバランス振動検出部の出力が一定、またはゼロ近傍である場合、前記アンバランス振動推定部の信号のみで布ほぐし動作を決定する請求項1記載の洗濯機。
  8. 前記アンバランス振動検出部は、前記受け筒の前側の振動を検知する請求項1記載の洗濯機。
  9. 前記アンバランス振動推定部は、前記モータの回転数の変動、前記モータの制御電流の変動、および前記モータの制御電流のうち少なくともひとつにより前記アンバランス振動の大きさを推定する請求項1記載の洗濯機。
  10. 前記制御部は、前記アンバランス振動検出部の出力および前記アンバランス振動推定部の出力うち少なくともひとつの出力に基づいて脱水回転数を決定する脱水回転数決定部を有する請求項1記載の洗濯機。
PCT/JP2009/003972 2008-08-22 2009-08-20 洗濯機 WO2010021135A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801328612A CN102131976B (zh) 2008-08-22 2009-08-20 洗衣机
EP09808071.6A EP2330244A4 (en) 2008-08-22 2009-08-20 WASHING MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-213760 2008-08-22
JP2008213760 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021135A1 true WO2010021135A1 (ja) 2010-02-25

Family

ID=41707025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003972 WO2010021135A1 (ja) 2008-08-22 2009-08-20 洗濯機

Country Status (4)

Country Link
EP (1) EP2330244A4 (ja)
JP (1) JP2010069293A (ja)
CN (1) CN102131976B (ja)
WO (1) WO2010021135A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520814A (ja) * 2015-07-31 2018-08-02 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 ドラム式洗濯機、そのアンバランス検出方法及び装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269917B2 (ja) * 2011-01-07 2013-08-21 シャープ株式会社 洗濯機
JP5531048B2 (ja) * 2012-04-04 2014-06-25 シャープ株式会社 洗濯機
JP6025264B2 (ja) * 2014-04-23 2016-11-16 シャープ株式会社 洗濯機
CN105019191B (zh) * 2014-04-30 2019-11-05 重庆海尔洗衣机有限公司 一种洗衣机偏心检测方法
JP2014237061A (ja) * 2014-09-26 2014-12-18 シャープ株式会社 洗濯機
CN106149279A (zh) * 2015-03-27 2016-11-23 青岛海尔滚筒洗衣机有限公司 一种洗衣机控制方法及洗衣机
JP7071796B2 (ja) * 2016-07-06 2022-05-19 東芝ライフスタイル株式会社 洗濯機
JP7061754B2 (ja) * 2016-12-27 2022-05-02 青島海爾洗衣机有限公司 洗濯機
JP7010609B2 (ja) * 2017-07-12 2022-02-10 東芝ライフスタイル株式会社 洗濯機
JP7178651B2 (ja) * 2017-11-21 2022-11-28 青島海爾洗衣机有限公司 ドラム式洗濯機
KR102437907B1 (ko) * 2018-04-03 2022-08-29 엘지전자 주식회사 세탁물처리장치 및 제어방법
JP7197858B2 (ja) * 2018-10-30 2022-12-28 青島海爾洗衣机有限公司 ドラム式洗濯機
JP7210339B2 (ja) 2019-03-14 2023-01-23 株式会社東芝 モータ制御装置、及びモータ制御方法
CN113668188B (zh) * 2021-08-16 2024-04-19 海信冰箱有限公司 洗衣机及其振动控制方法、电子设备
WO2023084400A1 (en) * 2021-11-10 2023-05-19 Fisher & Paykel Appliances Limited Out of balance method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276468A (ja) 2000-03-30 2001-10-09 Sanyo Electric Co Ltd ドラム式洗濯機
JP2002360970A (ja) 2001-06-07 2002-12-17 Toshiba Corp 洗濯機
JP2006346270A (ja) * 2005-06-17 2006-12-28 Toshiba Corp 洗濯機
JP2007209502A (ja) * 2006-02-09 2007-08-23 Sanyo Electric Co Ltd ドラム式洗濯機
JP2008183297A (ja) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd 洗濯機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2351462Y (zh) * 1998-06-12 1999-12-01 中国济南洗衣机厂 脱水自平衡减振洗衣机
EP1342826A1 (en) * 2002-03-04 2003-09-10 Primus N.V. System for managing out-of-balance of loads in a laundry apparatus
CN1782177A (zh) * 2004-11-30 2006-06-07 乐金电子(天津)电器有限公司 洗衣机解开洗涤物控制方法
KR100690687B1 (ko) * 2005-08-19 2007-03-09 엘지전자 주식회사 세탁기의 편심 종류 검출 방법
KR20070048918A (ko) * 2005-11-07 2007-05-10 삼성전자주식회사 세탁기 및 그 언밸런스 검출방법
KR101272341B1 (ko) * 2006-09-19 2013-06-05 엘지전자 주식회사 세탁기의 진동 감지 장치 및 방법
JP4867631B2 (ja) * 2006-12-08 2012-02-01 パナソニック株式会社 洗濯機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276468A (ja) 2000-03-30 2001-10-09 Sanyo Electric Co Ltd ドラム式洗濯機
JP2002360970A (ja) 2001-06-07 2002-12-17 Toshiba Corp 洗濯機
JP2006346270A (ja) * 2005-06-17 2006-12-28 Toshiba Corp 洗濯機
JP2007209502A (ja) * 2006-02-09 2007-08-23 Sanyo Electric Co Ltd ドラム式洗濯機
JP2008183297A (ja) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd 洗濯機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2330244A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520814A (ja) * 2015-07-31 2018-08-02 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 ドラム式洗濯機、そのアンバランス検出方法及び装置

Also Published As

Publication number Publication date
CN102131976A (zh) 2011-07-20
JP2010069293A (ja) 2010-04-02
EP2330244A1 (en) 2011-06-08
CN102131976B (zh) 2012-11-21
EP2330244A4 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2010021135A1 (ja) 洗濯機
JP4756054B2 (ja) ドラム式洗濯機
KR100905832B1 (ko) 세탁기
KR101272341B1 (ko) 세탁기의 진동 감지 장치 및 방법
JP6064148B2 (ja) ドラム式洗濯機
EP2340325B1 (en) A washer/dryer
CN110114524B (zh) 滚筒式洗衣机
JP4835673B2 (ja) 洗濯機
JP4983579B2 (ja) ドラム式洗濯機
KR100672604B1 (ko) 드럼세탁기의 탈수 제어방법 및 그 장치
WO2008148844A2 (en) A washer/dryer and the control method thereof
JP2009050350A (ja) ドラム式洗濯機
JP2011062334A (ja) ドラム式洗濯機
JP2011152250A (ja) ドラム式洗濯機
TW202026484A (zh) 滾筒式洗衣機
JP2010125250A (ja) ドラム式洗濯機
JP2014079487A (ja) ドラム式洗濯機
JP2011115430A (ja) 洗濯機
KR100557036B1 (ko) 진동감지장치를 구비한 세탁기 및 그 진동감지방법
JP2010051433A (ja) ドラム式洗濯機
JP4816718B2 (ja) ドラム式洗濯機
JP2009189537A (ja) 洗濯機
JP4935764B2 (ja) ドラム式洗濯機
JP4888478B2 (ja) ドラム式洗濯機
JP2000210495A (ja) 脱水機のアンバランス量検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132861.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009808071

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE