WO2010021070A1 - 半導体素子の耐圧測定装置および耐圧測定方法 - Google Patents

半導体素子の耐圧測定装置および耐圧測定方法 Download PDF

Info

Publication number
WO2010021070A1
WO2010021070A1 PCT/JP2009/002088 JP2009002088W WO2010021070A1 WO 2010021070 A1 WO2010021070 A1 WO 2010021070A1 JP 2009002088 W JP2009002088 W JP 2009002088W WO 2010021070 A1 WO2010021070 A1 WO 2010021070A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
withstand voltage
insulating liquid
voltage
semiconductor element
Prior art date
Application number
PCT/JP2009/002088
Other languages
English (en)
French (fr)
Inventor
楠本修
内田正雄
池上亮
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2009541665A priority Critical patent/JP4482061B2/ja
Priority to CN2009801007518A priority patent/CN102741992A/zh
Publication of WO2010021070A1 publication Critical patent/WO2010021070A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • G01R31/2623Circuits therefor for testing field effect transistors, i.e. FET's for measuring break-down voltage therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/20Preparation of articles or specimens to facilitate testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Definitions

  • the present invention relates to a withstand voltage measuring apparatus and withstand voltage measuring method for measuring the withstand voltage of a semiconductor element, and in particular, to measure the withstand voltage of a power device such as a silicon carbide semiconductor element having a high withstand voltage in a wafer state before being mounted on a package.
  • the present invention relates to a withstand voltage measuring apparatus and a withstand voltage measuring method.
  • a plurality of semiconductor elements are usually formed on a wafer, separated into individual elements, and then encapsulated in a resin package or the like. Each semiconductor element is evaluated whether or not it has a predetermined performance using a measuring device, and only semiconductor elements that satisfy the evaluation criteria are sold as products.
  • each probe is contacted with an inspection probe to measure the characteristics, and after the measurement, the probe is moved relative to the adjacent element. This is because a large number of elements can be evaluated efficiently.
  • FIG. 8 schematically shows a conventional general measuring apparatus 200 that measures the characteristics of a semiconductor element in a wafer state.
  • the measurement apparatus 200 includes a stage 201, probes 202 and 203, a voltage application unit 204, and a current measurement unit 205.
  • FIG. 9 is a flowchart showing a procedure for measuring characteristics of a semiconductor element using the measuring apparatus 200, in particular, withstand voltage.
  • one wafer 1 is loaded onto the stage 201 from a cassette containing a plurality of wafers 1 (S210).
  • wafer alignment is performed (S211).
  • a plurality of alignment marks (this is a specific pattern on the wafer set in advance) that are provided apart from each other on the wafer 1 are detected by a CCD camera or the like (not shown), and the moving direction of the stage 201 (
  • the stage 201 is rotated ( ⁇ direction) so that the arrangement direction of a plurality of semiconductor elements on the wafer 1 coincides with the X and Y directions.
  • the stage is moved so that the probes 202 and 203 are positioned on the first semiconductor element to be measured (S212). Subsequently, for example, the stage 201 is raised, and the tips of the probes 202 and 203 are brought into contact with the electrode pads of the semiconductor element (S213).
  • a voltage is applied to the probes 202 and 203 or the stage 201 by the voltage application unit 204.
  • the current flowing in the current measuring unit 205 is measured while increasing the voltage, and the voltage when the desired current value is obtained is recorded as a withstand voltage (S214).
  • the stage 201 is lowered (S215), and the next element on the wafer 1 is measured (S216, S212 to S215).
  • the wafer 1 After measuring the last element (S216), the wafer 1 is unloaded (S217), and the next wafer 1 is loaded from the cassette (S210). These operations are repeated (S212 to S216), and the withstand voltages of the semiconductor elements of all the wafers 1 in the cassette are measured.
  • pressure resistance is an important performance and must be evaluated.
  • many power devices have a withstand voltage of several hundred volts or more, when a high voltage is applied between the probes or between the probe and the case to measure the withstand voltage, an atmospheric discharge occurs between them, and the measurement is performed.
  • There were problems such as the power supply of the device being destroyed.
  • Patent Document 1 discloses a pressure-resistant inspection apparatus shown in FIGS. 10A and 10B in order to solve such a problem.
  • the inspection apparatus shown in FIG. 10A includes a stage 302 and probes 311P and 312P, and a wafer 301 is supported on the stage 302. The entire wafer 301 is covered with an insulating solution 351.
  • the stage 302 and the probes 311P and 312P are electrically connected to the collector 313C, the gate 311G, and the emitter 312E of the semiconductor element on the wafer 351, respectively. For this reason, it is disclosed that the withstand voltage can be measured by applying a voltage between them.
  • the inspection apparatus shown in FIG. 10B includes a tank 321 filled with an insulating liquid 322, and the breakdown voltage is measured in a state where the entire wafer 301 supported on the stage 302 is immersed in the insulating solution 322.
  • Patent Document 1 by using the withstand voltage inspection apparatus shown in FIGS. 10A and 10B, the measured withstand voltage of the withstand voltage inspection apparatus itself is improved to about 10 kV from about 2000V. It is stated that you can.
  • the breakdown voltage structure of the element is designed in consideration of the higher dielectric breakdown electric field of the semiconductor material itself than the power device using silicon.
  • the inventor of the present application examined conducting withstand voltage measurement of a MOSFET using silicon carbide, which is one of power devices using a wide band gap semiconductor material, and conducted various experiments. As a result, it was found that the MOSFET using silicon carbide breaks down at a voltage lower than the design withstand voltage. This is thought to be related to atmospheric discharge.
  • Patent Document 1 exemplifies a fluorine-based inert liquid as such an insulating liquid.
  • some fluorine-based inert liquids are vaporized in a relatively short time (several seconds), such as hydrofluoroether. Therefore, when the entire wafer 301 is covered with the insulating solution 351 as shown in FIG. 10A, the insulating solution 351 gradually evaporates during the measurement of the elements on the wafer 301, and the insulating solution 351 is completely removed during the measurement. It is possible that it will disappear.
  • the stage 302. In order to measure the breakdown voltage of all the elements of the wafer 301, it is necessary to move the stage 302. Usually, such a measuring apparatus can move the stage at a high speed in order to measure many elements in a short time. For this reason, when the stage is moved at a high speed, the insulating solution 351 may be spilled by the movement of the stage 302 in the apparatus shown in FIG. In addition, when the moving speed of the stage 302 is reduced so that the insulating solution 351 does not spill, the time required to complete the measurement of the elements on the entire wafer 301 becomes long, and the insulating solution 351 evaporates as described above. Resulting in.
  • An object of the present invention is to solve at least one of the problems of the prior art and to provide a withstand voltage measuring apparatus and a withstand voltage measuring method capable of measuring a withstand voltage of a high withstand voltage semiconductor element.
  • the pressure resistance measuring method of the present invention is a pressure resistance measuring method for measuring the pressure resistance of a plurality of semiconductor elements formed on a wafer surface, the step (A) of fixing the wafer to a stage, and a part of the wafer surface. And at least one electrode exposed to the atmosphere for measuring a withstand voltage provided in one semiconductor element selected from the plurality of semiconductor elements is covered with an insulating liquid, and the one or more electrodes are probed. And a step (C) of measuring a withstand voltage between two selected from the one or more electrodes and the stage surface.
  • the step (B) covers the one semiconductor element and a scribe line exposed to the atmosphere surrounding the one semiconductor element with the insulating liquid.
  • the insulating liquid has an insulating property higher than that of the atmosphere.
  • one different semiconductor element is repeatedly selected from the plurality of semiconductor elements, and the steps (B) and (C) are performed on the selected semiconductor element.
  • the withstand voltage measuring method includes a plurality of the plurality of alignment marks provided on the wafer using two or more alignment marks provided on the wafer surface between the steps (A) and (B).
  • the method further includes the step of rotating the stage so that the arrangement direction of the semiconductor elements coincides with the movable direction of the stage.
  • the step (B) includes a step (B1) of bringing a probe into contact with the one or more electrodes of the one semiconductor element, and a part of the wafer surface after the step (B1).
  • one or more electrodes exposed to at least one atmosphere for measuring a withstand voltage provided on at least one of the semiconductor elements is an insulating liquid.
  • the step (B3) includes a step of moving the stage so that the wafer is close to the probe, and a step of discharging the insulating liquid onto the wafer.
  • the semiconductor element is a silicon carbide semiconductor power element.
  • a breakdown voltage measuring apparatus of the present invention is a breakdown voltage measuring apparatus for measuring the breakdown voltage of a plurality of semiconductor elements formed on a wafer surface, and includes a control unit, at least one probe, and a stage for fixing the wafer, Based on a command from the control unit, one or more electrodes exposed to the atmosphere for measuring a withstand voltage provided in one selected semiconductor element among a plurality of semiconductor elements of the wafer fixed to the stage, A wafer position control unit that moves the stage so that it can come into contact with one probe, and a part of the wafer surface based on a command from the control unit, and at least the electrode of the selected semiconductor element And an insulating liquid discharge section that discharges the insulating liquid so as to cover the liquid with an insulating liquid, and the at least one probe and the step based on a command from the control section. And a voltage applying unit for measuring the breakdown voltage between the two selected from di surface.
  • the insulating liquid discharge unit includes a nozzle having a discharge port adjacent to at least one probe.
  • the insulating liquid discharge section discharges the insulating liquid so as to cover the selected one semiconductor element and a scribe line exposed to the atmosphere surrounding the one semiconductor element.
  • the insulating liquid has an insulating property higher than that of the atmosphere.
  • the electrode for measuring the withstand voltage of the semiconductor element to be measured is covered with the insulating liquid, not the entire wafer, so that the apparatus is large. Atmospheric discharge can be prevented without being hindered, and the correct breakdown voltage of the semiconductor element can be measured.
  • the alignment mark is not easily seen by the insulating liquid.
  • the insulating liquid can be discharged just before the measurement to only the semiconductor element to be measured, even if it takes a long time to measure one wafer, the atmospheric discharge is prevented without evaporating the insulating liquid. be able to.
  • FIG. 1 is a block diagram showing a first embodiment of a pressure-resistant measuring device according to the present invention.
  • FIG. 2 is a plan view showing a state of a MOSFET when measuring a withstand voltage in the withstand voltage measuring apparatus shown in FIG. 1.
  • FIG. 4 is a sectional view taken along the line B-B ′ in FIG. 3. It is a flowchart which shows 1st Embodiment of the pressure
  • the inventor of the present application examined in detail the cause of MOSFET breakdown at a voltage lower than the design withstand voltage in MOSFETs using silicon carbide.
  • FIG. 11 is a plan view of a wafer state of silicon carbide MOSFET 2 prototyped by the present inventors.
  • a plurality of MOSFETs 2 are arranged on the wafer.
  • Each MOSFET 2 includes a source electrode pad 9 and a gate electrode pad 10, and the back surface of the wafer is a drain electrode (not shown) commonly connected to the plurality of MOSFETs 2.
  • Each MOSFET 2 is separated from the adjacent MOSFET 2 by a scribe line 11.
  • the scribe line is a region where the interlayer insulating film and the protective film on the semiconductor surface are removed in order to separate the element (dicing). Therefore, in the scribe line, the semiconductor surface is exposed to the atmosphere. Yes.
  • the MOSFET 2 integrates a plurality of minute unit cells, and each unit cell constitutes a MOSFET.
  • the gate, source and drain of each unit cell are connected to the gate electrode pad 10, the source electrode pad 9, and the drain electrode on the back surface of the wafer, and a power transistor in which MOSFETs constituted by the unit cells are connected in parallel. Is configured. Further, a vertical structure in which a current flows between a drain electrode provided on the back surface of the wafer and a source electrode pad 9 provided on the front surface of the wafer is provided.
  • the withstand voltage in the off state of the MOSFET 2 in the wafer state was measured using a conventional withstand voltage measuring apparatus 200 shown in FIG.
  • the wafer 1 having the MOSFET 2 formed on the stage 201 is fixed by vacuum suction or the like, and the probes 202 and 203 are brought into contact with the gate electrode pad 10 and the source electrode pad 9.
  • the MOSFET 2 is an enhancement type, and the MOSFET 2 is turned off by setting the gate and the source to the ground potential. Therefore, the probes 202 and 203 are set to the ground potential.
  • a drain electrode on the back surface of the wafer (not shown) is electrically connected to a voltage application unit 204 and a current measurement unit 205 of the measurement apparatus 200 via a stage 201 that fixes the wafer 1.
  • the drain voltage is gradually increased by the voltage applying unit 204, and the drain voltage when the drain current exceeds a predetermined threshold current is defined as a withstand voltage.
  • a constant current source and a voltage applying unit may be connected, and the drain voltage when a predetermined drain current is passed may be defined as a withstand voltage.
  • the design withstand voltage is 1400V.
  • FIG. 12 is a view of the A-A ′ cross section of the MOSFFET 2 shown in FIG. 11 as viewed in the direction of the arrow.
  • a high-resistance n-type semiconductor drift layer 15 is formed on the low-resistance n-type semiconductor substrate 14, and a p-type semiconductor region 16 is selectively formed inside the drift layer 15.
  • a source electrode 18 is formed on the surface of the p-type semiconductor region 16 in the unit cell, and the source electrode 18 of each unit cell is connected to each other by a thick source electrode pad 9.
  • the source electrode pad 9 is in contact with the probe 203 as described above, and all the source electrodes 18 are fixed to the ground potential.
  • the n-type semiconductor substrate 14 functions as a drain and is fixed to a drain potential via a drain electrode (back electrode) 20 formed on the back surface. Since the drain potential is normally a positive voltage, a reverse bias voltage is applied to the pn junction that is the interface between the p-type semiconductor region 16 and the n-type semiconductor drift layer 15. For this reason, the depletion layer 17 extends in the drift layer 15.
  • the drift layer 15 In the drift layer 15, an electric field exists inside the depletion layer 17 and generates a potential distribution. However, no electric field is generated in a region other than the depletion layer 17, and the potential is the same. That is, the region other than the depletion layer 17 of the drift layer 15 has a drain potential.
  • a gate electrode 19 is formed on the surface of the drift layer 15 via a gate insulating film 21. Further, an interlayer insulating film 12 is provided so as to cover the gate electrode 19. A source electrode pad 9 is located on the interlayer insulating film 12, and the source electrode pad 9 is connected to the source electrode 18 through an opening provided in the interlayer insulating film 12.
  • a protective film 13 mainly made of a silicon nitride film or polyimide is formed on the source electrode pad 9.
  • an opening defined by the opening end 13a is provided in order to expose the source electrode pad 9.
  • the scribe line 11 is an area for cutting a plurality of MOSFETs 2 provided on the wafer.
  • the gate insulating film 21, the interlayer insulating film 12, and the protective film 13 are not provided, and the surface of the semiconductor drift layer 15 is exposed to the atmosphere.
  • the surface of the scribe line 11 is also at the drain potential during the breakdown voltage measurement.
  • the source electrode pad 9 is at ground potential, and the scribe line 11 is exposed to the atmosphere as a drain potential. The electric field generated by these potential differences is applied not only to the inside of the semiconductor but also to the atmosphere.
  • each MOSFET 2 is housed in a package, and the surface of the MOSFET 2 is covered with the package resin, so that no current flows through the atmosphere in this way.
  • Table 1 shows dielectric breakdown electric fields of silicon, silicon carbide, air, and package resin.
  • the breakdown electric field of silicon carbide is about one digit larger than that of silicon.
  • the breakdown electric field of gallium nitride is also about one digit larger than that of silicon.
  • the wide band gap semiconductor has a dielectric breakdown electric field about 10 times larger than that of silicon, theoretically, the breakdown voltage of the element can be ensured even if the element size is reduced.
  • the breakdown electric field in the atmosphere is about an order of magnitude smaller than that of silicon. Therefore, by changing the semiconductor material from silicon to silicon carbide, a smaller and higher withstand voltage semiconductor element can be realized.
  • the atmospheric pressure is measured by measuring the withstand voltage of the semiconductor element. The discharged electric discharge becomes a problem in the breakdown voltage measurement of the semiconductor element in the wafer state.
  • the scribe line 11 is related to atmospheric discharge, the scribe line 11 is not exposed to the atmosphere by covering the scribe line 11 with the insulating liquid during the pressure resistance measurement, and the above-described atmospheric discharge is prevented. It is considered possible.
  • the gate electrode pad 10 and the source electrode pad 9 are set to the same potential during the breakdown voltage measurement. Therefore, no high potential difference occurs between these electrode pads, and no atmospheric discharge occurs.
  • the semiconductor element for example, a lateral power MOSFET
  • FIG. 1 schematically shows the main part of the first embodiment of the pressure resistance measuring apparatus of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the first embodiment.
  • the breakdown voltage measuring apparatus 50 of this embodiment includes a wafer position control unit 51, an insulating liquid discharge unit 52, a voltage application unit 53, a current measurement unit 54, a control unit 55, and probes 58 and 59.
  • the control unit 54 controls the wafer position control unit 51, the insulating liquid discharge unit 52, the voltage application unit 53, and the current measurement unit 54.
  • the withstand voltages of a plurality of vertical power MOSFETs 2 fabricated on the wafer 1 are measured as semiconductor elements.
  • a prober an apparatus for inspecting a semiconductor device in a wafer state is called a prober, and various elements such as a threshold voltage, on-resistance, forward and reverse IV characteristics in addition to a withstand voltage depending on a semiconductor element to be inspected. The property is inspected.
  • voltage resistant measuring apparatus of this invention can be suitably integrated in such a prober.
  • the wafer position control unit 51 includes a stage 57.
  • the wafer position control unit 51 fixes the wafer 1 to the stage 57 by suction, for example, based on a command from the control unit 55.
  • the stage 57 is movable in the three axis directions of X, Y, and Z as shown in FIG. 1, for example, by a command from the control unit 55, that is, a control signal. Furthermore, the stage 57 can rotate in the ⁇ direction in the XY plane.
  • Probes 58 and 59 are fixed to a gantry (not shown), and in order to measure the breakdown voltage of a plurality of semiconductor elements formed on the wafer 1 fixed to the stage 57, are in contact with electrodes provided on the semiconductor elements, By electrically connecting with the electrode, a voltage is applied to the electrode or a current is passed.
  • the probes 58 and 59 are in contact with the gate electrode pad and the source electrode pad of the MOSFET 2 and set to a predetermined potential.
  • two probes 58 and 59 are provided.
  • the number of probes is determined according to the number of terminals of the semiconductor element to be measured, the number of terminals to which potential is to be set at the time of withstand voltage measurement, and may be one or three or more.
  • the semiconductor element to be inspected is a vertical diode
  • the back surface of the wafer 1 becomes an anode or a cathode
  • a cathode electrode pad or an anode electrode pad is formed on the surface of the wafer 1.
  • the withstand voltage measuring device only needs to have one probe that contacts the cathode electrode pad or the anode electrode pad provided on the surface of the wafer 1.
  • FIG. 3 is a plan view of a plurality of MOSFETs 2 formed on the wafer 1.
  • each MOSFET 2 includes a source electrode pad 9 and a gate electrode pad 10, and a drain electrode (not shown) in which the back surface of the wafer is commonly connected to the plurality of MOSFETs 2. It has become.
  • Each MOSFET 2 is separated from the adjacent MOSFET 2 by a scribe line 11.
  • MOSFET 2 includes a plurality of unit cells, and each unit cell constitutes a MOSFET.
  • MOEFET2 the gate, source, and drain of each unit cell are connected to the gate electrode pad 10, the source electrode pad 9, and the drain electrode, and MOSFETs configured by the unit cells are connected in parallel to form a power transistor. Yes.
  • the MOSFET 2 has a vertical structure in which a current flows between a drain electrode provided on the back surface of the wafer and a source electrode pad 9 provided on the front surface of the wafer.
  • Probes 58 and 59 are arranged such that their tips are in contact with gate electrode pad 10 and source electrode pad 9.
  • the surface of the stage 57 is covered with, for example, a conductor such as gold, and is electrically connected to a drain electrode provided on the back surface of the wafer.
  • the surfaces of the probes 58 and 59 and the stage 57 are connected to a withstand voltage measurement unit including a voltage application unit 53 and a current measurement unit 54. Based on a command from the control unit 55, the probes 58 and 59 are fixed to the ground potential, and a drain voltage is applied to the surface of the stage 57.
  • the insulating liquid discharge unit 52 includes a dispenser having a nozzle 56.
  • the nozzle 56 is fixed to a gantry (not shown) and is disposed in the vicinity of the probes 58 and 59.
  • the dispenser further includes a tank holding an insulating liquid, and discharges a predetermined amount of the insulating liquid 60 based on a command from the control unit 55.
  • FIG. 4 shows a B-B ′ cross section of the MOSEFET 2 shown in FIG. 3.
  • the insulating liquid 60 to be discharged is used to prevent atmospheric discharge from occurring in the measurement of the MOSFET 2 to be measured from among the plurality of MOSFETs 2 formed on the wafer 1.
  • the MOSFET 2 that is only a part of the surface of the wafer 1 is covered with the insulating liquid 60.
  • at least one electrode exposed to the atmosphere for measuring the withstand voltage provided in the MOSFET 2 to be measured is covered with the insulating liquid 60.
  • the source electrode pad 9 and the gate electrode pad 10 are covered with the insulating liquid 60.
  • the insulating electrode 60 completely covers the scribe line 11 that is in the source electrode pad 9 and the gate electrode pad 10 and the measurement position and is exposed to the atmosphere surrounding the MOSFET 2 (shown by a broken line 24) to be measured.
  • the amount of the insulating liquid 60 is adjusted. For example, when the size of the outer periphery of the scribe line 11 is about 3 mm ⁇ 3 mm, the amount of the insulating liquid 60 is about 1 to 2 ml. More preferably, the end of the insulating liquid 60 reaches the adjacent element beyond the scribe line 11. This ensures that the MOSFET 2 to be measured and the scribe line 11 surrounding the MOSFET 2 are completely covered with the insulating liquid 60. As long as these conditions are satisfied, the insulating liquid 60 may also cover the MOSFET 2 adjacent to the MOSFET 2 at the measurement position.
  • the insulating liquid 60 has a higher insulating property than at least the atmosphere.
  • an insulating liquid having a breakdown electric field larger than that of the atmosphere is used.
  • a fluorine-based inert liquid hydrofluoroether, perfluoropolyether, etc.
  • silicon oil for example, Fluorinert (registered trademark) FC40 manufactured by Sumitomo 3M Limited has a dielectric breakdown electric field of 0.18 MV / cm. This value is six times the atmospheric breakdown field.
  • Dielectric strength may be used as an index indicating the insulating property of the insulating liquid. Dielectric strength is defined as the voltage that can be applied between electrodes with a gap of 2.54 mm. The dielectric strength of 0.18 MV / cm of the above-described Fluorinert FC40 is 46 kV / 2.54 mm. Also, Solvay, Solexiska's Galden (registered trademark), which is a perfluoroether, has a dielectric strength of 40 kV / 2.54 mm, which is about 6 times that of the atmosphere.
  • the insulating liquid 60 only needs to cover the MOSFET 2 being measured when measuring the withstand voltage. After covering the MOSFET 2 with the insulating liquid 60, the probes 58 and 59 may be brought into contact with the gate electrode pad 10 and the source electrode pad 9, or the probes 58 and 59 are brought into contact with the gate electrode pad 10 and the source electrode pad 9. Thereafter, the MOSFET 2 may be covered with the insulating liquid 60.
  • the viscosity of the insulating liquid 60 is high, and if the probes 58 and 59 are brought into contact with the gate electrode pad 10 and the source electrode pad 9 in advance, the insulating liquid 60 is difficult to flow around, and these pads cannot be completely covered with the insulating liquid 60.
  • MOSFET 2 it is preferable to cover MOSFET 2 with insulating liquid 60 before contacting probes 58 and 59. Since the viscosity of the fluorinated inert liquid is generally low, either the contact of the probes 58 and 59 and the discharge of the insulating liquid 60 may be first.
  • the dispenser includes an air valve and discharge is controlled by opening and closing the valve.
  • the air valve opens and closes the needle valve by air pressure and discharges a fixed amount of liquid. Air is supplied from the dispenser controller.
  • the dispenser controller supplies air to the needle valve at a preset pressure and time according to a trigger signal from the control unit 55. By adjusting the pressure and time, the discharge amount can be adjusted. It is difficult to fly a low-viscosity liquid for a long distance.
  • the nozzle 56 is located substantially directly above the MOSFET 2 to be measured. More specifically, the nozzle 56 is generally used for the MOSFET 2 to be measured so that the insulating liquid 60 quantitatively discharged from the nozzle 56 can naturally cover the entire MOSFET 2 to be measured and the scribe line 11 surrounding the MOSFET 2 to be measured. Preferably it is on the center.
  • the wafer 1 is taken out from a wafer cassette (not shown in FIG. 1) and loaded onto the stage 57 (S101).
  • the wafer 1 is aligned.
  • Two or more distant alignment marks on the wafer 1 are read using a CCD camera (not shown) to determine the orientation of the loaded wafer 1 in the XY plane. From the determined orientation, the stage 57 is rotated in the ⁇ direction so that the direction of arrangement of the plurality of MOSFETs 2 formed on the wafer 1 coincides with the moving direction of the stage 57 (S102).
  • the wafer position control unit 51 moves the stage 57 by the control signal from the control unit 55 and is designated in the measurement order.
  • the MOSFET 2 is moved to a measurement position where the probes 58 and 59 can contact (S103).
  • the insulating liquid discharge unit 52 discharges the insulating liquid 60 to the MOSFET 2 located at the measurement position of the wafer 1.
  • the insulating liquid 60 covers the MOSFET 2 at the measurement position and the scribe line 11 exposed to the atmosphere surrounding the MOSFET 2 (S104).
  • the tips of the probes 58 and 59 are brought into contact with the gate electrode pad 10 and the source electrode pad 9 of the MOSFET 2 covered with the insulating liquid 60, respectively (S105).
  • Gate electrode pad 10 and source electrode pad 9 are fixed to the ground potential via probes 58 and 59, respectively.
  • the probes 58 and 59 may be brought into contact with the gate electrode pad 10 and the source electrode pad 9 before discharging the insulating liquid 60 (S104) (S105).
  • the control unit 23 sends a control signal to the current measurement unit 54 and the voltage measurement 53 which are a withstand voltage measurement unit, and measures the current flowing through the stage 57 by the current measurement unit 54 (this is the drain current of the MOSFET 2) while applying voltage.
  • the drain potential of the stage 57 is gradually increased by the unit 53.
  • the drain voltage at the time when the drain current exceeds a threshold value (for example, 1 mA) is defined as a withstand voltage, and the control unit 23 stores the voltage applied by the voltage application unit 53 at that time.
  • the drain voltage may be applied at a rate of about 50 V / s.
  • the wafer position controller 51 lowers the stage 57 and separates the probe probes 58 and 59 from the gate electrode pad 10 and the source electrode pad 9 (S107).
  • the wafer position control unit is controlled based on the command of the control unit 23 so that the MOSFET 2 specified in the next measurement order comes to the measurement position.
  • 51 moves the stage 57 (S103). Thereafter, the discharge of the insulating liquid 60 (S104), the contact of the probes 58 and 59 (S105), the pressure resistance measurement (S106), and the separation of the probes 58 and 59 (S107) are repeated.
  • the measurement on the wafer 1 is finished and the wafer is unloaded.
  • the next other wafer 1 is loaded, and the above-described procedure (S101 to S109) is repeated for the wafer 1.
  • the entire process is completed. If the insulating liquid 60 remains on the surface of the wafer 1 after the measurement, the insulating liquid 60 may be removed from the surface of the wafer 1 by blowing nitrogen gas, for example.
  • FIG. 6 shows a result of measuring the withstand voltage of the silicon carbide power MOSFET using the withstand voltage measuring apparatus shown in FIGS. 1 and 2 by the withstand voltage measuring method of the present embodiment described above.
  • FIG. 6 shows IV characteristics (relationship between drain current and drain voltage) of 12 silicon carbide power MOSFETs. Conventionally, as shown in FIG. 13, atmospheric discharge occurs, and the resistance of the element destroyed by the discharge rapidly decreases, and thus the IV characteristic in which the voltage decreases rapidly is exhibited. Further, when the measurement was performed again, the same IV characteristics were not reproduced, and a current flowed at a low voltage.
  • the drain current threshold was set to 1 ⁇ A.
  • the electrode for measuring the withstand voltage of the semiconductor element to be measured is covered with the insulating liquid, so that the atmospheric pressure is not measured during the withstand voltage measurement, and the withstand voltage of each semiconductor element is measured in the wafer state. It becomes possible. Further, since the measurement is performed in a state of being regularly arranged on the wafer without being separated into chips, efficient measurement is possible.
  • the entire wafer is not immersed in the insulating liquid, a large tank for immersing the entire stage is not required, and a small insulating liquid discharge unit such as a dispenser may be added.
  • the insulating liquid does not spill due to the movement of the stage. Further, since the insulating liquid is supplied onto the wafer immediately before the pressure resistance measurement, the insulating liquid does not evaporate during the pressure resistance measurement.
  • the wafer can be reliably aligned in the pressure measuring device.
  • the withstand voltage measurement unit 55 measures the drain current by the current measurement unit 54 while applying the drain voltage by the voltage application unit 53.
  • the withstand voltage measurement unit 55 may include a current application unit (for example, a constant current source) and a voltage measurement unit, apply a constant current by the current application unit, and measure the drain voltage at this time to obtain the withstand voltage.
  • the withstand voltage measurement unit 55 may include a current application unit and a voltage application unit.
  • the wafer position control unit 51 moves the stage 57 to bring the electrode pads of the semiconductor elements formed on the wafer 1 into contact with the probes 58 and 59 and to discharge the insulating liquid 60. 56.
  • the probes 58 and 59 and the nozzle 56 may be moved to the position of the semiconductor element to be measured, and the probes 58 and 59 may be brought into contact with the electrode pads of the semiconductor element.
  • the semiconductor element whose breakdown voltage is to be measured is a lateral power MOSFET.
  • the lateral power MOSFET a gate electrode pad, a drain electrode pad, and a source electrode pad are formed on the surface of a wafer. For this reason, when measuring the withstand voltage of the lateral power MOSFET, the withstand voltage measuring apparatus includes three probes.
  • FIG. 7 is a plan view of a plurality of horizontal power MOSFETs 2 ′ formed on the wafer 1 fixed to the stage of the pressure-resistant measuring device.
  • Each lateral power MOSFET 2 ′ includes a gate electrode pad 42, a source electrode pad 44, and a drain electrode pad 46.
  • the breakdown voltage measuring apparatus of this embodiment includes probes 58, 59, and 62, and the probes 58, 59, and 62 are in contact with the gate electrode pad 42, the source electrode pad 44, and the drain electrode pad 46, respectively.
  • the insulating liquid 60 covers one or more exposed electrodes that measure the breakdown voltage of the MOSFET 2 'to be measured.
  • the probes 58 and 59 are fixed to the ground potential, and the voltage (drain voltage) is applied to the probe 62 while measuring the current flowing through the probe 59 (source current) or the current flowing through the probe 62 (drain current).
  • a voltage (drain-source voltage) between the probe 59 and the probe 62 when the current or the source current reaches a predetermined value is defined as a withstand voltage.
  • the configuration of the other breakdown voltage measuring apparatus and the breakdown voltage measurement procedure are the same as those in the first embodiment.
  • the present embodiment as in the first embodiment, it is possible to correctly measure the breakdown voltage of the lateral power MOSFET in the wafer state. For this reason, the effect similar to 1st Embodiment can be acquired.
  • the present invention has been described by taking the breakdown voltage measurement of the vertical power MOSFET and the horizontal power MOSFET as an example.
  • the present invention is not limited to these semiconductor elements, and various semiconductor elements can be measured in a wafer state.
  • a single probe is used and, for example, a voltage is applied between the probe and the stage.
  • only the Schottky diode to be measured by the insulating liquid discharge section that is, only a part of the wafer surface is covered with the insulating liquid.
  • the present invention can be suitably used for power devices such as IGBTs, bipolar transistors, JFETs, and SITs.
  • the present invention has been described by taking a silicon carbide semiconductor element as an example.
  • a power semiconductor element made of another wide bandgap semiconductor such as GaN has the same problem as the chip size is reduced, so that the present invention is a power semiconductor made of another wide bandgap semiconductor such as GaN. It can be used suitably also for an element.
  • this invention it is possible to efficiently perform withstand voltage measurement of various power devices in a wafer state without causing atmospheric discharge. For this reason, this invention is used suitably for the test process of the power device which has a high proof pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 本発明の耐圧測定方法は、ウェハ表面に形成された複数の半導体素子の耐圧を測定する耐圧測定方法であって、ステージに前記ウェハを固定する工程(A)と、前記ウェハ表面の一部のみであって、少なくとも前記複数の半導体素子から選ばれる1つの半導体素子に設けられた耐圧を測定する大気に露出した1つ以上の電極を絶縁液で覆い、かつ、前記1つ以上の電極にプローブを接触させる工程(B)と、前記1つ以上の電極および前記ステージ表面から選ばれる2つの間の耐圧を測定する工程(C)とを包含する。

Description

半導体素子の耐圧測定装置および耐圧測定方法
 本発明は、半導体素子の耐圧を測定する耐圧測定装置および耐圧測定方法に関し、特に、高耐圧を有する炭化珪素半導体素子などのパワーデバイスの耐圧を、パッケージに実装する前のウェハ状態で測定することのできる耐圧測定装置および耐圧測定方法に関する。
 半導体素子は、通常、ウェハ上に複数形成され、個別の素子に分離された後、樹脂製のパッケージなどに封入される。各半導体素子は、測定装置を用いて所定性能を備えているかどうかが評価され、評価基準を満たしている半導体素子のみが製品として販売される。
 このような評価をパッケージ後に行う場合、個別になっている半導体素子を測定装置のテストヘッドにひとつひとつ挿入する作業が必要であり、素子のハンドリングに労力と時間を要する。この作業を効率的に行うには、ハンドラーと呼ばれる大型の搬送機構が必要となる。
 これに対し、素子を分離する前のウェハ状態で半導体素子を評価すれば、効率的に多数の素子を評価することができるため、好都合である。ウェハ上では素子が近接して規則正しく周期的に並んでいるので、個々の素子に検査用のプローブを接触させて特性の測定を行い、測定後、プローブを隣接する素子に相対的に移動させるだけで、効率的に多数の素子を評価することができるからである。
 図8は、ウェハ状態の半導体素子の特性を測定する従来の一般的な測定装置200を模式的に示している。測定装置200は、ステージ201と、プローブ202および203と、電圧印加部204と、電流計測部205とを備えている。図9は測定装置200を用いた半導体素子の特性、特に、耐圧の測定手順を示すフローチャートである。
 まず、複数のウェハ1が入ったカセットから1つのウェハ1をステージ201にロードする(S210)。次に、ウェハのアライメントを行う(S211)。例えば、図示しないCCDカメラ等により、ウェハ1上において離間させて設けられた複数のアライメントマーク(これは通常前もって設定されたウェハ上の特定パターンである。)を検出し、ステージ201の移動方向(例えばX、Y方向)とウェハ1における複数の半導体素子の配列方向とが一致するようにステージ201を回転させる(θ方向)。
 次に、あらかじめ設定されたウェハマップに従い、プローブ202および203が最初の測定対象の半導体素子上に位置するようにステージを移動させる(S212)。続いて、例えば、ステージ201を上昇させ、プローブ202および203との先端と半導体素子の電極パッドとを接触させる(S213)。
 その後、電圧印加部204によってプローブ202および203またはステージ201に電圧を印加する。電圧を増加させながら電流計測部205で流れる電流を計測し、所望の電流値となったときの電圧を耐圧として記録する(S214)。
 耐圧測定の終了後、ステージ201を降下させ(S215)、ウェハ1上の次の素子の測定を行う(S216、S212~S215)。
 最後の素子を測定後(S216)、ウェハ1をアンロードして(S217)、次のウェハ1をカセットからロードする(S210)。これらの動作を繰り返し(S212~S216)、カセット内のすべてのウェハ1の半導体素子の耐圧を測定する。
 近年、地球温暖化が問題となり、二酸化炭素低減のために省エネルギー技術が必要とされている。このため、例えば、ハイブリッド車や電気自動車などに用いられるモータをインバータ制御するための、動作電圧および動作電流の高いMOSFET、IGBT、ダイオード、バイポーラトランジスタ、JFET、SITなどのパワーデバイスの開発が盛んになっている。
 これらのパワーデバイスにとって耐圧は重要な性能のひとつであり、必ず評価すべき項目である。ところが、パワーデバイスには数百V以上の耐圧を有するものも多いため、耐圧を測定するために高電圧をプローブ間やプローブ・筐体間に印加すると、これらの間で大気放電がおこり、測定装置の電源が破壊されるなどの問題があった。また、耐圧の測定が、沿面距離や空間距離、湿度などによって左右され正確に耐圧を測定することが困難であるという問題があった。このため、半導体素子の耐圧をウェハ上で検査できず、耐圧特性が不十分なものであっても、素子分離を行ってパッケージに収めてからでなければ評価できず、検査効率を低下させる原因にもなっていた。
 特許文献1は、このような課題を解決するために図10(a)および図10(b)に示す耐圧検査装置を開示している。図10(a)に示す検査装置は、ステージ302、プローブ311Pおよび312Pを備え、ステージ302上にウェハ301が支持される。ウェハ301の全体は絶縁溶液351で覆われている。ステージ302とプローブ311Pおよび312Pとは、ウェハ351上の半導体素子のコレクタ313Cとゲート311Gおよびエミッタ312Eとにそれぞれ電気的に接続される。このため、これらの間で電圧を印加することによって耐圧を測定することができると開示している。また、図10(b)に示す検査装置は、絶縁液322を満たした槽321を備え、ステージ302上に支持されたウェハ301全体が、絶縁溶液322中に浸漬された状態で耐圧が測定される。
 特許文献1によれば、図10(a)および図10(b)に示す耐圧検査装置を用いることによって、耐圧検査装置自体の測定耐圧が従来2000V程度であったものを10kV程度に向上させることができると記載されている。
特開2003-100819号公報
 近年、開発が進められている炭化珪素(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体材料は、シリコンに比べて1桁以上大きい絶縁破壊電界を有する。このため、ワイドバンドギャップ半導体材料を用いたパワーデバイスは、シリコンを用いたパワーデバイスに比べて半導体材料自体の絶縁破壊電界が高いことを考慮して素子の耐圧構造が設計される。
 本願発明者は、ワイドバンドギャップ半導体材料を用いたパワーデバイスの1つである、炭化珪素を用いたMOSFETの耐圧測定をウェハ上で行うことを検討し、種々の実験を行った。その結果、炭化珪素を用いたMOSFETでは、設計耐圧よりも低い電圧でMOSFETが破壊することが分かった。これは、大気放電が関連していると考えられる。
 大気放電を防止し、正しく耐圧を測定するためには、特許文献1に開示される装置を用いて耐圧を測定することが考えられる。しかしながら、特許文献1の図10(a)および図10(b)に示す装置では、ウェハ表面全面が絶縁液で覆われているため、ウェハ301に設けられたアライメントマークの正しい検出が困難となる可能性がある。このため、ウェハ301のアライメントが正しく行えない場合にはそのウェハ301を検査することができなくなる。
 また、特許文献1は、このような絶縁液としてフッ素系不活性液を例示している。しかし、フッ素系不活性液の中には、例えばハイドロフルオロエーテルのように比較的短時間(数秒)で気化してしまうものもある。このため、図10(a)に示すようにウェハ301全体を絶縁溶液351で覆う場合、ウェハ301上の素子を測定中に絶縁溶液351が徐々に蒸発し、測定の途中で絶縁溶液351が完全になくなることも考えられる。
 また、ウェハ301のすべての素子の耐圧を測定するためには、ステージ302を移動させる必要がある。通常、このような測定装置は、多くの素子の測定を短時間で行うために高速でステージが移動可能である。このため、ステージの移動が高速で行われると、図10(a)に示す装置では、絶縁溶液351がステージ302の移動によってこぼれてしまう可能性がある。また、絶縁溶液351がこぼれないようにステージ302の移動速度を低下させた場合には、ウェハ301全体の素子の測定を完了するのに要する時間が長くなり、上述したように絶縁溶液351が蒸発してしまう。
 また、図10(b)に示す装置の場合、ステージ302全体を絶縁溶液322に浸漬する必要があるため、測定装置が大掛りになり、装置も高価になる。
 本発明はこのような従来技術の課題の少なくとも1つを解決し、高耐圧の半導体素子の耐圧測定を行うことのできる耐圧測定装置および耐圧測定方法を提供することを目的とする。
 本発明の耐圧測定方法は、ウェハ表面に形成された複数の半導体素子の耐圧を測定する耐圧測定方法であって、ステージに前記ウェハを固定する工程(A)と、前記ウェハ表面の一部のみであって、少なくとも前記複数の半導体素子から選ばれる1つの半導体素子に設けられた耐圧を測定する1つ以上の大気に露出した電極を絶縁液で覆い、かつ、前記1つ以上の電極にプローブを接触させる工程(B)と、前記1つ以上の電極および前記ステージ表面から選ばれる2つの間の耐圧を測定する工程(C)とを包含する。
 ある好ましい実施形態において、前記工程(B)は、前記1つの半導体素子と前記1つの半導体素子を囲む大気に露出したスクライブラインとを前記絶縁液で覆う。
 ある好ましい実施形態において、前記絶縁液は、大気よりも高い絶縁性を有する。
 ある好ましい実施形態において、前記複数の半導体素子から異なる1つの半導体素子を繰り返し選択し、選択した半導体素子に対して、前記工程(B)および(C)を行う。
 ある好ましい実施形態において、耐圧測定方法は、前記工程(A)と(B)との間に、前記ウェハ表面に設けられた2つ以上のアライメントマークを用いて、前記ウェハに設けられた前記複数の半導体素子の配列方向と前記ステージの移動可能な方向が一致するように前記ステージを回転させる工程をさらに包含する。
 ある好ましい実施形態において、前記工程(B)は、前記1つの半導体素子の前記1つ以上の電極にプローブを接触させる工程(B1)と、前記工程(B1)の後、前記ウェハ表面の一部のみであって、少なくとも前記1つの半導体素子に設けられた耐圧を測定する1つ以上の大気に露出した電極を絶縁液で覆う工程(B2)とを含む。
 ある好ましい実施形態において、前記工程(B)は、前記ウェハ表面の一部のみであって、少なくとも前記1つの半導体素子に設けられた耐圧を測定する1つ以上の大気に露出した電極を絶縁液で覆う工程(B3)と、前記工程(B3)の後、前記1つの半導体素子の前記1つ以上の電極にプローブを接触させる工程(B4)とを含む。
 ある好ましい実施形態において、前記工程(B3)は、前記ウェハが前記プローブに近接するように前記ステージを移動させる工程と、前記絶縁液をウェハ上に吐出する工程とを含む。
 ある好ましい実施形態において、前記半導体素子は炭化珪素半導体パワー素子である。
 本発明の耐圧測定装置は、ウェハ表面に形成された複数の半導体素子の耐圧を測定する耐圧測定装置であって、制御部と、少なくとも1つのプローブと、前記ウェハを固定するステージを含み、前記制御部からの指令に基づき、前記ステージに固定したウェハの複数の半導体素子のうち、選択した1つの半導体素子に設けられた、耐圧を測定する1つ以上の大気に露出した電極と、前記少なくとも1つのプローブとが接触可能なように前記ステージを移動させるウェハ位置制御部と、前記制御部からの指令に基づき、前記ウェハ表面の一部のみであって、少なくとも前記選択した半導体素子の前記電極を絶縁液で覆うように絶縁液を吐出する絶縁液吐出部と、前記制御部からの指令に基づき、前記少なくとも1つのプローブおよび前記ステージ表面から選ばれる2つの間の耐圧を測定する電圧印加部とを備える。
 ある好ましい実施形態において、前記絶縁液吐出部は、少なくとも1つのプローブに近接した吐出口を有するノズルを含む。
 ある好ましい実施形態において、前記絶縁液吐出部は、前記選択した1つの半導体素子と前記1つの半導体素子を囲む大気に露出したスクライブラインとを覆うように前記絶縁液を吐出する。
 ある好ましい実施形態において、前記絶縁液は、大気よりも高い絶縁性を有する。
 本発明によれば、ウェハに形成された複数の半導体素子の耐圧を測定する場合、ウェハの全体ではなく、測定対象となる半導体素子の耐圧を測定する電極を絶縁液で覆うため、装置が大掛りになることなく、大気放電を防止することができ、半導体素子の正しい耐圧を測定することが可能となる。
 また、ウェハ表面全体を絶縁液で覆う必要がないため、アライメントマークが絶縁液によって見えにくくなることがない。また、測定すべき半導体素子のみに対し、測定の直前に絶縁液を吐出することができるため、1つのウェハの測定に長い時間がかかる場合でも、絶縁液を蒸散させずに大気放電を防止することができる。
 また、ステージの移動に伴う振動によって絶縁液が流れ落ちてしまうことも防げる。
 特にワイドバンドギャップ半導体からなるパワーデバイスの耐圧測定において効果的である。
本発明による耐圧測定装置の第1の実施形態を示す図であって、主要部の構成を示す概念的な図である。 本発明による耐圧測定装置明第1の実施形態を示すブロック図である。 図1に示す耐圧測定装置において、耐圧を測定する際のMOSFETの状態を示す平面図である。 図3におけるB-B’断面図である。 本発明による耐圧測定方法の第1の実施形態を示すフローチャートである。 第1の実施の形態の耐圧測定方法によって測定された炭化珪素パワーMOSFETの耐圧測定時におけるIV特性図である。 第2の実施形態において、耐圧を測定する際のMOSFETの状態を示す平面図である。 従来の耐圧測定装置の構成を示す模式図である。 従来の耐圧測定方法を示すフローチャートである。 (a)および(b)は、それぞれ従来の耐圧測定装置の他の構成を示す模式図である。 従来の耐圧測定方法における測定状態の半導体素子を示す平面図である。 従来の半導体素子の構造を示す断面図である。 従来の半導体素子の耐圧測定時におけるIV特性図である。
 本願発明者は、炭化珪素を用いたMOSFETにおいて、設計耐圧よりも低い電圧でMOSFETが破壊する原因について詳細に検討した。
 図11は、本願発明者が試作した炭化珪素MOSFET2のウェハ状態の平面図である。複数のMOSFET2がウェハ上に配置されている。各MOSFET2は、ソース電極パッド9とゲート電極パッド10とを備えており、ウェハの裏面が複数のMOSFET2に共通に接続されたドレイン電極(図示せず)になっている。各MOSFET2は隣接するMOSFET2とスクライブライン11によって分離されている。ここで、スクライブラインとは、素子を切り離す(ダイシング)ために、半導体表面の層間絶縁膜や保護膜を除去している領域のことであり、したがって、スクライブラインでは半導体表面が大気に露出している。
 MOSFET2は複数の微小なユニットセルを集積しており、各ユニットセルがそれぞれMOSFETを構成している。MOEFET2において、各ユニットセルのゲート、ソースおよびドレインは、ゲート電極パッド10、ソース電極パッド9、ウェハ裏面のドレイン電極に接続されており、ユニットセルによって構成されるMOSFETが並列に接続されたパワートランジスタを構成している。また、ウェハの裏面に設けられたドレイン電極とウェハの表面に設けられたソース電極パッド9との間で電流が流れる縦型構造を備えている。
 ウェハ状態のMOSFET2のオフ状態における耐圧を、図8に示す従来の耐圧測定装置200を用いて測定した。耐圧を測定する場合、ステージ201にMOSFET2が形成されたウェハ1を真空吸着等で固定し、ゲート電極パッド10およびソース電極パッド9にプローブ202および203を接触させる。MOSFET2はエンハンスメント型であり、ゲートとソースを接地電位にすることによって、MOSFET2はオフ状態となる。したがって、プローブ202および203を接地電位に設定する。図示しないウェハ裏面のドレイン電極はウェハ1を固定するステージ201を介して、測定装置200の電圧印加部204および電流測定部205に電気的に接続される。
 電流測定部205でドレイン電流を測定しながら、電圧印加部204でドレイン電圧を少しずつ増加させ、ドレイン電流が所定の閾値電流を越えたときのドレイン電圧を耐圧と規定する。あるいは電流測定部205、電圧印加部204に代えて定電流源、電圧印加部を接続し、所定のドレイン電流を流したときのドレイン電圧を耐圧と定義してもよい。
 図13はMOSFET2のオフ時(ゲート電圧Vg=0)のドレイン電流とドレイン電圧のIV特性を示した図である。設計耐圧は1400Vである。
 図13から分かるように、ドレイン電圧が1100Vになるまでは、ドレイン電流はほとんど流れていない。しかし、ドレイン電圧が約1100Vに達すると電流が急激に流れ1μAに達した。このときIV測定器の電力リミッタが働き、印加電圧は600Vまで低下した。電流の急増は大気放電により、半導体素子が破壊されたためである。もう一度このMOSFET2のIV特性の測定を行ったところ、2度目のIV測定では数Vでも大きなリーク電流が流れてしまった(図示せず)。これは、大気放電による破壊によって、炭化珪素に大電流が流れ、これに伴う温度上昇により、半導体素子にリークパスが形成されたからだと思われる。
 破壊に至ったMOSFET2を光学顕微鏡で観察したところ、素子の周辺部での破壊が認められた。具体的には図11に示すソース電極パッド9の保護膜開口端13aと、周辺のシールリングが変色し、AL配線が溶融した痕跡が見られた。
 検討の結果、本願発明者は大気放電の原因を以下のように推論した。図12は図11に示すMOSFFET2のA-A’断面を矢印方向に見た図である。低抵抗のn型半導体基板14上に高抵抗のn型半導体ドリフト層15が形成されており、ドリフト層15の内部には選択的にp型半導体領域16が形成されている。ユニットセル内のp型半導体領域16の表面にはソース電極18が形成されており、各ユニットセルのソース電極18は、厚膜のソース電極パッド9によって互いに接続されている。ソース電極パッド9は上述したようにプローブ203と接触しており、すべてのソース電極18は接地電位に固定される。
 n型半導体基板14はドレインとして機能し、この裏面に形成されたドレイン電極(裏面電極)20を介してドレイン電位に固定される。通常ドレイン電位は正電圧であるので、p型半導体領域16とn型半導体ドリフト層15との界面であるpn接合には逆バイアス電圧が印加される。このため、ドリフト層15には空乏層17が広がる。
 ドリフト層15のうち空乏層17内部には電界が存在し、電位分布を生じるが、空乏層17以外の領域では電界が生じず、電位は同一である。すなわち、ドリフト層15の空乏層17以外の領域はドレイン電位となっている。
 ドリフト層15の表面にはゲート絶縁膜21を介してゲート電極19が形成されている。さらに、ゲート電極19を覆うように層間絶縁膜12が設けられている。層間絶縁膜12上にはソース電極パッド9が位置しており、層間絶縁膜12に設けられた開口を介して、ソース電極パッド9がソース電極18と接続される。
 ソース電極パッド9上には主にシリコン窒化膜やポリイミドからなる保護膜13が形成されている。保護膜13にはソース電極パッド9を露出させるために、開口端13aによって規定される開口が設けられている。
 スクライブライン11は、ウェハ上に設けられた複数のMOSFET2を切断するための領域である。スクライブライン11上には、ゲート絶縁膜21、層間絶縁膜12および保護膜13が設けられておらず、半導体ドリフト層15の表面が大気に露出している。上述したようにドリフト層15は空乏層17以外、同電位になっているため、耐圧測定中、スクライブライン11の表面もドレイン電位となっている。ソース電極パッド9は接地電位であり、スクライブライン11はドレイン電位となって大気に露出されている。これらの電位差によって生じる電界は半導体内部だけでなく、大気にも印加されることになる。
 このため、耐圧測定中、ドリフト層15およびn型半導体基板14の絶縁破壊電界よりも保護膜13の開口端13aからスクライブライン11の端部までの距離Lにおける大気の絶縁破壊電界が小さければ、ドレイン電位の上昇によって、ソース電極パッド9の開口端13aからスクライブライン11の端部まで大気を介して電流が流れる。この電流が流れると、開口端13aからスクライブライン11の端部間の大気と接した保護膜13表面の温度が急上昇する。これにより、ドリフト層15表面近傍のこれらの間にある素子構造が熱によって破壊され、低抵抗な導電性パスが形成され、MOSFET2として正しく機能しなくなる。
 このように、ソース電極パッド9とドレイン電極パッド20との間に高い電圧が印加された場合に大気を介した放電が生じるのは、ウェハ状態でMOSFET2の耐圧を測定するからである。通常、個々のMOSFET2はパッケージに収められ、MOSFET2の表面はパッケージ樹脂が覆われるため、このように大気を介して電流が流れることはない。
 表1は、シリコン、炭化珪素、大気およびパッケージ樹脂の絶縁破壊電界を示している。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、炭化珪素の絶縁破壊電界は、シリコンよりも1桁程度大きい。表1には示していないが、窒化ガリウムの絶縁破壊電界もシリコンよりも1桁程度大きいことが知られている。このように、ワイドバンドギャップ半導体は、シリコンに比べ10倍程度、絶縁破壊電界が大きいため、理論的には、素子のサイズを小さくしても素子の耐圧を確保することができる。
 しかし、大気の絶縁破壊電界はシリコンに比べ1桁ほど小さい。したがって、シリコンから炭化珪素へ半導体材料を変更することによって、より小型で耐圧の高い半導体素子を実現することができるが、素子表面が大気に接している状況では、半導体素子の耐圧測定によって大気を介した放電が、ウェハ状態での半導体素子の耐圧測定における問題となる。
 特にウェハ状態では、半導体基板の表面が露出したスクライブラインが存在する。このため、図11および図12に示すように、ワイドバンドギャップ半導体を用いて半導体素子を作製し、素子サイズを小さくするほど、スクライブライン11の端部とソース電極パッド9の開口端部13aとの距離Lが短くなり、耐圧測定中の大気放電が生じやすくなる。
 したがって、スクライブライン11が大気放電に関係している場合には、耐圧測定中、スクライブライン11を絶縁液で覆うことによって、スクライブライン11が大気に対して露出しなくなり、上述した大気放電は防止できると考えられる。
 図11に示すMOSFET2では、耐圧測定中、ゲート電極パッド10とソース電極パッド9とが同電位に設定される。このため、これらの電極パッド間では高電位差は生じず、大気放電も生じない。しかし、半導体素子によっては(例えば、横型のパワーMOSFET)、耐圧測定中、ウェハ表面に形成された2つの電極で耐圧を測定することも考えられる。この場合、2つの電極間で大気を介して電流が流れる可能性もある。この場合には、大気に対し露出した2つの電極のうち少なくとも一方の電極を絶縁液で覆っておけば、2つの電極の少なくとも一方が大気に対して露出しないため、大気放電は防止できる。
 つまり、ウェハ状態で半導体素子の耐圧を測定する場合、少なくとも耐圧を測定する1つ以上の大気に対して露出した電極または大気に対して露出したスクライブライン11を絶縁液で覆うことによって上述した大気放電の発生を抑制できる。特許文献1に開示されているように、ウェハの表面全体を絶縁液で覆う必要はない。また、このために絶縁液は、測定する素子に、測定直前に滴下すればよい。
 これにより、ウェハのアライメントが困難となる問題や、ステージの移動によって絶縁液がこぼれたり、測定中に絶縁液が蒸発することによる問題も解決し得る。このような知見に基づき、本願発明者は以下において詳細に説明する耐圧測定装置および耐圧測定方法を発明した。
 (第1の実施の形態)
 以下、図面を参照しながら、本発明による耐圧測定装置および耐圧測定方法の実施形態を説明する。
 図1は、本発明の耐圧測定装置における第1の実施形態の主要部を模式的に示している。また図2は、第1の実施形態の構成を示すブロック図である。本実施形態の耐圧測定装置50は、ウェハ位置制御部51と、絶縁液吐出部52と、電圧印加部53と、電流測定部54、制御部55と、プローブ58および59とを備えている。制御部54は、ウェハ位置制御部51、絶縁液吐出部52、電圧印加部53および電流測定部54制御する。
 本実施形態では、半導体素子として、ウェハ上1に作製された複数の縦型パワーMOSFET2の耐圧を測定する。通常、ウェハ状態の半導体装置を検査する装置は、プローバーと呼ばれ、検査を行う半導体素子に応じて、耐圧以外に、閾値電圧、オン抵抗や順方向および逆方向I-V特性など種々の素子特性が検査される。本発明の耐圧測定装置は、このようなプローバーに好適に組み込むことができる。
 ウェハ位置制御部51はステージ57を含む。ウェハ位置制御部51は、制御部55からの指令に基づき、例えば吸着によってウェハ1をステージ57に固定する。ステージ57は、制御部55からの指令、つまり制御信号により、例えば図1に示すように、X、Y、Zの三軸方向に移動可能である。さらにステージ57は、X-Y平面内でθ方向に回転することが可能である。
 プローブ58および59は、図示しない架台に固定されており、ステージ57に固定されたウェハ1に形成された複数の半導体素子の耐圧を測定するために、半導体素子に設けられた電極と接触し、電極と電気的に接続することによって、電極に電圧を印加したり、電流を流す。本実施形態では、プローブ58および59は、MOSFET2のゲート電極パッドおよびソース電極パッドに接触し、所定の電位に設定される。本実施形態では、MOEFET2の耐圧測定の際、ゲートおよびソースを接地電位に設定する必要があるため、2つのプローブ58および59を備えている。しかし、プローブの数は、測定する半導体素子の端子の数、耐圧測定時に電位を設定すべき端子数などに応じて決定され、1つあるいは3つ以上であってもよい。例えば、検査を行う半導体素子が縦型ダイオードである場合、ウェハ1の裏面がアノードまたはカソードとなり、ウェハ1の表面にカソード電極パッドまたはアノード電極パッドが形成される。この場合、ウェハ1の表面に設けられたカソード電極パッドまたはアノード電極パッドと接触する1つのプローブを耐圧測定装置は備えていればよい。
 図3は、ウェハ1上に複数形成されたMOSFET2の平面図である。図11を参照して説明したように、各MOSFET2は、ソース電極パッド9とゲート電極パッド10とを備えており、ウェハの裏面が複数のMOSFET2に共通に接続されたドレイン電極(図示せず)になっている。各MOSFET2は隣接するMOSFET2とスクライブライン11によって分離されている。
 MOSFET2は複数のユニットセルを含み、各ユニットセルがそれぞれMOSFETを構成している。MOEFET2において、各ユニットセルのゲート、ソースおよびドレインは、ゲート電極パッド10、ソース電極パッド9、ドレイン電極に接続されており、ユニットセルによって構成されるMOSFETが並列に接続されパワートランジスタを構成している。また、MOSFET2はウェハの裏面に設けられたドレイン電極とウェハの表面に設けられたソース電極パッド9との間で電流が流れる縦型構造を備えている。
 プローブ58および59は、それぞれの先端がゲート電極パッド10およびソース電極パッド9と接触するように配置される。ステージ57の表面は、例えば、金などの導体で被覆されており、ウェハの裏面に設けられたドレイン電極と電気的に接続している。プローブ58および59およびステージ57の表面は、電圧印加部53および電流測定部54を含む耐圧測定部に接続されている。制御部55の指令に基づき、プローブ58および59は接地電位に固定され、ステージ57の表面にドレイン電圧が印加される。
 絶縁液吐出部52は、ノズル56を有するディスペンサを含む。ノズル56は、図示しない架台に固定され、プローブ58および59に近接して配置されている。でディスペンサは、絶縁液を保持したタンクをさらに含み、制御部55からの指令に基づき、所定量の絶縁液60を吐出する。
 図4は、図3に示すMOSEFET2のB-B’断面を示している。図3および図4に示すように、概略的に説明すれば、吐出する絶縁液60は、ウェハ1に形成された複数のMOSFET2のうち、これから測定するMOSFET2の測定において大気放電が生じないように、絶縁液60でウェハ1の表面の一部のみであるMOSFET2を覆う。具体的には、少なくともこれから測定するMOSFET2に設けられた耐圧を測定する1つ以上の大気に露出した電極を絶縁液60で覆う。本実施形態の場合、絶縁液60でソース電極パッド9およびゲート電極パッド10を覆う。より好ましくは、ソース電極パッド9およびゲート電極パッド10ならびに測定位置にあり、これから測定するMOSFET2(破線24で示している)を囲む大気に露出したスクライブライン11を絶縁液60で完全に覆うように絶縁液60の量が調整される。例えば、スクライブライン11の外周の大きさが、3mm×3mm程度である場合、絶縁液60の量は1~2ml程度である。より好ましくは、絶縁液60の端はスクライブライン11を越えて隣接する素子にまで達している。これにより、確実に測定対象であるMOSFET2およびこれを囲むスクライブライン11が完全に絶縁液60で覆われる。このような条件を満たしている限り、絶縁液60は、測定位置にあるMOSFET2に隣接するMOSFET2も覆っていてもよい。
 絶縁液60は、少なくとも大気よりも高い絶縁性を有している。例えば、大気の絶縁破壊電界よりも大きな絶縁破壊電界を持つ絶縁液を用いる。具体的には、フッ素系不活性液体(ハイドロフルオロエーテル、パーフルオロポリエーテルなど)やシリコンオイルなどを用いることが好ましい。例えば住友スリーエム社製のフロリナート(登録商標)FC40は0.18MV/cmの絶縁破壊電界を有している。この値は、大気の絶縁破壊電界の6倍である。
 絶縁液の絶縁性を示す指標として絶縁耐力を用いてもよい。絶縁耐力は、2.54mmのギャップを設けた電極間に印加可能な電圧で定義される。上述のフロリナートFC40の0.18MV/cmという絶縁耐力は、46kV/2.54mmである。またパーフルオロエーテルであるソルベイ ソレクシスカ社製 ガルデン(登録商標)も40kV/2.54mmという大気の6倍程度の絶縁耐力を有している。
 絶縁液60は、耐圧測定の際、測定中のMOSFET2を覆っていればよい。絶縁液60でMOSFET2を覆った後、プローブ58および59をゲート電極パッド10およびソース電極パッド9に接触させてもよいし、プローブ58および59をゲート電極パッド10およびソース電極パッド9に接触させた後、そのMOSFET2を絶縁液60で覆ってもよい。ただし、絶縁液60の粘性が高く、プローブ58および59をゲート電極パッド10およびソース電極パッド9に先に接触させると、絶縁液60の回り込みにくく、これらのパッドを完全に絶縁液60で覆えなくなる可能性がある場合には、プローブ58および59の接触の前に絶縁液60でMOSFET2を覆うことが好ましい。フッ素系不活性液体の粘性は一般に低いため、プローブ58および59の接触と絶縁液60の吐出はいずれが先であってもよい。
 絶縁液60としてフッ素系不活性液体を用いる場合、粘度が低いため、圧力をかけて吐出量を調整するタイプのディスペンサを用いることは一般には難しい。この場合には、ディスペンサはエアーバルブを備え、バルブの開閉によって吐出を制御することが好ましい。エアーバルブはエアーの圧力により、ニードルバルブを開閉し、定量の液体を吐出する。エアーはディスペンサコントローラから供給される。ディスペンサコントローラは制御部55からのトリガ信号によってあらかじめ設定された圧力と時間でエアーをニードルバルブに供給する。この圧力と時間を調整することによって吐出量を調整することが可能である。低粘度の液体を長距離飛ばすことは難しく、むしろ、測定すべきMOSEFT2の直上から自然落下させることが好ましい。このため、ノズル56は測定すべきMOSFET2の概ね真上に位置することが好ましい。より具体的には、ノズル56から定量吐出された絶縁液60が、測定すべきMOSFET2およびこれを囲むスクライブライン11の全体を自然に覆うことができるように、ノズル56は概ね測定すべきMOSFET2の中心上にあることが好ましい。
 次に図1~図4および図5を参照しながら本実施形態による耐圧測定方法を説明する。
 まず、図1には図示しないウェハカセットからウェハ1を取り出し、ステージ57にロードする(S101)。
 次に、ウェハ1のアライメントを行う。図示しないCCDカメラを用いてウェハ1上の2つ以上の離れたアライメントマークを読み込んで、X-Y平面におけるロードされたウェハ1の方位を決定する。決定した方位から、ウェハ1に形成された複数のMOSFET2の配列の方向と、ステージ57の移動方向とが一致するように、ステージ57をθ方向に回転させる(S102)。
 さらに、あらかじめ制御部55に記憶させた各MOSFET2のウェハ1上における座標および測定順に基づき、制御部55からの制御信号によって、ウェハ位置制御部51がステージ57を移動させ、測定順で指定されたMOSFET2をプローブ58および59が接触できる測定位置に移動させる(S103)。
 次に、制御部55の指令に基づき、絶縁液吐出部52がウェハ1の測定位置に位置しているMOSFET2に絶縁液60を吐出する。上述したように、少なくとも、測定位置にあるMOSEFET2における耐圧を測定する1つ以上の大気に露出した電極を絶縁液60で覆う。好ましくは、絶縁液60で測定位置にあるMOSFET2およびこれを囲む大気に露出したスクライブライン11を完全に覆う(S104)。
 次に、ステージ57をZ方向に上昇させることにより、プローブ58および59の先端を絶縁液60で覆われたMOSFET2のゲート電極パッド10およびソース電極パッド9にそれぞれ接触させる(S105)。ゲート電極パッド10とソース電極パッド9はそれぞれプローブ58および59を介して接地電位に固定される。上述したように、絶縁液60の吐出(S104)の前に、プローブ58および59をゲート電極パッド10およびソース電極パッド9に接触させてもよい(S105)。
 次に、耐圧測定を行う(S106)。制御部23は耐圧測定部である電流測定部54と電圧測定53に制御信号を送り、電流測定部54によってステージ57に流れる電流(これはMOSFET2のドレイン電流となる)を測定しながら、電圧印加部53によってステージ57のドレイン電位を徐々に増加させる。ドレイン電流が閾値(例えば1mA)を越えた時点でのドレイン電圧を耐圧とし、制御部23がそのときの電圧印加部53が印加した電圧を記憶する。例えばドレイン電圧の印加は50V/s程度のレートで上昇させればよい。
 耐圧測定が終了したら、ウェハ位置制御部51は、ステージ57を下降させ、プローブプローブ58および59をゲート電極パッド10およびソース電極パッド9から離間させる(S107)。
 直前に測定したMOSFET2がウェハ1における測定すべき最後MOSFET2でなければ(S108)、次の測定順に指定されているMOSFET2が測定位置に来るように、制御部23の指令に基づき、ウェハ位置制御部51がステージ57を移動させる(S103)。その後、絶縁液60の吐出(S104)、プローブ58および59の接触(S105)、耐圧測定(S106)、プローブ58および59の離間(S107)を繰り返す。
 測定したMOSFET2が測定順で指定される最後のMOSFET2である場合(S109)には、そのウェハ1における測定を終了し、ウェハをアンロードする。次の別のウェハ1をロードして、そのウェハ1に対して上述の手順(S101からS109)を繰り返す。カセットに収納された最後のウェハ1の測定が終了したら、全工程を終了する。なお、測定後、ウェハ1の表面に絶縁液60が残っている場合には、例えば、窒素ガスを吹きつけて、絶縁液60をウェハ1の表面から除去してもよい。
 図6は、図1および図2に示す耐圧測定装置を用い、上述した本実施形態の耐圧測定方法により、炭化珪素パワーMOSFETの耐圧を測定した結果を示している。図6には、12個の炭化珪素パワーMOSFETのIV特性(ドレイン電流とドレイン電圧との関係)を示している。従来では、図13に示すように、大気放電が生じ、放電によって破壊した素子の抵抗は急激に低下するため、電圧が急激に低くなるIV特性を示す。また、再度測定すると同じIV特性は再現せず、低い電圧で電流が流れてしまっていた。
 本実施形態の耐圧測定方法によれば、電流が流れ始めても電圧が下がることはなく半導体内部のいわゆるアバランシェ電流が流れていることが分かる。また、再度測定しても同じIV特性が再現性よく得られた。したがって、大気放電でなく本来の半導体素子の耐圧が測定できているといえる。なお、この測定ではドレイン電流の閾値を1μAとした。
 このように本発明によれば、少なくとも測定を行う半導体素子の耐圧を測定する電極を絶縁液で覆うので、耐圧測定中に大気放電が起こることなく、ウェハ状態で各半導体素子の耐圧を測定することが可能となる。またチップ状態に切離すことなく、ウェハ上に規則正しく並んだ状態で測定するので、効率的な測定が可能である。
 また、本発明ではウェハ全体を絶縁液に浸漬しないため、ステージ全体を浸漬させる大型の槽を必要とせず、ディスペンサなどの小型の絶縁液吐出部を追加するだけでよい。
 また、ウェハの表面全体を絶縁液で覆わず、素子を測定するたびに必要な領域のみを絶縁液で覆うため、ステージが移動することによって絶縁液がこぼれたりすることがない。また、耐圧測定の直前にウェハ上に絶縁液が供給されるので、耐圧測定時に絶縁液が蒸散していることがない。
 また、ウェハのアライメントマークは絶縁液で覆われないため、耐圧測定装置におけるウェハの位置あわせを確実に行うことができる。
 なお、本実施の形態では耐圧測定部55は、電圧印加部53によりドレイン電圧を印加しながら電流測定部54によりドレイン電流を測定している。しかし、耐圧測定部55は、電流印加部(例えば定電流源)および電圧測定部を備え、電流印加部により一定電流を印加して、このときのドレイン電圧を測定して耐圧としてもよい。耐圧測定部55は、電流印加部と電圧印加部とを備えていてもよい。
 また、本実施形態では、ウェハ位置制御部51がステージ57を移動させることにより、ウェハ1に形成された半導体素子の電極パッドをプローブ58および59に接触させ、また、絶縁液60を吐出するノズル56に近接させていた。しかし、プローブ58および59およびノズル56を測定すべき半導体素子の位置に移動させ、プローブ58および59を半導体素子の電極パッドに接触させてもよい。
 (第2の実施の形態)
 以下、図面を参照しながら、本発明による耐圧測定装置および耐圧測定方法の他の実施形態を説明する。
 本実施形態は、耐圧を測定すべき半導体素子が横型パワーMOSFETである点で第1の実施形態と異なっている。横型パワーMOSFETでは、ウェハの表面にゲート電極パッド、ドレイン電極パッドおよびソース電極パッドが形成されている。このため、横型パワーMOSFETの耐圧を測定する場合、耐圧測定装置は、3つのプローブを備えている。
 図7は、耐圧測定装置のステージに固定されたウェハ1に形成された複数の横型パワーMOSFET2’の平面図である。各横型パワーMOSFET2’は、ゲート電極パッド42、ソース電極パッド44およびドレイン電極パッド46を備えている。本実施形態の耐圧測定装置は、プローブ58および59、62を備えており、プローブ58および59、62が、ゲート電極パッド42、ソース電極パッド44、ドレイン電極パッド46にそれぞれ接触する。絶縁液60は、測定すべきMOSFET2’の耐圧を測定する1つ以上の大気に露出した電極を覆っている。
 プローブ58および59を接地電位に固定し、プローブ59に流れる電流(ソース電流)またはプローブ62に流れる電流(ドレイン電流)を測定しながら、プローブ62に電圧(ドレイン電圧)を印加していき、ドレイン電流またはソース電流がある所定の値に達したときのプローブ59とプローブ62間の電圧(ドレイン―ソース電圧)を耐圧とする。その他の耐圧測定装置の構成および耐圧の測定手順は第1の実施形態と同じである。
 本実施形態によれば、第1の実施形態と同様、ウェハ状態で横型パワーMOSFETの耐圧を正しく測定することが可能となる。このため、第1の実施形態と同様の効果を得ることができる。
 以上、第1の実施形態および第2の実施形態では、縦型パワーMOSFETおよび横型パワーMOSFETの耐圧測定を例に挙げて本発明を説明した。しかし、本発明はこれらの半導体素子に限らず、様々な半導体素子をウェハ状態で測定することが可能である。例えば、ウェハに複数形成されたショットキーダイオードの耐圧を測定する場合は、1つのプローブを用い、プローブとステージ間に例えば電圧を印加する。この場合にも、絶縁液吐出部によって測定を行うショットキーダイオードのみ、つまり、ウェハ表面の一部のみが絶縁液で覆われる。このため、耐圧測定時に絶縁液が蒸散したり、ステージの移動に伴う振動によって絶縁液がこぼれることなく、耐圧測定時の大気放電を防止することができる。したがって、ウェハ状態のショットキーダイオードの耐圧を正しく測定することができる。同様に、IGBT、バイポーラトランジスタ、JFET、SITなどのパワーデバイスにも本発明を好適に用いることができる。
 また、第1の実施形態および第2の実施形態では炭化珪素半導体素子を例に挙げて本発明を説明した。上述したように、GaNなど他のワイドバンドギャップ半導体からなるパワー半導体素子においてもチップサイズの縮小に伴って、同様の問題が生じるため、本発明はGaNなど他のワイドバンドギャップ半導体からなるパワー半導体素子にも好適に用いることができる。
 本発明によれば、大気放電を起こすことなくウェハ状態にある種々のパワーデバイスの耐圧測定を効率よく行うことができる。このため、本発明は、高耐圧を有するパワーデバイスの検査工程に好適に用いられる。
 1  ウェハ
 2  半導体素子
 9  ソース電極パッド
 10  ゲート電極パッド
 11  スクライブライン
 12  層間絶縁膜
 13  保護膜
 13a 開口端部
 14  基板
 15  n型半導体ドリフト層
 16  p型半導体領域
 17  空乏層
 18  ソース電極
 19  ゲート電極
 21  ゲート絶縁膜
 50  耐圧測定装置
 51  ウェハ位置制御部
 52  絶縁液吐出部
 53  電圧印加部
 54  電流測定部
 55  制御部
 56  ノズル
 57  ステージ
 58、59  プローブ
 60  絶縁液

Claims (13)

  1.  ウェハ表面に形成された複数の半導体素子の耐圧を測定する耐圧測定方法であって、
     ステージに前記ウェハを固定する工程(A)と、
     前記ウェハ表面の一部のみであって、少なくとも前記複数の半導体素子から選ばれる1つの半導体素子に設けられた、耐圧を測定する1つ以上の大気に露出した電極を絶縁液で覆い、かつ、前記1つ以上の電極にプローブを接触させる工程(B)と、
     前記1つ以上の電極および前記ステージ表面から選ばれる2つの間の耐圧を測定する工程(C)と、
    を包含する耐圧測定方法。
  2.  前記工程(B)において、前記1つの半導体素子と前記1つの半導体素子を囲む大気に露出したスクライブラインとを前記絶縁液で覆う請求項1に記載の耐圧測定方法。
  3.  前記絶縁液は、大気よりも高い絶縁性を有する請求項1または2に記載の耐圧測定方法。
  4.  前記複数の半導体素子から異なる1つの半導体素子を繰り返し選択し、選択した半導体素子に対して、前記工程(B)および(C)を行う請求項1から3のいずれかに記載の耐圧測定方法。
  5.  前記工程(A)と(B)との間に、前記ウェハ表面に設けられた2つ以上のアライメントマークを用いて、前記ウェハに設けられた前記複数の半導体素子の配列方向と前記ステージの移動可能な方向が一致するように前記ステージを回転させる工程をさらに包含する請求項1から4のいずれかに記載の耐圧測定方法。
  6.  前記工程(B)は、
     前記1つの半導体素子の前記1つ以上の電極にプローブを接触させる工程(B1)と、
     前記工程(B1)の後、前記ウェハ表面の一部のみであって、少なくとも前記1つの半導体素子に設けられた、耐圧を測定する1つ以上の大気に露出した電極を絶縁液で覆う工程(B2)と、
    を含む請求項5に記載の耐圧測定方法。
  7.  前記工程(B)は、
     前記ウェハ表面の一部のみであって、少なくとも前記1つの半導体素子に設けられた耐圧を測定する1つ以上の大気に露出した電極を絶縁液で覆う工程(B3)と、
     前記工程(B3)の後、前記1つの半導体素子の前記1つ以上の電極にプローブを接触させる工程(B4)と、
    を含む請求項5に記載の耐圧測定方法。
  8.  前記工程(B3)は、
     前記ウェハが前記プローブに近接するように前記ステージを移動させる工程と、
     前記絶縁液をウェハ上に吐出する工程と、
    を含む請求項7に記載の耐圧測定方法。
  9.  前記半導体素子は炭化珪素半導体パワー素子である請求項1から8のいずれかに記載の耐圧測定方法。
  10.  ウェハ表面に形成された複数の半導体素子の耐圧を測定する耐圧測定装置であって、
     制御部と、
     少なくとも1つのプローブと、
     前記ウェハを固定するステージを含み、前記制御部からの指令に基づき、前記ステージに固定したウェハの複数の半導体素子のうち、選択した1つの半導体素子に設けられた、耐圧を測定する1つ以上の大気に露出した電極と、前記少なくとも1つのプローブとが接触可能なように前記ステージを移動させるウェハ位置制御部と、
     前記制御部からの指令に基づき、前記ウェハ表面の一部のみであって、少なくとも前記選択した半導体素子の前記電極を絶縁液で覆うように絶縁液を吐出する絶縁液吐出部と、
     前記制御部からの指令に基づき、前記少なくとも1つのプローブおよび前記ステージ表面から選ばれる2つの間の耐圧を測定する電圧印加部と、
    を備える耐圧測定装置。
  11.  前記絶縁液吐出部は、少なくとも1つのプローブに近接した吐出口を有するノズルを含む請求項10に記載の耐圧測定装置。
  12.  前記絶縁液吐出部は、前記選択した1つの半導体素子と前記1つの半導体素子を囲む大気に露出したスクライブラインとを覆うように前記絶縁液を吐出する請求項11に記載の耐圧測定装置。
  13.  前記絶縁液は、大気よりも高い絶縁性を有する請求項10から12のいずれかに記載の耐圧測定装置。
PCT/JP2009/002088 2008-08-19 2009-05-13 半導体素子の耐圧測定装置および耐圧測定方法 WO2010021070A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009541665A JP4482061B2 (ja) 2008-08-19 2009-05-13 半導体素子の耐圧測定装置および耐圧測定方法
CN2009801007518A CN102741992A (zh) 2008-08-19 2009-05-13 半导体元件的耐压测定装置及耐压测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008210412 2008-08-19
JP2008-210412 2008-08-19

Publications (1)

Publication Number Publication Date
WO2010021070A1 true WO2010021070A1 (ja) 2010-02-25

Family

ID=41706964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002088 WO2010021070A1 (ja) 2008-08-19 2009-05-13 半導体素子の耐圧測定装置および耐圧測定方法

Country Status (3)

Country Link
JP (1) JP4482061B2 (ja)
CN (1) CN102741992A (ja)
WO (1) WO2010021070A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191083A (ja) * 2011-03-11 2012-10-04 Sharp Corp 半導体素子試験方法および半導体素子試験装置
JP2013096837A (ja) * 2011-11-01 2013-05-20 Mitsubishi Electric Corp 半導体テスト治具およびそれを用いた耐圧測定方法
WO2014185192A1 (ja) * 2013-05-16 2014-11-20 住友電気工業株式会社 炭化珪素半導体装置および半導体モジュールの製造方法、ならびに炭化珪素半導体装置および半導体モジュール
JP2015046491A (ja) * 2013-08-28 2015-03-12 住友電気工業株式会社 ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール
WO2015174150A1 (ja) * 2014-05-13 2015-11-19 住友電気工業株式会社 半導体素子の耐圧測定方法
DE102015207971A1 (de) 2014-06-02 2015-12-03 Sumitomo Electric Industries, Ltd. Verfahren zur Messung der Durchbruchspannung und Verfahren zur Herstellung einer Halbleitervorrichtung
JP2016004912A (ja) * 2014-06-17 2016-01-12 三菱電機株式会社 測定装置、測定方法
DE102015216696A1 (de) 2014-09-03 2016-03-03 Sumitomo Electric Industries, Ltd. Verfahren für die Messung einer Durchschlagsspannung eines Halbleiterelementes und Verfahren für die Herstellung eines Halbleiterelementes
US9562942B2 (en) 2013-07-11 2017-02-07 Tokyo Electron Limited Probe apparatus
KR20170045653A (ko) * 2015-10-19 2017-04-27 한국전기연구원 반도체 웨이퍼 측정 장치
US20170162458A1 (en) * 2015-03-16 2017-06-08 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291265A (zh) * 2015-05-13 2017-01-04 无锡华润上华半导体有限公司 Dc-dc电路中开关管的耐压测试方法
JP6917911B2 (ja) * 2018-01-15 2021-08-11 三菱電機株式会社 テスト条件決定装置及びテスト条件決定方法
CN108535628A (zh) * 2018-03-20 2018-09-14 力特半导体(无锡)有限公司 一种避免烧伤的功率半导体芯片失效定位方法
US11367694B2 (en) * 2019-02-20 2022-06-21 Shenzhen Torey Microelectronic Technology Co. Ltd. Semiconductor integrated circuit and withstand voltage test method
JP7215240B2 (ja) * 2019-03-07 2023-01-31 富士電機株式会社 半導体装置の試験方法
JP7217688B2 (ja) * 2019-09-26 2023-02-03 三菱電機株式会社 半導体装置、及び半導体素子の製造方法
EP4239675A1 (en) * 2022-03-02 2023-09-06 Infineon Technologies Austria AG Semiconductor wafer with alignment mark indicating the wafer orientation and method for fabricating said semiconductor wafer
IT202200006356A1 (it) * 2022-03-31 2023-10-01 Crea Collaudi Elettr Automatizzati S R L Sistema di test per il test ad alta tensione ed alta corrente su una pluralità di dispositivi a semiconduttore di potenza compresi in un wafer, e sistema di contattazione

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233433A (ja) * 1985-08-07 1987-02-13 Toshiba Corp 高耐圧半導体素子の製造方法
JP2000206149A (ja) * 1999-01-14 2000-07-28 Sony Corp プロ―ブカ―ドおよび被検査体の電気特性検査方法
JP2003100819A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 耐圧検査方法及びその装置
JP2003130889A (ja) * 2001-10-29 2003-05-08 Vector Semicon Kk 半導体装置検査装置及び検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233433A (ja) * 1985-08-07 1987-02-13 Toshiba Corp 高耐圧半導体素子の製造方法
JP2000206149A (ja) * 1999-01-14 2000-07-28 Sony Corp プロ―ブカ―ドおよび被検査体の電気特性検査方法
JP2003100819A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 耐圧検査方法及びその装置
JP2003130889A (ja) * 2001-10-29 2003-05-08 Vector Semicon Kk 半導体装置検査装置及び検査方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191083A (ja) * 2011-03-11 2012-10-04 Sharp Corp 半導体素子試験方法および半導体素子試験装置
JP2013096837A (ja) * 2011-11-01 2013-05-20 Mitsubishi Electric Corp 半導体テスト治具およびそれを用いた耐圧測定方法
US9007081B2 (en) 2011-11-01 2015-04-14 Mitsubishi Electric Corporation Jig for use in semiconductor test and method of measuring breakdown voltage by using the jig
WO2014185192A1 (ja) * 2013-05-16 2014-11-20 住友電気工業株式会社 炭化珪素半導体装置および半導体モジュールの製造方法、ならびに炭化珪素半導体装置および半導体モジュール
US9562942B2 (en) 2013-07-11 2017-02-07 Tokyo Electron Limited Probe apparatus
JP2015046491A (ja) * 2013-08-28 2015-03-12 住友電気工業株式会社 ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール
US9640619B2 (en) 2013-08-28 2017-05-02 Sumitomo Electric Industries, Ltd. Methods of manufacturing wide band gap semiconductor device and semiconductor module, and wide band gap semiconductor device and semiconductor module
WO2015174150A1 (ja) * 2014-05-13 2015-11-19 住友電気工業株式会社 半導体素子の耐圧測定方法
JP2015216306A (ja) * 2014-05-13 2015-12-03 住友電気工業株式会社 半導体素子の耐圧測定方法
JP2015228444A (ja) * 2014-06-02 2015-12-17 住友電気工業株式会社 耐圧測定方法および半導体装置の製造方法
DE102015207971A1 (de) 2014-06-02 2015-12-03 Sumitomo Electric Industries, Ltd. Verfahren zur Messung der Durchbruchspannung und Verfahren zur Herstellung einer Halbleitervorrichtung
US9799506B2 (en) 2014-06-02 2017-10-24 Sumitomo Electric Industries, Ltd. Breakdown voltage measuring method and method for manufacturing semiconductor device
JP2016004912A (ja) * 2014-06-17 2016-01-12 三菱電機株式会社 測定装置、測定方法
US9684015B2 (en) 2014-06-17 2017-06-20 Mitsubishi Electric Corporation Measuring apparatus and measuring method utilizing insulating liquid
DE102015216696A1 (de) 2014-09-03 2016-03-03 Sumitomo Electric Industries, Ltd. Verfahren für die Messung einer Durchschlagsspannung eines Halbleiterelementes und Verfahren für die Herstellung eines Halbleiterelementes
US9607905B2 (en) 2014-09-03 2017-03-28 Sumitomo Electric Industries, Ltd. Method of measuring breakdown voltage of semiconductor element and method of manufacturing semiconductor element
US20170162458A1 (en) * 2015-03-16 2017-06-08 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device
KR20170045653A (ko) * 2015-10-19 2017-04-27 한국전기연구원 반도체 웨이퍼 측정 장치
KR102419083B1 (ko) 2015-10-19 2022-07-07 한국전기연구원 반도체 웨이퍼 측정 장치

Also Published As

Publication number Publication date
JP4482061B2 (ja) 2010-06-16
JPWO2010021070A1 (ja) 2012-01-26
CN102741992A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4482061B2 (ja) 半導体素子の耐圧測定装置および耐圧測定方法
US8310028B2 (en) Semiconductor device with crystal defect and manufacturing method thereof
US9429616B2 (en) Test method and test arrangement
US20120133388A1 (en) Transistor power switch device and method of measuring its characteristics
US11333702B2 (en) Semiconductor device test method
CN111354779A (zh) 半导体装置及半导体装置的制造方法
US11410892B2 (en) Semiconductor device and method of inspecting semiconductor device
CN112582290B (zh) 半导体测试装置、半导体装置的测试方法及半导体装置的制造方法
JP5719182B2 (ja) 絶縁ゲートバイポーラトランジスタの検査方法、製造方法、及びテスト回路
US20180082882A1 (en) Wafer Chuck, Use of the Wafer Chuck and Method for Testing a Semiconductor Wafer
JP2016054189A (ja) 半導体素子の耐圧測定方法および半導体素子の製造方法
CN115377064A (zh) 碳化硅半导体装置的制造方法
US11333700B2 (en) Inspection apparatus of semiconductor device and method for inspecting semiconductor device
JP2022175891A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2014225557A (ja) 炭化珪素半導体装置および半導体モジュールの製造方法、ならびに炭化珪素半導体装置および半導体モジュール
JP2022176695A (ja) 炭化珪素半導体装置の製造方法
US20220359314A1 (en) Semiconductor device with termination structure and field-free region
JP2000164665A (ja) 半導体集積回路装置及びその製造方法
US11662371B2 (en) Semiconductor devices for improved measurements and related methods
US20230069188A1 (en) Testing method and manufacturing method
US11500009B2 (en) Testing apparatus, testing method, and manufacturing method
JPH08153763A (ja) 半導体装置の測定方法
US20240014081A1 (en) Semiconductor structure for inspection
US20230411200A1 (en) Manufacturing method of semiconductor device, method of testing the semiconductor device and wafer holding member
JP7192338B2 (ja) 炭化珪素半導体装置の選別方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100751.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009541665

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808006

Country of ref document: EP

Kind code of ref document: A1