WO2010002154A2 - 신규한 유기염료 및 이의 제조방법 - Google Patents

신규한 유기염료 및 이의 제조방법 Download PDF

Info

Publication number
WO2010002154A2
WO2010002154A2 PCT/KR2009/003500 KR2009003500W WO2010002154A2 WO 2010002154 A2 WO2010002154 A2 WO 2010002154A2 KR 2009003500 W KR2009003500 W KR 2009003500W WO 2010002154 A2 WO2010002154 A2 WO 2010002154A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
dye
mmol
photoelectric conversion
Prior art date
Application number
PCT/KR2009/003500
Other languages
English (en)
French (fr)
Other versions
WO2010002154A3 (ko
Inventor
이종찬
백종협
양회택
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN2009801250355A priority Critical patent/CN102076781A/zh
Priority to US13/000,807 priority patent/US20110094588A1/en
Priority to JP2011516139A priority patent/JP5623396B2/ja
Priority to EP09773690.4A priority patent/EP2341107B1/en
Publication of WO2010002154A2 publication Critical patent/WO2010002154A2/ko
Publication of WO2010002154A3 publication Critical patent/WO2010002154A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B49/00Sulfur dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/148Stilbene dyes containing the moiety -C6H5-CH=CH-C6H5
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B49/00Sulfur dyes
    • C09B49/12Sulfur dyes from other compounds, e.g. other heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel organic dye used in dye-sensitized solar cells (DSSC) and a method for producing the same.
  • DSSC dye-sensitized solar cells
  • Dye-sensitized solar cells have the potential to replace conventional amorphous silicon solar cells because of their higher efficiency and lower manufacturing costs than conventional silicon-based solar cells. It is a photoelectrochemical solar cell whose main constituent material is a dye molecule capable of absorbing and generating electron-hole pairs, and a transition metal oxide for transferring generated electrons.
  • metal-free organic dyes which exhibit excellent physical properties in terms of light absorption efficiency, redox reaction stability, and intramolecular charge-transfer (CT) absorption, can replace expensive ruthenium metal complexes. It has been found that it can be used as a dye for solar cells, and research on organic dyes lacking metals has been focused on.
  • Organic dyes generally have a structure of electron donor-electron acceptor residues linked by ⁇ -binding units.
  • amine derivatives act as electron donors
  • 2-cyanoacrylic acid or rhodanine residues act as electron acceptors
  • these two sites are ⁇ -binding systems such as metaine units or thiophene chains. Is connected by.
  • the structural change of the amine unit which is an electron donor, results in a change in the electronic properties, for example, an absorption spectrum shifted toward blue, and by changing the ⁇ -bond length, the absorption spectrum and redox potential. Can be adjusted.
  • an object of the present invention is to provide an organic dye and a method of manufacturing the same, which can improve the efficiency of solar cells by exhibiting an improved molar absorption coefficient and photoelectric conversion efficiency than conventional dyes.
  • the present invention provides a dye-sensitized photoelectric conversion device that exhibits a significantly improved photovoltaic conversion efficiency including the dye, excellent Jsc (short circuit photocurrent density) and a molar absorption coefficient, and a solar cell significantly improved efficiency It aims to do it.
  • the present invention provides an organic dye represented by the following formula (1).
  • R1 is or X and Y are each independently hydrogen or C1-6 alkyl
  • R2 to R5 are each independently hydrogen, substituted or unsubstituted C1-30 alkyl or C1-30 alkoxy;
  • Ar is C6-50 aryl unsubstituted or substituted with one or more C1-30 alkyl, C1-30 alkoxy, halogen, amide, cyano, hydroxyl, nitro, acyl, C6-30 aryl or heteroaryl groups, Or heteroaryl, preferably , And (* moiety is a binding moiety);
  • Z and Z ' are each independently C1-6 alkyl
  • n is an integer from 1 to 10;
  • n and m ' are each independently an integer from 0 to 5, wherein both m and m' are not zero at the same time, preferably 1 or 2.
  • X, Y, R1 to R5, Ar, Z, m and n are as defined above.
  • a is an integer of 1-5, Preferably it is 1 or 2.
  • the present invention provides a dye-sensitized photoelectric conversion device comprising an oxide semiconductor fine particle carrying a compound represented by the formula (1).
  • the present invention provides a dye-sensitized solar cell comprising the dye-sensitized photoelectric conversion device.
  • the dye compound of the present invention is used in a dye-sensitized solar cell (DSSC) to exhibit an improved molar absorption coefficient, Jsc (single-circuit photocurrent density) and photovoltaic conversion efficiency than conventional dyes, thereby greatly improving the efficiency of the solar cell, and high cost. Purification is possible without the use of a column, which can significantly lower the cost of dye synthesis.
  • DSSC dye-sensitized solar cell
  • the present inventors use 2,3-dihydrothieno [3,4-b] [1,4] dioxin and have a thiophene unit at the intermediate linkage to increase the molar extinction coefficient and increase the stability of the device.
  • a dye-sensitized solar cell was prepared by supporting a compound represented by the formula (1) having a new organic dye structure, which is connected to TiO2 reforming and uses cyanoacrylic acid having the best electron transport ability as an electron acceptor, on an oxide semiconductor fine particle.
  • the photoelectric conversion efficiency, Jsc (short circuit photocurrent density) and the molar absorption coefficient are high, and thus, the present invention shows superior efficiency than the conventional dye-sensitized solar cell, thereby completing the present invention.
  • the organic dye of the present invention is characterized by represented by the following formula (1), preferably has a structure of the formula (1a) to 1x.
  • R1 to R5 Ar, Z, Z ', m, n and m' are as defined above.
  • the present invention provides a method for producing a dye represented by the formula (1-1) wherein m 'is 0, the dye represented by the formula (1-1) is a compound of the formula (3) Suzuki coupling reaction to prepare a compound of formula (4), (2) reacting a compound of formula (4) with POCl3 in an organic solvent (for example dimethylformamide) to prepare a compound of formula (5), (3) Can be prepared by reacting cyanoacetic acid or a compound of formula (6) in the presence of piperidine in CH3CN. Specific examples thereof may be represented by the following Schemes 1 to 4 (Scheme 1: Compound of Formula 1a, Scheme 2: Compound of Formula 1b, Scheme 3: Compound of Formula 1e, Scheme 4: Compound of Formula 1f).
  • R2 to R5 X, Y, Ar, Z, m and n are as defined above.
  • the present invention provides a method for producing a dye represented by the general formula 1-2, wherein m 'is not 0, the dye represented by the formula 1-2 is (i) a compound of the formula (2) And a Suzuki coupling reaction to prepare a compound of Formula 4, (ii) reacting the compound of Formula 4 with N-bromostyrene in an organic solvent (eg, tetrahydrofuran) to prepare a compound of Formula 7 (iii) Suzuki coupling reaction of a compound of Formula 7 with a compound of Formula 8 to prepare a compound of Formula 9, and (iv) reacting a compound of Formula 9 with POCl 3 in an organic solvent (e.g., dimethylformamide).
  • an organic solvent e.g., dimethylformamide
  • a compound of formula 10 may be prepared and (v) a compound of formula 10 is reacted with cyanoacetic acid or a compound of formula 6 in the presence of piperidine in CH 3 CN. Specific examples thereof may be represented by the following Schemes 5 to 10 (Scheme 5: Compound of Formula 1n, Scheme 6: Compound of Formula 1r, Scheme 7: Compound of Formula 1q, Scheme 8: Compound of Formula 1m, Scheme 9: Formula) Iw compound, Scheme 10: compound of formula 1u).
  • R2 to R5 X, Y, Ar, Z, Z ', m, n and a are as defined above.
  • the compounds of formulas 2a, 2b, 2e, 2f, 2n and 2r, and formula 3, which are used as starting materials for the preparation of the dye of formula 1, can be prepared or purchased in a conventional manner.
  • the present invention provides a dye-sensitized photoelectric conversion device, the dye-sensitized photoelectric conversion device is characterized in that the dye represented by the formula (1) on the oxide semiconductor fine particles.
  • the present invention is a dye-sensitized photoelectric conversion device in addition to using the dye represented by the formula (1) can be applied to the method of manufacturing a dye-sensitized photoelectric conversion device for solar cells using a conventional dye, of course, preferably the present invention
  • the dye-sensitized photoelectric conversion device may be prepared by fabricating a thin film of an oxide semiconductor on a substrate using oxide semiconductor fine particles, and then supporting the dye of the present invention on the thin film.
  • the surface is electroconductive as a board
  • conductive metal oxides such as tin oxide coated with indium, fluorine, and antimony on a surface of glass or a transparent polymer material such as polyethylene terephthalate or polyethersulfone, or a metal thin film such as steel, silver, or gold may be used.
  • the formed thing can be used.
  • the conductivity is preferably 1000 ⁇ or less, particularly preferably 100 ⁇ or less.
  • a metal oxide is preferable.
  • oxides such as titanium, tin, zinc, tungsten, zirconium, gallium, indium, yttrium, niobium, tantalum and vanadium can be used. Of these, oxides such as titanium, tin, zinc, niobium and indium are preferable, among these, titanium oxide, zinc oxide and tin oxide are more preferable, and titanium oxide is most preferred.
  • the oxide semiconductor may be used alone, or may be mixed or coated on the surface of the semiconductor.
  • the particle diameter of the fine particles of the oxide semiconductor is preferably 1 to 500 nm, more preferably 1 to 100 nm as the average particle diameter.
  • the fine particles of the oxide semiconductor may be mixed with a large particle size and a small particle size, or may be used as a multilayer.
  • the oxide semiconductor thin film is a method of forming oxide semiconductor fine particles into a thin film directly on a substrate by spray spraying, a method of electrically depositing a semiconductor fine particle thin film using a substrate as an electrode, a slurry of semiconductor fine particles or semiconductor fine particles such as a semiconductor alkoxide.
  • the paste containing the fine particles obtained by hydrolyzing the precursor onto the substrate it can be produced by a method of drying, curing or baking, and a method of applying the paste onto the substrate is preferred.
  • a slurry can be obtained by disperse
  • the dispersion medium for dispersing the slurry can be used without particular limitation so long as it can disperse the semiconductor fine particles, and alcohols such as water and ethanol, ketones such as acetone and acetylacetone, or hydrocarbons such as hexane can be used, and these can be mixed and used. Among them, it is preferable to use water among them in order to reduce the viscosity change of the slurry.
  • a dispersion stabilizer can be used for the purpose of stabilizing the dispersion state of oxide semiconductor microparticles
  • the substrate coated with the slurry can be fired, and its firing temperature is at least 100 ° C, preferably at least 200 ° C, and the upper limit is generally below the melting point (softening point) of the substrate, and usually the upper limit is 900 ° C, preferably 600. It is below °C.
  • the firing time is not particularly limited, but is generally within 4 hours.
  • substrate in this invention is 1-200 micrometers, Preferably it is 1-50 micrometers. Although some thin layers of oxide semiconductor fine particles are welded when firing, such welding is not particularly troubled for the present invention.
  • the oxide semiconductor thin film may be subjected to secondary treatment.
  • the performance of a semiconductor thin film may be improved by directly depositing a thin film for each substrate and drying or refiring it in a solution such as an alkoxide, chloride, nitride or sulfide of the same metal as the semiconductor.
  • the metal alkoxide include titanium ethoxide, titanium isopropoxide, titanium t-butoxide, n-dibutyl-diacetyl tin and the like, and an alcohol solution thereof can be used.
  • a chloride titanium tetrachloride, tin tetrachloride, zinc chloride, etc. are mentioned, for example, The aqueous solution can be used.
  • the oxide semiconductor thin film thus obtained is composed of fine particles of an oxide semiconductor.
  • the method of supporting the dye on the oxide semiconductor fine particles formed in the thin film phase in the present invention is not particularly limited, as a specific example by dispersing the solution obtained by dissolving the dye represented by the formula (1) in a solvent capable of dissolving, or dye
  • substrate with which the said oxide semiconductor thin film was provided in the obtained dispersion liquid is mentioned.
  • the concentration in the solution or dispersion can be appropriately determined by the dye.
  • the deposition time is usually from room temperature to the boiling point of the solvent, and the deposition time is about 1 minute to 48 hours.
  • the solvent that can be used to dissolve the dye include methanol, ethanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, acetone, t-butanol and the like.
  • the dye concentration of the solution is usually 1 x 10 -6 M to 1 M is suitable, preferably 1 x 10 -5 M to 1 x 10 -1 M. In this way, the photoelectric conversion element of the present invention having the oxide semiconductor fine particles on the thin film sensitized with a dye can be obtained.
  • the dye represented by the formula (1) supported by the present invention may be one kind or may be mixed in several kinds.
  • another dye or a metal complex dye can be mixed with the dye of this invention.
  • metal complex dyes that can be mixed are not particularly limited, but ruthenium complexes, quaternary salts thereof, phthalocyanine, porphyrin, and the like are preferable, and organic dyes used for mixing include metal-free phthalocyanine, porphyrin, cyanine, merocyanine, Methine dyes such as oxonol, triphenylmethane, and acrylic acid dyes as shown in WO2002 / 011213, and dyes such as xanthene, azo, anthraquinone and perylene-based dyes (MK Nazeeruddin, A).
  • the dyes may be adsorbed onto the semiconductor thin film in order, or may be mixed and dissolved and adsorbed.
  • the dye when the dye is supported on the thin film of the oxide semiconductor fine particles, it is preferable to support the dye in the presence of the inclusion compound in order to prevent the dyes from bonding.
  • the inclusion compound include deoxycholic acid, dehydrodeoxycholic acid, kenodeoxycholic acid, cholic acid methyl ester, and cholic acid such as sodium cholate, steroid-based compounds such as polyethylene oxide and cholic acid, crown ether, cyclodextrin, and calix arene, Polyethylene oxide and the like can be used.
  • the semiconductor electrode surface can be treated with an amine compound such as 4-t-butyl pyridine or a compound having an acidic group such as acetic acid or propionic acid.
  • an amine compound such as 4-t-butyl pyridine
  • a compound having an acidic group such as acetic acid or propionic acid.
  • a treatment method for example, a method of dipping a substrate provided with a thin film of semiconductor fine particles in which a dye is supported in an amine ethanol solution may be used.
  • the present invention provides a dye-sensitized solar cell comprising the dye-sensitized photoelectric conversion device, using a dye-sensitized photoelectric conversion device using the oxide semiconductor fine particles carrying the dye represented by the formula (1)
  • conventional methods for manufacturing a solar cell using a conventional photoelectric conversion device may be applied, and, as a specific example, a photoelectric conversion device electrode (cathode) and a counter electrode supporting the dye represented by Formula 1 on the oxide semiconductor fine particles. (Anode), a redox electrolyte, a hole transport material, a p-type semiconductor, or the like.
  • one example of a specific method of manufacturing a dye-sensitized solar cell of the present invention is the step of coating a titanium oxide paste on a conductive transparent substrate, baking the substrate coated with a paste to form a titanium oxide thin film, titanium oxide thin film Impregnating the formed substrate into a mixed solution in which the dye represented by Chemical Formula 1 is dissolved to form a titanium oxide film electrode on which the dye is adsorbed, and providing a second glass substrate having a counter electrode formed thereon.
  • Forming a hole penetrating a glass substrate and a counter electrode placing a thermoplastic polymer film between the counter electrode and the dye-adsorbed titanium oxide film electrode, and performing a heat compression process to perform the counter electrode and titanium oxide. Bonding a film electrode to the thermoplastic polymer film between the counter electrode and the titanium oxide film electrode through the hole; Implanting be and can be prepared through the step of sealing the thermoplastic polymer.
  • Redox electrolytes, hole transport materials, p-type semiconductors, and the like may be in the form of liquids, coagulants (gels and gels), solids, and the like.
  • liquids redox electrolytes, dissolved salts, hole transport materials, p-type semiconductors, and the like are dissolved in a solvent, and at room temperature, dissolved salts, etc., in the case of coagulation bodies (gels and gels), these are polymer matrices or low molecular gelling agents. What was contained in etc. can be mentioned, respectively.
  • a redox electrolyte, a dissolved salt, a hole transport material, a p-type semiconductor, or the like can be used as the solid.
  • the hole transport material examples include an amine derivative, a conductive polymer such as polyacetylene, polyaniline, and polythiophene, and an object using a discotech liquid crystal phase such as triphenylene-based compound.
  • a conductive polymer such as polyacetylene, polyaniline, and polythiophene
  • an object using a discotech liquid crystal phase such as triphenylene-based compound.
  • CuI, CuSCN, etc. can be used as a p-type semiconductor.
  • the counter electrode has conductivity and catalyzes the reduction reaction of the redox electrolyte.
  • platinum, carbon, rhodium, ruthenium, or the like deposited on glass or a polymer film, or coated with conductive fine particles can be used.
  • a halogen redox electrolyte composed of a halogen compound having a halogen ion as a large ion and a halogen molecule, a ferrocyanate-ferrocyanate, a ferrocene-ferricinium ion, a cobalt complex and the like
  • Metal redox-based electrolytes such as metal complexes, organic redox-based electrolytes such as alkylthiol-alkyldisulfides, viologen dyes, and hydroquinone-quinones, and the like, and halogen redox-based electrolytes are preferable.
  • halogen molecule in a halogen redox electrolyte composed of halogen compound-halogen molecules an iodine molecule is preferable.
  • a halogen compound having a halogen ion as a large ion halogenated metal salts such as LiI, NaI, KI, CaI2, MgI2 and CuI, or organic ammonium salts of halogen such as tetraalkylammonium iodine, imidazolium iodine and pyridium iodine, or I2 Can be used.
  • an electrochemically inert one may be used as the solvent.
  • an electrochemically inert one may be used as the solvent.
  • Specific examples include acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxy propionitrile, methoxy acetonitrile, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, butyrolactone, dimethoxyethane, dimethyl carbonate, 1,3-dioxolane, methylformate, 2-methyltetrahydrofuran, 3-methoxy-oxazolidin-2-one, sulfolane, tetrahydrofuran, water, and the like, in particular acetonitrile, Propylene carbonate, ethylene carbonate, 3-methoxy propionitrile, ethylene glycol, 3-methoxy-oxazolidin-2-one, butyrolactone and the like are preferable.
  • the solvents may be used alone or in combination.
  • a gel positive electrolyte one containing an electrolyte or an electrolyte solution in a matrix such as an oligomer and a polymer, or one containing an electrolyte or an electrolyte solution in the same manner as a starch gelling agent can be used.
  • the concentration of the redox electrolyte is preferably 0.01 to 99% by weight, more preferably 0.1 to 30% by weight.
  • a counter electrode anode
  • a photoelectric conversion element cathode
  • a solution containing a redox electrolyte is filled therebetween.
  • 5-bromo-7- (5- (4- (2,2-diphenylvinyl) phenyl) -4-hexylthiophen-2-yl) -2 obtained by extracting the organic layer with methylene chloride and water and then distilling it out.
  • N- (4- (5- (7-bromo-2,3-dihydrothieno [3,4-b] [1,4] dioxine-) obtained by extracting the organic layer with methylene chloride and water and then distilling it.
  • a solar cell was manufactured using a 7 or 8 ⁇ m TiO 2 transparent layer.
  • a TiO 2 paste (Solaronix, 13 nm paste) was screen printed to produce a 7O or 8 ⁇ m thick TiO 2 transparent layer. This TiO 2 film was treated with 40 mM TiCl 4 solution and dried at 500 ° C. for 30 minutes.
  • electrolyte solution a solution of 0.6 M 3-hexyl-1,2-dimethylimidazolium iodine, 0.04 M I2, 0.025 M LiI and 0.28 M tert -butylpyridine in acetonitrile was used.
  • the photoelectrochemical characteristics of the solar cells manufactured using the dye compounds 1a, 1b, 1e, and 1f of the present invention are shown in Table 1 below.
  • the photoelectrochemical characteristics of the solar cell were measured using a Keithley M 236 source measuring device, and a 300 W Xe lamp equipped with an AM 1.5 filter (Oriel) was used as the light source, and the electrode size was 0.4 ⁇ 0.4 cm 2 .
  • the intensity was 1 sun (100 mW / cm 2 ).
  • Light intensity was adjusted using a Si solar cell.
  • Jsc represents a short-circuit photocurrent density
  • Voc represents an open circuit photovoltage
  • FF represents a fill factor
  • the dye compound of the present invention is used in a dye-sensitized solar cell (DSSC) to exhibit an improved molar absorption coefficient, Jsc (single-circuit photocurrent density) and photovoltaic conversion efficiency than conventional dyes, thereby greatly improving the efficiency of the solar cell, and high cost. Purification is possible without the use of a column, which can significantly lower the cost of dye synthesis.
  • DSSC dye-sensitized solar cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 신규한 유기염료 및 이의 제조방법에 관한 것으로, 본 발명의 염료 화합물은 염료감응태양전지(dye-sensitized solar cell, DSSC)에 사용되어 종래의 염료보다 향상된 몰흡광계수, Jsc(단회로 광전류 밀도) 및 광전기 변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있고, 고가의 칼럼을 사용하지 않고도 정제가 가능하여 염료 합성단가를 획기적으로 낮출 수 있다.

Description

신규한 유기염료 및 이의 제조방법
본 발명은 염료감응태양전지(dye-sensitized solar cell, DSSC)에 사용되는, 신규한 유기염료 및 이의 제조방법에 관한 것이다.
1991년도 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael Gratzel) 연구팀에 의해 염료감응 나노입자 산화티타늄 태양전지가 개발된 이후 이 분야에 관한 많은 연구가 진행되고 있다. 염료감응태양전지는 기존의 실리콘계 태양전지에 비해 효율이 높고 제조단가가 현저히 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성을 가지고 있으며, 실리콘 태양전지와 달리 염료감응태양전지는 가시광선을 흡수하여 전자-홀(hole) 쌍을 생성할 수 있는 염료분자와, 생성된 전자를 전달하는 전이금속 산화물을 주 구성 재료로 하는 광전기화학적 태양전지이다.
염료감응태양전지에 사용되는 염료로서 높은 광전기 전환효율을 나타내는 루테늄 금속 착체가 널리 사용되어 왔는데, 이 루테늄 금속 착체는 가격이 너무 비싸다는 단점이 있었다.
최근, 흡광효율, 산화환원 반응 안정성 및 분자내 전하-전달(charge-transfer, CT)계 흡수의 측면에서 우수한 물성을 나타내는, 금속을 함유하지 않은 유기염료가, 고가의 루테늄 금속 착체를 대체할 수 있는 태양전지용 염료로서 사용될 수 있음이 발견되어, 금속이 결여된 유기염료에 대한 연구가 중점적으로 이루어지고 있다.
유기염료는 일반적으로 π-결합 유닛에 의해 연결되는 전자 공여체(electron donor)-전자 수용체(electron acceptor) 잔기의 구조를 갖는다. 대부분의 유기염료에서, 아민 유도체가 전자 공여체의 역할을 하고, 2-시아노아크릴산 또는 로다닌 잔기가 전자 수용체의 역할을 하며, 이 두 부위는 메타인 유닛 또는 티오펜 체인과 같은 π-결합 시스템에 의해 연결된다.
일반적으로, 전자 공여체인 아민 유닛의 구조적 변화는 전자 특성의 변화, 예를 들어 청색 쪽으로 쉬프트(shift)된 흡광 스펙트럼을 가져오고, π-결합 길이를 변화시켜 흡광 스펙트럼과 산화환원 전위(redox potential)를 조절할 수 있다.
그러나, 이제까지 알려진 대부분의 유기염료는 루테늄 금속 착체 염료에 비해 낮은 변환효율과 낮은 구동 안정성을 나타내므로, 이러한 전자 공여체와 수용체의 종류 또는 π-결합 길이를 변화시킴으로써, 기존의 유기염료 화합물들에 비해 향상된 몰흡광계수를 가지며 높은 광전기 변환효율을 나타내는 새로운 염료를 개발하려는 노력이 지속되고 있는 실정이다.
따라서, 본 발명은 종래의 염료보다 향상된 몰흡광계수 및 광전기 변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있는 유기염료 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 염료를 포함하여 현저히 향상된 광전기 변환효율을 나타내며, Jsc(단회로 광전류 밀도, short circuit photocurrent density)와 몰흡광계수가 우수한 염료증감 광전변환소자, 및 효율이 현저히 향상된 태양전지를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 유기염료를 제공한다.
[화학식 1]
Figure PCTKR2009003500-appb-I000001
상기 식에서,
R1은 또는
Figure PCTKR2009003500-appb-I000003
이고, 상기 X 및 Y는 각각 독립적으로 수소 또는 C1-6 알킬이며;
R2 내지 R5는 각각 독립적으로 수소, 치환되거나 치환되지 않은 C1-30 알킬 또는 C1-30 알콕시이고;
Ar은 하나 이상의 C1-30의 알킬, C1-30의 알콕시, 할로겐, 아미드, 시아노, 하이드록실, 니트로, 아실, C6-30의 아릴 또는 헤테로아릴기로 치환되거나 치환되지 않은 C6-50의 아릴, 또는 헤테로아릴이며, 바람직하게는
Figure PCTKR2009003500-appb-I000004
,
Figure PCTKR2009003500-appb-I000005
이고(* 부분이 결합부분이다);
Z 및 Z'는 각각 독립적으로 C1-6 알킬이고;
n은 1 내지 10의 정수이고;
m 및 m'는 각각 독립적으로 0 내지 5의 정수이되, m과 m' 둘 다 동시에 0은 아니며, 바람직하게는 1 또는 2이다.
또한 본 발명은
(1) 하기 화학식 2의 화합물을 하기 화학식 3의 화합물과 스즈끼(Suzuki) 커플링 반응시켜 하기 화학식 4의 화합물을 제조하고,
(2) 화학식 4의 화합물을 유기용매 중에서 POCl3와 반응시켜 하기 화학식 5의 화합물을 제조하고,
(3) 화학식 5의 화합물을 CH3CN 중에서 피페리딘 존재 하에서 시아노아세트산 또는 하기 화학식 6의 화합물과 반응시키는 것을 포함하는
화학식 1-1로 표시되는 염료(m'가 0인 경우)의 제조방법을 제공한다.
[화학식 1-1]
Figure PCTKR2009003500-appb-I000006
[화학식 2]
Figure PCTKR2009003500-appb-I000007
[화학식 3]
Figure PCTKR2009003500-appb-I000008
[화학식 4]
Figure PCTKR2009003500-appb-I000009
[화학식 5]
Figure PCTKR2009003500-appb-I000010
[화학식 6]
Figure PCTKR2009003500-appb-I000011
상기 식에서, X, Y, R1 내지 R5, Ar, Z, m 및 n은 상기에서 정의한 바와 같다.
또한 본 발명은
(i) 하기 화학식 2의 화합물을 하기 화학식 3의 화합물과 스즈끼 커플링 반응시켜 하기 화학식 4의 화합물을 제조하고,
(ii) 화학식 4의 화합물을 유기용매 중에서 N-브로모스티렌과 반응시켜 하기 화학식 7의 화합물을 제조하고,
(iii) 화학식 7의 화합물을 하기 화학식 8의 화합물과 스즈끼 커플링 반응시켜 하기 화학식 9의 화합물을 제조하고,
(iv) 화학식 9의 화합물을 유기용매 중에서 POCl3와 반응시켜 하기 화학식 10의 화합물을 제조하고,
(v) 화학식 10의 화합물을 CH3CN 중에서 피페리딘 존재 하에서 시아노아세트산 또는 하기 화학식 6의 화합물과 반응시키는 것을 포함하는
화학식 1-2로 표시되는 염료(m'가 0이 아닌 경우)의 제조방법을 제공한다.
[화학식 1-2]
Figure PCTKR2009003500-appb-I000012
[화학식 2]
Figure PCTKR2009003500-appb-I000013
[화학식 3]
Figure PCTKR2009003500-appb-I000014
[화학식 4]
Figure PCTKR2009003500-appb-I000015
[화학식 7]
Figure PCTKR2009003500-appb-I000016
[화학식 8]
Figure PCTKR2009003500-appb-I000017
[화학식 9]
Figure PCTKR2009003500-appb-I000018
[화학식 10]
Figure PCTKR2009003500-appb-I000019
[화학식 6]
Figure PCTKR2009003500-appb-I000020
상기 식에서, X, Y, R1 내지 R5, Ar, Z, Z', m 및 n은 상기에서 정의한 바와 같고,
a는 1 내지 5의 정수이며, 바람직하게는 1 또는 2이다.
또한 본 발명은 상기 화학식 1로 표시되는 화합물을 담지시킨 산화물 반도체 미립자를 포함하는 것을 특징으로 하는 염료증감 광전변환소자를 제공한다.
또한 본 발명은 상기 염료증감 광전변환소자를 포함하는 것을 특징으로 하는 염료감응태양전지를 제공한다.
본 발명의 염료 화합물은 염료감응태양전지(DSSC)에 사용되어 종래의 염료보다 향상된 몰흡광계수, Jsc(단회로 광전류 밀도) 및 광전기 변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있고, 고가의 칼럼을 사용하지 않고도 정제가 가능하여 염료 합성단가를 획기적으로 낮출 수 있다.
본 발명자들은, 2,3-다이하이드로티에노[3,4-b][1,4]다이옥신을 사용하고, 중간 연결부분에는 몰흡광계수를 증가시키고 소자의 안정성을 증가시키기 위한 티오펜 유닛을 도입하고, TiO2 개질에 잘 연결되어 전자 운반능력이 가장 좋은 시아노아크릴산을 전자 수용체로 사용하는, 새로운 유기염료 구조를 갖는 화학식 1로 표시되는 화합물을 산화물 반도체 미립자에 담지시켜 염료감응태양전지를 제조할 경우 광전기 변환효율, Jsc(단회로 광전류 밀도) 및 몰흡광계수가 높아 기존 염료감응태양전지보다 우수한 효율을 나타냄을 확인하고 본 발명을 완성하게 되었다.
본 발명의 유기염료는 하기 화학식 1로 표시되는 것을 특징으로 하며, 바람직하게는 하기 화학식 1a 내지 1x의 구조를 갖는다.
[화학식 1]
Figure PCTKR2009003500-appb-I000021
[화학식 1a]
Figure PCTKR2009003500-appb-I000022
[화학식 1b]
Figure PCTKR2009003500-appb-I000023
[화학식 1c]
Figure PCTKR2009003500-appb-I000024
[화학식 1d]
Figure PCTKR2009003500-appb-I000025
[화학식 1e]
Figure PCTKR2009003500-appb-I000026
[화학식 1f]
Figure PCTKR2009003500-appb-I000027
[화학식 1g]
Figure PCTKR2009003500-appb-I000028
[화학식 1h]
Figure PCTKR2009003500-appb-I000029
[화학식 1i]
Figure PCTKR2009003500-appb-I000030
[화학식 1j]
Figure PCTKR2009003500-appb-I000031
[화학식 1k]
Figure PCTKR2009003500-appb-I000032
[화학식 1l]
Figure PCTKR2009003500-appb-I000033
[화학식 1m]
Figure PCTKR2009003500-appb-I000034
[화학식 1n]
Figure PCTKR2009003500-appb-I000035
[화학식 1o]
Figure PCTKR2009003500-appb-I000036
[화학식 1p]
Figure PCTKR2009003500-appb-I000037
[화학식 1q]
Figure PCTKR2009003500-appb-I000038
[화학식 1r]
Figure PCTKR2009003500-appb-I000039
[화학식 1s]
Figure PCTKR2009003500-appb-I000040
[화학식 1t]
Figure PCTKR2009003500-appb-I000041
[화학식 1u]
Figure PCTKR2009003500-appb-I000042
[화학식 1v]
Figure PCTKR2009003500-appb-I000043
[화학식 1w]
Figure PCTKR2009003500-appb-I000044
[화학식 1x]
Figure PCTKR2009003500-appb-I000045
상기 식에서, R1 내지 R5, Ar, Z, Z', m, n 및 m'은 상기에서 정의한 바와 같다.
또한 본 발명은 m'가 0인 상기 화학식 1-1로 표시되는 염료의 제조방법을 제공하는 바, 화학식 1-1로 표시되는 염료는 (1) 하기 화학식 2의 화합물을 하기 화학식 3의 화합물과 스즈끼 커플링 반응시켜 하기 화학식 4의 화합물을 제조하고, (2) 화학식 4의 화합물을 유기용매(예: 디메틸포름아미드) 중에서 POCl3와 반응시켜 하기 화학식 5의 화합물을 제조하고, (3) 화학식 5의 화합물을 CH3CN 중에서 피페리딘 존재 하에서 시아노아세트산 또는 하기 화학식 6의 화합물과 반응시킴으로써 제조될 수 있다. 그 구체적인 일례는 하기 반응식 1 내지 4로서 나타낼 수 있다 (반응식 1: 화학식 1a의 화합물, 반응식 2: 화학식 1b의 화합물, 반응식 3: 화학식 1e의 화합물, 반응식 4: 화학식 1f의 화합물).
[화학식 2]
[화학식 3]
Figure PCTKR2009003500-appb-I000047
[화학식 4]
Figure PCTKR2009003500-appb-I000048
[화학식 5]
Figure PCTKR2009003500-appb-I000049
[화학식 6]
Figure PCTKR2009003500-appb-I000050
[반응식 1]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-1
[반응식 2]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-2
[반응식 3]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-3
[반응식 4]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-4
상기 식에서, R2 내지 R5, X, Y, Ar, Z, m 및 n은 상기에서 정의한 바와 같다.
또한 본 발명은 m'가 0이 아닌 상기 화학식 1-2로 표시되는 염료의 제조방법을 제공하는 바, 화학식 1-2로 표시되는 염료는 (i) 하기 화학식 2의 화합물을 하기 화학식 3의 화합물과 스즈끼 커플링 반응시켜 하기 화학식 4의 화합물을 제조하고, (ii) 화학식 4의 화합물을 유기용매(예: 테트라히드로퓨란) 중에서 N-브로모스티렌과 반응시켜 하기 화학식 7의 화합물을 제조하고, (iii) 화학식 7의 화합물을 하기 화학식 8의 화합물과 스즈끼 커플링 반응시켜 하기 화학식 9의 화합물을 제조하고, (iv) 화학식 9의 화합물을 유기용매(예: 디메틸포름아미드) 중에서 POCl3와 반응시켜 하기 화학식 10의 화합물을 제조하고, (v) 화학식 10의 화합물을 CH3CN 중에서 피페리딘 존재 하에서 시아노아세트산 또는 하기 화학식 6의 화합물과 반응시킴으로써 제조될 수 있다. 그 구체적인 일례는 하기 반응식 5 내지 10으로서 나타낼 수 있다 (반응식 5: 화학식 1n의 화합물, 반응식 6: 화학식 1r의 화합물, 반응식 7: 화학식 1q의 화합물, 반응식 8: 화학식 1m의 화합물, 반응식 9: 화학식 1w의 화합물, 반응식 10: 화학식 1u의 화합물).
[화학식 2]
Figure PCTKR2009003500-appb-I000055
[화학식 3]
Figure PCTKR2009003500-appb-I000056
[화학식 4]
Figure PCTKR2009003500-appb-I000057
[화학식 7]
Figure PCTKR2009003500-appb-I000058
[화학식 8]
Figure PCTKR2009003500-appb-I000059
[화학식 9]
Figure PCTKR2009003500-appb-I000060
[화학식 10]
Figure PCTKR2009003500-appb-I000061
[화학식 6]
Figure PCTKR2009003500-appb-I000062
[반응식 5]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-5
[반응식 6]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-6
[반응식 7]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-7
[반응식 8]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-8
[반응식 9]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-9
[반응식 10]
[규칙 제26조에 의한 보정 15.07.2009] 
Figure WO-DOC-10
상기 식에서, R2 내지 R5, X, Y, Ar, Z, Z', m, n 및 a는 상기에서 정의한 바와 같다.
상기 반응식에 있어서, 화학식 1의 염료의 제조에 출발물질로서 사용되는 화학식 2a, 2b, 2e, 2f, 2n 및 2r, 및 화학식 3의 화합물은 통상적인 방법으로 제조하거나 구입하여 사용할 수 있다.
또한 본 발명은 염료증감 광전변환소자를 제공하는 바, 상기 염료증감 광전변환소자는 산화물 반도체 미립자에 상기 화학식 1로 표시되는 염료를 담지시킨 것을 특징으로 한다. 본 발명은 염료증감 광전변환소자는 상기 화학식 1로 표시되는 염료를 사용하는 것 이외에 종래 염료를 이용하여 태양전지용 염료증감 광전변환소자를 제조하는 방법들이 적용될 수 있음은 물론이며, 바람직하게는 본 발명의 염료증감 광전변환소자는 산화물 반도체 미립자를 이용해서 기판상에 산화물 반도체의 박막을 제조하고, 이어서 상기 박막에 본 발명의 염료를 담지시킨 것이 좋다.
본 발명에서 산화물 반도체의 박막을 설치하는 기판으로서는 그 표면이 도전성인 것이 바람직하며, 시중에서 판매되는 것을 사용할 수도 있다. 구체적인 일예로 글라스의 표면 또는 폴리에틸렌테레프탈레이트 혹은 폴리에테르설폰 등의 투명성이 있는 고분자 재료의 표면에 인듐, 불소, 안티몬을 도포한 산화주석 등의 도전성 금속산화물이나 강, 은, 금 등의 금속 박막을 형성한 것을 이용할 수 있다. 이때 도전성은 보통 1000 Ω 이하가 바람직하며, 특히 100 Ω 이하의 것이 바람직하다.
또한 산화물 반도체의 미립자로서는 금속산화물이 바람직하다. 구체적인 예로서는 티탄, 주석, 아연, 텅스텐, 지르코늄, 갈륨, 인듐, 이트륨, 니오브, 탄탈, 바나듐 등의 산화물을 사용할 수 있다. 이들 중 티탄, 주석, 아연, 니오브, 인듐 등의 산화물이 바람직하고, 이들 중 산화티탄, 산화아연, 산화주석이 더욱 바람직하며, 산화티탄이 가장 바람직하다. 상기 산화물 반도체는 단독으로 사용할 수도 있지만, 혼합하거나 반도체의 표면에 코팅시켜서 사용할 수도 있다.
또한 상기 산화물 반도체의 미립자의 입경은 평균 입경으로서 1 ∼ 500 nm인 것이 좋으며, 더욱 바람직하게는 1 ∼ 100 nm인 것이 좋다. 또한 이 산화물 반도체의 미립자는 큰 입경의 것과 작은 입경의 것을 혼합하거나, 다층으로 하여 이용할 수도 있다.
상기 산화물 반도체 박막은 산화물 반도체 미립자를 스프레이 분무 등으로 직접 기판상에 박막으로 형성하는 방법, 기판을 전극으로 하여 전기적으로 반도체 미립자 박막을 석출시키는 방법, 반도체 미립자의 슬러리 또는 반도체 알콕사이드 등의 반도체 미립자의 전구체를 가수분해함으로써 얻을 수 있은 미립자를 함유하는 페이스트를 기판상에 도포한 후, 건조, 경화 혹은 소성하는 방법 등에 의해 제조할 수 있으며, 페이스트를 기판상에 도포하는 방법이 바람직하다. 이 방법의 경우, 슬러리는 2차 응집하고 있는 산화물 반도체 미립자를 통상의 방법에 의해 분산매 중에 평균 1차 입경이 1 ∼ 200 nm이 되도록 분산시킴으로써 얻을 수 있다.
슬러리를 분산시키는 분산매로서는 반도체 미립자를 분산시킬 수 있는 것이면 특별히 제한 없이 사용할 수 있으며, 물, 에탄올 등의 알코올, 아세톤, 아세틸아세톤 등의 케톤 또는 헥산 등의 탄화수소를 이용할 수 있고, 이것들은 혼합해서 사용할 수 있고, 이 중 물을 이용하는 것이 슬러리의 점도변화를 적게 한다는 점에서 바람직하다. 또한 산화물 반도체 미립자의 분산 상태를 안정화시킬 목적으로 분산 안정제를 사용할 수 있다. 사용할 수 있는 분산 안정제의 구체적인 예로는 초산, 염산, 질산 등의 산, 또는 아세틸아세톤, 아크릴산, 폴리에틸렌글리콜, 폴리비닐알코올 등을 들 수 있다.
슬러리를 도포한 기판은 소성할 수 있고, 그 소성온도는 100 ℃ 이상, 바람직하게는 200 ℃ 이상이고, 또 상한은 대체로 기재의 융점(연화점) 이하로서 통상 상한은 900 ℃이며, 바람직하게는 600 ℃ 이하이다. 본 발명에서 소성시간은 특별하게 한정되지 않지만, 대체로 4시간 이내가 바람직하다.
본 발명에서 기판상의 박막의 두께는 1 ∼ 200 ㎛인 것이 적합하며, 바람직하게는 1 ∼ 50 ㎛이다. 소성을 실시하는 경우 산화물 반도체 미립자의 박층이 일부 용착하지만, 그러한 용착은 본 발명을 위해서는 특별하게 지장은 없다.
또한 상기 산화물 반도체 박막에 2차 처리를 실시할 수도 있다. 일 예로 반도체와 동일한 금속의 알콕사이드, 염화물, 질소화물, 황화물 등의 용액에 직접, 기판별로 박막을 침적시켜서 건조 혹은 재소성 함으로써 반도체 박막의 성능을 향상시킬 수도 있다. 금속 알콕사이드로서는 티탄에톡사이드, 티탄니움이소프로에폭사이드, 티탄 t-부톡사이드, n-디부틸-디아세틸 주석 등을 들 수 있고, 그것들의 알코올 용액을 이용할 수 있다. 염화물로서는 예를 들면 4염화 티탄, 사염화주석, 염화아연 등을 들 수 있고, 그 수용액을 이용할 수 있다. 이렇게 하여 수득된 산화물 반도체 박막은 산화물 반도체의 미립자로 이루어져 있다.
또한 본 발명에서 박막 상으로 형성된 산화물 반도체 미립자에 염료를 담지시키는 방법은 특별히 한정되지 않으며, 구체적인 예로서 상기 화학식 1로 표시되는 염료를 용해할 수 있는 용매로 용해해서 얻은 용액, 또는 염료를 분산시켜서 얻은 분산액에 상기 산화물 반도체 박막이 설치된 기판을 침지시키는 방법을 들 수 있다. 용액 또는 분산액 중의 농도는 염료에 의해 적당하게 결정할 수 있다. 침적시간은 대체로 상온에서 용매의 비점까지이고, 또 침적시간은 1분에서 48시간 정도이다. 염료를 용해시키는데 사용할 수 있는 용매의 구체적인 예로는 메탄올, 에탄올, 아세토니트릴, 디메틸설폭사이드, 디메틸포름아미드, 아세톤, t-부탄올 등을 들 수 있다. 용액의 염료 농도는 보통 1× 10-6 M ∼ 1 M이 적합하고, 바람직하게는 1× 10-5 M ∼ 1× 10-1 M 일 수 있다. 이렇게 해서 염료로 증감된 박막 상의 산화물 반도체 미립자를 가진 본 발명의 광전변환소자를 얻을 수 있다.
본 발명에서 담지하는 화학식 1의 표시되는 염료는 1종류일 수도 있고, 수 종류 혼합할 수도 있다. 또한 혼합하는 경우에는 본 발명의 염료와 함께 다른 염료나 금속 착체 염료를 혼합할 수 있다. 혼합할 수 있는 금속 착체 염료의 예는 특별하게 제한되지 않지만, 루테늄 착체나 그 4급염, 프탈로시아닌, 포르피린 등이 바람직하고, 혼합 이용하는 유기염료로는 무금속의 프탈로시아닌, 포르피린이나 시아닌, 메로시아닌, 옥소놀, 트리페닐메탄계, WO2002/011213호에 제시되는 아크릴산계 염료 등의 메틴계 염료나, 크산텐계, 아조계, 안트라퀴논계, 페릴렌계 등의 염료를 들 수 있다(문헌[M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, M.Gratzel, J. Am. Chem. Soc., 제115권, 6382쪽(1993년)] 참조). 염료를 2종 이상 이용하는 경우에는 염료를 반도체 박막에 차례로 흡착시킬 수도, 혼합 용해해서 흡착시킬 수도 있다.
또한 본 발명에서 산화물 반도체 미립자의 박막에 염료를 담지할 때, 염료끼리의 결합을 방지하기 위해서 포섭 화합물의 존재하에서 염료를 담지하는 것이 좋다. 상기 포섭화합물로서는 데옥시콜산, 데히드로데옥시콜산, 케노데옥시콜산, 콜산메틸에스테르, 콜산나트륨 등의 콜산류, 폴리에틸렌옥사이드, 콜산 등의 스테로이드계 화합물, 크라운에테르, 사이클로덱스트린, 캘릭스아렌, 폴리에틸렌옥사이드 등을 사용할 수 있다.
또한, 염료를 담지시킨 후, 4-t-부틸 피리딘 등의 아민 화합물이나 초산, 프로피온산 등의 산성기를 가지는 화합물 등으로 반도체 전극표면을 처리할 수 있다. 처리방법은 예를 들면 아민의 에탄올 용액에 염료를 담지한 반도체 미립자 박막이 설치된 기판을 담그는 방법 등이 사용될 수 있다.
또한 본 발명은 상기 염료감응 광전변환소자를 포함하는 것을 특징으로 하는 염료감응태양전지를 제공하는 바, 상기 화학식 1로 표시되는 염료를 담지시킨 산화물 반도체 미립자를 이용한 염료증감 광전변환소자를 사용하는 것 이외에 종래 광전변환소자를 사용하여 태양전지를 제조하는 통상의 방법들이 적용될 수 있음은 물론이며, 구체적인 예로 상기 산화물 반도체 미립자에 화학식 1로 표시되는 염료를 담지시킨 광전변환소자 전극(음극), 대전극(양극), 산화환원 전해질, 정공수송 재료 또는 p형 반도체 등으로 구성될 수 있다.
바람직하게는, 본 발명의 염료감응태양전지의 구체적인 제조방법의 일예로는 전도성 투명 기판 위에 산화티타늄 페이스트를 코팅하는 단계, 페이스트가 코팅된 기판을 소성하여 산화티타늄 박막을 형성하는 단계, 산화티타늄 박막이 형성된 기판을 화학식 1로 표시되는 염료가 용해된 혼합용액에 함침시켜 염료가 흡착된 산화티타늄 필름 전극을 형성하는 단계, 그 상부에 대전극이 형성된 제2의 유리기판을 구비하는 단계, 제2 유리기판 및 대전극을 관통하는 홀(hole)을 형성하는 단계, 상기 대전극 및 상기 염료가 흡착된 산화티타늄 필름 전극 사이에 열가소성 고분자 필름을 두고, 가열 압착 공정을 실시하여 상기 대전극 및 산화티타늄 필름전극을 접합시키는 단계, 상기 홀을 통하여 대전극과 산화티타늄 필름 전극 사이의 열가소성 고분자 필름에 전해질을 주입하는 단계 및 상기 열가소성 고분자를 실링하는 단계를 통하여 제조될 수 있다.
산화환원 전해질, 정공수송 재료, p형 반도체 등의 형태는 액체, 응고체(겔 및 겔상), 고체 등 일 수 있다. 액상의 것으로서는 산화환원 전해질, 용해염, 정공수송재료, p형 반도체 등을 각각 용매에 용해시킨 것이나 상온 용해염 등이, 응고체(겔 및 겔상)의 경우에는 이것들을 폴리머 매트릭스나 저분자 겔화제 등에 함유시킨 것 등을 각각 들 수 있다. 고체의 것으로서는 산화환원 전해질, 용해염, 정공수송재료, p형 반도체 등을 사용할 수 있다.
정공수송 재료로서는 아민 유도체나 폴리아세티틸렌, 폴리아닐린, 폴리티오펜 등의 도전성 고분자, 트리페닐렌계 화합물 등의 디스코테크 액정상을 이용하는 물건 등을 사용할 수 있다. 또한 p형 반도체로서는 CuI, CuSCN 등을 사용할 수 있다. 대전극으로는 도전성을 가지고 있으며, 산화환원 전해질의 환원 반응을 촉매적으로 작용하는 것이 바람직하다. 예를 들면, 글라스 또는 고분자 필름에 백금, 카본, 로듐, 루테늄 등을 증착하거나, 도전성 미립자를 도포한 것을 사용할 수 있다.
본 발명의 태양전지에 이용하는 산화환원 전해질로서는 할로겐 이온을 대이온으로 하는 할로겐 화합물 및 할로겐 분자로 구성되는 할로겐 산화환원계 전해질, 페로시안산염-페로시안산염이나 페로센-페리시늄 이온, 코발트 착체 등의 금속착체 등의 금속 산화환원계 전해질, 알킬티올-알킬디설피드, 비올로겐 염료, 하이드로퀴논-퀴논 등의 유기산화 환원계 전해질 등을 사용할 수 있으며, 할로겐 산화환원계 전해질이 바람직하다. 할로겐 화합물-할로겐 분자로 구성되는 할로겐 산화환원계 전해질에 있어서의 할로겐 분자로서는 요오드 분자가 바람직하다. 또한 할로겐 이온을 대이온으로 하는 할로겐 화합물로서는 LiI, NaI, KI, CaI2, MgI2, CuI 등의 할로겐화 금속염, 또는 테트라알킬암모늄요오드, 이미다졸리움요오드, 피리디움요오드 등의 할로겐의 유기 암모늄염, 또는 I2를 사용할 수 있다.
또한 산화환원 전해질은 이를 포함하는 용액의 형태로 구성되어 있는 경우, 그 용매로는 전기 화학적으로 불활성인 것을 사용할 수 있다. 구체적인 예로서 아세토니트릴, 프로필렌카보네이트, 에틸렌카보네이트, 3-메톡시프로피오니트릴, 메톡시아세토니트릴, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 부틸로락톤, 디메톡시에탄, 디메틸카보네이트, 1,3-디옥소란, 메틸포르메이트, 2-메틸테트라하이드로퓨란, 3-메톡시-옥사졸리딘-2-온, 설포란, 테트라하이드로퓨란, 물 등을 들 수 있으며, 특히 아세토니트릴, 프로필렌카보네이트, 에틸렌카보네이트, 3-메톡시프로피오니트릴, 에틸렌글리콜, 3-메톡시-옥사졸리딘-2-온, 부틸로락톤 등이 바람직하다. 상기 용매들은 1종 또는 혼합해서 사용할 수 있다. 겔상 양전해질의 경우에는 올리고머 및 폴리머 등의 매트릭스에 전해질 또는 전해질 용액을 함유시킨 것이나, 전분자 겔화제 등에 동일하게 전해질 또는 전해질 용액을 함유시킨 것을 사용할 수 있다. 산화환원 전해질의 농도는 0.01 - 99 중량%인 것이 좋으며, 0.1 - 30 중량%인 것이 더욱 바람직하다.
본 발명의 태양전지는 기판상의 산화물 반도체 미립자에 염료를 담지한 광전변환소자(음극)에 그것과 대치하도록 대전극(양극)을 배치하고 그 사이에 산화환원 전해질을 함유하는 용액을 충전하는 것에 의하여 얻어질 수 있다.
[실시예]
염료의 합성
모든 반응은 아르곤 분위기에서 진행되었고, 용매는 시그마-알드리치(Sigma-Adrich)사에서 구입한 적합한 시약으로 증류되었다. 1H NMR 스펙트럼은 Varian Mercury 300 스펙트로미터로 측정하였다. 흡광 및 발광스펙트럼은 각각 Perkin-Elmer Lambda 2S UV-visible 스펙트로미터 및 Perkin LS 형광 스펙트로미터로 측정하였다.
[실시예 1] 화학식 1a의 화합물의 합성
(1-1) (2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)트리메틸스태난 (0.40g 1.34mmol), 화학식 2a의 화합물 (0.75g, 1.12mmol), Pd(PPh3)4 (0.065g, 0.056mmol)을 THF (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 4a의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.71(m, 2H), 6.96(s, 1H), 7.08(s, 1H), 7.18(m, 4H), 7.38(m, 2H), 7.45(m, 6H), 7.55(d, 3JHH = 8.8Hz, 2H).
(1-2) 화학식 4a의 화합물 (0.87g, 1.2mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 5a의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.71(m, 2H), 7.08(s, 1H), 7.18(m, 4H), 7.38(m, 2H), 7.45(m, 6H), 7.53(d, 3JHH = 8.8Hz, 2H), 9.54(s, 1H).
(1-3) 화학식 5a의 화합물 (0.58g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1a의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.98(m, 2H), 7.08(s, 1H), 7.2(m, 4H), 7.39(m, 2H), 7.42(m, 6H), 7.53(d, 3JHH = 8.8Hz, 2H), 11.48(s, 1H).
[실시예 2] 화학식 1b의 화합물의 합성
(2-1) (2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)트리메틸스태난 (0.40g 1.34mmol), 화학식 2b의 화합물 (1g, 1.12mmol), Pd(PPh3)4 (0.065g, 0.056mmol)을 THF (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 4b의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.91(s, 1H), 6.96(s, 1H), 7.08(s, 1H), 7.18(m, 6H), 7.38(m, 6H), 7.55(m, 4H), 7.82(d, 3JHH = 8.8Hz, 2H).
(2-2) 화학식 4b의 화합물 (1.14g, 1.2mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 5b의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.93(s, 1H), 7.08(s, 1H), 7.18(m, 6H), 7.38(m, 6H), 7.55(m, 4H), 7.82(d, 3JHH = 8.8Hz, 2H), 9.51(s, 1H).
(2-3) 화학식 5b의 화합물 (0.75g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1b의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.98(m, 2H), 7.08(s, 1H), 7.15(m, 6H), 7.32(m, 6H), 7.55(m, 4H), 7.80 (d, 3JHH = 8.8Hz, 2H), 11.51(s, 1H).
[실시예 3] 화학식 1e의 화합물의 합성
(3-1) (2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)트리메틸스태난 (0.40g 1.34mmol), 5-브로모-2-(4-(2,2-디페닐비닐)페닐)-3-헥실티오펜(화학식 2e의 화합물) (0.67g, 1.34mmol), Pd(PPh3)4 (0.065g, 0.056mmol)을 THF (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 4e의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.88(m, 3H), 1.29(m, 2H), 1.86(m, 2H), 2.55(m, 4H), 2.62(m, 2H), 4.68(s, 2H), 4.71(s, 2H), 6.71(s, 1H), 6.96(s, 1H), 7.08(s, 1H), 7.18(m, 4H), 7.38(m, 2H), 7.45(m, 6H), 7.55(d, 3JHH = 8.8Hz, 2H).
(3-2) 화학식 4e의 화합물 (1.14g, 1.2mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 5e의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.92(m, 3H), 1.31(m, 2H), 1.86(m, 2H), 2.58(m, 4H), 2.65(m, 2H), 4.68(s, 2H), 4.73(s, 2H), 6.71(s, 1H), 6.96(s, 1H), 7.18(m, 4H), 7.42(m, 2H), 7.48(m, 6H), 7.55(d, 3JHH = 8.8Hz, 2H), 9.56(s, 1H).
(3-3) 화학식 5e의 화합물 (0.75g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1e의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 3H), 1.29(m, 2H), 1.96(m, 2H), 2.55(m, 4H), 2.62(m, 2H), 4.68(s, 2H), 4.71(s, 2H), 6.98(m, 2H), 7.08(s, 1H), 7.18(m, 4H), 7.42(m, 2H), 7.51(m, 6H), 7.58(d, 3JHH = 8.8Hz, 2H), 11.54(s, 1H).
[실시예 4] 화학식 1f의 화합물의 합성
(4-1) (2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)트리메틸스태난 (0.40g 1.34mmol), N-(4-(5-브로모-3-헥실티오펜-2-일)페닐)-N-(9,9-디메틸-9H-플루오렌-2-일)-9,9-디메틸-9H-플루오렌-2-아민(화학식 2f의 화합물) (0.97g, 1.34mmol), Pd(PPh3)4 (0.065g, 0.056mmol)을 THF (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 4f의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.89(m, 3H), 1.29(m, 4H), 1.47(s, 12H), 1.52(m, 4H), 2.52(m, 2H), 4.68(s, 2H), 4.71(s, 2H), 6.93 (s, 1H), 6.98(s, 1H), 7.09(m, 4H), 7.31(m, 4H), 7.38(m, 4H), 7.58(d, 3JHH = 11.6Hz, 2H), 7.62.(m, 4H).
(4-2) 화학식 4f의 화합물 (1.14g, 1.2mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 5f의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.89(m, 3H), 1.29(m, 4H), 1.47(s, 12H), 1.52(m, 4H), 2.52(m, 2H), 4.68(s, 2H), 4.71(s, 2H), 6.93 (s, 1H), 7.09(m, 4H), 7.31(m, 4H), 7.38(m, 4H), 7.58(d, 3JHH = 11.6Hz, 2H), 7.62.(m, 4H), 9.51(s, 1H).
(4-3) 화학식 5f의 화합물 (0.75g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1f의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 3H), 1.29(m, 2H), 1.44(s, 12H), 1.96(m, 2H), 2.55(m, 4H), 2.62(m, 2H), 4.68(s, 2H), 4.71(s, 2H), 6.96(s, 1H), 7.08(s, 1H), 7.15(m, 6H), 7.32(m, 6H), 7.55(m, 4H), 7.80 (d, 3JHH = 8.8Hz, 2H), 11.51(s, 1H).
[실시예 5] 화학식 1n의 화합물의 합성
(5-1) (2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)트리메틸스태난 (0.81g 2.66mmol), N-(4-브로모페닐)-N-(9,9-디메틸-9H-플루오렌-2-일)-9,9-디메틸-9H-플루오렌-2-아민 (화학식 2n의 화합물) (1.78g, 3.2mmol), Pd(PPh3)4 (0.15g, 0.13mmol)을 톨루엔 (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 4n의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 1.47(s, 12H), 4.68(s, 2H), 4.71(s, 2H), 6.98(s, 1H), 7.09(m, 4H), 7.31(m, 4H), 7.38(m, 4H), 7.58(d, 3JHH = 11.6Hz, 2H), 7.62.(m, 4H).
(5-2) 화학식 4n의 화합물(N-(4-(2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)페닐)-N-(9,9-디메틸-9H-플루오렌-2-일)-9,9-디메틸-9H-플루오렌-2-아민) (1.84g, 2.98mmol) 및 N-브로모스티렌 (0.64g, 3.57mmol)을 THF 30ml에 녹인 후 질소분위기하에서 교반하였다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하여 얻은 N-(4-(7-브로모-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)페닐)-N-(9,9-디메틸-9H-플루오렌-2-일)-9,9-디메틸-9H-플루오렌-2-아민) (화학식 7n의 화합물) (1.95g, 2.8mmol), 3',4-디헥실-2,2'-바이티오펜-5-일보론산 (0.88g, 2.33mmol), K2CO3 (0.64g, 4.66mmol), Pd(PPh3)4 (0.13g, 0.12mmol)을 DMF (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 9n의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.98(m, 6H), 1.28(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.64(s, 2H), 4.70(s, 2H), 6.92(s, 1H), 6.96(s, 1H), 7.10(s, 1H), 7.18(m, 6H), 7.38(m, 6H), 7.56(m, 4H), 7.84(d, 3JHH = 8.8Hz, 2H).
(5-3) 화학식 9n의 화합물 (N-(4-(7-(3',4-디헥실-2,2'-바이티오펜-5-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)페닐)-N-(9,9-디메틸-9H-플루오렌-2-일)-9,9-디메틸-9H-플루오렌-2-아민)(1.06g, 1.12mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 10n의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.93(s, 1H), 7.08(s, 1H), 7.18(m, 6H), 7.38(m, 6H), 7.55(m, 4H), 7.82(d, 3JHH = 8.8Hz, 2H). 9.54(s, 1H).
(5-4) 화학식 10n의 화합물 (5'-(7-(4-비스(9,9-디메틸-9H-플루오렌-2-일)아미노)페닐)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-3,4'-디헥실-2,2'-바이티오펜-5-카바알데하이드)(0.75g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1n의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.94(m, 6H), 1.28(m, 4H), 1.42(s, 12H), 1.98(m, 4H), 2.56(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.74(s, 2H), 6.98(m, 2H), 7.11(s, 1H), 7.20(m, 6H), 7.34(m, 6H), 7.56(m, 4H), 7.82 (d, 3JHH= 8.8Hz, 2H), 11.54(s, 1H).
[실시예 6] 화학식 1r의 화합물의 합성
(6-1) (2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)트리메틸스태난 (0.81g 2.66mmol), 1-브로모-4-(2,2-디페닐비닐)벤젠 (화학식 2r의 화합물) (1.7g, 3.2mmol), Pd(PPh3)4 (0.15g, 0.13mmol)을 톨루엔 (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 4r의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 4.68(s, 2H), 4.72(s, 2H), 6.71(s, 1H), 6.96(s, 1H), 7.08(s, 1H), 7.18(m, 4H), 7.40(m, 2H), 7.48(m, 6H), 7.56(d, 3JHH = 8.8Hz, 2H).
(6-2) 화학식 4r의 화합물(5-(4-(2,2-디페닐비닐)페닐-2,3-디하이드로티에노[3,4-b][1,4]디옥신) (1.18g, 3.00mmol) 및 N-브로모스티렌 (0.64g, 3.57mmol)을 THF 30ml에 녹인 후 질소분위기하에서 교반하였다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하여 얻은 5-브로모-7-(4-(2,2-디페닐비닐)페닐)-2,3-디하이드로티에노[3,4-b][1,4]디옥신 (화학식 7r의 화합물) (1.33g, 2.8mmol), 3',4-디헥실-2,2'-바이티오펜-5-일보론산 (0.88g, 2.33mmol), K2CO3 (0.64g, 4.66mmol), Pd(PPh3)4 (0.13g, 0.12mmol)을 DMF (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 9r의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.71(m, 2H), 6.96(s, 1H), 7.08(s, 1H), 7.18(m, 4H), 7.38(m, 2H), 7.45(m, 6H), 7.55(d, 3JHH = 8.8Hz, 2H).
(6-3) 화학식 9r의 화합물 (5-(3',4-디헥실-2,2'-바이티오펜-5-일)-7-(4-(2,2-디페닐비닐)페닐)-2,3-디하이드로티에노[3,4-b][1,4]디옥신)(0.87g, 1.2mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 10r의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.72(m, 2H), 7.10(s, 1H), 7.18(m, 4H), 7.38(m, 2H), 7.45(m, 6H), 7.54(d, 3JHH = 8.8Hz, 2H), 9.54(s, 1H).
(6-4) 화학식 10r의 화합물 (5-(7-(4-(2,2-디페닐비닐)페닐)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-3',4-디헥실-2,2'-바이티오펜-5-카바알데하이드)(0.58g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1r의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.98(m, 2H), 7.08(s, 1H), 7.2(m, 4H), 7.39(m, 2H), 7.42(m, 6H), 7.53(d, 3JHH = 8.8Hz, 2H), 11.48(s, 1H).
[실시예 7] 화학식 1q의 화합물의 합성
(7-1) 상기 실시예 6의 (6-2)에서 얻은 화학식 7r의 화합물 (1.2g, 2.52mmol), 3-헥실티오펜-2-일보론산 (0.44g, 2.1mmol), K2CO3 (0.58g, 4.2mmol), Pd(PPh3)4 (0.12g, 0.105mmol)을 DMF (30ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 9r'의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.88(m, 3H), 1.29(m, 2H), 1.86(m, 2H),2.55(m, 4H), 2.62(m, 2H), 4.64(s, 2H), 4.70(s, 2H), 6.72(s, 1H), 6.96(s, 1H), 7.08(s, 1H), 7.18(m, 4H), 7.38(m, 2H), 7.44(m, 6H), 7.54(d, 3JHH = 8.8Hz, 2H).
(7-2) 화학식 9r'의 화합물 (5-(4-(2,2-디페닐비닐)페닐)-7-(3-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신)(0.98g, 1.2mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 10r'의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.88(m, 3H), 1.30(m, 2H), 1.86(m, 2H), 2.58(m, 4H), 2.65(m, 2H), 4.68(s, 2H), 4.73(s, 2H), 6.71(s, 1H), 6.96(s, 1H), 7.18(m, 4H), 7.42(m, 2H), 7.50(m, 6H), 7.56(d, 3JHH = 8.8Hz, 2H), 9.58(s, 1H).
(7-3) 화학식 10r'의 화합물 (5-(7-(4-(2,2-디페닐비닐)페닐)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-4-헥실티오펜-2-카바알데하이드)(0.75g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1q의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.94(m, 3H), 1.29(m, 2H), 1.95(m, 2H), 2.56(m, 4H), 2.64(m, 2H), 4.68(s, 2H), 4.72(s, 2H), 6.98(m, 2H), 7.11(s, 1H), 7.20(m, 4H), 7.42(m, 2H), 7.51(m, 6H), 7.58(d, 3JHH = 8.8Hz, 2H), 11.54(s, 1H).
[실시예 8] 화학식 1m의 화합물의 합성
(8-1) 상기 실시예 5의 (5-2)에서 얻은 화학식 7n의 화합물 (1.92g, 1.34mmol), 3-헥실티오펜-2-일보론산 (0.28g, 1.34mmol), K2CO3 (0.64g, 4.66mmol), Pd(PPh3)4 (0.13g, 0.12mmol)을 DMF (40ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 9n'의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.89(m, 3H), 1.29(m, 4H), 1.47(s, 12H), 1.52(m, 4H), 2.52(m, 2H), 4.68(s, 2H), 4.71(s, 2H), 6.93 (s, 1H), 6.98(s, 1H), 7.09(m, 4H), 7.31(m, 4H), 7.38(m, 4H), 7.58(d, 3JHH = 11.6Hz, 2H), 7.62.(m, 4H).
(8-2) 화학식 9n'의 화합물 (N-(9,9-디메틸-9H-플루오렌-2-일)-N-(4-(7-(3-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)페닐)-9,9-디메틸-9H-플루오렌-2-아민)(0.88g, 1.12mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 10n'의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.89(m, 3H), 1.29(m, 4H), 1.47(s, 12H), 1.52(m, 4H), 2.52(m, 2H), 4.68(s, 2H), 4.74(s, 2H), 6.94 (s, 1H), 7.12(m, 4H), 7.32(m, 4H), 7.40(m, 4H), 7.56(d, 3JHH = 11.6Hz, 2H), 7.62.(m, 4H), 9.54(s, 1H).
(8-3) 화학식 10n'의 화합물 (5-(7-(4-(비스(9,9-디메틸-9H-플루오렌-2-일)아미노)페닐)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-4-헥실티오펜-5-카바알데하이드)(0.75g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1n의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 3H), 1.29(m, 2H), 1.44(s, 12H), 1.96(m, 2H), 2.55(m, 4H), 2.62(m, 2H), 4.68(s, 2H), 4.71(s, 2H), 6.98(s, 1H), 7.11(s, 1H), 7.20(m, 6H), 7.42(m, 6H), 7.58(m, 4H), 7.80 (d, 3JHH = 8.8Hz, 2H), 11.52(s, 1H).
[실시예 9] 화학식 1w의 화합물의 합성
(9-1) 상기 실시예 3의 (3-1)에서 얻은 화학식 4e의 화합물 (5-(5-(4-(2,2-디페닐비닐)페닐)-4-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신))(1.2g, 2.13mmol) 및 N-브로모스티렌 (0.45g, 2.56mmol)을 THF 30ml에 녹인 후 4시간 동안 질소분위기하에서 교반하였다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하여 얻은 5-브로모-7-(5-(4-(2,2-디페닐비닐)페닐)-4-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신 (화학식 7w의 화합물) (1.15g, 1.8mmol), 3-헥실티오펜-2-일보론산 (0.32g, 1.5mmol), K2CO3 (0.42g, 3mmol), Pd(PPh3)4 (0.086g, 0.075mmol)을 DMF (30ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 9w의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.94(m, 6H), 1.28(m, 4H), 1.44(s, 12H), 1.98(m, 4H), 2.55(m, 8H), 2.64(m, 4H), 4.64(s, 2H), 4.72(s, 2H), 6.72(m, 2H), 6.98(s, 1H), 7.10(s, 1H), 7.20(m, 4H), 7.40(m, 2H), 7.48(m, 6H), 7.55(d, 3JHH = 8.8Hz, 2H).
(9-2) 화학식 9w의 화합물 (5-(5-(4-(2,2-디페닐비닐)페닐)-4-헥실티오펜-2-일)-7-(3-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신)(1.14g, 1.2mmol)을 DMF (15ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 10w의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.94(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.98(m, 4H), 2.55(m, 8H), 2.64(m, 4H), 4.64(s, 2H), 4.72(s, 2H), 6.71(m, 2H), 7.18(m, 5H), 7.38(m, 2H), 7.45(m, 6H), 7.53(d, 3JHH = 8.8Hz, 2H), 9.54(s, 1H).
(9-3) 화학식 10w의 화합물 (5-(7-(5-(4-(2,2-디페닐비닐)페닐)-4-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-4-헥실티오펜-2-카바알데하이드)(1.05g, 0.8mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA :EtOH = 10 : 1) 화학식 1w의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.98(m, 2H), 7.06(s, 1H), 7.20(m, 6H), 7.36(m, 6H), 7.52(m, 4H), 7.84 (d, 3JHH = 8.8Hz, 2H), 11.50(s, 1H).
[실시예 10] 화학식 1u의 화합물의 합성
(10-1) 상기 실시예 4의 (4-1)에서 얻은 화학식 4f의 화합물 (N-(4-(5-(2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-3-헥실티오펜-2-일)페닐)-N-(9,9-디메틸-9H-플루오렌-2-일)-9,9-디메틸-9H-플루오렌-2-아민) (1.64g, 2.10mmol) 및 N-브로모스티렌 (0.44g, 2.54mmol)을 THF 30ml에 녹인 후 4시간 동안 질소분위기하에서 교반하였다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하여 얻은 N-(4-(5-(7-브로모-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-3-헥실티오펜-2-일)페닐)-N-(9,9-디메틸-9H-플루오렌-2-일)-9,9-디메틸-9H-플루오렌-2-아민 (화학식 7u의 화합물) (1.53g, 1.78mmol), 3-헥실티오펜-2-일보론산 (0.32g, 1.5mmol), K2CO3 (0.42g, 3mmol), Pd(PPh3)4 (0.086g, 0.075mmol)을 DMF (30ml)에 녹인 후 질소분위기하에서 8시간 동안 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - MC : Hx = 1 : 4) 화학식 9u의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.94(m, 6H), 1.28(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.90(s, 1H), 6.98(s, 1H), 7.10(s, 1H), 7.20(m, 6H), 7.40(m, 6H), 7.56(m, 4H), 7.84(d, 3JHH = 8.8Hz, 2H).
(10-2) 화학식 9u의 화합물 (N-(9,9-디메틸-9H-플루오렌-2-일)-N-(4-(3-헥실-5-(7-(3-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)티오펜-2-일)페닐)-9,9-디메틸-9H-플루오렌-2-아민)(1.14g, 1.2mmol)을 DMF (20ml)에 녹인 후 POCl3 (0.13ml 1.44mmol)를 0℃에서 서서히 적가하고 80℃에서 4시간 동안 교반하였다. 교반이 끝난 후 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : Hx = 1 : 2) 화학식 10u의 화합물을 합성하였다.
1H NMR(CDCl3) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.93(s, 1H), 7.08(s, 1H), 7.18(m, 6H), 7.38(m, 6H), 7.55(m, 4H), 7.82(d, 3JHH = 8.8Hz, 2H). 9.51(s, 1H).
(10-3) 화학식 10u의 화합물 (5-(7-(5-(4-(비스(9,9-디메틸-9H-플루오렌-2-일)아미노)페닐)-4-헥실티오펜-2-일)-2,3-디하이드로티에노[3,4-b][1,4]디옥신-5-일)-4-헥실티오펜-2-카바알데하이드)(0.75g, 0.77mmol), 시아노아세트산 (0.08g, 0.93mmol), 피페리딘 (0.92ml, 0.93mmol)을 아세토니트릴 (20ml)에 녹인 후 4시간 동안 질소분위기 하에서 환류시켰다. 이어, 메틸렌클로라이드와 물로 유기층을 추출한 후 증류하고 컬럼 크로마토그래피하여(용리액 - EA : EtOH = 10 : 1) 화학식 1u의 화합물을 합성하였다.
1H NMR(DMSO) : [ppm] = 0.96(m, 6H), 1.29(m, 4H), 1.44(s, 12H), 1.96(m, 4H), 2.55(m, 8H), 2.62(m, 4H), 4.68(s, 2H), 4.71(s, 2H), 6.98(m, 2H), 7.08(s, 1H), 7.15(m, 6H), 7.32(m, 6H), 7.55(m, 4H), 7.80 (d, 3JHH = 8.8Hz, 2H), 11.51(s, 1H).
[실시예 11] 염료감응태양전지의 제조 및 물성 측정
염료 화합물의 전류-전압 특성을 평가하기 위해, 7 또는 8㎛ TiO2 투명층을 이용하여 태양전지를 제조하였다. TiO2 페이스트(Solaronix, 13nm 페이스트)를 스크린 프린팅하여 7 또는 8㎛ 두께의 TiO2 투명층을 제조하였다. 이 TiO2 필름을 40mM TiCl4 용액으로 처리하고 500℃에서 30분간 건조하였다. 처리된 필름을 60℃로 냉각한 후, 상기 실시예 1 내지 4에서 제조된 본 발명의 염료 화합물 1a, 1b, 1e 및 1f 각각의 용액(10mM의 케노디옥시콜산 함유 염화메틸렌과 에탄올의 혼합물(MC:EtOH=1:1) 중에 0.3mM 염료)에 함침시켰다 (화합물 1a 및 1b는 7㎛ 두께의 TiO2 투명층, 화합물 1e 및 1f는 8㎛ 두께의 TiO2 투명층). 염료-흡착된 TiO2 전극과 백금-대전극 사이에 스페이서로서 고온용융 필름(Surlyn 1702, 25㎛ 두께)을 놓고 가열하여 밀봉된 샌드위치 전지를 조합하였다. 전해질 용액으로는 아세토니트릴 중에 0.6 M 3-헥실-1,2-디메틸이미다졸리움 요오드, 0.04 M I2, 0.025 M LiI 및 0.28 M tert-부틸피리딘을 용해시킨 것을 사용하였다.
본 발명의 염료 화합물 1a, 1b, 1e 및 1f를 각각 사용하여 제조된 태양전지의 광전자화학특성(photoelectrochemical characteristics)을 측정하여 하기 표 1에 나타내었다. 태양전지의 광전자화학특성은 Keithley M 236 소스 측정 장치를 이용하여 측정하였으며, 광원으로는 AM 1.5 필터(Oriel)가 구비된 300 W Xe 램프를 이용하였고, 전극크기는 0.4 × 0.4 cm2, 빛의 세기는 1 sun(100 mW/cm2)으로 하였다. 빛의 세기는 Si 태양전지를 이용하여 조정하였다.
표 1
Voc (V) Jsc (mA/cm2) FF (%) 광변환효율(%)
화합물 1a 0.6769 12.547 64.56 5.48
화합물 1b 0.688 15.09 69.4 7.2
화합물 1e 0.605 6.54 69.62 2.75
화합물 1f 0.5936 6.791 68.44 2.76
상기 표 1에서, Jsc는 단회로 광전류 밀도(short-circuit photocurrent density), Voc는 오픈 회로 광전압(open circuit photovoltage), FF는 충전 인자(fill factor)를 나타낸다.
본 발명의 염료 화합물은 염료감응태양전지(DSSC)에 사용되어 종래의 염료보다 향상된 몰흡광계수, Jsc(단회로 광전류 밀도) 및 광전기 변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있고, 고가의 칼럼을 사용하지 않고도 정제가 가능하여 염료 합성단가를 획기적으로 낮출 수 있다.

Claims (10)

  1. 하기 화학식 1로 표시되는 유기염료:
    [화학식 1]
    Figure PCTKR2009003500-appb-I000069
    상기 식에서,
    R1은
    Figure PCTKR2009003500-appb-I000070
    또는
    Figure PCTKR2009003500-appb-I000071
    이고, 상기 X 및 Y는 각각 독립적으로 수소 또는 C1-6 알킬이며;
    R2 내지 R5는 각각 독립적으로 수소, 치환되거나 치환되지 않은 C1-30 알킬 또는 C1-30 알콕시이고;
    Ar은 하나 이상의 C1-30의 알킬, C1-30의 알콕시, 할로겐, 아미드, 시아노, 하이드록실, 니트로, 아실, C6-30의 아릴 또는 헤테로아릴기로 치환되거나 치환되지 않은 C6-50의 아릴, 또는 헤테로아릴이며,
    Z 및 Z'는 각각 독립적으로 C1-6 알킬이고;
    n은 1 내지 10의 정수이고;
    m 및 m'는 각각 독립적으로 0 내지 5의 정수이되, m과 m' 둘 다 동시에 0은 아니다.
  2. 제1항에 있어서,
    상기 염료가 하기 화학식 1a 내지 1x로 표시되는 것들 중 하나인 것을 특징으로 하는, 유기염료:
    [화학식 1a]
    Figure PCTKR2009003500-appb-I000072
    [화학식 1b]
    Figure PCTKR2009003500-appb-I000073
    [화학식 1c]
    Figure PCTKR2009003500-appb-I000074
    [화학식 1d]
    Figure PCTKR2009003500-appb-I000075
    [화학식 1e]
    Figure PCTKR2009003500-appb-I000076
    [화학식 1f]
    Figure PCTKR2009003500-appb-I000077
    [화학식 1g]
    Figure PCTKR2009003500-appb-I000078
    [화학식 1h]
    Figure PCTKR2009003500-appb-I000079
    [화학식 1i]
    Figure PCTKR2009003500-appb-I000080
    [화학식 1j]
    Figure PCTKR2009003500-appb-I000081
    [화학식 1k]
    Figure PCTKR2009003500-appb-I000082
    [화학식 1l]
    Figure PCTKR2009003500-appb-I000083
    [화학식 1m]
    Figure PCTKR2009003500-appb-I000084
    [화학식 1n]
    Figure PCTKR2009003500-appb-I000085
    [화학식 1o]
    Figure PCTKR2009003500-appb-I000086
    [화학식 1p]
    Figure PCTKR2009003500-appb-I000087
    [화학식 1q]
    Figure PCTKR2009003500-appb-I000088
    [화학식 1r]
    Figure PCTKR2009003500-appb-I000089
    [화학식 1s]
    Figure PCTKR2009003500-appb-I000090
    [화학식 1t]
    Figure PCTKR2009003500-appb-I000091
    [화학식 1u]
    Figure PCTKR2009003500-appb-I000092
    [화학식 1v]
    Figure PCTKR2009003500-appb-I000093
    [화학식 1w]
    Figure PCTKR2009003500-appb-I000094
    [화학식 1x]
    Figure PCTKR2009003500-appb-I000095
  3. (1) 하기 화학식 2의 화합물을 하기 화학식 3의 화합물과 스즈끼(Suzuki) 커플링 반응시켜 하기 화학식 4의 화합물을 제조하고,
    (2) 화학식 4의 화합물을 유기용매 중에서 POCl3와 반응시켜 하기 화학식 5의 화합물을 제조하고,
    (3) 화학식 5의 화합물을 CH3CN 중에서 피페리딘 존재 하에서 시아노아세트산 또는 하기 화학식 6의 화합물과 반응시키는 것을 포함하는
    하기 화학식 1-1로 표시되는 유기염료의 제조방법:
    [화학식 1-1]
    Figure PCTKR2009003500-appb-I000096
    [화학식 2]
    Figure PCTKR2009003500-appb-I000097
    [화학식 3]
    Figure PCTKR2009003500-appb-I000098
    [화학식 4]
    Figure PCTKR2009003500-appb-I000099
    [화학식 5]
    Figure PCTKR2009003500-appb-I000100
    [화학식 6]
    Figure PCTKR2009003500-appb-I000101
    상기 식에서, X, Y, R1 내지 R5, Ar, Z, m 및 n은 제1항에서 정의한 바와 같다.
  4. (i) 하기 화학식 2의 화합물을 하기 화학식 3의 화합물과 스즈끼 커플링 반응시켜 하기 화학식 4의 화합물을 제조하고,
    (ii) 화학식 4의 화합물을 유기용매 중에서 N-브로모스티렌과 반응시켜 하기 화학식 7의 화합물을 제조하고,
    (iii) 화학식 7의 화합물을 하기 화학식 8의 화합물과 스즈끼 커플링 반응시켜 하기 화학식 9의 화합물을 제조하고,
    (iv) 화학식 9의 화합물을 유기용매 중에서 POCl3와 반응시켜 하기 화학식 10의 화합물을 제조하고,
    (v) 화학식 10의 화합물을 CH3CN 중에서 피페리딘 존재 하에서 시아노아세트산 또는 하기 화학식 6의 화합물과 반응시키는 것을 포함하는
    하기 화학식 1-2로 표시되는 유기염료의 제조방법:
    [화학식 1-2]
    Figure PCTKR2009003500-appb-I000102
    [화학식 2]
    Figure PCTKR2009003500-appb-I000103
    [화학식 3]
    Figure PCTKR2009003500-appb-I000104
    [화학식 4]
    Figure PCTKR2009003500-appb-I000105
    [화학식 7]
    Figure PCTKR2009003500-appb-I000106
    [화학식 8]
    Figure PCTKR2009003500-appb-I000107
    [화학식 9]
    Figure PCTKR2009003500-appb-I000108
    [화학식 10]
    Figure PCTKR2009003500-appb-I000109
    [화학식 6]
    Figure PCTKR2009003500-appb-I000110
    상기 식에서, X, Y, R1 내지 R5, Ar, Z, Z', m 및 n은 제1항에서 정의한 바와 같고,
    a는 1 내지 5의 정수이다.
  5. 제1항의 유기염료를 담지시킨 산화물 반도체 미립자를 포함하는 것을 특징으로 하는 염료증감 광전변환소자.
  6. 제5항에 있어서,
    포섭화합물의 존재 하에서, 상기 산화물 반도체 미립자에 유기염료를 담지시킨 것을 특징으로 하는 염료증감 광전변환소자.
  7. 제5항에 있어서,
    상기 산화물 반도체 미립자가 이산화티탄을 필수성분으로 포함하는 것을 특징으로 하는 염료증감 광전변환소자.
  8. 제5항에 있어서,
    상기 산화물 반도체 미립자가 평균 입경이 1 ∼ 500 nm인 것을 특징으로 하는 염료증감 광전변환소자.
  9. 제5항의 염료증감 광전변환소자를 전극으로서 포함하는 것을 특징으로 하는 염료감응태양전지.
  10. 제9항에 있어서,
    상기 염료감응태양전지가, 전도성 투명 기판 위에 산화티타늄 페이스트를 코팅하는 단계, 페이스트가 코팅된 기판을 소성하여 산화티타늄 박막을 형성하는 단계, 산화티타늄 박막이 형성된 기판을 화학식 1로 표시되는 염료가 용해된 혼합용액에 함침시켜 염료가 흡착된 산화티타늄 필름 전극을 형성하는 단계, 그 상부에 대전극이 형성된 제2의 유리기판을 구비하는 단계, 제2 유리기판 및 대전극을 관통하는 홀(hole)을 형성하는 단계, 상기 대전극 및 상기 염료가 흡착된 산화티타늄 필름 전극 사이에 열가소성 고분자 필름을 두고, 가열 압착 공정을 실시하여 상기 대전극 및 산화티타늄 필름 전극을 접합시키는 단계, 상기 홀을 통하여 대전극과 산화티타늄 필름 전극 사이의 열가소성 고분자 필름에 전해질을 주입하는 단계, 및 상기 열가소성 고분자를 실링하는 단계를 통하여 제조되는 것을 특징으로 하는 염료감응태양전지.
PCT/KR2009/003500 2008-06-30 2009-06-29 신규한 유기염료 및 이의 제조방법 WO2010002154A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801250355A CN102076781A (zh) 2008-06-30 2009-06-29 新型有机染料及其制造方法
US13/000,807 US20110094588A1 (en) 2008-06-30 2009-06-29 Novel organic dye and preparation thereof
JP2011516139A JP5623396B2 (ja) 2008-06-30 2009-06-29 新規な有機染料化合物及びその製造方法
EP09773690.4A EP2341107B1 (en) 2008-06-30 2009-06-29 Novel organic dye and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20080062487 2008-06-30
KR10-2008-0062487 2008-06-30
KR10-2009-0057534 2009-06-26
KR1020090057534A KR101320999B1 (ko) 2008-06-30 2009-06-26 신규한 유기염료 및 이의 제조방법

Publications (2)

Publication Number Publication Date
WO2010002154A2 true WO2010002154A2 (ko) 2010-01-07
WO2010002154A3 WO2010002154A3 (ko) 2010-04-22

Family

ID=41813126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003500 WO2010002154A2 (ko) 2008-06-30 2009-06-29 신규한 유기염료 및 이의 제조방법

Country Status (7)

Country Link
US (1) US20110094588A1 (ko)
EP (1) EP2341107B1 (ko)
JP (1) JP5623396B2 (ko)
KR (1) KR101320999B1 (ko)
CN (1) CN102076781A (ko)
TW (1) TWI461490B (ko)
WO (1) WO2010002154A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265458A (ja) * 2009-05-15 2010-11-25 Ind Technol Res Inst 有機色素および光電変換装置
CN102604415A (zh) * 2012-02-28 2012-07-25 大连理工大学 一种噻吩吡嗪类染料的制备方法及其在染料敏化太阳能电池中的应用
JP2013033868A (ja) * 2011-08-02 2013-02-14 Adeka Corp 新規化合物、光電変換材料及び光電変換素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181108A (ja) * 2012-03-01 2013-09-12 Kanto Natural Gas Development Co Ltd 色素増感型光電変換素子用の高活性完全有機色素化合物、およびそれを用いた光電変換素子
AU2013241851A1 (en) * 2012-03-30 2014-10-16 Basf Se Quinolinium dyes with fluorinated counter anion for dye sensitized solar cells
CN102675898A (zh) * 2012-04-18 2012-09-19 复旦大学 一种具有双推拉电子基团的有机染料及其制备方法和应用
ITMI20120674A1 (it) * 2012-04-23 2013-10-24 Cnrs Ct Nat De La Rech He Scient Colorante organico per cella solare sensibile ai coloranti
CN103408963B (zh) * 2013-08-08 2014-08-27 陕西师范大学 脲供体双桥链有机染料及其应用
CN103450700B (zh) * 2013-08-23 2015-12-02 中山大学 一种基于咔唑或三苯胺衍生物的树状有机染料及其在制备染料敏化太阳能电池中的应用
ITMI20131899A1 (it) * 2013-11-15 2015-05-16 C N R S Ct Nat De La Rec Herche Scienti Colorante organico per una cella solare sensibilizzata da colorante
CN104086561A (zh) * 2014-07-08 2014-10-08 国家纳米科学中心 一种具有高填充因子的可溶性有机光伏小分子材料、制备方法及其用途
WO2023219042A1 (ja) * 2022-05-10 2023-11-16 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011213A1 (fr) 2000-07-27 2002-02-07 Nippon Kayaku Kabushiki Kaisha Transducteur photoélectrique sensibilisé par un colorant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106223A (ja) * 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子
JP4270381B2 (ja) * 2003-02-28 2009-05-27 国立大学法人京都大学 導電性重合体及びその製造方法並びにそれを用いた有機太陽電池
KR101043264B1 (ko) * 2003-03-14 2011-06-21 니폰 가야꾸 가부시끼가이샤 색소증감 광전 변환 소자
JP2005135656A (ja) 2003-10-28 2005-05-26 Shozo Yanagida 光電変換素子
CN101421359B (zh) 2006-03-02 2013-06-26 日本化药株式会社 染料增感型光电转换器件
CN101405347B (zh) * 2006-03-31 2012-09-12 独立行政法人产业技术综合研究所 有机化合物及使用了它的半导体薄膜电极、光电转换元件、光电化学太阳能电池
US8653279B2 (en) * 2006-04-17 2014-02-18 Samsung Sdi Co., Ltd. Dye for dye-sensitized solar cell, and solar cell prepared from same
KR101223558B1 (ko) * 2006-04-17 2013-01-17 삼성에스디아이 주식회사 염료 감응 태양 전지용 염료 및 이로부터 제조된 염료 감응태양 전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011213A1 (fr) 2000-07-27 2002-02-07 Nippon Kayaku Kabushiki Kaisha Transducteur photoélectrique sensibilisé par un colorant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M.K.NAZEERUDDIN; A.KAY; I.RODICIO; R.HUMPHRY-BAKER; E.MULLER; P.LISKA; N.VLACHOPOULOS; M.GRATZEL, J. AM. CHEM. SOC., vol. 115, 1993, pages 6382
MICHAEL GRATZEL ET AL., SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE(EPFL), 1991
See also references of EP2341107A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265458A (ja) * 2009-05-15 2010-11-25 Ind Technol Res Inst 有機色素および光電変換装置
US8969593B2 (en) 2009-05-15 2015-03-03 Industrial Technology Research Institute Organic dyes and photoelectric conversion devices
JP2013033868A (ja) * 2011-08-02 2013-02-14 Adeka Corp 新規化合物、光電変換材料及び光電変換素子
CN102604415A (zh) * 2012-02-28 2012-07-25 大连理工大学 一种噻吩吡嗪类染料的制备方法及其在染料敏化太阳能电池中的应用

Also Published As

Publication number Publication date
EP2341107A4 (en) 2012-01-25
WO2010002154A3 (ko) 2010-04-22
JP5623396B2 (ja) 2014-11-12
KR20100003215A (ko) 2010-01-07
CN102076781A (zh) 2011-05-25
US20110094588A1 (en) 2011-04-28
TWI461490B (zh) 2014-11-21
JP2011526643A (ja) 2011-10-13
TW201009026A (en) 2010-03-01
KR101320999B1 (ko) 2013-10-23
EP2341107B1 (en) 2014-07-30
EP2341107A2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2010002154A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2010147425A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2011068346A2 (ko) 유기금속염료 및 이를 이용한 광전소자, 염료감응 태양전지
WO2013100538A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014171755A1 (ko) 플러렌 유도체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
WO2013085285A1 (ko) 정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지
WO2012091240A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100539A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012102544A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2015163614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2020166875A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2013095039A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2015064937A9 (ko) 단분자 및 이를 포함하는 유기 태양 전지
WO2014058123A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2010062015A1 (ko) 벤조티아다이아졸 발색부-함유 신규 유기염료 및 이의 제조방법
WO2011081290A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2018236100A1 (ko) 유기 태양 전지
WO2015190762A2 (ko) 축합고리 유도체 및 이를 포함하는 유기 태양 전지
WO2019004781A1 (ko) 페로브스카이트 태양전지
WO2019066305A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2015037966A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2018164353A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2010147427A9 (ko) 신규한 유기염료 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125035.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773690

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011516139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13000807

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009773690

Country of ref document: EP