WO2010010859A1 - キャピラリー電気泳動法による分析装置および分析方法 - Google Patents
キャピラリー電気泳動法による分析装置および分析方法 Download PDFInfo
- Publication number
- WO2010010859A1 WO2010010859A1 PCT/JP2009/063010 JP2009063010W WO2010010859A1 WO 2010010859 A1 WO2010010859 A1 WO 2010010859A1 JP 2009063010 W JP2009063010 W JP 2009063010W WO 2010010859 A1 WO2010010859 A1 WO 2010010859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrophoresis
- less
- analysis
- electric field
- sample
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 208
- 238000001962 electrophoresis Methods 0.000 title claims abstract description 200
- 238000000034 method Methods 0.000 title description 19
- 239000007788 liquid Substances 0.000 claims abstract description 98
- 239000000758 substrate Substances 0.000 claims abstract description 80
- 102000004506 Blood Proteins Human genes 0.000 claims abstract description 45
- 108010017384 Blood Proteins Proteins 0.000 claims abstract description 45
- 239000008280 blood Substances 0.000 claims abstract description 32
- 210000004369 blood Anatomy 0.000 claims abstract description 32
- 238000002835 absorbance Methods 0.000 claims abstract description 24
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 20
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 20
- 238000005251 capillar electrophoresis Methods 0.000 claims description 85
- 102000001554 Hemoglobins Human genes 0.000 claims description 81
- 108010054147 Hemoglobins Proteins 0.000 claims description 81
- 230000005684 electric field Effects 0.000 claims description 81
- 238000000926 separation method Methods 0.000 claims description 77
- 238000001514 detection method Methods 0.000 claims description 62
- 230000005012 migration Effects 0.000 claims description 28
- 238000013508 migration Methods 0.000 claims description 28
- 229920001282 polysaccharide Polymers 0.000 claims description 18
- 239000005017 polysaccharide Substances 0.000 claims description 18
- 238000005370 electroosmosis Methods 0.000 claims description 14
- 108091005880 Hemoglobin F Proteins 0.000 claims description 12
- 125000000524 functional group Chemical group 0.000 claims description 10
- 230000002949 hemolytic effect Effects 0.000 claims description 10
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical group FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 claims description 7
- 229920001287 Chondroitin sulfate Polymers 0.000 claims description 7
- 229940059329 chondroitin sulfate Drugs 0.000 claims description 7
- 238000011481 absorbance measurement Methods 0.000 claims description 6
- 150000004676 glycans Chemical class 0.000 claims 4
- 239000000243 solution Substances 0.000 description 46
- 150000001875 compounds Chemical class 0.000 description 26
- 239000012895 dilution Substances 0.000 description 24
- 238000010790 dilution Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 20
- 239000003153 chemical reaction reagent Substances 0.000 description 19
- 235000018102 proteins Nutrition 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 150000004804 polysaccharides Chemical class 0.000 description 14
- 239000004094 surface-active agent Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 125000000129 anionic group Chemical group 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- 102000017011 Glycated Hemoglobin A Human genes 0.000 description 6
- 230000003196 chaotropic effect Effects 0.000 description 6
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 108010088751 Albumins Proteins 0.000 description 5
- 102000009027 Albumins Human genes 0.000 description 5
- 108010044091 Globulins Proteins 0.000 description 5
- 102000006395 Globulins Human genes 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 239000005350 fused silica glass Substances 0.000 description 5
- 108091005995 glycated hemoglobin Proteins 0.000 description 5
- 230000003204 osmotic effect Effects 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- -1 polydimethylsiloxane Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000009210 therapy by ultrasound Methods 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 102000008946 Fibrinogen Human genes 0.000 description 3
- 108010049003 Fibrinogen Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 102000007513 Hemoglobin A Human genes 0.000 description 3
- 108010085682 Hemoglobin A Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 108010016797 Sickle Hemoglobin Proteins 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229960003237 betaine Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 229940012952 fibrinogen Drugs 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 108010074605 gamma-Globulins Proteins 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004452 microanalysis Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229940117986 sulfobetaine Drugs 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- QZTKDVCDBIDYMD-UHFFFAOYSA-N 2,2'-[(2-amino-2-oxoethyl)imino]diacetic acid Chemical compound NC(=O)CN(CC(O)=O)CC(O)=O QZTKDVCDBIDYMD-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- NUFBIAUZAMHTSP-UHFFFAOYSA-N 3-(n-morpholino)-2-hydroxypropanesulfonic acid Chemical compound OS(=O)(=O)CC(O)CN1CCOCC1 NUFBIAUZAMHTSP-UHFFFAOYSA-N 0.000 description 1
- PMJIKKNFJBDSHO-UHFFFAOYSA-N 3-[3-aminopropyl(diethoxy)silyl]oxy-3-methylpentane-1,5-diol Chemical compound NCCC[Si](OCC)(OCC)OC(C)(CCO)CCO PMJIKKNFJBDSHO-UHFFFAOYSA-N 0.000 description 1
- GPXCORHXFPYJEH-UHFFFAOYSA-N 3-[[3-aminopropyl(dimethyl)silyl]oxy-dimethylsilyl]propan-1-amine Chemical compound NCCC[Si](C)(C)O[Si](C)(C)CCCN GPXCORHXFPYJEH-UHFFFAOYSA-N 0.000 description 1
- QWFSPEQGWSIPLB-UHFFFAOYSA-N 3-[dimethyl(trimethylsilyloxy)silyl]propan-1-amine Chemical compound C[Si](C)(C)O[Si](C)(C)CCCN QWFSPEQGWSIPLB-UHFFFAOYSA-N 0.000 description 1
- FSMHYZUFHYGNHS-UHFFFAOYSA-N 3-[ethoxy-di(propan-2-yl)silyl]propan-1-amine Chemical compound CCO[Si](C(C)C)(C(C)C)CCCN FSMHYZUFHYGNHS-UHFFFAOYSA-N 0.000 description 1
- TUBRCQBRKJXJEA-UHFFFAOYSA-N 3-[hexadecyl(dimethyl)azaniumyl]propane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O TUBRCQBRKJXJEA-UHFFFAOYSA-N 0.000 description 1
- KWQQHTNSJIJFBO-UHFFFAOYSA-N 3-[methyl-bis(trimethylsilyloxy)silyl]propan-1-amine Chemical compound C[Si](C)(C)O[Si](C)(O[Si](C)(C)C)CCCN KWQQHTNSJIJFBO-UHFFFAOYSA-N 0.000 description 1
- JTXUAHIMULPXKY-UHFFFAOYSA-N 3-trihydroxysilylpropan-1-amine Chemical compound NCCC[Si](O)(O)O JTXUAHIMULPXKY-UHFFFAOYSA-N 0.000 description 1
- IYTXQZMZTQHONB-UHFFFAOYSA-N 4-[(4-aminophenoxy)-dimethylsilyl]oxyaniline Chemical compound C=1C=C(N)C=CC=1O[Si](C)(C)OC1=CC=C(N)C=C1 IYTXQZMZTQHONB-UHFFFAOYSA-N 0.000 description 1
- ZMWNPLZNYQLBOE-UHFFFAOYSA-N 4-[dimethylamino-di(propan-2-yl)silyl]butanenitrile Chemical compound CC(C)[Si](N(C)C)(C(C)C)CCCC#N ZMWNPLZNYQLBOE-UHFFFAOYSA-N 0.000 description 1
- 239000007991 ACES buffer Substances 0.000 description 1
- 239000007988 ADA buffer Substances 0.000 description 1
- 108010044267 Abnormal Hemoglobins Proteins 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- BMFMQGXDDJALKQ-BYPYZUCNSA-N Argininic acid Chemical compound NC(N)=NCCC[C@H](O)C(O)=O BMFMQGXDDJALKQ-BYPYZUCNSA-N 0.000 description 1
- 239000007992 BES buffer Substances 0.000 description 1
- 208000027932 Collagen disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 108010044495 Fetal Hemoglobin Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010014663 Glycated Hemoglobin A Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000007987 MES buffer Substances 0.000 description 1
- JOCBASBOOFNAJA-UHFFFAOYSA-N N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Chemical compound OCC(CO)(CO)NCCS(O)(=O)=O JOCBASBOOFNAJA-UHFFFAOYSA-N 0.000 description 1
- 206010029164 Nephrotic syndrome Diseases 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000007994 TES buffer Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- ZADPHSJECPYYRF-UHFFFAOYSA-N [amino(2-methylprop-1-enyl)silyl]oxybenzene Chemical compound N[SiH](C=C(C)C)OC1=CC=CC=C1 ZADPHSJECPYYRF-UHFFFAOYSA-N 0.000 description 1
- 108010015562 acetylated hemoglobin Proteins 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 108010013766 hemoglobin A(0) Proteins 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- HBELKEREKFGFNM-UHFFFAOYSA-N n'-[[4-(2-trimethoxysilylethyl)phenyl]methyl]ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCC1=CC=C(CNCCN)C=C1 HBELKEREKFGFNM-UHFFFAOYSA-N 0.000 description 1
- FIRXZHKWFHIBOF-UHFFFAOYSA-N n-(dimethylamino-ethenyl-methylsilyl)-n-methylmethanamine Chemical compound CN(C)[Si](C)(C=C)N(C)C FIRXZHKWFHIBOF-UHFFFAOYSA-N 0.000 description 1
- YLZCZVGQEADVNK-UHFFFAOYSA-N n-[chloro-bis(dimethylamino)silyl]-n-methylmethanamine Chemical compound CN(C)[Si](Cl)(N(C)C)N(C)C YLZCZVGQEADVNK-UHFFFAOYSA-N 0.000 description 1
- QULMGWCCKILBTO-UHFFFAOYSA-N n-[dimethylamino(dimethyl)silyl]-n-methylmethanamine Chemical compound CN(C)[Si](C)(C)N(C)C QULMGWCCKILBTO-UHFFFAOYSA-N 0.000 description 1
- GURMJCMOXLWZHZ-UHFFFAOYSA-N n-ethyl-n-[tris(diethylamino)silyl]ethanamine Chemical compound CCN(CC)[Si](N(CC)CC)(N(CC)CC)N(CC)CC GURMJCMOXLWZHZ-UHFFFAOYSA-N 0.000 description 1
- DTPZJXALAREFEY-UHFFFAOYSA-N n-methyl-3-triethoxysilylpropan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCNC DTPZJXALAREFEY-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- GIRKRMUMWJFNRI-UHFFFAOYSA-N tris(dimethylamino)silicon Chemical compound CN(C)[Si](N(C)C)N(C)C GIRKRMUMWJFNRI-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Chemical group 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44791—Microapparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D57/00—Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
- B01D57/02—Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/24—Extraction; Separation; Purification by electrochemical means
- C07K1/26—Electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44721—Arrangements for investigating the separated zones, e.g. localising zones by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/72—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
- G01N33/721—Haemoglobin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/72—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
- G01N33/721—Haemoglobin
- G01N33/726—Devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/04—Endocrine or metabolic disorders
- G01N2800/042—Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
Definitions
- the present invention relates to an analyzer and an analysis method for analyzing proteins contained in blood by capillary electrophoresis.
- the blood contains proteins such as albumin, globulin ( ⁇ 1, ⁇ 2, ⁇ , ⁇ globulin), fibrinogen, hemoglobin and the like. These proteins are analyzed for ratios, mutations, etc., and are used for diagnosis of diseases. Among these proteins, albumin, globulin ( ⁇ 1, ⁇ 2, ⁇ , ⁇ globulin) and fibrinogen are proteins that are contained in large amounts in blood. These protein ratios are, for example, important indicators in the diagnosis of cirrhosis, nephrotic syndrome, collagen disease, and the like, and are analyzed using a cellulose acetate membrane electrophoresis method or the like.
- hemoglobin includes hemoglobin A (HbA), hemoglobin F (HbF), hemoglobin S (HbS), glycated hemoglobin, and the like.
- HbA and HbF are normal hemoglobins in humans.
- HbS is an abnormal hemoglobin in which the 6th glutamic acid in the ⁇ chain is replaced with valine, and is a diagnostic index for sickle cell anemia.
- glycated hemoglobin is hemoglobin that has reacted with glucose in the blood, and reflects the past history of blood glucose levels in the living body. Therefore, it is used as an index in the diagnosis and treatment of diabetes.
- hemoglobin A1c obtained by glycating ⁇ -chain N-terminal valine is a particularly important index and is a test item for periodic health examinations.
- proteins in blood, including hemoglobin are important indicators of various diseases, there is a need for the development of a small-sized analyzer that can be used in clinical examinations and has low running costs. ing.
- the methods for measuring hemoglobin include, for example, an immunization method, an enzyme method, an affinity chromatography method, an HPLC method, and a capillary electrophoresis method. Since the immunization method and the enzyme method can be applied to an automatic analyzer, they have the advantage of being able to process a large amount of specimen, but lack measurement accuracy and require about 10 minutes for analysis.
- the affinity chromatography method has low measurement accuracy of HbA1c due to the separation principle, and requires about 2 minutes for analysis.
- the HPLC method is widely used as a method for measuring hemoglobin (for example, Patent Document 1), but requires a large and expensive dedicated device, which makes it difficult to reduce the size and cost of the device.
- the present invention provides an analyzer for analyzing by capillary electrophoresis, which is capable of analyzing a protein contained in blood in a short time with high accuracy, with the entire apparatus being downsized, simple operation, low running cost, and The purpose is to provide an analysis method.
- the analyzer of the present invention comprises: A capillary electrophoresis analyzer for analyzing blood proteins by capillary electrophoresis, Having an electrophoresis chip, voltage application means, liquid feeding means and absorbance measurement means,
- the electrophoresis chip includes a substrate, a plurality of liquid tanks and a capillary channel,
- the voltage applying means includes an electrode, The plurality of liquid tanks are formed on the substrate, The plurality of liquid tanks are communicated with each other through the capillary channel,
- the capillary channel includes a capillary channel for sample analysis, Using the liquid feeding means, the capillary channel for sample analysis is filled with an electrophoresis solution, A sample containing the blood protein to be analyzed is introduced into the capillary channel for sample analysis filled with the electrophoresis solution, A voltage is applied to the electrode, the sample is electrophoresed,
- the absorbance measurement means measures the absorbance of the blood protein in the electrophoresed sample, The analysis time of the blood protein is 35 seconds or
- the analysis method of the present invention is an analysis method for analyzing proteins in blood by capillary electrophoresis, Using an electrophoresis chip with a capillary channel formed,
- the capillary channel includes a capillary channel for sample analysis;
- the analysis time of the blood protein is 35 seconds or less.
- the electrophoresis chip is preferably the electrophoresis chip in the above-described capillary electrophoresis analysis apparatus of the present invention, and the capillary electrophoresis analysis apparatus is preferably used.
- the capillary electrophoresis analyzer of the present invention can be downsized as a whole, is easy to operate, has low running cost, and can analyze blood proteins with high accuracy in a short time of 35 seconds or less.
- the analysis method of the present invention is simple in operation, low in running cost, can use a small-sized analyzer, and can analyze blood proteins with high accuracy in a short time of 35 seconds or less.
- the capillary electrophoresis analysis apparatus of the present invention and the analysis method using the apparatus are suitable for a micro analysis system ( ⁇ TAS).
- FIG. 1A is a plan view showing an example of an electrophoresis chip included in the capillary electrophoresis analyzer of the present invention.
- FIG. 1B is a cross-sectional view of the electrophoresis chip shown in FIG.
- FIG. 2 is a schematic view showing an example of a capillary electrophoresis analyzer of the present invention.
- FIG. 3A is a plan view showing another example of the electrophoresis chip included in the capillary electrophoresis analyzer of the present invention.
- FIG. 3B is a cross-sectional view of the electrophoresis chip shown in FIG. 3A viewed in the II direction.
- FIG. 3C is a cross-sectional view of the electrophoresis chip shown in FIG.
- FIG. 4A is a plan view showing still another example of the electrophoresis chip included in the capillary electrophoresis analyzer of the present invention.
- FIG. 4B is a perspective view of the electrophoresis chip shown in FIG.
- FIG. 5 is a schematic view showing another example of the capillary electrophoresis analyzer of the present invention.
- FIG. 6 is a graph showing an analysis result of hemoglobin in an example of the analysis method of the present invention.
- FIG. 7 is a graph showing the results of hemoglobin analysis in another example of the analysis method of the present invention.
- FIG. 8 is a graph showing the results of hemoglobin analysis in still another example of the analysis method of the present invention.
- FIG. 9 is a graph showing the analysis results of hemoglobin in still another example of the analysis method of the present invention.
- FIG. 10 is a graph showing the analysis results of hemoglobin in still another example of the present invention.
- FIG. 11 is a graph showing the analysis result of hemoglobin in the analysis method of the comparative example.
- FIG. 12 is a graph showing the analysis results of hemoglobin in the analysis methods of other comparative examples.
- the capillary electrophoresis analyzer of the present invention is In the sample analysis capillary channel,
- the cross-sectional shape perpendicular to the flow path direction is circular or rectangular, In the case of a circle, the diameter is in the range of 25 ⁇ m to 100 ⁇ m, In the case of a rectangle, the width is in the range of 25 ⁇ m to 100 ⁇ m, the depth is in the range of 25 ⁇ m to 100 ⁇ m, From the electrophoresis start point, the electrophoresis of the sample is started, The absorbance of the blood protein in the electrophoresed sample is measured at the detection point; It is preferable that the distance from the electrophoresis start point to the detection point is 5 cm or less.
- the inner wall surface of the sample analysis capillary channel has an ionic functional group
- the pH of the electrophoresis solution is in the range of pH 4.0 to 6.0;
- the electroosmotic flow generated when the voltage is applied may be 3 cm / min or more.
- the electrophoresis solution preferably contains a sulfated polysaccharide.
- the sulfated polysaccharide is chondroitin sulfate.
- the distance from the electrophoresis start point to the detection point is In the case of 0.25 cm or more and less than 0.75 cm, the separation electric field is 300 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 300 to 600 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 400 to 650 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 450 to 700 V / cm.
- the distance from the electrophoresis start point to the detection point is In the case of 0.25 cm or more and less than 0.75 cm, the separation electric field is 250 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 250 to 500 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 375 to 550 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 400 to 600 V / cm.
- the distance from the electrophoresis start point to the detection point is In the case of 0.25 cm or more and less than 0.75 cm, the separation electric field is 200 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 200 to 450 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 300 to 500 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 350 to 550 V / cm.
- the separation electric field is 150 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 150 to 400 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 250 to 450 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 300 to 500 V / cm.
- the blood protein is an analysis item, and the analysis item is hemoglobin.
- the hemoglobin is at least one of hemoglobin A1c (HbA1c) and hemoglobin F (HbF).
- the hemoglobin A1c concentration HbA1c concentration
- HbA1c concentration the hemoglobin A1c concentration
- the sample is a sample obtained by hemolyzing the blood, and the hemoglobin in the sample obtained by hemolyzing the blood is analyzed.
- the cross-sectional shape perpendicular to the flow path direction is circular or rectangular, In the case of a circle, the diameter is in the range of 25 ⁇ m to 100 ⁇ m. In the case of a rectangle, the width is in the range of 25 ⁇ m to 100 ⁇ m, and the depth is in the range of 25 ⁇ m to 100 ⁇ m. From the electrophoresis start point, the electrophoresis of the sample is started, The absorbance of the blood protein in the electrophoresed sample is measured at the detection point; It is preferable that the distance from the electrophoresis start point to the detection point is 5 cm or less.
- the inner wall surface of the sample analysis capillary channel has an ionic functional group
- the pH of the electrophoresis solution is in the range of pH 4.0 to 6.0;
- the electroosmotic flow generated when the voltage is applied may be 3 cm / min or more.
- the electrophoresis solution preferably contains a sulfated polysaccharide.
- the sulfated polysaccharide is preferably chondroitin sulfate.
- the distance from the migration start point to the detection point is: In the case of 0.25 cm or more and less than 0.75 cm, the separation electric field is 300 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 300 to 600 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 400 to 650 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 450 to 700 V / cm.
- the distance from the migration start point to the detection point is In the case of 0.25 cm or more and less than 0.75 cm, the separation electric field is 250 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 250 to 500 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 375 to 550 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 400 to 600 V / cm.
- the distance from the migration start point to the detection point is: In the case of 0.25 cm or more and less than 0.75 cm, the separation electric field is 200 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 200 to 450 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 300 to 500 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 350 to 550 V / cm.
- the distance from the migration start point to the detection point is: In the case of 0.25 cm or more and less than 0.75 cm, the separation electric field is 150 V / cm or less, In the case of 0.75 cm or more and less than 1.25 cm, the separation electric field is 150 to 400 V / cm, In the case of 1.25 cm or more and less than 1.75 cm, the separation electric field is 250 to 450 V / cm, In the case of 1.75 cm or more and less than 2.25 cm, the separation electric field is preferably 300 to 500 V / cm.
- the blood protein is an analysis item, and the analysis item is hemoglobin.
- the hemoglobin is preferably at least one of hemoglobin A1c (HbA1c and hemoglobin F (HbF).
- HbA1c concentration the hemoglobin A1c concentration as the analysis of the hemoglobin A1c (HbA1c) using the hemoglobin A1c (HbA1c) as an analysis item.
- the sample is a sample obtained by hemolyzing the blood, and the hemoglobin in the sample obtained by hemolyzing the blood is analyzed.
- the capillary electrophoresis analysis apparatus of the present invention only needs to have the following electrophoresis chip, voltage application means, liquid feeding means, and absorbance measurement means, and other configurations are not particularly limited. .
- the capillary electrophoresis analyzer of the present invention may not have the liquid feeding means, for example.
- the electrophoresis chip includes a substrate, a plurality of liquid tanks, and a capillary channel as described above.
- the size of the electrophoresis chip is not particularly limited.
- the maximum length is in the range of 10 mm to 100 mm
- the maximum width is in the range of 10 mm to 60 mm
- the maximum thickness is 0. It is in the range of 3 mm to 5 mm, preferably the maximum length is in the range of 30 mm to 70 mm.
- the maximum length of the electrophoresis chip is the length of the longest portion in the longitudinal direction of the electrophoresis chip, and the maximum width of the electrophoresis chip is the longest portion of the electrophoresis chip in the short direction.
- the maximum thickness of the electrophoresis chip is the length of the longest portion in the direction (thickness direction) perpendicular to both the longitudinal direction and the short direction of the electrophoresis chip.
- the electrophoresis chip only needs to include a substrate, a plurality of liquid tanks, and a capillary channel, and other configurations are not particularly limited.
- the substrate is not particularly limited, and examples thereof include a configuration constituted by a single substrate and a configuration in which an upper substrate and a lower substrate are combined.
- the material of the substrate is not particularly limited, and examples thereof include glass and polymer materials.
- the glass material is not particularly limited, and examples thereof include synthetic quartz glass, borosilicate glass, and fused silica.
- the polymer material is not particularly limited. For example, polymethyl methacrylate (PMMA), cycloolefin polymer (COP), polycarbonate (PC), polydimethylsiloxane (PDMS), polystyrene (PS), polylactic acid (PLA), and the like. Can be given.
- the liquid tank is not particularly limited, and examples thereof include a recess formed by sealing the bottom of a through hole formed in the upper substrate with the lower substrate.
- the shape of the liquid tank is not particularly limited, and examples thereof include a columnar shape, a quadrangular prism shape, a quadrangular pyramid shape, and a conical shape.
- the volume of each liquid tank is not particularly limited, and is, for example, in the range of 1 to 1000 mm 3 , and preferably in the range of 10 to 100 mm 3 .
- the volume of each liquid tank may be the same or different, and is not particularly limited.
- the capillary channel may be formed on the substrate, for example, or may be a capillary tube embedded in the substrate.
- the cross-sectional shape perpendicular to the channel direction is not particularly limited, and examples thereof include a circle, a rectangle, and an ellipse.
- the diameter is not particularly limited, but is, for example, in the range of 1 ⁇ m to 1000 ⁇ m, and preferably in the range of 10 ⁇ m to 200 ⁇ m.
- the width and depth are not particularly limited, but for example, the width is in the range of 10 ⁇ m to 200 ⁇ m and the depth is in the range of 10 ⁇ m to 200 ⁇ m.
- the length of the capillary channel is not particularly limited, and is, for example, in the range of 0.5 cm to 15 cm, and preferably in the range of 1 cm to 5 cm.
- the capillary flow path includes the sample analysis capillary flow path.
- the diameter is not particularly limited, but is, for example, in the range of 10 ⁇ m to 200 ⁇ m, and preferably 25 ⁇ m to 100 ⁇ m. Range.
- the width is in the range of 25 ⁇ m to 100 ⁇ m
- the depth is in the range of 25 ⁇ m to 100 ⁇ m.
- the length of the sample analysis capillary channel is not particularly limited, and is, for example, in the range of 0.5 cm to 15 cm, and preferably in the range of 1 cm to 5 cm.
- the capillary channel may be formed of the substrate, for example, or may be formed in the substrate by embedding a capillary tube.
- the material of the capillary channel is, for example, the material of the substrate, and in the latter case, the material of the capillary channel is, for example, the material of the capillary tube to be embedded.
- the material of the capillary channel is not particularly limited.
- glass materials such as synthetic quartz glass, borosilicate glass, and fused silica, polymethyl methacrylate (PMMA), cycloolefin polymer (COP), Polymer materials such as polycarbonate (PC), polydimethylsiloxane (PDMS), polystyrene (PS), polylactic acid (PLA), polyethylene (PE), polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK) It is done.
- a commercially available product may be used as the capillary tube.
- the inner wall of the glass capillary channel usually has a cathodic charge.
- the inner wall surface can be brought into a state having an anodic charge.
- the inner wall of the polymer capillary channel is usually in a state of having an anodic or cathodic charge or in an uncharged (nonpolar) state depending on the presence or type of the polar group in the polymer. .
- the uncharged polymer capillary flow path can be brought into a state of having a charge on the inner wall surface by introducing, for example, a polar group.
- the inner wall of the capillary channel for sample analysis preferably has an ionic functional group on the surface thereof.
- the ionic functional group include an anodic group and a cathodic group.
- the capillary channel for sample analysis having the anodic group on the inner wall surface may be formed, for example, by coating the inner wall of the capillary channel for sample analysis with an anodic group-containing compound.
- an anodic layer coating with an anodic group-containing compound may be referred to as an anodic layer.
- the anodic group-containing compound is not particularly limited, and examples thereof include compounds containing the anodic group and a reactive group.
- the compound containing an anodic group and reactive group may be a compound having an anodic group and silicon (silylating agent) or the like.
- the anodic group is not particularly limited, but is preferably an amino group or an ammonium group.
- the anodic group-containing compound is not particularly limited, but a silylating agent having at least one anodic group of an amino group and an ammonium group is preferable.
- the amino group may be primary, secondary, or tertiary.
- silylating agent examples include N- (2-diaminoethyl) -3-propyltrimethoxysilane, aminophenoxydimethylvinylsilane, 3-aminopropyldiisopropylethoxysilane, 3-aminopropylmethylbis (trimethylsiloxy) silane, 3-aminopropylpentamethyldisiloxane, 3-aminopropylsilanetriol, bis (P-aminophenoxy) dimethylsilane, 1,3-bis (3-aminopropyl) tetramethyldisiloxane, bis (dimethylamino) dimethylsilane, Bis (dimethylamino) vinylmethylsilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-cyanopropyl (diisopropyl) dimethylaminosilane, (aminoethylaminomethyl) phenethoxy
- anodic group-containing compound a compound in which the silicon atom in the silylating agent is substituted with titanium or zirconium may be used.
- the said anodic group containing compound may be used individually by 1 type, and may use 2 or more types together.
- the coating of the inner wall of the capillary channel for sample analysis using the silylating agent is performed as follows, for example.
- a treatment liquid is prepared by dissolving or dispersing the silylating agent in an organic solvent.
- an organic solvent used for preparation of the said process liquid a dichloromethane, toluene, methanol, acetone etc. can be used, for example.
- the concentration of the silylating agent in the treatment liquid is not particularly limited.
- This treatment liquid is passed through a capillary channel made of glass or fused silica, for example, and heated.
- the silylating agent is covalently bonded to the inner wall of the capillary channel, and as a result, an anodic group is disposed on the inner wall of the capillary channel.
- the organic solvent is washed away with at least one of an acidic solution such as phosphoric acid, an alkaline solution, and a surfactant solution, and the inside of the capillary channel is washed.
- an acidic solution such as phosphoric acid, an alkaline solution, and a surfactant solution
- a commercial product may be used for the capillary channel whose inner wall is coated with the silylating agent.
- the sample analysis capillary channel having the cathodic group on the inner wall surface may be formed, for example, by coating the inner wall of the sample analysis capillary channel with a cathodic group-containing compound.
- a cathodic layer the coating with the cathodic group-containing compound may be referred to as a cathodic layer.
- the direction of the said electroosmotic flow becomes the reverse of the case where the said anodic group is coat
- the sample and the cathodic group-containing compound present in the electrophoresis solution form a complex, and this complex is electrophoresed, the separation efficiency is higher than that of electrophoresis by the sample alone. As a result, more accurate analysis can be performed in a shorter time.
- the cathodic group-containing compound that forms a complex with the sample is preferably, for example, a cathodic group-containing polysaccharide.
- anionic group-containing polysaccharides examples include sulfated polysaccharides, carboxylated polysaccharides, sulfonated polysaccharides and phosphorylated polysaccharides. Among them, sulfated polysaccharides and carboxylated polysaccharides include preferable. As the sulfated polysaccharide, chondroitin sulfate, heparin and the like are preferable, and chondroitin sulfate is more preferable. As the carboxylated polysaccharide, alginic acid or a salt thereof (for example, sodium alginate) is preferable. There are seven types of chondroitin sulfate, A, B, C, D, E, H, and K. Any of them may be used, but chondroitin sulfate C is preferred.
- the cathode layer may be laminated on the inner wall of the capillary channel for sample analysis via an intervening layer, for example.
- the intervening layer is not particularly limited, and can be formed using, for example, the anodic group-containing compound.
- the cathodic layer laminated via the intervening layer brings the liquid containing the cathodic group-containing compound into contact with the inner wall of the capillary channel for sample analysis coated with the anodic group-containing compound. It may be formed.
- a liquid for forming the cathodic group may be prepared separately, but from the viewpoint of operation efficiency, the electrophoretic liquid prepared by adding the cathodic group-containing compound is added to the intervening layer on the inner wall. It is preferable that liquid is passed through the capillary channel in which is formed.
- the inner wall of another capillary channel formed on the substrate may have the ionic functional group
- the inner walls of all capillary channels may have the ionic functional group.
- the other capillary channel having the ionic functional group on the inner wall can be formed in the same manner as the sample analysis capillary channel described above.
- a sample containing blood protein to be analyzed and an electrophoresis solution are introduced into the capillary channel for sample analysis.
- the electrophoresis solution is not particularly limited, but an electrophoresis solution containing an organic acid is preferable.
- the organic acid is not particularly limited, and examples thereof include maleic acid, tartaric acid, succinic acid, fumaric acid, phthalic acid, malonic acid, malic acid and the like.
- the electrophoresis solution is not particularly limited, but preferably includes, for example, a weak base.
- the weak base is not particularly limited, and examples thereof include arginine, lysine, histidine, and tris.
- the electrophoresis solution is not particularly limited, but for example, ADA buffer, MES buffer, Bis-Tris buffer, PIPES buffer, ACES buffer, MOPSO buffer, BES buffer, HEPES buffer, TES buffer And phosphate buffer.
- the pH of the electrophoresis solution is not particularly limited, and is, for example, in the above-mentioned range, and preferably in the range of pH 4.5 to 6.0.
- the cathodic group-containing compound is preferably added to the electrophoresis solution.
- the anionic group-containing compound is not particularly limited, and examples thereof include the aforementioned anionic group-containing compound.
- the concentration of the cathodic group-containing compound contained in the electrophoresis solution is not particularly limited, and is, for example, in the range of 0.001 to 10% by weight, and preferably in the range of 0.1 to 5% by weight. is there.
- a surfactant may be added to the electrophoresis solution.
- the surfactant is not particularly limited, and examples thereof include betaine type amphoteric surfactants and nonionic surfactants.
- the betaine-type amphoteric surfactant is not particularly limited, and examples thereof include a carboxybetaine-type surfactant and a sulfobetaine-type surfactant.
- the carboxybetaine surfactant include N, N-dimethyl-N-alkyl-N-carboxyalkylene ammonium betaine.
- Examples of the sulfobetaine type surfactant include N, N, N-trialkyl-N-sulfoalkylene ammonium betaine.
- Specific examples of the sulfobetaine surfactant include palmityl sulfobetaine and the like.
- anionic chaotropic ions may be added to the electrophoresis solution.
- the anionic chaotropic ions include salts containing anionic chaotropic ions, substances that generate anionic chaotropic ions by ionization, and the like.
- the salt include acidic salts, neutral salts, and basic salts.
- the anionic chaotropic ion is not particularly limited, and examples thereof include perchloric acid, thiocyanic acid, potassium iodide, potassium bromide, trichloroacetic acid, and trifluoroacetic acid.
- the concentration of the anionic chaotropic ion contained in the electrophoresis solution is not particularly limited, and is, for example, in the range of 1 to 3000 mmol / L, preferably in the range of 5 to 100 mmol / L. Preferably, it is in the range of 10 to 50 mmol / L.
- examples of the sample containing the blood protein to be analyzed include whole blood, a sample obtained by hemolyzing blood, and the like. Among these, in the present invention, it is preferable to analyze proteins in a sample obtained by hemolyzing the blood.
- examples of the hemolysis treatment include surfactant treatment, osmotic pressure change treatment, ultrasonic treatment, freeze-thaw treatment, pressurization treatment, etc., preferably surfactant treatment, osmotic pressure change treatment, ultrasonic treatment. It is.
- the surfactant treatment is not particularly limited, but for example, whole blood may be hemolyzed with a diluent added with a surfactant.
- the surfactant include the aforementioned surfactants and saponins.
- the osmotic pressure change treatment is not particularly limited, and for example, whole blood may be hemolyzed using a solution adjusted to a low osmotic pressure.
- the solution is not particularly limited, and examples thereof include distilled water and a dilute solution adjusted to a low osmotic pressure, and preferably distilled water.
- the ultrasonic treatment is not particularly limited, and for example, an ultrasonic treatment apparatus may be used.
- the diluent is not particularly limited, and examples thereof include distilled water and the electrophoresis solution.
- the blood protein refers to a protein contained in blood.
- the blood protein is not particularly limited, and examples thereof include hemoglobin (Hb), albumin (Alb), globulins ( ⁇ 1, ⁇ 2, ⁇ , ⁇ globulins), fibrinogen, and the like.
- the hemoglobin is not particularly limited, and examples thereof include normal hemoglobin (HbA0), glycated hemoglobin, modified hemoglobin, fetal hemoglobin (HbF) and the like.
- HbA0 normal hemoglobin
- glycated hemoglobin include hemoglobin A1a (HbA1a), hemoglobin A1b (HbA1b), hemoglobin A1c (HbA1c), and GHbLys.
- Examples of the hemoglobin A1c include stable HbA1c and unstable HbA1c.
- the modified hemoglobin include carbamylated Hb and acetylated Hb.
- the capillary electrophoresis analyzer of the present invention uses the blood protein as an analysis item.
- the analysis item is not particularly limited, and, for example, hemoglobin is preferable among the aforementioned blood proteins.
- the analysis items are not particularly limited, and examples thereof include the various hemoglobin ratios, hemoglobin A1c concentration, albumin concentration, globulin concentration, and albumin / globulin ratio.
- the sample is electrophoresed from the electrophoretic start point to the detection point by electroosmotic flow generated by voltage application to the electrodes. Then, at a detection point on the sample analysis capillary channel, the absorbance of the blood protein in the sample subjected to electrophoresis is measured.
- the migration start point is a point on the sample analysis capillary channel at which the sample introduced into the sample analysis capillary channel starts electrophoresis upon voltage application.
- the migration starting point is not particularly limited, and may be, for example, a boundary between a liquid tank into which the sample is introduced and the capillary channel for sample analysis.
- the detection point is a point for measuring the absorbance of blood protein in the sample that has been electrophoresed in the capillary channel for sample analysis, as described above.
- the detection point is on the sample analysis capillary channel, and the distance from the migration start point is not particularly limited, but it is preferable that the detection point is, for example, in a range described later.
- the distance (separation length) from the migration start point to the detection point is not particularly limited, but is, for example, in the range of 0.5 cm to 15 cm, and preferably in the range of 1 cm to 5 cm.
- the voltage is not particularly limited, but is, for example, in the range of 0.075 kV to 20 kV, and preferably in the range of 0.3 kV to 5 kV.
- the electroosmotic flow is not particularly limited, but is, for example, in the range of 3 cm / min to 15 cm / min, and preferably in the range of 8 cm / min to 12 cm / min.
- the absorbance measurement wavelength is, for example, in the range of 260 nm to 300 nm or 380 nm to 450 nm, and preferably in the range of 400 nm to 430 nm.
- the blood protein analysis time is, for example, the time for separating the blood protein contained in the sample to be analyzed and completing its detection.
- the analysis time of the blood protein is, for example, the time from the start of voltage application to the electrode until the detection of all of the blood protein to be analyzed is completed.
- the blood protein analysis time is more than 0 seconds and not more than 35 seconds, preferably more than 0 seconds and not more than 30 seconds, more preferably more than 0 seconds and not more than 25 seconds. More preferably, it is longer than 0 second and not longer than 20 seconds.
- the distance from the electrophoresis start point to the detection point and the separation electric field are set in the predetermined range according to the width and depth of the capillary channel, for example.
- the separation electric field is a voltage applied per 1 cm between electrodes.
- the predetermined range can be appropriately set depending on the type of electrophoresis solution (electrophoresis buffer), the method of coating the capillary channel with the ionic functional group, and the like, and is not limited to the above range.
- the capillary electrophoresis analyzer of the present invention is not particularly limited, and may further include, for example, a quantitative dispensing means, a stirring means, a stray light removing means, a position adjusting means, and the like.
- capillary electrophoresis analyzer of the present invention and the analysis method using the same will be described with examples.
- the capillary electrophoresis analyzer of the present invention and the analysis method using the same are not limited to the following examples.
- FIG. 1 shows an electrophoresis chip used in the capillary electrophoresis analyzer of this example.
- FIG. 1A is a plan view of the electrophoresis chip of this example
- FIG. 1B is a cross-sectional view as seen in the II direction of FIG. 1A.
- the size, ratio, and the like of each component are different from actual ones for easy understanding.
- the electrophoresis chip 2 of this example is configured by laminating an upper substrate 3a on a lower substrate 3b. Three through holes are formed in the upper substrate 3a. Three liquid tanks 4a, 4b and 4e are formed by sealing the bottoms of the three through holes formed in the upper substrate 3a with the lower substrate 3b.
- An I-shaped groove is formed on the lower substrate 3b.
- the upper part of the I-shaped groove formed on the lower substrate 3b is sealed with the upper substrate 3a, so that a capillary channel for sample analysis 5x is formed.
- the liquid tank 4a and the liquid tank 4b are communicated with each other through the sample analysis capillary channel 5x.
- the liquid tank 4e does not communicate with the sample analysis capillary channel 5x but is arranged as a single liquid tank.
- the end of the capillary channel 5x on the liquid tank 4a side is an electrophoretic start point 80.
- One point between the liquid tank 4a and the liquid tank 4b on the capillary channel 5x is a detection point 90.
- the electrophoresis chip 2 in this example has a rectangular parallelepiped shape.
- the electrophoresis chip may have any shape as long as it does not hinder analysis of a sample described later.
- the electrophoresis chip 2 of this example includes two substrates (an upper substrate 3a and a lower substrate 3b).
- the present invention is not limited to this.
- the electrophoresis chip may be composed of, for example, a single substrate.
- the length and width of the upper substrate 3a are the maximum length and the maximum width of the entire electrophoresis chip. Accordingly, the length and width of the upper substrate 3a may be the same as the maximum length and maximum width of the entire electrophoresis chip.
- the thickness of the upper substrate 3a in the electrophoresis chip 2 of this example can be appropriately set according to the volumes of the plurality of liquid tanks 4a, 4b, and 4e, but is preferably in the range of 0.1 mm to 3 mm, for example. Is in the range of 1 mm to 2 mm.
- the length and width of the lower substrate 3b are the same as the length and width of the upper substrate 3a.
- the thickness of the lower substrate 3b is not particularly limited, but is, for example, in the range of 0.1 mm to 3 mm, and preferably in the range of 0.1 mm to 1 mm.
- the material of the upper substrate 3a and the lower substrate 3b is not particularly limited as long as it does not hinder the measurement of the absorbance.
- As the material of the upper substrate 3a and the lower substrate 3b for example, those formed from the materials described above can be used.
- the width and depth of the sample analysis capillary channel 5x are, for example, in the range of 25 ⁇ m to 100 ⁇ m in width and in the range of 25 ⁇ m to 100 ⁇ m in depth.
- the distance from the migration start point 80 to the detection point 90 is, for example, in the range of 0.5 cm to 15 cm, and preferably in the range of 1 cm to 5 cm.
- the volumes of the liquid tank 4a, the liquid tank 4b, and the liquid tank 4e are the same as described above.
- the shapes of the liquid tanks 4a, 4b and 4e are cylindrical.
- the present invention is not limited to this.
- the shape of the liquid tanks 4a, 4b and 4e can be any shape as described above.
- the maximum thickness of the chip is the total thickness of the upper substrate 3a and the lower substrate 3b.
- the thickness of the entire chip is as described above.
- FIG. 2 shows the capillary electrophoresis analyzer of this example.
- this capillary electrophoresis analyzer 1 includes the above-described electrophoresis chip 2, electrodes 6 a and 6 b, electric wires 7 a to 7 f, a slit 8, a controller 9, a light source 11, and an optical filter 12.
- the condenser lens 13, the detector 14, the electrophoresis chip moving mechanism 20, the quantitative dispenser 30, the dilution liquid 31, and the electrophoresis liquid 32 are included as main components.
- the electrophoresis chip moving mechanism 20 includes a driving unit 21 and a stage 22.
- the electrophoresis chip 2 is disposed on the stage 22.
- the electrodes 6a and 6b are disposed in the liquid tanks 4a and 4b of the electrophoresis chip 2, respectively.
- the detector 14, the quantitative dispenser 30, the electrodes 6a and 6b, the electrophoresis chip moving mechanism 20, and the light source 11 are connected to the control unit 9 by the electric wires 7a to 7f, respectively.
- the control unit 9 controls the supply of power to the above-described components connected by the electric wires 7a to 7f.
- the stage 22 can be moved in the horizontal biaxial direction (XY direction) by the driving unit 21 connected to one end thereof.
- the X direction and the Y direction intersect each other perpendicularly on the horizontal plane.
- the position of the electrophoresis chip 2 can be adjusted.
- the quantitative dispenser 30 can quantitate the diluted solution 31 and the electrophoretic liquid 32 and dispense them into the liquid tank 4 a or the liquid tank 4 e of the electrophoresis chip 2.
- the sample introduced into the sample analysis capillary channel 5x can be electrophoresed.
- the light emitted from the light source 11 is split into specific wavelength light by the optical filter 12, converged by the condenser lens 13, the amount of light is increased, stray light is removed by the slit 8, and the electrophoresis chip
- the sample at the detection point 90 on the second sample analysis capillary channel 5x is irradiated.
- the detector 14 detects the transmitted light of the light irradiated to the detection point 90, and measures the absorbance, whereby the blood protein to be analyzed contained in the sample can be analyzed.
- the method for producing the electrophoresis chip 2 of the capillary electrophoresis analyzer 1 of the present example is not particularly limited, and for example, a conventionally known method may be appropriately used.
- the electrophoresis solution 32 is prepared.
- the electrophoresis solution 32 is not particularly limited as long as it is the above-described electrophoresis solution.
- chondroitin sulfate C is added to 100 mmol / L fumaric acid and arginic acid aqueous solution at a ratio of 0.8% by weight. And an aqueous solution adjusted to pH 4.8.
- the electrophoresis chip 2 is mounted on the stage 22 and placed in the capillary electrophoresis analyzer 1 of this example.
- the electrophoresis solution 32 is injected into the liquid tank 4a using the quantitative dispenser 30.
- a vacuum pump (not shown) is connected to the liquid tank 4b to reduce the pressure, and the electrophoresis liquid 32 is filled into the sample analysis capillary channel 5x.
- the sample and the A mixed solution of the diluent 31 is prepared.
- the dilution liquid 31 for example, distilled water is used.
- the mixed liquid is poured into the liquid tank 4a.
- a voltage is applied to the electrodes 6a and 6b disposed in the liquid tanks 4a and 4b, respectively, to generate a potential difference between both ends of the sample analysis capillary channel 5x. Thereby, the sample is moved from the migration start point 80 to the liquid tank 4b side.
- the voltage is not particularly limited, but is, for example, in the range of 0.5 kV to 20 kV.
- the separation electric field of the sample analysis capillary channel 5x by the voltage application can be appropriately set according to the distance from the migration start point to the detection point and the width and depth of the capillary channel. For example, it is in the range of 150 V / cm to 700 V / cm, and preferably in the range of 300 V / cm to 600 V / cm.
- the detection point 90 is irradiated with light (wavelength 415 nm) that has been spectrally and condensed in the same manner as described above, and from which stray light has been removed. Further, the transmitted light at the detection point 90 is detected using the detector 14, the absorbance due to the protein in the sample is measured, and the magnitude of the obtained absorbance and the analysis time (detected from the start of electrophoresis). A pherogram showing the correspondence of the time until) is created.
- FIG. 3 shows an electrophoresis chip used in the capillary electrophoresis analyzer of this example.
- the same parts as those in FIG. 3A is a plan view of the electrophoresis chip of this example
- FIG. 3B is a cross-sectional view taken along the line II in FIG. 3A
- FIG. FIG. 4 is a cross-sectional view taken along the line II-II in FIG.
- the electrophoresis chip 2 of this example is configured by laminating an upper substrate 3a on a lower substrate 3b. A plurality (four in this example) of through-holes are formed in the upper substrate 3a.
- liquid tanks 4a to 4d are formed by sealing the bottoms of the four through holes formed in the upper substrate 3a with the lower substrate 3b.
- a cross-shaped groove is formed on the lower substrate 3b.
- the upper part of the cross-shaped groove formed on the lower substrate 3b is sealed with the upper substrate 3a, so that a capillary channel for sample analysis 5x and a capillary channel for sample introduction 5y are formed.
- the liquid tank 4a and the liquid tank 4b are communicated with each other through the sample analysis capillary channel 5x.
- the liquid tank 4c and the liquid tank 4d are communicated with each other through the sample introduction capillary channel 5y.
- the sample analysis capillary channel 5x and the sample introduction capillary channel 5y intersect each other.
- the sample analysis capillary channel 5x and the sample introduction capillary channel 5y communicate with each other at the intersection.
- the intersecting portion becomes the migration start point 80.
- One point between the liquid tank 4a and the liquid tank 4b on the capillary channel 5x is a detection point 90.
- the maximum lengths of the sample analysis capillary channel 5x and the sample introduction capillary channel 5y are different.
- the present invention is not limited to this.
- the sample analysis capillary channel 5x and the sample introduction capillary channel 5y of the electrophoresis chip 2 may have the same maximum length.
- the electrophoresis chip 2 of this example is shown in FIG. 1 except that the liquid tank 4c and the liquid tank 4d and the sample introduction capillary channel 5y are formed, and the liquid tank 4e is not formed.
- the configuration is the same as that of the electrophoresis chip.
- the width and depth of the sample introduction capillary channel 5y are the same as the width and depth of the sample analysis capillary channel 5x.
- the distance from the electrophoresis start point 80 to the detection point 90 is the same as that of the electrophoresis chip shown in FIG.
- the volume and shape of the liquid tank 4c and the liquid tank 4d are the same as the liquid tank of the electrophoresis chip shown in FIG.
- the electrophoresis chip 2 is the electrophoresis chip shown in FIG. 3 instead of the electrophoresis chip shown in FIG. 1, and the electrodes 6c and 6d (not shown) are provided. 2 is the same as the capillary electrophoresis analyzer shown in FIG. 2 except that it is disposed in the liquid tanks 4 c and 4 d of the electrophoresis chip 2.
- the electrophoresis chip 2 is mounted on the stage 22 and placed in the capillary electrophoresis analyzer 1 of this example.
- the electrophoresis solution 32 is injected into the liquid tank 4a using the quantitative dispenser 30.
- a vacuum pump (not shown) is connected to the liquid tank 4b to reduce the pressure, and the sample analysis capillary channel 5x is filled with the electrophoresis solution 32.
- the electrophoresis solution 32 is injected into the liquid tank 4 c using the quantitative dispenser 30.
- a vacuum pump (not shown) is connected to the liquid tank 4d to reduce the pressure, and the electrophoresis liquid 32 is filled into the sample introduction capillary channel 5y.
- a voltage is applied to the electrodes 6c and 6d to generate a potential difference between both ends of the sample introduction capillary channel 5y.
- the voltage applied between the electrode 6c and the electrode 6d is not particularly limited, but is, for example, in the range of 0.5 kV to 20 kV.
- a voltage is applied to the electrodes 6a and 6b to generate a potential difference between both ends of the sample analysis capillary channel 5x.
- the voltage is not particularly limited, but is, for example, in the range of 0.5 kV to 20 kV.
- the separation electric field of the sample analysis capillary channel 5x by the voltage application can be appropriately set according to the distance from the migration start point to the detection point and the width and depth of the capillary channel.
- the range is the same as in the first embodiment.
- the detection point 90 is irradiated with light (wavelength 415 nm) that has been spectrally and condensed and further removed with stray light in the same manner as in the first embodiment. Furthermore, the transmitted light at the detection point 90 is detected using the detector 14, the absorbance due to the protein in the sample is measured, and the correspondence between the magnitude of the obtained absorbance and the analysis time (electrophoresis time) is measured. Create a pherogram showing.
- FIG. 4 shows an electrophoresis chip used in the capillary electrophoresis analyzer of this example.
- FIG. 4A is a plan view of the electrophoresis chip of this example
- FIG. 4B is a perspective view of the electrophoresis chip of this example.
- the electrophoresis chip 200 of this example includes a stacked body in which an upper substrate 3a is stacked on a lower substrate 3b, and a connector 70.
- the connector 70 is disposed on one side surface of the laminate.
- a wiring pattern (not shown) is formed on the lower substrate 3b.
- Six through holes are formed in the upper substrate 3a.
- Six liquid tanks are formed by sealing the bottoms of the six through holes with the lower substrate 3b.
- the six liquid tanks are a sample introduction port 41, a drain 45, a drain 55, a drain 57, a drain 59, and a drain 63, respectively.
- Three concave portions are formed on the bottom surface of the upper substrate 3a.
- Two liquid tanks are formed by sealing the opening surfaces of two of the three recesses with the lower substrate 3b.
- the two liquid tanks are a reagent tank 51 and a dilution tank 58, respectively.
- the reagent tank 51 is filled with an electrophoretic solution.
- an electrode 6a connected to the wiring in the wiring pattern is arranged, and a stirring bar (not shown) is enclosed.
- the electrode 6b connected to the wiring in the wiring pattern is formed in the electrode placement portion 61 formed by sealing the opening surface of the remaining one recess with the lower substrate 3b. Be placed.
- a plurality of grooves are formed on the bottom surface of the upper substrate 3a. The opening surfaces of the plurality of grooves are sealed by the lower substrate 3b, thereby forming flow paths that connect the six liquid tanks and the three recesses.
- the capillary channel that communicates the dilution tank 58 and the electrode arrangement part 61 is the sample analysis capillary channel 5x.
- the end of the sample analysis capillary channel 5x on the dilution tank 58 side is an electrophoresis start point 80.
- One point on the sample analysis capillary channel 5x is a detection point 90. Details of the channels other than the sample analysis capillary channel 5x will be described later.
- the sample introduction port 41 communicates with the drain 45 through a sample introduction channel 42, a branch part 43, and an overflow channel 44 in this order. Further, the sample introduction port 41 communicates with the dilution tank 58 from the branch portion 43 through the sample measurement channel 46.
- the sample introduction port 41 is an introduction port for introducing a sample containing blood protein to be analyzed into the electrophoresis chip.
- An orifice 47 having a narrow channel cross-sectional area is formed at the end of the sample measuring channel 46 on the dilution tank 58 side.
- the sample is weighed and introduced into the electrophoresis chip as follows. First, after introducing a sample into the sample introduction port 41, air is sucked from the drain 45 using a decompression pump or the like (not shown). Due to the suction, the sample exceeding the volume of the sample metering channel 46 between the branch portion 43 and the orifice 47 flows out into the overflow channel 44. Further, by closing the drain 45 and using a pressure pump or the like (not shown) to discharge air from the sample introduction port 41, the sample of the volume amount stored in the sample metering channel 46 is obtained. Is weighed and introduced into the dilution tank 58.
- the reagent tank 51 communicates with the drain 55 through a reagent introduction channel 52a, a branch part 53a, and an overflow channel 54 in this order.
- the reagent tank 51 also communicates with the dilution tank 58 from the branch part 53a through the reagent measurement channel 56, the branch part 53b, and the sample introduction channel 52b.
- the drain 57 is formed at the end of the flow path branched by the branch portion 53b.
- a drain 59 is formed at the end of the flow path branched at the end of the sample analysis capillary flow path 5x on the dilution tank 58 side.
- a flow rate measurement flow path 62 is formed between the electrode arrangement portion 61 and the drain 63.
- the sample analysis capillary channel 5x is filled with the electrophoresis solution, and the electrophoresis solution is weighed and introduced into the dilution tank 58 as follows. First, the sample introduction port 41 and the drains 45, 55, 57 and 59 are closed, and the reagent introduction is performed by sucking air using a decompression pump or the like (not shown) connected to the drain 63. Electricity sealed in the reagent tank 51 in the flow paths 52a and 52b, the reagent measurement flow path 56, the dilution tank 58, the sample analysis capillary flow path 5x, the electrode placement portion 61 or the flow rate measurement flow path 62. The electrophoresis solution is filled.
- the reagent reservoir 51 is closed, the drain 59 is opened, and air is sucked using a decompression pump or the like (not shown) connected to the drain 57, whereby the sample introduction channel 52b and the dilution channel are diluted.
- the electrophoresis solution in the tank 58 is removed. Further, by closing the drain 57, opening the drain 55, and using a vacuum pump or the like (not shown) connected to the drain 59, the air is aspirated, so that the volume of the reagent metering flow path 56 is increased.
- the electrophoresis solution can be weighed and introduced into the dilution tank 58. Then, as described above, the sample and the electrophoresis liquid are introduced by introducing the sample into the dilution tank 58 and rotating a stirrer (not shown) using a magnetic stirrer (not shown). And can be mixed.
- the material of the upper substrate 3a is not particularly limited as long as it does not hinder the measurement of the absorbance.
- the upper substrate 3a for example, one formed from the above-described materials or the like can be used.
- the length and width of the upper substrate 3a in the electrophoresis chip 200 of this example are, for example, in the range of 10 mm to 200 mm, and preferably in the range of 20 mm to 100 mm.
- the thickness of the upper substrate 3a is, for example, in the range of 0.1 mm to 10 mm, and preferably in the range of 1 mm to 5 mm.
- the lower substrate 3b can be made of, for example, an acrylic resin, the same material as the upper substrate 3a, or the like.
- the lower substrate 3b is configured by laminating a plurality of substrates formed of the material, and a wiring pattern made of a copper foil or the like is formed between the plurality of substrates.
- the length and width of the lower substrate 3b are the same as the length and width of the upper substrate 3a.
- the thickness of the lower substrate 3b is, for example, in the range of 0.1 mm to 10 mm.
- the diameter and depth of the sample introduction port 41 are, for example, in the range of 0.1 mm to 10 mm in diameter and in the range of 0.1 mm to 10 mm.
- the diameter is in the range of 1 mm to 5 mm and the depth is in the range of 1 mm to 5 mm.
- the diameter and depth of the reagent tank 51 are, for example, in the range of 0.5 mm to 50 mm in diameter, and in the range of 0.1 mm to 10 mm in depth.
- the diameter is in the range of 1 mm to 20 mm and the depth is in the range of 1 mm to 5 mm.
- the diameter and depth of the dilution tank 58 are, for example, in the range of 0.5 mm to 50 mm in diameter and in the range of 0.1 mm to 10 mm.
- the diameter is in the range of 1 mm to 10 mm, and the depth is in the range of 1 mm to 5 mm.
- the diameters and depths of the drains 45, 55, 57, 59, 63 are each in the range of 0.1 mm to 10 mm, and the depth is 0.1 mm.
- the diameter is in the range of 1 mm to 5 mm, preferably the diameter is in the range of 1 mm to 5 mm, and the depth is in the range of 1 mm to 5 mm.
- the sample introduction port 41, the reagent tank 51, the dilution tank 58, and the drains 45, 55, 57, 59, and 63 are cylindrical.
- the sample introduction port 41, the reagent tank 51, the dilution tank 58, and the drains 45, 55, 57, 59, 63 may have, for example, a rectangular column shape, a quadrangular pyramid shape, a conical shape, etc. It can be set as arbitrary shapes, such as the shape which combined.
- the shapes of the sample inlet 41, the reagent tank 51, the dilution tank 58, and the drains 45, 55, 57, 59, 63 may all be the same or different.
- the width and depth of the sample analysis capillary channel 5x are the same as those of the electrophoresis chip 2 shown in FIG.
- the distance from the electrophoresis start point 80 to the detection point 90 is the same as that of the electrophoresis chip 2 shown in FIG.
- the width and depth of the reagent metering channel 56 are, for example, in the range of 0.1 mm to 10 mm in width at the maximum cross-sectional area.
- the range is 0.1 mm to 10 mm.
- the width and depth of the orifice 47 are, for example, the width is in the range of 1 ⁇ m to 200 ⁇ m, the depth is in the range of 1 ⁇ m to 200 ⁇ m, and preferably the width is The depth is 10 ⁇ m to 100 ⁇ m, and the depth is 10 ⁇ m to 100 ⁇ m.
- the width and depth of the capillary channel other than the sample analysis capillary channel 5x, the reagent metering channel 56, and the orifice 47 are, for example, in the range of 10 ⁇ m to 1000 ⁇ m.
- the depth is in the range of 10 ⁇ m to 1000 ⁇ m, preferably the width is 50 ⁇ m to 500 ⁇ m and the depth is 50 ⁇ m to 500 ⁇ m.
- the maximum thickness of the entire electrophoresis chip is the total thickness of the upper substrate 3a and the lower substrate 3b.
- the thickness of the entire chip is as described above.
- the manufacturing method of the electrophoresis chip 200 in this example is not particularly limited, and for example, a conventionally known method may be used as appropriate.
- FIG. 5 shows the capillary electrophoresis analyzer of this example.
- the electrophoresis chip is the electrophoresis chip shown in FIG. 4 instead of the electrophoresis chip shown in FIG. Except for having the diluting liquid 31 and the electric wires 7b to d, having the electrophoretic liquid in the electrophoretic chip 200, and having the connecting portion (not shown) of the connector 70 and the electric wire 7g. It is the same as the electrophoretic analyzer 1 shown in FIG.
- the electrophoresis chip 200 is mounted on the stage 22 via the connector 70 and mounted on the capillary electrophoresis analyzer 100.
- the connector 70 is connected to the control unit 9 by the electric wire 7g.
- the controller 9 controls the supply of power to the connector 70 and the like.
- the electrophoresis chip 200 is attached to the capillary electrophoresis analyzer 100 via the connector 70.
- the sample analysis capillary channel 5 x is filled with the electrophoresis solution, and the electrophoresis solution is weighed and introduced into the dilution tank 58.
- human whole blood is introduced from the sample introduction port 41 in the same manner as described above, and the volume of the sample measurement channel 46 is measured and introduced into the dilution tank 58.
- the introduced sample and the electrophoresis solution are mixed in the dilution tank 58, and the stirrer (not shown) is rotated by the magnetic stirrer (not shown) and stirred.
- a voltage is applied to the electrodes 6a and 6b to generate a potential difference between both ends of the sample analysis capillary channel 5x.
- the voltage is applied by supplying electric power from the connector 70 to the electrode 6a and the electrode 6b by the electric wire 7g in the wiring pattern.
- the voltage is not particularly limited, but is, for example, in the range of 0.5 kV to 20 kV.
- the separation electric field of the sample analysis capillary channel 5x by the voltage application can be appropriately set according to the distance from the migration start point to the detection point and the width and depth of the capillary channel. For example, the range is the same as in the first embodiment.
- the detection point 90 is irradiated with light (wavelength 415 nm) that has been spectrally and condensed and further removed with stray light in the same manner as in the first embodiment. Furthermore, the transmitted light at the detection point 90 is detected using the detector 14, the absorbance due to the protein in the electrophoresed sample is measured, and the correspondence between the magnitude of the obtained absorbance and the analysis time Create a pherogram showing.
- HbA1c glycated hemoglobin
- Example 1 First, the electrophoresis chip shown in FIG. 1 was produced.
- the electrophoresis chip 2 of this example was made of PMMA, the length of the chip (the dimension in the direction along the sample analysis capillary channel 5x) was 70 mm, and the width was 30 mm.
- the sample analysis capillary channel 5x had a width of 40 ⁇ m and a depth of 40 ⁇ m.
- the distance from the migration start point 80 to the detection point 90 was 1.5 cm.
- the electrophoresis chip 2 of this example was mounted on the stage 22 to configure the capillary electrophoresis analyzer 1 shown in FIG.
- 0.8 wt% chondroitin sulfate C was further added to a solution prepared by adding arginine to pH 4.8 by adding 30 mmol / L sodium thiocyanate to 50 mmol / L fumaric acid, and the electrophoresis solution 32 was prepared.
- hemoglobin manufactured by BML
- the sample had a hemoglobin A1c concentration of about 5% by weight, and the hemoglobin concentration corresponded to a hemoglobin concentration obtained by diluting human blood 15 times.
- the electrophoresis liquid 32 was injected into the liquid tank 4 a of the electrophoresis chip 2. Then, air was sucked with a vacuum pump connected to the liquid tank 4b, and the electrophoresis solution 32 was filled into the capillary channel for sample analysis 5x. Subsequently, the sample was introduced into the liquid tank 4a. Then, a separation electric field of 450 V / cm was applied to the electrodes 6a and 6b to generate a potential difference between both ends of the sample analysis capillary channel 5x. Thereby, the sample was moved from the liquid tank 4a to the liquid tank 4b.
- Example 2 the electrophoresis chip 2 was produced in the same manner as in Example 1, and the capillary electrophoresis analyzer 1 was configured.
- the capillary electrophoresis analyzer 1 was used to analyze stable hemoglobin A1c and unstable hemoglobin A1c.
- 10 g diluted 100 g / L hemoglobin added with 500 mg / dL glucose at 37 ° C. for 3 hours was used as the sample in place of the 10 g / L hemoglobin described above, and diluted 10 times. Analysis was performed in the same manner as in Example 1.
- Example 3 the electrophoresis chip 2 was produced in the same manner as in Example 1, and the capillary electrophoresis analyzer 1 was configured. Then, using the capillary electrophoresis analyzer 1, hemoglobin A1c was analyzed. In this example, analysis was performed in the same manner as in Example 1 except that the length from the electrophoresis start point 80 to the detection point 90 was changed to 1.0 cm instead of the above-mentioned 1.5 cm.
- Example 4 the electrophoresis chip 2 was produced in the same manner as in Example 1, and the capillary electrophoresis analyzer 1 was configured. Then, using the capillary electrophoresis analyzer 1, hemoglobin A1c was analyzed. In this example, analysis was performed in the same manner as in Example 1 except that the length from the electrophoresis start point 80 to the detection point 90 was set to 2.0 cm instead of the above-described 1.5 cm.
- Example 5 the electrophoresis chip 2 was produced in the same manner as in Example 1, and the capillary electrophoresis analyzer 1 was configured. Then, using the capillary electrophoresis analyzer 1, hemoglobin A1c was analyzed. In this example, the length from the migration start point 80 to the detection point 90 is set to 0.5 cm instead of the above-described 1.5 cm, and the separation electric field applied to the electrodes 6a and 6b is set to the above-described separation electric field. The analysis was performed in the same manner as in Example 1 except that instead of 450 V / cm, 250 V / cm was used.
- Example 1 Comparative Example 1
- the electrophoresis chip 2 was produced in the same manner as in Example 1, and the capillary electrophoresis analyzer 1 was configured. Then, using the capillary electrophoresis analyzer 1, hemoglobin A1c was analyzed.
- the hemoglobin concentration is set to 5 g / L (hemoglobin A1c concentration of about 11%) instead of 10 g / L, and the length from the migration start point 80 to the detection point 90 is 1.5 cm.
- the measurement was performed in the same manner as in Example 1 except that the separation electric field applied to the electrodes 6a and 6b was 250 V / cm instead of 450 V / cm.
- the hemoglobin concentration of 5 g / L in the sample corresponded to the hemoglobin concentration obtained by diluting human blood 30 times.
- Example 2 the sample analysis capillary channel 5x was the same as in Example 1 except that a separate capillary tube (inner diameter 40 ⁇ m) embedded in a groove formed in the lower substrate 3b was used.
- An electrophoresis chip 2 was produced, and a capillary electrophoresis analyzer 1 was constructed.
- the material of the capillary tube was made of fused silica.
- hemoglobin A1c was analyzed.
- analysis was performed in the same manner as in Comparative Example 1 except that the electrophoresis chip 2 was used.
- FIGS. 6 shows the results of Example 1
- FIG. 7 shows the results of Example 2
- FIG. 8 shows the results of Example 3
- FIG. 9 shows the results of Example 4, and FIG.
- FIG. 11 is the results of Comparative Example 1
- FIG. 12 is the results of Comparative Example 2.
- the horizontal axis represents the time elapsed (seconds) from the start of voltage application
- the vertical axis represents the absorbance at a measurement wavelength of 415 nm.
- Example 1 The results of calculating electroosmotic flow in Examples 1 to 5, Comparative Example 1 and Comparative Example 2 are shown in Table 1 below. As shown in the table, for electroosmotic flow, Examples 1 and 2 are 10 cm / min, Example 3 is 8.6 cm / min, and Example 4 is 7.5 cm / min. Example 5 was 3.0 cm / min, Comparative Example 1 was 4.0 cm / min, and Comparative Example 2 was 2.4 cm / min.
- Example 1 Example 3, Example 4, Example 5, Comparative Example 1 and Comparative Example 2
- hemoglobin A1c and hemoglobin A0 are separated and detected. It was possible. Further, as shown in the graph of FIG. 7, in Example 2, three hemoglobins of stable hemoglobin A1c, unstable hemoglobin A1c, and hemoglobin A0 could be separated and detected.
- the time from the start of voltage application to the completion of detection in each example was about 24 seconds in Example 1, about 25 seconds in Example 2, and about 18 seconds in Example 3. In Example 4, it was about 30 seconds, and in Example 5, it was about 18 seconds, while in Comparative Example 1, it was about 60 seconds, and in Comparative Example 2, it was about 90 seconds. That is, in Examples 1 to 5, the analysis time was a very short time of 35 seconds or less, but in Comparative Examples 1 and 2, the analysis time was 60 seconds or more.
- the entire analyzer can be miniaturized, the operation is simple, the running cost is low, and the blood protein can be analyzed with high accuracy in a short time of 35 seconds or less.
- the present invention is suitable for a micro analysis system ( ⁇ TAS).
- ⁇ TAS micro analysis system
- the present invention can be applied to all fields for analyzing blood proteins, such as clinical tests, biochemical tests, and medical research, and the use thereof is not limited and can be applied to a wide range of fields.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
血中タンパク質をキャピラリー電気泳動法により分析するためのキャピラリー電気泳動分析装置であって、
電気泳動チップ、電圧印加手段、送液手段および吸光度測定手段を有し、
前記電気泳動チップは、基板、複数の液槽およびキャピラリー流路を含み、
前記電圧印加手段は、電極を含み、
前記基板上に、前記複数の液槽が形成され、
前記複数の液槽は、前記キャピラリー流路で連通され、
前記キャピラリー流路は、試料分析用のキャピラリー流路を含み、
前記送液手段を使用して、前記試料分析用キャピラリー流路に、電気泳動液を充填し、
前記電気泳動液が充填された前記試料分析用キャピラリー流路に、分析対象の前記血中タンパク質を含む試料を導入し、
前記電極に電圧を印加して、前記試料を電気泳動させ、
前記吸光度測定手段により、電気泳動させた前記試料中の前記血中タンパク質の吸光度を測定し、
前記血中タンパク質の分析時間が、35秒以下であることを特徴とする。
キャピラリー流路が形成された電気泳動チップを使用し、
前記キャピラリー流路が、試料分析用のキャピラリー流路を含み、
電気泳動液が充填された前記試料分析用キャピラリー流路に、前記血中タンパク質を含む試料を導入し、電極に電圧を印加し、前記試料を電気泳動させる電気泳動工程と、
前記電気泳動させた試料中の前記血中タンパク質の吸光度を測定する測定工程とを含み、
前記血中タンパク質の分析時間が、35秒以下であることを特徴とする。なお、本発明の分析方法において、前記電気泳動チップは、前述の本発明のキャピラリー電気泳動分析装置における前記電気泳動チップが好ましく、また、前記キャピラリー電気泳動分析装置を使用することが好ましい。
前記試料分析用キャピラリー流路において、
流路方向に対し垂直方向の断面形状が、円形もしくは矩形であり、
円形の場合、その径が、25μm~100μmの範囲であり、
矩形の場合、その幅が、25μm~100μmの範囲であり、その深さが、25μm~100μmの範囲であり、
泳動開始点から、前記試料の電気泳動が開始され、
前記電気泳動された試料中の前記血中タンパク質の吸光度が、検出点で測定され、
前記泳動開始点から前記検出点までの距離が、5cm以下であることが好ましい。
前記電気泳動液のpHが、pH4.0~6.0の範囲であり、
前記電圧印加時に生じる電気浸透流が、3cm/分以上であってもよい。
0.25cm以上0.75cm未満の場合、分離電場が300V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が300~600V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が400~650V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が450~700V/cmであることが好ましい。
0.25cm以上0.75cm未満の場合、分離電場が250V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が250~500V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が375~550V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が400~600V/cmであることが好ましい。
0.25cm以上0.75cm未満の場合、分離電場が200V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が200~450V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が300~500V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が350~550V/cmであることが好ましい。
0.25cm以上0.75cm未満の場合、分離電場が150V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が150~400V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が250~450V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が300~500V/cmであることが好ましい。
流路方向に対し垂直方向の断面形状が、円形もしくは矩形であり、
円形の場合、その径が、25μm~100μmの範囲であり、矩形の場合、その幅が、25μm~100μmの範囲であり、その深さが、25μm~100μmの範囲であり、
泳動開始点から、前記試料の電気泳動が開始され、
前記電気泳動された試料中の前記血中タンパク質の吸光度が、検出点で測定され、
前記泳動開始点から前記検出点までの距離が、5cm以下であることが好ましい。
前記電気泳動液のpHが、pH4.0~6.0の範囲であり、
前記電圧印加時に生じる電気浸透流が、3cm/分以上であってもよい。
0.25cm以上0.75cm未満の場合、分離電場が300V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が300~600V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が400~650V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が450~700V/cmであることが好ましい。
0.25cm以上0.75cm未満の場合、分離電場が250V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が250~500V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が375~550V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が400~600V/cmであることが好ましい。
0.25cm以上0.75cm未満の場合、分離電場が200V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が200~450V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が300~500V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が350~550V/cmであることが好ましい。
0.25cm以上0.75cm未満の場合、分離電場が150V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が150~400V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が250~450V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が300~500V/cmであることが好ましい。
図1に、本例のキャピラリー電気泳動分析装置に用いる電気泳動チップを示す。図1(A)は、この例の電気泳動チップの平面図であり、図1(B)は、図1(A)のI-I方向に見た断面図である。同図において、わかりやすくするために、各構成要素の大きさや比率等は、実際と異なっている。図示のとおり、この例の電気泳動チップ2は、下基板3bの上に、上基板3aが積層されて、構成されている。前記上基板3aには、三つの貫通孔が形成されている。前記上基板3aに形成された三つの貫通孔の底部が、前記下基板3bで封止されることで、三つの液槽4a、4bおよび4eが形成されている。前記下基板3b上には、I字状の溝が形成されている。前記下基板3b上に形成されたI字状の溝の上部が、前記上基板3aで封止されることで、試料分析用キャピラリー流路5xが形成されている。前記液槽4aおよび前記液槽4bは、前記試料分析用キャピラリー流路5xで連通されている。一方、前記液槽4eは、前記試料分析用キャピラリー流路5xには連通せず、単独の液槽として配置されている。前記キャピラリー流路5xの前記液槽4a側の端部が、泳動開始点80となる。また、前記キャピラリー流路5x上の前記液槽4aと前記液槽4bとの間の一点が、検出点90となる。なお、この例の電気泳動チップ2は、直方体状である。ただし、本発明は、本例に限定されない。本発明において、電気泳動チップは、後述の試料の分析に支障をきたさなければ、いかなる形状であってもよい。また、この例の電気泳動チップ2は、二枚の基板(上基板3aおよび下基板3b)を含む。ただし、本発明は、これに限定されない。本発明において、電気泳動チップは、例えば、一枚の基板で構成されていてもよい。
図3に、本例のキャピラリー電気泳動分析装置に用いる電気泳動チップを示す。同図において、図1と同一部分には同一符号を付している。図3(A)は、この例の電気泳動チップの平面図であり、図3(B)は、図3(A)のI-I方向に見た断面図であり、図3(C)は、図3(A)のII-II方向に見た断面図である。図示のように、この例の電気泳動チップ2は、下基板3b上に、上基板3aが積層されて、構成されている。前記上基板3aには、複数(本例では四つ)の貫通孔が形成されている。前記上基板3aに形成された四つの貫通孔の底部が、前記下基板3bで封止されることで、四つの液槽4a~4dが形成されている。前記下基板3b上には、十字状の溝が形成されている。前記下基板3b上に形成された十字状の溝の上部が、前記上基板3aで封止されることで、試料分析用キャピラリー流路5xおよび試料導入用のキャピラリー流路5yが形成されている。前記液槽4aと前記液槽4bとは、前記試料分析用キャピラリー流路5xで連通されている。前記液槽4cと前記液槽4dとは、前記試料導入用キャピラリー流路5yで連通されている。前記試料分析用キャピラリー流路5xと前記試料導入用キャピラリー流路5yとは、交差している。前記試料分析用キャピラリー流路5xと前記試料導入用キャピラリー流路5yとは、前記交差部分で連通されている。前記交差部分が、泳動開始点80となる。また、前記キャピラリー流路5x上の前記液槽4aと前記液槽4bとの間の一点が、検出点90となる。この例の電気泳動チップ2では、前記試料分析用キャピラリー流路5xと前記試料導入用キャピラリー流路5yの最大長さは、異なっている。ただし、本発明は、これに限定されない。本発明において、前記電気泳動チップ2の前記試料分析用キャピラリー流路5xと前記試料導入用キャピラリー流路5yの最大長さは、同じであってもよい。
図4に、本例のキャピラリー電気泳動分析装置に用いる電気泳動チップを示す。同図において、図1および図3と同一部分には、同一符号を付している。図4(A)は、この例の電気泳動チップの平面図であり、図4(B)は、この例の電気泳動チップの斜視図である。図示のように、この例の電気泳動チップ200は、下基板3bの上に、上基板3aが積層された積層体と、コネクタ70とを含む。前記コネクタ70は、前記積層体の一側面に配置されている。前記下基板3bには、配線パターン(図示せず)が形成されている。前記上基板3aには、六つの貫通孔が形成されている。前記六つの貫通孔の底部が、前記下基板3bにより封止されることにより、六つの液槽が形成されている。前記六つの液槽は、それぞれ、試料導入口41、ドレイン45、ドレイン55、ドレイン57、ドレイン59およびドレイン63である。また、前記上基板3aの底面には、大小三つの凹部が形成されている。前記三つの凹部のうち、二つの凹部の開口面が、前記下基板3bにより封止されることで、二つの液槽が形成されている。前記二つの液槽は、それぞれ、試薬槽51および希釈槽58である。前記試薬槽51には、電気泳動液が封入されている。前記希釈槽58には、前記配線パターン中の配線に接続した電極6aが配置され、撹拌子(図示せず)が封入されている。前記三つの凹部のうち、残りの一つの凹部の開口面が、前記下基板3bにより封止されることで形成される電極配置部61には、前記配線パターン中の配線に接続した電極6bが配置される。さらに、前記上基板3aの底面には、複数の溝が形成されている。前記複数の溝の開口面が、前記下基板3bにより封止されることで、前記六つの液槽および前記三つの凹部を連通する流路が形成されている。前記希釈槽58および前記電極配置部61を連通するキャピラリー流路が、試料分析用キャピラリー流路5xである。前記試料分析用キャピラリー流路5xの前記希釈槽58側の端部が、泳動開始点80となる。また、前記試料分析用キャピラリー流路5x上の一点が、検出点90となる。前記試料分析用キャピラリー流路5x以外の流路の詳細については、後述する。
まず、図1に示した電気泳動チップを作製した。本例の電気泳動チップ2は、PMMA製であり、チップの長さ(前記試料分析用キャピラリー流路5xに沿った方向の寸法)は70mmであり、幅は30mmであった。本例の電気泳動チップ2において、前記試料分析用キャピラリー流路5xの幅は、40μmであり、その深さは、40μmであった。また、前記泳動開始点80から前記検出点90までの距離は、1.5cmであった。
電気浸透流(cm/分)=d/(t/60) ・・・(1)
本例では、実施例1と同様にして、電気泳動チップ2を作製し、キャピラリー電気泳動分析装置1を構成した。そして、前記キャピラリー電気泳動分析装置1を使用して、安定型ヘモグロビンA1cおよび不安定型ヘモグロビンA1cの分析を行った。本例では、前記試料として、前述の10g/L ヘモグロビンに代えて、500mg/dL グルコースを添加した100g/L ヘモグロビンを37℃で3時間インキュベーションしたものを10倍希釈して使用した以外は、実施例1と同様にして分析した。
本例では、実施例1と同様にして、電気泳動チップ2を作製し、キャピラリー電気泳動分析装置1を構成した。そして、前記キャピラリー電気泳動分析装置1を使用して、ヘモグロビンA1cを分析した。本例では、前記泳動開始点80から前記検出点90までの長さを、前述の1.5cmに代えて、1.0cmとした以外は、実施例1と同様にして分析した。
本例では、実施例1と同様にして、電気泳動チップ2を作製し、キャピラリー電気泳動分析装置1を構成した。そして、前記キャピラリー電気泳動分析装置1を使用して、ヘモグロビンA1cの分析を行った。本例では、前記泳動開始点80から前記検出点90までの長さを、前述の1.5cmに代えて、2.0cmとした以外は、実施例1と同様にして分析した。
本例では、実施例1と同様にして、電気泳動チップ2を作製し、キャピラリー電気泳動分析装置1を構成した。そして、前記キャピラリー電気泳動分析装置1を使用して、ヘモグロビンA1cの分析を行った。本例では、前記泳動開始点80から前記検出点90までの長さを、前述の1.5cmに代えて、0.5cmとし、さらに前記電極6aおよび電極6bに印加する分離電場を、前述の450V/cmに代えて、250V/cmとした以外は、実施例1と同様にして分析した。
本例では、実施例1と同様にして、電気泳動チップ2を作製し、キャピラリー電気泳動分析装置1を構成した。そして、前記キャピラリー電気泳動分析装置1を使用して、ヘモグロビンA1cの分析を行った。本例では、試料として、ヘモグロビン濃度を、10g/Lに代えて、5g/L(ヘモグロビンA1c濃度約11%)とし、前記泳動開始点80から前記検出点90までの長さを、1.5cmに代えて、2.0cmとし、前記電極6aおよび電極6bに印加する分離電場を、450V/cmに代えて、250V/cmとした以外は、実施例1と同様にして測定した。なお、前記試料のヘモグロビン濃度 5g/Lは、ヒト血液を30倍に希釈したヘモグロビン濃度に相当した。
本例では、前記試料分析用キャピラリー流路5xとして、前記下基板3bに形成された溝に埋設した別部材のキャピラリー管(内径40μm)を用いた以外は、前記実施例1と同様にして、電気泳動チップ2を作製し、キャピラリー電気泳動分析装置1を構成した。なお、前記キャピラリー管の材質は、フューズドシリカ製であった。そして、前記キャピラリー電気泳動分析装置1を使用して、ヘモグロビンA1cの分析を行った。本例では、前記電気泳動チップ2を使用した以外は、比較例1と同様にして分析した。
t(秒) 電気浸透流(cm/分)
実施例1 9 10
実施例2 9 10
実施例3 7 8.6
実施例4 16 7.5
実施例5 10 3.0
比較例1 30 4.0
比較例2 50 2.4
2、200 電気泳動チップ
3a 上基板
3b 下基板
4a、4b、4c、4d、4e 液槽
5x 試料分析用キャピラリー流路
5y 試料導入用キャピラリー流路
6a、6b、6c、6d 電極
7a、7b、7c、7d、7e、7f、7g 電線
8 スリット
9 制御部
11 光源
12 光学フィルター
13 集光レンズ
14 検出器
20 電気泳動チップ移動機構
21 駆動部
22 ステージ
30 定量分注器
31 希釈液
32 電気泳動液
41 試料導入口
42 試料導入流路
43、53a、53b 分岐部
44、54 オーバーフロー流路
45、55、57、59、63 ドレイン
46 試料計量流路
47 オリフィス
51 試薬槽
52a、52b 試薬導入流路
56 試薬計量流路
58 希釈槽
61 電極配置部
62 流量計測流路
70 コネクタ
80 泳動開始点
90 検出点
Claims (26)
- 血中タンパク質をキャピラリー電気泳動法により分析するキャピラリー電気泳動分析装置であって、
電気泳動チップ、電圧印加手段、送液手段および吸光度測定手段を有し、
前記電気泳動チップが、基板と、複数の液槽およびキャピラリー流路を含み、
前記電圧印加手段が、電極を含み、
前記基板上に、前記複数の液槽が形成され、
前記複数の液槽が、前記キャピラリー流路で連通され、
前記キャピラリー流路が、試料分析用のキャピラリー流路を含み、
前記送液手段を使用して、前記試料分析用キャピラリー流路に、電気泳動液を充填し、
前記電気泳動液が充填された前記試料分析用キャピラリー流路に、分析対象の前記血中タンパク質を含む試料を導入し、前記電極に電圧を印加し、前記試料を電気泳動させ、
前記吸光度測定手段により、前記電気泳動させた試料中の前記血中タンパク質の吸光度を測定し、
前記血中タンパク質の分析時間が、35秒以下であることを特徴とするキャピラリー電気泳動分析装置。 - 前記試料分析用キャピラリー流路において、
流路方向に対し垂直方向の断面形状が、円形もしくは矩形であり、
円形の場合、その径が、25μm~100μmの範囲であり、
矩形の場合、その幅が、25μm~100μmの範囲であり、その深さが、25μm~100μmの範囲であり、
泳動開始点から、前記試料の電気泳動が開始され、
前記電気泳動された試料中の前記血中タンパク質の吸光度が、検出点で測定され、
前記泳動開始点から前記検出点までの距離が、5cm以下である請求の範囲1記載のキャピラリー電気泳動分析装置。 - 前記試料分析用キャピラリー流路の内壁表面が、イオン性官能基を有し、
前記電気泳動液のpHが、pH4.0~6.0の範囲であり、
前記電圧印加時に生じる電気浸透流が、3cm/分以上である請求の範囲1記載のキャピラリー電気泳動分析装置。 - 前記電気泳動液が、硫酸化多糖類を含むことを特徴とする請求の範囲1記載のキャピラリー電気泳動分析装置。
- 前記硫酸化多糖類が、コンドロイチン硫酸であることを特徴とする請求の範囲4記載のキャピラリー電気泳動分析装置。
- 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ30μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が300V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が300~600V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が400~650V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が450~700V/cmであることを特徴とする請求の範囲2記載のキャピラリー電気泳動分析装置。 - 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ40μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が250V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が250~500V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が375~550V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が400~600V/cmであることを特徴とする請求の範囲2記載のキャピラリー電気泳動分析装置。 - 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ50μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が200V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が200~450V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が300~500V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が350~550V/cmであることを特徴とする請求の範囲2記載のキャピラリー電気泳動分析装置。 - 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ60μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が150V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が150~400V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が250~450V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が300~500V/cmであることを特徴とする請求の範囲2記載のキャピラリー電気泳動分析装置。 - 前記血中タンパク質を分析項目とし、
前記分析項目が、ヘモグロビンである請求の範囲1記載のキャピラリー電気泳動分析装置。 - 前記ヘモグロビンが、ヘモグロビンA1c(HbA1c)およびヘモグロビンF(HbF)の少なくとも一方である請求の範囲10記載のキャピラリー電気泳動分析装置。
- 前記ヘモグロビンA1c(HbA1c)を分析項目とし、
前記ヘモグロビンA1c(HbA1c)の分析として、ヘモグロビンA1c濃度(HbA1c濃度)を算出する請求の範囲11記載のキャピラリー電気泳動分析装置。 - 前記試料が、前記血液を溶血処理した試料であり、
前記血液を溶血処理した試料中の前記ヘモグロビンを分析する請求の範囲1記載のキャピラリー電気泳動分析装置。 - キャピラリー電気泳動法により、血中タンパク質を分析する分析方法であって、
キャピラリー流路が形成された電気泳動チップを使用し、
前記キャピラリー流路が、試料分析用のキャピラリー流路を含み、
電気泳動液が充填された前記試料分析用キャピラリー流路に、前記血中タンパク質を含む試料を導入し、電極に電圧を印加し、前記試料を電気泳動させる電気泳動工程と、
前記電気泳動させた試料中の前記血中タンパク質の吸光度を測定する測定工程とを含み、
前記血中タンパク質の分析時間が、35秒以下であることを特徴とする分析方法。 - 前記試料分析用キャピラリー流路において、
流路方向に対し垂直方向の断面形状が、円形もしくは矩形であり、
円形の場合、その径が、25μm~100μmの範囲であり、矩形の場合、その幅が、25μm~100μmの範囲であり、その深さが、25μm~100μmの範囲であり、
泳動開始点から、前記試料の電気泳動が開始され、
前記電気泳動された試料中の前記血中タンパク質の吸光度が、検出点で測定され、
前記泳動開始点から前記検出点までの距離が、5cm以下である請求の範囲14記載の分析方法。 - 前記試料分析用キャピラリー流路の内壁表面が、イオン性官能基を有し、
前記電気泳動液のpHが、pH4.0~6.0の範囲であり、
前記電圧印加時に生じる電気浸透流が、3cm/分以上である請求の範囲14記載の分析方法。 - 前記電気泳動液が、硫酸化多糖類を含むことを特徴とする請求の範囲14記載の分析方法。
- 前記硫酸化多糖類が、コンドロイチン硫酸であることを特徴とする請求の範囲17記載の分析方法。
- 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ30μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が300V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が300~600V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が400~650V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が450~700V/cmであることを特徴とする請求の範囲15記載の分析方法。 - 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ40μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が250V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が250~500V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が375~550V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が400~600V/cmであることを特徴とする請求の範囲15記載の分析方法。 - 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ50μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が200V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が200~450V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が300~500V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が350~550V/cmであることを特徴とする請求の範囲15記載の分析方法。 - 前記試料分析用キャピラリー流路において、前記断面形状が、幅および深さがそれぞれ60μmの矩形の場合、前記泳動開始点から前記検出点までの距離が、
0.25cm以上0.75cm未満の場合、分離電場が150V/cm以下であり、
0.75cm以上1.25cm未満の場合、分離電場が150~400V/cmであり、
1.25cm以上1.75cm未満の場合、分離電場が250~450V/cmであり、
1.75cm以上2.25cm未満の場合、分離電場が300~500V/cmであることを特徴とする請求の範囲15記載の分析方法。 - 前記血中タンパク質を分析項目とし、
前記分析項目が、ヘモグロビンである請求の範囲14記載の分析方法。 - 前記ヘモグロビンが、ヘモグロビンA1c(HbA1c)およびヘモグロビンF(HbF)の少なくとも一方である請求の範囲23記載の分析方法。
- 前記ヘモグロビンA1c(HbA1c)を分析項目とし、
前記ヘモグロビンA1c(HbA1c)の分析として、ヘモグロビンA1c濃度(HbA1c濃度)を算出する請求の範囲24記載の分析方法。 - 前記試料が、前記血液を溶血処理した試料であり、
前記血液を溶血処理した試料中の前記ヘモグロビンを分析する請求の範囲14記載の分析方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09800373.4A EP2312308B1 (en) | 2008-07-22 | 2009-07-17 | Apparatus and method for analysis by capillary electrophoretic method |
JP2010521695A JP5395076B2 (ja) | 2008-07-22 | 2009-07-17 | キャピラリー電気泳動法による分析装置および分析方法 |
CN200980120537.9A CN102047104B (zh) | 2008-07-22 | 2009-07-17 | 利用毛细管电泳法的分析装置及分析方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-188840 | 2008-07-22 | ||
JP2008188840 | 2008-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010010859A1 true WO2010010859A1 (ja) | 2010-01-28 |
Family
ID=41570321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063010 WO2010010859A1 (ja) | 2008-07-22 | 2009-07-17 | キャピラリー電気泳動法による分析装置および分析方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100258440A1 (ja) |
EP (1) | EP2312308B1 (ja) |
JP (2) | JP5395076B2 (ja) |
CN (1) | CN102047104B (ja) |
WO (1) | WO2010010859A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101806769A (zh) * | 2010-03-29 | 2010-08-18 | 内蒙古蒙牛乳业(集团)股份有限公司 | 一种检测牛乳中牛血清白蛋白含量的方法 |
JP2012026739A (ja) * | 2010-07-20 | 2012-02-09 | Arkray Inc | 分析装置および分析方法 |
EP2757368A1 (en) | 2013-01-22 | 2014-07-23 | ARKRAY, Inc. | Sample analysis method and solution to be used therein, wherein a non-surfactant-type zwitterionic substance is used |
JP2015045664A (ja) * | 2014-12-10 | 2015-03-12 | 富士フイルム株式会社 | 分析チップ |
JP2015179080A (ja) * | 2014-02-28 | 2015-10-08 | アークレイ株式会社 | プラズマ発生用チップ、プラズマ発生装置およびプラズマ分光分析方法 |
EP2993467A1 (en) | 2014-09-04 | 2016-03-09 | ARKRAY, Inc. | Analysis method and analysis system |
JP2016057288A (ja) * | 2014-09-04 | 2016-04-21 | アークレイ株式会社 | 分析方法および分析システム |
EP3179243A1 (en) | 2015-12-09 | 2017-06-14 | ARKRAY, Inc. | Analytical tool for capillary electrophoresis with pressure fluctuation reducer |
JP2017106904A (ja) * | 2015-12-09 | 2017-06-15 | アークレイ株式会社 | 分析用具および分析システム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4814945B2 (ja) * | 2006-09-04 | 2011-11-16 | 独立行政法人産業技術総合研究所 | キャピラリー電気泳動法による試料の分析方法 |
JP5462841B2 (ja) * | 2010-08-16 | 2014-04-02 | アークレイ株式会社 | ヘモグロビンの分析方法 |
JP5462919B2 (ja) * | 2011-10-31 | 2014-04-02 | アークレイ株式会社 | 基材の修飾方法 |
EP2998732B1 (en) * | 2014-09-11 | 2023-12-13 | ARKRAY, Inc. | Analysis method |
CN104677972B (zh) * | 2015-02-10 | 2017-02-22 | 四川大学 | 毛细管等速微通道电泳芯片 |
US11422128B2 (en) | 2016-04-13 | 2022-08-23 | Lsi Medience Corporation | Immunoassay employing sulfated polysaccharide |
EP3646021A4 (en) * | 2017-06-29 | 2021-03-31 | Technion Research & Development Foundation Limited | DEVICES AND METHODS FOR FLOW CONTROL BY USING ELECTROOSMOTIC FLOW |
JP6871129B2 (ja) * | 2017-10-23 | 2021-05-12 | アークレイ株式会社 | 分析方法 |
CN112114021B (zh) | 2019-06-21 | 2024-04-05 | 爱科来株式会社 | 待测体成分的分离分析方法 |
JP7384752B2 (ja) * | 2019-06-21 | 2023-11-21 | アークレイ株式会社 | 検体成分の分離分析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3429709B2 (ja) | 1998-08-07 | 2003-07-22 | 積水化学工業株式会社 | 安定型ヘモグロビンA1cの測定方法 |
JP2005519669A (ja) * | 2002-03-11 | 2005-07-07 | ポーリスツィン、ジャヌス・ビー | 生体組織検査用マイクロ装置及び分析方法 |
JP2005265675A (ja) * | 2004-03-19 | 2005-09-29 | Kobe Steel Ltd | マイクロ反応器用チップおよびマイクロ反応器 |
WO2008047703A1 (en) | 2006-10-16 | 2008-04-24 | Sekisui Chemical Co., Ltd. | Hemoglobin determination method |
WO2008078781A1 (ja) * | 2006-12-26 | 2008-07-03 | Sekisui Chemical Co., Ltd. | ヘモグロビン類の測定方法及び電気泳動装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4842701A (en) * | 1987-04-06 | 1989-06-27 | Battelle Memorial Institute | Combined electrophoretic-separation and electrospray method and system |
US5431793A (en) * | 1994-07-29 | 1995-07-11 | Beckman Instruments, Inc. | Quantitative analysis of glycosylated hemoglobin by immunocappillary electrophoresis |
US6001229A (en) * | 1994-08-01 | 1999-12-14 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing microfluidic manipulations for chemical analysis |
JPH11512617A (ja) * | 1995-10-06 | 1999-11-02 | パーセプテイブ・バイオシステムズ・インコーポレイテツド | ペプチド核酸プローブを用いるハイブリダイゼーション分析のための方法、装置及びキット |
US6001231A (en) * | 1997-07-15 | 1999-12-14 | Caliper Technologies Corp. | Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems |
EP1103812B1 (en) * | 1998-08-07 | 2015-11-18 | Sekisui Chemical Co., Ltd. | Method for determining hemoglobins |
US6783649B2 (en) * | 2000-12-01 | 2004-08-31 | Cetek Corporation | High throughput capillary electrophoresis system |
US7232689B2 (en) * | 2002-03-11 | 2007-06-19 | Pawliszyn Janusz B | Calibration procedure for investigating biological systems |
WO2003102539A2 (en) * | 2002-05-31 | 2003-12-11 | The Regents Of The University Of Michigan | Automated protein analysis system comprising capillary electrophoresis-tandem mass spectrometry |
US7534335B2 (en) * | 2003-02-28 | 2009-05-19 | Combisep, Inc. | Multiplexed, absorbance-based capillary electrophoresis system and method |
EP2060912B1 (en) * | 2006-09-04 | 2014-10-01 | National Institute of Advanced Industrial Science and Technology | Method for analysis of sample by capillary electrophoresis |
JP4814945B2 (ja) * | 2006-09-04 | 2011-11-16 | 独立行政法人産業技術総合研究所 | キャピラリー電気泳動法による試料の分析方法 |
JP2009186445A (ja) * | 2008-02-08 | 2009-08-20 | Arkray Inc | キャピラリー電気泳動法によるヘモグロビンの分析方法およびそれに用いる試薬 |
US20100155242A1 (en) * | 2006-09-04 | 2010-06-24 | Arkray, Inc. | Method of Analyzing a Sample by Capillary Electrophoresis |
EP2144057B1 (en) * | 2007-04-27 | 2019-04-10 | ARKRAY, Inc. | Method for analyzing a sample containing glycosylated hemoglobin and glucose |
-
2009
- 2009-07-17 EP EP09800373.4A patent/EP2312308B1/en active Active
- 2009-07-17 WO PCT/JP2009/063010 patent/WO2010010859A1/ja active Application Filing
- 2009-07-17 JP JP2010521695A patent/JP5395076B2/ja active Active
- 2009-07-17 CN CN200980120537.9A patent/CN102047104B/zh active Active
- 2009-07-21 US US12/506,917 patent/US20100258440A1/en not_active Abandoned
-
2013
- 2013-06-13 JP JP2013124343A patent/JP5509372B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3429709B2 (ja) | 1998-08-07 | 2003-07-22 | 積水化学工業株式会社 | 安定型ヘモグロビンA1cの測定方法 |
JP2005519669A (ja) * | 2002-03-11 | 2005-07-07 | ポーリスツィン、ジャヌス・ビー | 生体組織検査用マイクロ装置及び分析方法 |
JP2005265675A (ja) * | 2004-03-19 | 2005-09-29 | Kobe Steel Ltd | マイクロ反応器用チップおよびマイクロ反応器 |
WO2008047703A1 (en) | 2006-10-16 | 2008-04-24 | Sekisui Chemical Co., Ltd. | Hemoglobin determination method |
WO2008078781A1 (ja) * | 2006-12-26 | 2008-07-03 | Sekisui Chemical Co., Ltd. | ヘモグロビン類の測定方法及び電気泳動装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2312308A4 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101806769A (zh) * | 2010-03-29 | 2010-08-18 | 内蒙古蒙牛乳业(集团)股份有限公司 | 一种检测牛乳中牛血清白蛋白含量的方法 |
JP2012026739A (ja) * | 2010-07-20 | 2012-02-09 | Arkray Inc | 分析装置および分析方法 |
EP2757368A1 (en) | 2013-01-22 | 2014-07-23 | ARKRAY, Inc. | Sample analysis method and solution to be used therein, wherein a non-surfactant-type zwitterionic substance is used |
JP2014160058A (ja) * | 2013-01-22 | 2014-09-04 | Arkray Inc | 試料の分析方法及びそれに用いる溶液 |
US9618478B2 (en) | 2013-01-22 | 2017-04-11 | Arkray, Inc. | Sample analysis method and solution to be used therein |
JP2015179080A (ja) * | 2014-02-28 | 2015-10-08 | アークレイ株式会社 | プラズマ発生用チップ、プラズマ発生装置およびプラズマ分光分析方法 |
EP2993467A1 (en) | 2014-09-04 | 2016-03-09 | ARKRAY, Inc. | Analysis method and analysis system |
JP2016057288A (ja) * | 2014-09-04 | 2016-04-21 | アークレイ株式会社 | 分析方法および分析システム |
US10018589B2 (en) | 2014-09-04 | 2018-07-10 | Arkray, Inc. | Analysis method and analysis system |
JP2015045664A (ja) * | 2014-12-10 | 2015-03-12 | 富士フイルム株式会社 | 分析チップ |
EP3179243A1 (en) | 2015-12-09 | 2017-06-14 | ARKRAY, Inc. | Analytical tool for capillary electrophoresis with pressure fluctuation reducer |
JP2017106904A (ja) * | 2015-12-09 | 2017-06-15 | アークレイ株式会社 | 分析用具および分析システム |
US11187674B2 (en) | 2015-12-09 | 2021-11-30 | Arkray, Inc. | Analytical tool and analytical system |
Also Published As
Publication number | Publication date |
---|---|
JP5509372B2 (ja) | 2014-06-04 |
JPWO2010010859A1 (ja) | 2012-01-05 |
JP5395076B2 (ja) | 2014-01-22 |
EP2312308B1 (en) | 2016-08-31 |
CN102047104B (zh) | 2014-09-03 |
JP2013174625A (ja) | 2013-09-05 |
CN102047104A (zh) | 2011-05-04 |
EP2312308A1 (en) | 2011-04-20 |
EP2312308A4 (en) | 2012-02-01 |
US20100258440A1 (en) | 2010-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5509372B2 (ja) | キャピラリー電気泳動法による分析装置および分析方法 | |
WO2010010858A1 (ja) | キャピラリー電気泳動法による分析装置 | |
US11573200B2 (en) | Devices and methods for sample characterization | |
JP4814944B2 (ja) | キャピラリー電気泳動法による試料の分析方法 | |
CN101501485B (zh) | 通过毛细管电泳法分析试样的方法 | |
US8859267B2 (en) | Chip for optical analysis | |
CN101663578B (zh) | 电泳芯片和电泳装置 | |
Peng et al. | Recent innovations in protein separation on microchips by electrophoretic methods | |
US20100155242A1 (en) | Method of Analyzing a Sample by Capillary Electrophoresis | |
CN102109490B (zh) | 利用电泳法分析血红蛋白的方法 | |
JP2012058039A (ja) | キャピラリー電気泳動法による試料の分析方法、キャピラリー電気泳動装置及びキャピラリー電気泳動用チップ | |
JP7570403B2 (ja) | 等電点電気泳動デバイスおよび固定具 | |
JP2009150686A (ja) | ヘモグロビン類の測定システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980120537.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09800373 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010521695 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2009800373 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009800373 Country of ref document: EP |