WO2010007862A1 - ろ過方法、およびそれを用いた研磨用組成物の精製方法ならびにろ過に用いるフィルターの再生方法およびフィルター再生装置 - Google Patents

ろ過方法、およびそれを用いた研磨用組成物の精製方法ならびにろ過に用いるフィルターの再生方法およびフィルター再生装置 Download PDF

Info

Publication number
WO2010007862A1
WO2010007862A1 PCT/JP2009/061466 JP2009061466W WO2010007862A1 WO 2010007862 A1 WO2010007862 A1 WO 2010007862A1 JP 2009061466 W JP2009061466 W JP 2009061466W WO 2010007862 A1 WO2010007862 A1 WO 2010007862A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filtration
ultrasonic
liquid
resin
Prior art date
Application number
PCT/JP2009/061466
Other languages
English (en)
French (fr)
Inventor
均 森永
慎二 古田
玉井 一誠
Original Assignee
株式会社 フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 フジミインコーポレーテッド filed Critical 株式会社 フジミインコーポレーテッド
Priority to EP09797790A priority Critical patent/EP2301653A4/en
Priority to CN2009801274171A priority patent/CN102099098A/zh
Priority to US13/003,960 priority patent/US9149744B2/en
Priority to JP2010520813A priority patent/JP5638390B2/ja
Publication of WO2010007862A1 publication Critical patent/WO2010007862A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/70Regenerating the filter material in the filter by forces created by movement of the filter element
    • B01D29/72Regenerating the filter material in the filter by forces created by movement of the filter element involving vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/02Rotation or turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/04Reciprocation, oscillation or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2033By influencing the flow dynamically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2066Pulsated flow
    • B01D2321/2075Ultrasonic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for filtering various liquids, particularly a liquid containing fine particles such as an abrasive as a dispersoid, and a method for regenerating a filter used for filtration.
  • the required level of surface smoothness and defect-freeness of the processed surface is increasing year by year. Accordingly, the particle size of the abrasive grains contained in the polishing composition is becoming smaller. In general, the grain size of abrasive grains has a distribution, and when coarse particles that are extremely large relative to the intended particle size are included, the coarse particles cause surface defects such as scratches. Need to remove this.
  • Such coarse particles dispersed in the liquid medium are usually removed by a filter.
  • a filter In order to capture coarse particles efficiently, it is desirable to use a filter with a finer mesh. However, the smaller the aperture of the filter, the more likely clogging occurs. When clogging occurs, the removal efficiency of coarse particles deteriorates and eventually the filter becomes unusable. For this reason, a filtration method in which clogging is difficult to occur, or a method for easily recovering clogging when clogging has occurred is desired.
  • Patent Document 1 a filter for filtering a fluid is directly subjected to ultrasonic vibration to suppress an increase in the viscosity of the fluid, or a filter that increases the efficiency of the filter by vibration, or the filter is clogged.
  • a filter is described in which the viscosity of a clogged fluid is reduced by directly applying vibration to the filter, or the filter is pulverized by vibration to facilitate back-pressure cleaning.
  • Patent Document 2 describes a liquid filtration method characterized by performing filtration while irradiating ultrasonic waves continuously or intermittently.
  • Patent Document 3 in a filtration device in which a filter medium such as a hollow fiber membrane, a nonwoven fabric, an open cell sponge, a fiber, and a granular material is housed in an housing, an ultrasonic transducer is provided on each of two opposing end faces of the housing.
  • a filtering device is described in which the mounting position of the transducer is configured at a position where the phases of the ultrasonic waves generated by the transducers do not overlap with each other.
  • ultrasonic waves are used for the purpose of improving filter properties, but coarse particles (several hundred to several thousand nm) in abrasive particles of several tens to several hundreds of nanometers are removed. No effective method is provided for the process.
  • JP 2004-050137 A Japanese Patent Laid-Open No. 08-281020 Japanese Patent Application Laid-Open No. 07-275615
  • the present invention has been made in view of such problems, and provides a filtration method or a filter regeneration method that can satisfy all of clogging removal, longer filter life, and longer filter replacement interval. It is the purpose.
  • the filtration method according to the present invention is a method of filtering a liquid using a resin media filter, and includes irradiating the filter with ultrasonic waves having a frequency of 30 kHz or more during or after filtration. To do.
  • the method for purifying a polishing composition according to the present invention is characterized by comprising filtering the polishing composition using the filtration method described above.
  • the method for regenerating a media filter according to the present invention uses a frequency applied to a spent resin media filter used for filtration to remove fine particle components from a dispersion or dispersion in which fine particle components insoluble in a solvent are dispersed. It includes irradiation with ultrasonic waves of 30 kHz or higher.
  • the filter regeneration device comprises an ultrasonic generator capable of irradiating a used resin media filter immersed in a cleaning liquid with ultrasonic waves having a frequency of 30 kHz or more. It is.
  • the filter regeneration can be performed without using a special structure for the filtration process.
  • the conceptual diagram of the filtration equipment which can be used for the filtration method by this invention.
  • the side surface conceptual diagram of the filter reproduction apparatus by this invention.
  • the upper surface conceptual diagram which shows arrangement
  • the liquid to be filtered is not particularly limited. That is, the filtration method according to the present invention can be applied to an arbitrary liquid by selecting a filter to be described later according to the component contained in the liquid and the component to be removed from the liquid.
  • the filtration method according to the present invention is particularly effective for removing fine particle components, particularly coarse particles, etc. from a dispersion or dispersion in which insoluble fine particle components are dispersed in a solvent.
  • the filter has the purpose of allowing particles having a desired particle diameter to permeate among particles dispersed in the liquid while removing particles larger than the desired range and other relatively large impurity components. It is preferable to use the method of the present invention when filtering while preventing clogging.
  • the filtration method according to the present invention is preferably for a liquid in which particles of 10 to 1000 nm are mainly dispersed in a dispersion medium. Furthermore, it is more preferable to target a liquid in which 20 to 100 nm particles are mainly dispersed in a dispersion medium.
  • the particle diameter is measured by the BET method.
  • There are other methods for measuring the particle size such as a light scattering method and a laser diffraction method. Although it is difficult to directly compare the particle size measured by these methods with the particle size measured by the BET method, the particle size measured by a method other than the BET method is taken into consideration while taking into account the principle of the measurement method. It may be possible to use it.
  • polishing compositions include, for example, oxides of alumina, silica, ceria, titania, zirconia, etc. for polishing silicon substrates, silicon carbide substrates, metal oxides, semiconductor device substrates, hard disk substrates, glass, plastics, etc. It contains abrasive grains such as physical particles, diamond, silicon nitride, boron nitride.
  • the polishing composition to which the filtration method according to the present invention is preferably applied includes colloidal particles, and most preferably includes colloidal silica.
  • the filtration method according to the present invention is preferably used to remove not only impurities such as coarse particles contained in the raw material but also agglomerates and foreign substances to be purified during preparation from the polishing composition.
  • the filtration method according to the present invention to the raw material instead of the polishing composition itself. That is, for the purpose of removing coarse particles, gels, foreign substances, etc. from a dispersion containing fine particle abrasive grains as a raw material of the polishing composition, or undissolved substances, foreign substances contained in various additive solutions other than abrasive grains It is also preferred to use the filtration method according to the present invention to remove etc.
  • the application of the filtration method according to the present invention to a polishing composition is not limited to filling a container as a product.
  • the filtration method of the present invention can also be used before the user actually uses it for polishing, or when the polishing composition used once is regenerated and reused.
  • the filtration method according to the present invention comprises filtering the liquid using a filter.
  • a resin media filter means that the filter is made of resin.
  • the entire filter it is not necessary for the entire filter to be made of resin.
  • fibers or metals may be included as a core material.
  • the core material is covered with the resin and only the resin is in contact with the liquid to be filtered.
  • Various types of resin media filters are known, and any type can be used depending on the purpose.
  • the resin media filter is made of only a filter body made of resin.
  • the cartridge-like thing comprised from the filter and the cartridge which includes it is also used.
  • the main members thereof are made of resin, and rubber is used for packing or the like as necessary. Those which do not use any metal are preferred.
  • Various media filters are commercially available for fine particle separation or microorganism separation, and any of them can be used.
  • the resin media filter is molded with a non-woven fabric type in which fibers made of resin such as polypropylene are randomly and uniformly formed to have a certain thickness, and a hole of about 0.01 to several ⁇ m is formed in the resin film.
  • a membrane type Any type may be used in the present invention, but it is preferable to use a membrane filter from the viewpoint of filtration accuracy.
  • membrane filters are roughly classified into the following two types.
  • One is a planar filter which is a planar membrane itself.
  • the other is a compact structure in which the opposite sides of a rectangular planar membrane are joined together to form a pipe, and pleats (pleats) are attached.
  • a pipe-shaped filter is often processed in such a manner that one end or both ends are processed so that the liquid does not leak and is housed in a cartridge.
  • a cartridge-like three-dimensional or pipe-shaped filter housed in a cartridge is preferably used. This is because the filtration area is large and the handleability is excellent.
  • the material of the membrane filter is not particularly limited, but is preferably inert to the liquid to be filtered.
  • the material of the membrane filter is preferably nylon, polycarbonate, polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone, or cellulose.
  • nylon include nylon 6 and nylon 66.
  • Cellulose includes derivatives substituted with a hydroxyl group, and specific examples include cellulose acetate and cellulose ester.
  • the filter is irradiated with ultrasonic waves. At this time, it is preferable that impurities clogged in the filter are easily removed. From this point of view, nylon, polycarbonate, and PTFE are preferable, and nylon is most preferable.
  • the filtration accuracy of the filter can be arbitrarily selected according to the type of liquid to be filtered, the components contained, the size of impurities to be removed, and the like.
  • the filtration accuracy of the filter is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, even more preferably 0.5 ⁇ m or less, most preferably 0.3 ⁇ m or less. preferable.
  • the filtration accuracy of 0.3 ⁇ m at this time is defined as removing 99.9% or more of particles of 0.3 ⁇ m or more.
  • the filter is prevented from being clogged with particles, and the filter is regenerated by removing the particles from the clogged filter.
  • the frequency of the ultrasonic wave irradiated in the filtration method according to the present invention must be 30 kHz or more, preferably 50 kHz or more, and most preferably 70 kHz or more. This is because the filter may be damaged if the ultrasonic frequency is too low. On the other hand, if the frequency is excessively high, the filter regeneration rate tends to decrease. From the viewpoint of maintaining a good filter regeneration rate, the ultrasonic frequency is preferably 900 kHz or less, and 200 kHz or less. Is more preferable, and most preferably 100 kHz or less.
  • the lower the frequency of the ultrasonic wave applied to the filter the higher the regeneration or cleaning effect.
  • the lower the frequency the more likely the filter is likely to break.
  • the filter in addition to adjusting the frequency of the ultrasonic wave, the filter can be made more difficult to break.
  • the strength of the membrane filter can be improved by providing a layer made of a coarse mesh-like resin such as polyethylene or polypropylene that does not impede filtration.
  • a membrane filter in which a resin layer is disposed as a support material on the filter surface is also commercially available.
  • a filter in which metal or fiber is embedded can be used as the filter core.
  • the filter when the filter does not have a support material or is not specially reinforced, it is preferable to irradiate ultrasonic waves with a slightly higher frequency.
  • an ultrasonic wave having a frequency of 50 kHz or higher is preferably used, and an ultrasonic wave having a frequency of 100 kHz or higher is more preferably used.
  • the ultrasonic waves are generally irradiated by an ultrasonic vibrator provided in the filter housing where the filter is disposed or adjacent to the filter cartridge.
  • vibrator can be arrange
  • the position of the ultrasonic transducer is preferably on the side or bottom of the filter housing or on the outer side of the filter cartridge, and more preferably on the side closer to the filter.
  • an ultrasonic oscillator is connected to an ultrasonic transducer, and the frequency of the ultrasonic wave is controlled thereby.
  • the output of the ultrasonic wave is preferably high in order to prevent clogging or to remove impurities from the filter, but on the other hand, it is preferably not more than a certain value from the viewpoint of preventing breakage of the filter. From such a viewpoint, the output of the ultrasonic wave is preferably 0.1 to 3.0 W / cm 2 .
  • the irradiation time of ultrasonic waves varies depending on various conditions, but is generally preferably 5 minutes or more, and more preferably 1 to 5 hours.
  • the frequency of the ultrasonic wave to be irradiated may be constant during the filtration, but may be modulated.
  • the lower the frequency of the ultrasonic wave the better the filter cleaning performance. Tends to occur. Therefore, it is preferable to modulate the ultrasonic frequency by, for example, ⁇ 5% from the center value because an effect of eliminating cleaning unevenness may be obtained.
  • a chemical solution or a drug that dissolves the clogging substance can be used in combination with the cleaning liquid.
  • the chemicals or chemicals to be used differ depending on the types of substances to be removed, and if a cleaning liquid containing such chemicals is used, the substances to be removed can be dissolved and removed, improving the cleaning power. The effect is obtained.
  • an oxidizing agent as the chemical, and specifically, hydrogen peroxide, persulfate, hypochlorite, chlorate, persulfate, etc. are used. . Of these, hydrogen peroxide is preferably used.
  • an acid-added agent composed of an organic acid or an inorganic acid in addition to an oxidizing agent, preferably nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, boric acid, etc.
  • An inorganic acid is preferably used, more preferably hydrogen peroxide and sulfuric acid or hydrochloric acid.
  • an alkali compound As the chemical, and specifically, an alkali metal hydroxide, ammonia, amine or quaternary ammonium hydroxide is used. Of these, potassium hydroxide is preferably used.
  • the concentration is preferably 0.1% or more, and more preferably 5% or more.
  • an excessively high concentration of the alkali compound 5 causes corrosion of the filtration device, and therefore should generally be 20% or less, preferably 10% or less.
  • the pH of the cleaning solution is preferably 8 or higher.
  • the temperature of the cleaning liquid is not particularly limited, but depending on the filter used, the filter itself may be damaged if the temperature is excessively high. On the other hand, if the temperature of the cleaning liquid is low, the soluble component to be removed cannot be dissolved and removed efficiently, so it should be avoided that the temperature is excessively low. From such a viewpoint, the temperature of the cleaning liquid is preferably 20 to 80 ° C., and more preferably 40 to 60 ° C.
  • FIG. 1 is a diagram showing an example of a filtration facility that can use the filtration method according to the present invention.
  • the tank 6 for storing the liquid before filtration is connected to the filter cartridge 2 by piping through the pump 4A.
  • a three-way valve 9A is provided between the pump 4A and the filter cartridge 2.
  • a resin media filter 1 is disposed in the filter cartridge 2, and the liquid introduced into the filter cartridge 2 from one of the two liquid inlets and outlets provided in the filter cartridge is made of this resin. It passes through the media filter and is discharged from the other side out of the filter cartridge.
  • An ultrasonic transducer 3 is arranged in the filter cartridge 2. The vibration of the ultrasonic transducer 3 is controlled by an ultrasonic transmitter (not shown).
  • the liquid discharged from the filter cartridge 2 is connected to the tank 7 after filtration through the three-way valves 9B and 9C.
  • the piping branched by the three-way valves 9B and 9C is connected to the pump 4B.
  • the liquid flows as follows. First, the liquid stored in the pre-filtration tank 6 is pumped out by the pump 4 ⁇ / b> A and introduced into the filter cartridge 2. At this time, the three-way valve 9A is set so that the liquid flows from the pump 4A to the filter cartridge 2. The liquid introduced into the filter cartridge 2 is filtered by the resin media filter 1 and discharged to the tank 7 after filtration through the piping. At this time, the three-way valves 9B and 9C are set so as to directly connect the filter cartridge 2 and the post-filtration tank 7. The liquid flow at this time is indicated by black arrows in FIG.
  • the ultrasonic vibrator 3 irradiates the filter 1 with ultrasonic waves. This ultrasonic wave prevents the filter from being clogged or regenerates the clogged filter.
  • the liquid When irradiating with ultrasonic waves at the time of filtration, the liquid may be irradiated continuously or intermittently during the passage of the filter. By filtering while irradiating with ultrasonic waves in this way, clogging of the filter is prevented and the continuous operation time can be extended.
  • the purpose is to clean or regenerate the filter after the filtration of the liquid by the filter is completed. Therefore, it is common to perform ultrasonic irradiation after completely stopping the liquid feeding and filling the filter cartridge with a cleaning liquid as necessary. It is also possible to remove the filter from the filtration equipment and perform ultrasonic irradiation. In such a case, it is necessary to remove and reassemble the filter in the filtration facility, which may be disadvantageous in terms of work efficiency. Therefore, it is generally preferable to perform regeneration while being placed in the filter cartridge.
  • the backwashing operation refers to washing the filter by sending a liquid in the opposite direction to that during filtration.
  • the liquid stored in the tank 7 is pumped out by the pump 4B, and the liquid is introduced into the filter cartridge 2 in the direction opposite to that during the filtration.
  • the three-way valves 9B and 9C are set so as to be connected to the filter cartridge 2 from the tank 7 after filtration through the pump 4B.
  • the filtered liquid passes through the filter in the opposite direction, but the filter is effectively clogged by being irradiated with ultrasonic waves at this time.
  • the liquid discharged from the filter cartridge 2 passes through the three-way valve 9A and is discharged out of the system.
  • the three-way valve 9A is set so that the liquid discharged from the filter cartridge is discharged out of the system.
  • the flow of the liquid at this time is indicated by white arrows in FIG. Note that the liquid flowing in the reverse direction does not need to be a filtered liquid, and water or the like can be flowed.
  • the temperature of the filter cartridge tends to increase due to the irradiation of ultrasonic waves.
  • the temperature rise tends to be large. It is also preferable to install a cooling device in the filter cartridge 2 in order to prevent such temperature rise of the continuous filter cartridge and to perform a long-term and stable filtration operation.
  • a fine particle dispersion such as a polishing composition may deteriorate over time. For this reason, the liquid stored in the tank after filtration may deteriorate, for example, the number of coarse particles may increase. In such a case, it is also possible to provide a pipe having a pump 4C for sending a liquid from the post-filtration tank 7 to the pre-filtration tank 6.
  • FIG. 2 is a conceptual diagram viewed from the side
  • FIG. 3 is a plan conceptual diagram of the cleaning tank.
  • This filter regeneration device has a double structure of a cleaning tank (inner tank) 210 and a cooling tank (outer tank) 211.
  • a temperature control medium 213 is filled between these tanks. This medium is for adjusting the temperature of the cleaning liquid in the cleaning tank 210, and the temperature is controlled by a temperature control device (not shown).
  • a filter rotation surface plate 207 is disposed in the cleaning tank 210. This surface plate is for fixing the filter 206 to be cleaned.
  • a cleaning liquid 213 for cleaning the filter is stored in the cleaning liquid storage tank 201, and passes through a cleaning liquid filtration filter 204 and a flow meter 205 for removing insoluble components floating in the cleaning liquid by a pump 203. It is introduced into the resin media filter 206 to be reproduced.
  • the cleaning liquid introduced into the filter passes through the filtration surface of the filter and flows out into the cleaning tank 210, and the filter is immersed in the cleaning liquid.
  • the filter regeneration apparatus can irradiate ultrasonic waves with a frequency of 30 MHz or more by the ultrasonic generator 208. By this ultrasonic irradiation, the filter can be efficiently regenerated. In this way, insoluble components adhering to the filter, such as silica particles, are discharged into the washing tank 210 and the filter is regenerated.
  • the cleaning liquid discharged into the cleaning tank is collected in a cleaning liquid storage tank via a pipe and used for further regeneration. At this time, it is preferable to control the temperature by providing a temperature controller 202 in the cleaning liquid storage tank.
  • a temperature controller 202 in the cleaning liquid storage tank.
  • the connection order and number of pumps, filters for cleaning liquid filtration, flow meters, and the like are not particularly limited, and can be connected in any order as necessary.
  • the filter regenerator according to the present invention can simultaneously fix a plurality of filters on a filter rotating platen 207 as shown in FIG. By processing a plurality of filters simultaneously, more efficient filter regeneration can be performed. Furthermore, ultrasonic waves may be uniformly applied to the plurality of filters by rotating the filter rotation surface plate. In such a case, the rotation of the rotating surface plate 207 is not fixed, but can be reversed. Furthermore, by rotating the filters 206, it is possible to uniformly irradiate ultrasonic waves to any part of each filter. Thus, by combining the rotation of the rotating platen, that is, the revolution, and the rotation of each filter, that is, the rotation, more uniform and efficient filter regeneration can be realized.
  • the ultrasonic generator 208 used here is not particularly limited as long as it can irradiate ultrasonic waves of 30 kHz or higher, but is preferably an ultrasonic vibrator that can adjust ultrasonic waves according to the applied electric energy. Further, as described above, since it is preferable to change the frequency of the ultrasonic wave, an ultrasonic vibrator with a modulation function can be obtained. Furthermore, a plurality of ultrasonic generators can be arranged in order to uniformly irradiate the filter to be regenerated with ultrasonic waves. In particular, when a plurality of filters to be regenerated are fixed, it is preferable to dispose each filter so that ultrasonic waves are evenly irradiated.
  • the position of the ultrasonic generator it is preferable to adjust the position of the ultrasonic generator appropriately so that the filter is irradiated with uniform ultrasonic waves. Moreover, it is also preferable to arrange so that ultrasonic waves are uniformly irradiated to any part of each fixed filter.
  • FIG. 2 shows a filter regeneration device that supplies cleaning liquid to the inside of a used filter and transmits it to the outside. However, it may be transmitted in the reverse direction, and may pass through the cleaning liquid during cleaning. The direction may be reversed. Note that the regeneration efficiency is higher when the permeation direction of the cleaning liquid is opposite to the direction in which the filter is used for filtration.
  • a dispersion liquid containing colloidal silica having an average particle diameter of 50 nm measured by the BET method at a concentration of 40% by weight was prepared.
  • a pipe-shaped membrane filter (filter size total length: about 50 mm; outer diameter: about 70 mm, inner diameter: 25-30 mm) housed in a resin cartridge with a total length of about 50 mm shown in Table 1 is installed in the filtration device, and a diaphragm pump is used. Then, filtration was performed at an air feed pressure of 0.25 MPa. Filtration was continued until the filtration became impossible due to clogging, and the volume (A) of the dispersion that could be filtered was measured.
  • the used filter was regenerated. Pass 5 L of pure water through the filter at the end of filtration in the opposite direction to the filtration, then remove the filter, put the filter in the bathtub of the ultrasonic device, and apply ultrasonic waves at an output of 0.7 W / cm 2. Was continuously irradiated for 5 minutes.
  • the frequency of ultrasonic waves was as shown in Table 1.
  • the ultrasonic generator used at this time is as follows. 26 kHz PHENIX II (trade name, manufactured by Kaijo Corporation) 38 kHz PHENIX FM (trade name, manufactured by Kaijo Corporation) 50 kHz CLIMPULSE H (trade name, manufactured by Kaijo Corporation) 78 kHz PHENIX LEGEND (trade name, manufactured by Kaijo Corporation) 100 kHz PHENIX LEGEND (trade name, manufactured by Kaijo Corporation) 200 kHz ULTRA GENERATION (trade name, manufactured by Sun Electronics Co., Ltd.) 950 kHz HI MEGASONIC (trade name, manufactured by Kaijo Corporation)
  • Example 9 after ultrasonic irradiation, the filter was further back-washed with 5 L of pure water in the direction opposite to that during filtration.
  • Comparative Examples 3 and 4 backwashing was performed in the same manner as in Example 9, but no ultrasonic irradiation was performed.
  • the filter was again installed in the filtration device, and the colloidal silica dispersion was filtered again. Filtration was continued until filtration was impossible due to clogging, and the volume (B) of the dispersion liquid that could be filtered was measured.
  • the filterable amount before and after the regeneration treatment was measured, and the ratio B / A was defined as the filter regeneration rate.
  • the filtration accuracy was defined as follows. Before and after the regeneration treatment, the number of coarse particles having a particle size of 0.56 ⁇ m or more contained in each filtered dispersion was measured with a number counting device (Accumizer 780APS, manufactured by Particle Sizing System) and evaluated according to the following criteria. did. If the number of coarse particles before and after regeneration is the same, if the number of coarse particles after good regeneration is 0.9 or more based on the number of coarse particles before regeneration, the number of coarse particles after good regeneration is slightly coarse before regeneration. Defective if less than 0.9 based on particle count
  • metal impurities were evaluated as follows. Using an inductively coupled plasma mass spectrometer (HP4500 type (trade name) manufactured by Agilent Technologies) as a measuring instrument, Na, Al, K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Ag, and Pb When the metal of each was 500 ppb or less, it was judged good, and when it exceeded that, it was judged as bad.
  • HP4500 type trade name
  • Example 12 Using the same filtration apparatus and filter as in Example 1, filtration experiments were performed while irradiating 38 kHz ultrasonic waves. The time until the filter was clogged increased 1.5 times compared to the case of Example 1. The filter regeneration rate and filtration accuracy were the same as in Example 1.
  • a dispersion liquid containing colloidal silica having an average particle diameter measured by the BET method of 35 nm (average particle diameter measured by the light scattering method is 70 nm) at a concentration of 20% by weight was prepared.
  • a nylon membrane filter with 0.2 ⁇ m openings filter size total length of about 50 mm; outer diameter of about 70 mm, inner diameter of 25 to 30 mm housed in a resin cartridge with a total length of about 50 mm is installed in the filtration device, and a diaphragm pump is used. Then, filtration was performed at an air feed pressure of 0.25 MPa.
  • the filter was regenerated with a filter regeneration device as shown in FIG.
  • the frequency of the ultrasonic wave to be irradiated was constant at 38 kHz (Example 13)
  • the reproduction rate was 42%
  • the frequency was modulated at ⁇ 5% (Example 14)
  • the reproduction rate was 55%. % Further improved.
  • Examples 15-18 After performing the same filtration as in Example 13, the regeneration was repeated three times, and the change in the filter regeneration rate was measured.
  • As the cleaning liquid pure water, 0.1% KOH aqueous solution, 0.2% KOH aqueous solution, and 2.0% KOH aqueous solution were used. The obtained results were as shown in Table 2.
  • Example 19 As a liquid to be filtered, it contains 25% by weight of fumed silica having an average particle size measured by the BET method of 35 nm (average particle size measured by the light scattering method is 150 nm), and a pH of 11.0 with potassium hydroxide. A prepared aqueous dispersion was prepared. On the other hand, a polypropylene depth filter (filter size total length: about 50 mm; outer diameter: about 70 mm, inner diameter: 25-30 mm) with a mesh opening of 1 ⁇ m housed in a resin cartridge with a total length of about 50 mm is installed in the filtration device, and a diaphragm pump is used. Filtration was performed at an air feed pressure of 0.25 MPa.
  • the filtered filter was regenerated with cleaning solutions at different temperatures, and the regeneration rate was evaluated.
  • the regeneration rate was 75%, but when the temperature of the cleaning liquid was 40 ° C. and 50 ° C., the regeneration rate was 82% and 84%.
  • the cleaning liquid temperature exceeded 60 ° C., the filter might be damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)
  • Filtering Materials (AREA)

Abstract

 本発明によれば、作業効率を損なうことなくフィルターの超寿命化および再生を可能とするろ過方法が提供される。また、さらにフィルターを効率よく再生するフィルターの再生方法および再生装置も提供される。本発明によるろ過方法は、樹脂製メディアフィルターを用いて液体をろ過する方法であって、ろ過を行いながら、またはろ過の一時停止中または終了後に周波数30kHz以上の超音波照射することを特徴とする。研磨用組成物をこのろ過方法によりろ過することで効率的に精製を行うことができる。また、本発明によるフィルターの再生方法は、使用済樹脂製フィルターに周波数30kHz以上の超音波を照射することを含んでいる。

Description

ろ過方法、およびそれを用いた研磨用組成物の精製方法ならびにろ過に用いるフィルターの再生方法およびフィルター再生装置
 本発明は各種の液体、特に研磨剤等の微粒子を分散質として含む液体のろ過方法およびろ過に使用したフィルターの再生方法に関するものである。
 研磨剤と研磨パッドを用いたポリシング作業において年々、加工面の表面平滑度および無欠陥性の要求水準が高くなっている。それに伴い研磨用組成物に含まれる砥粒の粒子径はより小さくなってきている。また、一般的に砥粒の粒子径は分布をもっており、意図した粒子径に対して極端に大きな粗大粒子が含まれていた場合には、その粗大粒子はスクラッチなどの表面欠陥の原因となるため、これを除去する必要がある。
 このような液体媒体中に分散した粗大粒子は、通常フィルターによって除去される。効率よく粗大粒子を捕獲するには、目開きのより細かなフィルターを使うことが望ましい。しかし、フィルターの目開きが小さければ小さいほど、目詰まりが発生しやすくなる。目詰まりが発生すると、粗大粒子の除去効率が悪くなり、最終的にはフィルターが使用不能となる。このため、目詰まりが発生しにくいろ過方法、あるいは目詰まりが発生した場合にそれを容易に回復させる方法が望まれている。
 このような観点から、各種のろ過方法が検討されている。特許文献1には、流体をろ過するフィルターに、直接超音波振動を与え、流体の粘度が高くなることを抑えたり、振動によりフィルターの効率をあげたフィルターや、フィルターが目詰まりした場合、フィルターに直接振動を与える事により、目詰まりした流体の粘度が低下したり、振動により粉砕される事により、逆圧洗浄しやすくしたフィルターが記載されている。
 特許文献2には、液体のろ過方法において、連続的または断続的に超音波を照射しながらろ過することを特徴とする液体のろ過方法が記載されている。
 特許文献3には、中空糸膜、不織布、連続気泡スポンジ、ファイバー、粒状体等のろ材をハウジング内に収納してなるろ過装置に於て、ハウジングの対向する2端面に夫々超音波振動子を取付け、各振動子の発生する超音波の位相が同一に重ならない位置に該振動子の取付け位置を構成してなるろ過装置が記載されている。
 上記の文献には、フィルター性の改善を目的として超音波を利用することが述べられているが、数10~数100nmの研磨剤用粒子中の粗大粒子(数100~数1000nm)を除去する工程に有効な方法は提供されていない。
特開2004-050137号公報 特開平08-281020号公報 特開平07-275615号公報
 本発明はこのような課題に鑑みてなされたものであり、目詰まり除去、フィルターの長寿命化、およびフィルター交換間隔の長期化のすべて満たすことができるろ過方法もしくはフィルター再生方法を提供することを目的とするものである。
 本発明によるろ過方法は、樹脂製メディアフィルターを用いて液体をろ過する方法であって、ろ過時またはろ過使用後に前記フィルターに対して周波数30kHz以上の超音波照射すること含んでなることを特徴とするものである。
 また、本発明による研磨用組成物の精製方法は、前記のろ過方法を使用して、研磨用組成物をろ過することを含んでなることを特徴とするものである。
 また、本発明によるメディアフィルターの再生方法は、溶媒中に不溶な微粒子成分が分散されている分散液または分散物から微粒子成分を除去するためのろ過に使用した、使用済樹脂製メディアフィルターに周波数30kHz以上の超音波を照射することを含むことを特徴とするものである。
 さらに、本発明によるフィルター再生装置は、洗浄液中に浸漬された使用済樹脂製メディアフィルターに周波数30kHz以上の超音波を照射することができる超音波発生装置を具備してなることを特徴とするものである。
 本発明によれば、ろ過時に超音波の照射を行うことで、ろ過の作業効率を損なうことなくフィルター目詰まりの防止ができ、フィルターの寿命を延ばすことができる。また、ろ過終了時に超音波を照射することにより、一度目詰まりを起こしたフィルターから異物を除去することができ、フィルターのろ過能力を再生することができる。しかも、これらの作業をフィルターをハウジングまたはカートリッジに設置したままで行うことができるために、工程の作業効率を損なうことも少ない。また、フィルター再生を別の独立したフィルター再生装置で行うことにより、ろ過工程を特別な構造とすることなくフィルター再生を行うこともできる。
本発明によるろ過方法に用いることができるろ過設備の概念図。 本発明によるフィルター再生装置の側面概念図。 本発明によるフィルター再生装置におけるフィルターの配置を示す上面概念図。
ろ過対象となる液体
 本発明によるろ過方法において、ろ過をする対象となる液体は特に限定されない。すなわち、液体に含まれる成分とその液体から除去すべき成分とに応じて、後述するフィルターを選択することにより、任意の液体に対して本発明によるろ過方法を適用することができる。しかしながら、本発明によるろ過方法は、溶媒中に不溶な微粒子成分が分散されている分散液または分散物から微粒子成分、特に粗大粒子等を除去するのに特に有効である。すなわち、液体中に分散された粒子のうち、望ましい粒子径を有する粒子を透過させ、一方で望ましい範囲より大きい粒子や、その他の相対的に大きな不純物成分を除去することを目的に、フィルターの目詰まりを防止しながらろ過する場合に、本発明の方法を用いることが好ましい。
 したがって、本発明によるろ過方法は、10~1000nmの粒子が主として分散媒中に分散された液体を対象とすることが好ましい。さらには、20~100nmの粒子が主として分散媒中に分散された液体を対象とすることがより好ましい。ここで、粒子径はBET法によって測定されたものである。なお、粒子径の測定方法はほかにも光散乱法、レーザー回折法などがある。これらによって測定された粒子径は、BET法により測定された粒子径と直接比較することは困難であるが、測定方法の原理などを考慮しながら、BET法以外の方法により測定された粒子径を利用することが可能な場合もある。
 このような液体の具体的な例のひとつは、研磨用組成物である。研磨用組成物は、例えば、シリコン基板、シリコンカーバイド基板、金属酸化物、半導体デバイス基板、ハードディスク用基板、ガラス、またはプラスチックなどを研磨するための、アルミナ、シリカ、セリア、チタニア、ジルコニアなどの酸化物粒子、ダイアモンド、窒化珪素、窒化ホウ素などの砥粒粒子を含むものである。これらのうち、本発明によるろ過方法を適用するのが好ましい研磨用組成物は、コロイダル粒子を含むものであり、コロイダルシリカを含むものが最も好ましい。本発明によるろ過方法は、このような研磨用組成物から、原料に含まれる粗大粒子等の不純物のほか、調製時に精製する凝集物や異物を取り除くのに用いることが好ましい。
 また、研磨用組成物そのものではなく、その原料に本発明によるろ過方法を適用することも好ましい。すなわち、研磨用組成物の原料となる微粒子砥粒を含む分散液から粗大粒子、ゲル、異物等を取り除くことを目的として、あるいは砥粒以外の各種添加剤溶液中に含まれる未溶解物、異物等を取り除くのに本発明によるろ過方法を用いることも好ましい。
 本発明によるろ過方法を研磨用組成物に適用するのは、製品として容器に充填する前に限られない。ユーザーが実際に研磨に使用する前や、一度使用された研磨用組成物を再生して再利用しようとする場合にも、本発明のろ過方法を用いることができる。
ろ過方法
 本発明によるろ過方法は、前記の液体をフィルターを用いてろ過することを含んでなる。ここで、本発明によるろ過方法では樹脂製メディアフィルターを用いることが必要である。樹脂製メディアフィルターとは、フィルターが樹脂からなるものをいう。ここで、フィルターのすべてが樹脂で構成される必要はなく、例えばフィルターの機械的強度を改良するために芯材として繊維や金属などを含んでいてもよい。ただし、この場合であっても、芯材は樹脂により被覆されて、ろ過する液体とは樹脂のみが接触するものであることが必要である。樹脂製メディアフィルターは各種のものが知られており、目的に応じて任意のものを用いることができる。好ましくは、樹脂製メディアフィルターは樹脂でできたフィルター本体のみからなるものが用いられる。また、フィルターおよびそれを内包するカートリッジから構成されたカートリッジ状のものも用いられる。このようなカートリッジ状フィルターは、それらの主たる部材が樹脂製であり、必要に応じてパッキング等にゴムが用いられ。金属を全く使わないものが好ましい。このようなメディアフィルターは微粒子分離用、あるいは微生物分離用として各種のものが市販されているが、いずれを用いることもできる。
 樹脂製メディアフィルターにはポリプロピレンなどの樹脂からなる繊維をランダムにかつ均一に一定の厚みを持たせて成形した不織布タイプと、樹脂膜に0.01~数μm程度の穴を開けて成形されるメンブレンタイプがある。本発明にはいずれのタイプのものを用いてもよいが、ろ過精度の点からメンブレンフィルターを用いることが好ましい。
 さらに、メンブレンフィルターには大別すると次の2種類の形式のものが存在する。一つは、平面状のメンブレンそのものである平面的フィルターである。もう一つは、四角形の平面状メンブレンの相対する辺をつなぎ合わせてパイプ状にし、さらにプリーツ(ヒダ)をつけてコンパクトにしたものである。このようなパイプ状フィルターは、一般的に、一端または両端は液が漏れないように加工を施され、またカートリッジに収納された形態で取り扱われることが多い。通常、工業的な使用には、カートリッジに収納された、カートリッジ状の立体的またはパイプ状フィルターが好ましく使用される。これは、ろ過面積が大きく、また取り扱い性にも優れるためである。
 メンブレンフィルターの材質は、特に限定されないが、ろ過しようとする液体に対して不活性であることが好ましい。液体が水性である場合には、一般的な樹脂からなるものを用いることができる。具体的には、メンブレンフィルターの材質は、ナイロン、ポリカーボネート、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルスルホン、またはセルロースであることが好ましい。ナイロンの具体例として、ナイロン6、ナイロン66が挙げられる。セルロースには水酸基が置換された誘導体も包含され、具体例として、セルロースアセテート、セルロースエステルが挙げられる。また、後述するように、本発明によるろ過方法ではフィルターに対して超音波が照射されるが、このときにフィルターに詰まった不純物が容易に除去されることが好ましい。このような観点からみると、ナイロン、ポリカーボネート、およびPTFEが好ましいものであり、ナイロンが最も好ましいものである。
 このようなメンブレンフィルターは種々のものが市販されているが、例えば、日本ポール株式会社製バラファインシリーズ(商品名)、ウルチポアN66(商品名)、ADVANTEC東洋株式会社製アセテートメンブレンフィルター(商品名)、例えばニュークリポア(商品名)等が挙げられる。
 フィルターのろ過精度は、ろ過しようとする液体の種類、含まれる成分、除去すべき不純物の大きさなどに応じて任意のものを用いることができる。例えば、一般的な研磨用組成物を効率的に除去するためにはフィルターのろ過精度が5μm以下であること好ましく、1μm以下がより好ましく、0.5μm以下がさらに好ましく、0.3μm以下が最も好ましい。このときのろ過精度0.3μmとは、0.3μm以上の粒子を99.9%以上除去するものと定義する。
 本発明によるろ過方法においては、ろ過時、あるいはろ過後に超音波を照射することが必要である。すなわち、超音波を照射することにより、フィルターが粒子によって目詰まりすることを防ぎ、また目詰まりしたフィルターから粒子を除去してフィルターを再生するのである。
 本発明によるろ過方法において照射される超音波の周波数は、30kHz以上であることが必須であり、50kHz以上であることが好ましく、70kHz以上であることが最も好ましい。超音波の周波数が低すぎるとフィルターが破損することがあるためである。一方、周波数が過度に高いとフィルターの再生率が下がる傾向にあるので、フィルターの再生率を良好に保つという観点からは、超音波の周波数は900kHz以下であることが好ましく、200kHz以下であることがより好ましく、100kHz以下であることが最も好ましい。
 なお、本発明においてフィルターに照射する超音波の周波数は、より低いほうが再生または洗浄効果が高い傾向にあるが、一方で周波数が低いとフィルターが破損しやすくなる傾向にある。
 ここで、フィルターの破損を防ぐためには、超音波の周波数を調整するほかに、フィルターをより破損しにくくすることもできる。例えば、メンブレンフィルターの表面に、ろ過を阻害しないような粗い網目状の樹脂、例えばポリエチレンやポリプロピレンからなる層を設けて強度を改良することができる。このようなフィルター表面に樹脂層がサポート材として配置されたメンブレンフィルターも市販されている。また、フィルターの芯材として、金属や繊維が埋め込まれているようなフィルターを用いることができる。このような強化された構造を有するフィルターを用いることで、より低い周波数の超音波を使用することが可能となり、再生率などをより改良することができる。
 このような観点から、フィルターがサポート材を有していない場合あるいは特別の補強をされていない場合には、少し高めの周波数の超音波を照射することが好ましい。具体的には、周波数が50kHz以上の超音波を用いることが好ましく、周波数が100kHz以上の超音波を用いることがより好ましい。
 超音波は、一般的にフィルターが配置されたフィルターハウジング内またはフィルターカートリッジに隣接して設けられた超音波振動子により照射されるのが一般的である。超音波振動子は、ろ過時またはろ過後にフィルターに超音波を照射できるのであれば任意の位置に配置することができる。しかしながら、超音波振動子の位置はフィルターハウジング内の側面または底部、あるいはフィルターカートリッジの外側面にあることが好ましく、フィルターにより近い側面であることがより好ましい。更に、フィルターへの超音波の照射が均一に行われる様、超音波振動子の数量及び位置が調整されていることが好ましい。一般的に超音波振動子には超音波発信子が接続され、それによって超音波の周波数等が制御される。
 また、超音波の出力は、目詰まりの防止、またはフィルターからの不純物の除去のためには高いほうがよいが、一方でフィルターの破損を防ぐという観点からは一定以下であることが好ましい。このような観点から、超音波の出力は0.1~3.0W/cm2であることが好ましい。また、超音波の照射時間は、種々の条件により変化するが一般的には5分以上とすることが好ましく、1~5時間とすることがより好ましい。
 また、ろ過に際して、照射する超音波の周波数は一定であってもよいが、変調させることもできる。一般に、超音波の周波数は低い方がフィルター洗浄性に優れているが、周波数が低いと、超音波の入射波と反射波によって生じる定在波の音圧変化の間隔が長くなり、洗浄にムラが生じやすくなる傾向にある。そこで、超音波の周波数を、例えば中心値より±5%変調させることにより、洗浄ムラを解消する効果が得られることがあるので好ましい。
 また、洗浄液には目詰まり物質を溶解させる薬液または薬剤を併用することもできる。用いる薬液又は薬剤は、除去すべき物質の種類によって用いるべきものが異なっており、そのような薬剤を含む洗浄液を用いれば、除去すべき物質を溶解させて除去する事ができるので、洗浄力向上の効果が得られる。
 除去すべき液体が有機物である場合、薬剤には酸化剤を用いることが良く、具体的には過酸化水素、過硫酸塩、次亜塩素酸塩、塩素酸塩及び過硫酸塩などが用いられる。なかでも過酸化水素を用いることが好ましい。
 除去すべき物質が金属である場合、薬剤には酸化剤に加えて有機酸又は無機酸からなる酸添加したものを用いることが良く、好ましくは硝酸、硫酸、塩酸、リン酸、ホウ酸などの無機酸を用いるのが良い、より好ましくは過酸化水素と、硫酸又は塩酸を用いるのがよい。
 除去すべき物質がシリカ砥粒の場合、薬剤にはアルカリ化合物を用いる事が良く、具体的にはアルカリ金属の水酸化物やアンモニア、アミンや第四級アンモニウム水酸化物が用いられる。なかでも水酸化カリウムが好ましく用いられる。このようなアルカリ化合物を用いる場合には、より効率よくフィルターを再生するために、0.1%以上の濃度とすることが好ましく、5%以上とすることがより好ましい。しかし、過度にアルカリ化合物の5濃度が高いとろ過装置の腐食などの原因となるので、一般に20%以下、好ましくは10%以下とすべきである。
 また、洗浄液のpHは8以上であることが好ましい。洗浄液の温度は特に限定されないが、用いるフィルターによっては過度に温度が高いとフィルターそのものが破損することがある。一方で洗浄液の温度が低いと、除去すべき可溶成分の溶解および除去が効率的にできないので、過度に低い温度とすることは避けるべきである。このような観点から、洗浄液の温度は20~80℃とされることが好ましく、40~60℃とされることがより好ましい。
ろ過設備
 本発明によるろ過方法により液体から不純物を除去するための設備を図を用いて説明すると以下の通りである。なお、このろ過設備は、本発明によるろ過方法の一例を示すものであって、これに限定されるものではない。
 図1は、本発明によるろ過方法を用いることができるろ過設備の一例を示す図である。
 ろ過前の液体を備蓄するタンク6はポンプ4Aを介して、フィルターカートリッジ2と配管で連結されている。ポンプ4Aとフィルターカートリッジ2の間には、三方弁9Aが設けられている。
 フィルターカートリッジ2の中には、樹脂製メディアフィルター1が配置されており、フィルターカートリッジに設けられた2つの液体の入出口のうち、一方からフィルターカートリッジ2内に導入された液体は、この樹脂製メディアフィルターを通過して、もう一方からフィルターカートリッジ外に放出される。また、フィルターカートリッジ2内には、超音波振動子3が配置されている。この超音波振動子3は、超音波発信子(図示せず)により振動が制御される。
 フィルターカートリッジ2から放出された液体は、三方弁9Bおよび9Cを介してろ過後タンク7に連結されている。三方弁9Bおよび9Cで分岐した配管はポンプ4Bに連結されている。
 ろ過前タンク6に貯留された液体をろ過する場合には、以下のように液体が流れる。まずろ過前タンク6に貯留された液体は、ポンプ4Aによりくみ出され、フィルターカートリッジ2に導入される。このとき、三方弁9Aはポンプ4Aからフィルターカートリッジ2に液体が流れるように設定される。フィルターカートリッジ2に導入された液体は、樹脂製メディアフィルター1によりろ過され、配管を経て、ろ過後タンク7へと放出される。このとき、三方弁9Bおよび9Cはフィルターカートリッジ2とろ過後タンク7とを直結するように設定される。このときの液体の流れは図1中に黒矢印で示されている。
 ここで、フィルターにより液体がろ過される際、あるいはろ過後に超音波振動子3によってフィルター1に超音波が照射される。この超音波によって、フィルターの目詰まりが予防されるか、目詰まりしたフィルターが再生される。
 ろ過時に超音波を照射する場合には、液体がフィルターを通過している期間、連続的に照射しても、あるいは断続的に照射してもよい。このように超音波を照射しながらろ過することにより、フィルターの目詰まりが予防され、連続運転時間を長くすることができる。
 一方、ろ過後に超音波照射する場合は、フィルターによる液体のろ過を完了した後にフィルターを洗浄ないし再生することが目的である。したがって、送液を完全に停止してから、必要に応じてフィルターカートリッジを洗浄液で満たしてから、超音波照射を行うのが一般的である。また、フィルターをろ過設備から取り外して超音波照射をすることも可能である。このような場合には、ろ過設備においてフィルターの取り外しや再組み付けを行う必要があるので作業効率上は不利になることもある。したがって、フィルターカートリッジ内に配置したまま、再生を行うことが一般的には好ましい。
 また、ろ過を一端中断して、逆洗作業を行い、その際に超音波を照射することも作業効率向上および再生率向上のために好ましい。逆洗作業とは、ろ過時とは逆方向に液体を送液することで、フィルターを洗浄することをいう。
 この逆洗作業の一例を図1を用いて説明すると以下の通りである。
 ろ過後タンク7に貯留された液体をポンプ4Bでくみ出し、フィルターカートリッジ2に、ろ過時とは逆方向に液体を導入する。このとき、三方弁9Bおよび9Cはろ過後タンク7からポンプ4Bを経てフィルターカートリッジ2に連結するように設定される。
 ろ過後の液体はフィルターを逆方向に通過するが、このときに超音波が照射されることにより、効率的にフィルターの目詰まりが解消される。そして、フィルターカートリッジ2から放出された液体は、三方弁9Aを通過し、系外に排出される。このとき、三方弁9Aは、フィルターカートリッジから放出される液体が系外に排出されるように設定される。このときの液体の流れは図1中に白矢印で示されている。なお、逆方向に流す液体は、ろ過後の液体である必要はなく、水などを流すことも可能である。
 なお、ろ過時およびろ過後の両方に超音波照射することも可能である。
 このように超音波の照射により液体中の不純物が効率的に除去されるが、この不純物はフィルターカートリッジ2内に堆積する。このような堆積物は、ろ過効率の改善およびフィルターのロングライフ化の観点から、除去することが好ましい。このような堆積物除去のために、パージライン8Aおよび8Bをフィルターカートリッジ2に設置することが好ましい。
 また、超音波の照射により、フィルターカートリッジの温度が上昇する傾向にある。特に超音波を連続的に照射する場合には、温度上昇が大きい傾向にある。このような連フィルターカートリッジの温度上昇を防ぎ、長期的かつ安定的にろ過作業をするために、フィルターカートリッジ2に冷却装置を設置することも好ましい。
 なお、研磨用組成物のような微粒子分散物は、経時により劣化することがある。このため、ろ過後タンクに貯留されている液体が劣化し、例えば粗大粒子の数が増大することもある。このような場合、ろ過後タンク7からろ過前タンク6に液体を送液するための、ポンプ4Cを有する配管を設けておくこともできる。
 以上、フィルターの洗浄を行いながらろ過をする方法を説明した。ここで、前記した通り、フィルターをろ過装置に取り付けたまま、連続的にろ過をしながらフィルターを洗浄することは、作業効率上好ましい。しかし、一方で、異なった液体のろ過を行う場合には、それらを連続してろ過することができないので、ろ過操作を一時停止する必要がある。この場合には、ろ過する対象の液体を切り替える際に同時にフィルターの交換を行えばよいので、作業効率上のロスは少ない。また、フィルターの洗浄をしながら連続的にろ過を行う場合には、上記したような逆洗のための設備が必要となるが、フィルターを取り外して洗浄する場合にはそのような設備は不要である。このために、フィルターを取り外して洗浄することが有利な場合もある。そのようにフィルターを取り外してフィルターを再生する場合には別のフィルター再生装置を用いることが好ましい。そのようなフィルター再生装置の一実施態様の概念図は、図2および図3に示す通りである。図2は側面から見た概念図であり、図3は洗浄槽の平面概念図である。
 このフィルター再生装置は、洗浄槽(内槽)210と冷却槽(外槽)211の二重構造となっている。これらの槽の間には温度制御用媒体213が満たされている。この媒体は、洗浄槽210中の洗浄液の温度を調整するためのものであり、温度制御装置(図示せず)によって温度が制御される。洗浄槽210中にはフィルター回転定盤207が配置されている。この定盤は洗浄しようとするフィルター206を固定するためのものである。
 フィルターを洗浄するための洗浄液213は洗浄液貯蔵タンク201に貯蔵されており、ポンプ203により、洗浄液中に浮遊する不溶成分等を除去するための洗浄液ろ過用フィルター204や流量計205を経由して、再生しようとする樹脂製メディアフィルター206中に導入される。フィルター中に導入された洗浄液は、フィルターのろ過面を透過して、洗浄槽210中に流出し、フィルターは洗浄液中に浸漬される。本発明によるフィルター再生装置は、このときに超音波発生装置208により周波数が30MHz以上の超音波を照射することができる。この超音波の照射によって、フィルターの再生が効率よく行うことができる。このようにしてフィルターに付着していた不溶性成分、例えばシリカ粒子などが洗浄槽中210中に排出されて、フィルターが再生される。
 洗浄槽中に排出された洗浄液は、配管を経由して洗浄液貯蔵タンクに回収され、さらなる再生に利用される。このとき、洗浄液貯蔵タンクに温度制御装置202を設けて、温度を制御することが好ましい。なお、ポンプ、洗浄液ろ過用フィルター、流量計などの接続順序や個数は特に限定されず、必要に応じて任意の順序に接続することができる。
 本発明によるフィルター再生装置は、図3に示すように、フィルター回転定盤207に、同時に複数のフィルターを固定することが可能である。複数のフィルターを同時に処理することによって、より効率の良いフィルター再生を実施できる。さらには、フィルター回転定盤を回転させることにより、複数のフィルターに対して超音波が均一に照射されるようにされていてもよい。このような場合、回転定盤207の回転は一定方向でなく、反転するようにすることもできる。さらには、フィルター206をそれぞれ回転させることにより、それぞれのフィルターについて、いずれの部分にも均一に超音波を照射することが可能となる。このように回転定盤の回転、すなわち公転と、各フィルターの回転、すなわち自転を組み合わせることで、より均一かつ効率の良いフィルター再生が実現できる。
 ここで用いられる超音波発生装置208は、30kHz以上の超音波を照射できるものであれば特に限定されないが、与える電気エネルギーに応じて超音波を調整できる超音波振動子であることが好ましい。また、前記したように、超音波の周波数を変化させることが好ましいので、変調機能付き超音波振動子とすることもできる。さらには、再生しようとするフィルターに均一に超音波を照射するために、超音波発生装置を複数配置することも可能である。特に再生しようとするフィルターが複数固定されている場合には、各フィルターに超音波が均一に照射されるように配置することが好ましい。このとき、超音波発生装置の位置も適当に調整して、フィルターに均一な超音波が照射されるようにすることが好ましい。また、固定されている各フィルターのいずれの部分にも均一に超音波が照射されるように配置することも好ましい。
 また、図2には、使用済みのフィルターの内側に洗浄液を供給し、外側に透過させるフィルター再生装置が示されているが、逆方向に透過させてもよく、また洗浄の際に洗浄液の透過方向を反転させてもよい。なお、洗浄液の透過方向は、フィルターをろ過に使用した方向と逆方向とする方が、再生効率がより高くなる。
 本発明を諸例を用いて説明すると以下の通りである。
実施例1~11および比較例1~4
 ろ過対象の液体として、BET法により測定された平均粒子径が50nmであるコロイダルシリカを40重量%の濃度で含む分散液を準備した。一方、表1に記載された全長約50mmの樹脂カートリッジに収納されたパイプ状メンブレンフィルター(フィルターサイズ全長約50mm;外径約70mm、内径25~30mm)をろ過装置に設置し、ダイヤフラムポンプを用いて、空気送り圧0.25MPaでろ過をした。目詰まりによりろ過が不能となるまでろ過を続け、ろ過できた分散液の体積(A)を測定した。
 引き続き、使用したフィルターの再生処理を行った。ろ過終了のフィルターに、ろ過時とは逆方向に5Lの純水を通し、その後フィルターを取り外し、フィルターを超音波装置の浴槽内に水を張って入れ、出力0.7W/cmで超音波を5分間連続的に照射した。超音波の周波数は表1に示した通りとした。
 このとき用いた超音波発生装置は以下の通りである。
26kHz  PHENIX II(商品名、株式会社カイジョー製)
38kHz  PHENIX FM(商品名、株式会社カイジョー製)
50kHz  CLIMPULSE H(商品名、株式会社カイジョー製)
78kHz  PHENIX LEGEND(商品名、株式会社カイジョー製)
100kHz PHENIX LEGEND(商品名、株式会社カイジョー製)
200kHz ULTRA GENERATION(商品名、株式会社サン電子製)
950kHz HI MEGASONIC(商品名、株式会社カイジョー製)
 実施例9においては超音波照射の後に、さらにフィルターに対してろ過時とは逆方向に純水5Lを通す逆洗洗浄を行った。また、比較例3および4においては実施例9と同様の逆洗洗浄を行ったが、超音波の照射を行わなかった。
 再生処理終了後、フィルターをろ過装置に再度設置し、コロイダルシリカ分散液を再度ろ過した。目詰まりによりろ過が不能となるまでろ過を続け、ろ過できた分散液の体積(B)を測定した。
 このように再生処理の前後におけるろ過可能量を測定し、その比率B/Aをフィルター再生率とした。
 また、ろ過精度を次のように定義した。
 再生処理の前後で、それぞれろ過された分散液に含まれる粒子径が0.56μm以上の粗大粒子の個数を個数カウント装置(パーティクルサイジングシステム社製、Accusizer780APS)により測定し、以下の判断基準で評価した。
再生処理前後の粗大粒子の個数が同等であれば良
再生後の粗大粒子数が再生前の粗大粒子数を基準として0.9以上であればやや良
再生後の粗大粒子数が再生前の粗大粒子数を基準として0.9未満であれば不良
 さらに、金属不純物については、以下の通り評価した。
 測定器として誘導結合プラズマ質量分析計(アジレント・テクノロジー社製 HP4500型(商品名))を用いて、Na、Al、K、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Ag、およびPbの金属がそれぞれ500ppb以下である場合に良、それを超える場合に不良とした。
 得られた結果は表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、超音波の周波数が本発明において特定された範囲よりも低いとフィルターが破損して再利用ができなかった(比較例1)。
 ポリエーテルスルホン製のフィルターを用いた場合、超音波照射のみによる再生処理(実施例6)では再生が不十分となる傾向が認められたが、逆洗洗浄を追加した場合(実施例7)には十分に再生することができた。
実施例12
 実施例1と同じろ過装置およびフィルターを用いて、38kHzの超音波を照射しながらろ過実験を行った。フィルターが目詰まりするまでの時間は、実施例1の場合に比較して1.5倍に伸びた。またフィルター再生率及びろ過精度は実施例1の場合と同等であった。
実施例13および14
 ろ過対象の液体として、BET法で測定した平均粒子径が35nm(光散乱法で測定された平均粒子径は70nm)であるコロイダルシリカを20重量%の濃度で含む分散液を準備した。一方、全長約50mmの樹脂カートリッジに収納された目開き0.2μmのナイロン製メンブレンフィルター(フィルターサイズ全長約50mm;外径約70mm、内径25~30mm)をろ過装置に設置し、ダイヤフラムポンプを用いて、空気送り圧0.25MPaでろ過をした。目詰まりによりろ過が不能となるまでろ過した後、図2に示されるようなフィルター再生装置でフィルターの再生を行った。照射する超音波の周波数を38kHzで一定で行った場合(実施例13)の再生率は42%であったが、周波数を±5%で変調させた場合(実施例14)の再生率は55%まで、さらに改善された。
実施例15~18
 実施例13と同様のろ過を行った後に再生することを3回繰り返し、フィルター再生率の変化を測定した。洗浄液には純水、0.1%KOH水溶液、0.2%KOH水溶液、2.0%KOH水溶液を用いた。得られた結果は表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000002
実施例19
 ろ過対象の液体として、BET法で測定した平均粒子径が35nm(光散乱法で測定された平均粒子径は150nm)であるフュームドシリカを25重量%含み、水酸化カリウムでpHを11.0に調整した水性分散液を準備した。一方、全長約50mmの樹脂カートリッジに収納された目開き1μmのポリプロピレン製デプスフィルター(フィルターサイズ全長約50mm;外径約70mm、内径25~30mm)をろ過装置に設置し、ダイヤフラムポンプを用いて、空気送り圧0.25MPaでろ過をした。目詰まりによりろ過が不能となるまでろ過した後、ろ過後のフィルターを、温度の異なった洗浄液で再生し、再生率を評価した。温度が20℃の時、再生率は75%であったが、洗浄液の温度を40℃および50℃としたとき、再生率は82%および84%となった。なお、洗浄液温度が60℃を超えるとフィルターが破損することがあった。
 1 樹脂製メディアフィルター
 2 フィルターカートリッジ
 3 超音波振動子
 4A、4B 送液ポンプ
 6 ろ過前タンク
 7 ろ過後タンク
 8A、8B パージライン
 201 洗浄液貯蔵タンク
 202 202
 203 ポンプ
 204 洗浄液ろ過用フィルター
 205 流量計
 206 樹脂製メディアフィルター
 207 フィルター回転定盤
 208 超音波発生装置
 210 洗浄槽
 211 冷却槽
 212 洗浄液
 213 温度制御用媒体

Claims (20)

  1.  樹脂製メディアフィルターを用いて液体をろ過する方法であって、ろ過時またはろ過終了後に前記フィルターに対して周波数30kHz以上の超音波照射すること含んでなることを特徴とするろ過方法。
  2.  ろ過使用後の前記フィルターを別の再生装置に移設し、前記フィルターに対して、超音波照射を行なうことによってフィルターを再生することを含む、請求項1記載のろ過方法。
  3.  前記樹脂製メディアフィルターがメンブレンフィルターである、請求項1または2に記載のろ過方法。
  4.  前記メンブレンフィルターの形状がカートリッジ状である、請求項1~3のいずれか1項に記載のろ過方法。
  5.  前記樹脂製メンブレンフィルターの材質が、ナイロン、ポリカーボネート、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルスルホン、およびセルロースからなる群から選択される少なくとも1種以上である、請求項1~4のいずれか1項に記載のろ過方法。
  6.  前記フィルターの表面に、網目状の樹脂層からなるサポート材が配置されている、請求項1~5のいずれか1項に記載のろ過方法。
  7.  超音波の出力が0.1~3.0W/cm2である1~6のいずれか1項に記載のろ過方法。
  8.  ろ過後にフィルターにろ過時とは逆方向に液体を透過させて洗浄する工程を含む、請求項1~7のいずれか1項に記載のろ過方法。
  9.   前記液体が、微粒子を含んでなる分散液である、請求項1~8のいずれか1項に記載のろ過方法。
  10.  請求項1~9のいずれか1項に記載のろ過方法を使用して、研磨用組成物をろ過することを含んでなることを特徴とする、研磨用組成物の精製方法。
  11.  溶媒中に不溶な微粒子成分が分散されている分散液または分散物から微粒子成分を除去するためのろ過に使用した、使用済樹脂製メディアフィルターに周波数30kHz以上の超音波を照射することを含むことを特徴とする、メディアフィルターの再生方法。
  12.  超音波の出力が0.1~3.0W/cm2である、請求項11に記載の再生方法。
  13.  使用済樹脂製メディアフィルターに対して、使用時とは逆方向に液体を透過させて洗浄することを含む、請求項11または12に記載の再生方法。
  14.  洗浄液中に浸漬された使用済樹脂製メディアフィルターに周波数30kHz以上の超音波を照射することができる超音波発生装置を具備してなることを特徴とする、フィルター再生装置。
  15.  前記超音波発生装置が、周波数変調機能を有する超音波振動子である、請求項14に記載のフィルター再生装置。
  16.  前記フィルター再生装置内の音圧が均一に保たれる程度に充分な個数の超音波振動子適当な位置に有する、請求項14または15に記載のフィルター再生装置。
  17.  超音波を照射しながら、樹脂製メディアフィルターを自転または公転させる機能をさらに有する、請求項14~16のいずれか1項に記載のフィルター再生装置。
  18.  前記メディアフィルターに対して、使用時と逆方向に前記洗浄液を透過させる機能をさらに有する、請求項14~17のいずれか1項に記載のフィルター再生装置。
  19.  前記洗浄液の温度を制御する機構をさらに有する、請求項14~18のいずれか1項に記載のフィルター再生装置。
  20.  複数の樹脂製メディアフィルターを同時に装填することが可能であり、装填された複数の樹脂製メディアフィルターを同時または順次再生することができる、請求項14~19のいずれか1項に記載のフィルター再生装置。
PCT/JP2009/061466 2008-07-14 2009-06-24 ろ過方法、およびそれを用いた研磨用組成物の精製方法ならびにろ過に用いるフィルターの再生方法およびフィルター再生装置 WO2010007862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09797790A EP2301653A4 (en) 2008-07-14 2009-06-24 FILTRATION METHOD, METHOD FOR CLEANING A SLIP COMPOSITION THEREWITH, METHOD FOR RENEWING THE FILTER USED IN THE FILTRATION AND DEVICE FOR RENEWING THE FILTER
CN2009801274171A CN102099098A (zh) 2008-07-14 2009-06-24 过滤方法和使用其的研磨用组合物的纯化方法、以及用于过滤的过滤器的再生方法和过滤器再生装置
US13/003,960 US9149744B2 (en) 2008-07-14 2009-06-24 Filtration method, method for purifying polishing composition using it, method for regenerating filter to be used for filtration, and filter regenerating apparatus
JP2010520813A JP5638390B2 (ja) 2008-07-14 2009-06-24 ろ過方法、およびそれを用いた研磨用組成物の精製方法ならびにろ過に用いるフィルターの再生方法およびフィルター再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008182901 2008-07-14
JP2008-182901 2008-07-14

Publications (1)

Publication Number Publication Date
WO2010007862A1 true WO2010007862A1 (ja) 2010-01-21

Family

ID=41550270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061466 WO2010007862A1 (ja) 2008-07-14 2009-06-24 ろ過方法、およびそれを用いた研磨用組成物の精製方法ならびにろ過に用いるフィルターの再生方法およびフィルター再生装置

Country Status (8)

Country Link
US (1) US9149744B2 (ja)
EP (1) EP2301653A4 (ja)
JP (1) JP5638390B2 (ja)
KR (1) KR20110038670A (ja)
CN (1) CN102099098A (ja)
MY (1) MY161506A (ja)
TW (1) TWI484999B (ja)
WO (1) WO2010007862A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016044A (ja) * 2009-07-07 2011-01-27 Sumitomo Electric Ind Ltd ろ過膜の洗浄方法及びろ過装置
CN102059016A (zh) * 2010-12-13 2011-05-18 天津市环欧半导体材料技术有限公司 磨片机循环再生砂的过滤装置及方法
CN102284248A (zh) * 2011-06-07 2011-12-21 天津工业大学 一种超声洗膜装置及工艺
KR101222073B1 (ko) 2010-12-17 2013-01-15 한국건설기술연구원 정삼투막 여과장치, 및 초음파의 출력강도와 주파수 제어를 통한 정삼투막 여과장치의 여과플럭스 향상 방법
WO2013054674A1 (ja) * 2011-10-13 2013-04-18 住友電気工業株式会社 水処理ユニットおよび水処理装置
JPWO2012161029A1 (ja) * 2011-05-20 2014-07-31 株式会社フジミインコーポレーテッド 再生フィルターの製造方法
WO2024105895A1 (ja) * 2022-11-16 2024-05-23 株式会社つくりのちえ 超音波液体処理装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696404B2 (en) 2011-12-21 2014-04-15 WD Media, LLC Systems for recycling slurry materials during polishing processes
EP3299075B1 (en) * 2015-05-18 2023-05-10 Sunrui Marine Environment Engineering Co., Ltd. Cleaning liquid for ship ballast water treatment filter
CN106896037A (zh) * 2015-12-19 2017-06-27 西安瑞联新材料股份有限公司 一种系统的毛细管粘度计自动测定装置
FI127838B (en) 2018-03-08 2019-03-29 Sofi Filtration Oy A method of cleaning a filter element and a filtering device
CN109126230B (zh) * 2018-09-28 2023-11-24 湖南娄底泰阳科技有限公司 一种集成型旋转式污料原位再生装置
CN109593676B (zh) * 2018-12-21 2023-04-07 江苏大学 一种用于酸菜发酵液中微生物分离的培养基及其制备方法
CN111616643A (zh) * 2019-02-27 2020-09-04 彭志军 一种吸尘器用超声波抖尘清洁滤尘布装置
CN111171359B (zh) * 2020-01-07 2021-03-02 南京大学 活化聚四氟乙烯的方法及应用
CN112439373A (zh) * 2020-11-04 2021-03-05 江西中竹生物质科技有限公司 超声波疏导防堵装置
CN113385039A (zh) * 2021-07-20 2021-09-14 西安交通大学 膜架及污水处理装置
CN113813662B (zh) * 2021-09-16 2022-08-30 安徽省农业科学院农产品加工研究所 一种薄膜原料流体过滤组件的清洗装置及其清洗方法
CN115739208B (zh) * 2022-12-12 2024-02-20 河南海之德高新环保科技有限公司 树脂提取用暂存收集装置及其收集方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039303U (ja) * 1983-08-22 1985-03-19 エヌオーケー株式会社 限外ロ過モジユ−ル
JPH07275615A (ja) 1994-04-06 1995-10-24 Hajime Honda ろ過装置
JPH08281020A (ja) 1995-04-12 1996-10-29 Mitsubishi Paper Mills Ltd 液体の濾過方法及び濾過装置
JPH09299767A (ja) * 1996-05-13 1997-11-25 Nkk Corp 水処理装置のフィルタモジュール洗浄方法及びその装置
JPH11253763A (ja) * 1999-01-18 1999-09-21 Mitsubishi Rayon Co Ltd 中空糸膜モジュ―ルの洗浄方法
JP2000271457A (ja) * 1999-01-22 2000-10-03 Nitto Denko Corp スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法ならびにスパイラル型膜モジュール
JP2002038131A (ja) * 2000-07-19 2002-02-06 Rodel Nitta Co 研磨組成物、研磨組成物の製造方法及びポリシング方法
JP2002191945A (ja) * 2000-12-26 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd 膜分離装置とその洗浄方法
JP2003135937A (ja) * 2001-11-05 2003-05-13 Mitsubishi Rayon Co Ltd 分離膜の薬品洗浄方法
JP2004050137A (ja) 2002-07-24 2004-02-19 New Machine Kk インテリジェントフイルタ
JP2009113148A (ja) * 2007-11-06 2009-05-28 Nomura Micro Sci Co Ltd 研磨スラリーのろ過方法並びに研磨材の回収方法及び回収装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137679A (en) * 1975-05-23 1976-11-27 Kubota Ltd Method for clea ning membrane of reverse osmosis treatment apparatus
JPS6039303A (ja) 1983-08-11 1985-03-01 株式会社東芝 機器の搬入据付装置
JPH02307587A (ja) * 1989-05-23 1990-12-20 Sumitomo Metal Ind Ltd 酸洗廃液の濾過方法
JPH0716439A (ja) * 1993-06-30 1995-01-20 Kurita Water Ind Ltd 膜分離装置の膜洗浄装置
FR2716122B1 (fr) * 1994-02-15 1996-06-07 Georges Genot Procédé de décolmatage d'un élément filtrant utilisant notamment les ultrasons.
CN1282226C (zh) * 1996-09-30 2006-10-25 日立化成工业株式会社 氧化铈研磨剂以及基板的研磨方法
US6432310B1 (en) * 1999-01-22 2002-08-13 Nitto Denko Corporation Methods of running and washing spiral wound membrane module
JP2001070762A (ja) * 1999-09-03 2001-03-21 Toto Ltd 液体浄化装置
DE50204651D1 (de) * 2001-05-15 2005-12-01 Koch Maschinenfabrik Ag Wattwi Verfahren und Einrichtung zur Filtration von Fluiden, die in Bearbeitungsmaschinen anfallen
EP1436068B1 (en) * 2001-10-09 2006-02-08 Millipore Corporation Automated fluid filtration system for conducting separation processes, and for acquiring and recording data thereabout
US7008540B1 (en) * 2003-04-07 2006-03-07 The Ohio State University Ultrasonically cleaned membrane filtration system
CN1211169C (zh) 2003-07-10 2005-07-20 天津泰达新水源科技开发有限公司 中空纤维分离膜的超声波清洗装置
DE10349842A1 (de) * 2003-10-25 2005-05-25 Diw Instandhaltung Gmbh Reinigung eines trommelförmigen Filters
CN2669966Y (zh) * 2003-12-31 2005-01-12 江西省药物研究所 带超声清洗的膜分离设备
US20080006290A1 (en) * 2006-07-10 2008-01-10 Kuniaki Yamanaka Fluidized bed apparatus and filter washing method for fluidized bed apparatus
SG173361A1 (en) * 2006-07-12 2011-08-29 Cabot Microelectronics Corp Cmp method for metal-containing substrates
JP2008300429A (ja) * 2007-05-29 2008-12-11 Toshiba Corp 半導体基板洗浄方法、半導体基板洗浄装置、及び液中気泡混合装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039303U (ja) * 1983-08-22 1985-03-19 エヌオーケー株式会社 限外ロ過モジユ−ル
JPH07275615A (ja) 1994-04-06 1995-10-24 Hajime Honda ろ過装置
JPH08281020A (ja) 1995-04-12 1996-10-29 Mitsubishi Paper Mills Ltd 液体の濾過方法及び濾過装置
JPH09299767A (ja) * 1996-05-13 1997-11-25 Nkk Corp 水処理装置のフィルタモジュール洗浄方法及びその装置
JPH11253763A (ja) * 1999-01-18 1999-09-21 Mitsubishi Rayon Co Ltd 中空糸膜モジュ―ルの洗浄方法
JP2000271457A (ja) * 1999-01-22 2000-10-03 Nitto Denko Corp スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法ならびにスパイラル型膜モジュール
JP2002038131A (ja) * 2000-07-19 2002-02-06 Rodel Nitta Co 研磨組成物、研磨組成物の製造方法及びポリシング方法
JP2002191945A (ja) * 2000-12-26 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd 膜分離装置とその洗浄方法
JP2003135937A (ja) * 2001-11-05 2003-05-13 Mitsubishi Rayon Co Ltd 分離膜の薬品洗浄方法
JP2004050137A (ja) 2002-07-24 2004-02-19 New Machine Kk インテリジェントフイルタ
JP2009113148A (ja) * 2007-11-06 2009-05-28 Nomura Micro Sci Co Ltd 研磨スラリーのろ過方法並びに研磨材の回収方法及び回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2301653A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016044A (ja) * 2009-07-07 2011-01-27 Sumitomo Electric Ind Ltd ろ過膜の洗浄方法及びろ過装置
CN102059016A (zh) * 2010-12-13 2011-05-18 天津市环欧半导体材料技术有限公司 磨片机循环再生砂的过滤装置及方法
CN102059016B (zh) * 2010-12-13 2011-11-16 天津市环欧半导体材料技术有限公司 磨片机循环再生砂的过滤装置及方法
KR101222073B1 (ko) 2010-12-17 2013-01-15 한국건설기술연구원 정삼투막 여과장치, 및 초음파의 출력강도와 주파수 제어를 통한 정삼투막 여과장치의 여과플럭스 향상 방법
JPWO2012161029A1 (ja) * 2011-05-20 2014-07-31 株式会社フジミインコーポレーテッド 再生フィルターの製造方法
CN102284248A (zh) * 2011-06-07 2011-12-21 天津工业大学 一种超声洗膜装置及工艺
WO2013054674A1 (ja) * 2011-10-13 2013-04-18 住友電気工業株式会社 水処理ユニットおよび水処理装置
JP2013085977A (ja) * 2011-10-13 2013-05-13 Sumitomo Electric Ind Ltd 水処理ユニットおよび水処理装置
CN103857629A (zh) * 2011-10-13 2014-06-11 住友电气工业株式会社 水处理单元和水处理装置
WO2024105895A1 (ja) * 2022-11-16 2024-05-23 株式会社つくりのちえ 超音波液体処理装置

Also Published As

Publication number Publication date
JPWO2010007862A1 (ja) 2012-01-05
EP2301653A4 (en) 2013-03-13
TW201008636A (en) 2010-03-01
MY161506A (en) 2017-04-14
US9149744B2 (en) 2015-10-06
JP5638390B2 (ja) 2014-12-10
TWI484999B (zh) 2015-05-21
KR20110038670A (ko) 2011-04-14
CN102099098A (zh) 2011-06-15
EP2301653A1 (en) 2011-03-30
US20110180483A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5638390B2 (ja) ろ過方法、およびそれを用いた研磨用組成物の精製方法ならびにろ過に用いるフィルターの再生方法およびフィルター再生装置
TWI231770B (en) Method for removing foreign matter from a fluid flow
JP4353665B2 (ja) 濾過装置
KR101043863B1 (ko) 콜로이드 용액의 여과 방법
JP3634792B2 (ja) 被除去物の除去方法
JP3634791B2 (ja) 被除去物の除去方法
US7157012B2 (en) Water treatment device and water treatment method using the same
JP5163078B2 (ja) 研磨装置とその方法
US7438804B2 (en) Coagulation treatment apparatus
JP2009113148A (ja) 研磨スラリーのろ過方法並びに研磨材の回収方法及び回収装置
JP4544831B2 (ja) 濾過装置
JP4632635B2 (ja) 半導体材料の加工屑処理システム
JP4726396B2 (ja) 濾過装置
JP4353972B2 (ja) Cmp排水から生成されるゲル膜の回収方法
JP2000218109A (ja) 排水の処理方法
JP2002001661A (ja) Cmp排水の濾過方法
JP2004290814A (ja) 排水処理装置およびそれを用いた排水処理方法
JP4535689B2 (ja) 流体の濾過方法
JP2023002895A (ja) クロスフローろ過に用いられる分離膜を用いたスラリー濃縮装置の洗浄方法
JP2001347456A (ja) Cmp排水の濾過方法
JP2004290813A (ja) 水処理装置およびそれを用いた水処理方法
JPWO2012161029A1 (ja) 再生フィルターの製造方法
JP2001347144A (ja) 濾過装置および濾過方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127417.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009797790

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117000883

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010520813

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13003960

Country of ref document: US