WO2010001692A1 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
WO2010001692A1
WO2010001692A1 PCT/JP2009/060464 JP2009060464W WO2010001692A1 WO 2010001692 A1 WO2010001692 A1 WO 2010001692A1 JP 2009060464 W JP2009060464 W JP 2009060464W WO 2010001692 A1 WO2010001692 A1 WO 2010001692A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
upper limit
limit value
battery
mode
Prior art date
Application number
PCT/JP2009/060464
Other languages
English (en)
French (fr)
Inventor
小島 靖
健介 高木
雅俊 木全
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801252897A priority Critical patent/CN102076539B/zh
Priority to EP09773270.5A priority patent/EP2308732B1/en
Priority to US12/937,151 priority patent/US8423217B2/en
Publication of WO2010001692A1 publication Critical patent/WO2010001692A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a hybrid vehicle having an engine and a motor as power sources.
  • hybrid vehicles have become popular as environmentally friendly vehicles.
  • the hybrid vehicle has a motor driven by electric power supplied from a battery or a generator in addition to an engine using gasoline or light oil as fuel as a power source for driving the wheels.
  • the DC voltage supplied from the battery is boosted by a DC / DC converter (hereinafter referred to as “converter” where appropriate) that is a voltage converter, and supplied to the inverter. Some of them are applied to an AC synchronous motor.
  • a DC / DC converter hereinafter referred to as “converter” where appropriate
  • the power generated by the generator by the power of the engine and the braking force of the vehicle and the power consumed by the driving motor of the vehicle are controlled so that the remaining capacity of the battery is maintained within a predetermined appropriate range. Yes.
  • Such a hybrid vehicle has a traveling motor as a power source, which enables a fuel-efficient driving compared to a vehicle using only the engine as a power source, but increases the operating efficiency of the motor and engine, etc. Therefore, further reduction in fuel consumption or energy saving is desired. Therefore, it has been proposed that a switch or the like that provides a low fuel consumption travel instruction to the control unit of the vehicle is provided by turning on when the driver who is a user wants to prioritize the fuel consumption over the power performance of the vehicle. .
  • a switch is sometimes called an “eco-mode switch” or simply “eco-switch”.
  • An object of the present invention is to provide a hybrid vehicle capable of avoiding a situation where the remaining capacity of a battery greatly breaks the lower limit of the appropriate range while improving fuel efficiency.
  • the present invention includes an engine, a generator capable of generating power by receiving power from the engine, a battery for storing power generated by the generator, and power for traveling by receiving power supplied from the battery and the generator.
  • a hybrid vehicle including an electric motor capable of outputting, a voltage converter for boosting a voltage of a battery and supplying the voltage to the motor, and a first mode and a second mode for selecting a boost operation of the voltage converter And when the second mode is selected by the selection means, the voltage upper limit value after boosting by the voltage converter is lower than the first upper limit value from the first upper limit value in the first mode.
  • a control means for switching the voltage upper limit value after boosting by the voltage converter from the second upper limit value to the first upper limit value when the remaining capacity of the battery falls below the threshold value. Characterized in that it comprises.
  • control means determines the voltage upper limit value after boosting by the voltage converter when a state in which the required power for the vehicle by the user exceeds the maximum vehicle power that can be output in the second mode continues for a predetermined time.
  • the second upper limit value may be switched to the first upper limit value.
  • the control unit executes switching of the voltage upper limit value after boosting by the voltage converter, changes the engine operating point
  • the second mode is executed when at least one control of the frequency reduction of the carrier wave used for generating the input voltage to the power supply and the energy saving operation of the auxiliary equipment including the air conditioner is performed, and the remaining capacity of the battery becomes less than the threshold value Of the controls being executed in step (b), only the control for returning the voltage upper limit value after boosting by the voltage converter from the second upper limit value to the first upper limit value may be executed.
  • the hybrid vehicle of the present invention may further include a generator inverter and a motor inverter having a DC / AC conversion function, and each inverter may be connected to a common voltage converter.
  • the voltage upper limit value after being boosted by the voltage converter is kept low from the first upper limit value to the second upper limit value, thereby converting the voltage.
  • canceling the voltage boost restriction in the voltage converter ensures sufficient power generation by the generator A situation in which the lower limit of the appropriate capacity range of the battery is greatly broken can be avoided.
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle according to an embodiment of the present invention. It is a functional block diagram of motor ECU. It is a functional block diagram of a PWM control block included in the motor ECU. It is a functional block diagram of a rectangular wave control block included in the motor ECU. It is a figure which shows the map showing the relationship between the torque of a motor for driving
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle 10 according to an embodiment of the present invention.
  • the power transmission system is indicated by a solid line
  • the power line is indicated by a one-dot chain line
  • the signal line is indicated by a dotted line.
  • Hybrid vehicle 10 includes an engine 12 capable of outputting driving power, two three-phase AC synchronous motor generators (hereinafter simply referred to as “motors”) MG1 and MG2, and a power distribution and integration mechanism 14.
  • motors two three-phase AC synchronous motor generators
  • the engine 12 is an internal combustion engine that generates power using gasoline, light oil, or the like as fuel.
  • the engine 12 is electrically connected to an engine control ECU (Electronic Control Unit) (hereinafter referred to as “engine ECU”) 16, and receives a control signal from the engine ECU 16 to perform fuel injection, ignition, throttle, and the like. Operation is controlled by adjusting.
  • the rotational speed Ne of the engine 12 is calculated by the engine ECU 16 in response to a detection value output from the rotational position sensor 11 provided close to the output shaft 13 of the engine 12.
  • the power distribution and integration mechanism 14 meshes with both the sun gear 18 disposed in the center, the ring gear 20 disposed concentrically on the outer side of the sun gear 18 and having inner teeth on the inner periphery of the annular ring, and both the sun gear 18 and the ring gear 20.
  • the planetary gear mechanism includes a plurality of carriers 22.
  • a carrier shaft 28 connected to the output shaft 13 of the engine 12 via a damper 24 is coupled to a carrier support member 26 that rotatably supports a plurality of carriers 22, and a motor is coupled to the sun gear 18.
  • a rotation shaft 30 connected to the rotor 29 of the MG 1 is coupled, and a reduction gear 34 is coupled to the ring gear 20 via a ring gear shaft 32.
  • the power of the engine 12 input from the carrier shaft 28 and the power of the motor MG1 input from the sun gear 18 are integrated to form a gear train having a predetermined reduction ratio from the ring gear 20 via the ring gear shaft 32. It is input to the reduction gear 34 including.
  • the rotary shaft 38 connected to the rotor 36 of the motor MG2 is also connected to the speed reducer 34.
  • the motor MG2 functions as an electric motor, the power from the motor MG2 is input to the speed reducer 34.
  • the power input from at least one of the ring gear shaft 32 and the rotation shaft 38 of the MG 2 is transmitted to the axle 40 via the speed reducer 34, thereby driving the wheels 42 to rotate.
  • the MG 2 functions as a generator.
  • regenerative braking not only when the driver brakes the vehicle to reduce the vehicle speed, but also when the driver releases the accelerator pedal and stops vehicle acceleration, or when the vehicle goes downhill. This includes cases where the vehicle is traveling by gravity.
  • the motors MG1 and MG2 are electrically connected to the corresponding inverters 44 and 46, respectively.
  • Each inverter 44, 46 is electrically connected in parallel to a converter 48 that is a common voltage converter, and is electrically connected to the battery 50 via the converter 48.
  • the battery 50 is preferably a chargeable / dischargeable secondary battery such as a nickel metal hydride battery or a lithium ion battery, but is not limited to this, and a capacitor may be used, for example.
  • DC voltage Vb supplied from battery 50 via smoothing capacitor 52 is boosted to output voltage Vc by converter 48, and then to smoothing capacitor 54 to inverters 44 and 46.
  • Input (converter output voltage Vc corresponds to system voltage VH which is an inverter input voltage. The same applies hereinafter), and AC conversion is performed by inverters 44 and 46 and applied to motors MG1 and MG2.
  • the motors MG1 and MG2 function as generators
  • the AC voltage output from the MG1 and MG2 is converted into DC by the inverters 44 and 46, and then the voltage is stepped down by the converter 48 to charge the battery 50.
  • the inverters 44 and 46 share the power line 56 and the ground line 58 connected to the converter 48, the power generated by one of the motors MG1 and MG2 is not transmitted through the converter. It can also be supplied to a motor and driven to rotate.
  • the inverters 44 and 46 are electrically connected to a motor ECU (hereinafter referred to as “motor ECU”) 60, respectively, and their operation is controlled based on a control signal transmitted from the motor ECU 60.
  • the motors MG1 and MG2 are provided with rotation angle sensors 31 and 37 that detect the rotation angles of the rotors 29 and 36, respectively. Detection values by the rotation angle sensors 31 and 37 are input to the motor ECU 60 and used to calculate the motor rotation speeds Nm1 and Nm2. Further, the motor ECU 60 receives a motor current detected by a current sensor (not shown) provided for each of the motors MG1 and MG2.
  • the battery 50 is provided with a battery state detection sensor 62 such as a current sensor, a voltage sensor, or a temperature sensor, and the detected values by the sensor 62, that is, the battery current Ib, the battery voltage Vb, the battery temperature Tb, etc. , Referred to as “battery ECU”) 64.
  • the battery ECU 64 estimates the remaining capacity (SOC) of the battery 50 based on these detected values, and the remaining battery capacity is maintained in an appropriate range, for example, a range of 40% to 80% centering on 60% of the rated capacity. In the vicinity of the upper limit of the appropriate range, an input restriction signal is output to the hybrid ECU described later.
  • the engine ECU 16, the motor ECU 60, and the battery ECU 64 are electrically connected to a hybrid ECU (control means) 66.
  • the hybrid ECU 66 includes a CPU that executes a control program, a ROM that stores a control program, a control map, and the like, a RAM that temporarily stores various detection values and can be read out at any time, and the like.
  • the MG1 and MG2 have a function of controlling the operation of the battery 50 and managing the battery 50 in an integrated manner.
  • the hybrid ECU 66 transmits an engine control signal to and from the engine ECU 16 as necessary, and receives data related to the engine operating state (for example, the engine speed Ne) as necessary.
  • Hybrid ECU 66 transmits a motor control signal to / from motor ECU 60 as necessary, and receives data (for example, motor rotation speeds Nm1, Nm2, motor current, etc.) regarding the motor operating state as necessary. Further, the hybrid ECU 66 receives data necessary for battery management such as remaining battery capacity, battery voltage, battery temperature, and input / output restriction signal from the battery ECU 64.
  • a vehicle speed sensor 68 and an accelerator opening sensor 70 are electrically connected to the hybrid ECU 66, and an accelerator opening corresponding to a vehicle speed Sv that is the traveling speed of the hybrid vehicle 10 and a depression amount of an accelerator pedal (not shown). Ac is input respectively.
  • an eco switch (selection means) 72 is electrically connected to the hybrid ECU 66.
  • the eco switch 72 is provided at a position where the driver who is the user can easily operate, and an eco switch on signal Eon is input to the hybrid ECU 66 by a pressing operation, a rotating operation, or a light touch operation.
  • the eco switch 72 is turned on, the transition from the normal mode (first mode) when the eco switch is off to the eco mode (second mode) in which low fuel consumption traveling is possible as compared with the normal mode is selected. It has become.
  • FIG. 2 is a functional block diagram of the motor ECU 60. Since the voltage control when the motors MG1 and MG2 are both used as an electric motor is performed in the same manner, the control of the motor MG2 that mainly outputs driving power will be described here. .
  • the motor ECU 60 receives a control method selection unit 106 that selects the control method of the motor MG2, and two power switching elements (for example, IGBT) in the converter 48 in response to the converter output voltage command Vc * from the control method selection unit 106.
  • a control method selection unit 106 that selects the control method of the motor MG2
  • two power switching elements for example, IGBT
  • Converter control unit 104 that generates switching signals S1 and S2 for ON / OFF control and outputs the signals to converter 48, and receives a torque command T * from control method selection unit 106, and receives U and V phases in inverter 46 And switching signals S3 to S8 for ON / OFF control of power switching elements (for example, IGBTs) provided in two (6 in total) in each phase arm of the W phase and to the inverter 46
  • power switching elements for example, IGBTs
  • control method for an AC motor sine wave PWM control, overmodulation PWM control, and rectangular wave control.
  • the sine wave PWM control system is used as a general PWM control, and is used for each phase arm in the inverter 46 for each of the U-phase, V-phase, and W-phase coils of the motor MG2, which is a three-phase AC motor.
  • On / off of each switching element provided is controlled according to a voltage comparison between a sinusoidal voltage command value and a carrier wave (generally a triangular wave).
  • a sinusoidal voltage command value generally a triangular wave
  • a carrier wave generally a triangular wave
  • the ratio between the high level period corresponding to the on period of the upper arm element and the low level period corresponding to the on period of the lower arm element is equal to the predetermined period.
  • one pulse of one-to-one rectangular wave is applied to the motor MG2.
  • the modulation factor can be increased to 0.78, and the output in a relatively high rotation range can be improved.
  • the field weakening current can be reduced, the occurrence of copper loss in the motor MG2 can be suppressed and the energy efficiency can be improved.
  • the number of times of switching in the inverter 46 can be reduced, there is also an advantage that switching loss can be suppressed.
  • sine wave PWM control there is a characteristic that it is easily affected by disturbance and control response is not so good.
  • the overmodulation PWM control method is an intermediate PWM control method between sine wave PWM control and rectangular wave control, and is distorted so as to reduce the amplitude of the carrier wave and is similar to the above sine wave PWM control method.
  • This PWM control it is possible to generate a motor input voltage distorted in a substantially sinusoidal shape shifted in the direction of increasing voltage, thereby increasing the modulation factor to a range of 0.61 to 0.78. .
  • the induced voltage increases as the rotation speed and output torque increase, and the required voltage increases accordingly.
  • the boosted voltage Vc by the converter 48 that is, the system voltage VH needs to be set higher than the required motor voltage.
  • there is an upper limit that is, the maximum system voltage value for the voltage value that can be boosted by the converter 48.
  • the maximum torque control by the sine wave PWM control method or the overmodulation PWM control method is applied and output by the motor current control according to the vector control.
  • the torque is controlled to match the torque command T *.
  • the rectangular wave control method is applied according to field weakening control while maintaining the system voltage VH at the maximum value.
  • torque control is performed by voltage phase control of a rectangular wave pulse based on the deviation between the estimated torque value and the torque command value.
  • FIG. 3 shows a functional block example of the PWM control block 100 of the motor ECU 60 for executing the maximum torque control of the sine wave PWM control and the overmodulation PWM control.
  • the PWM control block 100 includes a current command generation unit 74, a voltage command generation unit 76, a two-phase three-phase conversion unit 78, a switching signal generation unit 80, a three-phase two-phase conversion unit 84, and a rotation speed calculation unit 86.
  • Current command generation unit 74 receives torque command T * and motor rotation speed Nm2 input from hybrid ECU 66 to motor ECU 60, and corresponds to torque command T * and motor rotation speed Nm2 from a preset map or table.
  • the d-axis current command Id * and the q-axis current command Iq * are calculated and output to the voltage command generator 76.
  • the voltage command generation unit 76 matches the d-axis and q-axis voltage commands Vd * and Vq * for matching the d-axis actual current id and the q-axis actual current iq with the d-axis current command Id * and the q-axis current command Iq *, respectively.
  • the d-axis actual current id and the q-axis actual current iq here are the three-phase currents iu and iv detected by the current sensor 82 that detects each phase current of the motor MG2 in the three-phase to two-phase converter 84.
  • Iw are converted based on the motor rotation angle ⁇ . Since the sum of the phase currents iu, iv, and iw becomes zero, the current of one phase remaining after detecting the current of two phases of the three-phase current may be calculated by calculation.
  • Vd * Gpd (Id * ⁇ id) + Gid (Id * ⁇ id) dt
  • Vq * Gpq (Iq * -iq) + Giq (Iq * -iq) dt
  • Kpd and Kpq are proportional gains for d-axis and q-axis current control
  • Kid and Kiq are integral gains for d-axis and q-axis current control.
  • the two-phase / three-phase converter 78 converts the d-axis voltage command Vd * and the q-axis voltage command Vq * into three-phase voltages Vu, Vv, Vw based on the rotation angle ⁇ of the rotor 36 of the motor MG2. Output to the switching signal generator 80.
  • the system voltage VH is also reflected in the conversion from the d-axis voltage command Vd * and the q-axis voltage command Vq * to the three-phase voltages Vu, Vv, Vw.
  • the switching signal generator 80 generates switching signals S3 to S8 based on the comparison between the three-phase voltages Vu, Vv, Vw and a predetermined carrier wave, and outputs them to the inverter 46. Thereby, each switching element of inverter 46 is subjected to switching control, whereby an AC voltage for outputting torque according to torque command T * is applied to motor MG2. As described above, at the time of overmodulation PWM control, the carrier wave used in the switching signal generation unit 80 is switched from a general carrier wave at the time of sine wave PWM control to one distorted so as to reduce the amplitude.
  • the rectangular wave control block 102 includes a three-phase / two-phase converter 94, a torque estimator 96, a voltage phase calculator 88, a rectangular wave generator 90, and a switching signal generator 92.
  • the three-phase / two-phase converter 94 converts the three-phase currents iu, iv, iw detected by the current sensor 82 into a d-axis actual current id and a q-axis actual current iq based on the motor rotation angle ⁇ . It outputs to the torque estimation part 96.
  • Torque estimation unit 96 calculates a torque estimate value T from a preset map or table based on d-axis actual current id and q-axis actual current iq, and outputs the result to voltage phase calculation unit 88.
  • the voltage phase calculation unit 88 performs a PI calculation with a predetermined gain on the torque deviation ⁇ T obtained by subtracting the estimated torque value T from the torque command T * to obtain a control deviation, and a rectangular wave voltage according to the control deviation. Is output to the rectangular wave generator 78. Specifically, when the torque command T * is positive (T *> 0), the voltage phase is advanced when torque is insufficient, while the voltage phase is delayed when torque is excessive, and the torque command T * is negative (T * ⁇ 0). ), The voltage phase is delayed when the torque is insufficient, while the voltage phase is advanced when the torque is excessive.
  • the rectangular wave generator 90 generates phase voltage commands Vu, Vv, and Vw (rectangular wave pulses) according to the input voltage phase ⁇ , and outputs them to the switching signal generator 92.
  • Switching signal generation unit 92 generates switching signals S3 to S8 according to the phase voltage commands Vu, Vv, and Vw, and outputs them to inverter 46.
  • the inverter 46 performs the switching operation according to the switching signals S3 to S8
  • a rectangular wave pulse according to the voltage phase ⁇ is applied as each phase voltage of the motor MG2.
  • the motor torque control can be performed by torque feedback control.
  • switching signal generation unit 92 in the rectangular wave control block 102 can also be used by the switching signal generation unit 80 in the PWM control block 100.
  • FIG. 5 shows a map stored in advance in the control method selection unit 106 of the motor ECU 60. This map is defined based on the torque and the rotational speed for the motor MG2, and the control method selection unit 106 selects the motor control method by applying this map.
  • the solid line indicates the relationship between the rotation speed of the motor MG2 and the maximum output torque in the sine wave PWM control.
  • the system voltage VH that is, the step-up ratio by the converter 48
  • the modulation factor K in the sine wave PWM control becomes constant at the maximum value 0.61.
  • the boosting by the converter 48 has an upper limit
  • the high rotation region between the solid line and the dotted line where the system voltage VH is the maximum value and the modulation factor K is 0.61 ⁇ K ⁇ 0.78 is the overmodulation PWM control region A2.
  • a further high rotation area between the dotted line and the alternate long and short dash line where the system voltage VH is the maximum value and the modulation factor K 0.78 becomes the rectangular wave control area A3.
  • FIG. 6 shows the vehicle speed Sv and the vehicle power for the normal mode when the eco switch 72 (see FIG. 1) is not on and the eco mode selected when the eco switch 72 is turned on. It is a map which shows each relationship.
  • the solid lines shown in FIG. 6 represent the maximum vehicle power that can be output in the normal mode and the eco mode, respectively.
  • FIG. 7 is a flowchart showing a processing routine executed in the hybrid ECU 66 when the eco switch 72 is turned on.
  • the driver selects the eco mode by turning on the eco switch 72. Thereby, as shown in FIG. 6, the maximum power that the vehicle can output is reduced compared to the normal mode.
  • an eco switch on signal Eon is input to the hybrid ECU 66.
  • the hybrid ECU 66 executes the eco mode control in step S10 of FIG.
  • the engine operating point is changed by reducing the upper limit rotational speed of the engine 12, and the boost upper limit value of the converter 48 is changed from the first upper limit value, for example, 650 volts to the second upper limit value, for example, 500 volts.
  • the inverter 46 the frequency of the carrier wave used for comparison with the voltage command for generating the motor input voltage is reduced, and the auxiliary equipment such as the air conditioner is operated in the eco mode (for example, the intermittent operation of the compressor for the air conditioner). Control).
  • the fuel consumption is suppressed by reducing the engine upper limit rotation speed, the switching loss in the converter 48 is reduced by keeping the boost upper limit value of the converter 48 low, and the frequency in the inverter 46 is reduced by reducing the frequency of the carrier wave.
  • Switching loss is reduced and power consumption is reduced by eco-mode operation of auxiliary equipment. As a result, low fuel consumption traveling is possible compared to the normal mode, and energy efficiency is improved.
  • the rotational speeds of the traveling motor MG2 and the power generation motor MG1 are limited.
  • the rotational speed limitation of the power generation motor MG1 causes a decrease in the amount of power generation, and the remaining capacity of the battery 50 and the vehicle operation by the user operation Depending on the operating state, it is conceivable that the frequency of intermittent engine operation for charging the battery is increased, and on the contrary, the fuel consumption is deteriorated, or the remaining capacity of the battery 50 greatly cuts 40% which is the lower limit of the appropriate range.
  • step S12 it is determined whether or not the remaining capacity SOC exceeds a threshold, for example, 40%.
  • a threshold for example, 40%.
  • the boost upper limit value of 500 volts in converter 48 is switched to 650 volts similar to that in the normal mode to release the boost restriction (step). S18).
  • the rotational speed limitation of the motor MG1 as the generator is also released, so that a sufficient amount of power generation can be secured, and as a result, the battery 50 can be charged and the remaining battery capacity can be returned to an appropriate range. it can.
  • step S12 determines whether or not the remaining battery charge SOC exceeds 40% (YES in step S12). If it is determined that the remaining battery charge SOC exceeds 40% (YES in step S12), then whether or not the vehicle required power Pv * is larger than the vehicle output power Pv continues for a predetermined time. It is determined whether or not (step S14).
  • the “predetermined time” here is preferably, for example, about several seconds, and is intended to eliminate the momentary depression of the accelerator pedal by the driver.
  • the vehicle required power Pv * is set based on the accelerator opening Ac and the vehicle speed Sv with reference to a map stored in advance in the ROM. If it is determined that the vehicle required power Pv * exceeds the maximum vehicle power that can be output in the eco mode shown in FIG. 6 for a predetermined time (YES in step S14), boosting of converter 48 is performed as described above. The restriction is released (step S18). On the other hand, when it is not determined that the vehicle required power Pv * exceeds the maximum vehicle power that can be output in the eco mode for a predetermined time (NO in step S14), the boost limit of converter 48 is maintained (step S16). ).
  • step S20 it is determined whether or not the eco switch 72 is turned off. If it is not turned off, the process returns to step S12 (NO in step S20), whereas if it is turned off (YES in step S20). End eco-mode control, that is, return to normal mode (step S22), and end the process.
  • the fuel economy is improved by selecting the eco mode, and when the remaining battery level becomes 40% or less of the lower limit of the appropriate range, the boost limit of the converter 48 is immediately released, thereby The situation where the capacity greatly breaks the lower limit of the appropriate range can be avoided.
  • the eco mode is selected by the user turning on the eco switch 72.
  • the hybrid ECU 66 that performs overall control of the hybrid vehicle 10, for example, at a substantially constant speed according to the driving state. When the stable running state continues for a predetermined time or longer, control for automatically switching from the normal mode to the eco mode may be executed. In this case, the hybrid ECU 66 also functions as selection means.
  • the eco switch 72 is the selection means
  • the normal mode is the first mode
  • the eco mode is the second mode.
  • the present invention is not limited to this. For example, when a power switch that is turned on when priority is given to vehicle driving performance over fuel consumption is selected, the normal mode as the second mode is selected when the power switch is off, and the power switch is turned on. It is also possible to apply the present invention so that the power mode as the first mode is selected.
  • the hybrid vehicle 10 has been described by taking a so-called series / parallel hybrid system in which both the wheels and the generator can be driven by the power of the engine 12, but the present invention only uses the power of the engine to drive the generator.
  • the present invention is also applicable to a so-called series hybrid type vehicle used for the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 ハイブリッド車両において、燃費向上を図りながらバッテリの残容量が適正範囲の下限を大きく割れてしまう事態を回避する。エンジン12と発電機MG1とバッテリ50と走行用電動機MG2とを備えるハイブリッド車両10であって、バッテリ50の電圧を昇圧して電動機MG2へ供給するコンバータ48と、コンバータ48の昇圧動作に関して第1のモードと第2のモードとを選択するためのエコスイッチ72と、エコスイッチ72によって第2のモードが選択されたときにコンバータ72による昇圧後の電圧上限値を第1のモードにおける第1の上限値から該第1の上限値よりも低い第2の上限値に変更すると共に、バッテリ50の残容量が閾値以下になったときにコンバータ48による昇圧後の電圧上限値を第2の上限値から第1の上限値へ切り換えるハイブリッドECU66とを更に備える。

Description

ハイブリッド車両
 本発明は、動力源としてエンジンとモータとを有するハイブリッド車両に関する。
 近年、環境にやさしい自動車としてハイブリッド車が普及してきている。ハイブリッド車は、車輪を駆動するための動力源として、ガソリンまたは軽油等を燃料とするエンジンに加えて、バッテリまたは発電機から供給される電力によって駆動されるモータを併せ持っている。
 このようなハイブリッド車では、バッテリから供給される直流電圧を電圧変換器であるDC/DCコンバータ(以下、適宜に「コンバータ」とだけいう。)で昇圧してインバータへ供給し、インバータで交流電圧に変換して交流同期型モータに印加されるようになっているものがある。
 また、バッテリの残容量が所定の適正範囲に維持されるように、エンジンの動力や車両の制動力によって発電機により発電される電力や、車両の走行用モータで消費される電力を制御している。
 このようなハイブリッド車は、動力源として走行用モータを併せ持っていることで、エンジンのみを動力源とする自動車に比べて低燃費走行を可能にしているが、モータやエンジンの作動効率を高める等によって更なる低燃費化または省エネルギー化が望まれる。そのために、ユーザである運転者が自動車の動力性能よりも燃費を優先させたい場合にオン操作することで、自動車の制御部に低燃費走行指示を与えるスイッチ等が設けられることが提案されている。このようなスイッチは、「エコモードスイッチ」あるいは単に「エコスイッチ」と呼ばれることがある。
 例えば、日本国特許出願公開公報第2007-159214号には、エコスイッチを備えた電気自動車において、ユーザの操作によりエコスイッチがオンされるとコンバータの昇圧動作を停止させ、これによりコンバータにおけるスイッチング損失を無くして低燃費化を可能にすることが記載されている。
 ハイブリッド車では、燃費またはエネルギー効率を最適化するためにエンジン、走行用モータ、および発電用モータが所定の条件を満たすようにバランスしながら作動制御されている。そのため、上記特許文献1の電気自動車のように、エコスイッチをオンすることによってコンバータの昇圧動作を停止させると、走行用モータおよび発電用モータの仕事量が制限され、特に発電用モータの仕事量の制限は発電量の低下を招き、バッテリの残容量やユーザ操作による車両の運転状態によっては、バッテリ充電のためのエンジン間欠運転の頻度が高くなることで却って燃費が悪化したりバッテリの残容量が適正範囲の下限を大きく割れてしまうことが考えられる。
 本発明の目的は、燃費向上を図りながらバッテリの残容量が適正範囲の下限を大きく割れてしまう事態を回避できるハイブリッド車両を提供することにある。
 本発明は、エンジンと、エンジンからの動力を受けて発電可能な発電機と、発電機により発電された電力を蓄えるバッテリと、バッテリ及び発電機から供給される電力を受けて走行用の動力を出力可能な電動機とを備えるハイブリッド車両であって、バッテリの電圧を昇圧して電動機へ供給する電圧変換器と、電圧変換器の昇圧動作に関して第1のモードと第2のモードとを選択するための選択手段と、選択手段によって第2のモードが選択されたときに電圧変換器による昇圧後の電圧上限値を第1のモードにおける第1の上限値から該第1の上限値よりも低い第2の上限値に変更すると共に、バッテリの残容量が閾値以下になったときに電圧変換器による昇圧後の電圧上限値を第2の上限値から第1の上限値へ切り換える制御手段とを更に備えることを特徴とする。
 本発明のハイブリッド車両において、制御手段は、ユーザによる車両に対する要求パワーが第2のモードで出力可能な最大車両パワーを上回る状態が所定時間継続したとき、電圧変換器による昇圧後の電圧上限値を第2の上限値から第1の上限値へ切り換えてもよい。
 また、本発明のハイブリッド車両において、制御手段は、選択手段によって第2のモードが選択されたとき、電圧変換器による昇圧後の電圧上限値の切り換えを実行すると共に、エンジン動作点の変更、電動機への入力電圧を生成するために用いる搬送波の周波数低減、および、エアコンを含む補機類の省エネ作動の少なくとも1つの制御を実行し、バッテリの残容量が閾値以下になったときには第2のモードで実行中の制御のうち電圧変換器による昇圧後の電圧上限値を第2の上限値から第1の上限値へ復帰させる制御のみを実行してもよい。
 さらに、本発明のハイブリッド車両において、直流・交流変換機能を有する発電機用インバータおよび電動機用インバータを更に含み、各インバータは共通の電圧変換器に接続されてもよい。
 本発明に係るハイブリッド車両によれば、第2のモードが選択されたときに電圧変換器による昇圧後の電圧上限値を第1の上限値から第2の上限値へと低く抑えることで電圧変換器における電力ロスを低減して燃費向上を可能にすると共に、バッテリの残容量が閾値以下になったときに電圧変換器における昇圧制限を解除することで発電機による十分な発電量を確保してバッテリの適正容量範囲の下限を大きく割れてしまう事態を回避できる。
本発明の一実施形態であるハイブリッド車両の概略構成図である。 モータECUの機能ブロック図である。 モータECUに含まれるPWM制御ブロックの機能ブロック図である。 モータECUに含まれる矩形波制御ブロックの機能ブロック図である。 走行用モータのトルクと回転数との関係を表したマップを示す図である。 通常モードおよびエコモードの車速と車両パワーの関係を示すマップである。 エコモード選択時にハイブリッドECUで実行される処理ルーチンを示すフローチャートである。
 以下に、本発明に係る実施の形態について添付図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。
 図1は、本発明の一実施形態であるハイブリッド車両10の概略構成図である。図1において、動力伝達系は実線で、電力ラインは一点鎖線で、信号ラインは点線でそれぞれ示されている。ハイブリッド車両10は、走行用の動力を出力可能なエンジン12と、2つの3相交流同期型モータジェネレータ(以下、単に「モータ」という。)MG1,MG2と、動力分配統合機構14とを備える。
 エンジン12は、ガソリンや軽油等を燃料として動力を発生する内燃機関である。エンジン12は、エンジン制御用ECU(Electronic Control Unit)(以下、「エンジンECU」という。)16と電気的に接続されており、エンジンECU16からの制御信号を受けて燃料噴射、点火、スロットル等が調節されることで作動制御されるようになっている。エンジン12の回転数Neは、エンジン12の出力軸13に近接して設けられた回転位置センサ11から出力される検出値を受けてエンジンECU16において算出される。
 動力分配統合機構14は、中心部に配置されるサンギヤ18と、サンギヤ18と同心上外側に配置され円環内周部に内歯を有するリングギヤ20と、サンギヤ18とリングギヤ20の両方に噛合する複数のキャリア22とを含んで構成される遊星歯車機構からなっている。
 動力分配統合機構14において、複数のキャリア22を回転可能に支持するキャリア支持部材26にはエンジン12の出力軸13にダンパ24を介して接続されるキャリア軸28が連結され、サンギヤ18にはモータMG1のロータ29に接続される回転軸30が連結され、リングギヤ20にはリングギヤ軸32を介して減速機34が連結されている。これにより、動力分配統合機構14では、モータMG1が発電機として機能するときにはキャリア軸28から入力されるエンジン12の動力がサンギヤ18側とリングギヤ20側とにそのギヤ比に応じて分配され、モータMG1が電動機として機能するときにはキャリア軸28から入力されるエンジン12の動力とサンギヤ18から入力されるモータMG1の動力とが統合されてリングギヤ20からリングギヤ軸32を介して所定減速比のギヤ列を含む減速機34へ入力されるようになっている。
 モータMG2のロータ36に接続される回転軸38もまた減速機34に接続されており、モータMG2が電動機として機能するときにはモータMG2からの動力が減速機34へ入力されるようになっている。
 リングギヤ軸32およびMG2の回転軸38の少なくとも一方から入力される動力は、減速機34を介して車軸40へ伝達され、これにより車輪42が回転駆動される。一方、回生制動時に車輪42および車軸40から減速機34を介して回転軸38に動力が入力されるとき、MG2は発電機として機能する。ここで、回生制動時は、運転者がブレーキ操作を行って車両速度を減速した場合に限らず、運転者がアクセルペダルの踏み込みを解除して車両加速を中止した場合や、車両が下り坂を重力作用によって走行している場合等を含む。
 モータMG1,MG2は、それぞれ対応するインバータ44,46に電気的に接続されている。各インバータ44,46は、共通の電圧変換器であるコンバータ48に電気的に並列に接続されると共に、コンバータ48を介してバッテリ50に電気的に接続されている。バッテリ50には、ニッケル水素電池やリチウムイオン電池等の充放電可能な二次電池が好適に用いられるが、これに限定されず、例えばキャパシタが用いられてもよい。
 モータMG1,MG2が電動機として機能するとき、バッテリ50から平滑コンデンサ52を介して供給される直流電圧Vbをコンバータ48で出力電圧Vcに昇圧してから、平滑コンデンサ54を介してインバータ44,46へ入力し(コンバータ出力電圧Vcはインバータ入力電圧であるシステム電圧VHに相当する。以下に同じ。)、インバータ44,46で交流変換してモータMG1,MG2に印加される。
 逆に、モータMG1,MG2が発電機として機能するとき、MG1,MG2から出力される交流電圧をインバータ44,46で直流変換した後、コンバータ48で降圧してバッテリ50に充電する。また、インバータ44,46は、コンバータ48に接続される電力ライン56および接地ライン58を共通にしていることから、モータMG1,MG2のうち一方のモータで発電した電力をコンバータを介することなく他方のモータに供給して回転駆動させることもできる。
 インバータ44,46は、モータ用ECU(以下、「モータECU」という。)60にそれぞれ電気的に接続されており、モータECU60から送信される制御信号に基づいて作動制御される。また、モータMG1,MG2には、ロータ29,36の回転角を検出する回転角センサ31,37が設けられている。各回転角センサ31,37による検出値は、モータECU60に入力されて各モータ回転数Nm1,Nm2を算出するために用いられる。さらに、モータECU60には、各モータMG1,MG2用にそれぞれ設けられる図示しない電流センサによって検出されるモータ電流が入力される。
 バッテリ50には、電流センサ、電圧センサ、温度センサ等のバッテリ状態検出センサ62が設置され、このセンサ62による各検出値すなわちバッテリ電流Ib、バッテリ電圧Vb、バッテリ温度Tb等がバッテリ用ECU(以下、「バッテリECU」という。)64に入力される。バッテリECU64は、これらの検出値に基づいてバッテリ50の残容量(SOC)を推定し、バッテリ残容量が適正範囲、例えば定格容量の60%を中心とする40%~80%の範囲に維持されるように監視しており、適正範囲上限近傍では入力制限信号を、適正範囲下限近傍では出力制限および充電要求の信号を後述するハイブリッド用ECUへ出力する。
 エンジンECU16、モータECU60およびバッテリECU64は、ハイブリッドECU(制御手段)66に電気的に接続されている。ハイブリッドECU66は、制御プログラムを実行するCPU、制御プログラムや制御用マップ等を格納するROM、各種検出値を一時的に記憶して随時に読み出し可能なRAM等から構成されており、エンジン12およびモータMG1,MG2を統括的に作動制御すると共にバッテリ50を管理する機能を有する。
 ハイブリッドECU66は、エンジンECU16との間で、必要に応じてエンジン制御信号を送信し、必要に応じてエンジン作動状態に関するデータ(例えばエンジン回転数Ne等)を受信する。また、ハイブリッドECU66は、モータECU60との間で、必要に応じてモータ制御信号を送信し、必要に応じてモータ作動状態に関するデータ(例えばモータ回転数Nm1,Nm2、モータ電流等)を受信する。さらに、ハイブリッドECU66は、バッテリECU64からバッテリ残容量、バッテリ電圧、バッテリ温度、入出力制限信号等のバッテリ管理に必要なデータを受信する。
 ハイブリッドECU66には、また、車速センサ68およびアクセル開度センサ70が電気的に接続されており、ハイブリッド車両10の走行速度である車速Svと、図示しないアクセルペダルの踏み込み量に対応するアクセル開度Acとがそれぞれ入力される。
 さらに、ハイブリッドECU66には、エコスイッチ(選択手段)72が電気的に接続されている。エコスイッチ72は、ユーザである運転者が操作しやすい位置に設けられており、押圧操作、回転操作または軽くタッチ操作等することで、エコスイッチ・オン信号EonがハイブリッドECU66へ入力される。エコスイッチ72がオン操作されると、エコスイッチオフ時の通常モード(第1のモード)から通常モードよりも低燃費走行が可能なエコモード(第2のモード)への移行が選択されるようになっている。
 次に、モータMG1,MG2を電動機として機能させる際のモータECU60における電圧制御について図2を参照して説明する。図2はモータECU60の機能ブロック図であるが、モータMG1,MG2をいずれも電動機として用いる場合の電圧制御は同様に行われるため、ここでは主として走行用動力を出力するモータMG2の制御について説明する。
 モータECU60は、モータMG2の制御方式を選択する制御方式選択部106と、制御方式選択部106からのコンバータ出力電圧指令Vc*を受けてコンバータ48内の2つの電力用スイッチング素子(例えばIGBT等)をオン・オフ制御するためのスイッチング信号S1,S2を生成してコンバータ48へ出力するコンバータ制御部104と、制御方式選択部106からトルク指令T*を受けてインバータ46内のU相、V相およびW相の各相アームにそれぞれ2つずつ(計6つ)設けられている電力用スイッチング素子(例えばIGBT等)をオン・オフ制御するためのスイッチング信号S3~S8を生成してインバータ46へ出力するPWM制御ブロック100および矩形波制御ブロック102を含む。
 一般に、交流モータの制御方式として、正弦波PWM制御、過変調PWM制御、矩形波制御の3つの制御方式が知られている。
 正弦波PWM制御方式は、一般的なPWM制御として用いられるものであり、3相交流モータであるモータMG2のU相、V相およびW相の各相コイル用にインバータ46内の各相アームにそれぞれ設けられるスイッチング素子のオン・オフを、正弦波状の電圧指令値と搬送波(一般に三角波)との電圧比較にしたがって制御する。この結果、インバータ46内の各相アームにおいて、上アーム素子のオン期間に対応するハイレベル期間と、下アーム素子のオン期間に対応するローレベル期間との集合について、一定期間内でモータ入力電圧が正弦波となるようにデューティ比が制御される。正弦波PWM制御方式では、比較的低回転域であっても滑らかな回転が得られるものの、コンバータ出力電圧Vcに相当するシステム電圧VHに対するモータ入力電圧の基本波成分の比である変調率(または電圧利用率)を最大で0.61までしか高めることができないことが周知である。
 一方、矩形波制御方式では、インバータ46内の各相アームにおいて、上アーム素子のオン期間に対応するハイレベル期間と下アーム素子のオン期間に対応するローレベル期間との比が、上記一定期間内で1対1の矩形波1パルス分をモータMG2に印加する。これにより、変調率を0.78まで高めることができ、比較的高回転域での出力を向上させることができる。また、弱め界磁電流を減少させることができるため、モータMG2での銅損の発生を抑えてエネルギー効率を向上させることができる。さらに、インバータ46でのスイッチング回数を少なくすることができるため、スイッチング損失も抑えることができるという利点もある。ただし、正弦波PWM制御に比べると、外乱による影響を受け易く、制御応答性があまり良くないという特性がある。
 過変調PWM制御方式は、正弦波PWM制御と矩形波制御との間の中間的なPWM制御方式であって、搬送波の振幅を縮小するように歪ませたうえで上記正弦波PWM制御方式と同様のPWM制御を行うことで、電圧増加方向にシフトさせた略正弦波状に歪んだモータ入力電圧を生成することができ、これにより変調率を0.61~0.78の範囲に高めることができる。
 モータMG2では、回転数や出力トルクが増加すると誘起電圧が高くなり、それに伴って必要電圧も高くなる。コンバータ48による昇圧電圧Vcすなわちシステム電圧VHは、このモータ必要電圧よりも高く設定する必要がある。その一方で、コンバータ48によって昇圧可能な電圧値には上限(すなわちシステム電圧最大値)が存在する。
 したがって、モータ必要電圧がシステム電圧VHの最大値、例えば650Vより低い領域では、正弦波PWM制御方式または過変調PWM制御方式による最大トルク制御が適用されて、ベクトル制御にしたがったモータ電流制御によって出力トルクがトルク指令T*に合致するよう制御される。
 一方、モータ必要電圧がシステム電圧最大値を超えると、システム電圧VHを最大値に維持した上で弱め界磁制御にしたがって矩形波制御方式が適用される。この場合、モータ入力電圧の振幅が固定されるため、トルク推定値とトルク指令値との偏差に基づく矩形波パルスの電圧位相制御によってトルク制御が行われる。
 図3に、正弦波PWM制御および過変調PWM制御の最大トルク制御を実行するためのモータECU60のPWM制御ブロック100の機能ブロック例を示す。PWM制御ブロック100は、電流指令生成部74、電圧指令生成部76、2相3相変換部78、スイッチング信号生成部80、3相2相変換部84、および回転数演算部86を含む。
 電流指令生成部74は、ハイブリッドECU66からモータECU60へ入力されるトルク指令T*およびモータ回転数Nm2を受けて、予め設定されているマップまたはテーブルからトルク指令T*およびモータ回転数Nm2に対応するd軸電流指令Id*およびq軸電流指令Iq*を算出して電圧指令生成部76へ出力する。
 電圧指令生成部76は、d軸実電流idおよびq軸実電流iqをd軸電流指令Id*およびq軸電流指令Iq*にそれぞれ一致させるためのd軸およびq軸電圧指令Vd*,Vq*を、下記数1式のPI演算により算出して2相3相変換部78へ出力する。ここでのd軸実電流idおよびq軸実電流iqは、3相2相変換部84において、モータMG2の各相電流を検出する電流センサ82により検出された3相の各相電流iu,iv,iwをモータ回転角θに基づいて変換したものを用いる。なお、各相電流iu,iv,iwの総和は零になることから、3相電流のうち2つの相の電流を検出して残る1つの相の電流は演算によって算出されてもよい。
(数1)
Vd*=Gpd(Id*-id)+Gid(Id*-id)dt
Vq*=Gpq(Iq*-iq)+Giq(Iq*-iq)dt
ここで、Kpd,Kpqはd軸およびq軸電流制御の比例ゲイン、Kid,Kiqはd軸およびq軸電流制御の積分ゲインである。
 2相3相変換部78は、モータMG2のロータ36の回転角θに基づいてd軸電圧指令Vd*およびq軸電圧指令Vq*を3相の各相電圧Vu,Vv,Vwに変換してスイッチング信号生成部80へ出力する。なお、d軸電圧指令Vd*およびq軸電圧指令Vq*から3相の各相電圧Vu,Vv,Vwへの変換には、システム電圧VHも反映される。
 スイッチング信号生成部80は、3相の各相電圧Vu,Vv,Vwと所定の搬送波との比較に基づいて、スイッチング信号S3~S8を生成してインバータ46へ出力する。これにより、インバータ46の各スイッチング素子がスイッチング制御されることで、モータMG2に対してトルク指令T*に応じたトルクを出力するための交流電圧が印加される。なお、上述したように、過変調PWM制御時には、スイッチング信号生成部80において用いられる搬送波が、正弦波PWM制御時の一般的なものから振幅を縮小するよう歪ませたものに切り替えられる。
 続いて、図4を参照して矩形波制御ブロック102について説明する。矩形波制御ブロック102は、3相2相変換部94、トルク推定部96、電圧位相演算部88、矩形波発生部90、およびスイッチング信号生成部92を含む。
 3相2相変換部94は、電流センサ82により検出される3相の各相電流iu,iv,iwをモータ回転角θに基づいてd軸実電流idおよびq軸実電流iqに変換してトルク推定部96へ出力する。トルク推定部96は、予め設定されているマップまたはテーブルからd軸実電流idおよびq軸実電流iqに基づいてトルク推定値Tを表引き演算して電圧位相演算部88へ出力する。
 電圧位相演算部88は、トルク指令T*からトルク推定値Tを減算することによって求められるトルク偏差ΔTに、所定ゲインによるPI演算を行って制御偏差を求め、この制御偏差に応じて矩形波電圧の位相γを設定し、矩形波発生部78へ出力する。具体的には、トルク指令T*が正(T*>0)の場合、トルク不足時には電圧位相を進める一方で、トルク過剰時には電圧位相を遅らせるとともに、トルク指令T*が負(T*<0)の場合、トルク不足時には電圧位相を遅らせる一方で、トルク過剰時には電圧位相を進める。
 矩形波発生部90は、入力された電圧位相γにしたがって、各相電圧指令Vu,Vv,Vw(矩形波パルス)を生成し、スイッチング信号生成部92へ出力する。スイッチング信号生成部92は、各相電圧指令Vu,Vv,Vwにしたがってスイッチング信号S3~S8を生成し、インバータ46へ出力する。これにより、インバータ46がスイッチング信号S3~S8にしたがったスイッチング動作を行うことで、電圧位相γにしたがった矩形波パルスがモータMG2の各相電圧として印加される。このように、矩形波制御方式時には、トルクのフィードバック制御によりモータトルク制御を行うことができる。
 なお、矩形波制御ブロック102におけるスイッチング信号生成部92は、PWM制御ブロック100のスイッチング信号生成部80によって兼用されることができる。
 図5は、モータECU60の制御方式選択部106において予め記憶されているマップを示す。このマップは、モータMG2に関してトルクと回転数に基づいて規定されるものであり、制御方式選択部106はこのマップを適用してモータ制御方式を選択する。
 図5に示すマップにおいて、実線は正弦波PWM制御におけるモータMG2の回転数と最大出力トルクとの関係を示し、この実線で囲まれるハッチング領域A1内の運転ポイントではモータMG2に関して正弦波PWM制御が実行される。この場合の正弦波PWM制御における変調率Kは最大値0.61で一定になるようシステム電圧VH(すなわちコンバータ48による昇圧比)が制御される。ただし、コンバータ48による昇圧には上限があるため、システム電圧VHが最大値で変調率Kが0.61<K<0.78となる実線および点線間の高回転領域が過変調PWM制御領域A2となり、システム電圧VHが最大値で変調率K=0.78となる点線および一点鎖線間の更なる高回転領域が矩形波制御領域A3になる。
 次に、図6および図7を参照して、上記ハイブリッド車両10におけるエコモード制御について説明する。図6は、エコスイッチ72(図1参照)がオンされていない状態のときの通常モードと、エコスイッチ72がオン操作されることで選択されるエコモードとについて、車速Svと車両パワーとの関係をそれぞれ示すマップである。図6に示される実線は、通常モードおよびエコモードで出力可能な最大車両パワーをそれぞれ表している。また、図7は、エコスイッチ72がオン操作されたときにハイブリッドECU66において実行される処理ルーチンを示すフローチャートである。
 運転者が車両の動力性能よりも燃費を優先させた走行を希望するとき、運転者はエコスイッチ72をオン操作することでエコモードが選択される。これにより、図6に示すように、車両が出力可能な最大パワーは、通常モードに比較して低減される。
 より詳細には、エコスイッチ72がオン操作されると、ハイブリッドECU66にエコスイッチオン信号Eonが入力される。これを受けてハイブリッドECU66は、図7のステップS10のエコモード制御を実行する。このエコモード制御には、エンジン12の上限回転数の低減によるエンジン動作点の変更、コンバータ48の昇圧上限値を第1の上限値である例えば650ボルトから第2の上限値である例えば500ボルトに低減して昇圧制限をかける、インバータ46においてモータ入力電圧生成のために電圧指令との対比に用いる搬送波の周波数を低減させる、エアコン等の補機類をエコモード作動(例えばエアコン用コンプレッサの間欠運転)させる等の制御を実行する。
 このようなエコモード制御では、エンジン上限回転数の低減により燃料消費が抑えられ、コンバータ48の昇圧上限値を低く抑えることでコンバータ48におけるスイッチング損失が低下し、上記搬送波の周波数低減によってインバータ46におけるスイッチング損失が低下し、補機類のエコモード作動によって消費電力が抑えられる。その結果、通常モードに比べて低燃費走行が可能になり、エネルギー効率が向上する。
 しかし、上記エコモードでは走行用モータMG2および発電用モータMG1の回転数が制限され、特に発電用モータMG1の回転数制限は発電量の低下を招き、バッテリ50の残容量やユーザ操作による車両の運転状態によっては、バッテリ充電のためのエンジン間欠運転の頻度が高くなることで却って燃費が悪化したりバッテリ50の残容量が適正範囲の下限である40%を大きく割り込んでしまうことが考えられる。
 具体的には、ユーザである運転者がアクセルペダルを大きく踏み込むことによって、図6においてエコモードで出力可能な最大車両パワーを上回る車両パワーが継続的に要求されると、発電用モータMG1による発電量以上の電力がモータMG2駆動のためにバッテリ50から引き出されてバッテリ残容量が大きく低下し、バッテリ容量の適正範囲下限を大きく割れてしまう場合がある。バッテリ50の残容量が適正範囲下限よりも大きく低下すると、バッテリ50がダメージを受けて短寿命化することになる。
 そこで、このような事態を防止すべく、図7に示すエコモード処理ルーチンにおいて次のような処理を実行する。ステップS12において、残容量SOCが閾値である例えば40%を上回っているか否かを判定する。そして、残容量SOCが40%以下であると判定されると(ステップS12でNO)、コンバータ48における昇圧上限値500ボルトを通常モード時と同様の650ボルトに切り換えて昇圧制限を解除する(ステップS18)。これにより、発電機であるモータMG1の回転数制限も解除されるので十分な発電量を確保でき、その結果、バッテリ50への充電が可能になってバッテリ残容量を適正範囲に復帰させることができる。
 一方、バッテリ残容量SOCが40%を上回っていると判定されると(ステップS12でYES)、続いて、車両要求パワーPv*が車両出力可能パワーPvよりも大きい状態が所定時間継続しているか否かを判定する(ステップS14)。ここでの「所定時間」は例えば数秒間程度であることが好ましく、運転者によるアクセルペダルの瞬間的な踏み込みを排除することを意図したものである。
 上記車両要求パワーPv*は、予めROMに記憶されているマップを参照してアクセル開度Acおよび車速Svに基づいて設定される。この車両要求パワーPv*が図6に示すエコモードで出力可能な最大車両パワーを超える状態が所定時間継続していると判定されると(ステップS14でYES)、上記と同様にコンバータ48の昇圧制限を解除する(ステップS18)。一方、車両要求パワーPv*がエコモードで出力可能な最大車両パワーを超える状態が所定時間継続していると判定されない場合(ステップS14でNO)、コンバータ48の昇圧制限が維持される(ステップS16)。
 そして、エコスイッチ72がオフ操作されたか否かを判定し(ステップS20)、オフされていなければ上記ステップS12へ戻り(ステップS20でNO)、一方、オフされていれば(ステップS20でYES)エコモード制御終了、すなわち通常モードに復帰させて(ステップS22)、処理を終了する。
 このように本実施形態のハイブリッド車両10では、エコモードの選択により燃費向上を図ると共に、バッテリ残量が適正範囲の下限40%以下になると直ちにコンバータ48の昇圧制限を解除することで、バッテリ残容量が適正範囲の下限を大きく割れしてしまう事態を回避できる。
 なお、上記ハイブリッド車両10では、バッテリ残容量が40%以下になったときにエコモード制御のうちコンバータ48の昇圧制限だけを解除するようにしたが、コンバータ48の昇圧制限解除に加えて、他のエコモード制御事項のうちバッテリ充電への関わりが大きい制御事項、例えばエンジン12の回転数制限の解除を併せて行ってもよい。
 また、上記ハイブリッド車両10では、ユーザによるエコスイッチ72のオン操作によってエコモードが選択されるようにしているが、ハイブリッド車両10を統括制御するハイブリッドECU66が運転状態に応じて、例えばほぼ一定速度での安定走行状態が所定時間以上継続しているとき、通常モードからエコモードに自動的に切り換える制御を実行してもよい。この場合は、ハイブリッドECU66が選択手段としても機能する。
 さらに、上記ハイブリッド車両10では、エコスイッチ72が選択手段であって通常モードが第1のモード、エコモードが第2のモードであるとして説明したが、これに限定されるものではない。例えば、燃費よりも車両駆動性能を優先させたいときにオン操作するパワースイッチを選択手段とし、パワースイッチがオフ状態のとき第2のモードとしての通常モードが選択され、パワースイッチがオンされると第1のモードとしてのパワーモードが選択されるようにして、本発明を適用することも可能である。
 さらにまた、上記ハイブリッド車両10は、エンジン12の動力で車輪および発電機の両方を駆動可能な所謂シリーズ/パラレルハイブリッド方式を例に説明したが、本発明は、エンジンの動力を発電機の駆動のみに用いる所謂シリーズハイブリッド方式の車両にも適用可能である。
 10 ハイブリッド車両、11 回転位置センサ、12 エンジン、13 出力軸、14 動力分配統合機構、16 エンジン制御用ECU、18 サンギヤ、20 リングギヤ、22 キャリア、24 ダンパ、26 キャリア支持部材、28 キャリア軸、29,36 ロータ、30 回転軸、31,37 回転角センサ、32 リングギヤ軸、34 減速機、38 回転軸、40 車軸、42 車輪、44,46 インバータ、48 コンバータ、50 バッテリ、52 平滑コンデンサ、54 平滑コンデンサ、56 電力ライン、58 接地ライン、60 モータ用ECU、62 バッテリ状態検出センサ、64 バッテリECU、66 ハイブリッド用ECU、68 車速センサ、70 アクセル開度センサ、72 エコスイッチ、74 電流指令生成部、76 電圧指令生成部、78 矩形波発生部、80,92 スイッチング信号生成部、82 電流センサ、84 3相2相変換部、86 回転数演算部、88 電圧位相演算部、90 矩形波発生部、94 3相2相変換部、96 トルク推定部、100 PWM制御ブロック、102 矩形波制御ブロック、104 コンバータ制御部、106 制御方式選択部、MG1 発電用モータ、MG2 走行用モータ。

Claims (4)

  1.  エンジンと、エンジンからの動力を受けて発電可能な発電機と、発電機により発電された電力を蓄えるバッテリと、バッテリ及び発電機から供給される電力を受けて走行用の動力を出力可能な電動機と、を備えるハイブリッド車両であって、
     バッテリの電圧を昇圧して電動機へ供給する電圧変換器と、
     電圧変換器の昇圧動作に関して第1のモードと第2のモードとを選択するための選択手段と、
     選択手段によって第2のモードが選択されたときに電圧変換器による昇圧後の電圧上限値を第1のモードにおける第1の上限値から該第1の上限値よりも低い第2の上限値に変更すると共に、バッテリの残容量が閾値以下になったときに電圧変換器による昇圧後の電圧上限値を第2の上限値から第1の上限値へ切り換える制御手段と、
     を更に備えることを特徴とするハイブリッド車両。
  2.  請求項1に記載のハイブリッド車両において、
     制御手段は、ユーザによる車両に対する要求パワーが第2のモードで出力可能な最大車両パワーを上回る状態が所定時間継続したとき、電圧変換器による昇圧後の電圧上限値を第2の上限値から第1の上限値へ切り換えることを特徴とするハイブリッド車両。
  3.  請求項1に記載のハイブリッド車両において、
     制御手段は、選択手段によって第2のモードが選択されたとき、電圧変換器による昇圧後の電圧上限値の切り換えを実行すると共に、エンジン動作点の変更、電動機への入力電圧を生成するために用いる搬送波の周波数低減、および、エアコンを含む補機類の省エネ作動の少なくとも1つの制御を実行し、バッテリの残容量が閾値以下になったときには第2のモードで実行中の制御のうち電圧変換器による昇圧後の電圧上限値を第2の上限値から第1の上限値へ復帰させる制御のみを実行することを特徴とするハイブリッド車両。
  4.  請求項1に記載のハイブリッド車両において、
     直流・交流変換機能を有する発電機用インバータおよび電動機用インバータを更に含み、各インバータは共通の電圧変換器に接続されていることを特徴とするハイブリッド車両。
PCT/JP2009/060464 2008-06-30 2009-06-08 ハイブリッド車両 WO2010001692A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801252897A CN102076539B (zh) 2008-06-30 2009-06-08 混合动力车辆
EP09773270.5A EP2308732B1 (en) 2008-06-30 2009-06-08 Hybrid vehicle
US12/937,151 US8423217B2 (en) 2008-06-30 2009-06-08 Hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-170038 2008-06-30
JP2008170038A JP4513907B2 (ja) 2008-06-30 2008-06-30 ハイブリッド車両

Publications (1)

Publication Number Publication Date
WO2010001692A1 true WO2010001692A1 (ja) 2010-01-07

Family

ID=41465795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060464 WO2010001692A1 (ja) 2008-06-30 2009-06-08 ハイブリッド車両

Country Status (5)

Country Link
US (1) US8423217B2 (ja)
EP (1) EP2308732B1 (ja)
JP (1) JP4513907B2 (ja)
CN (1) CN102076539B (ja)
WO (1) WO2010001692A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830222A (zh) * 2010-03-01 2010-09-15 盛能动力科技(深圳)有限公司 混合动力车辆及其控制方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245069B2 (ja) * 2007-06-27 2009-03-25 トヨタ自動車株式会社 車両用制御装置及び車両駆動制御方法
CN102458900A (zh) * 2009-06-25 2012-05-16 菲斯科汽车公司 用于多发动机混合动力驱动系统的直接电连接
EP2502774B1 (en) * 2009-11-17 2015-02-25 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling vehicle
JP5316703B2 (ja) * 2010-04-07 2013-10-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
DE102010029115A1 (de) * 2010-05-19 2011-11-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs
JP5607434B2 (ja) * 2010-06-18 2014-10-15 トヨタ自動車株式会社 車両の制御装置
JP5598556B2 (ja) * 2011-02-03 2014-10-01 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US9086333B2 (en) * 2011-06-16 2015-07-21 Horiba Instruments Incorporated Examination system for electric vehicle or hybrid electric vehicle
JP5739776B2 (ja) 2011-09-15 2015-06-24 アスモ株式会社 ワイパ制御装置
JP5683427B2 (ja) * 2011-10-06 2015-03-11 三菱重工業株式会社 モータ制御装置およびトルク値取得方法
US9522601B2 (en) * 2012-01-23 2016-12-20 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling vehicle
GB201201221D0 (en) * 2012-01-25 2012-03-07 Jaguar Cars Hybrid electric vehicle and method of control thereof
JP2013203287A (ja) * 2012-03-29 2013-10-07 Denso Corp ハイブリッド車の制御装置
JP6014463B2 (ja) * 2012-11-07 2016-10-25 日立建機株式会社 作業車両
CN103144667B (zh) * 2013-02-19 2015-04-29 福建省福工动力技术有限公司 一种车载电动液压助力转向控制系统及其控制方法
KR101461895B1 (ko) * 2013-05-03 2014-11-13 현대자동차 주식회사 배터리 팩의 셀 밸런싱 시스템 및 셀 밸런싱 방법
KR101481282B1 (ko) * 2013-06-28 2015-01-09 현대자동차주식회사 하이브리드차량의 주행모드 제어방법
US9242641B2 (en) 2013-09-04 2016-01-26 Ford Global Technologies, Llc Dynamic allocation of drive torque
CN104417344B (zh) * 2013-09-09 2017-03-15 比亚迪股份有限公司 混合动力汽车及其的驱动控制方法
CN104417346B (zh) 2013-09-09 2017-04-12 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417557B (zh) 2013-09-09 2017-07-04 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
CN104417544B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417347B (zh) 2013-09-09 2017-08-04 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417554B (zh) 2013-09-09 2018-03-13 比亚迪股份有限公司 混合动力汽车及其的巡航控制方法
CN104417543B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
KR102153599B1 (ko) * 2013-11-18 2020-09-08 삼성전자주식회사 머리 착용형 디스플레이 장치 및 머리 착용형 디스플레이 장치의 광 투과율 변경 방법
RU2555746C1 (ru) * 2014-02-06 2015-07-10 Общество с ограниченной ответственностью "Супервариатор" Блок преобразователей для силовой установки с двигателем внутреннего сгорания и электромеханической трансмиссией
JP5873517B2 (ja) * 2014-03-19 2016-03-01 富士重工業株式会社 バッテリ電圧の制御装置及びバッテリ電圧の制御方法
CN104842993B (zh) * 2014-02-18 2019-04-12 株式会社斯巴鲁 电池电压的控制装置及电池电压的控制方法
US20170092985A1 (en) * 2014-06-05 2017-03-30 Sony Corporation Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US9637006B2 (en) 2014-07-31 2017-05-02 Caterpillar Inc. Power converter for electric hybrid earthmoving machine
US20160079850A1 (en) * 2014-09-15 2016-03-17 Continental Automotive Systems, Inc. Boost Converter Apparatus And Method
JP6172114B2 (ja) * 2014-10-28 2017-08-02 トヨタ自動車株式会社 ハイブリッド自動車
KR101704185B1 (ko) * 2015-04-14 2017-02-07 현대자동차주식회사 하이브리드 차량의 직류변환장치 제어 시스템 및 방법
JP7121248B2 (ja) * 2017-09-14 2022-08-18 シンフォニアテクノロジー株式会社 同期電動機の制御装置及び制御方法
JP7452010B2 (ja) 2019-12-27 2024-03-19 セイコーエプソン株式会社 ロボット、ロボットシステムおよびロボットの制御方法
CN114228471A (zh) * 2022-01-10 2022-03-25 无锡明恒混合动力技术有限公司 一种采用机械空调的混合动力系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055436A (ja) * 2005-08-24 2007-03-08 Toyota Motor Corp 走行モード設定装置
JP2007151247A (ja) * 2005-11-25 2007-06-14 Toyota Motor Corp 電力供給装置
JP2007159214A (ja) 2005-12-02 2007-06-21 Toyota Motor Corp 電気自動車
JP2007306658A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp モータ駆動装置
JP2008136308A (ja) * 2006-11-28 2008-06-12 Toyota Motor Corp 電源装置およびこれを搭載する車両並びに電源装置の制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952361B2 (ja) 2001-11-05 2007-08-01 東芝テック株式会社 電気掃除機
US7258183B2 (en) * 2003-09-24 2007-08-21 Ford Global Technologies, Llc Stabilized electric distribution system for use with a vehicle having electric assist
JP4277849B2 (ja) 2005-04-22 2009-06-10 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
JP4281725B2 (ja) * 2005-09-01 2009-06-17 トヨタ自動車株式会社 ハイブリッド自動車
JP4682766B2 (ja) * 2005-09-20 2011-05-11 トヨタ自動車株式会社 車両用電源装置
AU2006295147B2 (en) * 2005-09-23 2011-04-28 Afs Trinity Power Corporation Method and apparatus for power electronics and control of plug-in hybrid propulsion with fast energy storage
US7595597B2 (en) * 2006-01-18 2009-09-29 General Electric Comapany Vehicle propulsion system
JP4640200B2 (ja) * 2006-02-10 2011-03-02 トヨタ自動車株式会社 電圧変換装置および電圧変換器の制御方法
JP4479782B2 (ja) 2007-11-26 2010-06-09 トヨタ自動車株式会社 車両用制御装置
US7960857B2 (en) * 2008-12-02 2011-06-14 General Electric Company System and method for vehicle based uninterruptable power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055436A (ja) * 2005-08-24 2007-03-08 Toyota Motor Corp 走行モード設定装置
JP2007151247A (ja) * 2005-11-25 2007-06-14 Toyota Motor Corp 電力供給装置
JP2007159214A (ja) 2005-12-02 2007-06-21 Toyota Motor Corp 電気自動車
JP2007306658A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp モータ駆動装置
JP2008136308A (ja) * 2006-11-28 2008-06-12 Toyota Motor Corp 電源装置およびこれを搭載する車両並びに電源装置の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830222A (zh) * 2010-03-01 2010-09-15 盛能动力科技(深圳)有限公司 混合动力车辆及其控制方法

Also Published As

Publication number Publication date
US20110093151A1 (en) 2011-04-21
EP2308732B1 (en) 2018-11-28
US8423217B2 (en) 2013-04-16
JP4513907B2 (ja) 2010-07-28
EP2308732A4 (en) 2016-08-10
CN102076539A (zh) 2011-05-25
JP2010006296A (ja) 2010-01-14
CN102076539B (zh) 2013-10-09
EP2308732A1 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4513907B2 (ja) ハイブリッド車両
JP4830462B2 (ja) 電動車両の制御装置
EP2612787B1 (en) Electric-powered vehicle and control method therefor
JP5332740B2 (ja) モータ駆動制御装置
JP4992728B2 (ja) 電源装置およびその放電制御方法
JP4835383B2 (ja) 電力供給ユニットの制御装置および制御方法、その方法をコンピュータに実現させるためのプログラム、そのプログラムを記録した記録媒体
WO2008038494A1 (fr) Dispositif d'affichage pour véhicule hybride, véhicule hybride, et procédé d'affichage pour véhicule hybride
WO2012090263A1 (ja) ハイブリッド車両およびその制御方法
JP2006288006A (ja) モータ駆動装置,電動4輪駆動車およびハイブリッド車両
JP2009220765A (ja) ハイブリッド車両の制御装置
JP5729475B2 (ja) 車両および車両の制御方法
JP2006312352A (ja) 駆動システムの制御装置
JP5320988B2 (ja) 電源システムおよびその電力収支制御方法
WO2013051152A1 (ja) 電圧変換装置の制御装置及び制御方法
WO2008146941A1 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
WO2010140212A1 (ja) 電圧変換装置の制御装置、それを搭載した車両および電圧変換装置の制御方法
WO2013027290A1 (ja) 車両、および、車両の制御方法ならびに制御装置
JP5598556B2 (ja) ハイブリッド車両およびその制御方法
JP2009196415A (ja) ハイブリッド車両の制御装置および制御方法
JP5614189B2 (ja) 車両用回転電機の駆動制御装置
JP2010115075A (ja) 車両用発電機制御装置
JP2016100965A (ja) 電動車両
JP2016208645A (ja) 自動車
JP5907115B2 (ja) ハイブリッド車両の走行制御装置
JP2012065479A (ja) モータ駆動装置およびそれを搭載する車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125289.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773270

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12937151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009773270

Country of ref document: EP