WO2010001558A1 - 低フィッシュアイ・ポリアセタール樹脂 - Google Patents

低フィッシュアイ・ポリアセタール樹脂 Download PDF

Info

Publication number
WO2010001558A1
WO2010001558A1 PCT/JP2009/002929 JP2009002929W WO2010001558A1 WO 2010001558 A1 WO2010001558 A1 WO 2010001558A1 JP 2009002929 W JP2009002929 W JP 2009002929W WO 2010001558 A1 WO2010001558 A1 WO 2010001558A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal resin
filter
resin according
film
less
Prior art date
Application number
PCT/JP2009/002929
Other languages
English (en)
French (fr)
Inventor
小林大介
岡村顕
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2010518899A priority Critical patent/JP5648477B2/ja
Priority to EP09773136.8A priority patent/EP2305725B1/en
Priority to CN200980124924.XA priority patent/CN102076728B/zh
Priority to US13/001,566 priority patent/US20110111228A1/en
Publication of WO2010001558A1 publication Critical patent/WO2010001558A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/66Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/106Filtering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2359/00Characterised by the use of polyacetals containing polyoxymethylene sequences only
    • C08J2359/02Copolyoxymethylenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Definitions

  • the present invention relates to an excellent quality polyacetal resin (low fisheye polyacetal resin) with little fisheye. More specifically, the present invention relates to a low fish eye polyacetal resin having excellent spinnability and less optical unevenness when formed into a film or sheet.
  • Polyacetal resin has excellent mechanical properties, sliding properties, friction and wear properties, chemical resistance, etc., and is often used as a key component for automobiles and OA equipment.
  • the polyacetal resin exhibits high crystallinity due to its regular primary structure, and its application has been expanded mainly in the field of injection molding.
  • studies have been conducted to make use of the superior features of polyacetal in extrusion applications, particularly in applications such as fibers and films. For example, in patent document 1, examination which manufactures a fiber using a polyacetal resin is performed.
  • the present inventors have found that, when spinning using a polyacetal resin, yarn breakage or the like is caused by a minute foreign substance generally called fish eye.
  • the present inventors have also found that when a polyacetal resin is formed into a film, there is a problem that appearance defects such as optical unevenness are caused. Furthermore, the present inventors have found that a fiber using the polyacetal resin is not satisfactory as a product.
  • an object of the present invention is to provide a polyacetal resin that is excellent in spinnability and excellent in moldability with little optical unevenness when formed into a film or sheet.
  • this invention relates to the polyacetal resin shown below, the fiber, film, or sheet
  • the polyacetal resin according to (5), wherein the filter is a sintered filter having an absolute filtration accuracy of 50 microns or less.
  • the polyacetal resin according to (7), wherein the sintered filter is made of metal fibers.
  • the polyacetal resin according to (1), wherein the number of fish eyes is 1/25 cm 2 or more.
  • the polyacetal resin of the present invention since the number of fish eyes is small, good spinnability in which yarn breakage hardly occurs and good moldability with little optical unevenness when formed into a film or sheet are achieved. I can do it.
  • the polyacetal resin with less fish eye in the present invention is produced by filtering the crude polyacetal resin and granulating it.
  • Polyacetal resin is the acetal structure shown below (However, R represents a hydrogen atom or an organic group.) Is a polymer having a repeating structure, and usually an oxymethylene group shown below in which R is a hydrogen atom Is the main structural unit.
  • the polyacetal resin used in the present invention includes a copolymer (block copolymer) or a terpolymer containing one or more repeating structural units other than the oxymethylene group, in addition to the acetal homopolymer consisting only of this repeating structure, and further linear. It may have not only a structure but also a branched or crosslinked structure.
  • a main raw material containing trioxane is usually used.
  • the main raw material is composed only of trioxane when producing the acetal homopolymer.
  • the main raw material includes a comonomer in addition to trioxane.
  • Examples of comonomers used for the production of copolymers and terpolymers include cyclic formal and ether. Specific examples include 1,3-dioxolane, 2-ethyl-1,3-dioxolane, 2-propyl-1,3-dioxolane, 2-butyl-1,3-dioxolane, 2,2-dimethyl-1,3.
  • the addition amount of the comonomer is preferably 0.2 to 30 parts by weight, more preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of trioxane.
  • the addition amount of the comonomer is more than 30 parts by weight, the polymerization yield is lowered, and when it is less than 0.2 part by weight, the thermal stability is lowered.
  • a general cation active catalyst is used as the polymerization catalyst used for producing the polyacetal resin.
  • Specific examples include (1) Lewis acids, particularly halides such as boron, tin, titanium, phosphorus, arsenic and antimony, such as boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, phosphorus pentafluoride.
  • Arsenic pentafluoride and antimony pentafluoride and compounds such as complexes or salts thereof, (2) protic acids such as trifluoromethanesulfonic acid, perchloric acid, esters of protic acids, especially perchloric acid and lower aliphatic alcohols Esters with, anhydrides of protonic acids, especially mixed anhydrides of perchloric acid and lower aliphatic carboxylic acids, or triethyloxonium hexafluorophosphate, triphenylmethylhexafluoroarsenate, acetylhexafluoroborate, Heteropoly acid or its acid salt, isopoly acid or its acid salt, etc. And the like.
  • protic acids such as trifluoromethanesulfonic acid, perchloric acid, esters of protic acids, especially perchloric acid and lower aliphatic alcohols Esters with, anhydrides of protonic acids, especially mixed anhydrides of perchloric acid and lower
  • the amount of the catalyst used is usually 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 3 mol, preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol, relative to 1 mol of trioxane. When the amount of the catalyst used is more than 1 ⁇ 10 ⁇ 3 mol, the thermal stability is lowered, and when it is less than 1 ⁇ 10 ⁇ 7 mol, the polymerization yield is lowered.
  • an appropriate molecular weight regulator may be used as necessary for molecular weight adjustment.
  • molecular weight regulators include carboxylic acids, carboxylic anhydrides, esters, amides, imides, phenols, and acetal compounds.
  • phenol, 2,6-dimethylphenol, methylal, and polyacetal dimethoxide are preferably used, and most preferred is methylal.
  • the molecular weight regulator is used alone or in the form of a solution.
  • the solvent may be an aliphatic hydrocarbon such as hexane, heptane or cyclohexane, an aromatic hydrocarbon such as benzene, toluene or xylene, or a halogenated carbon such as methylene dichloride or ethylene dichloride. Hydrogen is mentioned.
  • the amount of these molecular weight regulators is adjusted in the range of 0 to 1.0 part by weight with respect to 100 parts by weight of the mixed monomer of trioxane and comonomer according to the target molecular weight.
  • These molecular weight regulators are usually supplied to a mixed raw material liquid of trioxane and a comonomer. Although there is no restriction
  • the continuous polymerization equipment used for the production of polyacetal resin has a rapid solidification during polymerization, a powerful stirring ability that can cope with heat generation, precise temperature control, and a self-cleaning function that prevents scale adhesion.
  • a kneader, a twin screw continuous extrusion kneader, a twin screw paddle type continuous mixer, and other trioxane continuous polymerization devices proposed so far can be used. It can also be used in combination.
  • a continuous horizontal reactor provided with a pair of shafts rotating in the same direction and having many shafts engaged with each other, or a plurality of pseudo-triangle paddles is preferable.
  • the polymerization time is selected from 3 to 120 minutes, particularly preferably 5 to 60 minutes. When the polymerization time is shorter than 3 minutes, the polymerization yield or thermal stability is lowered, and when it is longer than 120 minutes, the productivity is deteriorated.
  • the polymerization time has a preferred lower limit depending on the comonomer ratio in terms of polymerization yield or thermal stability, and it is necessary to increase the polymerization time as the comonomer ratio increases.
  • a catalyst deactivator is added to the bulk polymer.
  • trivalent organic phosphorus compounds examples include primary, secondary, and tertiary aliphatic amines, aromatic amines, heterocyclic amines, and the like. Specific examples include ethylamine, diethylamine, triethylamine, mono-n-butylamine, Examples thereof include di-n-butylamine, tripropylamine, tri-n-butylamine, N, N-dimethylbutylamine, aniline, diphenylamine, pyridine, piperidine, morpholine, melamine, and methylolmelamine.
  • trivalent organophosphorus compounds and tertiary amines are preferred.
  • a particularly preferred compound is triphenylphosphine, which is thermally stable and does not cause adverse effects on the color of molded articles by heat.
  • tertiary amines particularly preferred compounds are triethylamine and N, N-dimethylbutylamine.
  • the deactivator does not need to contain an amount for completely deactivating the catalyst, and it is sufficient that the decrease in the molecular weight of the bulk polymer is suppressed within the allowable range of the product during the deactivation treatment described later.
  • the amount of the deactivator used is usually 0.01 to 500 times, preferably 0.05 to 100 times the number of moles of the catalyst used.
  • the solvent used is not particularly limited. Examples thereof include various aliphatic or aromatic organic solvents such as water, alcohols, acetone, methyl ethyl ketone, hexane, cyclohexane, heptane, benzene, toluene, xylene, methylene, dichloride and ethylene dichloride. These can also be used as a mixture.
  • the bulk polymer is preferably a fine powder, and the polymerization reactor used for the deactivation treatment preferably has a function of sufficiently pulverizing the bulk polymer.
  • a deactivator may be added after the above bulk polymer is pulverized separately using a pulverizer, or pulverization and stirring may be simultaneously performed in the presence of the deactivator.
  • the catalyst contained in the bulk polymer is not sufficiently deactivated, and therefore depolymerization proceeds gradually with the catalyst having the remaining activity, resulting in a decrease in molecular weight.
  • the molecular weight of the bulk polymer is increased by adjusting the addition amount of the molecular weight regulator in advance, considering the molecular weight reduction. A method is used to adjust the molecular weight.
  • the crude polyacetal resin obtained by the deactivation treatment of the polymerization catalyst is heated and melted, the unstable structure is thermally decomposed and removed, filtered through a filter, and granulated to obtain a low fisheye polyacetal resin. To manufacture.
  • the number of fish eyes required for such a low fish eye / polyacetal resin means that, as shown in FIGS. 1 and 2, the maximum length Lmax is 30 ⁇ m or more when measured with a film 2 having a thickness t of 30 ⁇ m.
  • the number of fish eyes 1 is 100/25 cm 2 or less, preferably 10/25 cm 2 or less.
  • the lower limit of the number of fish eyes 1 is not particularly limited, and the smaller the number, the better from the viewpoint of spinnability and moldability. However, in consideration of production efficiency, the number of fish eyes 1 is, for example, 1 / cm 2 or more.
  • the fish eye 1 is defined as foreign substances formed by forming a polyacetal resin into a film 2 and visually observing the film 2.
  • the maximum length Lmax of the fish eye 1 is the length of the major axis when the shape of the fish eye 1 is a shape other than a round shape, for example, an ellipse. This is because the major axis has the maximum length in an ellipse.
  • the diameter is the maximum length.
  • the maximum length Lmax of the fish eye 1 is the size of the diameter.
  • the maximum length of the fish eye 1 is the maximum length in a two-dimensional projection image when the fish eye 1 is projected onto the surface of the film 2.
  • the method for heat-melting the crude polyacetal resin is not particularly limited, but the details of a suitable method are shown below as an example.
  • the crude polyacetal resin obtained by subjecting the catalyst to deactivation treatment with a single-screw or twin-screw extruder is melted, introduced into a vacuum devolatilizer, and vacuum devolatilized for a predetermined time. Thereafter, the molten resin is extracted with a gear pump, filtered with a filter, and granulated.
  • the devolatilization under reduced pressure is performed while melt-kneading under a pressure of 9.33 ⁇ 10 to 1.33 ⁇ 10 ⁇ 3 kPa (the reduced pressure indicates an absolute pressure; the same applies hereinafter).
  • the degree of vacuum is preferably in the range of 6.67 ⁇ 10 to 1.33 ⁇ 10 ⁇ 3 kPa, more preferably in the range of 2.67 ⁇ 10 to 1.33 ⁇ 10 ⁇ 3 kPa, and 1.33 ⁇ 10 to 1.
  • a range of 33 ⁇ 10 ⁇ 3 kPa is most preferred.
  • a vertical or horizontal high viscosity type polymerization machine can be used.
  • a high-viscosity stirring blade capable of uniformly mixing the molten polyacetal resin is preferable, such as a ribbon blade, a lattice blade, a Max blend blade, a full zone blade, and improved blades thereof.
  • a self-cleaning horizontal polymerization machine with excellent surface renewability preferably provided with a single-shaft or two or more stirring blades, is used.
  • Such horizontal polymerization machines include spectacle blades manufactured by Hitachi, Ltd., lattice wing reactors, SCR and NSCR reactors manufactured by Mitsubishi Heavy Industries, Ltd., and KRC knee manufactured by Kurimoto Steel Works And BIVOLAK manufactured by Sumitomo Heavy Industries, Ltd.
  • Examples of the filter used for filtering the molten resin include a wire mesh and a sintered filter.
  • the wire mesh any of plain weave, twill weave, plain tatami weave, crimp mesh, welded wire mesh, turtle shell wire mesh, etc. may be used.
  • the sintered filter may be any one obtained by integrating a plurality of metal wire meshes typified by stainless steel by sintering, or a non-woven filter obtained by sintering a felt from metal fibers. .
  • This sintered filter does not have a single type of hole in a plane like a wire mesh or the like, but is a three-dimensional filter having various hole diameters in which pressed metal fibers are intertwined.
  • a disk type filter, a tube type filter, a flat type cylindrical filter, or a pleated type cylindrical filter obtained by processing these filter media may be used.
  • a sintered filter having an absolute filtration accuracy of 50 ⁇ m or less, preferably 10 ⁇ m or less is more advantageous.
  • the number of meshes of the filter is 500 mesh or more, preferably 700 mesh or more, a screen pack composed of a flat wire mesh filter can be used as well.
  • the screen pack is used as a name of a configuration filter in which a plurality of filters are overlapped.
  • the absolute filtration accuracy is defined as “the maximum glass bead diameter that has passed through the filter medium by the method of JIS-B8356”, the smaller the numerical value, the higher the accuracy.
  • a known antioxidant for example, triethylene glycol-bis [3 (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate]
  • a heat stabilizer for example, melamine
  • coloring agents nucleating agents, plasticizers, optical brighteners, release agents such as fatty acid esters or silicon compounds such as pentaerythritol tetrastearate, sliding agents, antistatic agents such as polyethylene glycol and glycerin Additives such as an agent, a higher fatty acid salt, a UV absorber such as a benzotriazole or benzophenone compound, or a light stabilizer such as a hindered amine can be added as desired.
  • the fiber of the present invention is a fiber obtained by melt spinning the polyacetal resin described above, and the maximum diameter of the fiber is 50 ⁇ m or less. In this case, yarn breakage does not occur when processed into fibers.
  • the cross-sectional shape of the fiber may be circular or elliptical.
  • FIG. 3 is a cross-sectional view showing an example of the fiber according to the present invention. As shown in FIG. 3, when the cross-sectional shape of the fiber 3 is, for example, an elliptical shape, the length of the long axis a is the maximum diameter of the fiber 3. When the cross-sectional shape of the fiber 3 is circular, the length of the major axis a is equal to the length of the minor axis b. Accordingly, the length of the major axis a or the minor axis b is the maximum diameter.
  • the maximum fiber diameter is preferably 30 ⁇ m or less.
  • FIG. 2 shows an example of the film (or sheet) of the present invention.
  • a film 2 shown in FIG. 2 is made of the polyacetal resin.
  • the thickness t of the film 2 varies depending on the application and cannot be generally stated, but is, for example, 10 to 200 ⁇ m.
  • a film having a thickness of 200 ⁇ m or less is referred to as a “film”
  • a film having a thickness exceeding 200 ⁇ m is referred to as a “sheet”.
  • Example 1 In a biaxial continuous polymerization machine having a self-cleaning paddle having a jacket set at a temperature of 65 ° C., 100 parts by weight of trioxane, an amount of 1,3-dioxolane shown as “DOL amount” in Table 1, and a catalyst And a benzene solution containing boron trifluoride diethyl etherate as a continuous feed. At this time, boron trifluoride diethyl etherate was continuously supplied at 20 ppm with respect to 1 mol of trioxane.
  • the biaxial continuous polymerizer was continuously supplied with methylal as a molecular weight regulator in an amount necessary to adjust the intrinsic viscosity to 1.1 to 1.5 dl / g. Then, the polymerization was continuously performed so that the residence time of the substance supplied to the continuous polymerization machine was 20 minutes.
  • the polymer obtained in this way was fed into a terminator mixer. Then, from the entrance of the terminator mixer, twice the mole of the catalyst used, triphenylphosphine, was continuously fed into the terminator mixer as the benzene solution to deactivate the catalyst. By pulverizing, a crude polyacetal copolymer was obtained.
  • Triethylene glycol-bis [3 (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] (trade name: Irganox 245, manufactured by Ciba Geigy Co.) was added to 100 parts by weight of the obtained crude polyacetal copolymer. 3 parts by weight and 0.025 parts by weight of melamine were added and mixed with a Henschel blender to obtain a mixture.
  • the kneaded product was continuously extracted with a gear pump and pressurized and passed through a sintered filter having a filtration accuracy of 10 ⁇ m. Pelletized to obtain polyacetal resin.
  • Example 2 A polyacetal resin was produced in the same manner as in Example 1 except that a sintered filter having a filtration accuracy of 20 ⁇ m was used as the filter.
  • Example 3 A polyacetal resin was produced in the same manner as in Example 1 except that a wire mesh having a mesh size of 500 mesh, that is, a screen pack was used as a filter.
  • Example 4 A polyacetal resin was produced in the same manner as in Example 2 except that the amount of 1,3-dioxolane added was changed to 4.2 parts by weight (phr).
  • Example 5 A polyacetal resin was produced in the same manner as in Example 2 except that the amount of 1,3-dioxolane added was changed to 13 parts by weight (phr).
  • the number of fish eyes and the maximum winding speed were measured.
  • the number of fish eyes and the maximum winding speed were measured by the following method. [Fish eye measurement]
  • the polyacetal resins of Examples 1 to 5 and Comparative Example 2 were formed into 30 ⁇ m thick films using a T die. Then, the number of fish eyes was measured by visually observing the film surface and counting the number of fish eyes having a maximum length of 30 ⁇ m or more contained in a 5 cm square region. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 本発明は、紡糸性に優れ、フィルムやシートに成形した場合の光学ムラも少ない成形性に優れたポリアセタール樹脂を提供する。本発明は、厚さ30μmのフィルムで測定した際に、最大長さが30μm以上であるフィッシュアイの個数が100個/25cm以下であるポリアセタール樹脂を提供する。

Description

低フィッシュアイ・ポリアセタール樹脂
 本発明は、フィッシュアイが少ない品質の優れたポリアセタール樹脂(低フィッシュアイ・ポリアセタール樹脂)に関するものである。さらに詳しくは、紡糸性に優れ、フィルムやシートに成形した場合の光学ムラも少ない低フィッシュアイ・ポリアセタール樹脂に関する。
 エンジニアリングプラスチックスのポリアセタール樹脂は、その優れた機械的性質、摺動特性、摩擦・磨耗特性、耐薬品性などを有し、自動車、OA機器などの基幹部品として多く用いられている。ポリアセタール樹脂は、その規則的な一次構造に由来して高い結晶性を示し、その用途は射出成形分野を中心に拡大してきた。近年、押出用途、特に繊維やフィルムといった用途においてポリアセタールの有する優れた特長を活かす検討が行われている。例えば、特許文献1では、ポリアセタール樹脂を用いて繊維を製造する検討が行われている。
特開平8-113823号公報
 本発明者らは、ポリアセタール樹脂を用いて紡糸を行うと一般的にフィッシュアイと呼ばれている微小な異物により、糸切れ等が発生することを見出した。また本発明者らは、ポリアセタール樹脂をフィルムに成形すると光学ムラ等の外観不良を引き起こすという問題が有ることも見出した。さらに本発明者らは、上記ポリアセタール樹脂を用いた繊維も製品として満足できるものではないことを見出した。
 そこで、本発明は、紡糸性に優れ、フィルムやシートに成形した場合の光学ムラも少ない成形性に優れたポリアセタール樹脂を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、フィッシュアイの個数が一定量以下であるポリアセタール樹脂が、紡糸性及びフィルム加工性に優れていることを見出し、本発明を完成するに至った。すなわち、本発明は以下に示すポリアセタール樹脂、これを用いた繊維、フィルム又はシートに関する。
(1)厚さ30μmのフィルムで測定した際に、最大長さが30μm以上であるフィッシュアイの個数が100個/25cm以下であることを特徴とするポリアセタール樹脂。
(2)上記フィッシュアイの個数が10個/25cm以下であることを特徴とする(1)記載のポリアセタール樹脂。
(3)(1)に記載のポリアセタール樹脂を溶融紡糸して得られる繊維であり、最大径が50μm以下であることを特徴とする繊維。
(4)(2)に記載のポリアセタール樹脂を溶融紡糸して得られる繊維であり、最大径が30μm以下であることを特徴とする繊維。
(5)粗ポリアセタール樹脂をフィルターでろ過した後、造粒して得られたことを特徴とする(1)記載のポリアセタール樹脂。
(6)上記フィルターが、500メッシュ以上のスクリーンパックであることを特徴とする(5)に記載のポリアセタール樹脂。
(7)上記フィルターが、50ミクロン以下の絶対ろ過精度を有する焼結フィルターであることを特徴とする(5)に記載のポリアセタール樹脂。
(8)上記焼結フィルターが、金属繊維からなることを特徴とする(7)に記載のポリアセタール樹脂。
(9)上記(1)のポリアセタール樹脂からなるフィルム、シート又は繊維。
(10)上記フィッシュアイの個数が1個/25cm以上であることを特徴とする(1)に記載のポリアセタール樹脂。
 本発明のポリアセタール樹脂によれば、フィッシュアイの個数が少ないため、糸切れが殆ど発生することない良好な紡糸性や、フィルムやシートに成形した場合の光学ムラも少ない良好な成形性を達成することが出来る。
フィッシュアイを概略的に示す図である。 本発明に係るフィルムの一例を示す斜視図である。 本発明に係る繊維の一例を示す断面図である。
 本発明におけるフィッシュアイの少ないポリアセタール樹脂は、粗ポリアセタール樹脂をろ過した後、造粒することにより製造される。
 ポリアセタール樹脂とは、下記に示すアセタール構造
Figure JPOXMLDOC01-appb-C000001
(但しRは水素原子、有機基を示す。)
を繰り返し構造に有する高分子であり、通常はRが水素原子である下記に示すオキシメチレン基
Figure JPOXMLDOC01-appb-C000002
を主たる構成単位とするものである。本発明に用いるポリアセタール樹脂は、この繰り返し構造のみからなるアセタールホモポリマー以外に、前記オキシメチレン基以外の繰り返し構成単位を1種以上含むコポリマー(ブロックコポリマー)やターポリマー等も含み、更には線状構造のみならず分岐、架橋構造を有していてもよい。
 上記ポリアセタール樹脂を製造するためには通常、トリオキサンを含む主原料が用いられる。主原料は、上記アセタールホモポリマーを製造する場合には、トリオキサンのみで構成される。上記コポリマーやターポリマーを製造する場合には、主原料は、トリオキサンのほか、コモノマーをも含む。
 コポリマーやターポリマーの製造に用いるコモノマーとしては、環状ホルマールやエーテルが挙げられる。具体例としては、1,3-ジオキソラン、2-エチル-1,3-ジオキソラン、2-プロピル-1,3-ジオキソラン、2-ブチル-1,3-ジオキソラン、2,2-ジメチル-1,3-ジオキソラン、2-フェニル-2-メチル-1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、2,4-ジメチル-1,3-ジオキソラン、2-エチル-4-メチル-1,3-ジオキソラン、4,4-ジメチル-1,3-ジオキソラン、4,5-ジメチル-1,3-ジオキソラン、2,2,4-トリメチル-1,3-ジオキソラン、4-ヒドロキシメチル-1,3-ジオキソラン、4-ブチルオキシメチル-1,3-ジオキソラン、4-フェノキシメチル-1,3-ジオキソラン、4-クロルメチル-1,3-ジオキソラン、1,3-ジオキカビシクロ[3,4.0]ノナン、エチレンオキシド、プロピレンオキシド、プチレンオキシド、エピクロルヒドリン、スチレンオキシド、オキシタン、3,3-ビス(クロロメチル)オキセタン、テトラヒドロフラン、およびオキセパン等が挙げられる。これらの中でも1,3一ジオキソランが特に好ましい。
 コモノマーの添加量は、トリオキサン100重量部に対して0.2~30重量部であることが好ましく、より好ましくは0.5~20重量部である。コモノマーの添加量が30重量部より多い場合は重合収率が低下し、0.2重量部より少ない場合は熱安定性が低下する。
 ポリアセタール樹脂の製造に用いる重合触媒としては、一般のカチオン活性触媒が用いられる。具体例としては、(1)ルイス酸、特にホウ素、スズ、チタン、リン、ヒ素およびアンチモン等のハロゲン化物、例えば三フッ化ホウ素、四塩化スズ、四塩化チタン、五塩化リン、五フッ化リン、五フッ化ヒ素および五フッ化アンチモン、およびその錯化合物または塩の如き化合物、(2)プロトン酸、例えばトリフルオロメタンスルホン酸、パークロル酸、プロトン酸のエステル、殊にパークロル酸と低級脂肪族アルコールとのエステル、プロトン酸の無水物、特にパークロル酸と低級脂肪族カルボン酸との混合無水物、あるいはトリエチルオキソニウムへキサフルオロホスファート、トリフェニルメチルヘキサフルオロアルゼナート、アセチルへキサフルオロボラート、ヘテロポリ酸またはその酸性塩、イソポリ酸またはその酸性塩などが挙げられる。特に三フッ化ホウ素を含む化合物、あるいは三フッ化ホウ素水和物および配位錯体化合物が好適であり、エーテル類との配位錯体である三フッ化ホウ素ジエチルエーテラート、三フッ化ホウ素ジブチルエーテラートは特に好ましい。前記触媒の使用量は、トリオキサン1モルに対して、通常1×10-7~1×10-3モルであり、好ましくは1×10-7~1×10-4モルである。触媒の使用量が1×10-3モルより多いと熱安定性が低下し、1×10-7モルより少ないと重合収率が低下する。
 ポリアセタール樹脂の製造において、分子量調節のために、必要に応じて適当な分子量調節剤を用いても良い。分子量調節剤としては、カルボン酸、カルボン酸無水物、エステル、アミド、イミド、フェノール類、アセタール化合物などが挙げられる。特にフェノール、2,6-ジメチルフェノール、メチラール、ポリアセタールジメトキシドは好適に用いられ、最も好ましいのはメチラールである。分子量調節剤は単独あるいは溶液の形で使用される。分子量調節剤を溶液の形で使用する場合、溶媒としては、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、メチレンジクロライド、エチレンジクロライド等のハロゲン化炭化水素が挙げられる。一般に、これら分子量調節剤は目標とする分子量に応じて、トリオキサンとコモノマーとの混合モノマー100重量部に対して0~1.0重量部の範囲で添加量が調整される。これら分子量調節剤は、通常、トリオキサンとコモノマーの混合原料液に供給される。添加位置に特に制限はないが、カチオン活性触媒を該混合原料液に供給する前に供給するのが好ましい。
 ポリアセタール樹脂の製造に用いられる連続式重合装置としては、重合時の急激な固化、発熱に対処可能な強力な攪拌能力、緻密な温度制御、さらにはスケールの付着を防止するセルフクリーニング機能を備えたニ一ダー、2軸スクリュー式連続押出混練機、2軸のパドル型連続混合機、その他、これまでに提案されているトリオキサンの連続重合装置が使用可能で、2種以上のタイプの重合機を組み合わせて使用することもできる。これらのうちでも、互いに同方向に回転する1対のシャフトを備え、シャフト同士が互いにかみ合う凸レンズ型、あるいは擬三角形型のパドルが多数はめ込まれた連続式横型反応器が好ましい。
 重合時間は、3~120分の重合時間が選ばれ、特に5~60分とするのが好ましい。重合時間が3分より短いと重合収率又は熱安定性が低下し、120分より長いと生産性が悪くなる。重合時間には、重合収率又は熱安定性の面からコモノマーの割合によって好ましい下限が存在し、コモノマーの割合が増加するに伴い重合時間も長くする必要がある。
 トリオキサンを含む主原料を、重合触媒及び、必要に応じて添加される分子量調節剤の存在下に重合させて塊状重合物を得た後は、この塊状重合物に触媒失活剤を添加する。
 触媒失活剤としては、三価の有機リン化合物、有機アミン系化合物、アルカリ金属やアルカリ土類金属の水酸化物などが使用できる。有機アミン系化合物としては、一級、二級、三級の脂肪族アミンや芳香族アミン、ヘテロ環アミン等が使用でき、具体的には、例えば、エチルアミン、ジエチルアミン、トリエチルアミン、モノ-n-ブチルアミン、ジ-n-ブチルアミン、トリプロピルアミン、トリ-n-ブチルアミン、N,N-ジメチルブチルアミン、アニリン、ジフェニルアミン、ピリジン、ピペリジン、モルホリン、メラミン、メチロールメラミン等が挙げられる。これらの中で、三価の有機リン化合物および三級アミンが好ましい。三価の有機リン化合物の中で、特に好ましい化合物は熱的に安定でかつ熱による成形品の着色弊害を及ぼさないトリフェニルホスフィンである。三級アミンの中で、特に好ましい化合物はトリエチルアミンおよびN,N-ジメチルブチルアミンである。失活剤は完全に触媒を失活させる量を入れる必要は無く、後述の失活処理時に塊状重合物の分子量低下が製品の許容範囲に抑えられるようにすればよい。失活剤の使用量は、使用触媒のモル数に対して、通常0.01~500倍、好ましくは0.05~100倍である。失活剤を溶液、懸濁液の形態で使用する場合、使用される溶剤は特に限定されるものではない。例えば、水、アルコール類、アセトン、メチルエチルケトン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メチレン、ジクロライド、エチレンジクロライド等の脂肪族または芳香族の各種有機溶媒が挙げられる。これらは、混合して使用することも可能である。
 失活処理においては、塊状重合物が微細な粉粒体であることが好ましく、失活処理に使用する重合反応機としては、塊状重合物を充分粉砕する機能を有するものが好ましい。また、上記塊状重合物を別に粉砕機を用いて粉砕した後に失活剤を加えてもよく、あるいは、失活剤の存在下で粉砕と攪拌を同時に行ってもよい。塊状重合物が微細な粉粒体でない場合は、塊状重合物中に含まれる触媒が十分に失活されず、従って残存した活性を有する触媒によって徐々に解重合が進行し分子量低下を生じる。触媒失活処理が十分ではなく、最終製品の分子量が低くなってしまう場合は、予め分子量低下を考慮し、分子量調節剤の添加量を調節し塊状重合物の分子量を高くしておき、最終製品の分子量を調節する方法がとられる。
 重合触媒の失活処理を行うことにより得られた粗ポリアセタール樹脂を、加熱溶融処理し、不安定構造を熱的に分解除去し、フィルターでろ過した後、造粒し低フィッシュアイ・ポリアセタール樹脂を製造する。
 かかる低フィッシュアイ・ポリアセタール樹脂で要求されるフィッシュアイの個数とは、図1及び図2に示すように、厚さtが30μmであるフィルム2で測定した際に、最大長さLmaxが30μm以上のフィッシュアイ1の個数が100個/25cm以下、好ましくは10個/25cm以下である。フィッシュアイ1の個数の下限は特に限定されず、紡糸性や成形性の観点からは、少なければ少ないほど好ましい。但し、生産効率を考慮すると、フィッシュアイ1の個数は例えば1個/cm以上となる。ここで、フィッシュアイ1とは、ポリアセタール樹脂をフィルム2に成形し、該フィルム2を目視にて観察して存在する異物を定義したものである。フィッシュアイ1の形状としては、例えば丸型、楕円状等様々な形状が観察される。フィッシュアイ1の最大長さLmaxは、フィッシュアイ1の形状が丸型以外の形状、例えば楕円形である場合は、長軸の長さである。これは楕円においては長軸の長さが最大となるためである。フィッシュアイ1の形状が丸型である場合は、その直径が最大長さとなる。このため、フィッシュアイ1の最大長さLmaxは、直径の大きさとなる。なお、フィッシュアイ1の最大長さとは、フィッシュアイ1をフィルム2の表面に投影させたときの二次元的な投影像における最大長さを言うものとする。
 粗ポリアセタール樹脂の加熱溶融処理の方法は特に制約はないが、以下に一例として、好適な方法の詳細を示す。
 単軸または2軸以上のベント付押出機で触媒失活処理を施して得られる粗ポリアセタール樹脂を溶融させ、減圧脱揮処理機に導入し、所定時間減圧脱揮する。その後、ギアポンプで溶融樹脂を抜き出し、フィルターでろ過した後、造粒する。
 減圧脱揮は9.33×10~1.33×10-3kPaの圧力下(減圧圧力は絶対圧を示す。以下同様)において溶融混練しながらおこなわれる。減圧度は6.67×10~1.33×10-3kPaの範囲が好ましく、2.67×10~1.33×10-3kPaの範囲がより好ましく、1.33×10~1.33×10-3kPaの範囲が最も好ましい。
 減圧脱揮処理機は縦型あるいは横型の高粘度タイプの重合機を用いることができる。縦型重合機の場合、攪拌翼に特に限定はないが、溶融ポリアセタール樹脂を均一に混合できる高粘度攪拌翼が好ましく、リボン翼、格子翼、マックスブレンド翼、フルゾーン翼およびこれらの改良翼等が例示される。横型重合機としては、好ましくは単軸あるいは2軸以上の攪拌翼の設置された表面更新性の優れたセルフクリーニング型の横型重合機が用いられる。このような横型重合機としては、具体的には日立製作所(株)製メガネ翼、格子翼型リアクター、三菱重工業(株)製SCR,NSCR型反応機、(株)栗本鉄鋼所製KRCニ-ダー、SCプロセッサー、住友重機械工業(株)製BIVOLAK等が例示される。
 上記溶融樹脂のろ過に用いるフィルターとしては、金網、焼結フィルターなどが挙げられる。金網としては、平織り、綾織、平畳織、クリンプ網、溶接金網、亀甲金網など何れを使用しても良い。焼結フィルターは、ステンレスに代表される金属金網を多数積層させたものを焼結により一体化したもの、金属繊維からならフェルトを焼結処理して得られる不織布フィルターなど何れを使用しても良い。この焼結フィルターは金網などのように平面に1種類の孔を有するものでなく、押し付けられた金属繊維が絡み合った各種孔径を有する立体構造のフィルターである。また、これらのフィルターメディアを加工して得られる、ディスク型フィルター、チューブ型フィルター、フラット型円筒フィルター、プリーツ型円筒フィルターを使用しても良い。低フィッシュアイ数レベル、即ちフィッシュアイの個数が100個/25cm以下のレベルを達成するには、絶対ろ過精度が50μm以下、好ましくは10μm以下の焼結フィルターの方が有利ではある。但し、フィルターのメッシュ数が500メッシュ以上、好ましくは700メッシュ以上であれば、平面上の金網フィルターからなるスクリーンパックも同様に使用できる
 ここで、スクリーンパックとは、複数のフィルターを重ね合わせた構成フィルターの呼称として使用する。また、絶対ろ過精度とは「JIS-B8356の方法によりフィルターメディアを透過した最大グラスビーズ径」として定義されるため、数値が小さい程、その精度が高いことを示している。
 また、加熱溶融処理する際に、粗ポリアセタール樹脂に対して、公知の酸化防止剤(例えばトリエチレングリコール-ビス〔3(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕)、熱安定剤(例えばメラミン)等の添加剤を1種又は2種以上を添加することができる。
 更に、着色剤、核剤、可塑剤、蛍光増白剤、又はペンタエリスリトールテトラステアレート等の脂肪酸エステル系又はシリコン系化合物等の離型剤、摺動剤、ポリエチレングリコール、グリセリンのような帯電防止剤、高級脂肪酸塩、ペンゾトリアゾール系またはペンゾフェノン系化合物のような紫外線吸収剤、あるいはヒンダードアミン系のような光安定剤等の添加剤を所望により添加することができる。
 また本発明の繊維は、上述したポリアセタール樹脂を溶融紡糸して得られる繊維であり、繊維の最大径が50μm以下である。この場合、繊維に加工した際に糸切れが発生しなくなる。ここで、繊維の断面形状は円形状でも楕円形状でもよい。図3は、本発明に係る繊維の一例を示す断面図である。図3に示すように、繊維3の断面形状が例えば楕円形状である場合、長軸aの長さが繊維3の最大径となる。繊維3の断面形状が円形状である場合、長軸aの長さと短軸bの長さとが等しくなる。従って、長軸a又は短軸bの長さが最大径となる。
 なお、ポリアセタール樹脂におけるフィッシュアイの個数が10個/25cmである場合、繊維の最大径は30μm以下であることが好ましい。
 図2は、本発明のフィルム(又はシート)の一例を示すものである。図2に示すフィルム2は、上記ポリアセタール樹脂からなるものである。フィルム2の厚さtは、用途に応じて異なるので一概には言えないが、例えば10~200μmである。なお、本発明では、厚さが200μm以下のものを「フィルム」と言い、厚さが200μmを超えるものを「シート」と言うものとする。
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
 〈実施例1〉
 温度を65℃に設定したジャケットを有するセルフクリーニング型パドルを有する二軸の連続重合機に、トリオキサン100重量部と、表1に「DOL量」として示した量の1,3-ジオキソランと、触媒としての三フッ化ホウ素ジエチルエーテラートを含むベンゼン溶液とを連続的に供給した。このとき、トリオキサン1molに対して三フッ化ホウ素ジエチルエーテラートが20ppmになるように連続的に供給した。さらに二軸の連続重合機には、分子量調節剤としてのメチラールを、極限粘度1.1~1.5dl/gに調整するのに必要な量だけ連続的に供給した。そして、連続重合機に供給した物質の滞在時間が20分となる様に連続的に重合を行った。こうして得られた重合物を停止剤混合機中に供給した。そして、停止剤混合機の入り口より、使用した触媒量の2倍モルのトリフェニルホスフィンをそのベンゼン溶液として停止剤混合機中に連続的に供給し、触媒を失活させた後、重合物を粉砕して粗ポリアセタール共重合体を得た。
 得られた粗ポリアセタール共重合体100重量部に、トリエチレングリコール-ビス〔3(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕(チバガイギー社製、商品名イルガノックス245)0.3重量部、メラミン0.025重量部を添加し、ヘンシェル型ブレンダーで混合して混合物を得た。
 次に、得られた混合物を同方向二軸押出機(日本製鋼所製、内径69mm.L/D=31.5)に60kg/時間の速度で導入し、ベント部で20kPaの減圧状態として220℃で溶融させた。そしてこの溶融物を、連続的に2軸の表面更新型横型混練機(実効内容積60L:全内容積から攪拌翼が占める体積を除いた体積)に導入した。このとき、2軸の表面更新型横型混練機における溶融物の滞在時間が25分となるように液面調整をおこなった。そして、表面更新型横型混練機において20kPaの減圧下、220℃で減圧脱揮をおこないながら、連続的にギアポンプで混練物を抜き出して昇圧し、10μmの濾過精度を有する焼結フィルターに通した後にペレット化し、ポリアセタール樹脂を得た。
 〈実施例2〉
 フィルターとして、20μmの濾過精度を有する焼結フィルターを用いたこと以外は実施例1と同様にしてポリアセタール樹脂を作製した。
 〈実施例3〉
 フィルターとして、メッシュサイズが500メッシュの金網、即ちスクリーンパックを用いたこと以外は実施例1と同様にしてポリアセタール樹脂を作製した。
 〈実施例4〉
 1,3-ジオキソランの添加量を4.2重量部(phr)に変更したこと以外は実施例2と同様にしてポリアセタール樹脂を作製した。
 〈実施例5〉
 1,3-ジオキソランの添加量を13重量部(phr)に変更したこと以外は実施例2と同様にしてポリアセタール樹脂を作製した。
 〈比較例1〉
 フィルターを用いず、且つ1,3-ジオキソランの添加量を0.1重量部(phr)としたこと以外は実施例1と同様にしてポリアセタール樹脂を作製した。
 〈比較例2〉
 フィルターを用いなかったこと以外は実施例1と同様にしてポリアセタール樹脂を作製した。
 上記のようにして得られた実施例1~5及び比較例1~2のポリアセタール樹脂について、フィッシュアイの個数及び最高巻取速度を測定した。フィッシュアイの個数及び最高巻取速度の測定は、以下の方法で行った。
[フィッシュアイ測定]
 実施例1~5及び比較例2のポリアセタール樹脂を、Tダイで、厚み30μmのフィルムに成形した。そして、フィルム表面を目視で観察し、5cm角の領域中に含まれる最大長さが30μm以上であるフィッシュアイの個数をカウントすることによりフィッシュアイの個数を計測した。結果を表1に示す。
 [最高巻取速度]
 実施例1~5及び比較例2のポリアセタール樹脂を、シリンダー設定温度200℃の溶融混練装置、ギアポンプ、吐出ノズル(0.8mm径、120ホール)で構成される紡糸装置を用い、吐出量を3kg/hに固定して巻取った。このとき、ノズル直下で糸切れが起こるときの回転数を記録し、この回転数を可紡性の指標とした。結果を表1に示す。なお、比較例1のポリアセタール樹脂については、紡糸装置のノズル部で発泡が生じたため、最高巻取速度の測定を行うことができなかった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~5のポリアセタール樹脂は、比較例2のポリアセタール樹脂に比べて、最高巻取速度が顕著に大きくなっており、優れた紡糸性を有することが分かった。
 1…フィッシュアイ、2…フィルム、3…繊維、a…長軸(最大長さ)、b…短軸、t…厚さ、Lmax…最大長さ。

Claims (12)

  1.  厚さ30μmのフィルムで測定した際に、最大長さが30μm以上であるフィッシュアイの個数が100個/25cm以下であることを特徴とするポリアセタール樹脂。
  2.  前記フィッシュアイの個数が10個/25cm以下であることを特徴とする請求項1記載のポリアセタール樹脂。
  3.  請求項1に記載のポリアセタール樹脂を溶融紡糸して得られる繊維であり、最大径が50μm以下であることを特徴とする繊維。
  4.  請求項2に記載のポリアセタール樹脂を溶融紡糸して得られる繊維であり、最大径が30μm以下であることを特徴とする繊維。
  5.  粗ポリアセタール樹脂をフィルターでろ過した後、造粒して得られたことを特徴とする請求項1記載のポリアセタール樹脂。
  6.  前記フィルターが、500メッシュ以上のスクリーンパックであることを特徴とする請求項5に記載のポリアセタール樹脂。
  7.  前記フィルターが、50ミクロン以下の絶対ろ過精度を有する焼結フィルターであることを特徴とする請求項5に記載のポリアセタール樹脂。
  8.  前記焼結フィルターが、金属繊維からなることを特徴とする請求項7に記載のポリアセタール樹脂。
  9.  請求項1記載のポリアセタール樹脂からなるフィルム。
  10.  請求項1記載のポリアセタール樹脂からなるシート。
  11.  請求項1記載のポリアセタール樹脂からなる繊維。
  12.  前記フィッシュアイの個数が1個/25cm以上であることを特徴とする請求項1に記載のポリアセタール樹脂。
PCT/JP2009/002929 2008-07-02 2009-06-25 低フィッシュアイ・ポリアセタール樹脂 WO2010001558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010518899A JP5648477B2 (ja) 2008-07-02 2009-06-25 低フィッシュアイ・ポリアセタール樹脂
EP09773136.8A EP2305725B1 (en) 2008-07-02 2009-06-25 Low-fisheye polyacetal resin
CN200980124924.XA CN102076728B (zh) 2008-07-02 2009-06-25 低鱼眼聚缩醛树脂
US13/001,566 US20110111228A1 (en) 2008-07-02 2009-06-25 Low-fisheye polyacetal resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008173151 2008-07-02
JP2008-173151 2008-07-02

Publications (1)

Publication Number Publication Date
WO2010001558A1 true WO2010001558A1 (ja) 2010-01-07

Family

ID=41465665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002929 WO2010001558A1 (ja) 2008-07-02 2009-06-25 低フィッシュアイ・ポリアセタール樹脂

Country Status (6)

Country Link
US (1) US20110111228A1 (ja)
EP (1) EP2305725B1 (ja)
JP (1) JP5648477B2 (ja)
KR (1) KR101613746B1 (ja)
CN (1) CN102076728B (ja)
WO (1) WO2010001558A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246611A (ja) * 2010-05-27 2011-12-08 Asahi Kasei Chemicals Corp 変性ポリアセタール共重合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868519A (zh) * 2019-03-05 2019-06-11 重庆云天化天聚新材料有限公司 高强度聚甲醛单丝纤维及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113823A (ja) 1994-10-13 1996-05-07 Kanebo Ltd ポリアセタールからなる繊維及び不織布
JP2001172821A (ja) * 1999-12-21 2001-06-26 Unitika Ltd ポリオキシメチレン繊維の製造方法
JP2004066191A (ja) * 2002-08-09 2004-03-04 Daicel Chem Ind Ltd フィルタとこのフィルタを用いた濾過方法
JP2004155110A (ja) * 2002-11-07 2004-06-03 Mitsubishi Engineering Plastics Corp ポリアセタールフィルムの製造法
JP2005256189A (ja) * 2004-03-09 2005-09-22 Polyplastics Co ポリオキシメチレン樹脂製撚糸
JP2008138326A (ja) * 2006-12-04 2008-06-19 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂繊維
JP2008163156A (ja) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc オキシメチレン共重合体延伸材料
JP2008527192A (ja) * 2005-01-12 2008-07-24 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリオキシメチレンファイバー、これを製造する方法およびその使用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2278875A (en) * 1938-08-09 1942-04-07 Du Pont Method and apparatus for the production of artificial structures
US3479314A (en) * 1960-07-22 1969-11-18 Celanese Corp Oxymethylene polymer composition and fiber produced therefrom
US3347969A (en) * 1962-08-01 1967-10-17 Celanese Corp A method of making crimped polyoxymethylene filaments
US4060582A (en) * 1974-08-13 1977-11-29 Boris Afanasievich Egorov Method of manufacturing polyoxymethylene filaments
ES2218521T3 (es) * 1993-03-09 2004-11-16 Trevira Gmbh Fibras de electreto con una estabilidad de carga mejorada, el proceso para su produccion y materiales textiles que contienen estas fibras de electreto.
EP0675146B1 (en) * 1993-07-29 2000-05-31 Nippon Shokubai Co., Ltd. High-molecular-weight polydioxolane and process for producing the same
KR0167003B1 (ko) * 1994-11-21 1999-03-20 이종학 중합기내 축적물 생성이 억제된 염화비닐 단량체의 중합 또는 공중합방법
MY114026A (en) * 1995-09-01 2002-07-31 Asahi Chemical Ind Polyacetal resin molded article and process for producing the same
US5952410A (en) * 1995-09-06 1999-09-14 Asahi Kasei Kogyo Kabushiki Kaisha Polyacetal resin composition exhibiting high retentivity of mechanical strengths
JP3037612B2 (ja) * 1996-04-12 2000-04-24 ポリプラスチックス株式会社 ポリアセタール共重合体の製造方法
JP3954290B2 (ja) * 2000-08-24 2007-08-08 株式会社クラレ エチレン−酢酸ビニル共重合体ケン化物の製造方法
JP4907023B2 (ja) * 2001-09-18 2012-03-28 ポリプラスチックス株式会社 ポリオキシメチレン繊維の製造方法
US7410696B2 (en) * 2005-01-12 2008-08-12 Ticona Gmbh Polyoxymethylene fibers, production thereof and use thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113823A (ja) 1994-10-13 1996-05-07 Kanebo Ltd ポリアセタールからなる繊維及び不織布
JP2001172821A (ja) * 1999-12-21 2001-06-26 Unitika Ltd ポリオキシメチレン繊維の製造方法
JP2004066191A (ja) * 2002-08-09 2004-03-04 Daicel Chem Ind Ltd フィルタとこのフィルタを用いた濾過方法
JP2004155110A (ja) * 2002-11-07 2004-06-03 Mitsubishi Engineering Plastics Corp ポリアセタールフィルムの製造法
JP2005256189A (ja) * 2004-03-09 2005-09-22 Polyplastics Co ポリオキシメチレン樹脂製撚糸
JP2008527192A (ja) * 2005-01-12 2008-07-24 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリオキシメチレンファイバー、これを製造する方法およびその使用
JP2008138326A (ja) * 2006-12-04 2008-06-19 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂繊維
JP2008163156A (ja) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc オキシメチレン共重合体延伸材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246611A (ja) * 2010-05-27 2011-12-08 Asahi Kasei Chemicals Corp 変性ポリアセタール共重合体の製造方法

Also Published As

Publication number Publication date
EP2305725B1 (en) 2015-10-28
EP2305725A1 (en) 2011-04-06
EP2305725A4 (en) 2013-11-27
JPWO2010001558A1 (ja) 2011-12-15
KR20110041438A (ko) 2011-04-21
KR101613746B1 (ko) 2016-04-19
CN102076728B (zh) 2013-07-24
US20110111228A1 (en) 2011-05-12
CN102076728A (zh) 2011-05-25
JP5648477B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648477B2 (ja) 低フィッシュアイ・ポリアセタール樹脂
US7897672B2 (en) Process for producing polyoxymethylene copolymer
EP3006476A1 (en) Method for producing oxymethylene copolymer
JP2005272707A (ja) ポリオキシメチレン共重合体の製造方法
CN110869547B (zh) 聚缩醛纤维的制造方法
JP2010064456A (ja) ポリアセタール樹脂成形体の製造方法
EP1607422B1 (en) Process for producing oxymethylene copolymer
JP2004339271A (ja) ポリオキシメチレン樹脂組成物の製造方法
KR102509158B1 (ko) 폴리아세탈 섬유 및 그의 제조 방법, 및 연신용 재료
JP2010013519A (ja) 低フィッシュアイ・ポリアセタール樹脂の製造方法
JP4605322B2 (ja) オキシメチレン共重合体の製造方法
KR102494183B1 (ko) 폴리아세탈 섬유의 제조 방법
JP2005225973A (ja) ポリオキシメチレン共重合体の製造方法
JP2004352913A (ja) ポリオキシメチレン樹脂組成物の製造方法
JP2016020551A (ja) 樹脂成形体の製造方法
KR100614024B1 (ko) 옥시메틸렌 공중합체의 제조방법
JP5066832B2 (ja) 高靭性ポリアセタール樹脂組成物の製造方法。
JP2015021018A (ja) ポリアセタール樹脂の製造方法
JP4471050B2 (ja) オキシメチレン共重合体の製造方法
JP2011037172A (ja) 樹脂成形体の製造方法
JP2005232394A (ja) ポリオキシメチレン共重合体の製造方法
JP2010059357A (ja) ポリアセタール共重合体の連続的製造方法
JP2010265369A (ja) ポリアセタール樹脂組成物
JP2010180312A (ja) ポリアセタール樹脂組成物
JP2006096899A (ja) オキシメチレン共重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124924.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107028622

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010518899

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13001566

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009773136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE