WO2010007882A1 - 水系金属表面処理剤及び表面処理金属材料 - Google Patents

水系金属表面処理剤及び表面処理金属材料 Download PDF

Info

Publication number
WO2010007882A1
WO2010007882A1 PCT/JP2009/061956 JP2009061956W WO2010007882A1 WO 2010007882 A1 WO2010007882 A1 WO 2010007882A1 JP 2009061956 W JP2009061956 W JP 2009061956W WO 2010007882 A1 WO2010007882 A1 WO 2010007882A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polymer
group
film
resistance
Prior art date
Application number
PCT/JP2009/061956
Other languages
English (en)
French (fr)
Inventor
龍也 鈴木
英宏 山口
賢輔 水野
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to KR1020117003164A priority Critical patent/KR101268719B1/ko
Priority to CN200980127516XA priority patent/CN102089458B/zh
Priority to JP2010520820A priority patent/JP5509078B2/ja
Publication of WO2010007882A1 publication Critical patent/WO2010007882A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • C09D5/165Macromolecular compounds containing hydrolysable groups
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/182Sulfur, boron or silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Definitions

  • the present invention is an aqueous metal surface treatment agent having excellent storage stability capable of forming a film excellent in corrosion resistance, adhesion, antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and processability. About.
  • Zinc-based galvanized steel sheets are widely used for building materials, home appliances, and automobiles from the viewpoint of excellent corrosion resistance. Because it is used unpainted in building materials and home appliances, it has not only excellent corrosion resistance, but also the plating color tone without being affected by the irradiation of ultraviolet rays, acid rain, or adsorption of contaminants. It is required to maintain a beautiful appearance that takes advantage of In addition, when top coating is applied, sufficient adhesion with the top coating is required. If the adhesion with the overcoating is insufficient, corrosion resistance, acid resistance and alkali resistance are not exhibited. Furthermore, when steel plates are used for building materials, home appliances, etc., bending processing and extrusion processing are required, so that adhesion between the coating and the substrate and flexibility of the coating are required.
  • Patent Document 1 discloses a high weather resistance characterized by emulsion polymerization of a monomer composition containing at least a (meth) acrylic acid ester, a dialkyl (meth) acrylamide, and a surfactant.
  • a method for producing a functional emulsion is disclosed.
  • the high weather resistance emulsion produced by the above-mentioned method does not have sufficient corrosion resistance when used in a non-painting application by forming a film on a steel sheet, and even if the film is overcoated. Since sufficient adhesion cannot be obtained, acid resistance and alkali resistance cannot meet the required performance.
  • Patent Document 2 discloses at least (meth) acrylic acid ester, 0.1 to 20% by mass of styrene with respect to the (meth) acrylic acid ester, a surfactant, There is disclosed a method for producing a fine particle emulsion comprising emulsion-polymerizing a monomer composition comprising
  • the fine particle emulsion produced by the above method contains styrene, the film deteriorates and discolors when irradiated with ultraviolet rays, so that it is unsuitable for outdoor non-painting applications.
  • Patent Document 3 further discloses a metal surface treatment agent containing a water-soluble zirconium compound, a water-soluble or water-dispersible acrylic resin, and a water-soluble or water-dispersible thermosetting crosslinking agent.
  • the water-soluble zirconium compound is 500 to 15000 ppm on a mass basis as zirconium
  • the acrylic resin has a solid content acid value of 150 to 740 mg KOH / g and a solid content hydroxyl value of 24 to 240, and the solid content is on a mass basis.
  • thermosetting crosslinking agent characterized in that it is 500 to 30,000 ppm, and the thermosetting crosslinking agent is 125 to 7500 ppm on a mass basis as a solid content.
  • thermosetting crosslinking agent lacks workability because it cures the film.
  • melamine resins and phenol resins listed as thermosetting crosslinking agents are not suitable for non-coating applications because the film deteriorates and discolors when irradiated with ultraviolet rays.
  • Patent Document 4 further discloses (A) an aqueous resin having a carboxyl group and an acid amide bond, (B) Al, Mg, Ca, Zn, Ni, Co, Fe, Zr, Ti. Disclosed is a chromium-free surface treatment agent for a metal sheet, which contains one or more metal compounds selected from metal compounds of V, W, Mn, and Ce, and (C) a silicon compound. Has been. However, an aqueous resin having an acid amide bond is poor in storage stability because of its strong reactivity with metal compounds and silicon compounds.
  • Patent Document 5 further describes (A) a polymerizable unsaturated monomer (such as a styrenic monomer) containing no epoxy group, acid group, hydroxyl group or hydrolyzable silyl group (a ), An epoxy group-containing polymerizable unsaturated monomer (b), an acid group-containing polymerizable unsaturated monomer (c), a hydroxyl group-containing polymerizable unsaturated monomer (d), and a polymer having a hydrolyzable silyl group Water dispersible resin composition containing a copolymer resin emulsion obtained by emulsion polymerization of an unsaturated monomer mixture comprising a polymerizable unsaturated monomer (e), (B) a zirconium compound, and (C) a silane coupling agent A water-dispersible resin treatment agent for metal surfaces is disclosed.
  • a polymerizable unsaturated monomer such as a styrenic monomer
  • the film formed of the water-dispersible resin treatment agent for metal surfaces contains a styrene monomer and a polymerizable unsaturated monomer having an epoxy group, so that the film deteriorates and discolors due to ultraviolet irradiation, Since it also lacks antifouling properties, it is not suitable for non-painting applications outdoors. Furthermore, since the reactivity of the polymerizable unsaturated monomer (b) having an epoxy group and the acid group-containing polymerizable unsaturated monomer (c) is strong, storage stability is lacking.
  • Patent Document 6 further describes 0.1 to 30% by mass of a specific nitrogen-containing radically polymerizable unsaturated monomer (a) based on the total amount of constituent monomers.
  • Monomer containing 1 to 20% by mass of a carboxyl group-containing radically polymerizable unsaturated monomer (b) and 50 to 98.9% by mass of another radically polymerizable unsaturated monomer (c)
  • An aqueous solution containing 0.01 to 10 parts by weight of the organic acid catalyst (C) with respect to 100 parts by weight of the solid content of the resin component (A) and the resin component (A) obtained by radical polymerization reaction of the mixture.
  • a paint is disclosed.
  • the film formed of the water-based paint has insufficient corrosion resistance and cannot meet the required performance.
  • any of the above-described methods and surface treatment agents have performances that can be used as a substitute for the resin chromate film, and have corrosion resistance, adhesion, antifouling properties, film-forming properties, ultraviolet resistance, alkali resistance, It cannot be said that a film excellent in acid resistance and workability can be formed, and there is a strong demand for the development of a surface treatment agent and a treatment method that can comprehensively satisfy these.
  • the present invention solves the above-mentioned problems of the prior art, and can form a film excellent in corrosion resistance, adhesion, antifouling property, film forming property, ultraviolet resistance, alkali resistance, acid resistance and workability.
  • An object of the present invention is to provide an aqueous surface treating agent that is excellent in storage stability.
  • a zirconium compound and / or metal oxide sol, a hydrolyzable silyl compound, and a (meth) acrylic acid ester unit having a specific structure A silicon-containing monomer unit, an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid unit, and an alkyl and / or hydroxyalkyl unit of (meth) acrylic acid as a polymerization unit, and an unsaturated bond other than a carbonyl group in the molecule
  • a polymer that does not contain a specific glass transition temperature, a minimum film-forming temperature and an acid value, and a water-based metal surface treatment agent that contains a plasticizer and an emulsifier has excellent storage stability and corrosion resistance.
  • the present inventors have found that a film excellent in antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and processability can be formed, and the present invention has been completed.
  • the present invention includes a component (A) which is at least one selected from the group consisting of a zirconium compound (A1) and a metal oxide sol (A2); a hydrolyzable silyl compound (B); A polymerized unit from (meth) acrylic acid ester (c1), a polymerized unit from a silicon-containing monomer (c2) represented by the following general formula (III), an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (c3) ) And other (meth) acrylic acid ester (c4) as polymerized units, the polymer does not contain unsaturated bonds other than carbonyl groups in the molecule, and has a glass transition temperature.
  • a component (A) which is at least one selected from the group consisting of a zirconium compound (A1) and a metal oxide sol (A2); a hydrolyzable silyl compound (B); A polymerized unit from (meth) acrylic acid ester (c1), a polymerized unit from a silicon-containing
  • the emulsifier (E) is at least one selected from the group consisting of a reactive emulsifier (E1) and a non-reactive emulsifier (E2), and when at least a part is a reactive emulsifier, the reaction
  • the emulsifying emulsifier is present as one of the polymer units of the polymer (C) as a polymer unit therefrom, the polymer (C) is dispersed by the emulsifier (E), and the total mass of the metal contained in the component (A)
  • R1 represents a hydrogen atom or a methyl group
  • R2 represents a compound represented by the general formula (II)
  • R3, R4 and R5 each independently represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 3 carbon atoms
  • R6, R7 and R8 independently of one another represent a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkoxyl group having 1 to 3 carbon atoms, and X represents a compound of formula (IV)
  • R 9 represents a hydrogen atom or a methyl group
  • R 10 represents an alkylene group having 1 to 12 carbon atoms.
  • the plasticizer (D) is at least one selected from the group consisting of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether and dipropylene glycol n-butyl ether.
  • the metal oxide sol (A2) is preferably at least one selected from the group consisting of cerium oxide sol, yttrium oxide sol, neodymium oxide sol, and lanthanum oxide sol.
  • the proportion of units from the (meth) acrylic acid ester (c1) is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the polymer (C), and the proportion of the emulsifier (E) is The amount is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer (C).
  • the present invention also relates to a metal film having a dry film from the aqueous metal surface treatment agent and having a film of 0.05 to 5 g / m 2 on the surface.
  • the aqueous metal surface treatment agent of the present invention is excellent in storage stability and forms a film excellent in corrosion resistance, adhesion, antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and workability. Can do. Accordingly, the metal film having a predetermined coating amount on the surface, which is a dry film from the aqueous metal surface treatment agent, has corrosion resistance, adhesion, antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and Excellent workability.
  • the aqueous metal surface treating agent having excellent storage stability of the present invention is a component (A) that is at least one selected from the group consisting of a zirconium compound (A1) and a metal oxide sol (A2), a hydrolyzable silyl compound ( B), a polymer (C), a plasticizer (D) and an emulsifier (E).
  • the component (A) which is an essential component of the treatment agent of the present invention is a zirconium compound (A1) and / or a metal oxide sol (A2).
  • Zirconium compound (A1) The zirconium compound (A1) is laminated in the film, and suppresses oxygen permeability and water vapor permeability of the formed film and exhibits a very excellent barrier effect, thereby improving the corrosion resistance. Moreover, since zirconium has high durability against alkalinity, the zirconium compound (A1) improves alkali resistance.
  • zirconium compound (A1) examples include zircon hydrofluoric acid, zircon ammonium fluoride, zirconium nitrate, zirconium acetate, zirconium oxide, zirconium hydroxide, zirconium carbonate ammonium, potassium zirconium carbonate, basic zirconium carbonate, zirconium stearate, zirconium octylate.
  • Metal oxide sol (A2) The metal oxide sol (A2) is laminated in the film, and suppresses oxygen permeability and water vapor permeability of the formed film and exhibits a very excellent barrier effect, thereby improving corrosion resistance.
  • the rare earth oxide has an ultraviolet blocking effect, the ultraviolet deterioration of the polymer (C) due to ultraviolet irradiation can be further suppressed.
  • metal oxide sol (A2) magnesium oxide sol, aluminum oxide sol, silicon oxide sol, calcium oxide sol, scandium oxide sol, titanium oxide sol, vanadium oxide sol, manganese oxide sol, gallium oxide sol, germanium oxide sol, yttrium oxide sol Zirconium oxide sol, antimony oxide sol, lanthanum oxide sol, cerium oxide sol, neodymium oxide sol, hafnium oxide sol, and the like.
  • cerium oxide sol, yttrium oxide sol, and neodymium oxide sol which are particularly excellent in the ultraviolet blocking effect, are particularly preferable.
  • hydrolyzable silyl compound (B) improves the corrosion resistance, corrosion resistance, and alkali resistance in order to enhance the adhesion between the formed film and the substrate or the film and the top coat.
  • the hydrolyzable silyl compound (B) refers to a compound represented by the following general formula (VI).
  • R11 is an alkyl group having 1 to 3 carbon atoms such as a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group or an isopropyl group, or an alkoxyl having 1 to 3 carbon atoms such as a methoxyl group, an ethoxyl group or an isopropoxyl group
  • R12 and R13 each independently represent a hydrogen atom, a methyl group, an ethyl group, an isopropyl group or the like and an alkyl group having 1 to 3 carbon atoms
  • Y represents a hydroxyl group, an amino group, an N-aminoethylamino group, a glycidyloxy group.
  • Specific examples of the hydrolyzable silyl compound (B) include N- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycol.
  • Polymer (C) is a polymerized unit from (meth) acrylic acid ester (c1) having a specific structure, a polymerized unit from silicon-containing monomer (c2) having a specific structure, ⁇ , ⁇ -ethylenically unsaturated A polymer unit from a carboxylic acid (c3), a polymer unit from another (meth) acrylic acid ester (c4), and a polymer unit from the reactive emulsifier (E1) when present are present in the molecule. It is a polymer (C) which does not contain unsaturated bonds other than a carbonyl group, and is a polymer having a specific glass transition temperature, a minimum film-forming temperature and an acid value.
  • the “polymerized unit from” means a polymerized unit formed by opening a carbon-carbon double bond contained in each molecule.
  • the reactive emulsifier (E1) is used as at least part of the emulsifier (E) used in the treatment agent of the present invention, the polymer units from the reactive emulsifier (E1) also constitute the polymer (C). It becomes a polymerization unit.
  • the reactive emulsifier (E1) will be described in the description of the emulsifier (E).
  • the (meth) acrylic acid ester (c1) is a (meth) acrylic acid ester represented by the general formula (I). Since the (meth) acrylic acid ester (c1) has an effect of increasing the glass transition temperature of the polymer (C), it improves the durability against the temperature change of the formed film and thus improves the corrosion resistance. Property, film-forming property, UV resistance, alkali resistance, acid resistance and processability are improved.
  • R2 in general formula (I) needs to be formed only by a saturated bond. When it has an unsaturated bond, a radical reaction occurs due to ultraviolet rays, and a chromophore or a complementary chromophore is formed, so that the ultraviolet resistance is lowered.
  • alkyl group having 1 to 3 carbon atoms in the definition of R3, R4 and R5 in the general formula (II) include a methyl group, an ethyl group, a propyl group and an isopropyl group.
  • Examples of the (meth) acrylic acid ester (c1) include bornyl acrylate, isobornyl acrylate, bornyl methacrylate, and isobornyl methacrylate.
  • Silicon-containing monomer (c2) The silicon-containing monomer (c2) is a silicon-containing monomer represented by the general formula (III). The silicon-containing monomer (c2) reinforces the adhesion between the film and the base material or the film and the top coat film, and improves the corrosion resistance, alkali resistance and acid resistance of the formed film.
  • examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group and an isopropyl group
  • examples of the alkoxyl group having 1 to 3 carbon atoms include Includes methoxyl group, ethoxyl group, propyloxy group and isopropyloxy group.
  • the alkylene group having 1 to 12 carbon atoms is a methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, Examples include octamethylene group, 2-ethylhexane-1,6-diyl group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group and the like.
  • silicon-containing monomer (c2) examples include vinyltrimethoxysilane, vinyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane and the like.
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (c3)
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (c3) reinforces the adhesion between the film and the substrate or the film and the top coat, and improves the corrosion resistance of the formed film.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (c3) include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, and crotonic acid.
  • Polymer (C) is a polymer unit from (meth) acrylic acid ester (c1), a polymer unit from silicon-containing monomer (c2), a polymer unit from ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (c3),
  • the polymer units from the reactive emulsifier (E1) when present are included as constituent polymer units, but the remaining constituent polymer units excluding those polymer units include other (meth) acrylic acid esters (c4). .
  • This (meth) acrylic acid ester (c4) does not have an aromatic ring, an epoxy group and an amide bond, and is a (meth) acrylic acid ester different from (meth) acrylic acid ester (c1) and silicon-containing monomer (c2). is there.
  • the (meth) acrylic acid ester (c4) includes at least one (meth) acrylic acid selected from the group consisting of alkyl (meth) acrylate, hydroxyalkyl (meth) acrylate, and cycloalkyl (meth) acrylate. Examples include esters.
  • the alkyl group of the alkyl (meth) acrylate has preferably 1 to 10 carbon atoms, more preferably 1 to 8, and the hydroxyalkyl group of the hydroxyalkyl (meth) acrylate has 2 to 10 carbon atoms.
  • it is preferably 2 to 6, more preferably 2 to 4, and the cycloalkyl group of the cycloalkyl (meth) acrylate preferably has 5 or 6 carbon atoms. .
  • the alkyl group having 1 to 10 carbon atoms includes methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, decyl group.
  • the hydroxyalkyl group having 2 to 10 carbon atoms include a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a hydroxyhexyl group, a hydroxyoctyl group, and a hydroxydecyl group.
  • a cycloalkyl group having 5 or 6 carbon atoms includes a cyclopentyl group and a cyclohexyl group.
  • Specific examples of the (meth) acrylate ester (c4) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, Isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, (meth) acrylic Examples include 2-ethylhexyl acid, 2-hydroxyethyl (meth) acrylate, decyl (meth) acrylate, 3-hydroxypropyl (meth) acryl
  • the glass transition temperature of the polymer (C) needs to be 0 to 70 ° C., preferably 10 to 60 ° C., more preferably 20 to 50 ° C. Thereby, durability with respect to a temperature change is improved, and excellent corrosion resistance and workability are exhibited. If the glass transition temperature is less than 0 ° C, not only the film hardness required at the time of processing cannot be obtained, but also the corrosion resistance tends to decrease. Tend to cause defect and cracking of the film.
  • the minimum film forming temperature of the polymer (C) needs to be ⁇ 5 to 40 ° C., preferably 0 to 30 ° C., and more preferably 5 to 20 ° C. If the minimum film-forming temperature is less than ⁇ 5 ° C., the storage stability of the water-based metal surface treatment agent of the present invention tends not to be obtained, and if it exceeds 40 ° C., the film-forming property becomes insufficient, and the corrosion resistance, alkali resistance and Acid resistance tends to decrease.
  • the minimum film-forming temperature of the polymer (C) is determined by the composition of the monomer that forms the polymer (C). When the plasticizer (D) is blended, the minimum film-forming temperature depends on the blending amount. Can be changed.
  • the minimum film-forming temperature can be lowered by increasing the blending amount of the plasticizer (D).
  • the minimum film-forming temperature of the polymer (C) can be measured by a known method.
  • a polymer as a sample is applied to a stainless steel plate of a temperature gradient test apparatus to a thickness of 0.2 mm, sealed, dried, and then the boundary between a uniform continuous film portion and a cloudy portion. The temperature of the part was read and set as the minimum film-forming temperature.
  • the acid value of the polymer (C) needs to be 5 to 40 mgKOH / g, preferably 10 to 30 mgKOH / g, and more preferably 10 to 25 mgKOH / g.
  • the acid value is less than 5 mgKOH / g, not only the adhesiveness is lowered, but also the storage stability tends to be lacking.
  • the acid value exceeds 40 mgKOH / g, the water solubility of the formed film becomes strong, and the alkali resistance and acid resistance Tend to decrease.
  • the molecular weight of the polymer (C) is preferably 10,000 to 200,000, and more preferably 50,000 to 150,000, as a weight average molecular weight. When the molecular weight is within the above range, sufficient storage stability and film forming property can be obtained.
  • Plasticizer (D) has an effect of improving the film forming property of the film.
  • Film formation means that the film is formed
  • excellent film forming property means that the plasticizer (D) enters the gap between the polymers (C), thereby reducing the crystallinity of the polymer (C), It refers to promoting the fusion of particles to each other when the film is dried, and forming a uniform film with few irregularities. As a result, irregular reflection of incident light is suppressed, the transparency of the film is increased, the appearance of the film is improved, and the corrosion resistance, alkali resistance, and acid resistance are improved.
  • plasticizer (D) 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether, dipropylene glycol n-butyl ether, diethylene glycol dibutyl ether, dipropylene glycol Examples include monopropyl ether.
  • Emulsifier (E) In the aqueous metal surface treatment agent of the present invention, the polymer (C) is dispersed in water by the emulsifier (E), and the emulsifier is used from the production stage of the polymer (C).
  • the emulsifier (E) only the reactive emulsifier (E1) may be used, or only the non-reactive emulsifier (E2) may be used, or they may be used in combination. Therefore, it is preferable to use a reactive emulsifier.
  • the polymer unit from the reactive emulsifier (E1) is also a constituent of the polymer (C).
  • Examples of the reactive emulsifier (E1) include vinyl sulfonate, styrene sulfonate, sulfoethyl methacrylate, alkylallyl sulfosuccinate, alkenyl sulfosuccinate, polyoxyalkylene alkenyl ether sulfate, polyoxyalkylene alkenyl ether, poly Oxyethylene alkylpropenyl phenyl ether, polyoxyethylene alkylpropenyl phenyl ether sulfate, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate, ⁇ - [1- ⁇ (allyloxy) methyl ⁇ -2- ( Nonylphenoxy) ethyl] - ⁇ -hydroxypolyoxyethylene, ⁇ -sulfo- ⁇ - (1- (alkoxy) methyl-2- (2-propenyloxy) ethoxy) -poly (oxy-1,2-ethaned
  • Non-reactive emulsifiers include higher fatty acid salts (such as sodium laurate and sodium oleate), higher alcohol sulfates (such as sodium lauryl sulfate and sodium oleyl sulfate), and higher alkyl aryl sulfonates (dodecylbenzenesulfone). Acid sodium, sodium dodecyl diphenyl ether disulfonate, etc.), polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol Examples include distearate.
  • the salt include sodium salt, potassium salt, ammonium salt and the like.
  • Total mass M of metal contained in component (A) (zirconium compound (A1) and / or metal oxide sol (A2)), mass of silicon Si1 contained in hydrolyzable silyl compound (B), and silicon-containing monomer
  • the mass ratio [M / (Si1 + Si2)] of the silicon mass Si2 contained in (c2) needs to be 0.1 to 50, preferably 1 to 20, and more preferably 2 to 10. . If the mass ratio [M / (Si1 + Si2)] is less than 0.1, the corrosion resistance tends to decrease due to the reduced barrier effect and the workability decreases due to significant hardening of the film. Decrease in film properties and adhesion between the film and the base material or between the film and the top coat decrease, and the corrosion resistance, alkali resistance and acid resistance tend to decrease.
  • the mass ratio Si1 / Si2 of the silicon mass Si1 contained in the hydrolyzable silyl compound (B) and the silicon mass Si2 contained in the silicon-containing monomer (c2) must be 0.15 to 250, 0.3 Is preferably 100 to 100, and more preferably 0.5 to 50.
  • the mass ratio Si1 / Si2 is less than 0.15, the workability tends to decrease due to remarkable curing of the film, and when it exceeds 250, the storage stability of the aqueous metal surface treatment agent tends to be not obtained. Become.
  • the blending amount of the polymer (C) is 40 to 98 with respect to the total solid content of the aqueous metal surface treatment agent of the present invention. It is necessary that the content is 50% by mass, preferably 50 to 98% by mass, and more preferably 70 to 98% by mass. When the blending amount is less than 40% by mass, good processability and top coating adhesion provided by the polymer (C) cannot be obtained, and when it exceeds 98% by mass, the component (A) and hydrolyzable silyl The compounding effect of compound (B) cannot be obtained.
  • the proportion of each structural unit in the polymer (C) is defined as follows.
  • the proportion of units from the (meth) acrylic acid ester (c1) is preferably 0.1 to 50 parts by mass, and 0.5 to 45 parts by mass with respect to 100 parts by mass of the polymer (C). More preferred is 3 to 35 parts by mass.
  • the proportion is less than 0.1 parts by mass, the effect of the unit is hardly exhibited, and the corrosion resistance, adhesion, antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and workability are reduced. If the amount exceeds 50 parts by mass, the film followability at the time of processing tends to deteriorate, and the adhesiveness and the crack of the film tend to occur.
  • the proportion of units from the silicon-containing monomer (c2) is preferably 0.5 to 2.0 parts by mass, and 1.0 to 2.0 parts by mass with respect to 100 parts by mass of the polymer (C). More preferably.
  • the ratio is less than 0.5 parts by mass, the effect of the unit is less likely to be exhibited, the adhesiveness is lowered, and the corrosion resistance, alkali resistance, and acid resistance tend to be reduced, and exceeds 2.0 parts by mass.
  • the film is cured, the workability tends to be reduced.
  • the ratio of units from ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (c3) is defined as the acid value of polymer (C).
  • the acid value of the polymer (C) needs to be 5 to 40 mgKOH / g, preferably 10 to 30 mgKOH / g, and more preferably 10 to 25 mgKOH / g.
  • the acid value is less than 5 mgKOH / g, the effect of the unit is difficult to be exhibited, not only the adhesiveness is lowered, but also the storage stability tends to be lacking.
  • the acid value exceeds 40 mgKOH / g Water solubility becomes strong, and alkali resistance and acid resistance tend to decrease.
  • the blending amount of the plasticizer (D) is determined by the content of the polymer (C) and the target minimum film-forming temperature value of the polymer (C). That is, it is determined by the specific constitution of each polymer (C) and the target minimum film forming temperature. Generally, the minimum film-forming temperature decreases as the blending amount of the plasticizer (D) is increased.
  • the compounding quantity of an emulsifier (E) is 0.00 as a ratio of the polymer unit from the reactive emulsifier which occupies 100 mass parts of polymers (C).
  • the amount is preferably 5 to 5 parts by mass, and more preferably 1 to 3 parts by mass.
  • the ratio is less than 0.5 parts by mass, the storage stability of the aqueous metal surface treatment agent of the present invention tends to be not obtained, and when it exceeds 5 parts by mass, the water resistance of the formed film decreases. , Alkali resistance and acid resistance tend to decrease.
  • the blending amount is preferably 3 to 10 parts by weight and more preferably 5 to 8 parts by weight with respect to 100 parts by weight of the polymer (C).
  • the blending amount is less than 3 parts by mass, the storage stability of the aqueous metal surface treatment agent of the present invention tends not to be obtained, and when it exceeds 10 parts by mass, the water resistance of the film tends to decrease.
  • the addition amount when the reactive emulsifier and the non-reactive emulsifier are used in combination can be determined in consideration of the addition amount when only one is added. From the above, the added amount of the emulsifier as a whole is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the polymer (C).
  • a polymer (C) can be manufactured using a conventionally well-known method.
  • the polymer (C) can be synthesized using a method such as a polymerization method in which a polymerization initiator, water, an emulsifier (E) and a monomer are mixed together; a monomer dropping method; a pre-emulsion method.
  • a method such as a polymerization method in which a polymerization initiator, water, an emulsifier (E) and a monomer are mixed together; a monomer dropping method; a pre-emulsion method.
  • multi-stage polymerization such as seed polymerization, core-shell polymerization, power feed polymerization, etc. to make the particles have a different phase structure.
  • the polymerization temperature is usually from 0 to 100 ° C., preferably from 40 to 95 ° C., and the polymerization time is suitably from 1 to 10 hours.
  • the polymerization initiator is not particularly limited. For example, ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, t-butyl peroxybenzoate, lauroyl peroxide, t-butyl hydroperoxide, etc. should be used. Can do.
  • the emulsifier is as described above. When at least a part of the reactive emulsifier (E1) is used, a polymer unit from the reactive emulsifier (E1) is also an element constituting the polymer (C).
  • the aqueous metal surface treatment agent of the present invention is a resin other than the polymer (C) for the purpose of improving chemical resistance and / or corrosion resistance, and has no carbon-to-carbon unsaturated bond. It can contain in the range which does not impair the effect of invention.
  • the resin include acrylic resins and urethane resins that do not have an intercarbon unsaturated bond.
  • the acrylic resin include poly (meth) methyl acrylate, poly (meth) acrylate butyl, polyethyl acrylate 2-ethylhexyl, and the like.
  • the urethane resin include aliphatic diisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate. Examples thereof include polycondensates with polyols such as polyether polyols and polyester polyols.
  • the addition amount of the other resin is 70 parts by mass or less with respect to 100 parts by mass of the total solid content of the component (A), the hydrolyzable silyl compound (B), and the polymer (C). Is preferably 60 parts by mass or less, and more preferably 50 parts by mass or less.
  • a urethane resin it is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, and still more preferably 70 parts by mass or less with respect to 100 parts by mass of the polymer (C). If each exceeds the preferred range, the corrosion resistance, adhesion, antifouling properties, film-forming properties, UV resistance, alkali resistance, acid resistance and processability derived from the polymer (C) may not be obtained. .
  • the aqueous metal surface treatment agent of the present invention is a leveling agent for improving coatability, a water-soluble solvent for improving the drying property of the film, a rust preventive pigment, a coloring, within the range not impairing the effects of the present invention.
  • Additives such as pigments and waxes that improve lubricity can be included.
  • a nonionic or cationic surfactant can be used, and examples thereof include polyethylene oxide or polypropylene oxide adduct of polyacetylene glycol and acetylene glycol compound, and water-soluble solvents include ethanol, isopropyl alcohol, t -Examples of butyl alcohol, propylene glycol, and esters include ethyl acetate, butyl acetate, and ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • the method for producing the aqueous metal surface treatment agent of the present invention is not particularly limited as long as it is a method capable of stably producing the aqueous metal surface treatment agent of the present invention.
  • the treatment agent of the present invention generally contains a plasticizer (D), component (A), and hydrolysis into a dispersion (emulsion or suspension) or solution of the polymer (C) obtained by the polymerization.
  • the active silyl compound (B) can be produced by adding optional components as necessary.
  • the solid content concentration of the aqueous metal surface treatment agent of the present invention is not particularly limited, but is preferably 3 to 50% by mass, more preferably 5 to 35% by mass. If it is less than 3% by mass, there may be a problem in coating properties, and the cost of the treatment agent becomes high. If it exceeds 50% by mass, the storage stability of the aqueous metal surface treatment agent tends to decrease.
  • the metal material to which the aqueous metal surface treatment agent of the present invention is applied is not particularly limited, and examples thereof include iron, an alloy mainly composed of iron, aluminum, an alloy mainly composed of aluminum, copper, an alloy mainly composed of copper, and the like.
  • a plated metal material plated on an arbitrary metal material, for example, a zinc-based plated steel plate can also be used.
  • the most preferable one is a galvanized steel sheet.
  • Zinc-based plated steel sheets include galvanized steel sheet, zinc-nickel plated steel sheet, zinc-iron plated steel sheet, zinc-chromium plated steel sheet, zinc-aluminum plated steel sheet, zinc-titanium plated steel sheet, zinc-magnesium plated steel sheet, zinc-manganese Examples include plated steel sheets, zinc-aluminum-magnesium-plated steel sheets, zinc-aluminum-magnesium-silicon-plated steel sheets, and these plating layers include cobalt, molybdenum, tungsten, nickel, titanium as small amounts of different metal elements or impurities.
  • a material containing chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, or the like, or a material in which an inorganic material such as silica, alumina, titania or the like is dispersed can be used.
  • the present invention can be applied to multilayer plating in combination with the above plating and other types of plating such as iron plating, iron-phosphorus plating, nickel plating, cobalt plating and the like.
  • the plating method is not particularly limited, and any known method such as an electroplating method, a hot dipping method, a vapor deposition plating method, a dispersion plating method, and a vacuum plating method may be used.
  • the aqueous metal surface treatment agent of the present invention is applied to a metal material, and preferably reaches an ultimate temperature (achievable metal material temperature) of 50 to 250 ° C., more preferably 70 to 150 ° C., and even more preferably 100 to 140 ° C. It can be applied to metal materials by drying with.
  • an ultimate temperature is less than 50 ° C.
  • the solvent of the aqueous metal surface treatment agent is not completely volatilized, and when it is higher than 250 ° C., a part of the film formed with the aqueous metal surface treatment agent is decomposed.
  • the film mass after drying is preferably 0.05 to 5 g / m 2 , more preferably 0.2 to 3 g / m 2 , and more preferably 0.5 to 2.5 g / m 2. Even more preferred.
  • coating mass is less than 0.05 g / m 2, can not sufficiently cover the surface of the metal material, it is impossible to express the performance, larger than 5 g / m 2, dregs generated during machining, Since operability is lowered, it is not preferable.
  • the water-based metal surface treatment agent is not limited to the above-described treatment method, and may be used as a primer for a pre-coated steel sheet because it is excellent in an upper layer film and a top coating with a base treatment using phosphate or the like.
  • the zirconium compound (A1) used as a constituent component of the aqueous metal surface treatment agent is shown in Table 1.
  • the metal oxide sol (A2) used is shown in Table 2.
  • the hydrolyzable silyl compounds (B) used are shown in Table 3.
  • Table 4 shows monomers used to form the polymer (C) used.
  • the plasticizer (D) used is shown in Table 5.
  • the emulsifier (E) used is shown in Table 6.
  • aqueous metal surface treatment agent of Example 64 10% by mass in the solid content ratio of the polymer (C) is converted into a polyester polyol type urethane resin. changed.
  • the polyester polyol type urethane resin comprises 170 parts by mass of a polyester polyol obtained from tetramethylene glycol and adipic acid, 30 parts by mass of 1,6-hexamethylene diisocyanate, 25 parts by mass of 2,2-dimethylolpropionic acid, and N-methyl-2.
  • Comparative Example 20 In the composition ratio shown in Example 57 shown in Table 9, the polymer (C) in solid content ratio was 1.0% by mass in the solid content ratio of the polymer (C) with phenol resin (Showa Polymer Co., Ltd.). Manufactured by Shounol; Shonor BRL-157). Comparative Example 21 Using Example 6 described in Patent Document 1 (Japanese Patent Laid-Open No. 2000-327704), a film was formed under the processing conditions described in Table 11 and used for evaluation. Comparative Example 22 Using Example 5 described in Patent Document 2 (Japanese Patent Laid-Open No. 2000-327722), a film was formed under the processing conditions described in Table 11 and used for evaluation.
  • Comparative Example 23 Using Example 9 described in Patent Document 4 (Japanese Patent Application Laid-Open No. 2003-201579), a film was formed under the processing conditions described in Table 11 for evaluation. Comparative Example 24 Using Example 1 described in Patent Document 5 (Japanese Patent Application Laid-Open No. 2006-52348), a film was formed under the processing conditions described in Table 11 and subjected to evaluation. Comparative Example 25 Using Example 2 described in Patent Document 6 (Japanese Patent Application Laid-Open No. 2006-152056), a film was formed under the processing conditions described in Table 11 and subjected to evaluation.
  • Fine cleaner 4336 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.), which is a silicate alkaline degreasing agent, is dissolved in water at a concentration of 20 g / L. Sprayed for 2 minutes, washed with pure water for 30 seconds and dried. The obtained treated plate was used as a test plate.
  • White rust width of 2 mm or less ⁇ : White rust width of more than 2 mm, 5 mm or less ⁇ : White rust width of more than 5 mm, 8 mm or less ⁇ : White rust width of more than 8 mm, 12 mm or less XX White rust width of more than 12 mm
  • End face Part The edge part of the surface-treated steel plate was cut off, and the width of white rust generated from the part where the metal material was exposed was measured.
  • White rust width 5 mm or less ⁇ : White rust width 5 mm or more, 10 mm or less ⁇ : White rust width 10 mm or more, 15 mm or less ⁇ : White rust width 15 mm or less
  • Tables 13 to 16 show the evaluation results. From Tables 13 to 15, when the aqueous metal surface treatment agent of the present invention is used, the surface treatment is excellent in corrosion resistance, adhesion, antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and workability. It turns out that a steel plate can be obtained. Tables 13 to 15 show that the aqueous metal surface treatment agent of the present invention is excellent in storage stability.
  • Comparative Example 1 in which (meth) acrylic acid ester (c1) is not used and Comparative Example 2 in which silicon-containing monomer (c2) is not used are poor in overall corrosion resistance and adhesion to coatings and substrates, and are resistant to alkali. It turns out that it is inferior to acid resistance.
  • Comparative Example 5 in which the acid value exceeds the specified range the water resistance of the film is lowered, so the overall corrosion resistance is remarkably inferior, and the alkali resistance and acid resistance are also inferior for the same reason.
  • Comparative Example 4 having an acid value below the specified range is slightly inferior in overall corrosion resistance and remarkably inferior in storage stability.
  • Comparative Example 6 having a minimum film-forming temperature below the specified range has a relatively good performance because it has sufficient film-forming properties, but has poor alkali resistance and acid resistance because the plasticizer remains in the film.
  • Comparative Example 7 in which the minimum film forming temperature exceeds the specified range is inferior in general corrosion resistance, coating and substrate adhesion, alkali resistance, and acid resistance because the film formation is incomplete.
  • Comparative Example 8 having a glass transition temperature below the specified range is inferior in alkali resistance and acid resistance
  • Comparative Example 9 having a glass transition temperature in excess of the specified range is inferior in substrate adhesion because the film becomes too hard.
  • Comparative Examples 17 and 18 in which the polymer (C) contains styrene are extremely inferior in ultraviolet resistance.
  • Comparative Example 19 containing adamantane acrylate in the polymer (C) is poor in film forming property derived from adamantane acrylate, and therefore has general corrosion resistance, coating and substrate adhesion, alkali resistance, acid resistance, and storage stability. Inferior. It can be seen that Comparative Examples 20 to 25 using the aqueous metal surface treating agent described in the patent document described in the background art are inferior in at least one of corrosion resistance, ultraviolet resistance and alkali resistance.
  • Examples 31 and 32 in which Si1 / Si2 is in the optimum range and M / (Si1 + Si2) is also in the optimum range, in particular, compared to Examples 27 to 30 which are below the optimum range, in particular, the overall corrosion resistance, Excellent in UV resistance, alkali resistance, acid resistance, workability, and in contrast to Examples 33 to 36, which exceed the optimum range, especially in general corrosion resistance, coating and substrate adhesion, UV resistance, and workability. .
  • This tendency was similar in Examples 37 to 46 in which the component (A) was replaced from the zirconium compound (A1) to the metal oxide sol (A2).
  • Examples 47 to 55 in which M / (Si1 + Si2) is substantially constant within the specified range and Si1 / Si2 is changed within the specified range the overall corrosion resistance and adhesion to the substrate are higher than those of Comparative Example 14 which is less than the specified range. Excellent in corrosion resistance, film-forming property, alkali resistance and acid resistance, and excellent in overall corrosion resistance, coating and substrate adhesion, UV resistance, alkali resistance and acid resistance, as compared with Comparative Example 15 exceeding the specified range. Further, Examples 50 to 53 in which M / (Si1 + Si2) is substantially constant within the specified range and Si1 / Si2 is in the optimum range are compared with Examples 47 to 49 in which the optimum range is less than the optimum range. It can be seen that there is a tendency to be excellent in acid resistance and processability, and conversely, it is excellent in processability and storage stability as compared with Examples 54 and 55 and Comparative Example 16 exceeding the optimum range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

【課題】  耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性、加工性及び貯蔵安定性に優れる水系表面処理剤の提供。 【解決手段】Zr化合物及び/又は金属酸化物ゾルである成分(A);加水分解性シリル化合物(B);特定構造の(メタ)アクリル酸エステル(c1)、ケイ素含有モノマー(c2)、α,β-エチレン性不飽和カルボン酸(c3)及び他の(メタ)アクリル酸エステル(c4)からの重合単位を重合単位として有し、分子中にカルボニル基以外の不飽和結合を含有しない重合体であって、Tg、MFT及び酸価が特定値の重合体(C);可塑剤(D);及び乳化剤(E)を含有し、(A)中の金属の合計質量Mと、(B)中のケイ素の質量Si1及び(c2)中のケイ素の質量Si2の合計との比率〔M/(Si1+Si2)〕及びSi1/Si2が特定値であり、(C)が全固形分に対して40~98質量%である水系金属表面処理剤、並びに表面処理金属材料。

Description

水系金属表面処理剤及び表面処理金属材料
 本発明は、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性に優れた皮膜を形成させることができる貯蔵安定性に優れた水系金属表面処理剤に関する。
 亜鉛系めっき鋼板は耐食性に優れるという観点から建材や家電、自動車用途などに幅広く使用されている。建材や家電の用途では一部無塗装で使用されるため、優れた耐食性はもちろんのこと、紫外線の照射や酸性雨、汚染物質の吸着などよって、めっき鋼板の表面が侵されることなく、めっき色調を活かした美麗な外観を維持させることが要求されている。また、上塗り塗装が施される場合には、上塗り塗装との十分な密着性が要求される。上塗りする塗装との密着性が不十分であると、耐食性、耐酸性、耐アルカリ性が発揮されない。さらに、建材や家電などに鋼板を使用する場合、曲げ加工や押し出し加工が必要となるため、皮膜と基材の密着性及び皮膜の柔軟性が要求される。
 従来、金属材料表面に耐食性や加工性などを付与する技術として、金属材料表面に、有機樹脂と、クロム酸、重クロム酸もしくはそれらの塩とを主成分として含有する処理液による樹脂クロメート処理を施す方法が一般的であったが、現在はクロムを他の架橋性金属へ代替した環境対応型ノンクロメート有機樹脂皮膜処理などが実用に供されている。
 ノンクロメート有機樹脂皮膜処理技術としては、特許文献1に、少なくとも(メタ)アクリル酸エステルとジアルキル(メタ)アクリルアミドと界面活性剤とを含有するモノマー組成物を乳化重合することを特徴とする高耐候性エマルジョンを製造する方法が開示されている。しかしながら、前記方法で製造された高耐候性エマルジョンは、鋼板上に皮膜を形成させ、無塗装用途で使用した場合には十分な耐食性を有さないばかりか、該皮膜に上塗り塗装を行っても十分な密着性が得られないため、耐酸性、耐アルカリ性が要求性能に応えられない。
 ノンクロメート有機樹脂皮膜処理技術としては、また、特許文献2に、少なくとも(メタ)アクリル酸エステルと、該(メタ)アクリル酸エステルに対し0.1~20質量%のスチレンと、界面活性剤とを含有するモノマー組成物を乳化重合することを特徴とする微粒子エマルジョンを製造する方法が開示されている。しかしながら、前記方法で製造された微粒子エマルジョンにはスチレンが含有されているため、紫外線照射により皮膜が劣化し、変色するため、屋外での無塗装用途には不向きである。
 ノンクロメート有機樹脂皮膜技術としては、さらに、特許文献3に、水溶性ジルコニウム化合物、水溶性又は水分散性アクリル樹脂及び水溶性又は水分散性熱硬化型架橋剤を含有する金属表面処理剤であって、前記水溶性ジルコニウム化合物はジルコニウムとして質量基準で500~15000ppmであり、前記アクリル樹脂は固形分酸価150~740mgKOH/g及び固形分水酸基価24~240であって、固形分として質量基準で500~30000ppmであり、前記熱硬化型架橋剤は、固形分として質量基準で125~7500ppmであることを特徴とする金属表面処理剤が開示されている。しかしながら、熱硬化型架橋剤は皮膜を硬化させるため加工性に欠ける。さらに、熱硬化型架橋剤として挙げられているメラミン樹脂やフェノール樹脂は紫外線照射により皮膜が劣化し、変色するため、無塗装用途には不向きである。
 ノンクロメート有機樹脂皮膜技術としては、さらに、特許文献4に、(A)カルボキシル基と酸アミド結合を有する水系樹脂、(B)Al、Mg、Ca、Zn、Ni、Co、Fe、Zr、Ti、V、W、Mn及びCeの金属化合物から選ばれる1種もしくは2種以上の金属化合物、及び(C)ケイ素化合物を含有することを特徴とするクロムを含有しない金属板材用表面処理剤が開示されている。しかしながら、酸アミド結合を有する水系樹脂は金属化合物やケイ素化合物との反応性が強いため、貯蔵安定性に欠ける。
 ノンクロメート有機樹脂皮膜技術としては、さらに、特許文献5に、(A)エポキシ基、酸基、水酸基及び加水分解性シリル基のいずれも含有しない重合性不飽和モノマー(スチレン系モノマーなど)(a)と、エポキシ基を有する重合性不飽和モノマー(b)と、酸基含有重合性不飽和モノマー(c)と、水酸基含有重合性不飽和モノマー(d)と、加水分解性シリル基を有する重合性不飽和モノマー(e)とからなる不飽和単量体混合物が乳化重合された共重合体樹脂エマルジョンを含む水分散性樹脂組成物と、(B)ジルコニウム化合物と、(C)シランカップリング剤からなる金属表面用水分散性樹脂処理剤について開示されている。しかしながら、前記金属表面用水分散性樹脂処理剤で形成された皮膜には、スチレン系モノマーとエポキシ基を有する重合性不飽和モノマーを含有するため、紫外線照射により皮膜が劣化し、変色するばかりか、防汚性にも欠けるため、屋外での無塗装用途には不向きである。さらに、エポキシ基を有する重合性不飽和モノマー(b)と酸基含有重合性不飽和モノマー(c)の反応性が強いため、貯蔵安定性に欠ける。
 ノンクロメート有機樹脂皮膜技術としては、さらに、特許文献6に、構成する単量体の合計に対して、0.1~30質量%の特定の窒素含有ラジカル重合性不飽和単量体(a)、1~20質量%のカルボキシル基含有ラジカル重合性不飽和単量体(b)、及び50~98.9質量%のその他のラジカル重合性不飽和単量体(c)を含有する単量体混合物をラジカル重合反応することによって得られた樹脂成分(A)、及び樹脂成分(A)の固形分100質量部に対して、有機酸触媒(C)を0.01~10質量部含有する水性塗料が開示されている。しかしながら、前記水性塗料で形成した皮膜は耐食性が不十分であり、要求性能に応えられるものではない。
特開2000-327704号公報 特開2000-327722号公報 特開2002-275648号公報 特開2003-201579号公報 特開2006-52348号公報 特開2006-152056号公報
 このように、前記したいずれの方法及び表面処理剤も、樹脂クロメート皮膜の代替として使用できるような性能を有し、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性に優れた皮膜を形成させることができるとは言い難く、これらを総合的に満足できる表面処理剤及び処理方法の開発が強く要望されている。
 本発明は、従来技術の有する前記問題点を解決して、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性に優れた皮膜を形成させることができる、貯蔵安定性に優れる水系表面処理剤を提供することを目的とするものである。
 本発明者らはこれらの問題を解決すべく鋭意検討を重ねてきた結果、ジルコニウム化合物及び/又は金属酸化物ゾルと、加水分解性シリル化合物と、特定の構造を有する(メタ)アクリル酸エステル単位、ケイ素含有モノマー単位、α,β-エチレン性不飽和カルボン酸単位、及び(メタ)アクリル酸のアルキル及び/又はヒドロキシアルキル単位を重合単位として有し、分子中にカルボニル基以外の不飽和結合を含有しない重合体であって、特定のガラス転移温度、最低造膜温度及び酸価を有する重合体と、可塑剤と乳化剤とを含有する水系金属表面処理剤が貯蔵安定性に優れ、かつ、耐食性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性に優れる皮膜を形成し得ることを見出し、本発明を完成した。
 かかる本発明は、ジルコニウム化合物(A1)及び金属酸化物ゾル(A2)よりなる群から選ばれる少なくとも1種である成分(A);加水分解性シリル化合物(B);下記一般式(I)で表される(メタ)アクリル酸エステル(c1)からの重合単位、下記一般式(III)で表されるケイ素含有モノマー(c2)からの重合単位、α,β-エチレン性不飽和カルボン酸(c3)からの重合単位及び他の(メタ)アクリル酸エステル(c4)からの重合単位を重合単位として有し、分子中にカルボニル基以外の不飽和結合を含有しない重合体であって、ガラス転移温度が0~70℃、最低造膜温度が-5~40℃及び酸価が5~40mgKOH/gである重合体(C);可塑剤(D);及び乳化剤(E)を含有する水系金属表面処理剤であって、乳化剤(E)は反応性乳化剤(E1)及び非反応性乳化剤(E2)よりなる群から選ばれる少なくとも1種であって、少なくとも一部が反応性乳化剤である場合には、該反応性乳化剤はそれからの重合単位として重合体(C)の重合単位の1つとして存在し、重合体(C)が乳化剤(E)により分散されており、成分(A)が含有する金属の合計質量Mと、加水分解性シリル化合物(B)が含有するケイ素の質量Si1及びケイ素含有モノマー(c2)が含有するケイ素の質量Si2の合計質量との質量比率〔M/(Si1+Si2)〕が0.1~50であり、Si1/Si2が0.15~250であり、重合体(C)の割合が該水系金属表面処理剤の全固形分に対して40~98質量%である該水系金属表面処理剤:
Figure JPOXMLDOC01-appb-C000006
[式中、R1は水素原子又はメチル基を表し、R2は一般式(II)
Figure JPOXMLDOC01-appb-C000007
(式中、R3、R4及びR5は互いに独立に、水素原子、水酸基又は炭素数1~3のアルキル基を表す)で表される基を表す]
Figure JPOXMLDOC01-appb-C000008
[式中、R6、R7及びR8は互いに独立に、水素原子、水酸基、炭素数1~3のアルキル基又は炭素数1~3のアルコキシル基を表し、Xは式(IV)
Figure JPOXMLDOC01-appb-C000009
又は一般式(V)
Figure JPOXMLDOC01-appb-C000010
(式中、R9は水素原子又はメチル基を表し、R10は炭素数1~12のアルキレン基を表す)で表される基を表す]
に関する。
 可塑剤(D)は2,2,4-トリメチル-1,3ペンタンジオールモノイソブチレート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテル及びジプロピレングリコールn-ブチルエーテルよりなる群から選ばれる少なくとも1種であることが好ましく、金属酸化物ゾル(A2)は酸化セリウムゾル、酸化イットリウムゾル、酸化ネオジムゾル及び酸化ランタンゾルよりなる群から選ばれる少なくとも1種であることが好ましい。
 また、(メタ)アクリル酸エステル(c1)からの単位の割合は、重合体(C)100質量部に対して、0.1~50質量部であることが好ましく、乳化剤(E)の割合は重合体(C)100質量部に対して0.5~5質量部であることが好ましい。
 本発明は、また、上記水系金属表面処理剤からの乾燥皮膜であって、0.05~5g/mの皮膜を表面に有する金属材料に関する。
 本発明の水系金属表面処理剤は貯蔵安定性に優れ、かつ、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性に優れた皮膜を形成させることができる。したがって、上記水系金属表面処理剤からの乾燥皮膜であって、所定の皮膜量を表面に有する金属材料は耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性に優れる。
 本発明の貯蔵安定性に優れる水系金属表面処理剤は、ジルコニウム化合物(A1)及び金属酸化物ゾル(A2)よりなる群から選ばれる少なくとも1種である成分(A)、加水分解性シリル化合物(B)、重合体(C)、可塑剤(D)及び乳化剤(E)を含有する。
 本発明の処理剤の必須成分である成分(A)はジルコニウム化合物(A1)及び/又は金属酸化物ゾル(A2)である。
ジルコニウム化合物(A1)
 ジルコニウム化合物(A1)は皮膜中で積層状となり、形成された皮膜の酸素透過性や水蒸気透過性を抑え、非常に優れたバリア効果を発揮するため、耐食性を向上させる。また、ジルコニウムはアルカリ性に対する耐久性が高いため、ジルコニウム化合物(A1)は耐アルカリ性を向上させる。
 ジルコニウム化合物(A1)としては、ジルコンフッ化水素酸、ジルコンフッ化アンモニウム、硝酸ジルコニウム、酢酸ジルコニウム、酸化ジルコニウム、水酸化ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、塩基性炭酸ジルコニウム、ステアリン酸ジルコニウム、オクチル酸ジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムテトラノルマルプロポキシ、ジルコニウムテトラノルマルブトキシ、ジルコニウムトリブトキシモノステアレートなどが挙げられる。
金属酸化物ゾル(A2)
金属酸化物ゾル(A2)は皮膜中で積層状となり、形成された皮膜の酸素透過性や水蒸気透過性を抑え、非常に優れたバリア効果を発揮するため、耐食性を向上させる。特に、希土類酸化物は紫外線遮断効果があるため、紫外線照射による重合体(C)の紫外線劣化をさらに抑制することができる。
 金属酸化物ゾル(A2)としては、酸化マグネシウムゾル、酸化アルミニウムゾル、酸化ケイ素ゾル、酸化カルシウムゾル、酸化スカンジウムゾル、酸化チタンゾル、酸化バナジウムゾル、酸化マンガンゾル、酸化ガリウムゾル、酸化ゲルマニウムゾル、酸化イットリウムゾル、酸化ジルコニウムゾル、酸化アンチモンゾル、酸化ランタンゾル、酸化セリウムゾル、酸化ネオジムゾル、酸化ハフニウムゾルなどが挙げられる。これらの中で、紫外線遮断効果に特に優れた酸化セリウムゾル、酸化イットリウムゾル及び酸化ネオジムゾルが特に好ましい。
加水分解性シリル化合物(B)
 加水分解性シリル化合物(B)は、形成された皮膜と基材又は皮膜と上塗り塗装との密着性を高めるため、耐食性、耐食性、耐アルカリ性を向上させる。本発明において加水分解性シリル化合物は(B)は、次の一般式(VI)で表される化合物をさす。
Figure JPOXMLDOC01-appb-C000011
(式中、R11は、水素原子、水酸基、メチル基、エチル基、イソプロピル基等の炭素数1~3のアルキル基又はメトキシル基、エトキシル基、イソプロポキシル基等の炭素数1~3のアルコキシル基を表し、R12及びR13は互いに独立に水素原子、メチル基、エチル基、イソプロピル基等炭素数1~3のアルキル基を表し、Yは水酸基、アミノ基、N-アミノエチルアミノ基、グリシジルオキシ基もしくはメルカプト基で置換された炭素数1~6の鎖状もしくは環状アルキル基、又はビニル基を表す)。
 加水分解性シリル化合物(B)として具体的には、N-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトエリメトキシシラン、ビニルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランなどが挙げられる。
重合体(C)
 重合体(C)は、特定の構造を有する(メタ)アクリル酸エステル(c1)からの重合単位、特定の構造を有するケイ素含有モノマー(c2)からの重合単位、α,β-エチレン性不飽和カルボン酸(c3)からの重合単位、他の(メタ)アクリル酸エステル(c4)からの重合単位及び存在する場合の反応性乳化剤(E1)からの重合単位を重合単位として有し、分子中にカルボニル基以外の不飽和結合を含有しない重合体(C)であって、特定のガラス転移温度、最低造膜温度及び酸価を有する重合体である。なお、上記で「からの重合単位」とは各分子中に含まれる炭素-炭素二重結合が開いて形成される重合単位を意味するものとする。
 なお、本発明の処理剤で使用する乳化剤(E)の少なくとも一部として反応性乳化剤(E1)を用いる場合には、反応性乳化剤(E1)からの重合単位も重合体(C)を構成する重合単位となる。反応性乳化剤(E1)については乳化剤(E)の説明の箇所で説明する。
(メタ)アクリル酸エステル(c1)
 (メタ)アクリル酸エステル(c1)は前記一般式(I)で表される(メタ)アクリル酸エステルである。(メタ)アクリル酸エステル(c1)は重合体(C)のガラス転移温度を上昇させる効果を有するので、形成される皮膜の温度変化に対する耐久性ひいては耐食性を向上させ、また、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性を向上させる。 
 一般式(I)中のR2は、飽和結合のみで形成されることが必要である。不飽和結合を有すると、紫外線によりラジカル反応が生じ、発色団や補色団を形成するため、耐紫外線性が低下する。一般式(II)中のR3、R4及びR5の定義における炭素数1~3のアルキル基としてはメチル基、エチル基、プロピル基及びイソプロピル基が挙げられる。
 (メタ)アクリル酸エステル(c1)としては、ボルニルアクリレート、イソボルニルアクリレート、ボルニルメタクリレート、イソボルニルメタクリレートなどが挙げられる。
ケイ素含有モノマー(c2)
 ケイ素含有モノマー(c2)は前記一般式(III)で表されるケイ素含有モノマーである。ケイ素含有モノマー(c2)は皮膜と基材又は皮膜と上塗り塗膜との密着性を強化し、形成された皮膜の耐食性、耐アルカリ性及び耐酸性を向上させる。
 一般式(III)中のR6、R7及びR8の定義中、炭素数1~3のアルキル基としてはメチル基、エチル基、プロピル基及びイソプロピル基が挙げられ、炭素数1~3のアルコキシル基としてはメトキシル基、エトキシル基、プロピルオキシ基及びイソプロピルオキシ基が挙げられる。一般式(V)中のR10の定義中、炭素数1~12のアルキレン基としてはメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、2-エチルヘキサン-1,6-ジイル基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基等が挙げられる。
 ケイ素含有モノマー(c2)として具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどが挙げられる。
α,β-エチレン性不飽和カルボン酸(c3)
 α,β-エチレン性不飽和カルボン酸(c3)は、皮膜と基材又は皮膜と上塗り塗装との密着性を強化し、形成された皮膜の耐食性を向上させる。
 α,β-エチレン性不飽和カルボン酸(c3)としては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、フマル酸、クロトン酸などが挙げられる。
他の(メタ)アクリル酸エステル(c4)
 重合体(C)は、(メタ)アクリル酸エステル(c1)からの重合単位、ケイ素含有モノマー(c2)からの重合単位、α,β-エチレン性不飽和カルボン酸(c3)からの重合単位、及び存在する場合の反応性乳化剤(E1)からの重合単位を構成重合単位として含むが、それらの重合単位を除いた残りの構成重合単位として、他の(メタ)アクリル酸エステル(c4)を含む。かかる(メタ)アクリル酸エステル(c4)は芳香環、エポキシ基及びアミド結合を有さず、(メタ)アクリル酸エステル(c1)及びケイ素含有モノマー(c2)とは異なる(メタ)アクリル酸エステルである。
 かかる(メタ)アクリル酸エステル(c4)としては、(メタ)アクリル酸アルキル、(メタ)アクリル酸ヒドロキシアルキル、(メタ)アクリル酸シクロアルキルよりなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステルが挙げられる。(メタ)アクリル酸アルキルのアルキル基の炭素数は1~10であることが好ましく、1~8であることがより好ましく、(メタ)アクリル酸ヒドロキシアルキルのヒドロキシアルキル基の炭素数は2~10であることが好ましく、2~6であることがより好ましく、2~4であることがより一層好ましく、(メタ)アクリル酸シクロアルキルのシクロアルキル基の炭素数は5又は6であることが好ましい。
 具体的には、炭素数が1~10のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、デシル基等が挙げられ、炭素数が2~10のヒドロキシアルキル基としてはヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシヘキシル基、ヒドロキシオクチル基、ヒドロキシデシル基等が挙げられる。炭素数が5又6のシクロアルキル基はシクロペンチル基及びシクロヘキシル基を包含する。
 (メタ)アクリル酸エステル(c4)として具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸デシル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸シクロヘキシル等が挙げられる。
 次に、重合体(C)の備えるべき物性について述べる。
 重合体(C)のガラス転移温度は0~70℃である必要があり、10~60℃であることが好ましく、20~50℃であることがより好ましい。これにより、温度変化に対する耐久性が向上し、優れた耐食性及び加工性が発揮される。ガラス転移温度が0℃未満であると、加工時に必要な皮膜硬度を得ることができないばかりか、耐食性も低下する傾向になり、70℃を超えると、加工時の皮膜追従性が低下し、密着性不良や皮膜のワレが生じる傾向になる。
なお、本発明において重合体(C)のガラス転移温度Tgは、その重合に使用される各モノマーのガラス転移温度Tgi(i=1,2,…,i)と重量分率Xi(i=1,2,…,i)とから、1/Tg=Σ(Xi/Tgi)の式より良好な近似値が算出される。
 重合体(C)の最低造膜温度は-5~40℃である必要があり、0~30℃であることが好ましく、5~20℃であることがより好ましい。最低造膜温度が-5℃未満であると本発明の水系金属表面処理剤の貯蔵安定性が得られなくなる傾向になり、40℃を超えると造膜性が不十分となり、耐食性、耐アルカリ性及び耐酸性が低下する傾向になる。
 なお、重合体(C)の最低造膜温度は重合体(C)を形成するモノマーの組成によって決定されるが、可塑剤(D)を配合する場合には、その配合量によって最低造膜温度を変化させることができる。すなわち、可塑剤(D)の配合量を増やすことによって最低造膜温度を低下させることができる。
 重合体(C)の最低造膜温度は、公知の方法にて測定することができる。本発明においては、温度勾配試験装置のステンレス板上に0.2mmの厚さに試料としての重合体を塗布し密閉し、乾燥した後、一様な連続皮膜部分と白濁している部分の境界部の温度を読み取り、最低造膜温度とした。 
 重合体(C)の酸価は5~40mgKOH/gである必要があり、10~30mgKOH/gであることが好ましく、10~25mgKOH/gであることがより好ましい。酸価が5mgKOH/g未満であると、密着性が低下するばかりか、貯蔵安定性に欠ける傾向になり、40mgKOH/gを超えると、形成された皮膜の水溶性が強くなり、耐アルカリ性及び耐酸性が低下する傾向になる。
 重合体(C)の分子量は、重量平均分子量として、10,000~200,000であることが好ましく、50,000~150,000であることがより好ましい。該分子量が上記範囲内である場合には、十分な貯蔵安定性と造膜性が得られる。
可塑剤(D)
 可塑剤(D)は、皮膜の造膜性を高める効果がある。造膜とは膜化していることであり、造膜性に優れるとは、重合体(C)の間隙に可塑剤(D)が入り込むことで、重合体(C)の結晶性を低下させ、皮膜乾燥時に粒子同士の融着を促進し、凹凸の少ない均一な皮膜を形成することを指す。その結果、入射光の乱反射が抑制されて皮膜の透明性が高まり、皮膜外観が向上すると共に、耐食性、耐アルカリ性及び耐酸性が向上する。
 可塑剤(D)としては、2,2,4-トリメチル-1,3ペンタンジオールモノイソブチレート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテル、ジプロピレングリコールn-ブチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノプロピルエーテルなどが挙げられる。
乳化剤(E)
 本発明の水系金属表面処理剤において、重合体(C)は乳化剤(E)により水中に分散されており、かかる乳化剤は重合体(C)の製造段階から使用される。
 乳化剤(E)としては、反応性乳化剤(E1)のみを使用しても、非反応性乳化剤(E2)のみを使用しても、それらを併用してもよいが、乳化剤の添加量を少なくすることができることから反応性乳化剤を使用することが好ましい。反応性乳化剤を使用する場合は、反応性乳化剤(E1)からの重合体単位も重合体(C)の構成成分となる。
 反応性乳化剤(E1)としては、ビニルスルホン酸塩、スチレンスルホン酸塩、スルホエチルメタクリレート塩、アルキルアリルスルホコハク酸塩、アルケニルスルホコハク酸塩、ポリオキシアルキレンアルケニルエーテル硫酸塩、ポリオキシアルキレンアルケニルエーテル、ポリオキシエチレンアルキルプロペニルフェニルエーテル、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステル塩、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステル塩、α-[1-{(アリルオキシ)メチル}-2-(ノニルフェノキシ)エチル]-ω-ヒドロキシポリオキシエチレン、α-スルホ-ω-(1-(アルコキシ)メチル-2-(2-プロペニルオキシ)エトキシ)-ポリ(オキシ-1,2-エタンジイル)塩などが挙げられる。
 非反応性乳化剤(E2)としては、高級脂肪酸塩(ラウリン酸ナトリウム、オレイン酸ナトリウム等)、高級アルコール硫酸エステル塩(ラウリル硫酸ナトリウム、オレイル硫酸ナトリウム等)、高級アルキルアリールスルホン酸塩(ドデシルベンゼンスルホン酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム等)、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリエチレングリコールモノラウリレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレートなどが挙げられる。前記の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられる。
 次に、各使用成分間の使用比率について述べる。
 成分(A)(ジルコニウム化合物(A1)及び/又は金属酸化物ゾル(A2))が含有する金属の合計質量Mと、加水分解性シリル化合物(B)が含有するケイ素の質量Si1とケイ素含有モノマー(c2)が含有するケイ素の質量Si2の質量比率〔M/(Si1+Si2)〕は0.1~50である必要があり、1~20であることが好ましく、2~10であることがより好ましい。前記質量比率〔M/(Si1+Si2)〕が0.1未満であると、バリア効果の低下による耐食性の低下と、皮膜の著しい硬化による加工性の低下が生じる傾向になり、50を超えると、造膜性の低下と、皮膜と基材又は皮膜と上塗り塗装との密着性が低下し、耐食性、耐アルカリ性及び耐酸性が低下する傾向になる。 
 加水分解性シリル化合物(B)が含有するケイ素の質量Si1とケイ素含有モノマー(c2)が含有するケイ素の質量Si2の質量比率Si1/Si2は0.15~250である必要があり、0.3~100であることが好ましく、0.5~50であることがより好ましい。前記質量比率Si1/Si2が0.15未満であると、皮膜の著しい硬化により加工性が低下する傾向になり、250を超えると、該水系金属表面処理剤の貯蔵安定性が得られなくなる傾向になる。
 重合体(C)の配合量は、本発明の水系金属表面処理剤の全固形分に対して40~98
質量%であることが必要であり、50~98質量%であることが好ましく、70~98質量%であることがより好ましい。前記配合量が40質量%未満であると、重合体(C)に
よってもたらされる良好な加工性や上塗り塗料密着性が得られなくなり、98質量%を超えると、成分(A)及び加水分解性シリル化合物(B)の配合効果が得られなくなる。
 重合体(C)中の各構成単位の割合は以下のように規定する。
 (メタ)アクリル酸エステル(c1)からの単位の割合は、重合体(C)100質量部に対して、0.1~50質量部であることが好ましく、0.5~45質量部であることが
より好ましく、3~35質量部であることがより一層好ましい。前記割合が0.1質量部未満であると、該単位による効果が発現しにくくなり、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性が低下する傾向になり、50質量部を超えると、加工時の皮膜追従性が低下して密着性不良や皮膜のワレが生じる傾向になる。
 ケイ素含有モノマー(c2)からの単位の割合は、重合体(C)100質量部に対して、0.5~2.0質量部であることが好ましく、1.0~2.0質量部であることがより好ましい。前記割合が0.5質量部未満であると、該単位による効果が発現しにくくなり、密着性が低下し、耐食性、耐アルカリ性及び耐酸性が低下する傾向になり、2.0質量部を超えると、皮膜が硬化して加工性が低下する傾向になる。
 α,β-エチレン性不飽和カルボン酸(c3)からの単位の割合は、重合体(C)の酸価として規定する。重合体(C)の酸価は5~40mgKOH/gである必要があり、10~30mgKOH/gであることが好ましく、10~25mgKOH/gであることがより好ましい。酸価が5mgKOH/g未満であると、該単位による効果が発現しにくくなり、密着性が低下するばかりか、貯蔵安定性に欠ける傾向になり、40mgKOH/gを超えると、形成された皮膜の水溶性が強くなり、耐アルカリ性及び耐酸性が低下する傾向になる。
 可塑剤(D)の配合量は、重合体(C)の内容及び重合体(C)の目的とする最低造膜温度の値によって決定される。すなわち、個々の重合体(C)の具体的構成及び目的とする最低造膜温度によって決定される。一般に可塑剤(D)の配合量を増やしていくと最低造膜温度は低くなる。
 乳化剤(E)の配合量については、反応性乳化剤(E1)のみを使用する場合の配合量は、重合体(C)100質量部に占める反応性乳化剤からの重合体単位の割合として、0.5~5質量部であることが好ましく、1~3質量部であることがより好ましい。前記割合が0.5質量部未満であると、本発明の水系金属表面処理剤の貯蔵安定性が得られなくなる傾向になり、5質量部を超えると、形成される皮膜の耐水性が低下し、耐アルカリ性及び耐酸性が低下する傾向になる。非反応性乳化剤のみを使用する場合の配合量は、重合体(C)100質量部に対して、3~10質量部であることが好ましく、5~8重量部であることがより好ましい。前記配合量が3質量部未満であると本発明の水系金属表面処理剤の貯蔵安定性が得られなくなる傾向になり、10質量部を超えると皮膜の耐水性が低下する傾向になる。反応性乳化剤と非反応性乳化剤とを併用する場合の添加量は、一方のみを添加する場合の添加量を勘案して決定することができる。以上から、乳化剤全体としての添加量は、重合体(C)100質量部に対して、0.5~10質量部であることが好ましく、1~8質量部であることがより好ましい。
 重合体(C)の製造方法は特に限定されるものではなく、重合体(C)は従来公知の方法を用いて製造することができる。例えば、重合体(C)は重合開始剤、水、乳化剤(E)及びモノマーを一括混合して重合する方法;モノマー滴下法;プレエマルジョン法等の方法を用いて合成することができる。また、シード重合、コア・シェル重合、パワーフィード重合等の多段重合を行って粒子の異相構造化を行うことも可能である。重合温度は通常0~100℃で、好ましくは40~95℃であり、重合時間は1~10時間が適している。
 重合開始剤は特に限定されず、例えば過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、ラウロイルパーオキサイド、t-ブチルハイドロパーオキサイドなどを用いることができる。
 乳化剤については既述の通りであり、反応性乳化剤(E1)を少なくとも一部用いる場合には、反応性乳化剤(E1)からの重合単位も重合体(C)を構成する要素となる。
 本発明の該水系金属表面処理剤は、耐薬品性及び/又は耐食性を向上させる目的で重合体(C)以外の他の樹脂であって、炭素間不飽和結合を有さないものを、本発明の効果を損なわない範囲で、含有することができる。該樹脂としては、いずれも炭素間不飽和結合を有さないアクリル樹脂、ウレタン樹脂などが挙げられる。アクリル樹脂としては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸ブチル、ポリアクリル酸2-エチルヘキシルなどが挙げられ、ウレタン樹脂としては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどの脂肪族系ジイソシアネートとポリエーテルポリオール、ポリエステルポリオールなどのポリオールとの重縮合物が挙げられる。
 他の樹脂の添加量は、アクリル樹脂の場合は、成分(A)、加水分解性シリル化合物(B)及び重合体(C)の合計固形分100質量部に対して70質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下であることがより一層好ましい。ウレタン樹脂の場合は重合体(C)100質量部に対して90質量部以下であることが好ましく、80質量部以下であることがより好ましく、70質量部以下であることがより一層好ましい。それぞれ好ましい範囲を超えて使用すると、重合体(C)に由来する耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性が得られなくなる可能性がある。
本発明の該水系金属表面処理剤は、本発明の効果を損なわない範囲で、塗工性を向上させるためのレベリング剤、皮膜の乾燥性を改善するための水溶性溶剤、防錆顔料、着色顔料、潤滑性を向上させるワックスなどの添加剤を含有することできる。レベリング剤としては、ノニオン性もしくはカチオン性の界面活性剤を用いることができ、ポリアセチレングリコールのポリエチレンオキサイドもしくはポリプロピレンオキサイド付加物やアセチレングリコール化合物などが挙げられ、水溶性溶剤としてはエタノール、イソプロピルアルコール、t-ブチルアルコール、プロピレングリコール、エステル類としては、酢酸エチル、酢酸ブチル、ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。
 本発明の水系金属表面処理剤の製造方法は、本発明の水系金属表面処理剤を安定に製造し得る方法であれば、特に制限されない。本発明の処理剤は、一般的には、上記重合によって得られる、重合体(C)の分散液(エマルジョンもしくは懸濁液)もしくは溶液に、可塑剤(D)、成分(A)及び加水分解性シリル化合物(B)並びに必要に応じ任意成分を添加することにより製造することができる。
 本発明の該水系金属表面処理剤の固形分濃度は特に制限されないが、3~50質量%であることが好ましく、5~35質量%であることがより好ましい。3質量%未満であると、塗布性に問題が生じる恐れがあり、また処理剤コストが高くなる。50質量%を超えると該水系金属表面処理剤の貯蔵安定性が低下する傾向になる。
 本発明の該水系金属表面処理剤を適用する金属材料は特に制限されず、例えば、鉄、鉄を主体とする合金、アルミニウム、アルミニウムを主体とする合金、銅、銅を主体とする合金等を使用することができ、任意の金属材上にめっきしためっき金属材、例えば亜鉛系めっき鋼板を使用することもできる。本発明の水系金属表面処理剤の適応においてもっとも好適なものは亜鉛系めっき鋼板である。亜鉛系めっき鋼板としては、亜鉛めっき鋼板、亜鉛-ニッケルめっき鋼板、亜鉛-鉄めっき鋼板、亜鉛-クロムめっき鋼板、亜鉛-アルミニウムめっき鋼板、亜鉛-チタンめっき鋼板、亜鉛-マグネシウムめっき鋼板、亜鉛-マンガンめっき鋼板、亜鉛-アルミニウム-マグネシウムめっき鋼板、亜鉛-アルミニウム-マグネシウム-シリコンめっき鋼板等が挙げられ、さらにはこれらのめっき層に、少量の異種金属元素もしくは不純物としてコバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含有するもの、シリカ、アルミナ、チタニア等の無機物を分散させたものも用い得る。さらには以上のめっきと他の種類のめっき、例えば鉄めっき、鉄-リンめっき、ニッケルめっき、コバルトめっき等と組み合わせた複層めっきにも適用可能である。めっき方法は特に限定されるものではなく、公知の電気めっき法、溶融めっき法、蒸着めっき法、分散めっき法、真空めっき法等のいずれの方法でもよい。
 本発明の該水系金属表面処理剤は金属材料に塗布し、好ましくは50~250℃、より好ましは70~150℃、より一層好ましは100~140℃の到達温度(到達金属材料温度)で乾燥することによって、金属材料に適用できる。到達温度が50℃未満であると、該水系金属表面処理剤の溶媒が完全に揮発せず、250℃より高いと、該水系金属表面処理剤にて形成された皮膜の一部が分解する。乾燥後の皮膜質量は0.05~5g/mであることが好ましく、0.2~3g/mであることがより好ましく、0.5~2.5g/mであることがより一層好ましい。皮膜質量が0.05g/m未満であると、該金属材料の表面を十分に被覆できないため、各性能を発現させることができず、5g/mより大きいと、加工時にカスが生じ、操業性が低下するため好ましくない。
 該水系金属表面処理剤は、前記処理方法に限らず、リン酸塩などによる下地処理の上層皮膜、上塗り塗装にも優れることからプレコート鋼板のプライマーとして用いてもよい。
 以下に本発明の実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。試験板の調製、実施例及び比較例、及び水系金属表面処理剤の塗布の方法について説明する。
[金属表面処理鋼板の作製]
(1)水系金属表面処理剤の構成成分
使用したジルコニウム化合物(A1)を表1に示す。
 使用した金属酸化物ゾル(A2)を表2に示す。
 使用した加水分解性シリル化合物(B)を表3に示す。
 使用した重合体(C)を形成するモノマーを表4に示す。
 使用した可塑剤(D)を表5に示す。
使用した乳化剤(E)を表6に示す。
(2)重合体(C)分散液の製造例
 攪拌機、還流冷却器、滴下ロート及び温度計を取り付けた4つ口フラスコに、内部空気を窒素ガスにて置換後、イオン交換水120質量部及びエレミノールJS-2 1.5質量部を投入した。滴下ロートにイソボルニルメタクリレート35質量部、メチルメタクリレート20質量部、2-エチルヘキシルアクリレート20質量部、n-ブチルメタクリレート20質量部、ビニルトリ(メトキシエトキシ)シラン1質量部及びアクリル酸5質量部を入れて混合し、混合モノマーとした。ついでフラスコを70℃に上げた後、混合モノマーの10質量%をフラスコ中に投入し、ついで過硫酸アンモニウム0.3質量部を投入した。反応終了後、残りの混合モノマー90質量%を3時間で滴下した。滴下終了後フラスコ温度を75℃にして1時間保った。40℃に冷却後、アンモニア水でpH7に調整し、ジエチレングリコールモノブチルエーテルアセテート30質量部を添加して表面処理液を製造した。この分散液はC4の重合体(C)分散液(表7参照)に該当する。
 他の、重合体(C)又は重合体(C)に該当しない重合体の分散液も同様な手順で製造した(表7参照)。重合体(C)又は重合体(C)に該当しない重合体の組成及びガラス転移温度を表7に示す。
(3)実施例1~63及び比較例1~19の水系金属表面処理剤の調製方法
 室温にて、蒸留水の中に、ジルコニウム化合物(A1)、金属酸化物ゾル(A2)、加水分解性シリル化合物(B)、及び重合体(C)の分散液(C1~C26)もしくは重合体(C)に該当しない重合体の分散液(C27~C36)を表8~11に示す割合で添加し、攪拌機で混合して表8~11に示す水系金属表面処理剤を調製した。なお、水系金属表面処理剤の固形分濃度は30質量%とした。
(4)実施例64の水系金属表面処理剤の調製方法
 表10の実施例57の水系金属表面処理剤において、重合体(C)の固形分割合中10質量%分をポリエステルポリオール型ウレタン樹脂に変更した。ポリエステルポリオール型ウレタン樹脂は、テトラメチレングリコール及びアジピン酸から得られるポリエステルポリオール170質量部、1,6-ヘキサメチレンジイソシアネート30質量部、2,2-ジメチロールプロピオン酸25質量部及びN-メチル-2-ピロリドン100質量部を反応させることにより得られるプレポリマーを、トリエチルアミンを用いて脱イオン水に分散させることにより得られたガラス転移温度が100℃、かつ最低造膜温度が0℃以下である水性ウレタン樹脂である。
比較例20
 表9に示す実施例57に示す組成比にて、重合体(C)を固形分割合で重合体(C)の固形分割合中1.0質量%分をフェノール樹脂(昭和高分子(株)社製;ショーノールBRL-157)に変更した。
比較例21
 特許文献1(特開2000-327704号公報)に記載の実施例6を用い、表11に記載の処理条件にて皮膜を形成し、評価に供した。
比較例22
 特許文献2(特開2000-327722号公報)に記載の実施例5を用い、表11に記載の処理条件にて皮膜を形成し、評価に供した。 
比較例23
 特許文献4(特開2003-201579号公報)に記載の実施例9を用い、表11に記載の処理条件にて皮膜を形成し、評価に供した。
比較例24
特許文献5(特開2006-52348号公報)に記載の実施例1を用い、表11に記載の処理条件にて皮膜を形成し、評価に供した。
比較例25
特許文献6(特開2006-152056号公報)に記載の実施例2を用い、表11に記載の処理条件にて皮膜を形成し、評価に供した。
(4)金属材料
 下記に示した市販の金属材料を用いた。
溶融亜鉛-55%アルミニウム合金めっき鋼板(GL):板厚=0.8mm、目付量=150/150(g/m
(5)脱脂処理
 シリケート系アルカリ脱脂剤であるファインクリーナー4336(登録商標:日本パーカライジング(株)製)を水に濃度20g/Lで溶解し、得られた脱脂液で素材を温度60℃の条件で2分間スプレー処理し、純水で30秒間水洗した後に乾燥した。得られた処理板を試験板として用いた。
(6)表面処理鋼板の作製
 実施例1~47と比較例1~21の処理剤の1つを、脱脂処理を施した試験板表面にバーコーターで塗布し、280℃の雰囲気下で乾燥し、表面処理鋼板とした。なお、最高到達板温(PMT)は乾燥時間で調整し、皮膜質量の調整は水系金属表面処理剤の固形分濃度を調整することで行った。PMTと皮膜質量を表11に示す。
[評価方法]
(1)耐食性
 JASO M609に従い、塩水噴霧(35±2℃で2時間)、乾燥(60±1℃で4時間)、湿潤(50±1℃で2時間)を1サイクルとした複合サイクル試験を行い、144サイクルでの無加工部、クロスカット部、端面部の白錆発生状況を確認した。
<評価基準>
 無加工部:無加工部の白錆の発生面積を目視で評価した。
◎:白錆発生なし
○:白錆発生面積率が全面積の10%以下
△:白錆発生面積率が全面積の10%超、30%以下
×:白錆発生面積率が全面積の30%超、50%以下
××:白錆発生面積率が全面積の50%超
 クロスカット部:カッターで表面処理鋼板の表面にクロスカットを施し、クロスカット部から発生する白錆の幅を測定した。
◎:白錆幅が2mm以下
○:白錆幅が2mm超、5mm以下
△:白錆幅が5mm超、8mm以下
×:白錆幅が8mm超、12mm以下
××白錆幅が12mm超
 端面部:表面処理鋼板の端部を切り落とし、金属材料が剥き出しになった部分から発生する白錆の幅を測定した。
◎:白錆幅が5mm以下
○:白錆幅が5mm超、10mm以下
△:白錆幅が10mm超、15mm以下
×:白錆幅が15mm超
(2)上塗り塗装密着性
 表面処理鋼板に、バーコーターを用いて、メラミンアルキッド樹脂塗料を乾燥膜厚が25μmとなるように塗布し、炉温130℃で20分間焼き付けた。次に、カッターで1mm、100マスの碁盤目を施し、更にその部位を7mm押し出しでエリクセン加工を施した。加工を施した部分のテープ剥離試験を実施し、樹脂層の残存数を評価した。
<評価基準>
◎:100個
○:98個以上100個未満
△:50個以上98個未満
×:50個未満
(3)基材密着性
 表面処理鋼板に、7mm押し出しでエリクセン加工を施し、加工部のテープ剥離試験を実施した。剥離状態を目視にて評価した。
<評価基準>
◎:剥離なし
○:剥離面積が1%超、20%以下
△:剥離面積が20%超、50%以下
×:剥離面積が50%超
(4)防汚性
 表面処理鋼板に、10質量%黒色顔料分散液を霧吹きにて吹き付け、吹き付け後に水洗し、試験前後の色調変化(ΔE)にて評価した。色調変化はColor Meter ZE2000(NIPPON DENSHOKU製、光源:ハロゲンランプ12V/2A)を用いて測定した。下記の耐紫外線性、耐アルカリ性、耐酸性の色調変化も同様。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE
(5)造膜性
 表面処理鋼板の表面状態を、原子間力顕微鏡(AFM)で観察して評価した。
<判定基準>
◎:均一な皮膜が観察された
○:凹凸の少ない均一な皮膜が観察された
△:凹凸のある皮膜が観察された
×:重合体の粒子が明確に確認できる皮膜が観察された
(6)耐紫外線性
 表面処理鋼板を、蛍光紫外線湿潤装置(UVCON蛍光灯紫外線湿潤曝露試験機)にて、365nmの紫外線を4時間照射し、その後雰囲気温度50℃、湿度60%Rhに2時間静置する条件を1サイクルとして、196サイクル実施し、試験前後の色調変化(ΔE)を評価した。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE
(7)耐アルカリ性
(7)耐アルカリ性
 表面処理鋼板を、25℃の3質量%水酸化ナトリウム水溶液に10分浸漬し、試験前後の色調変化(ΔE)を評価した。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE≦10
××:10<ΔE
(8)耐酸性
 表面処理鋼板を、25℃の3質量%硫酸に3時間浸漬し、試験前後の色調変化(ΔE)を評価した。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE≦10
××10<ΔE
(9)加工性
万能試験機によるドロービード試験後の、表面処理鋼板表面の疵つき状態を観察して評価を行った。引抜条件は、圧着荷重0.5ton、ビード先端半径5mm、引抜速度5cm/secとした。
◎:疵なし
〇:わずかに疵あり
△:部分的に焼きつきあり
×:全体的に焼くつきあり
(10)貯蔵安定性
 水系金属表面処理剤を40℃の雰囲気で静置した場合にゲル化するまでの期間で貯蔵安定性を評価した。
◎:6ヶ月以上
〇:3ヶ月以上、6ヶ月未満
△:1ヶ月以上、3ヶ月未満
×:1ヶ月未満
 表13~16に評価結果を示す。表13~15から、本発明の水系金属表面処理剤を用いる場合には、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び加工性に優れた表面処理鋼板を得ることができることが分かる。また、表13~15から、本発明の水系金属表面処理剤は貯蔵安定性に優れていることが分かる。
これに対し、(メタ)アクリル酸エステル(c1)不使用の比較例1、ケイ素含有モノマー(c2)不使用の比較例2は、耐食性全般並びに塗装及び基材への密着性が乏しく、耐アルカリ性や耐酸性に劣ることがわかる。酸価が規定範囲を上回る比較例5は、皮膜の耐水性が低下するため、耐食性全般が著しく劣り、同様の理由から耐アルカリ性、耐酸性も劣る。逆に、酸価が規定範囲を下回る比較例4は、耐食性全般がやや劣り、貯蔵安定性が著しく劣る。最低造膜温度が規定範囲を下回る比較例6は、十分な造膜性を有しているため比較的性能は良好であるが、可塑剤が皮膜中に残存するため耐アルカリ性、耐酸性に劣り、逆に最低造膜温度が規定範囲を上回る比較例7は、造膜が不完全であるため耐食性全般、塗装及び基材密着性、耐アルカリ性、耐酸性に劣る。ガラス転移温度が規定範囲を下回る比較例8は耐アルカリ性、耐酸性に劣り、ガラス転移温度が規定範囲を上回る比較例9は皮膜が硬くなりすぎるため基材密着性に劣る。重合体(C)がスチレンを含有する比較例17及び18は、耐紫外線性が著しく劣る。また、重合体(C)にアダマンタンアクリレートを含有する比較例19は、アダマンタンアクリレートに由来する造膜性不良のため、耐食性全般、塗装及び基材密着性、耐アルカリ性、耐酸性、貯蔵安定性に劣る。背景技術に記載した特許文献に記載された水系金属表面処理剤を用いた比較例20~25は耐食性、耐紫外線性及び耐アルカリ性の少なくとも1つが劣ることが分かる。
次いで、M/(Si1+Si2)及びSi1/Si2について述べる。まず、Si1/Si2が規定範囲内でほぼ一定で、M/(Si1+Si2)を規定範囲で変化させた実施例27から36は、規定範囲を下回る比較例10と比較して塗装及び基材の密着性に優れ、規定範囲を上回る比較例11と比較して、耐食性全般、加工性、貯蔵安定性に優れる。さらに、Si1/Si2が最適な範囲で、M/(Si1+Si2)も最適な範囲である実施例31、32は、最適な範囲を下回る実施例27から30と比較して、特に、耐食性全般、耐紫外線性、耐アルカリ性、耐酸性、加工性に優れ、逆に最適な範囲を上回る実施例33から36と比較して、特に耐食性全般、塗装及び基材密着性、耐紫外線性、加工性に優れる。この傾向は成分(A)がジルコニウム化合物(A1)から金属酸化物ゾル(A2)に置き換わった実施例37から46でも同様の傾向であった。
一方、M/(Si1+Si2)が規定範囲内でほぼ一定で、Si1/Si2を規定範囲で変化させた実施例47から55は、規定範囲を下回る比較例14と比較して耐食性全般、基材密着性、造膜性、耐アルカリ性、耐酸性に優れ、規定範囲を上回る比較例15と比較して、耐食性全般、塗装及び基材密着性、耐紫外線性、耐アルカリ性、耐酸性に優れる。さらに、M/(Si1+Si2)が規定範囲内でほぼ一定で、Si1/Si2が最適な範囲である実施例50から53は、最適な範囲を下回る実施例47から49と比較してカット部耐食性、耐酸性、加工性に優れる傾向があり、逆に最適な範囲を上回る実施例54及び55並びに比較例16と比較して加工性、貯蔵安定性に優れることが分かる。
このように、本発明のM/(Si1+Si2)及びSi1/Si2のいずれかでも規定の範囲を逸脱すると、耐食性、塗装及び基材密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性、加工性、貯蔵安定性の少なくとも2つにおいて十分な性能が得られず、逆に、双方ともが最適な範囲であると、これら全てにおいて極めて良好な性能が得られることが分かる。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 

Claims (6)

  1. ジルコニウム化合物(A1)及び金属酸化物ゾル(A2)よりなる群から選ばれる少なくとも1種である成分(A);加水分解性シリル化合物(B);下記一般式(I)で表される(メタ)アクリル酸エステル(c1)からの重合単位、下記一般式(III)で表されるケイ素含有モノマー(c2)からの重合単位、α,β-エチレン性不飽和カルボン酸(c3)からの重合単位及び他の(メタ)アクリル酸エステル(c4)からの重合単位を重合単位として有し、分子中にカルボニル基以外の不飽和結合を含有しない重合体であって、ガラス転移温度が0~70℃、最低造膜温度が-5~40℃及び酸価が5~40mgKOH/gである重合体(C);可塑剤(D);及び乳化剤(E)を含有する水系金属表面処理剤であって、乳化剤(E)は反応性乳化剤(E1)及び非反応性乳化剤(E2)よりなる群から選ばれる少なくとも1種であって、少なくとも一部が反応性乳化剤である場合には、該反応性乳化剤はそれからの重合単位として重合体(C)の重合単位の1つとして存在し、重合体(C)が乳化剤(E)により分散されており、成分(A)が含有する金属の合計質量Mと、加水分解性シリル化合物(B)が含有するケイ素の質量Si1及びケイ素含有モノマー(c2)が含有するケイ素の質量Si2の合計質量との質量比率〔M/(Si1+Si2)〕が0.1~50であり、Si1/Si2が0.15~250であり、重合体(C)の割合が該水系金属表面処理剤の全固形分に対して40~98質量%である該水系金属表面処理剤:
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は水素原子またはメチル基を表し、R2は一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3、R4及びR5は互いに独立に、水素原子、水酸基又は炭素数1~3のアルキル基を表す)で表される基を表す]
    Figure JPOXMLDOC01-appb-C000003
    [式中、R6、R7及びR8は互いに独立に、水素原子、水酸基、炭素数1~3のアルキル基又は炭素数1~3のアルコキシル基を表し、Xは式(IV)
    Figure JPOXMLDOC01-appb-C000004
    又は一般式(V)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R9は水素原子又はメチル基を表し、R10は炭素数1~12のアルキレン基を表す)で表される基を表す]。
  2.  可塑剤(D)が2,2,4-トリメチル-1,3ペンタンジオールモノイソブチレート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテル及びジプロピレングリコールn-ブチルエーテルよりなる群から選ばれる少なくとも1種である請求項1記載の処理剤。
  3.  (メタ)アクリル酸エステル(c1)からの単位の割合が、重合体(C)100質量部に対して、0.1~50質量部である請求項1又は2記載の処理剤。
  4.  金属酸化物ゾル(A2)が酸化セリウムゾル、酸化イットリウムゾル、酸化ネオジムゾル及び酸化ランタンゾルよりなる群から選ばれる少なくとも1種である請求項1~3のいずれか1項に記載の処理剤。
  5.  乳化剤(E)の割合が重合体(C)100質量部に対して0.5~5質量部である請求項1~4のいずれか1項に記載の処理剤。
  6.  請求項1~5のいずれか1項に記載の水系金属表面処理剤からの乾燥皮膜であって、0.05~5g/mの皮膜を表面に有する金属材料。
     
PCT/JP2009/061956 2008-07-16 2009-06-30 水系金属表面処理剤及び表面処理金属材料 WO2010007882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117003164A KR101268719B1 (ko) 2008-07-16 2009-06-30 수계 금속 표면 처리제 및 표면 처리 금속 재료
CN200980127516XA CN102089458B (zh) 2008-07-16 2009-06-30 水性金属表面处理剂及表面处理金属材料
JP2010520820A JP5509078B2 (ja) 2008-07-16 2009-06-30 水系金属表面処理剤及び表面処理金属材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-185188 2008-07-16
JP2008185188 2008-07-16

Publications (1)

Publication Number Publication Date
WO2010007882A1 true WO2010007882A1 (ja) 2010-01-21

Family

ID=41550290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061956 WO2010007882A1 (ja) 2008-07-16 2009-06-30 水系金属表面処理剤及び表面処理金属材料

Country Status (5)

Country Link
JP (1) JP5509078B2 (ja)
KR (1) KR101268719B1 (ja)
CN (1) CN102089458B (ja)
TW (1) TWI466966B (ja)
WO (1) WO2010007882A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087213A (ja) * 2010-10-19 2012-05-10 Nippon Parkerizing Co Ltd 金属材用親水性皮膜、親水化処理剤、及び親水化処理方法
CN104099017A (zh) * 2014-06-19 2014-10-15 锐展(铜陵)科技有限公司 一种非带锈的铝合金表面处理剂
WO2016163461A1 (ja) * 2015-04-07 2016-10-13 新日鐵住金株式会社 Zn-Mg合金めっき鋼板
US9909020B2 (en) 2005-01-21 2018-03-06 The Boeing Company Activation method using modifying agent

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019003084A (es) * 2016-09-15 2019-08-12 Chemetall Gmbh Proceso mejorado para un pretratamiento contra la corrosion de una superficie metalica que contiene acero, acero galvanizado, aluminio, una aleacion de aluminio y/o una aleacion de zinc y magnesio.
CN109207973A (zh) * 2016-10-13 2019-01-15 杭州绿环保技术有限公司 一种取代铬酸钝化的钝化液的制备方法
JP6895915B2 (ja) * 2018-03-14 2021-06-30 株式会社オートネットワーク技術研究所 表面保護剤組成物および端子付き被覆電線
TWI723441B (zh) * 2019-06-28 2021-04-01 長興材料工業股份有限公司 有機矽改性丙烯酸樹脂及其製備方法
CN110711840B (zh) * 2019-11-14 2021-02-26 含山县荣盛机械铸造有限公司 一种钛合金型壳用氧化钇溶胶粘结剂制备方法
CN115537794B (zh) * 2022-09-29 2023-05-26 东莞市颖兴金属表面处理材料有限公司 一种金属表面多功能处理液及其制备方法
CN116875093B (zh) * 2023-07-13 2024-05-07 山东辉石能源工程有限公司 一种液溶胶钢材防腐涂料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275648A (ja) * 2001-03-15 2002-09-25 Nippon Paint Co Ltd 金属表面処理剤
JP2004131549A (ja) * 2002-10-09 2004-04-30 Shin Etsu Chem Co Ltd 下塗り剤組成物、該組成物を用いたコーティング方法、及びコーティング物品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435950A1 (de) * 1994-10-07 1996-04-11 Hoechst Ag Copolymerisate mit cyclischen oder polycyclischen Monomeren mit einer speziellen Isomerenverteilung und deren Einsatz in Beschichtungsmitteln
WO2007069783A1 (ja) * 2005-12-15 2007-06-21 Nihon Parkerizing Co., Ltd. 金属材料用表面処理剤、表面処理方法及び表面処理金属材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275648A (ja) * 2001-03-15 2002-09-25 Nippon Paint Co Ltd 金属表面処理剤
JP2004131549A (ja) * 2002-10-09 2004-04-30 Shin Etsu Chem Co Ltd 下塗り剤組成物、該組成物を用いたコーティング方法、及びコーティング物品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909020B2 (en) 2005-01-21 2018-03-06 The Boeing Company Activation method using modifying agent
US10888896B2 (en) 2005-01-21 2021-01-12 The Boeing Company Activation method using modifying agent
JP2012087213A (ja) * 2010-10-19 2012-05-10 Nippon Parkerizing Co Ltd 金属材用親水性皮膜、親水化処理剤、及び親水化処理方法
CN104099017A (zh) * 2014-06-19 2014-10-15 锐展(铜陵)科技有限公司 一种非带锈的铝合金表面处理剂
WO2016163461A1 (ja) * 2015-04-07 2016-10-13 新日鐵住金株式会社 Zn-Mg合金めっき鋼板
JP6070914B1 (ja) * 2015-04-07 2017-02-01 新日鐵住金株式会社 Zn−Mg合金めっき鋼板

Also Published As

Publication number Publication date
TW201009031A (en) 2010-03-01
JP5509078B2 (ja) 2014-06-04
JPWO2010007882A1 (ja) 2012-01-05
TWI466966B (zh) 2015-01-01
KR101268719B1 (ko) 2013-05-28
CN102089458A (zh) 2011-06-08
KR20110040905A (ko) 2011-04-20
CN102089458B (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5509078B2 (ja) 水系金属表面処理剤及び表面処理金属材料
JP5160866B2 (ja) 表面処理溶融Zn−Al系合金めっき鋼板
JP5446390B2 (ja) 表面処理剤、該表面処理剤を用いためっき鋼板の製造方法およびめっき鋼板
CN103254755A (zh) 具有优异耐候性、耐蚀性和耐碱性的热镀铝锌钢板及其制备方法和表面处理剂
JPWO2013128928A1 (ja) 表面被覆アルミニウム含有亜鉛系めっき鋼板及びその製造方法
JP5317516B2 (ja) 表面処理溶融Zn−Al系合金めっき鋼板
JP5411585B2 (ja) 複層表面処理亜鉛系めっき鋼板
JP6367462B2 (ja) 亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤、被覆方法及び被覆鋼材
JP5314816B2 (ja) 水系金属表面処理剤
JP6943870B2 (ja) 水性金属表面処理剤、金属表面処理方法及び表面処理金属板
TWI743280B (zh) 鋅系鍍覆鋼板用表面處理劑
JPS60219265A (ja) 金属表面処理方法
KR100626417B1 (ko) 도금 금속판용 수계 표면 처리제, 표면 처리 금속판 및 그제조 방법
JP2004256582A (ja) プレコート金属板用水系塗料、プレコート塗装金属板およびその製造方法
JP4223374B2 (ja) 金属表面処理剤
JP2005133172A (ja) 表面処理金属板
WO2021131690A1 (ja) 塗料組成物、塗装金属材料、および金属材料の被覆方法
JP5929746B2 (ja) 表面処理鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127516.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520820

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003164

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09797810

Country of ref document: EP

Kind code of ref document: A1