WO2013085285A1 - 정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지 - Google Patents

정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지 Download PDF

Info

Publication number
WO2013085285A1
WO2013085285A1 PCT/KR2012/010494 KR2012010494W WO2013085285A1 WO 2013085285 A1 WO2013085285 A1 WO 2013085285A1 KR 2012010494 W KR2012010494 W KR 2012010494W WO 2013085285 A1 WO2013085285 A1 WO 2013085285A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxy
dye
substituted
sensitized solar
solar cell
Prior art date
Application number
PCT/KR2012/010494
Other languages
English (en)
French (fr)
Inventor
김환규
최인택
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority claimed from KR20120140553A external-priority patent/KR101489184B1/ko
Publication of WO2013085285A1 publication Critical patent/WO2013085285A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B19/00Oxazine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B21/00Thiazine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound having hole conductivity and lithium ion tuning characteristics, its use as a co-adsorbent, and a highly efficient dye-sensitized solar cell comprising the same.
  • dye-sensitized solar cells The principle of operation of dye-sensitized solar cells is that dye molecules generate electron-hole pairs when solar light (visible light) is absorbed by n-type nanoparticle semiconductor oxide electrodes with dye molecules chemically adsorbed on the surface. It is injected into the conduction band of the semiconductor oxide and is transferred to the transparent conductive film through the inter-nanoparticle interface to generate a current, and the hole may be described as a mechanism of receiving electrons by the redox electrolyte and reducing them again.
  • the light conversion efficiency of dye-sensitized solar cells depends more on the material properties than the cell fabrication process.
  • the most influential factors in the light conversion efficiency of dye-sensitized solar cells include dyes, electrolytes, and transparent metal oxide nanostructures. The light conversion efficiency greatly depends on the combination.
  • Organic dyes can absorb light well by 1) high absorption efficiency (molecular ⁇ ⁇ ⁇ * transition), 2) molecular structure of various structure is easy, and absorption wavelength band can be freely controlled, and 3) metal is used. By not doing so, there is no resource limitation and 4) it can be synthesized at a much lower cost than organometallic dyes. In contrast, 1) its efficiency is still lower than that of organometallic dyes, and 2) ⁇ - ⁇ stacking is prone to occur due to intermolecular attraction due to the nature of ⁇ -conjugated organic molecules. The lifetime of the excited state ( ⁇ * ) is short, and 4) it is difficult to absorb light in the visible light field because the wavelength band of the absorption spectrum is not wide in the visible light region.
  • the molecular structure of the dye plays an important role in the dye sensitized solar cell (DSSC). After absorbing light, DSSC starts charge separation at the interface between the dye and the metal oxide. The performance of the solar cell is determined by the energy level of the dye and the electron transfer process at the metal oxide interface.
  • the addition of adducts can increase the efficiency of DSSCs.
  • -butylpyridine or the use of deoxycholic acid (DCA) as a co-adsorbent Specifically, DCA prevents agglomeration of the dye on the metal oxide surface to improve the electron injection efficiency from the dye to the metal oxide.
  • DCA deoxycholic acid
  • metal oxides with the use of DCA Reducing the amount of dye adsorbed on the surface also provides the effect of improving photocurrent and photovoltage.
  • V OC Open circuit voltage
  • a 1.5G, 100 mWcm 100 mWcm
  • V OC Open circuit voltage
  • Is best for solar simulators (AM 1.5G, 100 mWcm) -2 Is the difference between the Fermi level of the metal oxide and the redox potential of the redox pair.
  • Addition of TBP to the electrolyte raises the conduction band level of the metal oxide significantly and the V of DSSC OC Improve fill efficiency (FF) and overall cell efficiency.
  • FF fill efficiency
  • V OC The improvement in the reduction of dark current, i.e. triiodine (I) 3 - Means a reduction in recombination between
  • Korean Patent Publication No. 10-2011-0044160 discloses a polymer co-adsorber adsorbed or reacted on a semiconductor oxide layer, thereby effectively blocking the electronic recombination phenomenon over a larger area than a single molecule co-adsorber. Disclosed is a photoelectrode for dye-sensitized solar cell that is improved.
  • the present invention is a new concept co-adsorber that can be used as a substitute for deoxycholic acid (DCA),
  • An object of the present invention is to provide a coadsorbent having a hole conduction characteristic that reduces recombination of electrons occurring at an interface of an electrolyte including a semiconductor layer and iodine.
  • the present invention includes the co-adsorbent having the hole conduction characteristics in the light absorbing layer to improve the photocurrent and the voltage, and to improve the recharge of the dye by adjusting the lithium ion (Li + ) to obtain a high photocurrent It is an object to provide a dye-sensitized solar cell.
  • the present invention provides a compound represented by Formula 1 below:
  • Ar One , Ar 2 , Ar 3 And Ar 4 Each independently represent an aromatic ring or an aromatic heterocycle of C5 to C20, wherein the heterocycle includes 1 to 3 hetero elements selected from the group consisting of O, S and N,
  • Z is O or S
  • l is an integer from 0 to 5
  • m1, m2, n1, n2 and o are each independently 0 or 1
  • R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 are each independently hydrogen; C1-C15 alkyl unsubstituted or substituted with C1-C15 alkoxy; C1-C15 alkoxy unsubstituted or substituted with C1-C15 alkyl; C1-C15 alkoxy substituted with C1-C15 alkoxy; C1-C15 alkyl substituted or unsubstituted with C1-C15 alkoxy, C1-C15 alkoxy substituted or unsubstituted with C1-C15 alkyl, and C1-C15 alkoxy substituted with alkoxy of C1-C15 C5 ⁇ C20 aryl or hetero aryl unsubstituted or substituted with a substituent selected from the group; Or C1-C15 alkoxy substituted or unsubstituted with C1-C15 alkoxy, C1-C15 alkoxy substituted or unsubstituted
  • It provides a coadsorbent having a hole conduction property comprising a compound represented by the formula (1).
  • It provides a dye-sensitized solar cell, characterized in that it comprises a co-adsorbent having the hole conductivity in the light absorption layer.
  • a compound having a hole-conductive properties of the present invention is conventional I 3 - reduces the open circuit voltage losses and to form a reduction potential of the dye, also lower oxidation - - / I-system oxide-reduction potential lower new oxidation than the reduction potential Therefore, the potential difference with the Fermi level of the conduction band of the n-type semiconductor is formed to be larger, thereby providing an effect of further increasing the open voltage V oc .
  • the compound expressing the hole conduction characteristics of the present invention can be very useful to improve the efficiency of the solar cell is low cost.
  • Figure 1 shows the results of the dye solution prepared in Comparative Preparation Example 1, Comparative Preparation Example 2, Preparation Example 1 and Preparation Example 2 of the present invention by dipping the TiO 2 film adsorbed for 12 hours and confirmed by UV-vis absorption spectra. It is.
  • FIG. 2 shows the conditions of 1 sun (100 mW / cm 2 ) illumination using each dye-sensitized solar cell prepared in Comparative Example 1, Comparative Example 2, Example 4 and Example 5 of the present invention. The result of measuring the photocurrent-voltage is shown.
  • FIG. 3 shows the dye-sensitized solar cells prepared in Comparative Example 1, Comparative Example 2, Example 4 and Example 5 of the present invention in 1 sun (100 mW / cm 2 ) illumination conditions. It shows the result of measuring the photoelectric conversion efficiency (IPCE).
  • IPCE photoelectric conversion efficiency
  • Figure 4 is a Nyquist plot of measuring the AC impedance under dark conditions to measure the recombination in each of the dye-sensitized solar cells prepared in Comparative Example 1, Comparative Example 2, Example 4 and Example 5 of the present invention It is shown.
  • FIG. 5 shows an equivalent circuit set to obtain internal resistance of a dye-sensitized solar cell.
  • DOS Density of state
  • Figure 9 is a graph showing the measurement of the HOMO of Formula 2 (PTZ1) and Formula 4 (PTZ2) of the present invention using CV measurement.
  • the present invention relates to a compound represented by the following general formula (1):
  • Ar One , Ar 2 , Ar 3 And Ar 4 Each independently represent an aromatic ring or an aromatic heterocycle of C5 to C20, wherein the heterocycle includes 1 to 3 hetero elements selected from the group consisting of O, S and N,
  • Z is O or S
  • l is an integer from 0 to 5
  • m1, m2, n1, n2 and o are each independently 0 or 1
  • R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 are each independently hydrogen; C1-C15 alkyl unsubstituted or substituted with C1-C15 alkoxy; C1-C15 alkoxy unsubstituted or substituted with C1-C15 alkyl; C1-C15 alkoxy substituted with C1-C15 alkoxy; C1-C15 alkyl substituted or unsubstituted with C1-C15 alkoxy, C1-C15 alkoxy substituted or unsubstituted with C1-C15 alkyl, and C1-C15 alkoxy substituted with alkoxy of C1-C15 C5 ⁇ C20 aryl or hetero aryl unsubstituted or substituted with a substituent selected from the group; Or C1-C15 alkoxy substituted or unsubstituted with C1-C15 alkoxy, C1-C15 alkoxy substituted or unsubstituted
  • the compound represented by Chemical Formula 1 has excellent hole conductivity.
  • m1 and m2 are preferably 1.
  • Ar One , Ar 2 , Ar 3 And Ar 4 May be independently selected from the group consisting of phenyl, naphthyl, thiophenyl, anthracyl, imidazole, pyridine, oxazole, thiazole, quinoline and EDOT,
  • Alkyl groups of C1 to C15 included in the substituents of R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 are methyl, ethyl, propyl, butyl, pentyl, hectyl, heptyl or octyl groups, etc. It can be mentioned;
  • Examples of the alkoxy group for C 1 to C 15 include a methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy or heptoxy group.
  • R ⁇ 3>, R ⁇ 4>, R ⁇ 5>, R ⁇ 6>, R ⁇ 7>, R ⁇ 8>, R ⁇ 9> and R ⁇ 10> are respectively independently C1-C15 alkyl groups, methyl, ethyl, etc. are preferable.
  • C1-C15 alkyl groups substituted with C1-C15 alkoxy include butoxymethyl, butoxyethyl, heptoxymethyl, heptoxymethyl, and the like.
  • alkoxy group include 2-ethylheptyloxy, 3-ethylheptyloxy, 2-methylbutyloxy, 2-ethylpentyloxy, and 3-ethylpentyloxy group, and C1 to C15 substituted with alkoxy of C1 to C15.
  • Examples of the alkoxy group include 3-methoxy pentoxy, 3-ethoxy pentoxy, 3-propoxy pentoxy, 2-methoxy hexoxy, 2-ethoxy hexoxy, 2-propoxy hexoxy group and the like.
  • aryl group or heteroaryl group included in each substituent of R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 includes, but is not limited to, phenyl, naphthyl, thiophenyl, Anthracyl, imidazole, pyridine, oxazole, thiazole, quinoline, edot (EDOT, 3,4-ethylenedioxythiophene) and the like.
  • the alkyl group or alkoxy group included in the substituents of the present invention may be in a branched or branched form.
  • the compound having the hole conductivity of the present invention is a coadsorbent having a new concept of hole conductivity that can be used as a substitute for deoxycholic acid (DCA) in dye-sensitized solar cells. Not only is it excellent, it can penetrate to the TiO 2 interface by small molecular weight, which minimizes the pore filling problem.
  • DCA deoxycholic acid
  • Specific examples of the compound of Formula 1 may include compounds of the following Formulas 2 to 4.
  • the compound of Formula 2 is characterized in that it comprises a phenothiazine structure, and since the nitrogen atom and sulfur atom having a non-covalent electron pair in the structure each includes a double bond, the hole transport ability is very excellent.
  • the compound of Formula 3 is characterized in that it includes a phenoxazine structure, and because the nitrogen atom and oxygen having a non-covalent electron pair in the structure each includes a double bond, the hole transport ability is excellent.
  • the compound of formula 4 is characterized in that it comprises a phenoxazine and a biphenyl structure, the nitrogen atom and sulfur atom having a non-covalent electron pair in the structure, each containing a double bond, excellent hole transport capacity.
  • It relates to a dye-sensitized solar cell, characterized in that it comprises a co-adsorbent having the electroconductive properties in the light absorption layer.
  • the dye-sensitized solar cell including the compound having the hole conducting property of the present invention in the light absorbing layer has excellent hole conductivity by the co-adsorbent, so that dyes can be recharged quickly, and ⁇ - ⁇ stacking is prevented between dyes. Therefore, the electrons transferred to TiO 2 are prevented from recombining with the electrolyte or the dye, and thus have high JSC and high V OC values.
  • the dye oxidized by Li + ion control is rapidly recharged to obtain high efficiency.
  • the dye-sensitized solar cell is not limited thereto, but may have the following configuration:
  • a first electrode comprising a conductive transparent substrate
  • a second electrode disposed to face the first electrode on which the light absorption layer is formed
  • An electrolyte located in the space between the first electrode and the second electrode.
  • the first electrode including the conductive transparent substrate is a translucent electrode formed of at least one material selected from the group consisting of indium tin oxide, fluorine tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and tin oxide It may be a glass substrate or a plastic substrate comprising a.
  • the light absorbing layer includes semiconductor fine particles, dyes, compounds having hole conducting properties, and the like, and the semiconductor fine particles include, but are not limited to, titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), and zinc oxide (ZnO). It may be formed of nanoparticle oxides.
  • the dye adsorbed on the semiconductor fine particles may absorb light in the visible light region, form a strong chemical bond with the surface of the nanooxide, and may be used without limitation as long as it has thermal and optical stability. Representative examples include ruthenium-based organometallic compounds.
  • the coadsorbent having the hole conduction property fills the hole formed in the dye that gives up electrons by absorbing light, and becomes a hole again, and fills the hole by the electrolyte again.
  • the same electrode as the first electrode may be used, and a current collector layer further formed of platinum or the like may be used on the light transmitting electrode of the first electrode.
  • Tetrahydrofuran, acetonitrile, sulfuric acid, toluene, methanol, acetic acid, ethanol, acetone, ethyl acetate, hexane and dichloromethane were used by Dongyang Chemical.
  • the reagents were used without any purification.
  • Example 1 Synthesis of 4- (3,7-bis (4- (2-ethylhexyloxy) phenyl) -10H-phenothiazin-10-yl) benzoic acid
  • the following components were mixed in a molar concentration to prepare a dye solution.
  • PTZ1 Preparation Example 1 at a concentration of 1 mmol (M)
  • PTZ2 Preparation Example 2 at a concentration of 1 mmol (M) were mixed in the same manner as Comparative Preparation Example 2 to contain a co-adsorbed hole transport material.
  • Dye solution was prepared.
  • a dye-sensitized solar cell was manufactured according to the following procedure.
  • the washed FTO glass substrate was immersed in a 40 mM TiCl 4 aqueous solution and then heated in a 70 ° C. oven for 30 minutes.
  • TiCl 4 treated FTO glass substrate was washed with distilled water and ethanol, dried using nitrogen gas and heated in an oven at 80 ° C. for 10 minutes.
  • a TiO 2 paste having a 13 nm particle size was coated on a TiCl 4 treated FTO glass substrate by a doctor blade method, and dried at room temperature (20 ° C.) for 2 hours.
  • the TiO 2 coated FTO glass substrate was calcined at a maximum temperature of 500 ° C. for 30 minutes while gradually raising the temperature using a heating furnace.
  • the fired FTO glass substrate was coated with a TiO 2 paste having a particle size of 400 nm by a doctor blade method. And after drying for 2 hours at room temperature (20 °C), it was baked for 30 minutes at a maximum 500 °C while gradually raising the temperature using a heating furnace.
  • the calcined FTO glass substrate was immersed in 40mM TiCl 4 aqueous solution for 30 minutes, washed with distilled water and ethanol, dried using nitrogen gas, and dried at 80 ° C. for 10 minutes.
  • the dried FTO glass substrate was sintered for 30 minutes using a heating gun, and then diluted with 0.3 mM of NKX2677 dye concentration. Dipping into the solution (EtOH: Comparative Preparation Example 1 solution) adsorbed the dye and the coadsorption transport material for 12 hours.
  • the FTO glass substrate on which the dye was adsorbed was washed with ethanol and dried using nitrogen gas.
  • the FTO glass substrate was immersed in an aqueous solution of H 2 0 / acetone / HCl (4: 4: 2, v / v / v%) for 1 hour, washed with an ultrasonic cleaner, and dried in an oven at 70 ° C. for 30 minutes. .
  • the FTO glass substrate was spin-coated with a Pt solution (2 mg of H 2 PtCl 6 in 1 mL ethanol solution) and heated at 400 ° C. for 15 minutes using a heating gun.
  • the anode and the cathode prepared above were coalesced using a hot press heated to 80 ° C. using a polymer sealing film.
  • the two holes were sealed with a sealing film and cover glass.
  • a dye-sensitized solar cell was manufactured in the same manner as in Comparative Example 1, except that the dye solution of Comparative Preparation Example 2 was used.
  • Dye-sensitized solar cells were manufactured in the same manner as in Comparative Example 1, except that the dye solutions of Preparation Example 1 (Example 4) and Preparation Example 2 (Example 5) were used, respectively.
  • Test Example 1 TiO 2 Dye adsorbed on film, co-adsorption transport material, UV-vis absorption spectra of DCA
  • each dye-sensitized solar cell prepared in Comparative Example 1, Comparative Example 2, Example 4 and Example 5 was used to measure the photocurrent-voltage under 1 sun (100 mW / cm 2 ) illumination conditions. , The results are shown in Table 1 and FIG. 2. In addition, each photoelectric conversion efficiency (IPCE) is shown in FIG. 3.
  • Dye solution of Preparation Example 2 containing the co-adsorption hole transport material (PTZ2) of the present invention is TiO 2
  • the greatest resistance was seen at the / dye / electrolyte interface.
  • These large resistances are TiiO 2 end By preventing the recombination of the injected electrons into the electrolyte to obtain a high current value and voltage value to improve the efficiency of the dye-sensitized solar cell.
  • Test Example 4 TiO with Co-Adsorbed Hole Transport Material 2
  • the CB conduct band
  • Density of state (DOS) was confirmed in LiClO 4 aqueous solution using the TiO 2 electrode to which the dye solutions prepared in Comparative Preparation Example 1, Comparative Preparation Example 2, Preparation Example 1 and Preparation Example 2 were adsorbed.
  • DOS Density of state
  • the HOMO of Chemical Formulas 2 (PTZ1) and Chemical Formula 4 (PTZ2) were measured using CV measurement, and are shown in FIG. 8.
  • the results of the NKX2677 dye and HOMO, LUMO, and band gap of Chemical Formula 2 and Chemical Formula 4 are shown in Table 2 below. Indicated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은, 하기 화학식1로 표시되는 정공전도특성을 갖는 화합물, 그의 공흡착체로서의 용도, 및 그를 포함하는 태양전지에 관한 것이다.

Description

정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지
본 발명은 정공전도특성 및 리튬이온조율 특성을 갖는 화합물, 그의 공흡착체로서의 용도 및 그를 포함하는 고효율의 염료감응 태양전지에 관한 것이다.
염료감응 태양전지의 작동원리는, 표면에 염료분자가 화학적으로 흡착된 n-형 나노입자 반도체 산화물 전극에 태양 빛(가시광선)이 흡수되면 염료분자가 전자-홀 쌍을 생성하고, 상기 전자는 반도체 산화물의 전도띠로 주입되어 나노입자간 계면을 통하여 투명 전도성 막으로 전달되어 전류를 발생시키며, 상기 홀은 산화-환원 전해질에 의해 전자를 받아 다시 환원되는 메커니즘으로 설명될 수 있다.
특히, 염료감응 태양전지의 광전환 효율은 다른 종류의 태양전지와는 달리 셀 제작 공정보다도 재료의 특성에 크게 의존한다. 재료측면에서 염료감응 태양전지의 광전환 효율에 가장 많은 영향을 미치는 인자로는 염료(dye), 전해질(electrolyte), 및 투명 금속 산화물 나노 구조(metal oxide)를 들 수 있는데, 이 요소들을 얼마나 잘 조합시키느냐에 따라서 광전환 효율이 크게 좌우된다.
유기염료는 1) 높은 흡광 효율(분자내 π→π* 전이)을 나타내어 빛을 잘 흡수할 수 있고, 2) 다양한 구조의 분자설계가 용이하여 흡수 파장대를 자유롭게 조절할 수 있으며, 3) 금속을 사용하지 않음으로써 자원적인 제약이 없으며, 4) 유기금속 염료보다 훨씬 저가로 합성될 수 있다는 장점이 있다. 그에 반해 1) 유기금속 염료에 비해 아직은 효율이 낮고, 2) π-컨쥬게이션 유기 분자의 특성상 분자간 인력에 의한 π-π 스택킹(stacking)이 발생하기 쉬우며, 3) 유기물의 특성상 광흡수 후 여기 상태(π*)의 수명이 짧으며, 4) 가시광선 영역에서 흡수 스펙트럼의 파장대 폭이 넓지 않아 가시광선 전파장대의 빛을 흡수하기 힘들다는 단점을 가지고 있다.
현재까지 유기금속 염료를 사용하는 염료감응 태양전지의 효율은 11.2% 정도가 최고이며, 최근 유기염료가 빠른 속도로 발전하여 유기금속 염료의 최대효율에 접근하고 있지만, 아직까지 유기금속 염료보다 더 높은 효율이 보고된 적은 없으며, 유기금속 염료 또한 최고 효율이 지난 몇 년간 정체되어 있는 상태이다. 따라서 염료감응 태양전지의 효율을 증가시키려면 새로운 염료의 개발도 필요하지만, n형 반도체의 전도띠를 높일 수 있는 물질을 개발하여 개방전압(Voc)의 증가를 통하여 효율을 높일 수 있는 산화물 전극의 최적화가 필요하다.
DSSC(dye sensitized solar cell)에서 염료의 분자구조는 중요한 역할을 하게 된다. DSSC는 빛을 흡수한 후 염료와 금속 산화물의 계면에서 전하분리를 시작하는데, 이때 염료의 에너지 준위와 금속산화물 계면에서의 전자이동과정에 의해 태양전지의 성능이 결정된다.
염료의 분자설계 이외에 부가물을 첨가함으로서 DSSC의 효율을 증가시킬 수 있는데, 그 예로 TBP(4-tert-butylpyridine)의 첨가나 공흡착체(co-adsorbent)로서 데옥시콜린산(deoxycholic acid, DCA)의 이용을 들 수 있다. 구체적으로, DCA는 금속 산화물 표면에서 염료의 응집을 방지하여 염료에서 금속 산화물로의 전자주입 효율을 향상시킨다. 그리고 DCA의 사용으로 금속 산화물 표면에 흡착되는 염료의 양이 감소되는 것도 광전류와 광전압을 개선시키는 효과를 제공한다. 개방회로 전압(VOC)의 최고 값은 태양광 시뮬레이터(AM 1.5G, 100mWcm-2)로 조명하였을 때 금속 산화물의 페르미(Fermi) 준위와 산화환원 쌍의 산화환원 퍼텐셜의 차이이다. 전해질에 TBP를 첨가하는 것은 금속 산화물의 전도띠 준위를 크게 올리고, DSSC의 VOC와 fill factor(FF)를 향상시키기 때문에 전지의 전체적인 효율을 향상시킨다. VOC의 향상은 암전류의 감소 즉, 주입된 전자와 전해질에 포함된 트리요오드(I3 -) 사이의 재결합의 감소를 의미한다.
한국공개특허 제10-2011-0044160호는 반도체 산화물층에 고분자 공흡착체가 흡착 또는 반응되어 있어서, 단분자 공흡착체 보다 넓은 면적에 걸쳐 전자재결합 현상을 효과적으로 차단하여 염료감응형 태양전지의 효율을 향상시키는 염료감응형 태양전지용 광전극을 개시하고 있다.
그러나 상기와 같은 종래의 방법은 주입된 전자와 산화된 염료 및 전해질의 I3 - 이온간의 재결합을 충분히 억제하지 못하기 때문에, DSSC가 이론적인 값보다 낮은 VOC를 나타내는 실질적인 원인으로 작용하는 것으로 보인다.
본 발명은 기존에 사용해오던 데옥시콜린산(DCA)의 대용으로 사용할 수 있는 새로운 개념의 공흡착체로서,
기존의 I3 -/I-시스템의 산화-환원 전위보다 낮은 새로운 산화-환원 전위를 형성하여 염료와의 개방전압손실을 줄이며, 또한 기본 전위보다 낮아진 산화-환원 전위로 인하여 n형 반도체 전도띠의 페르미 레벨과의 전위차를 더욱 크게 형성함으로써 개방전압(Voc)을 높이며, 염료들의 응집을 방지하여 염료에서 금속 산화물로의 전자주입 효율을 높여 Jsc값을 상승시키며, 높은 정공(홀) 수송 능력으로 전기전도도 및 이온 전도도를 향상시켜서 TiO2/염료/전해질 계면에서 저항을 낮추고 더 높은 Jsc값을 제공하며, 또한 분자량이 작아서 기공 채움(Pore filling)에 대한 문제 없이 TiO2 계면에 흡착이 가능하여 염료분자에 생긴 홀이 공흡착체 물질로 더욱더 빠르게 이동되게 하며, TiO2로 구성되는 반도체층과 요오드를 포함하는 전해질의 계면에서 일어나는 전자의 재결합을 감소시키는 정공전도특성을 갖는 공흡착체를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 정공전도특성을 갖는 공흡착체를 광흡수층에 포함함으로써 광전류와 광전압이 개선되고, 리튬이온(Li+ ) 조절에 의해 염료의 재충전이 빠르게 향상되어 높은 광전류를 얻을 수 있는 염료감응 태양전지를 제공하는 것을 목적으로 한다.
본 발명은 하기 화학식1로 표시되는 화합물을 제공한다:
화학식 1
Figure PCTKR2012010494-appb-C000001
상기 식에서
Ar1, Ar2, Ar3 Ar4는 각각 독립적으로 C5~C20의 방향족환 또는 방향족 헤테로환이며, 여기서 헤테로환은 O, S 및 N으로 이루어진 군으로부터 선택되는 1~3개의 헤테로 원소를 포함하며,
Z는 O 또는 S이고, l은 0~5의 정수이고, m1, m2, n1, n2 및 o는 각각 독립적으로 0 또는 1이며,
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬; C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시; C1~C15의 알콕시로 치환된 C1~C15의 알콕시; C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬, C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시, 및 C1~C15의 알콕시로 치환된 C1~C15의 알콕시로 이루어진 군으로부터 선택되는 치환기로 치환 또는 비치환된 C5~C20의 아릴 또는 헤테로 아릴; 또는 C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬, C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시, 및 C1~C15의 알콕시로 치환된 C1~C15의 알콕시로 이루어진 군으로부터 선택되는 치환기로 치환 또는 비치환된 C6~C22의 아릴알킬 또는 헤테로 아릴알킬기이며, 단, 상기 Ar1이 방향족 헤테로환인 경우, R3, R4, R5 및 R6 중 하나 이상은 부존재하는 것일 수 있으며, Ar2가 방향족 헤테로환인 경우, R7, R8, R9 및 R10 중 하나 이상은 부존재하는 것일 수 있다.
또한, 본 발명은,
상기 화학식1 표시되는 화합물을 포함하는 정공전도특성을 갖는 공흡착체를 제공한다.
또한, 본 발명은,
상기 정공전도특성을 갖는 공흡착체를 광흡수층에 포함하는 것을 특징으로 하는 염료감응 태양전지를 제공한다.
본 발명의 정공전도특성을 갖는 화합물은 기존의 I3 -/I-시스템의 산화-환원 전위보다 낮은 새로운 산화-환원 전위를 형성하여 염료와의 개방전압손실을 줄여주며, 또한 낮아진 산화-환원 전위로 인하여 n형 반도체의 전도띠의 페르미 레벨과의 전위차를 더욱 크게 형성하여 개방전압(Voc)을 더욱 증가시키는 효과를 제공한다.
또한, 염료들의 응집을 방지하여 염료에서 금속 산화물로의 전자주입 효율을 높여 Jsc값을 상승시키며, 높은 정공(홀) 수송 능력으로 전기전도도 및 이온 전도도를 향상시켜서 TiO2/염료/전해질 계면 사이의 저항을 낮춰 더 높은 Jsc값을 제공하며, 분자량이 작아서 기공 채움에 대한 문제 없이 TiO2 계면에 흡착 가능하여 염료분자에 생긴 홀이 공흡착체 물질로 더욱더 빠르게 이동되게 하며, TiO2로 구성되는 반도체층과 요오드를 포함하는 전해질의 계면에서 일어나는 전자의 재결합을 감소시켜서 궁극적으로 염료감응 태양전지의 광전류와 광전압을 향상시키는 효과를 제공한다.
또한, 본 발명의 정공전도특성을 발현하는 화합물은 가격이 저렴하여 태양전지의 효율을 향상시키는데 매우 유용하게 사용될 수 있다.
도 1은 본 발명의 비교 제조예 1, 비교 제조예 2, 제조예 1 및 제조예 2에서 제조된 염료용액을 TiO2 필름에 딥핑하여 12시간 동안 흡착시켜 UV-vis absorption spectra로 확인한 결과를 도시한 것이다.
도 2는 본 발명의 비교 실시예 1, 비교 실시예 2, 실시예 4 및 실시예 5에서 제조된 각각의 염료감응 태양전지를 사용하여 1 sun(100 mW/cm2) 일루미네이션(illumination) 조건에서 광전류-전압을 측정한 결과를 도시한 것이다.
도 3은 본 발명의 비교 실시예 1, 비교 실시예 2, 실시예 4 및 실시예 5에서 제조된 각각의 염료감응 태양전지를 사용하여 1 sun(100 mW/cm2) 일루미네이션(illumination) 조건에서 광전변환효율(IPCE)을 측정한 결과를 도시한 것이다.
도 4는 본 발명의 비교 실시예 1, 비교 실시예 2, 실시예 4 및 실시예 5에서 제조된 각각의 염료감응 태양전지 내에서 recombination을 측정하기 위하여 암실조건 하에서 AC 임피던스를 측정한 Nyquist plot를 도시한 것이다.
도 5는 염료감응 태양전지의 내부 저항을 구하기 위하여 설정한 등가회로를 도시한 것이다.
도 6은 본 발명의 비교 제조예1, 비교 제조예2, 제조예 1 및 제조예 2의 각각에서 제조된 염료용액을 흡착시킨 TiO2 전극의 LiClO4 수용액에서 Density of state(DOS)를 확인하여 도시한 것이다.
도 7은 본 발명의 비교 실시예 1, 비교 실시예 2, 실시예 4 및 실시예 5에서 제조된 각각의 염료감응 태양전지를 사용하여 EIS 측정방법을 통해 염료감응 태양전지의 dark current 실험을 실시하고, recombination 되는 전류를 측정한 결과는 도시한 것이다.
도 9는 CV측정법을 사용하여 본 발명의 화학식 2(PTZ1)와 화학식 4(PTZ2)의 HOMO를 측정하여 도시한 그래프이다.
본 발명은, 하기 화학식1로 표시되는 화합물에 관한 것이다:
[화학식1]
Figure PCTKR2012010494-appb-I000001
상기 식에서
Ar1, Ar2, Ar3 Ar4는 각각 독립적으로 C5~C20의 방향족환 또는 방향족 헤테로환이며, 여기서 헤테로환은 O, S 및 N으로 이루어진 군으로부터 선택되는 1~3개의 헤테로 원소를 포함하며,
Z는 O 또는 S이고, l은 0~5의 정수이고, m1, m2, n1, n2 및 o는 각각 독립적으로 0 또는 1이며,
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬; C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시; C1~C15의 알콕시로 치환된 C1~C15의 알콕시; C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬, C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시, 및 C1~C15의 알콕시로 치환된 C1~C15의 알콕시로 이루어진 군으로부터 선택되는 치환기로 치환 또는 비치환된 C5~C20의 아릴 또는 헤테로 아릴; 또는 C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬, C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시, 및 C1~C15의 알콕시로 치환된 C1~C15의 알콕시로 이루어진 군으로부터 선택되는 치환기로 치환 또는 비치환된 C6~C22의 아릴알킬 또는 헤테로 아릴알킬기이며, 단, 상기 Ar1이 방향족 헤테로환인 경우, R3, R4, R5 및 R6 중 하나 이상은 부존재하는 것일 수 있으며, Ar2가 방향족 헤테로환인 경우, R7, R8, R9 및 R10 중 하나 이상은 부존재하는 것일 수 있다.
상기 화학식 1로 표시되는 화합물은 우수한 정공전도특성을 갖는다.
상기 화학식 1에서 m1 및 m2는 1인 것이 바람직하다.
상기 화학식 1 에 있어서,
상기 Ar1, Ar2, Ar3 Ar4는 각각 독립적으로 페닐, 나프틸, 티오페닐, 안트라실, 이미다졸, 피리딘, 옥사졸, 티아졸, 퀴놀린 및 에닷(EDOT)으로 이루어진 군으로부터 선택될 수 있으며,
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10의 각각의 치환기에 포함되는 C1~C15의 알킬기로는 메틸, 에틸, 프로필, 부틸, 펜틸, 헥틸, 헵틸 또는 옥틸기 등을 들 수 있으며; C1~C15의 알콕시기로는 메톡시, 에톡시, 프로폭시, 부톡시, 펜톡시, 헥톡시 또는 헵톡시기 등을 들 수 있다.
상기 R3, R4, R5, R6, R7, R8, R9 및 R10가 각각 독립적으로 C1~C15의 알킬기인 경우, 메틸, 에틸 등이 바람직하다.
예컨대, C1~C15의 알콕시로 치환된 C1~C15의 알킬기로는 부톡시메틸, 부톡시에틸, 헥톡시메틸, 헵톡시메틸 등을 들 수 있으며, C1~C15의 알킬로 치환된 C1~C15의 알콕시기로는 2-에틸헵틸옥시, 3-에틸헵틸옥시, 2-메틸부틸옥시, 2-에틸펜틸옥시, 3-에틸펜틸옥시기 등을 들 수 있으며, C1~C15의 알콕시로 치환된 C1~C15의 알콕시기로는 3-메톡시펜톡시, 3-에톡시펜톡시, 3-프로톡시펜톡시, 2-메톡시헥톡시, 2-에톡시헥톡시, 2-프로톡시헥톡시기 등을 들 수 있다.
또한, R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10의 각각의 치환기에 포함되는 아릴기 또는 헤테로 아릴기로는, 이에 한정되는 것은 아니나, 페닐, 나프틸, 티오페닐, 안트라실, 이미다졸, 피리딘, 옥사졸, 티아졸, 퀴놀린, 에닷(EDOT,3,4-ethylenedioxythiophene) 등으로 이루어진 군으로부터 선택될 수 있다.
본 발명의 치환기들에 포함된 알킬기 또는 알콕시기는 측쇄 또는 분지쇄 형태일 수 있다.
본 발명의 정공전도특성을 갖는 화합물은 염료감응 태양전지에 있어서 데옥시콜린산(DCA)의 대용으로 사용될 수 있는 새로운 개념의 정공전도특성을 갖는 공흡착체로서, 염료의 응집을 방지하는 기능이 우수할 뿐만 아니라, 작은 분자량에 의해 TiO2 계면까지 침투하는 것이 가능하여 Pore filling 문제도 최소화하는 특징을 갖는다.
이하에서, 본 발명의 신규한 화합물들의 구체예와 제조방법을 예를들어 설명한다.
상기 화학식1 화합물의 구체적인 예로는 하기 화학식2 내지 화학식4의 화합물을 들을 수 있다.
[화학식2]
Figure PCTKR2012010494-appb-I000002
상기 화학식2의 화합물은 페노티아진 구조를 포함하는 것을 특징으로 하며, 구조 내에 비공유 전자쌍을 갖는 질소 원자와 황 원자가 각각 2중 결합을 포함하므로 정공의 수송능력이 매우 우수하다.
상기 화학식2의 화합물은 하기의 반응식1에 의해 제조될 수 있다.
[반응식1]
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-61
[화학식3]
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-64
상기 화학식3의 화합물은 페녹사진 구조를 포함하는 것을 특징으로 하며, 구조 내에 비공유 전자쌍을 갖는 질소 원자와 산소가 각각 2중 결합을 포함하므로 정공의 수송능력이 우수하다.
상기 화학식3의 화합물은 하기의 반응식2에 의해 제조될 수 있다.
[반응식2]
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-68
[화학식4]
Figure PCTKR2012010494-appb-I000006
상기 화학식4의 화합물은 페녹사진과 바이페닐 구조를 포함하는 것을 특징으로 하며, 구조 내에 비공유 전자쌍을 갖는 질소 원자와 황원자가 각각 2중 결합을 포함하므로 정공의 수송능력이 우수하다.
상기 화학식4의 화합물 중 4'-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-이)바이페닐-4-카복실산은 하기의 반응식3에 의해 제조될 수 있다.
[반응식3]
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-75
본 발명은,
상기 전공전도특성을 갖는 공흡착체를 광흡수층에 포함하는 것을 특징으로 하는 염료감응 태양전지에 관한 것이다.
본 발명의 정공전도특성을 갖는 화합물을 광흡수층에 포함하는 염료감응 태양전지는 상기 공흡착체에 의한 홀전도성이 우수하여 염료의 재충전이 빨라지며, 염료간의 π-π스태킹(staking)이 방지되며, TiO2로 넘어간 전자가 전해질 또는 염료로 재결합되는 것을 방지하여 높은 JSC값과 높은 VOC값을 갖는다. 그리고 Li+ 이온 조절에 의해 산화된 염료가 빠르게 재충전되어 높은 효율을 얻는다.
본 발명에서 염료감응 태양전지는, 이에 한정되는 것은 아니나, 다음과 같은 구성을 가질 수 있다:
전도성 투명 기판을 포함하는 제1전극;
상기 제1전극의 어느 일면에 형성된 광흡수층;
상기 광흡수층이 형성된 제1전극에 대향하여 배치되는 제2전극; 및
상기 제1전극과 제2전극 사이의 공간에 위치하는 전해질.
상기 태양전지를 구성하는 소재들을 예를 들어 설명하면 다음과 같다.
전도성 투명 기판을 포함하는 제1전극은 인듐 틴 옥사이드, 플루오린 틴 옥사이드, ZnO- Ga2O3, ZnO-Al2O3 및 주석계 산화물로 이루어진 군에서 선택되는 1종 이상의 물질로 형성된 투광성 전극을 포함하는 유리 기판 또는 플라스틱 기판일 수 있다.
상기 광흡수층은 반도체 미립자, 염료, 정공전도특성을 갖는 화합물 등을 포함하며, 상기 반도체 미립자는, 이에 한정되는 것은 아니나, 이산화티탄(TiO2), 이산화주석(SnO2), 산화아연(ZnO) 등의 나노입자 산화물로 형성될 수 있다. 상기 반도체 미립자 상에 흡착되는 염료로는 가시광선 영역의 빛을 흡수할 수 있으며, 나노산화물 표면과 견고한 화학결합을 이루며, 열 및 광확적 안정성을 지니고 있는 것이라면 제한 없이 사용될 수 있다. 대표적인 예로서, 루테늄계 유기금속화합물을 들 수 있다. 그리고 상기 정공전도특성을 갖는 공흡착체는 빛을 흡수하여 전자를 내준 염료에 생긴 홀을 채우며 자신이 다시 홀이 되며, 다시금 전해질에 의하여 홀을 채운다.
상기 제2전극으로는 상기 제1전극과 동일한 것이 사용될 수 있으며, 제1전극의 투광성 전극 상에 백금 등으로 집전층이 더 형성된 것이 사용될 수도 있다.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나, 이러한 실시예는 본 발명을 좀 더 명확하게 설명하기 위하여 제시되는 것일 뿐, 본 발명의 범위를 제한하는 목적으로 제시되는 것은 아니다. 본 발명의 범위는 후술하는 특허청구범위의 기술적 사상에 의해 정해질 것이다.
사용된 시약
테트라하이드로퓨란, 아세토나이트릴, 황산, 톨루엔, 메탄올, 아세트산, 에탄올, 아세톤, 에틸아세테이트, 헥산, 디클로로메탄은 동양화학사 제품을 사용하였다.
페노티아진, 페녹사진, 2-(2-(2-테톡시에톡시)에톡시)에탄올, 2-에톡시에탄올, 디메틸 설폭사이드, 1,2-디클로로벤젠, 디메틸 설페이트, N,N-디메틸,포름아마이드,이소프로폭시-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(2-isopropoxy-4,4,5,5-테트라메틸-1,3,2-dioxaborolane), N-브로모숙신이미드, 설파민산(sulfamic acid), 아염소산나트륨(sodium chlorite), 염화포스포릴, 염화구리(I), 1,10-펜안트롤린(1,10-phenanthroline), 수산화칼륨, 탄산칼륨(potassium carbonate), 요오드, 오르토과요오드산(orthoperiodic acid), 요오드화메틸, 메틸 4-브로모벤조에이트, Cu-브론즈, 19-crown-6, N-부틸리튬, 탄산나트륨, 수산화나트륨, 중탄산나트륨, 황산나트륨, 9H-플루오렌, 4-요오드페놀, 3-(브로모메틸)헥산, 카바졸, 4-플루오로벤조나이트릴, 포타슘-tert-부톡사이드, 3,5-다이브로모벤조나이트릴, 1,2-디메틸-3-프로필이미다졸리움 요오드, LiI, I2, 테트라부틸암모늄 헥사플루오로포스페이트는 Aldrich사 제품을 구입하여 사용하였다.
상기의 시약들은 별다른 정제과정 없이 사용하였다.
합성된 화합물의 확인방법
모든 새로운 화합물은 1H-NMR과 13C-NMR 그리고 FT-IR로 구조를 확인하였다. 1H-NMR은 Varian 300 분광기를 사용하여 기록하였고, 모든 화학적 이동도는 내부 표준물질인 테트라메틸 실란에 대해 ppm 단위로 기록하였다. IR 스펙트럼은 Perkin-Elmer Spectrometer를 사용하여 KBr 펠렛으로 측정하였다.
실시예 1: 4-(3,7-비스(4-(2-에틸헥실록시)페닐)-10H-페노티아진-10-일)벤조산의 합성
1-1: 1-브로모-4-(2-에틸헥실옥시)벤젠의 합성
Figure PCTKR2012010494-appb-I000008
250 mL 둥근 플라스크에 4-브로모페놀(브로모페놀, 15 g, 68.18 mmol), K2CO3(24.5 g, 177.26 mmol), DMF 70 mL를 넣고 2시간 동안 환류, 교반한 후, 2-에틸헥실브로마이드(17.12 g, 88.63 mmol)를 주사기를 사용하여 첨가한 후 24시간 동안 환류, 교반하였다. 반응이 종결되면 온도를 상온으로 내리고, 70 mL의 2몰 HCl 수용액으로 산처리 한 후 메틸렌 클로라이드로 추출 하고, 증류수로 여러 번 세척하였다. 유기층은 MgSO4 로 건조한 후 감압 하에서 용매를 제거하고, 관크로마토그래피(실리카, CH2Cl2:헥산 = 3:2)로 생성물을 분리하였다. 수득률은 93%이었다.
1H NMR(CDCl3. ppm): δ7.55-7.52(d, 2H, Ar-H), 6.69-6.66(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m, 1H,(CH2)3-H), 1.53-1.28(m, 8H, -CH2), 0.97-0.88(t, 6H, -CH3).
1-2: 2-(4-(2-에틸헥실옥시)페닐)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란의 합성
Figure PCTKR2012010494-appb-I000009
상기에서 얻은 1-브로모-4-(2-에틸헥실옥시)벤젠(5.52g, 19.4 mmol)을 THF(150 ml)에 넣고 -78℃에서 n-BuLi(1.61g, 25.2mmol, 2.5Min, n-hexane)를 적하시켰다. 1시간 교반후에 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(4.32 g, 23.2 mmol)을 반응물에 다시 적하하고 1시간 동안 교반한후, 실온에서 12시간 동안 더 교반시켰다. 반응 종료 후 용매를 제거하고 반응물을 물과 에틸 아세테이트로 추출하고, MgSO4로 건조한 후에 관크로마토그래피(n-헥산/DCM=3/1)로 생성물을 분리하였다. 수득율은 92%(5.9g)이었다.
1HNMR(300MHz,CDCl3): δ7.55-7.52(d, 2H, Ar-H), 6.69-6.66(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m,1H,(CH2)3-H), 1.53-1.28(m,8H,-CH2), 1.28-1.32(s,12H,-CH3), 1.53-1.28(m,8H,-CH2), 0.97-0.88(t,6H,-CH3)
1-3: 4-(10H-페노티아진-10-일)벤조나이트릴의 합성
Figure PCTKR2012010494-appb-I000010
10H-페노티아진(3 g, 15.05 mmol)와 4-브로모벤조나이트릴(3 g, 16.56 mmol)을 CuI( 1.26 g, 6.59 mmol), 18-crown-6( 0.44 g, 1.65 mmol), K2CO3(8.22g, 26.91mmol) 및 O-디클로로벤젠(O-dichlorobenzene, 30ml)와 함께 넣고 180 oC에서 24시간 동안 교반시켰다. 반응 종료후 용매를 제거하고 물과 에틸 아세테이트로 추출한 후, MgSO4로 건조하고 관크로마토그리피(n-헥산/EtOAc=2/1)로 생성물을 분리하였다. 수득율은 94%(4.5g)이었다.
1HNMR(300MHz,CDCl3):δ7.73(d, Ar-H, 2H), 7.54(d, Ar-H, 2H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H)
1-4: 4-(3,7-브로모-10H-페노티아진-10-일)벤조나이트릴의 합성
Figure PCTKR2012010494-appb-I000011
4-(10H-페노티아진-10-일)벤조나이트릴(4.5 g, 14.9 mmol)을 DMF(50 ml)에 녹이고 N-브로모숙신이미드(5.9g,33.9mmol)를 넣어주었다. 실온에서 4시간 반응시킨 후, 용매를 날리고 물과 에틸 아세테이트로 추출하였다. 상기 추출물을 MgSO4로 건조시킨 후, 관크로마토그래피(n-헥산/EtOAc=4/1)로 분리하였다. 수득률은 90%(6.5g)이었다.
1HNMR(300MHz,CDCl3): δ7.73(d, Ar-H, 2H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H)
1-5: 4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)벤조나이트릴의 합성
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-121
4-(3,7-브로모-10H-페노티아진-10-일)벤조나이트릴(6.5g, 14.2 mmol)과 2-(4-(2-에틸헥실옥시)페닐)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(5 g, 15.04mmol), 탄산칼륨(1.87 g, 10.56 mmol), 및 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.68g,0.35mmol)을 톨루엔/테트라히드로퓨란/H2O/에탄올(3:1:1:1(v/v/v/v)) 100ml에 넣고 질소하에서 녹인 후 80℃에서 12시간동안 환류 교반시켰다. 반응물질을 물과 에틸 아세테이트로 추출한 후 MgSO4로 건조시킨 후, 관크로마토그래피(n-hexane/EtOAc=3/1)로 분리하였다. 수득율은 60%(2.9g)이었다.
1HNMR(300MHz,CDCl3): δ7.73(d, Ar-H, 2H), 7.55(d, 2H, Ar-H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H), 6.69(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m,1H,(CH2)3-H), 1.53-1.28(m,8H,-CH2),0.97-0.88(t,6H,-CH3)
1-6: 4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)벤조산의 합성
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-126
4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)벤조나이트릴(2.9g, 3.98 mmol), 수산화칼륨(0.51g, 12.85 mmol)을 2-에톡시에탄올/H2O(2:1(v/v)) 20ml에 넣고 80℃에서 24시간 동안 교반시켰다. 물과 에틸 아세테이트로 추출한 후, MgSO4로 건조시키고 관크로마토그래피(n-헥산/EtOAc=2/1)로 분리하였다. 수득율은 94%(2.8g)이었다.
1HNMR(300MHz,CDCl3): δ7.73(d, Ar-H, 2H), 7.65(d, 2H, Ar-H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H), 6.69(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m,1H,(CH2)3-H), 1.53-1.28(m,8H,-CH2), 0.97-0.88(t,6H,-CH3)
실시예 2: 4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페녹사진-10-일)벤조산의 합성
2-1: 1-브로모-4-(2-에틸헥실옥시)벤젠의 합성
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-132
250 mL 둥근 플라스크에 4-브로모페놀(브로모페놀, 15 g, 68.18 mmol), K2CO3(24.5 g, 177.26 mmol), DMF 70 mL를 넣고 2시간 동안 환류, 교반한 후, 2-에틸헥실브로마이드(17.12 g, 88.63 mmol)를 주사기를 사용하여 첨가한 후 24시간 동안 환류, 교반하였다. 반응이 종결되면 온도를 상온으로 내리고, 70 mL의 2몰 HCl 수용액으로 산처리 한 후 메틸렌 클로라이드로 추출 하고, 증류수로 여러 번 세척하였다. 유기층은 MgSO4 로 건조한 후 감압 하에서 용매를 제거하고, 관크로마토그래피(실리카, CH2Cl2:헥산 = 3:2)로 생성물을 분리하였다. 수득률은 93%이었다.
1H NMR(CDCl3. ppm): δ7.55-7.52(d, 2H, Ar-H), 6.69-6.66(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m, 1H,(CH2)3-H), 1.53-1.28(m, 8H, -CH2), 0.97-0.88(t, 6H, -CH3).
2-2: 2-(4-(2-에틸헥실옥시)페닐)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란의 합성
Figure PCTKR2012010494-appb-I000015
상기에서 얻은 1-브로모-4-(2-에틸헥실옥시)벤젠(5.52g, 19.4 mmol)을 THF(150 ml)에 넣고 -78℃에서 n-BuLi(1.61g, 25.2mmol, 2.5Min, n-hexane)를 적하시켰다. 1시간 교반후에 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(4.32 g, 23.2 mmol)을 반응물에 다시 적하하고 1시간 동안 교반한후, 실온에서 12시간 동안 더 교반시켰다. 반응 종료 후 용매를 제거하고 반응물을 물과 에틸 아세테이트로 추출하고, MgSO4로 건조한 후에 관크로마토그래피(n-헥산/DCM=3/1)로 생성물을 분리하였다. 수득율은 92%(5.9g)이었다.
1HNMR(300MHz,CDCl3): δ7.55-7.52(d, 2H, Ar-H), 6.69-6.66(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m,1H,(CH2)3-H), 1.53-1.28(m,8H,-CH2), 1.28-1.32(s,12H,-CH3), 1.53-1.28(m,8H,-CH2), 0.97-0.88(t,6H,-CH3)
2-3: 4-(10H-페녹사진-10-일)벤조나이트릴의 합성
Figure PCTKR2012010494-appb-I000016
10H-페녹사진(4.5 g, 24.5 mmol)과 4-브로모벤조나이트릴(4.92 g, 27.02 mmol)을 CuI( 1.87 g, 9.83 mmol), 18-crown-6( 0.65 g, 2.46 mmol), K2CO3(13.58g, 98.25mmol)와 O-디클로로벤젠(30ml)과 함께 넣고 180oC에서 24시간 동안 교반시켰다. 반응 종료후 용매를 제거하고 물과 에틸 아세테이트로 추출한 후, MgSO4로 건조하고 관크로마토그리피(n-헥산/EtOAc=2/1)로 생성물을 분리하였다. 수득율은 64%(4.5g)이었다.
1HNMR(300MHz,CDCl3): δ7.63(d, Ar-H, 2H), 7.54(d, Ar-H, 2H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H)
2-4: 4-(3,7-브로모-10H-페녹사진-10-일)벤조나이트릴의 합성
Figure PCTKR2012010494-appb-I000017
4-(10H-페녹사진-10-일)벤조나이트릴(4.5 g, 15.8 mmol)을 DMF(50 ml)에 녹이고 N-브로모숙신이미드(5.63g,31.66 mmol)를 넣어주었다. 실온에서 4시간 반응시킨 후, 용매를 날리고 물과 에틸 아세테이트로 추출하였다. 상기 추출물을 MgSO4로 건조시킨 후, 관크로마토그래피(n-헥산/EtOAc=4/1)로 분리하였다. 수득률은 99%(6.5g)이었다.
1HNMR(300MHz,CDCl3): δ7.63(d, Ar-H, 2H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H)
2-5: 4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페녹사진-10-일)벤조나이트릴의 합성
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-152
4-(3,7-브로모-10H-페녹사진-10-일)벤조나이트릴(6.5g, 14.7 mmol)과 2-(4-(2-에틸헥실옥시)페닐)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(10 g, 30 mmol), 탄산칼륨(7.48 g, 42.24 mmol), 및 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.68g,0.35mmol)을 톨루엔/테트라히드로퓨란/H2O/에탄올(3:1:1:1(v/v/v/v)) 100ml에 넣고 질소하에서 녹인 후 80℃에서 12시간동안 환류 교반시켰다. 반응물질을 물과 에틸 아세테이트로 추출한 후 MgSO4로 건조시킨 후, 관크로마토그래피(n-hexane/EtOAc=3/1)로 분리하였다. 수득율은 60%(2.9g)이었다.
1HNMR(300MHz,CDCl3): δ7.69(d, Ar-H, 2H), 7.55(d, 2H, Ar-H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H), 6.69(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m,1H,(CH2)3-H), 1.53-1.28(m,8H,-CH2),0.97-0.88(t,6H,-CH3)
2-6: 4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페녹사진-10-일)벤조산의 합성
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-157
4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페녹사진-10-일)벤조나이트릴(2.9g, 3.98 mmol), 수산화칼륨(0.51g, 12.85 mmol)을 2-에톡시에탄올/H2O(2:1(v/v)) 20ml에 넣고 80℃에서 24시간 동안 교반시켰다. 물과 에틸 아세테이트로 추출한 후, MgSO4로 건조시키고 관크로마토그래피(n-헥산/EtOAc=2/1)로 분리하였다. 수득율은 94%(2.8g)이었다.
1HNMR(300MHz,CDCl3)δ7.63d, Ar-H, 2H), 7.65(d, 2H, Ar-H), 7.38(m, Ar-H, 2H), 7.35(m, Ar-H, 2H), 7.27(m, Ar-H, 2H), 7.10(d, Ar-H, 2H), 6.69(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m,1H,(CH2)3-H), 1.53-1.28(m,8H,-CH2), 0.97-0.88(t,6H,-CH3)
실시예 3: 4'-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)바이페닐-4-카복실산의 합성
3-1: 1-브로모-4-(2-에틸헥실옥시)벤젠의 합성
Figure PCTKR2012010494-appb-I000020
250 mL 둥근 플라스크에 4-브로모페놀(브로모페놀, 15 g, 68.18 mmol), K2CO3(24.5 g, 177.26 mmol), DMF 70 mL를 넣고 2시간 동안 환류, 교반한 후, 2-에틸헥실브로마이드(17.12 g, 88.63 mmol)을 주사기를 사용하여 첨가한 후 24시간 동안 환류, 교반하였다. 반응이 종결되면 온도를 상온으로 내리고, 70 mL의 2몰 HCl 수용액으로 산처리 한 후, 메틸렌 클로라이드로 추출하고, 증류수로 여러 번 세척하였다. 유기층은 MgSO4 로 건조한 후 감압 하에서 용매를 제거하고, 관크로마토그래피(실리카, CH2Cl2:헥산 = 3:2)로 생성물을 분리하였다. 수득률은 93 %이었다.
1H NMR(CDCl3. ppm): δ7.55-7.52(d, 2H, Ar-H), 6.69-6.66(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O), 1.73-1.67(m, 1H,(CH2)3-H), 1.53-1.28(m, 8H, -CH2), 0.97-0.88(t, 6H, -CH3).
3-2: 2-(4-(2-에틸헥실옥시)페닐)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란의 합성
Figure PCTKR2012010494-appb-I000021
상기에서 얻은 1-브로모-4-(2-에틸헥실옥시)벤젠(5.52g, 19.4 mmol)을 THF(150 ml)에 넣고 -78℃에서 n-BuLi(1.61g, 25.2mmol, 2.5Min, n-hexane)를 적하시켰다. 1시간 교반후에 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(4.32 g, 23.2 mmol)을 반응물에 다시 적하하고 1시간 동안 교반한후, 실온에서 12시간 동안 더 교반시켰다. 반응 종료 후 용매를 제거하고 반응물을 물과 에틸 아세테이트로 추출하고, MgSO4로 건조한 후에 관크로마토그래피(n-헥산/DCM=3/1)로 생성물을 분리하였다. 수득율은 92%(5.9g)이었다.
1HNMR(300MHz,CDCl3)δ7.55-7.52(d, 2H, Ar-H), 6.69-6.66(d, 2H, Ar-H), 3.80-3.79(d, 2H, CH2-O),1.73-1.67(m,1H,(CH2)3-H),1.53-1.28(m,8H,-CH2),1.28-1.32(s,12H,-CH3)1.53-1.28(m,8H,-CH2),0.97-0.88(t,6H,-CH3)
3-3: 4'-브로모바이페닐-4-카보나이트릴의 합성
Figure PCTKR2012010494-appb-I000022
4,4'-다이브로모 바이페닐( 15 g, 48.08 mmol)과 4.31 g (48.08 mmol)의 CuCN(CAUTION, keep away from water)을 둥근 플라스트에서 DMF 20mL에 녹인 후 질소 컨디션 상태에서 12시간 환류, 교반 시켰다. 반응이 종결되면 온도를 상온으로 내리고, 유기층은 MgSO4 로 건조한 후 감압 하에서 용매를 제거하고, 관크로마토그래피(실리카, CH2Cl2:헥산 = 1:1)로 생성물을 분리하였다. 수득률은 93 %이었다.
1H NMR (300 MHz, CDCl3) δ=7.74(d,2H,Ar-H), 7.66-7.59(m,4H,Ar-H), 7.46(d,2H,Ar-H).
3-4: 4'-(10H-페노티아진-10-일)바이페닐-4-카보나이트릴의 합성
Figure PCTKR2012010494-appb-I000023
10H-페노티아진(5.0 g, 25.09 mmol), 4'-브로모바이페닐-4-카보나이트릴 (9.12 g, 50.18 mmol), Pd(OAc)2 ( 0.56 g, 2.51 mmol), 1,1'- 비스( 다이페닐포스피노)페로센 ( 1.39 g, 2.51 mmol), sodium t-butoxide (7.16 g, 74.52 mmol)를 둥근 플라스트에 넣고 톨루엔/THF(9:1) 100 ml에 녹인 후 질소 컨디션 상태에서 12시간 환류, 교반 시켰다. 반응이 종결되면 온도를 상온으로 내리고, 유기층은 MgSO4 로 건조한 후 감압 하에서 용매를 제거하고, 관크로마토그래피(실리카, EtOAc:헥산 = 5:1)로 생성물을 분리하였다. 수득률은 70%이었다.
1H NMR (300 MHz, DMSO) δ = 8.01 (d, 2H, Ar-H), 7.97 (m, 4H, Ar-H), 7.51 (d, 2H, Ar-H), 7.18 (m, 2H, Ar-H), 7.03 (m, 2H, Ar-H), 6.96 (d, 2H, Ar-H), 6.42 (d, 2H, Ar-H).
3-5: 4'-(3,7-다이브로모-10H-페노티아진-10-일)바이페닐-4-카보나이트릴의 합성
Figure PCTKR2012010494-appb-I000024
4'-(10H-페노티아진-10-일)바이페닐-4-카보나이트릴 (5.3 g, 17.64 mmol)를 THF (50 ml)에 녹이고 N-브로모숙신이미드 (6.28 g, 35.29 mmol)를 넣어주었다. 실온에서 4시간 반응시킨 후, 용매를 날리고 물과 에틸 아세테이트로 추출하였다. 상기 추출물을 MgSO4로 건조시킨 후, 관크로마토그래피(n-헥산/EtOAc=4/1)로 분리하였다. 수득률은 90%(6.5g)이었다.
1H NMR (300 MHz, DMSO) δ = 8.06 (d, 2H, Ar-H), 8.01 (m, 4H, Ar-H), 7.57 (d, 2H, Ar-H), 7.34 (s, 2H, Ar-H), 7.16 (dd, 2H, Ar-H), 6.15 (d, 2H, J = 8.7 Hz, Ar-H).
3-6: 4'-(3,7-비스(4-(2-에틸헥실오시)페닐l)-10H-페노티아진-10-일)바이페닐l-4-카보나이트릴 의 합성
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-190
4'-(3,7-다이브로모-10H-페노티아진-10-일)바이페닐-4-카보나이트릴 (3.0 g, 6.55 mmol), 2-(4-(2-에틸헥실옥시)페닐)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 탄산나트륨(4.52 g, 32.74 mmol), 및 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.78g,0.65mmol)을 톨루엔/테트라히드로퓨란/H2O/에탄올(3:1:1:1(v/v/v/v)) 100ml에 넣고 질소하에서 녹인 후 80℃에서 12시간동안 환류 교반시켰다. 반응물질을 물과 에틸 아세테이트로 추출한 후 MgSO4로 건조시킨 후, 관크로마토그래피(n-hexane/EtOAc=3/1)로 분리하였다. 수득율은 60%이었다.
1H NMR (300 MHz, DMOS) δ = 8.06 (d, 2H, Ar-H), 8.00 (m, 4H, Ar-H), 7.59 (d, 2H, Ar-H), 7.53 (d, 4H, Ar-H), 7.39 (s, 2H, Ar-H), 7.26 (m, 2H, Ar-H), 6.98 (d, 4H, Ar-H), 6.37 (d, 2H, Ar-H), 3.90 (d, 4H, CH2-O), 1.68 (q, 2H, (CH2)3-H), 1.44-1.30 (m, 16H, -CH2), 0.92-0.87 (t, 12H, -CH3).
3-7: 4'-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)바이페닐-4-카복실산의 합성
[규칙 제26조에 의한 보정 07.03.2013] 
Figure WO-DOC-195
4'-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)바이페닐-1-4-카보나이트릴(3.8 g, 32.74 mmol) 수산화칼륨(2.14g, 53.60 mmol)을 2-에톡시에탄올/H2O(2:1(v/v)) 20ml에 넣고 80℃에서 24시간 동안 교반시켰다. 물과 에틸 아세테이트로 추출한 후, MgSO4로 건조시키고 관크로마토그래피(n-헥산/EtOAc=2/1)로 분리하였다. 수득율은 94%(2.8g)이었다.
1H NMR (300 MHz, DMOS) δ = 8.08 (d, 2H, Ar-H), 7.57 (d, 4H, Ar-H), 7.54 (s, 2H, Ar-H), 7.39 (dd, 4H, Ar-H), 7.00 (d, 4H, Ar-H), 6.73 (d, 2H, Ar-H), 3.90 (d, 4H, CH2-O), 1.68 (q, 2H, (CH2)3-H), 1.44-1.30 (m, 16H, -CH2), 0.92-0.87 (t, 12H, -CH3).
비교 제조예 1: 공흡착 정공수송물질이 없는 염료용액의 제조
0.3m몰(M) 농도의 NKX2677
비교 제조예 2: 염료 용매와 기존에 DCA(deoxycholic acid)가 함유된 용액의 제조
다음과 같은 성분을 몰농도로 혼합하여 염료용액을 제조하였다.
0.3m몰(M) 농도의 NKX2677
40m몰(M) 농도의 DCA
제조예 1 및 2: 공흡착 정공수송물질을 함유한 염료용액의 제조
본 발명의 공흡착 정공수송물질인 4-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)벤조산(PTZ1)과 4'-(3,7-비스(4-(2-에틸헥실옥시)페닐)-10H-페노티아진-10-일)바이페닐-4-카복실산(PTZ2)을 사용하여, 염료 0.3m몰(M)을 기준으로 각각 1m몰(M) 농도의 PTZ1(제조예 1) 및 1m몰(M) 농도의 PTZ2(제조예 2)를 상기 비교 제조예 2와 동일한 방법으로 혼합하여 공흡착 정공수송물질을 함유한 염료용액을 제조하였다.
비교 실시예 1: 염료감응 태양전지의 제조
다음의 공정에 따라 염료감응 태양전지를 제조하였다.
1.FTO 유리기판을 수산화나트륨 세정용액에 넣고 1시간 동안 초음파 세척한 후, 증류수와 에탄올을 이용하여 세척하고, 질소가소를 이용해 건조시켰다.
2.세척된 FTO 유리기판을 40mM 농도의 TiCl4 수용액에 담근 후에 70℃ 오븐에서 30분 간 가열하였다.
3.TiCl4 처리된 FTO 유리기판을 증류수와 에탄올을 이용하여 세척한 후, 질소 가스를 이용하여 건조시키고, 80℃ 오븐에서 10분 간 가열하였다.
4.이어서, TiCl4 처리된 FTO 유리기판에 13nm 입자 크기의 Ti02 페이스트를 닥터 블레이드(doctor blade) 방법으로 코팅하고, 상온에서(20℃) 2시간 동안 건조시켰다.
5.Ti02가 코팅된 FTO 유리기판을 80℃ 오븐에서 2시간 동안 건조시켰다.
6.이어서, Ti02가 코팅된 FTO 유리기판을 가열로를 이용하여 서서히 온도를 올리면서 최대 500℃에서 30분간 소성시켰다.
7.상기 소성된 FTO 유리기판을 입자크기 400nm인 Ti02 페이스트를 닥터 블레이드 방법으로 코팅하였다. 그리고 상온에서(20℃) 2시간 동안 건조시킨 후, 가열로를 이용하여 서서히 온도를 올리면서 최대 500℃에서 30분간 소성시켰다.
8.이어서, 상기 소성된 FTO 유리기판을 40mM TiCl4 수용액에 30분 동안 담근 후, 증류수와 에탄올을 이용하여 세척하고 질소가스를 이용하여 건조시키고, 80℃ 오븐에서 10분 동안 건조하였다.
9.이어서, 상기 건조된 FTO 유리기판을 히팅건(heating gun)을 이용하여 30분 동안 소결한 후에 0.3mM로 희석된 NKX2677염료 농도의 용액(EtOH: 비교 제조예 1 용액)에 딥핑(dipping)하여 12시간 동안 염료와 공흡착 전공수송물질을 흡착시켰다.
10.상기 염료가 흡착된 FTO 유리기판을 에탄올로 세척한 후, 질소가스를 이용하여 건조시켰다.
11.FTO 유리기판(상대전극용)에 전해질을 주입하기 위한 지름 0.6mm의 두개 구멍을 한 개 뚫었다.
12.이어서, FTO 유리기판을 H20/아세톤/HCl(4:4:2, v/v/v%) 수용액에 1시간 동안 담가서 초음파 세척기로 세척하고, 70℃ 오븐에서 30분 동안 건조시켰다.
13.이어서, FTO 유리기판을 Pt 용액(1mL 에탄올 용액에 2mg의 H2PtCl6을 녹인)으로 스핀 코팅한 후 히팅건을 이용하여 400℃에서 15분간 가열시켰다.
14.상기에서 제조된 산화전극과 환원전극을 고분자 실링 필름(sealing film)을 이용하여 80℃로 가열된 핫프레스(hot press)를 이용하여 합체하였다.
15.상기 두개 구멍을 실링필름과 커버 글래스(cover glass)로 밀봉하였다.
비교 실시예 2: 염료감응 태양전지의 제조
비교 제조예 2의 염료용액을 사용한 것을 제외하고는 상기 비교 실시예 1과 동일한 방법으로 염료감응 태양전지를 제조하였다.
실시예 4 및 5 염료감응 태양전지의 제조
각각 제조예 1(실시예 4) 및 제조예 2(실시예 5)의 염료용액을 사용한 것을 제외하고는 상기 비교 실시예 1과 동일한 방법으로 염료감응 태양전지를 제조하였다.
시험예 1: TiO 2 필름에 흡착된 염료, 공흡착 전공수송물질, DCA 의 UV-vis absorption spectra
본 발명의 비교 제조예 1, 비교 제조예 2, 제조예 1 및 제조예 2에서 제조된 염료용액을 TiO2 필름에 딥핑하여 12시간 동안 흡착시켜 UV-vis absorption spectra로 확인하였고 결과를 도 1에 나타내었다.
시험예 2: 염료감응 태양전지의 성능 평가
비교 실시예 1, 비교 실시예 2, 실시예 4 및 실시예 5에서 제조된 각각의 염료감응 태양전지를 사용하여 1 sun(100 mW/cm2) 일루미네이션(illumination) 조건에서 광전류-전압을 측정하고, 그 결과를 하기 표 1과 도 2에 나타내었다. 또한 각각의 광전변환효율(IPCE)은 도 3에 도시하였다.
표 1
device Jsc(mA cm-2) Voc(mV) FF(%) η(%)
NKX2677(비교 제조예 1) 14.66 581 68.56 5.97
NKX2677/DCA(비교 제조예 2) 15.22 616 75.68 7.09
NKX2677/PTZ1(제조예 1) 16.76 677 75.30 8.54
NKX2677/PTZ2(제조예 2) 16.56 740 72.99 8.95
상기 표 1 및 하기 도 2 및 도 3으로부터 확인되는 바와 같이, 본 발명의 공흡착 정공수송물질 PTZ2를 포함한 염료용액(제조예 2)을 사용한 태양전지(실시예 5)의 경우, 1sun(100mW/cm2) 기준에서 V oc는 0.740 V, J sc 16.56 mA/cm2, Fill factor는 0.72.99%, η 8.95%로 가장 우수한 성능을 나타냈다.
시험예 3: 염료감응 태양전지 셀의 내부 전하이동 저항 특성
비교 실시예 1, 비교 실시예 2, 실시예 4 및 실시예 5에서 제조된 각각의 염료감응 태양전지를 사용하여 내부 저항 특성을 알아보고, 염료감응 태양전지 내에서 recombination(재결합)을 측정하기 위하여, 암실조건 하에서 AC 임피던스를 측정한 Nyquist plot를 도 4에 나타내었다. 이 때, 내부 저항을 구하기 위하여 설정한 등가회로는 도 5에 나타내었다. 임피던스 fitting에 의하여 각각 계면의 내부 저항을 확인하였다.
본 발명의 공흡착 정공수송물질 (PTZ2)을 포함하여 제조된 제조예 2의 염료용액은 TiO2/염료/전해질 계면에서 가장 큰 저항을 나타냈다. 이러한 큰 저항은 TiiO2 주입된 전자가 전해질로 재결합되는 것을 방지하여 높은 전류값과 전압값을 얻게하여 염료감응 태양전지의 효율을 향상시킨다.
시험예 4: 정공수송 물질이 공흡착된 TiO 2 의 CB(conduction band) 확인
비교 제조예1, 비교 제조예2, 제조예 1 및 제조예 2의 각각에서 제조된 염료용액을 흡착시킨 TiO2 전극을 이용하여 LiClO4 수용액에서 Density of state(DOS)를 확인하였다. 그 결과, 제조예 2 용액을 흡착시킨 전극의 CB가 가장 높은 것을 확인하였고 그 결과를 도 6에 도시하였다. CB가 가장 높은 것은 Voc 높다는 것을 의미하므로 태양전지의 효율을 향상시킨다.
시험예 5: 염료감응 태양전지의 dark current 실험
비교 실시예 1, 비교 실시예 2, 실시예 4 및 실시예 5에서 제조된 각각의 염료감응 태양전지를 사용하여 EIS 측정방법을 통해 염료감응 태양전지의 dark current 실험을 하여 recombination 되는 전류를 측정함으로써 실시예 5의 염료감응 태양전지가 가장 낮은 dark current 값을 확인하였고, 이로부터 실시예 5의 염료감응 태양전지가 가장 높은 전류값과 전압을 얻을 수 있다는 것을 확인하였다. 상기 측정결과는 도 7에 나타내었다.
시험예 6: 화학식 2와 화학식 4의 HOMO 측정
CV측정법을 사용하여 화학식 2(PTZ1)와 화학식 4(PTZ2)의 HOMO를 측정하여 도 8에 각각 도시하였고, NKX2677 염료와 화학식 2, 화학식 4의 HOMO, LUMO, 밴드갭의 결과를 하기 표 2에 나타내었다.
표 2
Dye &co-absorbent Asorptionλmax/nm(ε/M-1cm-1) HOMO=EOX/V(vs.NHE) LUMO=EO-O/V(vs.NHE) EOX - EO-O/V(vs.eV)
NKX2677 501(55,500) 0.91 -0.90 1.81
화학식2(PTZ1) 290(52,900) 0.92 -2.14 3.06
화학식4(PTZ2) 290(52,900) 0.88 -2.14 3.02

Claims (7)

  1. 하기 화학식1로 표시되는 화합물:
    [화학식1]
    Figure PCTKR2012010494-appb-I000027
    상기 식에서
    Ar1, Ar2, Ar3 Ar4는 각각 독립적으로 C5~C20의 방향족환 또는 방향족 헤테로환이며, 여기서 헤테로환은 O, S 및 N으로 이루어진 군으로부터 선택되는 1~3개의 헤테로 원소를 포함하며,
    Z는 O 또는 S이고, l은 0~5의 정수이고, m1, m2, n1, n2 및 o는 각각 독립적으로 0 또는 1이며,
    R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬; C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시; C1~C15의 알콕시로 치환된 C1~C15의 알콕시; C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬, C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시, 및 C1~C15의 알콕시로 치환된 C1~C15의 알콕시로 이루어진 군으로부터 선택되는 치환기로 치환 또는 비치환된 C5~C20의 아릴 또는 헤테로 아릴; 또는 C1~C15의 알콕시로 치환 또는 비치환된 C1~C15의 알킬, C1~C15의 알킬로 치환 또는 비치환된 C1~C15의 알콕시, 및 C1~C15의 알콕시로 치환된 C1~C15의 알콕시로 이루어진 군으로부터 선택되는 치환기로 치환 또는 비치환된 C6~C22의 아릴알킬 또는 헤테로 아릴알킬기이며, 단, 상기 Ar1이 방향족 헤테로환인 경우, R3, R4, R5 및 R6 중 하나 이상은 부존재하는 것일 수 있으며, Ar2가 방향족 헤테로환인 경우, R7, R8, R9 및 R10 중 하나 이상은 부존재하는 것일 수 있다.
  2. 청구항 1에 있어서, m1 및 m2는 1인 것을 특징으로 하는 화합물.
  3. 청구항 1에 있어서,
    상기 Ar1, Ar2, Ar3 Ar4는 각각 독립적으로 페닐, 나프틸, 티오페닐, 안트라실, 이미다졸, 피리딘, 옥사졸, 티아졸, 퀴놀린 및 에닷(EDOT)으로 이루어진 군으로부터 선택되며,
    R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10의 각각의 치환기에 포함되는 C1~C15의 알킬기는 메틸, 에틸, 프로필, 부틸, 펜틸, 헥틸, 헵틸 또는 옥틸기이고; C1~C15의 알콕시기는 메톡시, 에톡시, 프로폭시, 부톡시, 펜톡시, 헥톡시 또는 헵톡시기이고; 아릴기 또는 헤테로 아릴기는 페닐, 나프틸, 티오페닐, 안트라실, 이미다졸, 피리딘, 옥사졸, 티아졸, 퀴놀린 및 에닷(EDOT)으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 화합물.
  4. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물이 하기 화학식 2 내지 화학식 4의 화합물인 것을 특징으로 하는 화합물:
    [화학식2]
    Figure PCTKR2012010494-appb-I000028
    [화학식3]
    Figure PCTKR2012010494-appb-I000029
    [화학식4]
    Figure PCTKR2012010494-appb-I000030
  5. 청구항 1의 화학식 1로 표시되는 화합물을 포함하는 정공전도특성을 갖는 공흡착체.
  6. 청구항 5의 정공전도특성을 갖는 공흡착체를 포함하는 광흡수층을 포함하는 것을 특징으로 하는 염료감응 태양전지.
  7. 청구항 6에 있어서, 상기 염료감응 태양전지는
    전도성 투명 기판을 포함하는 제1전극;
    상기 제1전극의 어느 일면에 형성된 광흡수층;
    상기 광흡수층이 형성된 제1전극에 대향하여 배치되는 제2전극; 및
    상기 제1전극과 제2전극 사이의 공간에 위치하는 전해질을 포함하는 것을 특징으로 하는 염료감응 태양전지.
PCT/KR2012/010494 2011-12-05 2012-12-05 정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지 WO2013085285A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110129038 2011-12-05
KR10-2011-0129038 2011-12-05
KR10-2012-0140553 2012-12-05
KR20120140553A KR101489184B1 (ko) 2011-12-05 2012-12-05 정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지

Publications (1)

Publication Number Publication Date
WO2013085285A1 true WO2013085285A1 (ko) 2013-06-13

Family

ID=48574572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010494 WO2013085285A1 (ko) 2011-12-05 2012-12-05 정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지

Country Status (1)

Country Link
WO (1) WO2013085285A1 (ko)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111196A1 (ja) * 2015-01-08 2016-07-14 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
JP2016130231A (ja) * 2015-01-08 2016-07-21 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
CN106831633A (zh) * 2016-12-30 2017-06-13 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
WO2017101675A1 (zh) * 2015-12-18 2017-06-22 昆山国显光电有限公司 热活化延迟荧光材料及其在有机电致发光器件中的应用
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. MATERIAL COMPOSITION FOR USE IN ORGANIC ELECTROLUMINESCENT DIODE
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
EP4087579A4 (en) * 2020-01-08 2024-04-17 Univ Colorado Regents PHENOTHIAZINE DONOR-ACCEPTOR COMPLEXES WITH HIGH TRIPLET YIELD FOR PHOTOREDOX CATALYSIS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070085221A (ko) * 2004-07-29 2007-08-27 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 2,2-바이피리딘 리간드, 감응 염료 및 염료 감응 태양 전지
KR20090083863A (ko) * 2008-01-30 2009-08-04 주식회사 동진쎄미켐 신규한 유기 염료 및 이의 제조방법
KR20100058902A (ko) * 2008-11-25 2010-06-04 주식회사 동진쎄미켐 벤조티아다이아졸 발색부-함유 신규 유기염료 및 이의 제조방법
KR20100128094A (ko) * 2009-05-27 2010-12-07 주식회사 동진쎄미켐 신규한 줄로리딘계 염료 및 이의 제조방법
KR20100136929A (ko) * 2009-06-19 2010-12-29 주식회사 동진쎄미켐 신규한 유기염료 및 이의 제조방법
KR20110083619A (ko) * 2008-09-09 2011-07-20 메르크 파텐트 게엠베하 유기 물질 및 전자사진 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070085221A (ko) * 2004-07-29 2007-08-27 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 2,2-바이피리딘 리간드, 감응 염료 및 염료 감응 태양 전지
KR20090083863A (ko) * 2008-01-30 2009-08-04 주식회사 동진쎄미켐 신규한 유기 염료 및 이의 제조방법
KR20110083619A (ko) * 2008-09-09 2011-07-20 메르크 파텐트 게엠베하 유기 물질 및 전자사진 장치
KR20100058902A (ko) * 2008-11-25 2010-06-04 주식회사 동진쎄미켐 벤조티아다이아졸 발색부-함유 신규 유기염료 및 이의 제조방법
KR20100128094A (ko) * 2009-05-27 2010-12-07 주식회사 동진쎄미켐 신규한 줄로리딘계 염료 및 이의 제조방법
KR20100136929A (ko) * 2009-06-19 2010-12-29 주식회사 동진쎄미켐 신규한 유기염료 및 이의 제조방법

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130231A (ja) * 2015-01-08 2016-07-21 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
WO2016111196A1 (ja) * 2015-01-08 2016-07-14 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
CN106892857B (zh) * 2015-12-18 2020-02-18 昆山国显光电有限公司 热活化延迟荧光材料及其在有机电致发光器件中的应用
US10770661B2 (en) 2015-12-18 2020-09-08 Kunshan Gp-Visionox Opto-Electronics Co., Ltd. Thermally activated delayed fluorescence material and application thereof in organic electroluminescence device
WO2017101675A1 (zh) * 2015-12-18 2017-06-22 昆山国显光电有限公司 热活化延迟荧光材料及其在有机电致发光器件中的应用
CN106892857A (zh) * 2015-12-18 2017-06-27 昆山国显光电有限公司 热活化延迟荧光材料及其在有机电致发光器件中的应用
US20170263871A1 (en) * 2016-12-30 2017-09-14 Shanghai Tianma AM-OLED Co., Ltd. Organic electroluminescent material and organic optoelectronic device
CN106831633A (zh) * 2016-12-30 2017-06-13 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. MATERIAL COMPOSITION FOR USE IN ORGANIC ELECTROLUMINESCENT DIODE
US11638390B2 (en) 2017-06-23 2023-04-25 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
EP4087579A4 (en) * 2020-01-08 2024-04-17 Univ Colorado Regents PHENOTHIAZINE DONOR-ACCEPTOR COMPLEXES WITH HIGH TRIPLET YIELD FOR PHOTOREDOX CATALYSIS

Similar Documents

Publication Publication Date Title
WO2013085285A1 (ko) 정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지
WO2011068346A2 (ko) 유기금속염료 및 이를 이용한 광전소자, 염료감응 태양전지
WO2015163614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2013119022A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2016171465A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2010002154A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2016133368A9 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2010062015A1 (ko) 벤조티아다이아졸 발색부-함유 신규 유기염료 및 이의 제조방법
WO2015142067A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2018236100A1 (ko) 유기 태양 전지
WO2016208985A1 (ko) 할로겐화 납 어덕트 화합물 및 이를 이용한 페로브스카이트 소자
WO2015190762A2 (ko) 축합고리 유도체 및 이를 포함하는 유기 태양 전지
WO2021118238A1 (ko) 신규한 중합체 및 이를 이용하는 유기 전자 소자
WO2014061867A1 (ko) 신규한 유기 반도체 화합물 및 이의 제조방법
WO2019004605A1 (ko) 유기 태양 전지
WO2015037966A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
KR101290406B1 (ko) 정공전도성을 갖는 화합물, 그의 공흡착체로서의 용도, 및 그를 포함하는 염료감응 태양전지
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2021118171A1 (ko) (아릴옥시)알킬기가 치환된 화합물 및 이를 이용하는 유기 전자 소자
WO2014092408A1 (ko) 공중합체 및 이를 이용한 유기 태양 전지
WO2018225999A1 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2016175573A2 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2015147598A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856026

Country of ref document: EP

Kind code of ref document: A1