WO2010002001A1 - 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール - Google Patents

窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール Download PDF

Info

Publication number
WO2010002001A1
WO2010002001A1 PCT/JP2009/062221 JP2009062221W WO2010002001A1 WO 2010002001 A1 WO2010002001 A1 WO 2010002001A1 JP 2009062221 W JP2009062221 W JP 2009062221W WO 2010002001 A1 WO2010002001 A1 WO 2010002001A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
phase
mgo
grain boundary
mgsin
Prior art date
Application number
PCT/JP2009/062221
Other languages
English (en)
French (fr)
Inventor
加賀 洋一郎
渡辺 純一
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2010519123A priority Critical patent/JP5477289B2/ja
Priority to EP09773579.9A priority patent/EP2301906B1/en
Priority to CN2009801260520A priority patent/CN102105418A/zh
Priority to US12/737,316 priority patent/US8586493B2/en
Publication of WO2010002001A1 publication Critical patent/WO2010002001A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a silicon nitride substrate and a manufacturing method thereof.
  • the present invention also relates to a silicon nitride circuit board and a semiconductor module using the silicon nitride substrate.
  • a substrate used for the power semiconductor module a ceramic circuit substrate in which a metal circuit board is bonded to one surface of an insulating ceramic substrate and a metal heat sink is bonded to the other surface can be used.
  • a semiconductor element or the like is mounted on the upper surface of the metal circuit board.
  • the amount of heat generated is increased by flowing a large current.
  • the insulating ceramic substrate has a lower thermal conductivity than a copper plate, it can be a factor that hinders heat dissipation from the semiconductor element. .
  • thermal stress based on the difference in thermal expansion coefficient between the insulating ceramic substrate and the metal circuit board and the metal heat radiating plate is generated.
  • the metal circuit board or the metal heat radiating plate is peeled off from the insulating ceramic substrate.
  • the insulating ceramic substrate requires high thermal conductivity and mechanical strength in order to improve heat dissipation.
  • Examples of the material for the insulating ceramic substrate include aluminum nitride and silicon nitride, but the insulating ceramic substrate using aluminum nitride has high thermal conductivity but low mechanical strength, so that such cracks occur. It is easy to use in a power semiconductor module having a structure in which a great stress is applied to the ceramic substrate.
  • Patent Document 1 discloses an example of a silicon nitride substrate. By crystallizing 20% or more of the grain boundary phase, the ratio of the glass phase having a low thermal conductivity is reduced to reduce the silicon nitride substrate. Increases thermal conductivity.
  • this technique is referred to as a first conventional example.
  • Patent Document 2 discloses an example of a silicon nitride ceramic material. By making the grain boundary phase amorphous, the silicon nitride crystal particles are firmly bonded to the amorphous grain boundary phase. , Has increased strength.
  • Patent Document 3 discloses an example of a silicon nitride-based heat radiating member.
  • a silicon nitride-based heat radiating member having a high thermal conductivity is obtained by containing a crystal phase made of MgSiO 3 or MgSiN 2 in the grain boundary phase. It has gained.
  • this technique is referred to as a third conventional example.
  • Patent Document 4 discloses an example of a silicon nitride-based sintered body, which reports a sintered body that includes a crystal phase in the grain boundary phase and is excellent in bending strength, fracture toughness, and thermal shock resistance. ing.
  • this technique is referred to as a fourth conventional example.
  • the thermal conductivity is increased by crystallizing 20% or more of the grain boundary phase.
  • High thermal conductivity contributes to reducing the thermal resistance of the circuit board, but it is particularly high when it is used as a silicon nitride circuit board bonded to a thick copper plate, or when mounting at high temperatures or considering the operation of semiconductor modules at high temperatures.
  • Mechanical strength is also required. Although the bending strength is described in the first conventional example, the bending strength can be achieved only when the material is manufactured using a specific raw material powder and a specific manufacturing condition.
  • the grain boundary phase is made amorphous to obtain a ceramic material with high bending strength, but thermal conductivity is not taken into consideration.
  • the thermal conductivity is improved by including a crystal phase composed of MgSiO 3 or MgSiN 2 in the grain boundary phase, but substantially MgSiO 3 and RE Since it contains the contained crystal phase, its thermal conductivity is not sufficiently high as a heat radiating member of the semiconductor module, and the bending strength is not sufficiently high.
  • the thermal shock resistance, the bending strength, and the improvement of the thermal conductivity are described, but a phase including sialon having a low thermal conductivity is formed. It is difficult to apply to the use of heat dissipation board.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a silicon nitride substrate made of a silicon nitride-based sintered body having high strength, high thermal conductivity, and excellent thermal shock resistance, a method for producing the same, and a method therefor It is an object to provide a silicon nitride circuit board and a semiconductor module using the above.
  • the invention of a silicon nitride sintered body according to claim 1 is characterized in that ⁇ -type silicon nitride crystal particles, at least one kind of rare earth element (RE), magnesium (Mg), and silicon (Si ) Containing a grain boundary phase, the grain boundary phase consists of an amorphous phase and a MgSiN 2 crystal phase, and X-rays of any crystal plane of the crystal phase containing the rare earth element (RE)
  • the diffraction line peak intensities are also the diffraction line peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the ⁇ -type silicon nitride crystal particles.
  • the X-ray diffraction peak intensity of (121) of the MgSiN 2 crystal phase is (110), (200), (101), (210) of the ⁇ -type silicon nitride crystal particles. ), (201), (310) (320) and characterized in that it is a 0.0005 to 0.003 times the sum of the X-ray diffraction peak intensity of (002).
  • the invention of claim 2 is the silicon nitride sintered body according to claim 1, which has a thermal conductivity of 80 W / m ⁇ K or more.
  • the invention of claim 3 is the silicon nitride sintered body according to claim 1 or 2, wherein the magnesium (Mg) contained in the silicon nitride sintered body is converted into magnesium oxide (MgO), and at least contained in the same.
  • MgO magnesium oxide
  • RE 2 O 3 rare earth element oxide
  • the MgO content is 6.7 to 12.8 mol%
  • the RE 2 O 3 content is 1.1 to 2.
  • 9 mol% the total content of MgO and RE 2 O 3 is 7.9 to 15.1 mol%
  • the molar ratio of (RE 2 O 3 ) / (MgO) is 0.09 to 0.3. It is characterized by.
  • the invention of the method for producing a silicon nitride sintered body according to claim 4 is directed to at least 6.7 to 12.8 mol% of magnesium oxide (MgO) in a silicon nitride raw material powder having an oxygen content of 2.0 mass% or less.
  • MgO magnesium oxide
  • a silicon nitride circuit board according to claim 5 is a silicon nitride substrate comprising the silicon nitride sintered body according to any one of claims 1 to 3 and a metal circuit board bonded to one surface of the silicon nitride substrate. And a metal heat radiating plate joined to the other surface of the silicon nitride substrate.
  • the invention of a semiconductor module according to claim 6 has the silicon nitride circuit board according to claim 5 and a semiconductor element mounted on the silicon nitride circuit board.
  • a silicon nitride substrate having high strength and high thermal conductivity can be realized.
  • a method for producing a silicon nitride substrate having high strength and high thermal conductivity can be provided.
  • FIG. 2 is a transmission electron microscope (TEM) image of silicon nitride particles and grain boundary phase of the silicon nitride-based sintered body of the present invention. It is a schematic diagram of the TEM image of FIG. The surface analysis result with respect to Si, Mg, Y, O component by TEM-EDX of FIG. 1 is shown.
  • 3 is a transmission electron microscope (TEM) image of the silicon nitride sintered body obtained in Example 2.
  • FIG. It is a schematic diagram of the TEM image of FIG. The relationship between the MgSiN 2 X-ray ratio and the abundance ratio of the grain boundary crystal phase MgSiN 2 obtained by image analysis of a TEM image is shown.
  • One embodiment of the present invention is a silicon nitride substrate as an insulating ceramic substrate used in the above-described power semiconductor module or the like, wherein ⁇ -type silicon nitride crystal particles, at least one rare earth element (RE),
  • a silicon nitride substrate comprising a grain boundary phase containing magnesium (Mg) and silicon (Si)
  • the grain boundary phase comprises an amorphous phase and a MgSiN 2 crystal phase
  • the crystal phase containing the rare earth element (RE) Is substantially not included.
  • a silicon nitride sintered body is composed of ⁇ -type silicon nitride crystal grains and a grain boundary phase containing a sintering aid component, and the grain boundary phase is composed of an amorphous phase or a crystal phase.
  • the grain boundary phase the diffraction line on the substrate surface is measured by X-ray diffraction method, and the presence of each crystal phase in the grain boundary phase is determined by identifying the detected diffraction line peak other than ⁇ -type Si 3 N 4 did.
  • the X-ray peak of the crystal phase containing Mg is not detected, it is determined that Mg exists in the grain boundary phase as an amorphous phase.
  • any diffraction line peak intensity of the grain boundary crystal phase is (110), (200), (101), (210), (201), (310), (320) of ⁇ -type Si 3 N 4 . ) And (002) when the sum of the diffraction line peak intensities is less than 0.0005 times, it was determined that the grain boundary phase does not contain a crystal phase.
  • X-ray peaks of the case of the MgSiN 2 for the presence of crystalline phase (121), also in the case of Re component Re 2 Si 3 O 3 N 4 , Re 2 SiO 3 N and Re 4 Si 2 O 7 N 3 X-ray peaks of (211), (112) and (-221) are the first peaks, respectively, and these X-ray peaks and (110), (200) of ⁇ -type Si 3 N 4 , (101), (210), (201), (310), (320), and (002) with the sum of the diffraction line peak intensities.
  • the presence or absence of crystal phase precipitation in the grain boundary phase was confirmed by observation using a transmission electron microscope (TEM), and in the grain boundary phase (the sum of the amorphous phase and the grain boundary crystal phase).
  • TEM transmission electron microscope
  • the existence ratio (area ratio) of the crystal phase was calculated by image analysis.
  • the silicon nitride substrate is composed of a grain boundary phase mainly composed of silicon nitride particles and components added as a sintering aid.
  • the grain boundary phase generated by using the added sintering aid as a main component maintains the bonds between the silicon nitride particles and plays a role of suppressing defects between the particles.
  • the bonding force of the grain boundary phase of the silicon nitride substrate is insufficient and there are coarse defects on the surface, when stress is applied to the silicon nitride substrate, the defect becomes the starting point of destruction and easily breaks down.
  • the field phase must be uniformly dispersed to bond between the particles and suppress the generation of coarse defects.
  • FIG. 1 A transmission electron microscope (TEM) image of the silicon nitride particles and grain boundary phase of the silicon nitride sintered body of the present invention is shown in FIG. 1, and a schematic diagram thereof is shown in FIG. 2 (Example 4 below).
  • FIG. 1 A transmission electron microscope (TEM) image of the silicon nitride particles and grain boundary phase of the silicon nitride sintered body of the present invention is shown in FIG. 1, and a schematic diagram thereof is shown in FIG. 2 (Example 4 below).
  • FIG. 1 A transmission electron microscope (TEM) image of the silicon nitride particles and grain boundary phase of the silicon nitride sintered body of the present invention is shown in FIG. 1, and a schematic diagram thereof is shown in FIG. 2 (Example 4 below).
  • FIG. 1 A transmission electron microscope (TEM) image of the silicon nitride particles and grain boundary phase of the silicon nitride sintered body of the present invention is shown in FIG. 1, and a schematic diagram thereof is shown in FIG.
  • the grain boundary phase is an amorphous phase.
  • the crystal phase 13 having different contrasts in the grain boundary phase between which the silicon nitride particles 11 are sandwiched in FIG. 1 has a low detected concentration of Y and O, and is mainly composed of Mg and Si. .
  • the grain boundary crystal phase 13 is MgSiN 2 .
  • the grain boundary phase portion 12 other than the crystal phase 13 has a low Si component concentration and is composed of Mg, Y and O components. Further, no diffraction peaks other than MgSiN 2 were detected from the X-ray diffraction. Therefore, it is an amorphous phase mainly composed of Y, Mg and O.
  • the grain boundary phase composed of the amorphous phase 12 and the grain boundary crystal phase 13 bonds the silicon nitride particles 11, and the ratio of both influences the mechanical strength and thermal conductivity of the silicon nitride sintered body. .
  • the abundance ratio (area ratio) of the grain boundary crystal phase 13 (MgSiN 2 ) in the grain boundary phase in the silicon nitride-based sintered body is preferably in the range of 0.05% or more and less than 20%.
  • the abundance ratio of the grain boundary crystal phase MgSiN 2 phase relative to the grain boundary phase is 0.05% or more.
  • the abundance ratio of the grain boundary crystal phase which has a lower bonding strength with the silicon nitride particles than the amorphous phase, increases. There arises a problem that it decreases and the variation becomes large. Therefore, the ratio of the MgSiN 2 phase to the grain boundary phase is preferably less than 20%.
  • the grain boundary phase containing Mg is also contained as an amorphous phase to maintain the bond between the silicon nitride particles.
  • the MgSiN 2 crystal phase generated when the grain boundary phase containing Mg is crystallized has a higher thermal conductivity than the amorphous phase, and the thermal conductivity of the silicon nitride substrate can be improved.
  • the (121) X-ray diffraction peak intensity of the MgSiN 2 crystal phase is (110) of ⁇ -type Si 3 N 4. , (200), (101), (210), (201), (310), (320) and (002) is 0.0005 to 0.003 times the sum of the X-ray diffraction peak intensities.
  • the silicon nitride substrate according to the present embodiment is characterized in that the grain boundary phase is composed of an amorphous phase and a MgSiN 2 crystal phase, and does not substantially include a crystal phase containing RE. .
  • “Substantially free” means that the X-ray diffraction line peak intensity of any crystal plane of the crystal phase containing the rare earth element (RE) is ⁇ -type Si 3 N 4 (110), (200), It means that it is less than 0.0005 times the sum of diffraction line peak intensities of (101), (210), (201), (310), (320) and (002). Thereby, the bending strength of the silicon nitride substrate can be maintained at a high level, and the thermal conductivity can be improved. The method for adjusting the grain boundary phase will be described later.
  • the X-ray diffraction peak intensity of (121) of the MgSiN 2 crystal phase is (110), (200), (101), (210) of ⁇ -type Si 3 N 4.
  • (201), (310), (320), and (002) contain the MgSiN 2 crystal phase so as to be 0.0005 to 0.003 times the sum of the X-ray diffraction peak intensities. Effect of increasing the MgSiN 2 crystal phase is less and the thermal conductivity of silicon nitride substrate decreases.
  • the amount of the MgSiN 2 crystal phase is in the above range.
  • Mg is contained so as to be 6.7 to 12.8 mol% in terms of MgO and RE is 1.1 to 2.9 mol% in terms of RE 2 O 3. Yes. Further, Mg is contained in a range of 7.9 to 15.1 mol% in terms of MgO and RE in terms of RE 2 O 3 . Further, Mg and RE are contained in a range where the molar ratio of (RE 2 O 3 ) / (MgO) is 0.09 to 0.3 in terms of oxide. Mg and RE function as sintering aids in the production of a silicon nitride substrate, and are present mainly as grain boundary phases in the produced silicon nitride substrate.
  • MgO, RE 2 O 3 , the total content thereof, and the molar ratio of (RE 2 O 3 ) / (MgO) are preferably in the above ranges.
  • the silicon nitride-based sintered body of the present invention has high bending strength and thermal conductivity, and the thermal conductivity is 80 W / m ⁇ K or more, preferably 85 W / m ⁇ K or more, more desirably. , 90 W / m ⁇ K or more.
  • the bending strength is 820 MPa or more.
  • the coefficient of thermal expansion from room temperature to 600 ° C. is in the range of 2.3 to 4.5 ppm / ° C., and the relative density is 98% or more, desirably more than 99%. If the coefficient of thermal expansion is less than 2.3 ppm / ° C, the difference in thermal expansion from the metal circuit board becomes large.
  • the silicon nitride substrate produced from the silicon nitride-based sintered body of the present invention is a high-frequency transistor, various substrates such as a power semiconductor module circuit substrate or a multichip module substrate, a Peltier element heat transfer plate, or various heat generation. It can be used for a member for electronic parts such as an element heat sink.
  • the silicon nitride substrate according to the present embodiment is used as, for example, a substrate for mounting a semiconductor element
  • the silicon nitride substrate is bonded to the metal circuit board and the metal heat sink, the power semiconductor module is manufactured, or the power semiconductor module is operated. It is possible to suppress the occurrence of cracks when subjected to repeated heat cycles, and to easily transfer heat generated from the semiconductor element to the heat radiating member, and to improve the thermal shock resistance, heat cycle resistance and heat dissipation. Can be realized.
  • a metal circuit board and a metal heat sink Cu (copper) circuit board or Al (aluminum) circuit board are attached to one or both sides of the silicon nitride substrate according to the present embodiment by the DBC method (Direct Bonding Cupper copper direct bonding method).
  • the silicon nitride circuit board is manufactured by bonding using the active metal brazing material method or the like.
  • the DBC method is a method in which a silicon nitride substrate and a Cu circuit board or Al circuit board are heated to a temperature equal to or higher than the eutectic temperature in an inert gas or nitrogen atmosphere, and the resulting Cu—O and Al—O eutectic crystals are produced.
  • the circuit board is directly bonded to one or both surfaces of the silicon nitride substrate via a eutectic compound layer using a compound liquid phase as a bonding agent.
  • the active metal brazing method is a mixture or alloy of an active metal such as titanium (Ti), zirconium (Zr) or hafnium (Hf) and a metal such as silver (Ag) or copper (Cu) which forms a low melting point alloy.
  • a Cu circuit board or an Al circuit board is bonded to one surface or both surfaces of a silicon nitride substrate by hot-press bonding in an inert gas or vacuum atmosphere through a brazing material layer.
  • the Cu circuit board or Al circuit board on the silicon nitride substrate is etched to form a circuit pattern, and the Cu circuit board or Al circuit board after the circuit pattern is formed is subjected to Ni-P plating. A silicon nitride circuit board is produced.
  • a desired semiconductor module can be manufactured by mounting an appropriate semiconductor element on the silicon nitride circuit board.
  • the silicon nitride powder has an average particle size of 1.0 ⁇ m or less and a specific surface area of 15 m 2 / g or less.
  • the oxygen content is 1.5 wt% or less, particularly the Fe component and Al component are each 1000 ppm or less.
  • the MgO powder and Y 2 O 3 powder added as sintering aids each have an average particle diameter of 1.0 ⁇ m or less and a specific surface area of 30 m 2 / g or less.
  • the amount of impurities is set to 1000 ppm or less for each of the Fe component and the Al component as in the case of the silicon nitride powder.
  • magnesium oxide MgO
  • SiO silicon nitride raw material powder having an oxygen content of 2% by mass or less
  • at least one rare earth element oxide (RE 2 O 3 ) Is 1.1 to 2.9 mol% in total, and is mixed so that the total ratio of 7.9 to 15.1 mol% and (RE 2 O 3 ) / (MgO) is 0.09 to 0.3
  • MgO, RE 2 O 3 and the total amount and the added amount of (RE 2 O 3 ) / (MgO) are outside the above range, the MgO, RE 2 O 3 and the total content and (RE 2
  • the molar ratio of the content of O 3 ) / (MgO) is also outside the above range, and as described above, one or both of the bending strength and the thermal conductivity is lowered. Accordingly, MgO, RE 2 O 3 , the total amount added, and the molar ratio of (RE 2 O 3 ) / (MgO) are preferably in the above ranges.
  • the mixed raw material slurry is defoamed and thickened, and then formed into a sheet having a predetermined thickness by a known doctor blade method or the like.
  • the plate thickness of the sheet molded body at this time can be appropriately determined according to the application, but can be, for example, about 0.2 to 1.0 mm.
  • the size of the sheet compact is appropriately selected in consideration of the amount of shrinkage and the dimensions and capacity of the BN setter and firing container on which the sheet compact is placed. In the present invention, the size of the sheet compact is 170 mm ⁇ 140 mm.
  • a sintering step one sheet molded body or a plurality of sheet compacts are stacked via a release agent such as BN, and the inside of the sintering furnace is set to a nitrogen pressure atmosphere of 0.5 to 1.0 MPa from 1600 ° C.
  • the temperature is increased at a rate of 300 ° C./h or less, held at a temperature of 1800 to 2000 ° C. for 2 to 10 hours, and then cooled by cooling to 1500 ° C. at a rate of 100 ° C./h or more.
  • the sintered silicon nitride substrate may be used as it is, but may be subjected to a heat treatment at a temperature lower than the sintering temperature, a surface treatment such as blasting.
  • the sintering temperature is less than 1800 ° C., the sintering is insufficient and the strength and thermal conductivity are reduced. On the other hand, if the sintering temperature is higher than 2000 ° C., abnormal grain growth occurs and the strength is reduced. Therefore, the above range is suitable for the sintering temperature. Furthermore, when the atmosphere in the sintering furnace is less than 0.5 MPa, silicon nitride is easily decomposed during sintering, and strength and thermal conductivity are reduced. In addition, an expensive sintering furnace is required to make the pressure higher than 1.0 MPa, and the cost is increased. Therefore, the above range is preferable for the atmosphere in the sintering furnace. Furthermore, when the rate of temperature increase from 1600 ° C.
  • the temperature rise rate is preferably in the above range. Further, when the cooling rate to 1500 ° C. is less than 100 ° C./h, the crystallization of the grain boundary phase is promoted, the crystal phase containing RE is precipitated at the grain boundary, and the bond between the silicon nitride particles is weakened and bent. Strength decreases. Therefore, the above range is preferable for the cooling rate.
  • the total thickness of the substrate during sintering is greater than 40 mm, the apparent volume of the sample increases, resulting in Since the cooling rate inside the sample is less than 100 ° C./h, the total thickness of the substrate during sintering is preferably 40 mm or less, and more preferably 30 mm or less. Furthermore, when the sintering time is shorter than 2 hours, the formation of the MgSiN 2 crystal phase is suppressed, the thermal conductivity is lowered, the sintering is insufficient, and the bending strength is also lowered.
  • the above range is suitable for the sintering time.
  • the grain boundary phase containing Mg component has a high vapor pressure, volatilization and segregation are likely to occur during sintering at high temperature, and density reduction due to pore formation and local color unevenness occur in the sintered body surface layer.
  • a closed ceramic firing container preferably a BN firing container, is used, and the gas concentration of the Mg component inside thereof is kept constant.
  • the grain boundary phase containing RE has a low vapor pressure and is more likely to exist uniformly and stably between the silicon nitride particles than the grain boundary phase containing Mg. It plays a crucial role in maintaining a strong bond between the particles. Therefore, when a part of the grain boundary phase containing RE is crystallized, the bonding between the silicon nitride particles becomes insufficient, and coarse defects are likely to occur in the grain boundary phase. As a result, the mechanical strength of the silicon nitride substrate is reduced, and nitriding is performed by a bonding process between the silicon nitride substrate and the metal circuit board and the metal heat sink, a power semiconductor module manufacturing process, or a thermal cycle accompanying the operation of the power semiconductor module.
  • the thermal conductivity of the grain boundary phase containing RE is slightly improved by crystallization, but is significantly lower than that of silicon nitride particles. Does not contribute. Therefore, it is preferable that the grain boundary phase containing RE exists as an amorphous phase in order to maintain a strong bond between the silicon nitride particles.
  • RE oxides of Y, Yb, Er, Dy, Gd, Sm, Nd, and Lu can be selected. However, since the bonding strength between the silicon nitride particles and the grain boundary phase is excellent, the selection of Y oxide is desirable.
  • a silicon nitride substrate was manufactured based on the manufacturing method, and its physical properties were measured.
  • magnesium oxide (MgO) addition amount rare earth element oxide (RE 2 O 3 ) addition amount, total addition amount of MgO and RE 2 O 3 , (RE 2 O 3 ) / (MgO) molar ratio
  • the items shown in Tables 1 and 2 as the manufacturing conditions were adopted for the items of RE type, sintering temperature in the sintering process, heating rate, cooling time, sintering time, and total thickness of the substrate (Examples). 1-16).
  • As (RE 2 O 3 ) in Examples 10 to 16, an oxide of Yb, Er, Dy, Gd, Sm, Nd, or Lu was used as RE instead of Y. Sintering was performed in a closed BN-made firing container.
  • the measured physical properties include the presence / absence of a crystal phase other than ⁇ -type silicon nitride of the silicon nitride substrate and the amount of MgSiN 2 crystal phase, as well as magnesium oxide (MgO) content, rare earth oxide (RE 2 O 3 ) content, There are (RE 2 O 3 ) / (MgO) molar ratio, total content of MgO and RE 2 O 3 , bending strength, bending strength Weibull coefficient, thermal conductivity and thermal shock test results.
  • MgO magnesium oxide
  • RE 2 O 3 rare earth oxide
  • the bending strength, the Weibull coefficient of bending strength, and the thermal conductivity are within the preset ranges (bending strength: 820 MPa or more, Weibull coefficient: 15 or more, thermal conductivity: 80 W / m ⁇ K or more). It was determined whether or not.
  • the amount of presence and MgSiN 2 crystal phase of the crystalline phases other than ⁇ -type silicon nitride by X-ray diffraction line measurement of the substrate surface was determined in the manner described above.
  • RINT2500 made by Rigaku Corporation was used for the X-ray diffraction evaluation, and the evaluation conditions were tube: copper, tube voltage: 50 kV, tube current: 200 mA, sampling width: 0.020 °, scanning speed: 2 ° / min, scanning angle 2 ⁇ : performed in the range of 20 ° to 120 °.
  • Magnesium oxide (MgO) content and rare earth element oxide (RE 2 O 3 ) content are obtained by making the silicon nitride substrate into a solution by microwave decomposition treatment and acid dissolution treatment, and then determining the Mg amount and RE amount by ICP emission analysis. It was determined by measuring and converting to magnesium oxide (MgO) and rare earth element oxide (RE 2 O 3 ). In addition, the molar ratio of (RE 2 O 3 ) / (MgO) content and the total content of MgO and RE 2 O 3 were the obtained magnesium oxide (MgO) content and rare earth element oxide (RE 2 O 3 ). Calculated from the content. In all the samples of Examples and Comparative Examples, the contents of MgO and RE 2 O 3 were almost equal to the addition amounts.
  • the bending strength was measured by a three-point bending test according to JIS-R1601.
  • a silicon nitride substrate is processed into a test piece with a width of 4 mm, set on a three-point bending jig with a distance between support rolls of 7 mm, and a load is applied at a crosshead speed of 0.5 mm / min. Calculated from
  • Weibull coefficient from the test results of the bending strength, create a Weibull plot for plotting lnln (1-F) -1 against ln ⁇ in conformity with JIS-R1625, it was determined Weibull coefficient of the slope.
  • is the bending strength
  • F is the cumulative failure probability.
  • Fracture toughness was measured by an IF (Indentation Fracture) method in which a Vickers indenter was pushed into a side surface of a silicon nitride substrate with a predetermined load (2 kgf (19.6 N) in this example) in accordance with JIS-R1607. At this time, the Vickers indenter was pushed so that one diagonal line of the Vickers indentation was perpendicular to the thickness direction of the silicon nitride substrate.
  • IF Index Fracture
  • the thermal conductivity was measured by a laser flash method in accordance with JIS-R1611 by cutting a 5 mm square measurement sample from a silicon nitride substrate.
  • a silicon nitride circuit board having a Cu circuit board and a Cu heat sink formed on both sides of the silicon nitride board was held at 350 ° C. for 10 minutes, and then rapidly cooled to room temperature, and the occurrence of cracks in the silicon nitride board was examined. This operation was repeated 10 times to determine whether or not a crack occurred.
  • the thermal conductivity is less than 80 W / m ⁇ K, it is not suitable for a silicon nitride circuit board, and thus the thermal shock test was not performed.
  • thermal expansion coefficient a measurement sample was cut out to 5 mm ⁇ 20 mmL of a silicon nitride substrate, and the linear expansion coefficient in the longitudinal direction from room temperature to 600 ° C. was evaluated according to JIS-R1618.
  • the relative density is determined by measuring the density of the silicon nitride substrate by the Archimedes method, and dividing this by dividing the theoretical density calculated from the blending ratio of the Si 3 N 4 powder, MgO powder and RE 2 O 3 powder and the individual densities. It is the multiplied value.
  • the MgO addition amount 6.7 ⁇ 12.8 mol%, the RE 2 O 3 added amount 1.1 ⁇ 2.9 mol%, the total amount of MgO and RE 2 O 3 7 .9 to 15.1 mol%, (RE 2 O 3 ) / (MgO) addition molar ratio is 0.09 to 0.3
  • the sintering temperature in the sintering process is 1800 to 2000 ° C.
  • the heating rate is In a silicon nitride substrate manufactured under conditions of 300 ° C./h or less, a cooling rate of 100 ° C./h or more, and a sintering time of 2 to 10 h, only the MgSiN 2 crystal phase is detected as the crystal phase of the grain boundary, and ⁇ -type Si 3 MgSiN 2 crystal phase content (setting range 0.0005 to 0.003), MgO content (setting range 6.7 to 12.8 mol%), RE 2 O 3 content (setting range 1.1 to 2) with respect to N 4 .9mol%),
  • the Weibull coefficient also satisfies the setting range of 15 or more, and it can be seen that the variation in bending strength is small.
  • the relative density of the silicon nitride substrate is over 98%, and the thermal expansion coefficient is in the range of 2.3 to 4.5 ppm / ° C. As a result, even in the thermal shock test, the silicon nitride substrate was not broken, and all were judged to be acceptable.
  • FIG. 4 is a transmission electron microscope (TEM) image of the silicon nitride sintered body obtained in Example 4, and FIG. 5 is a schematic diagram thereof.
  • a focused ion beam (Focused) is used for TEM observation.
  • Ion Beam: FIB, FB-2100 manufactured by Hitachi, Ltd.) was used to prepare a thinned sample, and subsequently, a transmission electron microscope (TEM, HF2000 manufactured by Hitachi, Ltd.) was used.
  • the TEM observation conditions are an acceleration voltage of 200 kV and a direct observation magnification of 20 k times.
  • the abundance ratio of the grain boundary crystal phase is a value obtained by dividing the area of the grain boundary crystal phase by the area of the grain boundary phase (the sum of the grain boundary crystal phase and the amorphous phase) and multiplying by 100.
  • Comparative Examples 1 and 2 in which a diffraction peak of a grain boundary crystal phase was detected by X-ray diffraction The same evaluation was carried out for 7, 8, 10, 11 and 14, and in each case, the abundance ratio of the grain boundary crystal phase was determined.
  • Example 1 there is a correlation between the abundance ratio of MgSiN 2 in the X-ray ratio and the grain boundary phase of the MgSiN 2 from FIG. 6, 0.05% 0.0005 Example 1, 0 of Example 4. 0017 was 7.62%, 0.003 of Example 6 was 18.54%, and Comparative Example 0.0045 was 32.12%.
  • the MgO addition amount was 6.7 mol%
  • the Y 2 O 3 addition amount was 1.2 mol%
  • the sintering temperature in the sintering process was increased to 1850 ° C.
  • the amount of MgSiN 2 crystal phase is ⁇ -type Si 3 N 4 Further, it contains a crystal phase of Y 2 Si 3 O 3 N 4 containing Y, has a bending strength as low as 798 MPa, and a Weibull coefficient as low as 14. This is because the cooling rate in the sintering process is relatively slow, crystallization of the grain boundary is promoted, the bonding of silicon nitride particles by the grain boundary phase is weakened, and the bending strength is lowered.
  • Comparative Example 2 in which the amount of Y 2 O 3 added was 1.8 mol%, the sintering temperature was 1900 ° C., the cooling rate was 50 ° C./h, and the sintering time was 4 h is also used. Because the cooling rate is slow, the amount of MgSiN 2 crystal phase is as large as 0.0030 times that of ⁇ -type Si 3 N 4 , and also contains the crystal phase of Y 2 Si 3 O 3 N 4 containing Y The bending strength is as low as 802 MPa, and the Weibull coefficient is also as low as 13. As a result, cracks occurred in the silicon nitride substrate in the thermal shock test.
  • the MgO addition amount was 9.8 mol%
  • the Y 2 O 3 addition amount was 1.8 mol%
  • the sintering temperature in the sintering step was 1900 ° C.
  • the temperature increase rate was 150 ° C./h
  • cooling In the silicon nitride substrate manufactured under the conditions where the speed is 600 ° C./h, the sintering time is 20 h, and the total thickness of the substrate is 4 mm
  • the amount of MgSiN 2 crystal phase is 0.0032 times that of ⁇ -type Si 3 N 4
  • it contains a crystal phase of Y 2 Si 3 O 3 N 4 containing Y
  • its bending strength is as low as 766 MPa
  • its Weibull coefficient is as low as 13.
  • the MgO addition amount was 9.8 mol%
  • the Y 2 O 3 addition amount was 1.2 mol%
  • the sintering temperature in the sintering step was 1850 ° C.
  • the temperature increase rate was 300 ° C./h
  • the amount of MgSiN 2 crystal phase is 0.0035 times that of ⁇ -type Si 3 N 4
  • it contains a crystal phase of Y 2 Si 3 O 3 N 4 containing Y
  • its bending strength is as low as 810 MPa
  • its Weibull coefficient is as low as 13.
  • the total thickness of the substrate set in the sintering process is as thick as 51 mm.
  • the cooling rate inside the sample is less than 100 ° C./hr, and the cooling rate is slow, which promotes the crystallization of the grain boundaries.
  • the bond of silicon nitride particles by the phase is weakened and the bending strength is reduced. As a result, cracks occurred in the silicon nitride substrate in the thermal shock test.
  • the MgO addition amount was 6.7 mol%
  • the Y 2 O 3 addition amount was 0.6 mol%
  • the sintering temperature in the sintering step was 1900 ° C.
  • the heating rate was 150 ° C./h
  • sintering time 4h not detected MgSiN 2 crystal phase and total thickness of the substrate in the silicon nitride substrate prepared under the conditions as 4 mm
  • the thermal conductivity is lowered and 77W / m ⁇ K
  • the bending strength was as low as 766 MPa.
  • the MgO addition amount was 6.7 mol%
  • the Y 2 O 3 addition amount was 2.4 mol%
  • the sintering temperature in the sintering step was 1850 ° C.
  • the temperature increase rate was 150 ° C./h
  • cooling A silicon nitride substrate manufactured under conditions of a speed of 600 ° C./h, a sintering time of 5 h, and a total thickness of the substrate of 8 mm also contains a Y 2 Si 3 O 3 N 4 crystal phase containing Y, and has bending strength.
  • the Weibull coefficient was as low as 14.
  • the MgO addition amount was 9.8 mol%
  • the Y 2 O 3 addition amount was 0.6 mol%
  • the sintering temperature in the sintering step was 1900 ° C.
  • the temperature increase rate was 200 ° C./h
  • the MgSiN 2 crystal phase is not detected
  • the thermal conductivity is as low as 78 W / m ⁇ K. It was.
  • Comparative Example 13 produced under the conditions of a heating rate of 150 ° C./h and a cooling rate of 300 ° C./h also has a small amount of Y 2 O 3 added, and a molar ratio of (Y 2 O 3 ) / (MgO) Is as low as 0.04, the generation of MgSiN 2 crystal phase was suppressed, and the thermal conductivity of the silicon nitride substrate was lowered to 78 W / m ⁇ K.
  • the MgO addition amount was 15.6 mol%
  • the Y 2 O 3 addition amount was 1.7 mol%
  • the sintering temperature in the sintering step was 1850 ° C.
  • the temperature increase rate was 150 ° C./h
  • the amount of MgSiN 2 crystal phase is 0.0045 times that of ⁇ -type Si 3 N 4
  • the bending strength was as low as 731 MPa
  • the Weibull coefficient was also as low as 12.
  • the MgO addition amount was 6.8 mol%
  • the Y 2 O 3 addition amount was 3.0 mol%
  • the sintering temperature in the sintering step was 1900 ° C.
  • the temperature increase rate was 300 ° C./h
  • the MgSiN 2 crystal phase is not detected
  • the crystal phase was low
  • the thermal conductivity was as low as 76 W / m ⁇ K
  • the bending strength was as low as 769 MPa
  • the Weibull coefficient was as low as 12.
  • the MgO addition amount was 6.7 mol%
  • the Y 2 O 3 addition amount was 1.2 mol%
  • the sintering temperature in the sintering step was 1775 ° C.
  • the heating rate was 150 ° C./h
  • cooling A silicon nitride substrate manufactured under conditions of a speed of 600 ° C./h, a sintering time of 5 h, and a total substrate thickness of 0.4 mm has a low relative density of 97.1% and a thermal conductivity of 79 W / m ⁇ K.
  • the bending strength was as low as 792 MPa and the Weibull coefficient was as low as 13. As a result, the thermal shock test was rejected.
  • the grain boundary crystal phase MgSiN 2 is difficult to precipitate because the amount of liquid phase necessary for crystallization cannot be obtained due to the reduction of the sintering temperature, and the ⁇ -type Si having the (121) X-ray diffraction peak intensity of the MgSiN 2 crystal phase. 3 N 4 X-ray diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the ⁇ -type silicon nitride crystal particles The ratio to the sum remained at 0.0003. This reduced the thermal conductivity of the silicon nitride substrate.
  • the MgO addition amount was 4.1 mol%
  • the Y 2 O 3 addition amount was 0.5 mol%
  • the sintering temperature in the sintering step was 1875 ° C.
  • the temperature increase rate was 150 ° C./h
  • cooling was performed.
  • a silicon nitride substrate manufactured under conditions of a speed of 600 ° C./h, a sintering time of 5 h, and a total substrate thickness of 0.4 mm has a low coefficient of thermal expansion of 2.26 ppm / ° C. The difference in expansion coefficient increases. As a result, the difference in thermal expansion coefficient from the Cu circuit board was increased, and although the bending strength was excellent, the thermal shock test failed.
  • the grain boundary crystal phase MgSiN 2 is difficult to precipitate because both MgO and Y 2 O 3 are reduced in the amount of addition, and therefore ⁇ -type Si 3 N 4 having an X-ray diffraction peak intensity of (121) of the MgSiN 2 crystal phase.
  • the MgO addition amount was 37.2 mol%
  • the Y 2 O 3 addition amount was 4.7 mol%
  • the sintering temperature in the sintering step was 1875 ° C.
  • the temperature increase rate was 150 ° C./h
  • cooling A silicon nitride substrate manufactured under conditions of a speed of 600 ° C./h, a sintering time of 5 h, and a total substrate thickness of 0.4 mm has a high coefficient of thermal expansion of 4.52 ppm / ° C. Although the coefficient difference is reduced, the thermal contraction of the substrate itself is increased. Moreover, since the abundance ratio of the grain boundary phase is increased, the thermal conductivity is 65 W / m. Dropped to K.
  • MgO and Y 2 O 3 together amount excess MgSiN 2 crystal phase in the grain boundary phase by the increase tends to precipitate, MgSiN 2 beta type Si 3 N 4 wherein the X-ray diffraction peak intensity of the crystalline phase (121)
  • the ratio of ⁇ -type silicon nitride crystal particles to the sum of X-ray diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320), and (002) is The bending strength of the silicon nitride substrate was lowered because the ratio of the grain boundary crystal phase having a low bond strength with ⁇ Si 3 N 4 particles was increased.
  • the silicon nitride substrate manufactured in the setting range of the manufacturing conditions shown in Table 1 has a grain boundary phase composed of an amorphous phase and an MgSiN 2 crystal phase, and a crystal phase containing a rare earth element (RE).
  • the amount of MgSiN 2 phase and other characteristics are within the set range shown in Table 1 and the silicon nitride substrate does not crack and break down, but any manufacturing conditions are within the above set range. It can be seen that the thermal conductivity of the silicon nitride substrate is lowered or the silicon nitride substrate is destroyed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 高強度かつ高熱伝導率の窒化珪素質焼結体からなる窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュールを提供する。  β型窒化珪素の結晶粒子11と、少なくとも1種類の希土類元素(RE)、マグネシウム(Mg)及び珪素(Si)を含有する粒界相からなる窒化珪素基板において、前記粒界相は非晶質相12とMgSiN結晶相13からなり、前記希土類元素(RE)を含んだ結晶相のいずれの結晶面のX線回折線ピーク強度も前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)の回折線ピーク強度の和の0.0005倍未満であり、前記MgSiN結晶相13の(121)のX線回折ピーク強度が前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和の0.0005~0.003倍である窒化珪素質焼結体。

Description

窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
 本発明は、窒化珪素基板及びその製造方法に関する。また、本発明は、上記窒化珪素基板を使用した窒化珪素回路基板及び半導体モジュールに関する。
 近年、電動車両用インバータ等の分野において、高電圧・大電流動作が可能なパワー半導体モジュール(IGBT,パワーMOSFET等)が用いられている。パワー半導体モジュールに使用される基板としては、絶縁性セラミックス基板の一方の面に金属回路板を接合し、他方の面に金属放熱板を接合したセラミックス回路基板を用いることができる。また、金属回路板の上面には、半導体素子等が搭載される。上記絶縁性セラミックス基板と金属回路板及び金属放熱板との接合は、例えばろう材による活性金属法や銅板を直接接合する、いわゆる銅直接接合法が採用されている。
 このようなパワー半導体モジュールにおいては、大電流を流すことにより発熱量が多くなるが、上記絶縁性セラミックス基板は銅板に比べて熱伝導率が低いため、半導体素子からの放熱を阻害する要因となりえる。また、絶縁性セラミックス基板と金属回路板及び金属放熱板との間の熱膨張率の相異に基づく熱応力が発生し、これにより、絶縁性セラミックス基板にクラックを生じさせ破壊に至るか、あるいは金属回路板または金属放熱板の絶縁性セラミックス基板からの剥離を生じさせる場合がある。このように、絶縁性セラミックス基板は放熱性を良好にするために高い熱伝導率と機械的強度が必要になる。絶縁性セラミックス基板の材料としては、例えば窒化アルミニウムや窒化珪素が挙げられるが、窒化アルミニウムを使用した絶縁性セラミックス基板は、熱伝導率は高いが機械的強度が低いので、このようなクラックが生じやすく、セラミックス基板に多大な応力が加わるような構造のパワー半導体モジュールには使用することは困難である。
 そこで、下記特許文献1には、窒化珪素基板の例が開示されており、粒界相の20%以上を結晶化させることにより、熱伝導率の低いガラス相の比率を低減し窒化珪素基板の熱伝導率を高めている。以下、この技術を第1の従来例と呼ぶ。また、下記特許文献2には、窒化珪素セラミックス材料の例が開示されており、粒界相を非晶質化することにより、窒化珪素結晶粒子を非晶質の粒界相により強固に結合し、強度を高めている。以下、この技術を第2の従来例と呼ぶ。また、下記特許文献3には、窒化珪素質放熱部材の例が開示されており、粒界相にMgSiOあるいはMgSiNからなる結晶相を含有することによって高熱伝導率の窒化珪素質放熱部材を得ている。以下、この技術を第3の従来例と呼ぶ。また、下記特許文献4には、窒化珪素基焼結体の例が開示されており、粒界相に結晶相を含み、曲げ強度、破壊靭性及び耐熱衝撃性に優れた焼結体が報告されている。以下、この技術を第4の従来例と呼ぶ。
特開2000-34172号公報 特開平7-267735号公報 特許第3561145号公報 特許第3476504号公報
 上記した第1の従来例による窒化珪素基板では、粒界相の20%以上を結晶化することで熱伝導率を高くしている。高い熱伝導率は回路基板の熱抵抗の低減に貢献するが、特に厚い銅板と接合した窒化珪素回路基板とした場合や、高温での実装や半導体モジュールの高温での動作を考えた場合、高い機械的強度も必要になる。第1の従来例では曲げ強度について記載されているが、その曲げ強度を達成するには特定の原料粉末と特定の製造条件で製造した場合に限られる。また、第2の従来例による窒化珪素セラミックス材料では、粒界相を非晶質化し、高い曲げ強度のセラミックス材料を得ているが、熱伝導率については考慮されていない。また、第3の従来例による窒化珪素質放熱部材では、粒界相にMgSiOあるいはMgSiNからなる結晶相を含有させることで熱伝導率を改善しているが、実質的にMgSiOとRE含有結晶相を含んでいるためその熱伝導率は半導体モジュールの放熱部材としては十分に高くなく、また、曲げ強度も十分高くない。また、第4の従来例による窒化珪素基焼結体では、耐熱衝撃性、曲げ強度、熱伝導率の向上について記載されているが、低熱伝導率のサイアロンを含む相が形成されているため、放熱基板の用途には適用が難しい。
 本発明は、上記従来の課題に鑑みなされたものであり、その目的は、高強度かつ高熱伝導率で耐熱衝撃性に優れた窒化珪素質焼結体からなる窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュールを提供することにある。
 上記目的を達成するために、請求項1記載の窒化珪素質焼結体の発明は、β型窒化珪素の結晶粒子と、少なくとも1種類の希土類元素(RE)、マグネシウム(Mg)及び珪素(Si)を含有する粒界相からなる窒化珪素基板において、前記粒界相は非晶質相とMgSiN結晶相からなり、前記希土類元素(RE)を含んだ結晶相のいずれの結晶面のX線回折線ピーク強度も前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)の回折線ピーク強度の和の0.0005倍未満であり、前記MgSiN結晶相の(121)のX線回折ピーク強度が前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和の0.0005~0.003倍であることを特徴とする。
 請求項2の発明は、請求項1記載の窒化珪素質焼結体において、熱伝導率が80W/m・K以上である窒化珪素質焼結体である。
 請求項3の発明は、請求項1または2記載の窒化珪素質焼結体において、前記窒化珪素質焼結体が含有するマグネシウム(Mg)を酸化マグネシウム(MgO)に換算し、同じく含有する少なくとも1種類の希土類元素(RE)を希土類元素酸化物(RE)に換算したとき、MgO含有量が6.7~12.8mol%、RE含有量が1.1~2.9mol%、MgOとREの含有量の合計が7.9~15.1mol%で、かつ(RE)/(MgO)のモル比が0.09~0.3であることを特徴とする。
 請求項4記載の窒化珪素質焼結体の製造方法の発明は、含有酸素量2.0質量%以下の窒化珪素原料粉に、酸化マグネシウム(MgO)を6.7~12.8mol%と少なくとも1種類の希土類元素酸化物(RE)を1.1~2.9mol%とを合計7.9~15.1mol%、かつ(RE)/(MgO)のモル比が0.09~0.3になるように配合して総厚み40mm以下のシート成形体とし、前記シート成形体を1600℃から300℃/h以下の速度で1800~2000℃の温度に昇温し、2~10時間保持した後、100℃/h以上の速度で1500℃まで冷却することで焼結することを特徴とする。
請求項5記載の窒化珪素回路基板の発明は、請求項1乃至3の何れかに記載の窒化珪素質焼結体からなる窒化珪素基板と、前記窒化珪素基板の一面に接合された金属回路板と、前記窒化珪素基板の他の面に接合された金属放熱板とからなることを特徴とする。
 請求項6記載の半導体モジュールの発明は、請求項5記載の窒化珪素回路基板と、前記窒化珪素回路基板上に搭載された半導体素子と、を有することを特徴とする。
 請求項1乃至3の発明によれば、高強度かつ高熱伝導率の窒化珪素基板を実現できる。
 請求項4の発明によれば、高強度かつ高熱伝導率の窒化珪素基板の製造方法を提供できる。
 請求項5の発明によれば、窒化珪素基板のクラックの発生が抑制された窒化珪素回路基板を実現できる。
 請求項6の発明によれば、窒化珪素基板のクラックの発生抑制された半導体モジュールを実現できる。
本発明の窒化珪素質焼結体の窒化珪素粒子及び粒界相の透過型電子顕微鏡(TEM)像である。 図1のTEM像の模式図である。 図1のTEM-EDXによるSi,Mg,Y,O成分に対する面分析結果を示す。 実施例2で得られた窒化珪素焼結体の透過型電子顕微鏡(TEM)像である。 図4のTEM像の模式図である。 MgSiNX線比率とTEM像の画像解析により求めた粒界結晶相MgSiNの存在比率の関係を示す。
 以下、本発明を実施するための最良の形態(以下、実施形態という)について説明する。
 本発明の一実施形態は、上述したパワー半導体モジュール等に使用される絶縁性セラミックス基板としての窒化珪素基板であって、β型窒化珪素の結晶粒子と、少なくとも1種類の希土類元素(RE)、マグネシウム(Mg)及び珪素(Si)を含有する粒界相からなる窒化珪素基板において、前記粒界相が非晶質相とMgSiN結晶相からなり、前記希土類元素(RE)を含有する結晶相を実質的に含まない。
 一般に、窒化珪素焼結体は、β型窒化珪素の結晶粒子と焼結助剤成分を含有する粒界相とからなり、また粒界相は非晶質相あるいは結晶相で構成される。前記粒界相はX線回折法により基板表面の回折線を測定し、検出されたβ型Si以外の回折線ピークを同定することで粒界相中における各結晶相の有無を判断した。Mgを含んだ結晶相のX線ピークが検出されない場合、Mgは非晶質相として粒界相に存在すると判断し、REを含んだ結晶相のX線ピークが検出されない場合、REは非晶質相として粒界相に存在すると判断した。具体的には、粒界結晶相のいずれの回折線ピーク強度もβ型Siの(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)の回折線ピーク強度の和の0.0005倍未満の場合、粒界相は結晶相を含んでいないと判断した。結晶相の有無についてMgSiNの場合には(121)のX線ピークが、また、Re成分の場合にはReSi、ReSiONおよびReSi7に対して、それぞれ、(211)、(112)および(-221)のX線ピークが第1ピークであり、これらのX線ピークとβ型Siの(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)の回折線ピーク強度の和との比より算定できる。
 また、透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いた観察により粒界相中における結晶相の析出有無を確認し、粒界相(非晶質相と粒界結晶相の和)中における結晶相の存在比率(面積率)について画像解析により算出した。
 上述のように窒化珪素基板は窒化珪素粒子と焼結助剤として添加した成分を主とする粒界相から構成されている。添加した焼結助剤を主成分として生成される粒界相は窒化珪素粒子間の結合を保ち、また、粒子間の欠陥を抑制する役割を担っている。特に、窒化珪素基板の粒界相の結合力が不十分で表面に粗大な欠陥がある場合、窒化珪素基板に応力が加わったとき、その欠陥が破壊の起点となり容易に破壊が起こるため、粒界相が均一に分散されて存在して粒子間を結合し粗大な欠陥の生成が抑制される必要がある。
 窒化珪素基板において焼結助剤として添加したMgOおよびREはSiやSi中に含まれるSiOと反応して焼結工程で液相を形成する。これらの液相は焼結後には粒界相として、非晶質相もしくは結晶相として存在する。本発明の窒化珪素質焼結体の窒化珪素粒子及び粒界相の透過型電子顕微鏡(TEM)像を図1に、その模式図を図2にそれぞれ示す(後出に実施例4)。また、図6はTEM-EDX(Transmission Electron Microscope-Energy Dispersive X-ray Spectrometry)によるSi,Mg,Y,O成分に対する面分析結果を示す。ここで、O成分の濃度が高いことは粒界相の場合は非晶質相であることを示唆している。組成については、図6より図1で窒化珪素粒子11の挟まれた粒界相においてコントラストの異なる結晶相13は、YならびにOの検出濃度が低く、MgおよびSiが主成分であることが分かる。また、X線回折結果からはMgSiNのみのピークが検出されることから、粒界結晶相13はMgSiNである。一方、結晶相13以外の粒界相部12については、Si成分の濃度が低く、Mg,YおよびO成分からなる。また、X線回折からはMgSiN以外の回折ピークは検出されなかった。したがって、Y,MgおよびOを主成分とした非晶質相である。非晶質相12と粒界結晶相13とからなる粒界相は窒化珪素粒子11間を結合し、両者の存在比率は窒化珪素質焼結体の機械的強度と熱伝導率に影響を与える。窒化珪素質焼結体中の粒界相に占める粒界結晶相13(MgSiN)の存在比率(面積率)は0.05%以上、20%未満の範囲が好ましい。非晶質相12よりも熱伝導率に優れる粒界結晶相を粒界相中に析出させることで焼結体の高熱出伝導化が達成できる。特にMg系結晶相の熱伝導率は他成分の結晶相よりも優れるため、微量析出でその効果が大きい。したがって、窒化珪素焼結体の高熱伝導化のためには、粒界相に対する粒界結晶相MgSiN相の存在比率を0.05%以上とすることが望ましい。一方、粒界結晶相を過度に析出させた場合には、非晶質相に比べて窒化珪素粒子との接合強度が低い粒界結晶相の存在比率が大きくなるため、これにより機械的強度が低下し、かつばらつきが大きくなると言った問題が生じる。したがって、粒界相に対するMgSiN相の存在比率は20%未満とすることが好ましい。
 また、窒化珪素基板の機械的強度を高くするためには、Mgを含んだ粒界相も非晶質相として含有し、窒化珪素粒子間の結合を保持することが望ましい。一方で、Mgを含んだ粒界相が結晶化した際に生じるMgSiN結晶相は非晶質相に比べて熱伝導率が高く、窒化珪素基板の熱伝導率を向上することができる。そこで、機械的強度の著しい低下が起こらない程度に粒界相中のMgの一部を熱伝導率が比較的高いMgSiN結晶相として適量を析出させることにより、窒化珪素基板の熱伝導率を高く維持している。粒界相中に適量のMgSiN結晶相が析出した本発明の窒化珪素焼結体においては、MgSiN結晶相の(121)のX線回折ピーク強度がβ型Siの(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和の0.0005~0.003倍となる。
 そこで、本実施形態にかかる窒化珪素基板では、上述したように、粒界相が非晶質相とMgSiN結晶相からなり、REを含んだ結晶相を実質的に含まないことを特徴とする。ここで実質的に含まないこととは、前記希土類元素(RE)を含んだ結晶相のいずれの結晶面のX線回折線ピーク強度がβ型Siの(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)の回折線ピーク強度の和の0.0005倍未満であることを意味する。これにより、窒化珪素基板の曲げ強度を高い水準で維持し、かつ熱伝導率を向上させることができる。なお、粒界相の調整方法については後述する。
 さらに、本実施形態にかかる窒化珪素基板においては、MgSiN結晶相の(121)のX線回折ピーク強度がβ型Siの(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和の0.0005~0.003倍となるようにMgSiN結晶相を含有している。MgSiN結晶相が少ないと窒化珪素基板の熱伝導率を上げる効果が小さくなる。一方、MgSiN結晶相が多いと粒界相として窒化珪素粒子間を結合する効果が小さくなり曲げ強度が低下する。本実施形態では、これらの特性を調整するために、MgSiN結晶相の量を上記範囲としている。
 さらに、本実施形態にかかる窒化珪素基板においては、MgをMgO換算で6.7~12.8mol%とREをRE換算で1.1~2.9mol%となるように含有している。また、MgをMgO、REをRE換算で合計7.9~15.1mol%となる範囲で含有している。また、MgとREを酸化物換算で(RE)/(MgO)のモル比が0.09~0.3となる範囲で含有している。Mg及びREは、窒化珪素基板を作製する際に焼結助剤として機能し、作製された窒化珪素基板内では主に粒界相として存在するため、その含有量は窒化珪素基板の曲げ強度や熱伝導率といった特性に影響を与える。MgOやREの含有量の割合により、(RE)/(MgO)のモル比が0.09より小さい場合、焼結時にMgSiN結晶相の生成が抑制され、熱伝導率が低下する。また、(RE)/(MgO)のモル比が0.3より大きい場合、焼結時に粒界相の結晶化が促進され、粒界にREを含んだ結晶相が析出し、窒化珪素粒子間の結合が弱くなり曲げ強度が低下する。さらに、(RE)/(MgO)のモル比が上記範囲であっても、MgO、REやその合計の含有量が上記範囲より少ない場合、焼結時にMgSiN結晶相の生成が抑制され、熱伝導率が低下し、また、焼結も不十分であり曲げ強度も低下する。また、REやその合計の含有量が上記範囲より多い場合、窒化珪素粒子に比べて熱伝導率の低い粒界相量が著しく多くなり、熱伝導率が低下する。また、MgOのみの含有量が多い場合、焼結時にMgSiN結晶相のみが多量に析出して窒化珪素粒子間の結合が弱くなり曲げ強度が低下する。従って、MgO、RE、その合計の含有量及び(RE)/(MgO)のモル比は上記範囲が好適である。
 本発明の窒化珪素質焼結体は、高い曲げ強度と熱伝導率を有しており、熱伝導率は、80W/m・K以上であり、好ましくは85W/m・K以上、更に望ましくは、90W/m・K以上である。また、曲げ強度は820MPa以上である。更に、室温から600℃までの熱膨張係数は2.3~4.5ppm/℃の範囲にあり、相対密度は98%以上であり、望ましくは99%超である。熱膨張係数が2.3ppm/℃未満では金属回路板との熱膨張の差が大きくなり、4.5ppm/℃を超えると基板自体の熱膨張が大きくなり何れの場合も回路基板としたときに熱衝撃で割れが生じる虞がある。相対密度が98%未満では熱伝導率80 W/m・k以上、曲げ強度820 Mpa以上が得られない場合がある。本発明の窒化珪素質焼結体から作製した窒化珪素基板は、高周波トランジスタ、パワー半導体モジュール等の回路用基板またはマルチチップモジュール用基板などの各種基板、あるいはペルチェ素子用熱伝板、または各種発熱素子用ヒートシンクなどの電子部品用部材に用いることができる。本実施形態にかかる窒化珪素基板を、例えば半導体素子搭載用基板として用いる場合、窒化珪素基板と金属回路板及び金属放熱板との接合工程、パワー半導体モジュールの作製工程、もしくはパワー半導体モジュールの稼働に伴う繰り返しのヒートサイクルを受けたときのクラックの発生を抑制することができ、また、半導体素子から発生する熱を放熱部材に伝えやすく、耐熱衝撃性、耐ヒートサイクル性及び放熱性が向上した基板を実現できる。
 また、本実施形態にかかる窒化珪素基板の一面または両面に、金属回路板及び金属放熱板であるCu(銅)回路板やAl(アルミニウム)回路板をDBC法(Direct Bonding Cupper 銅直接接合法)や活性金属ろう材法等を用いて接合することにより、窒化珪素回路基板が作製される。ここで、DBC法とは、窒化珪素基板とCu回路板またはAl回路板とを不活性ガスまたは窒素雰囲気中で共晶温度以上の温度に加熱し、生成したCu-O、Al-O共晶化合物液相を接合剤として上記回路板を窒化珪素基板の一面または両面に共晶化合物層を介して直接接合するものである。一方、活性金属ろう材法とは、チタン(Ti)、ジルコニウム(Zr)またはハフニウム(Hf)等の活性金属と低融点合金を作る銀(Ag)、銅(Cu)等の金属を混合または合金としたろう材を用いてCu回路板またはAl回路板を窒化珪素基板の一面または両面にろう材層を介して不活性ガスまたは真空雰囲気中で加熱圧着接合するものである。回路板を接合した後、窒化珪素基板上のCu回路板またはAl回路板をエッチング処理して回路パターンを形成し、さらに回路パターン形成後のCu回路板またはAl回路板にNi-Pめっきを施し、窒化珪素回路基板が作製される。
 また、上記窒化珪素回路基板上に適宜な半導体素子を搭載することにより、所望の半導体モジュールを作製することができる。
 次に、本実施形態にかかる窒化珪素基板の製造方法について説明する。
 本発明で用いる原料粉末として窒化珪素粉末は、平均粒子径を1.0μm以下、比表面積を15m/g以下の範囲とする。また、窒化珪素焼結体の高熱伝導化には、含有酸素量を1.5wt%以下、特にFe成分およびAl成分はそれぞれ1000ppm以下とする。
 また、焼結助剤として添加するMgO粉末およびY粉末は、それぞれ、平均粒子径を1.0μm以下、比表面積を30m/g以下の範囲とする。また、不純物量は窒化珪素粉末と同様にFe成分およびAl成分は、それぞれ1000ppm以下とする。
 まず、原料調整・混合工程として、含有酸素量2質量%以下の窒化珪素原料粉に酸化マグネシウム(MgO)が6.7~12.8mol%、少なくとも1種の希土類元素酸化物(RE)が1.1~2.9mol%を合計7.9~15.1mol%、かつ(RE)/(MgO)のモル比が0.09~0.3となるように混合し、溶剤、有機バインダー、可塑剤等とともにボールミル等で混合する。MgO、RE及び合計の添加量と(RE)/(MgO)の添加量のモル比が上記範囲以外の場合、MgO、RE及び合計の含有量と(RE)/(MgO)の含有量のモル比も上記範囲外となり、上述したように曲げ強度と熱伝導率の一方もしくは両方が低下する。従って、MgO、RE、その合計の添加量及び(RE)/(MgO)のモル比は上記範囲が好適である。
 次に、成形工程として、上記混合した原料スラリーを脱泡・増粘した後、これを公知のドクターブレード法等により所定厚さの板にシート成形する。このときのシート成形体の板厚は、用途に応じて適宜決定できるが、例えば0.2~1.0mm程度とすることができる。また、シート成形体寸法については収縮量を考慮し、かつシート成形体を載せるBNセッターおよび焼成容器の寸法および容量も考慮して適宜選定する。本発明では、シート成形体寸法は170mm×140mmとした。
 次に、焼結工程として、上記シート成形体を1枚もしくはBN等の剥離剤を介して複数枚重ね、焼結炉内を0.5~1.0MPaの窒素加圧雰囲気とし、1600℃から300℃/h以下の速度で昇温し、1800~2000℃の温度で2~10時間保持した後、100℃/h以上の速度で1500℃まで冷却することで焼結し、窒化珪素基板とする。また、焼結後の窒化珪素基板はそのまま用いてもよいが、焼結温度より低い温度での熱処理や、ブラスト加工等による表面処理を施してもよい。なお、焼結温度が1800℃未満だと焼結が不十分で強度や熱伝導率の低下が起こる。また、焼結温度が2000℃より高いと異常粒成長が起こり、強度の低下を招く。従って、焼結温度は上記範囲が好適である。さらに、焼結炉内の雰囲気が0.5MPa未満では焼結時に窒化珪素の分解が起こりやすく、強度や熱伝導率の低下が起こる。また、1.0MPaより高い圧力とするためには高価な焼結炉が必要となりコスト高となる。従って、焼結炉内の雰囲気は上記範囲が好適である。さらに、1600℃からの昇温速度を300℃/hより速くした場合、詳細な理由は不明であるがMgSiN結晶相の生成が抑制され、熱伝導率が低下する。従って、昇温速度は上記範囲が好適である。さらに、1500℃までの冷却速度が100℃/h未満の場合は粒界相の結晶化が促進され、粒界にREを含んだ結晶相が析出し、窒化珪素粒子間の結合が弱くなり曲げ強度が低下する。従って、冷却速度は上記範囲が好適である。また、焼結時の基板の総厚み(複数枚の基板を重ねるときは、総厚みはそれらを合計した厚さのこと)が40mmより大きい場合も、試料の見掛けの体積が大きくなり、結果として試料内部の冷却速度は100℃/h未満になるので、焼結時の基板の総厚みは40mm以下であることが好ましく、更に好ましくは30mm以下である。さらに、焼結時間が2時間より短い場合はMgSiN結晶相の生成が抑制され、熱伝導率が低下し、また、焼結も不十分であり曲げ強度も低下する。また、焼結時間が5時間より長い場合、粒界相の結晶化が促進され、粒界にREを含んだ結晶相が析出し、窒化珪素粒子間の結合が弱くなり曲げ強度が低下する。従って、焼結時間は上記範囲が好適である。
 なお、Mg成分を含んだ粒界相は蒸気圧が高いため、高温での焼結時に揮発や偏析を起こしやすく、焼結体表面層で気孔生成による密度低下や局部的な色調むらを生じる。このため、Mg成分を基板中に留めておくためには密閉式のセラミックス製の焼成容器を、望ましくは、BN製の焼成容器を用い、それらの内部におけるMg成分のガス濃度を一定に保つことで揮発するMg成分を抑制することで、極端な強度低下が回避できかつ高熱伝導相であるMgSiN相を適度に析出させることが肝要である。それに対して、REを含んだ粒界相は蒸気圧が低く、Mgを含んだ粒界相に比べて、窒化珪素粒子間に均一に安定して存在し易く、非晶質相12として窒化珪素粒子間の強固な結合を保つのに重大な役割を担っている。そのため、REを含んだ粒界相の一部が結晶化することにより、窒化珪素粒子間の結合が不十分となり粒界相に粗大な欠陥が生じやすい。結果として窒化珪素基板の機械的強度が低下してしまい、窒化珪素基板と金属回路板及び金属放熱板との接合工程、パワー半導体モジュールの作製工程、もしくはパワー半導体モジュールの稼働に伴う熱サイクルにより窒化珪素基板に応力が働いた場合にクラックが発生しやすくなる。また、REを含んだ粒界相の熱伝導率は結晶化することで、僅かには改善されるが、窒化珪素粒子に比べた場合に著しく低く、窒化珪素基板の高熱伝導率化にはほとんど貢献しない。そのため、REを含んだ粒界相は窒化珪素粒子間の強固な結合を保つために、非晶質相として存在していることが好適である。REとしては、Y、Yb、Er,Dy、Gd,Sm,NdおよびLuの酸化物が選択できるが、窒化珪素粒子と粒界相との結合強度が優れるため、Y酸化物の選択が望ましい。
 以下、本発明の実施例を説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。
 前記製造方法に基づいて窒化珪素基板を製造し、その物性を測定した。製造条件の内、酸化マグネシウム(MgO)添加量、希土類元素酸化物(RE)添加量、MgOとREの合計添加量、(RE)/(MgO)のモル比、REの種類、焼結工程における焼結温度、昇温速度、冷却時間、焼結時間及び基板の総厚みの各項目は、表1、2に製造条件として示されるものを採用した(実施例1~16)。なお、(RE)として、実施例10~16では、REとしてYに代えてYb、Er,Dy、Gd,Sm,NdまたはLuの酸化物を用いた。焼結は密閉式のBN製の焼成容器中にて行った。
 測定した物性としては、窒化珪素基板のβ型窒化珪素以外の結晶相の有無及びMgSiN結晶相の量の他、酸化マグネシウム(MgO)含有量、希土類酸化物(RE)含有量、(RE)/(MgO)のモル比、MgOとREの合計含有量、曲げ強度、曲げ強度のワイブル係数、熱伝導率及び熱衝撃試験結果がある。これらの項目の内、曲げ強度、曲げ強度のワイブル係数及び熱伝導率について予め設定した範囲内(曲げ強度:820MPa以上、ワイブル係数:15以上、熱伝導率:80W/m・K以上)にあるか否かを判定した。
 また、比較例として、上記製造条件を変更して製造した窒化珪素基板についても同様に物性を測定し、判定を行った。その結果が表3、4に示される(比較例1~15)。
 上記物性の内、β型窒化珪素以外の結晶相の有無及びMgSiN結晶相の量は基板表面のX線回折線測定により、上述した方法で求めた。ここでX線回折評価には、理学電機製のRINT2500を用い、評価条件は、管球:銅、管電圧:50kV、管電流:200mA、サンプリング幅:0.020°、走査速度:2°/min、走査角度 2θ:20°~120°の範囲で行った。
酸化マグネシウム(MgO)含有量および希土類元素酸化物(RE)含有量は窒化珪素基板をマイクロウェーブ分解処理及び酸溶解処理により溶液化した後、ICP発光分析法によりMg量及びRE量を測定し、酸化マグネシウム(MgO)および希土類元素酸化物(RE)に換算することにより求めた。また、(RE)/(MgO)の含有量のモル比およびMgOとREの合計含有量は求めた酸化マグネシウム(MgO)含有量および希土類元素酸化物(RE)含有量から計算した。なお、実施例及び比較例の全ての試料においてMgOとREの含有量はその添加量とほぼ同等であった。
 曲げ強度は、JIS-R1601に準拠し、3点曲げ試験によって測定した。窒化珪素基板を幅4mmの試験片に加工し、支持ロール間距離7mmの3点曲げ治具にセット後、クロスヘッド速度0.5mm/分で荷重を印加して、破断時に試験片にかかる荷重から算出した。
 ワイブル係数は、上記曲げ強度の試験結果から、JIS-R1625に準拠してlnσに対してlnln(1-F)-1をプロットするワイブルプロットを作成し、その傾きのワイブル係数を求めた。ここで、σは曲げ強度であり、Fは累積破壊確率である。
 破壊靱性は、JIS-R1607に準拠して、窒化珪素基板の側面にビッカース圧子を所定荷重(本実施例では2kgf(19.6N))で押し込むIF(Indentation Fracture)法で測定した。このとき、ビッカース圧子はビッカース圧痕の一方の対角線が窒化珪素基板の厚さ方向と垂直になるように押し込んだ。
 熱伝導率は、窒化珪素基板から5mm角の測定用試料を切り出し、JIS-R1611に準拠し、レ-ザーフラッシュ法により測定した。
 熱衝撃試験では窒化珪素基板の両面にCu回路板及びCu放熱板を形成した窒化珪素回路基板を350℃で10分間保持後、室温に急冷し、窒化珪素基板へのクラックの発生を調べた。この操作を10回繰り返しクラックが発生するか否かで合否を判定した。熱伝導率が80W/m・Kより小さい場合は窒化珪素回路基板に適していないため、熱衝撃試験は実施しなかった。
熱膨張係数は、窒化珪素基板の5mm×20mmLに測定試料を切り出し、JIS-R1618に準拠し、室温から600℃までの長手方向の線膨張係数を評価した。
相対密度は、窒化珪素基板をアルキメデス法により密度を測定し、これをSi粉末、MgO粉末およびRE粉末の配合比と個々の密度から算出した理論密度を除して100を乗じた値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上記表1に示されるように、MgO添加量を6.7~12.8mol%、RE添加量を1.1~2.9mol%、MgOとREの合計添加量を7.9~15.1mol%、(RE)/(MgO)の添加量のモル比が0.09~0.3、焼結工程における焼結温度を1800~2000℃、昇温速度を300℃/h以下、冷却速度を100℃/h以上、焼結時間を2~10hの条件で製造した窒化珪素基板では粒界の結晶相としてMgSiN結晶相のみが検出され、β型Siに対するMgSiN結晶相量(設定範囲0.0005~0.003)、MgO含有量(設定範囲6.7~12.8mol%)、RE含有量(設定範囲1.1~2.9mol%)、MgOとREの合計含有量(設定範囲7.9~15.1mol%)、(RE)/(MgO)の含有量のモル比(設定範囲0.09~0.3)、曲げ強度(設定範囲820MPa以上)及び熱伝導率(設定範囲80W/m・K以上)が全て設定範囲に入っている。また、ワイブル係数も設定範囲である15以上を満たしており、曲げ強度のばらつきが小さいことがわかる。また、窒化珪素基板の相対密度は98%超であり、熱膨張係数は、2.3以上かつ4.5ppm/℃以下の範囲にある。これらの結果、熱衝撃試験においても窒化珪素基板の破壊が発生せず、全て合格の判定となっている。
 図4は実施例4で得られた窒化珪素焼結体の透過型電子顕微鏡(TEM)像であり図5はその模式図である。ここで、TEM観察には、集束イオンビーム(Focused
Ion Beam:FIB、日立製作所製 FB-2100)を用いて薄片化試料を作製し、続いて、透過型電子顕微鏡(TEM、日立製作所製 HF2000)を用いて行った。TEM観察条件は加速電圧200kV、直接観察倍率20k倍である。図2のTEM像を画像解析装置(ニレコ社製 ルーゼックスAP)を用いて粒界結晶相の存在比率(面積率)を算定したところ、その値は9.33%であった。粒界結晶相の存在比率は粒界結晶相の面積を粒界相(粒界結晶相と非晶質相の和)の面積で除して100を乗じて得られる値である。これと同様に実施例1~3および実施例5~9さらに表2-1および表2-2のおいて、X線回折により粒界結晶相の回折ピークが検出できた比較例1、2、7、8、10、11および14について同様の評価を行い、いずれの場合も粒界結晶相の存在比率を求めた。なお、比較例1,2,7,8,10および11の試料については、X線回折によりMgSiN相に加えてYSiの回折ピークが検出されたが、TEM観察とTEM-EDX分析の結果からもMgが主成分である粒界結晶相とYが主成分のものの析出が確認できた。比較例1、2、7、8、10および11についてのMgSiN相の存在比率は、MgSiN相の面積を粒界相(これらの場合は、MgSiNとYSiと非晶質相の和)で除して100を乗じて算出した。表5および図6に、MgSiN結晶相の(121)のX線回折ピーク強度のβ型Si前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和に対する比率(表3中では、単にMgSiNX線比率と表記)とTEM像の画像解析により求めた粒界結晶相MgSiNの存在比率の関係を示す。これらの図表から、実施例1~9の場合、MgSiNのX線比率は、0.0005~0.003の範囲にあり、粒界相におけるMgSiNの存在比率は、0.05%以上、20%未満の範囲にあった。また、図6よりMgSiNのX線比率と粒界相におけるMgSiNの存在比率との間には相関性があり、実施例1の0.0005で0.05%、実施例4の0.0017で7.62%、実施例6の0.003で18.54%および比較例0.0045で32.12%となった。
 一方、表2に示されるように、比較例1として、MgO添加量を6.7mol%、Y添加量を1.2mol%とし、焼結工程における焼結温度を1850℃、昇温速度を150℃/h、冷却速度を80℃/h、焼結時間を5h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相の量がβ型Siの0.0033倍と多く、また、Yを含んだYSiの結晶相も含有し、曲げ強度が798MPaと低く、そのワイブル係数も14と低くなっている。これは、焼結工程の冷却速度が比較的遅いため粒界の結晶化が促進され、粒界相による窒化珪素粒子の結合が弱くなり曲げ強度が低下している。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。なお、比較例1との相違点として、Y添加量を1.8mol%とし、焼結温度を1900℃、冷却速度を50℃/h、焼結時間を4hとした比較例2も、冷却速度が遅いため、MgSiN結晶相の量がβ型Siの0.0030倍と多く、また、Yを含んだYSiの結晶相も含有することにより、曲げ強度が802MPaと低く、そのワイブル係数も13と低くなっている。その結果、熱衝撃試験において窒化珪素基板にクラックが発生した。
 また、比較例3として、MgO添加量を9.8mol%、Y添加量を1.2mol%とし、焼結工程における焼結温度を1850℃、昇温速度を400℃/h、冷却速度を600℃/h、焼結時間を3h、基板の総厚みを8mmとした条件で製造した窒化珪素基板ではMgSiN結晶相が検出されず、熱伝導率が77W/m・Kと低くなった。これは、焼結工程における昇温速度が速いため、MgSiN結晶相の生成が抑制され、窒化珪素基板の熱伝導率が低下している。なお、比較例3との相違点として、Y添加量を1.8mol%とし、昇温速度を600℃/h、焼結時間を5h、基板の総厚みを4mmとしたとした比較例4も、昇温速度が速いため、MgSiN結晶相の生成が抑制され、熱伝導率が73W/m・Kと低くなった。
 また、比較例5として、MgO添加量を9.9mol%、Y添加量を2.3mol%とし、焼結工程における焼結温度を1750℃、昇温速度を200℃/h、冷却速度を300℃/h、焼結時間を4h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相が検出されず、熱伝導率が70W/m・Kと低くなり、また、曲げ強度も734MPaと低くなった。これは、焼結工程における焼結温度が低いため、MgSiN結晶相の生成が抑制され、窒化珪素基板の熱伝導率が低下し、また、焼結も不十分であり曲げ強度も低下している。
 また、比較例6として、MgO添加量を9.8mol%、Y添加量を1.2mol%とし、焼結工程における焼結温度を1850℃、昇温速度を150℃/h、冷却速度を600℃/h、焼結時間を1h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相が検出されず、熱伝導率が78W/m・Kと低くなり、また、曲げ強度も771MPaと低くなった。これは、焼結工程における焼結時間が短いため、MgSiN結晶相の生成が抑制され、窒化珪素基板の熱伝導率が低下し、また、焼結も不十分であり曲げ強度も低下している。
 また、比較例7として、MgO添加量を9.8mol%、Y添加量を1.8mol%とし、焼結工程における焼結温度を1900℃、昇温速度を150℃/h、冷却速度を600℃/h、焼結時間を20h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相の量がβ型Siの0.0032倍と多く、また、Yを含んだYSiの結晶相も含有し、曲げ強度が766MPaと低く、そのワイブル係数も13と低くなっている。これは、焼結工程の焼結時間が長いため粒界の結晶化が促進され、粒界相による窒化珪素粒子の結合が弱くなり曲げ強度が低下している。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。
 また、比較例8として、MgO添加量を9.8mol%、Y添加量を1.2mol%とし、焼結工程における焼結温度を1850℃、昇温速度を300℃/h、冷却速度を600℃/h、焼結時間を5h、基板の総厚みを51mmとした条件で製造した窒化珪素基板ではMgSiN結晶相の量がβ型Siの0.0035倍と多く、また、Yを含んだYSiの結晶相も含有し、曲げ強度が810MPaと低く、そのワイブル係数も13と低くなっている。これは、焼結工程でセットした基板の総厚みが51mmと厚いため、結果として試料内部の冷却速度は100℃/hr未満になり冷却速度が遅いため粒界の結晶化が促進され、粒界相による窒化珪素粒子の結合が弱くなり曲げ強度が低下している。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。
 また、比較例9として、MgO添加量を6.7mol%、Y添加量を0.6mol%とし、焼結工程における焼結温度を1900℃、昇温速度を150℃/h、冷却速度を300℃/h、焼結時間を4h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相が検出されず、熱伝導率が77W/m・Kと低くなり、また、曲げ強度も766MPaと低くなった。これは、Y添加量が少なく、MgOとYの合計添加量も少ないため、MgSiN結晶相の生成が抑制され、窒化珪素基板の熱伝導率が低下し、また、粒界相量も不十分であるため曲げ強度も低下している。
 また、比較例10として、MgO添加量を6.7mol%、Y添加量を2.4mol%とし、焼結工程における焼結温度を1850℃、昇温速度を150℃/h、冷却速度を600℃/h、焼結時間を5h、基板の総厚みを8mmとした条件で製造した窒化珪素基板ではYを含んだYSiの結晶相も含有し、曲げ強度が765MPaと低く、そのワイブル係数も14と低くなった。これは、(Y)/(MgO)のモル比が0.4と高いため、Yを含んだ粒界の結晶化が促進され、粒界相による窒化珪素粒子の結合が弱くなり曲げ強度が低下している。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。なお、比較例10との相違点として、MgO添加量を6.8mol%、Y添加量を3.0mol%とし、焼結温度を1900℃、冷却速度を300℃/h、昇温速度を300℃/h、焼結時間を4h、基板の総厚みを4mmとした比較例11も、(Y)/(MgO)のモル比が0.4と高いため、Yを含んだ粒界の結晶化が促進され、曲げ強度が768MPaと低く、そのワイブル係数も10と低くなっている。その結果、熱衝撃試験において窒化珪素基板にクラックが発生した。
 また、比較例12として、MgO添加量を9.8mol%、Y添加量を0.6mol%とし、焼結工程における焼結温度を1900℃、昇温速度を200℃/h、冷却速度を600℃/h、焼結時間を3h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相が検出されず、熱伝導率が78W/m・Kと低くなった。これは、Y添加量が少なく、かつ(Y)/(MgO)のモル比が0.06と低いため、MgSiN結晶相の生成が抑制され、窒化珪素基板の熱伝導率が低下した。なお、比較例12との相違点として、MgO添加量を12.7mol%とし、(Y)/(MgO)のモル比が0.04とし、焼結工程における焼結温度を1850℃、昇温速度を150℃/h、冷却速度を300℃/hとした条件で製造した比較例13も、Y添加量が少なく、(Y)/(MgO)のモル比が0.04と低いため、MgSiN結晶相の生成が抑制され、窒化珪素基板の熱伝導率が78W/m・Kと低下した。
 また、比較例14として、MgO添加量を15.6mol%、Y添加量を1.7mol%とし、焼結工程における焼結温度を1850℃、昇温速度を150℃/h、冷却速度を300℃/h、焼結時間を5h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相の量がβ型Siの0.0045倍と多く、曲げ強度が731MPaと低く、そのワイブル係数も12と低くなった。これは、MgO添加量が多いため、MgSiN結晶相の生成が促進され、粒界相による窒化珪素粒子の結合が弱くなり曲げ強度が低下している。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。
 また、比較例15として、MgO添加量を6.8mol%、Y添加量を3.0mol%とし、焼結工程における焼結温度を1900℃、昇温速度を300℃/h、冷却速度を50℃/h、焼結時間を5h、基板の総厚みを4mmとした条件で製造した窒化珪素基板ではMgSiN結晶相が検出されず、Yを含んだYSiの結晶相のみを含有し、熱伝導率が76W/m・Kと低く、また、曲げ強度も769MPaと低く、そのワイブル係数も12と低くなった。これは、(Y)/(MgO)のモル比が0.4と高いため、MgSiN結晶相の生成が抑制され、窒化珪素基板の熱伝導率が低下し、また、焼結工程の冷却速度が遅いため粒界の結晶化が促進され、粒界相による窒化珪素粒子の結合が弱くなり曲げ強度が低下した。
また、比較例16として、MgO添加量を6.7mol%、Y添加量を1.2mol%とし、焼結工程における焼結温度を1775℃、昇温速度を150℃/h、冷却速度を600℃/h、焼結時間を5h、基板の総厚みを0.4mmとした条件で製造した窒化珪素基板では相対密度が97.1%と低く、熱伝導率が79W/m・Kと低く、また、曲げ強度も792MPaと低く、そのワイブル係数も13と低くなり、結果として熱衝撃試験は不合格となった。粒界結晶相MgSiN は、焼結温度の低減により結晶化に必要な液相量が得られず析出しずらくなり、MgSiN結晶相の(121)のX線回折ピーク強度のβ型Si前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和に対する比率は0.0003に留まった。これにより窒化珪素基板の熱伝導率は低減した。
 また、比較例17として、MgO添加量を4.1mol%、Y添加量を0.5mol%とし、焼結工程における焼結温度を1875℃、昇温速度を150℃/h、冷却速度を600℃/h、焼結時間を5h、基板の総厚みを0.4mmとした条件で製造した窒化珪素基板では熱膨張係数は、2.26ppm/℃と低く、Cu回路板との熱膨張係数差が大きくなる。これによりCu回路板との熱膨張係数差が大きくなり、曲げ強度に優れるものの熱衝撃試験では不合格となった。粒界結晶相MgSiN は、MgOおよびYともに添加量を低減したことにより析出しずらくなるため、MgSiN結晶相の(121)のX線回折ピーク強度のβ型Si前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和に対する比率は0.0004に留まり窒化珪素基板の熱伝導率は79W/m・Kに低下した。
 また、比較例18として、MgO添加量を37.2mol%、Y添加量を4.7mol%とし、焼結工程における焼結温度を1875℃、昇温速度を150℃/h、冷却速度を600℃/h、焼結時間を5h、基板の総厚みを0.4mmとした条件で製造した窒化珪素基板では熱膨張係数は4.52ppm/℃と高く、Cu回路板との熱膨張係数差は低減されるものの、基板自身の熱収縮が大きくなる。また、粒界相の存在比率が増大するため、熱伝導率は65W/m.Kに低下した。さらに、曲げ強度780MPaに低下した。結果として熱衝撃試験では不合格となった。
MgOおよびYともに添加量増大により粒界相中に過剰のMgSiN結晶相が析出しやすくなり、MgSiN結晶相の(121)のX線回折ピーク強度のβ型Si前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和に対する比率は0.0035と増大し、βSi粒子との結合強度の小さい粒界結晶相の存在比率が増加したため窒化珪素基板の曲げ強度は低下した。
 以上述べた通り、表1に示された製造条件の設定範囲で製造した窒化珪素基板は、粒界相が非晶質相とMgSiN結晶相からなり、希土類元素(RE)を含んだ結晶相を含まず、MgSiN相の量及びその他の特性が表1に示された設定範囲に入り、窒化珪素基板のクラックが発生し破壊に至ることがないが、何れかの製造条件が上記設定範囲を外れると、窒化珪素基板の熱伝導率が低くなるか、窒化珪素基板の破壊が生ずることがわかる。
 10 窒化珪素基板
11 窒化珪素粒子
12 非晶質の粒界相
13 結晶質の粒界相

Claims (6)

  1.  β型窒化珪素の結晶粒子と、少なくとも1種類の希土類元素(RE)、マグネシウム(Mg)及び珪素(Si)を含有する粒界相からなる窒化珪素基板において、前記粒界相は非晶質相とMgSiN結晶相からなり、前記希土類元素(RE)を含んだ結晶相のいずれの結晶面のX線回折線ピーク強度も前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)の回折線ピーク強度の和の0.0005倍未満であり、前記MgSiN結晶相の(121)のX線回折ピーク強度が前記β型窒化珪素の結晶粒子の(110)、(200)、(101)、(210)、(201)、(310)、(320)及び(002)のX線回折ピーク強度の和の0.0005~0.003倍であることを特徴とする窒化珪素質焼結体。
  2.  熱伝導率が80W/m・K以上である請求項1記載の窒化珪素質焼結体。
  3.  前記窒化珪素基板が含有するマグネシウム(Mg)を酸化マグネシウム(MgO)に換算し、同じく含有する少なくとも1種類の希土類元素(RE)を希土類元素酸化物(RE)に換算したとき、MgO含有量が6.7~12.8mol%、RE含有量が1.1~2.9mol%、MgOとREの含有量の合計が7.9~15.1mol%で、かつ(RE)/(MgO)のモル比が0.09~0.3であることを特徴とする請求項1または2に記載の窒化珪素質焼結体。
  4.  含有酸素量2.0質量%以下の窒化珪素原料粉に、酸化マグネシウム(MgO)を6.7~12.8mol%と少なくとも1種類の希土類元素酸化物(RE)を1.1~2.9mol%とを合計7.9~15.1mol%、かつ(RE)/(MgO)のモル比が0.09~0.3になるように配合して総厚み40mm以下のシート成形体とし、前記シート成形体を1600℃から300℃/h以下の速度で1800~2000℃の温度に昇温し、2~10時間保持した後、100℃/h以上の速度で1500℃まで冷却することで焼結することを特徴とする窒化珪素質焼結体の製造方法。
  5.  請求項1乃至3の何れかに記載の窒化珪素質焼結体からなる窒化珪素基板と、前記窒化珪素基板の一面に接合された金属回路板と、前記窒化珪素基板の他の面に接合された金属放熱板とからなることを特徴とする窒化珪素回路基板。
  6. 請求項5に記載の窒化珪素回路基板と、該窒化珪素回路基板上に搭載された半導体素子を有することを特徴とする半導体モジュール。
PCT/JP2009/062221 2008-07-03 2009-07-03 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール WO2010002001A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010519123A JP5477289B2 (ja) 2008-07-03 2009-07-03 窒化珪素質焼結体の製造方法
EP09773579.9A EP2301906B1 (en) 2008-07-03 2009-07-03 Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board
CN2009801260520A CN102105418A (zh) 2008-07-03 2009-07-03 氮化硅基板及其制造方法,以及使用该氮化硅基板的氮化硅电路基板和半导体模块
US12/737,316 US8586493B2 (en) 2008-07-03 2009-07-03 Silicon nitride sintered body, method of producing the same, and silicon nitride circuit substrate and semiconductor module using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008174314 2008-07-03
JP2008-174314 2008-07-03

Publications (1)

Publication Number Publication Date
WO2010002001A1 true WO2010002001A1 (ja) 2010-01-07

Family

ID=41466091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062221 WO2010002001A1 (ja) 2008-07-03 2009-07-03 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール

Country Status (6)

Country Link
US (1) US8586493B2 (ja)
EP (1) EP2301906B1 (ja)
JP (2) JP5477289B2 (ja)
KR (1) KR101582704B1 (ja)
CN (1) CN102105418A (ja)
WO (1) WO2010002001A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146789A1 (ja) * 2012-03-26 2013-10-03 日立金属株式会社 窒化珪素焼結体基板及びその製造方法
US8989799B2 (en) 2006-02-17 2015-03-24 Alcatel Lucent Methods of reverse link power control
WO2016117553A1 (ja) * 2015-01-23 2016-07-28 株式会社東芝 高熱伝導性窒化珪素焼結体、それを用いた窒化珪素基板および窒化珪素回路基板並びに半導体装置
JPWO2015060274A1 (ja) * 2013-10-23 2017-03-09 株式会社東芝 窒化珪素基板およびそれを用いた窒化珪素回路基板
US9602250B2 (en) 2009-08-18 2017-03-21 Lg Electronics Inc. Method for retransmitting data in wireless communication system
JP2018184333A (ja) * 2017-04-26 2018-11-22 日立金属株式会社 窒化珪素基板の製造方法、及び窒化珪素基板
WO2020027077A1 (ja) * 2018-08-03 2020-02-06 株式会社 東芝 窒化珪素焼結体、窒化珪素基板、及び窒化珪素回路基板
JP2021046329A (ja) * 2019-09-17 2021-03-25 株式会社東芝 構造体及び接合体
JPWO2021117829A1 (ja) * 2019-12-11 2021-06-17
JPWO2020044974A1 (ja) * 2018-08-29 2021-09-24 株式会社東芝 窒化珪素基板及び窒化珪素回路基板

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569213A (zh) * 2012-03-04 2012-07-11 浙江大学 Dbc板绝缘结构
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
AU2017372858B2 (en) 2016-12-06 2023-02-02 Markforged, Inc. Additive manufacturing with heat-flexed material feeding
JP7052374B2 (ja) * 2017-02-06 2022-04-12 三菱マテリアル株式会社 セラミックス/アルミニウム接合体の製造方法、絶縁回路基板の製造方法
EP4219428A1 (en) * 2017-04-17 2023-08-02 Kabushiki Kaisha Toshiba, Inc. A substrate, a circuit board, and method for manufacturing the substrate
CN108727035A (zh) * 2017-04-24 2018-11-02 京瓷株式会社 陶瓷板以及电子装置
CN108863395B (zh) * 2017-05-12 2021-01-12 中国科学院上海硅酸盐研究所 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
WO2020018285A1 (en) * 2018-07-16 2020-01-23 Corning Incorporated Methods of ceramming glass articles having improved warp
KR102206446B1 (ko) * 2018-08-08 2021-01-22 한국재료연구원 질화규소계 세라믹 및 이의 제조 방법
KR20210142616A (ko) * 2019-03-29 2021-11-25 덴카 주식회사 질화규소 회로 기판, 및, 전자 부품 모듈
CN111170745B (zh) * 2020-01-09 2021-04-06 北京科技大学 一种高导热氮化硅基板的制备方法
CN112661518B (zh) * 2020-12-25 2022-03-25 中材高新氮化物陶瓷有限公司 一种高导热氮化硅陶瓷绝缘板及其制备方法
JP7278325B2 (ja) 2021-04-21 2023-05-19 株式会社Maruwa 窒化ケイ素焼結体
JP7201734B2 (ja) * 2021-04-21 2023-01-10 株式会社Maruwa 窒化ケイ素焼結体
JP7339979B2 (ja) * 2021-04-21 2023-09-06 株式会社Maruwa 窒化ケイ素焼結体の製造方法
JP7278326B2 (ja) * 2021-04-21 2023-05-19 株式会社Maruwa 窒化ケイ素焼結体の製造方法
JP7339980B2 (ja) * 2021-04-21 2023-09-06 株式会社Maruwa 窒化ケイ素焼結体の製造方法
CN113213946A (zh) * 2021-05-27 2021-08-06 深圳市精而美精密陶瓷科技有限公司 低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267735A (ja) 1994-03-31 1995-10-17 Nippon Steel Corp 窒化ケイ素セラミックス材料及びその製造方法
JP2000034172A (ja) 1998-05-12 2000-02-02 Toshiba Corp 高熱伝導性窒化けい素焼結体およびその製造方法
JP3476504B2 (ja) 1993-05-19 2003-12-10 東芝タンガロイ株式会社 窒化ケイ素基焼結体およびその被覆焼結体
JP3561145B2 (ja) 1998-04-27 2004-09-02 京セラ株式会社 窒化珪素質放熱部材及びその製造方法
WO2006118003A1 (ja) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1223013A (en) * 1983-04-22 1987-06-16 Mikio Fukuhara Silicon nitride sintered body and method for preparing the same
JP3501317B2 (ja) * 1995-07-21 2004-03-02 日産自動車株式会社 高熱伝導率窒化ケイ素質焼結体および窒化ケイ素質焼結体製絶縁基板
US6294244B1 (en) * 1997-12-22 2001-09-25 Kyocera Corporation Wiring board having excellent heat-radiating property
JP4571728B2 (ja) * 1999-06-23 2010-10-27 日本碍子株式会社 窒化珪素焼結体及びその製造方法
JP3648541B2 (ja) * 2000-10-19 2005-05-18 独立行政法人産業技術総合研究所 高熱伝導窒化ケイ素セラミックス並びにその製造方法
JP4384101B2 (ja) * 2000-10-27 2009-12-16 株式会社東芝 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板
JP3775335B2 (ja) 2002-04-23 2006-05-17 日立金属株式会社 窒化ケイ素質焼結体および窒化ケイ素質焼結体の製造方法、並びにそれを用いた回路基板
JP4556162B2 (ja) 2004-03-11 2010-10-06 日立金属株式会社 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
JP5046221B2 (ja) 2006-01-24 2012-10-10 独立行政法人産業技術総合研究所 高い信頼性を持つ高熱伝導窒化ケイ素セラミックスの製造方法
DE102006059402B4 (de) * 2006-12-11 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Werkstoff auf Siliciumnitrid-Basis, Verfahren zu dessen Herstellung und dessen Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476504B2 (ja) 1993-05-19 2003-12-10 東芝タンガロイ株式会社 窒化ケイ素基焼結体およびその被覆焼結体
JPH07267735A (ja) 1994-03-31 1995-10-17 Nippon Steel Corp 窒化ケイ素セラミックス材料及びその製造方法
JP3561145B2 (ja) 1998-04-27 2004-09-02 京セラ株式会社 窒化珪素質放熱部材及びその製造方法
JP2000034172A (ja) 1998-05-12 2000-02-02 Toshiba Corp 高熱伝導性窒化けい素焼結体およびその製造方法
WO2006118003A1 (ja) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2301906A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989799B2 (en) 2006-02-17 2015-03-24 Alcatel Lucent Methods of reverse link power control
US9602250B2 (en) 2009-08-18 2017-03-21 Lg Electronics Inc. Method for retransmitting data in wireless communication system
WO2013146789A1 (ja) * 2012-03-26 2013-10-03 日立金属株式会社 窒化珪素焼結体基板及びその製造方法
US9884762B2 (en) 2013-10-23 2018-02-06 Kabushiki Kaisha Toshiba Silicon nitride substrate and silicon nitride circuit board using the same
US10322934B2 (en) 2013-10-23 2019-06-18 Kabushiki Kaisha Toshiba Silicon nitride substrate and silicon nitride circuit board using the same
JPWO2015060274A1 (ja) * 2013-10-23 2017-03-09 株式会社東芝 窒化珪素基板およびそれを用いた窒化珪素回路基板
JP2017152707A (ja) * 2013-10-23 2017-08-31 株式会社東芝 圧接構造用窒化珪素基板およびそれを用いた窒化珪素回路基板
JP2017165647A (ja) * 2013-10-23 2017-09-21 株式会社東芝 窒化珪素基板およびそれを用いた窒化珪素回路基板
JP2017178776A (ja) * 2013-10-23 2017-10-05 株式会社東芝 窒化珪素基板およびそれを用いた窒化珪素回路基板
US10308560B2 (en) 2015-01-23 2019-06-04 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same
EP3248956A4 (en) * 2015-01-23 2018-08-22 Kabushiki Kaisha Toshiba, Inc. Silicon nitride sintered compact having high thermal conductivity, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device
JPWO2016117553A1 (ja) * 2015-01-23 2017-11-02 株式会社東芝 高熱伝導性窒化珪素焼結体、それを用いた窒化珪素基板および窒化珪素回路基板並びに半導体装置
WO2016117553A1 (ja) * 2015-01-23 2016-07-28 株式会社東芝 高熱伝導性窒化珪素焼結体、それを用いた窒化珪素基板および窒化珪素回路基板並びに半導体装置
JP2018184333A (ja) * 2017-04-26 2018-11-22 日立金属株式会社 窒化珪素基板の製造方法、及び窒化珪素基板
JPWO2020027077A1 (ja) * 2018-08-03 2021-08-26 株式会社東芝 窒化珪素焼結体、窒化珪素基板、及び窒化珪素回路基板
WO2020027077A1 (ja) * 2018-08-03 2020-02-06 株式会社 東芝 窒化珪素焼結体、窒化珪素基板、及び窒化珪素回路基板
JP7235751B2 (ja) 2018-08-03 2023-03-08 株式会社東芝 窒化珪素焼結体、窒化珪素基板、及び窒化珪素回路基板
JPWO2020044974A1 (ja) * 2018-08-29 2021-09-24 株式会社東芝 窒化珪素基板及び窒化珪素回路基板
JP7319607B2 (ja) 2018-08-29 2023-08-02 株式会社東芝 窒化珪素基板及び窒化珪素回路基板
JP2021046329A (ja) * 2019-09-17 2021-03-25 株式会社東芝 構造体及び接合体
JP7313105B2 (ja) 2019-09-17 2023-07-24 株式会社東芝 構造体及び接合体
JPWO2021117829A1 (ja) * 2019-12-11 2021-06-17
WO2021117829A1 (ja) * 2019-12-11 2021-06-17 宇部興産株式会社 板状の窒化ケイ素質焼結体およびその製造方法
CN114787105A (zh) * 2019-12-11 2022-07-22 宇部兴产株式会社 板状的氮化硅质烧结体及其制造方法
JP7201103B2 (ja) 2019-12-11 2023-01-10 Ube株式会社 板状の窒化ケイ素質焼結体およびその製造方法
CN114787105B (zh) * 2019-12-11 2024-03-05 Ube 株式会社 板状的氮化硅质烧结体及其制造方法

Also Published As

Publication number Publication date
US8586493B2 (en) 2013-11-19
JP2014058445A (ja) 2014-04-03
KR20110028375A (ko) 2011-03-17
JP5850031B2 (ja) 2016-02-03
JP5477289B2 (ja) 2014-04-23
EP2301906A4 (en) 2012-06-27
CN102105418A (zh) 2011-06-22
US20110176277A1 (en) 2011-07-21
KR101582704B1 (ko) 2016-01-05
EP2301906B1 (en) 2019-10-23
EP2301906A1 (en) 2011-03-30
JPWO2010002001A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5477289B2 (ja) 窒化珪素質焼結体の製造方法
JP5245405B2 (ja) 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
US8858865B2 (en) Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
US10308560B2 (en) High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same
US7948075B2 (en) Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
JPH01203270A (ja) 高熱伝導性窒化アルミニウム焼結体及びその製造法
JPH09157054A (ja) 回路基板
JP5439729B2 (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JP5743830B2 (ja) 窒化珪素質焼結体およびこれを用いた回路基板ならびに電子装置
CN112313191B (zh) 氮化硅烧结体、氮化硅基板及氮化硅电路基板
JP4556162B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
JP2009215142A (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JP5031541B2 (ja) 窒化珪素質焼結体および回路基板ならびにパワー半導体モジュール
WO2020203683A1 (ja) 窒化ケイ素焼結体及びその製造方法、並びに積層体及びパワーモジュール
JP2004262756A (ja) 窒化ケイ素質粉末、窒化ケイ素質焼結体及びこれを用いた電子部品用回路基板
JPH11100274A (ja) 窒化珪素質焼結体、その製造方法及びそれを用いた回路基板
JP2002293641A (ja) 窒化ケイ素質焼結体
JPH11100273A (ja) 窒化珪素質焼結体、その製造方法及びそれを用いた回路基板
JP2003020282A (ja) 窒化アルミニウム焼結体、その製造方法及び用途
JP5142889B2 (ja) 窒化珪素質焼結体およびその製法ならびに回路基板、パワー半導体モジュール
CN117794883A (zh) 高导热性氮化硅烧结体、氮化硅基板、氮化硅电路基板及半导体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126052.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519123

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009773579

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117002410

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12737316

Country of ref document: US