WO2009157426A1 - 組成物及び同組成物を用いてなる発光素子 - Google Patents

組成物及び同組成物を用いてなる発光素子 Download PDF

Info

Publication number
WO2009157426A1
WO2009157426A1 PCT/JP2009/061363 JP2009061363W WO2009157426A1 WO 2009157426 A1 WO2009157426 A1 WO 2009157426A1 JP 2009061363 W JP2009061363 W JP 2009061363W WO 2009157426 A1 WO2009157426 A1 WO 2009157426A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
represented
formula
substituent
Prior art date
Application number
PCT/JP2009/061363
Other languages
English (en)
French (fr)
Inventor
喜彦 秋野
Original Assignee
住友化学株式会社
サメイション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, サメイション株式会社 filed Critical 住友化学株式会社
Priority to CN200980129129XA priority Critical patent/CN102106015A/zh
Priority to EP09770136A priority patent/EP2309563A4/en
Priority to US13/000,523 priority patent/US20110121236A1/en
Publication of WO2009157426A1 publication Critical patent/WO2009157426A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/524Luminescence phosphorescent
    • C08G2261/5242Luminescence phosphorescent electrophosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a composition and a light emitting device using the composition.
  • a light-emitting material used for a light-emitting layer of a light-emitting element an element using a compound that emits light from a triplet excited state (hereinafter sometimes referred to as a “phosphorescent compound”) has high emission efficiency. It has been known.
  • a phosphorescent compound is used for the light emitting layer, a composition obtained by adding the compound to a matrix is usually used as the light emitting material.
  • the matrix polyvinyl carbazole is used because a thin film can be formed by coating (Patent Document 1).
  • Non-Patent Document 1 a light-emitting material including a polyfluorene that is a conjugated polymer compound and a triplet light-emitting compound has low light emission efficiency because light emission from the triplet light-emitting compound is weak.
  • an object of the present invention is to provide a light emitting material capable of producing a light emitting element having excellent light emission efficiency.
  • the present invention first provides a composition comprising a compound having a saturated heterocyclic structure having 5 or more ring members containing a nitrogen atom, and a phosphorescent compound.
  • the present invention secondly includes the following formulas (1-1), (1-2), (1-3), (2-1), (2-2), (2-3) and (2-4) A polymer compound having a residue of a compound represented by the formula selected from the group consisting of: and a residue of the phosphorescent compound.
  • the present invention provides a thin film and a light-emitting device using the composition or the polymer compound.
  • the present invention provides a planar light source, a display device, and illumination provided with the light emitting element.
  • the composition and polymer compound of the present invention (hereinafter referred to as “the composition of the present invention”) have high luminous efficiency. Therefore, when used for manufacturing a light-emitting element or the like, a light-emitting element with excellent light emission efficiency can be obtained.
  • the composition of the present invention usually has a relatively excellent light emitting property in green to blue light emission. This is because the T 1 energy of the compound having a saturated heterocyclic structure having 5 or more ring members containing a nitrogen atom and the polymer compound of the present invention contained in the composition of the present invention is large.
  • the composition of the present invention is a composition containing a compound having a saturated heterocyclic structure having 5 or more ring members containing a nitrogen atom and a phosphorescent compound.
  • the “saturated heterocyclic structure” means a group formed by removing a part or all (particularly one or two) of hydrogen atoms in a saturated heterocyclic compound.
  • polymer compound means a compound having two or more identical structures (repeating units) in one molecule.
  • R * represents a hydrogen atom or a substituent, or two R * bonded to the same carbon atom together represent ⁇ O.
  • a plurality of R * are the same, May be different.
  • a compound having a residue of a compound represented by the formula selected from the group consisting of that is, a group formed by removing part or all of the hydrogen atoms in the compound). It is preferable to have a seed.
  • the compound having a saturated heterocyclic structure is a polymer compound
  • it may have a saturated heterocyclic structure in the main chain, side chain or terminal of the polymer compound, or a combination thereof, but the main chain and / or side It is preferable to have in the chain.
  • the compound having a saturated heterocyclic structure is a polymer compound, the formulas (1-1), (1-2), (1-3), (2-1), (2-2), (2 -3) and (2-4), a polymer compound having as a repeating unit a residue of a compound represented by the formula selected from the group consisting of the formulas (1-1), (1-2), (1- 3) a residue of a compound represented by the formula selected from the group consisting of (2-1), (2-2), (2-3) and (2-4), a structure having an aromatic ring, hetero
  • a polymer compound containing, as a repeating unit, at least one selected from a structure having a heterocyclic ring containing 5 or more atoms, an aromatic amine structure, and a structure represented by the following formula (4) Is more preferable.
  • the substituent represented by R * is a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group which may have a substituent, Aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio Group, substituted silylamino group, monovalent heterocyclic group optionally having substituent, heteroaryl group optionally having substituent, heteroaryloxy group, heteroarylthio group, arylalkenyl group, aryl An ethynyl group, a substituted carboxyl group, a cyano group, etc., preferably an alkyl group, an alkoxy group, or a substituent, Aryloxy group, arylthi
  • aryl group a heteroaryl group which may have a substituent.
  • the N-valent heterocyclic group (N is 1 or 2) is a remaining atomic group obtained by removing N hydrogen atoms from a heterocyclic compound, and the same applies in this specification.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • halogen atom represented by R * examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group represented by R * may be linear, branched or cyclic.
  • the alkyl group usually has about 1 to 10 carbon atoms.
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2- And ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, etc.
  • the alkoxy group represented by R * may be linear, branched or cyclic. This alkoxy group usually has about 1 to 10 carbon atoms.
  • Alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy Octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, trifluoromethoxy group, pentafluoroethoxy group, perfluorobutoxy group, perfluorohexyl group, Perfluorooctyl group, methoxymethyloxy group, 2-methoxyethyloxy group, and the like. Pentyloxy group, hexyloxy group, octy
  • the alkylthio group represented by R * may be linear, branched or cyclic.
  • the alkylthio group usually has about 1 to 10 carbon atoms.
  • Examples of the alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group , 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, laurylthio group, trifluoromethylthio group, etc., including pentylthio group, hexylthio group, oct
  • the aryl group represented by R * usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • Examples of the aryl group include a phenyl group and a C 1 -C 12 alkoxyphenyl group (“C 1 -C 12 alkoxy” means that the alkoxy moiety has 1 to 12 carbon atoms. The same applies hereinafter).
  • C 1 -C 12 alkylphenyl group (“C 1 -C 12 alkyl” means that the alkyl moiety has 1 to 12 carbon atoms, the same shall apply hereinafter), a 1-naphthyl group, 2 -Naphtyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, pentafluorophenyl group and the like can be mentioned, and C 1 -C 12 alkoxyphenyl group and C 1 -C 12 alkylphenyl group are preferable.
  • the aryl group is a remaining atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • aromatic hydrocarbon examples include those having a condensed ring and those having two or more independent benzene rings or condensed rings bonded directly or via a vinylene group.
  • the aryl group may have a substituent, and examples of the substituent include a C 1 to C 12 alkoxyphenyl group and a C 1 to C 12 alkylphenyl group.
  • Examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, an s-butoxyphenyl group, and a t-butoxyphenyl group.
  • Pentyloxyphenyl group hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctyloxy Examples thereof include a phenyl group and a lauryloxyphenyl group.
  • Examples of the C 1 -C 12 alkylphenyl group include methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, s- Examples thereof include butylphenyl, t-butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group and dodecylphenyl group.
  • the aryloxy group represented by R * usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a C 1 -C 12 alkoxyphenoxy group, a C 1 -C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a pentafluorophenyloxy group, and the like.
  • a 1 to C 12 alkoxyphenoxy group and a C 1 to C 12 alkylphenoxy group are preferred.
  • Examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, an s-butoxyphenoxy group, and a t-butoxyphenoxy group.
  • Pentyloxyphenoxy group hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group, 3,7-dimethyloctyloxy Examples thereof include a phenoxy group and a lauryloxyphenoxy group.
  • Examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group, and a butylphenoxy group.
  • the arylthio group represented by R * has usually about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • the arylalkyl group represented by R * usually has about 7 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • Arylalkyl groups include phenyl-C 1 -C 12 alkyl groups, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl groups, C 1 -C 12 alkylphenyl -C 1 -C 12 alkyl groups, 1- Naphthyl-C 1 -C 12 alkyl group, 2-naphthyl-C 1 -C 12 alkyl group, and the like, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, C 1 -C 12 alkylphenyl- C 1 -C 12 alkyl groups are preferred.
  • the arylalkoxy group represented by R * usually has about 7 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • phenyl-C 1 -C 12 alkoxy groups such as phenylmethoxy group, phenylethoxy group, phenylbutoxy group, phenylpentyloxy group, phenylhexyloxy group, phenylheptyloxy group, phenyloctyloxy group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, 1-naphthyl-C 1 -C 12 alkoxy group, 2-naphthyl-C 1 To C 12 alkoxy group and the like, and C 1 to C 12 alkoxyphenyl-C 1 to C 12 alkoxy group and C 1 to C 12 alkylphenyl-C 1
  • the arylalkylthio group represented by R * usually has about 7 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • the arylalkylthio group includes a phenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkylthio group, a 1- And naphthyl-C 1 -C 12 alkylthio group, 2-naphthyl-C 1 -C 12 alkylthio group, and the like.
  • C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, C 1 -C 12 alkylphenyl group C 1 -C 12 alkylthio groups are preferred.
  • the acyl group represented by R * has usually about 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • Examples of the acyl group include acetyl, propionyl, butyryl, isobutyryl, pivaloyl, benzoyl, trifluoroacetyl, and pentafluorobenzoyl groups.
  • the acyloxy group represented by R * has usually about 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the amide group represented by R * usually has about 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • As the amide group formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group, ditrifluoro Examples include an acetamide group and a dipentafluorobenzamide group.
  • the acid imide group represented by R * means a monovalent residue obtained by removing one hydrogen atom bonded to the nitrogen atom from the acid imide.
  • the acid imide group usually has about 2 to 60 carbon atoms, preferably 2 to 48 carbon atoms.
  • Examples of the acid imide group include groups represented by the following structural formulas. (In the formula, a line extending from a nitrogen atom represents a bond, Me represents a methyl group, Et represents an ethyl group, and n-Pr represents an n-propyl group. The same applies hereinafter.)
  • the imine residue represented by R * is an imine compound (that is, an organic compound having —N ⁇ C— in the molecule. Examples thereof include aldimine, ketimine, and a nitrogen atom in these molecules. And a monovalent residue obtained by removing one hydrogen atom from a compound in which a hydrogen atom bonded to is substituted with an alkyl group or the like.
  • This imine residue usually has about 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms. Specific examples include groups represented by the following structural formulas. (Wherein i-Pr represents an isopropyl group, n-Bu represents an n-butyl group, and t-Bu represents a t-butyl group.
  • the bond indicated by a wavy line is a “wedge-shaped bond” and / or “ It means “joint represented by a broken line.”
  • “joint represented by a wedge shape” means a joint that emerges from the page toward this side, and “joint represented by a broken line”. "Means a bond that is out of the page.)
  • the substituted amino group represented by R * means an amino group substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group. .
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted amino group is usually about 1 to 60, preferably 2 to 48, not including the carbon number of the substituent.
  • substituted amino groups include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, and s-butylamino group.
  • the substituted silyl group represented by R * means a silyl group substituted with 1, 2 or 3 groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group. To do.
  • the number of carbon atoms of the substituted silyl group is usually about 1 to 60, preferably 3 to 48.
  • the alkyl group, aryl group, arylalkyl group and monovalent heterocyclic group may have a substituent.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, dimethylisopropylsilyl group, diethylisopropylsilyl group, t-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, Heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyl-dimethylsilyl group, lauryldimethylsilyl group, phenyl-C 1 -C 12 alkylsilyl group, C 1 ⁇ C 12 alkoxyphenyl -C 1 ⁇ C 12 alkylsilyl group
  • the substituted silyloxy group represented by R * is a silyloxy group substituted with 1, 2 or 3 groups selected from the group consisting of an alkoxy group, an aryloxy group, an arylalkoxy group and a monovalent heterocyclic oxy group Means.
  • the substituted silyloxy group usually has about 1 to 60 carbon atoms, preferably 3 to 48 carbon atoms.
  • the alkoxy group, aryloxy group, arylalkoxy group and monovalent heterocyclic oxy group may have a substituent.
  • Substituted silyloxy groups include trimethylsilyloxy, triethylsilyloxy, tripropylsilyloxy, triisopropylsilyloxy, dimethylisopropylsilyloxy, diethylisopropylsilyloxy, t-butyldimethylsilyloxy, pentyldimethylsilyl Oxy group, hexyldimethylsilyloxy group, heptyldimethylsilyloxy group, octyldimethylsilyloxy group, 2-ethylhexyl-dimethylsilyloxy group, nonyldimethylsilyloxy group, decyldimethylsilyloxy group, 3,7-dimethyloctyl-dimethyl silyloxy group, lauryl dimethyl silyloxy group, a phenyl -C 1 ⁇ C 12 alkyl silyl group, C 1 ⁇ C 12 alkoxypheny
  • the substituted silylthio group represented by R * is a silylthio group substituted with 1, 2 or 3 groups selected from the group consisting of an alkylthio group, an arylthio group, an arylalkylthio group and a monovalent heterocyclic thio group. means.
  • the carbon number of the substituted silylthio group is usually about 1 to 60, preferably 3 to 48.
  • the alkoxy group, arylthio group, arylalkylthio group and monovalent heterocyclic thio group may have a substituent.
  • substituted silylthio group examples include trimethylsilylthio group, triethylsilylthio group, tripropylsilylthio group, triisopropylsilylthio group, dimethylisopropylsilylthio group, diethylisopropylsilylthio group, t-butyldimethylsilylthio group, pentyldimethylsilyl group.
  • the substituted silylamino group represented by R * was substituted with 1, 2 or 3 groups selected from the group consisting of an alkylamino group, an arylamino group, an arylalkylamino group and a monovalent heterocyclic amino group.
  • a silylamino group is meant.
  • the substituted silylamino group usually has about 1 to 60 carbon atoms, preferably 3 to 48 carbon atoms.
  • the alkoxy group, arylamino group, arylalkylamino group and monovalent heterocyclic amino group may have a substituent.
  • substituted silylamino groups include trimethylsilylamino group, triethylsilylamino group, tripropylsilylamino group, triisopropylsilylamino group, dimethylisopropylsilylamino group, diethylisopropylsilylamino group, t-butyldimethylsilylamino group, pentyldimethylsilyl Amino group, hexyldimethylsilylamino group, heptyldimethylsilylamino group, octyldimethylsilylamino group, 2-ethylhexyl-dimethylsilylamino group, nonyldimethylsilylamino group, decyldimethylsilylamino group, 3,7-dimethyloctyl- dimethylsilyl group, lauryl dimethylsilyl group, a phenyl -C 1 ⁇ C 12 alky
  • the monovalent heterocyclic group represented by R * means an atomic group remaining after removing one hydrogen atom from a heterocyclic compound.
  • the carbon number of the monovalent heterocyclic group is usually about 3 to 60, preferably 3 to 20.
  • the carbon number of the monovalent heterocyclic group does not include the carbon number of the substituent.
  • the heterocyclic compound is an organic compound having a cyclic structure, and the elements constituting the ring include not only carbon atoms but also heteroatoms such as oxygen, sulfur, nitrogen, phosphorus and boron in the ring. Say things.
  • the monovalent heterocyclic group includes thienyl group, C 1 -C 12 alkylthienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkylpyridyl group, piperidyl group, quinolyl group, isoquinolyl group, oxazolyl group , Thiazolyl group, imidazolyl group, pyrazolyl group, imidazolyl group, pyrazolyl group, oxadiazolyl group, triazolyl group, tetrazolyl group, pyridyl group, pyrimidyl group, pyridazinyl group, pyrazinyl group, triazinyl group, indolyl group, indazolyl group, benzimidazolyl group, benzoyl group A triazolyl group, a carbazolyl group, a phenoxazinyl group, etc. are mentioned.
  • the heteroaryloxy group represented by R * usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • Examples of the heteroaryloxy group include a pyridyloxy group, a C 1 to C 12 alkoxypyridyloxy group, a C 1 to C 12 alkylpyridyloxy group, an isoquinolyloxy group, and the like, and a C 1 to C 12 alkoxypyridyloxy group.
  • C 1 -C 12 alkylpyridyloxy groups are preferred.
  • Examples of the C 1 -C 12 alkylpyridyloxy group include methylpyridyloxy group, ethylpyridyloxy group, dimethylpyridyloxy group, propylpyridyloxy group, 1,3,5-trimethylpyridyloxy group, methylethylpyridyloxy group, Isopropylpyridyloxy group, butylpyridyloxy group, isobutylpyridyloxy group, s-butylpyridyloxy group, t-butylpyridyloxy group, pentylpyridyloxy group, isoamylpyridyloxy group, hexylpyridyloxy group, heptylpyridyloxy group, octyl Examples include pyridyloxy group, nonylpyridyloxy group, decylpyridyloxy group, dodecyl
  • the heteroarylthio group represented by R * usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • Examples of the heteroarylthio group include a pyridylthio group, a C 1 -C 12 alkoxypyridylthio group, a C 1 -C 12 alkylpyridylthio group, an isoquinolylthio group, and the like.
  • the arylalkenyl group represented by R * usually has about 8 to 60 carbon atoms, preferably 8 to 48 carbon atoms.
  • a phenyl-C 2 -C 12 alkenyl group (“C 2 -C 12 alkenyl” means that the alkenyl moiety has 2 to 12 carbon atoms, the same shall apply hereinafter).
  • C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group C 1 -C 12 alkylphenyl -C 2 -C 12 alkenyl group, 1-naphthyl-C 2 -C 12 alkenyl group, 2-naphthyl-C 2 C 1 -C 12 alkenyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, C 2 -C 12 alkylphenyl -C 1 -C 12 alkenyl group are preferred.
  • the arylalkynyl group represented by R * has usually about 8 to 60 carbon atoms, preferably 8 to 48 carbon atoms.
  • a phenyl-C 2 -C 12 alkynyl group (“C 2 -C 12 alkynyl” means that the alkynyl moiety has 2 to 12 carbon atoms, the same shall apply hereinafter), C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkylphenyl -C 2 -C 12 alkynyl group, 1-naphthyl-C 2 -C 12 alkynyl group, 2-naphthyl-C 2 To C 12 alkynyl group and the like, and C 1 to C 12 alkoxyphenyl-C 2 to C 12 alkynyl group and C 1 to C 12 alkylphenyl-C 2 to C 12 alkynyl group are prefer
  • the substituted carboxyl group represented by R * usually has about 2 to 60 carbon atoms, preferably 2 to 48 carbon atoms, and is an alkyl group, aryl group, arylalkyl group or monovalent group. It means a carboxyl group substituted with a heterocyclic group.
  • Examples of the substituted carboxyl group include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, s-butoxycarbonyl group, t-butoxycarbonyl group, pentyloxycarbonyl group, hexyl group.
  • Examples of the compound having a saturated heterocyclic structure include the following formula (3): (In the formula, HT represents the above formula (1-1), (1-2), (1-3), (2-1), (2-2), (2-3) or (2-4). And n represents an integer of 1 to 5. When n is 2 or more, a plurality of HTs may be the same or different, and Y 1 and Y 2 are respectively Independently, —C (R a ) (R b ) —, —N (R c ) —, —O—, —Si (R d ) (R e ) —, —P (R f ) —, —S— , —C ( ⁇ O) — or —C (R g ) ⁇ C (R h ) —, where R a , R b , R c , R d , R e , R f , R g and R h are each Independently represents a hydrogen atom or a substituent,
  • a plurality of Y 1 may be the same or different. If even better .m 2 is 2 or more, Y 2 existing in plural numbers and the same Different respectively which may .ET 1 and ET 2 is independently optionally represent a heteroaryl group optionally having also aryl group or a substituent substituted.) And a compound having a residue thereof (that is, a group formed by removing part or all of the hydrogen atoms in the compound).
  • n is preferably an integer of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • n 1 and m 2 are preferably integers of 0 to 3, more preferably 0 or 1.
  • the larger and more rigid the compound the better the thermal stability.
  • the rigidity of the compound without greatly reducing the T 1 energy, there is an adverse effect on the orientation and carrier transportability. Can be suppressed.
  • the aryl group which may have a substituent represented by ET 1 and ET 2 includes a phenyl group, a C 1 -C 12 alkoxyphenyl group (“C 1 -C 12 alkoxy”). Means that the carbon number of the alkoxy moiety is 1 to 12. The same shall apply hereinafter), a C 1 -C 12 alkylphenyl group (“C 1 -C 12 alkyl” is the carbon number of the alkyl moiety) Is 1 to 12.
  • 1-naphthyl group 2-naphthyl group, pentafluorophenyl group, etc., including phenyl group, C 1 -C 12 alkoxyphenyl group, C 1 -C 12 alkylphenyl groups are preferred.
  • the heteroaryl group which may have a substituent represented by ET 1 and ET 2 includes, in addition to carbon atoms, atoms, oxygen atoms, sulfur atoms and nitrogen atoms constituting the ring And heteroaryl groups containing a heteroatom selected from the group consisting of atoms, such as thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, imidazolyl, pyrazolyl, oxadiazolyl Group, triazolyl group, tetrazolyl group, pyridyl group, pyrimidyl group, pyridazinyl group, pyrazinyl group, triazinyl group, indolyl group, indazolyl group, benzoimidazolyl group, benzotriazolyl group, carbazolyl group, phenoxazinyl group, etc.
  • atoms such as thienyl
  • pyridyl group Pyrimidyl group, pyridazinyl group, pyrazinyl group, Riazinyl, indolyl, indazolyl, benzimidazolyl, benzotriazolyl and carbazolyl are more preferred.
  • At least one of ET 1 and ET 2 may have a substituent from the viewpoint of solubility, maximum occupied orbit (hereinafter referred to as “HOMO”) or LUMO energy level. It is preferably a heteroaryl group, and is a heteroaryl group substituted with an alkyl group, an alkoxy group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • HOMO maximum occupied orbit
  • an alkyl group having 3 to 10 carbon atoms an alkoxy group having 3 to 10 carbon atoms, an aryl group substituted with an alkyl group having 3 to 10 carbon atoms or an alkoxy group having 3 to 10 carbon atoms, or 3 carbon atoms
  • a heteroaryl group substituted with an alkyl group of ⁇ 10 or an alkoxy group of 3 to 10 carbon atoms is particularly preferred.
  • the compound having a saturated heterocyclic structure may contain other partial structures.
  • the type of the other partial structure is preferably different depending on whether it is present at the terminal.
  • a polyvalent group having a conjugate property is preferred in terms of the energy level of LUMO or HOMO.
  • a polyvalent group having a conjugate property is preferred in terms of the energy level of LUMO or HOMO.
  • examples of such a group include a divalent aromatic group and a trivalent aromatic group.
  • the aromatic group is a group derived from an organic compound exhibiting aromaticity.
  • examples of such an aromatic group include groups in which n ′ (n ′ is 2 or 3) hydrogen atoms are replaced with a bond from an aromatic ring such as benzene, naphthalene, anthracene, pyridine, quinoline, and isoquinoline. Can be mentioned.
  • the substituent may be selected from the group consisting of a group, a substituted carboxyl group and a cyano group, including an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, Arylalkyl group, arylalkoxy group,
  • R 0 and R 2 to R 31 are each a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, aryl Alkenyl groups, arylalkynyl groups, amino groups, substituted amino groups, silyl groups, substituted silyl groups, silyloxy groups, substituted silyloxy groups, monovalent heterocyclic groups, halogen atoms are preferred, alkyl groups, alkoxy groups, alkylthio groups, aryls Group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, monovalent heterocyclic group is more preferable, alkyl group, alkoxy group, aryl group, monovalent heterocyclic group is more preferable, alkyl group, aryl The group is particularly preferred.
  • Examples of the structure represented by the formula (4) include the following formula (4-1), (4-2), or (4-3): (In the formula, A ring, B ring, and C ring each independently represent an aromatic ring.
  • Formulas (4-1), (4-2), and (4-3) represent an alkyl group, an alkoxy group, Alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, halogen atom, It may have a substituent selected from the group consisting of an acyl group, an acyloxy group, an imine residue, an amide group, an acid imide group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group and a cyano group.
  • D ring, E ring, F ring and G ring are each independently an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group.
  • An aromatic ring which may have a substituent selected from the group consisting of a carboxyl group, a substituted carboxyl group and a cyano group, Y represents the same meaning as described above. The structure represented by is mentioned.
  • Y is preferably a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom from the viewpoint of luminous efficiency.
  • the aromatic ring represented by the A ring to the G ring is, for example, an unsubstituted one, a benzene ring, a naphthalene ring, an anthracene ring, a tetracene ring.
  • aromatic hydrocarbon rings such as pentacene ring, pyrene ring and phenanthrene ring; and heteroaromatic rings such as pyridine ring, bipyridine ring, phenanthroline ring, quinoline ring, isoquinoline ring, thiophene ring, furan ring and pyrrole ring.
  • aromatic rings may have a substituent.
  • Ar 6 , Ar 7 , Ar 8 and Ar 9 each independently represent an arylene group or a divalent heterocyclic group.
  • Ar 10 , Ar 11 and Ar 12 each independently represent an aryl group or a monovalent complex.
  • Ar 6 to Ar 12 may have a substituent, x and y each independently represent 0 or 1, and 0 ⁇ x + y ⁇ 1.
  • the arylene group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 is an atomic group remaining after removing two hydrogen atoms from an aromatic hydrocarbon.
  • the aromatic hydrocarbon includes a compound having a condensed ring and a compound in which two or more independent benzene rings or condensed rings are bonded directly or via a vinylene group.
  • the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 is a remaining atomic group obtained by removing two hydrogen atoms from a heterocyclic compound.
  • the carbon number of the divalent heterocyclic group is usually about 4 to 60.
  • a heterocyclic compound means a compound in which an element that constitutes a ring includes not only a carbon atom but also hetero atoms such as oxygen, sulfur, nitrogen, phosphorus, and boron in the ring among organic compounds having a cyclic structure. To do.
  • a divalent aromatic heterocyclic group is preferable.
  • the aryl group represented by Ar 10 , Ar 11 , Ar 12 is an atomic group remaining after removing one hydrogen atom from an aromatic hydrocarbon.
  • the aromatic hydrocarbon is as described above.
  • the monovalent heterocyclic group represented by Ar 10 , Ar 11 , Ar 12 means the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the carbon number of the monovalent heterocyclic group is usually about 4 to 60.
  • the heterocyclic compound is as described above.
  • As the monovalent heterocyclic group a monovalent aromatic heterocyclic group is preferable.
  • the polystyrene-equivalent weight average molecular weight of the compound is preferably 3 ⁇ 10 2 or more from the viewpoint of film-forming properties, and 3 ⁇ 10 2 to 1 ⁇ 10. 7 is more preferable, 1 ⁇ 10 3 to 1 ⁇ 10 7 is more preferable, and 1 ⁇ 10 4 to 1 ⁇ 10 7 is particularly preferable.
  • the compound having a saturated heterocyclic structure can be used in a wide emission wavelength region.
  • the T 1 energy value of the compound is preferably 3.0 eV or more, and 3.2 eV. More preferably, it is more preferably 3.4 eV or more, and particularly preferably 3.6 eV or more.
  • the upper limit is 5.0 eV.
  • the absolute value of the HOMO energy level of the compound having a saturated heterocyclic structure is preferably 6.0 eV or less, more preferably 5.8 eV or less, and even more preferably 5.6 eV or less. In general, the lower limit is 5.0 eV.
  • the absolute value of the LUMO energy level of the compound having a saturated heterocyclic structure is preferably 1.5 eV or more, more preferably 1.7 eV or more, and further preferably 1.9 eV or more, It is especially preferable that it is 2.1 eV or more. In general, the upper limit is 4.0 eV.
  • values calculated by a computational scientific technique are used as the T 1 energy value, LUMO energy level value, and HOMO energy level value of each compound.
  • the quantum chemical calculation program Gaussian03 is used, and the structure of the ground state is optimized by the HF (Hartree-Fock) method.
  • the density functional method is used to calculate T 1 energy and LUMO energy level values.
  • 6-31 g * is used as a basis function. If the basis function 6-31g * cannot be used, LANL2DZ is used.
  • the compound having a saturated heterocyclic structure is a polymer compound and the polymer compound has one type of repeating unit, assuming that the repeating unit is A
  • the value of n ⁇ when linearly approximating the energy level value and the HOMO energy level value as a function of (1 / n) is the T 1 energy value, LUMO energy level value, HOMO of the polymer. It is defined as the value of energy level.
  • n ⁇ (where n calculates the value of the T 1 energy of the polymerization number of repeating units) in the same manner as above, the value of the lowest the T 1 energy among them is defined as the value of the T 1 energy of the compound.
  • the absolute value of the “LUMO energy level value” and the “HOMO energy level value” that is, when the LUMO and HOMO energy level values are negative, the absolute value represents the negative sign. Means the value taken).
  • the compound having a saturated heterocyclic structure includes a residue of the compound represented by the formula (3)
  • at least one of the groups represented by ET 1 and ET 2 (preferably ET 1 and ET 1 2 ) is preferably bonded to a partial structure having at least two ⁇ -conjugated electrons.
  • a group represented by ET 1 and ET 2 is bonded to a partial structure having at least two ⁇ -conjugated electrons, and 2 between the group represented by ET 1 and ET 2 and the partial structure.
  • the face angle is preferably 20 ° or more, more preferably 30 ° or more, further preferably 50 ° or more, particularly preferably 65 ° or more, and particularly preferably 75 ° or more. preferable.
  • the dihedral angle between all unsaturated rings may be 30 ° or more.
  • it is 50 ° or more, more preferably 65 ° or more, and particularly preferably 75 ° or more.
  • dihedral angle means an angle calculated from the optimized structure in the ground state.
  • the dihedral angle is, for example, the carbon atom (a 1 ) at the bonding position in the group represented by ET 1 or ET 2 and the carbon atom or nitrogen atom (a 2 ) adjacent to a 1 in the formula (3).
  • the dihedral angle is calculated in all cases, and the lowest value (not more than 180 °) among them is 2 The face angle.
  • the atoms (a 3 ) and (a 4 ) are atoms having a ⁇ -conjugated electron, and more preferably a carbon atom, a nitrogen atom, a silicon atom, or a phosphorus atom.
  • a computational scientific technique that is, the structure having the minimum generation energy of the structure.
  • Examples of the compound having a saturated heterocyclic structure include compounds represented by the following formulas (5-1) to (5-30).
  • R represents a hydrogen atom or a substituent.
  • the substituent represented by R include a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group optionally having a substituent, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, Arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, may have a substituent Monovalent heterocyclic group, heteroaryl group optionally having substituent, heteroaryloxy group, heteroarylthio group, arylalkenyl group, aryle
  • Examples of the compound having a saturated heterocyclic structure include the following compounds. (In the formula, n represents the number of polymerizations.)
  • a known compound such as a triplet light-emitting complex can be used, and examples thereof include compounds that have been conventionally used as low-molecular EL light-emitting materials. These include, for example, Nature, (1998), 395, 151, Appl. Phys. Lett. (1999), 75 (1), 4, Proc. SPIE-Int. Soc. Opt. Eng. (2001), 4105 ( Organic Light-Emitting Materials and Devices IV), 119, J. Am. Chem. Soc., (2001), 123, 4304, Appl. Phys. Lett., (1997), 71 (18), 2596, Syn. Met.
  • the ratio of the sum of the squares of the orbital coefficients of the outermost shell d orbitals of the central metal in the HOMO of the metal complex is 1/3 or more of the sum of the squares of the total atomic orbital coefficients. It is preferable from the viewpoint of obtaining high luminous efficiency, and examples thereof include orthometalated complexes in which the central metal is a transition metal belonging to the sixth period.
  • the central metal of the triplet light-emitting complex is usually a metal having an atomic number of 50 or more, which has a spin-orbit interaction, and can cause an intersystem crossing between the singlet state and the triplet state.
  • Gold, platinum, iridium, osmium, rhenium, tungsten, europium, terbium, thulium, dysprosium, samarium, praseodymium, gadolinium, ytterbium atoms are preferred, more preferably gold, platinum, iridium, osmium, rhenium, tungsten More preferably, they are gold, platinum, iridium, osmium and rhenium atoms, particularly preferably gold, platinum, iridium and rhenium atoms, and particularly preferably platinum and iridium atoms. .
  • Examples of the ligand of the triplet light-emitting complex include 8-quinolinol and derivatives thereof, benzoquinolinol and derivatives thereof, 2-phenyl-pyridine and derivatives thereof, and the like.
  • the phosphorescent compound is a compound having a substituent such as an alkyl group, an alkoxy group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent from the viewpoint of solubility. It is preferable that Further, the substituent preferably has a total number of atoms other than hydrogen atoms of 3 or more, more preferably 5 or more, still more preferably 7 or more, and particularly preferably 10 or more. Moreover, it is preferable that at least one substituent is present in each ligand, and the type of the substituent may be the same or different for each ligand.
  • Examples of the phosphorescent compound include the following. (In the formula, tBu represents a tert-butyl group.)
  • the content of the phosphorescent compound in the composition of the present invention is usually 0.01 to 80 parts by weight, preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the compound having a saturated heterocyclic structure. Parts by weight, more preferably 0.1 to 15 parts by weight, and particularly preferably 0.1 to 10 parts by weight.
  • the compound having a saturated heterocyclic structure and the phosphorescent compound may be used singly or in combination of two or more.
  • composition of the present invention may contain an optional component other than the compound having the saturated heterocyclic structure and the phosphorescent compound as long as the object of the present invention is not impaired.
  • the optional component include a hole transport material, an electron transport material, and an antioxidant.
  • the hole transport material examples include known aromatic amines, carbazole derivatives, polyparaphenylene derivatives, and the like as hole transport materials for light-emitting elements such as organic EL elements.
  • Examples of the electron transport material include known oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinones and derivatives thereof, and electron transport materials for light-emitting devices such as organic EL devices. And metal complexes of cyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives and 8-hydroxyquinoline and derivatives thereof.
  • the T 1 energy value (ETP) of the compound having a saturated heterocyclic structure and the T 1 energy value (ETT) of the phosphorescent compound are represented by the following formula: ETP> ETT (eV) Satisfying from the viewpoint of high-efficiency light emission, ETP> ETT + 0.1 (eV) It is more preferable to satisfy ETP> ETT + 0.2 (eV) It is more preferable to satisfy
  • the polymer compound of the present invention has the above formulas (1-1), (1-2), (1-3), (2-1), (2-2), (2-3) and (2-4). And a residue of a compound represented by the formula selected from the group consisting of: and a residue of the phosphorescent compound.
  • the phosphorescent compound and the compound having a saturated heterocyclic structure are the same as those described and exemplified in the section of the composition.
  • the polymer compound of the present invention may have a residue of the phosphorescent compound in any of the main chain, terminal, and side chain of the molecular chain.
  • the thin film of the present invention examples include a light-emitting thin film and an organic semiconductor thin film. These thin films are formed using the composition of the present invention.
  • the thin film of the present invention can be produced by solution application, vapor deposition, transfer, or the like. For solution application, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method An offset printing method, an ink jet method, or the like may be used.
  • the solvent used for preparing the solution is preferably a solvent that can dissolve or uniformly disperse the composition of the present invention.
  • the solvent include chlorinated solvents (chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene, etc.), ether solvents (tetrahydrofuran, dioxane, etc.), aromatic carbonization.
  • Hydrogen solvents toluene, xylene, etc.
  • aliphatic hydrocarbon solvents cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, etc.
  • ketones Solvents acetone, methyl ethyl ketone, cyclohexanone, etc.
  • ester solvents ethyl acetate, butyl acetate, ethyl cellosolve acetate, etc.
  • polyhydric alcohols and their derivatives ethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene
  • the viscosity of the solution is preferably 1 to 100 mPa ⁇ s at 25 ° C. Further, if the evaporation is so significant, it tends to be difficult to repeat ejection from the head.
  • preferred solvents used include single or mixed solvents including anisole, bicyclohexyl, xylene, tetralin, dodecylbenzene and the like.
  • an inkjet solution suitable for the composition used can be obtained by a method of mixing a plurality of solvents, a method of adjusting the concentration of the composition in the solution, or the like.
  • the light-emitting device of the present invention is formed using the composition of the present invention, and usually contains the composition of the present invention between electrodes composed of an anode and a cathode. It is preferably included as In addition, a known layer having other functions may be included from the viewpoint of improving performance such as luminous efficiency and durability. Examples of such a layer include a charge transport layer (that is, a hole transport layer and an electron transport layer), a charge blocking layer (that is, a hole blocking layer and an electron blocking layer), and a charge injection layer (that is, a hole injection layer). Layer, electron injection layer), buffer layer, and the like. In the light-emitting element of the present invention, each of the light-emitting layer, the charge transport layer, the charge blocking layer, the charge injection layer, the buffer layer, and the like may be composed of one layer or two or more layers.
  • the light emitting layer is a layer having a function of emitting light.
  • the hole transport layer is a layer having a function of transporting holes.
  • the electron transport layer is a layer having a function of transporting electrons. These electron transport layer and hole transport layer are collectively referred to as a charge transport layer.
  • the charge blocking layer is a layer having a function of confining holes or electrons in the light emitting layer, and a layer that transports electrons and confines holes is called a hole blocking layer. The layer that confines is called an electron blocking layer.
  • buffer layer examples include a layer containing a conductive polymer compound adjacent to the anode.
  • the light emitting device of the present invention include the following structures a) to q). a) anode / light emitting layer / cathode b) anode / hole transport layer / light emitting layer / cathode c) anode / light emitting layer / electron transport layer / cathode d) anode / light emitting layer / hole blocking layer / cathode e) anode / Hole transport layer / light emitting layer / electron transport layer / cathode f) anode / charge injection layer / light emitting layer / cathode g) anode / light emitting layer / charge injection layer / cathode h) anode / charge injection layer / light emitting layer / charge injection Layer / cathode i) anode / charge injection layer / hole transport layer / light emitting layer / cathode j) anode / hole transport layer / light
  • the hole transport material include known materials such as polyvinyl carbazole and its Derivatives, polysilanes and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof And polymer hole transport materials such as derivatives, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, and further, JP-A 63-70257 JP 63-175860, JP 2-135359, 2-135361, 2-209988, 3-37992 Compounds described in JP same 3-152184 may also be mentioned.
  • the electron transport layer contains an electron transport material
  • the electron transport material include known materials such as oxadiazole derivatives and anthraquinodis. Methane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, 8-hydroxyquinoline and its derivatives And metal complexes, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, and the like.
  • the film thicknesses of the hole transport layer and the electron transport layer vary depending on the materials used and may be selected so that the drive voltage and the light emission efficiency are appropriate. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the film thickness of the hole transport layer and the electron transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • charge injection layers that is, the hole injection layers.
  • the charge injection layer or insulating layer (usually having an average film thickness of 0.5 nm to 4 nm) is provided adjacent to the electrode.
  • a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer in order to improve the adhesion at the interface or prevent mixing.
  • the order and number of layers to be laminated, and the thickness of each layer can be appropriately selected in consideration of light emission efficiency and element lifetime.
  • the charge injection layer is a layer containing a conductive polymer compound, provided between the anode and the hole transport layer, and an ionization potential having an intermediate value between the anode material and the hole transport material contained in the hole transport layer. And a layer containing a material having an electron affinity with an intermediate value between the cathode material and the electron transport material included in the electron transport layer.
  • the material used for the charge injection layer may be appropriately selected in relation to the electrode and the material of the adjacent layer.
  • Polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene Examples include vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, conductive polymer compounds such as polymers containing an aromatic amine structure in the main chain or side chain, metal phthalocyanine (copper phthalocyanine, etc.), carbon, etc. It is done.
  • the insulating layer has a function of facilitating charge injection.
  • the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • the light emitting element provided with the insulating layer include a light emitting element provided with an insulating layer adjacent to the cathode and a light emitting element provided with an insulating layer adjacent to the anode.
  • the light emitting device of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not change when the electrode is formed and the organic layer is formed, and examples thereof include substrates such as glass, plastic, polymer film, and silicon.
  • the opposite electrode is preferably transparent or translucent.
  • At least one of the anode and the cathode included in the light emitting device of the present invention is usually transparent or translucent. Among these, it is preferable that the anode side is transparent or translucent.
  • a conductive metal oxide film, a translucent metal thin film, or the like is usually used.
  • indium oxide, zinc oxide, tin oxide, and a composite thereof such as indium tin oxide ( ITO), films (NESA, etc.) made using conductive inorganic compounds made of indium, zinc, oxide, etc., gold, platinum, silver, copper, etc., ITO, indium, zinc, oxide, tin oxide Is preferred.
  • the production method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as this anode.
  • the anode may have a laminated structure of two or more layers.
  • a material having a small work function is usually preferable, for example, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, Metals such as cerium, samarium, europium, terbium, ytterbium, and alloys of two or more thereof, or one or more of them, and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, An alloy with one or more of tin, graphite, a graphite intercalation compound, or the like is used.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the cathode may have a laminated structure of two or more layers.
  • the light-emitting element of the present invention includes a planar light source, a display device (for example, a segment display device, a dot matrix display device, a liquid crystal display device, etc.), and a backlight (for example, a liquid crystal display device including the light-emitting element as a backlight). Etc. can be used.
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a method of emitting light a method of forming either one of the anode or the cathode, or both electrodes in a pattern.
  • both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multi-color display are possible by a method of separately applying a plurality of types of materials having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix element can be driven passively, or may be actively driven in combination with a TFT or the like.
  • planar light emitting element is usually a self-luminous thin type, and is preferably used as a planar light source for backlight of a liquid crystal display device, illumination (for example, planar illumination, light source for illumination) and the like. be able to.
  • illumination for example, planar illumination, light source for illumination
  • a flexible substrate it can also be used as a curved light source, illumination, display device, and the like.
  • compositions and the like of the present invention are not only useful for the production of devices, but can also be used as semiconductor materials such as organic semiconductor materials, light emitting materials, optical materials, and conductive materials (for example, applied by doping). . Therefore, thin films such as a light-emitting thin film, a conductive thin film, and an organic semiconductor thin film can be produced using the composition of the present invention.
  • the composition of the present invention can be formed into a device by forming a conductive thin film and a semiconductor thin film in the same manner as the method for producing a thin film (luminescent thin film) used for the light emitting layer of the light emitting element.
  • the semiconductor thin film preferably has a higher electron mobility or hole mobility of 10 ⁇ 5 cm 2 / V / second or higher.
  • the organic semiconductor thin film can be used for organic solar cells, organic transistors, and the like.
  • Example 1 The following formula synthesized by the method described in WO02 / 066552: About 5 times the weight of the following formula of the phosphorescent compound (MC-1) represented by A mixture (solution) of the compound (C-1) represented by the formula (C-1) was mixed to prepare a mixture (solution). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong green light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the T 1 energy value of the compound (C-1) was 3.6 eV, and the absolute value E HOMO of the HOMO energy level was 5.9 eV.
  • the T 1 energy value of the phosphorescent compound (MC-1) was 2.7 eV.
  • the calculation of the parameters was performed by the computational scientific method described in the detailed description of the invention. Specifically, the structure of the compound (C-1) was optimized by the HF method. At that time, 6-31G * was used as a basis function. Then, using the same basis function, the value of the HOMO energy level and the value of T 1 energy were calculated by the time-dependent density functional method of the B3P86 level.
  • Example 2 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) of the compound (C-2) represented by the formula (C-2) was mixed to prepare a mixture (solution). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong green light emission from the phosphorescent compound (MC-1) was obtained, and thus it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. Compound (C-2) had a T 1 energy value of 3.4 eV, and an LUMO energy level absolute value E LUMO of 1.7 eV.
  • Example 3 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) of the compound (C-3) represented by the formula (C-3) was mixed to prepare a mixture (solution). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong green light emission from the phosphorescent compound (MC-1) was obtained, and thus it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-3) was 3.8 eV.
  • Example 4 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-4) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong green light emission from the phosphorescent compound (MC-1) was obtained, and thus it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-4) was 4.0 eV.
  • Example 5 In Example 1, instead of the phosphorescent compound (MC-1), the following formula: A mixture (solution) was prepared in the same manner as in Example 1 except that the phosphorescent compound represented by the formula (MC-2) was used, and the obtained solid film was irradiated with UV light at 254 nm. Since strong luminescence was obtained from the luminescent compound (MC-2, manufactured by American Dye Source, trade name: ADS065BE), it was confirmed that the luminescence efficiency of the mixture was high. The value of T 1 energy of the phosphorescent compound (MC-2) calculated by a computational scientific method was 2.9 eV.
  • Example 6 a mixture (solution) was prepared in the same manner as in Example 2 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 7 a mixture (solution) was prepared in the same manner as in Example 3 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 8 a mixture (solution) was prepared in the same manner as in Example 4 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 9 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-5) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-5) was 3.4 eV, and the absolute value E LUMO of the LUMO energy level was 1.5 eV.
  • Example 10 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-6) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. Compound (C-6) had a T 1 energy value of 3.4 eV, and an LUMO energy level absolute value E LUMO of 1.7 eV.
  • Example 11 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-7) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • Example 12 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-8) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-8) was 3.8 eV.
  • Example 13 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-9) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-9) was 3.1 eV, and the absolute value E LUMO of the LUMO energy level was 1.5 eV.
  • Example 14 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-10) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-10) was 3.5 eV, and the absolute value E LUMO of the LUMO energy level was 1.7 eV.
  • Example 15 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-11) represented by formula (I). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-11) was 3.6 eV.
  • Example 16 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-12) represented by formula (C-12). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-12) was 3.6 eV.
  • Example 17 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-13) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-13) was 3.6 eV.
  • Example 18 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-14) represented by formula (C-14). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-14) was 3.8 eV.
  • Example 19 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-15) represented by formula (C). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-15) was 3.6 eV.
  • Example 20 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-16) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-16) was 3.4 eV, and the absolute value E LUMO of the LUMO energy level was 1.5 eV.
  • Example 21 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) of the compound (C-17) represented by the formula (C-17) was mixed to prepare a mixture (solution). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-17) was 3.8 eV.
  • Example 22 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-18) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-18) was 3.6 eV.
  • Example 23 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-19) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-19) was 3.6 eV, and the absolute value E LUMO of the LUMO energy level was 1.5 eV.
  • Example 24 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-20) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of the compound (C-20) was 3.5 eV, and the absolute value E LUMO of the LUMO energy level was 1.6 eV.
  • Example 25 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-21) represented by formula (I). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, strong light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of the compound (C-21) was 3.5 eV, and the absolute value E LUMO of the LUMO energy level was 2.2 eV.
  • Example 26 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-22) represented by formula (C). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, green light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-22) was 3.7 eV, and the absolute value E LUMO of the LUMO energy level was 2.2 eV.
  • Example 27 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-23) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, green light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • Example 28 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-24) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, green light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-24) was 3.8 eV.
  • Example 29 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-25) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, green light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-25) was 3.6 eV, and the absolute value E LUMO of the LUMO energy level was 1.9 eV.
  • Example 30 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1 wt%) of the compound (C-26) represented by formula (1). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, green light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The T 1 energy value of the compound (C-26) was 3.5 eV, and the absolute value E LUMO of the LUMO energy level was 1.9 eV.
  • Example 31 About 5 times the weight of the phosphorescent compound (MC-1) in THF solution (0.05% by weight): A mixture (solution) was prepared by mixing a THF solution (about 1% by weight) of the compound (C-27) represented by formula (C). 10 ⁇ l of this mixture was dropped on a slide glass and air-dried to obtain a solid film. When this solid film was irradiated with ultraviolet light of 365 nm, green light emission from the phosphorescent compound (MC-1) was obtained, and it was confirmed that the light emission efficiency of the mixture was high. The parameter calculation was performed by a computational scientific method in the same manner as in Example 1. The value of T 1 energy of compound (C-27) was 3.8 eV.
  • Example 32 a mixture (solution) was prepared in the same manner as in Example 9 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 33 a mixture (solution) was prepared in the same manner as in Example 10 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 34 a mixture (solution) was prepared in the same manner as in Example 14 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 35 a mixture (solution) was prepared in the same manner as in Example 22 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 36 a mixture (solution) was prepared in the same manner as in Example 23 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 37 a mixture (solution) was prepared in the same manner as in Example 25 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • Example 38 a mixture (solution) was prepared in the same manner as in Example 26 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • Example 39 a mixture (solution) was prepared in the same manner as in Example 29 except that the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1). When the ultraviolet light was irradiated, strong light emission from the phosphorescent compound (MC-2) was obtained, and it was confirmed that the light emission efficiency of the mixture was high.
  • the phosphorescent compound (MC-2) was used instead of the phosphorescent compound (MC-1).
  • n is the number of polymerizations.
  • M-3 simplified repeat unit
  • composition of the present invention can be used for producing a light emitting device having excellent luminous efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 窒素原子を含む環の構成員数が5以上の飽和複素環構造を有する化合物と、燐光発光性化合物とを含有する組成物。

Description

組成物及び同組成物を用いてなる発光素子
 本発明は、組成物及び同組成物を用いてなる発光素子に関する。
 発光素子の発光層に用いる発光材料として、三重項励起状態からの発光を示す化合物(以下、「燐光発光性化合物」ということがある。)を発光層に用いた素子は、発光効率が高いことが知られている。燐光発光性化合物を発光層に用いる場合、通常、該化合物をマトリックスに添加してなる組成物を発光材料として用いる。マトリックスとしては、塗布によって薄膜が形成できることから、ポリビニルカルバゾールが使用されている(特許文献1)。
 しかし、この化合物は、最低非占分子軌道(以下、「LUMO」という。)が高いため、電子を注入しにくい。一方、ポリフルオレン等の共役系高分子化合物は、LUMOが低いため、これをマトリックスとして用いると、比較的容易に低駆動電圧が実現できる。ところが、このような共役系高分子化合物は、最低三重項励起エネルギー(以下、「T1エネルギー」という。)が小さく、緑色よりも短い波長の発光のためのマトリックスとしての使用には適さないと考えられている(特許文献2)。例えば、共役系高分子化合物であるポリフルオレンと三重項発光化合物とからなる発光材料(非特許文献1)は、三重項発光化合物からの発光が弱いため、発光効率が低い。
特開2002-50483号公報 特開2002-241455号公報
APPLIED PHYSICS LETTERS, 80, 13, 2308(2002)
 そこで、本発明の目的は、発光効率が優れた発光素子を作製することができる発光材料を提供することにある。
 本発明は第一に、窒素原子を含む環の構成員数が5以上の飽和複素環構造を有する化合物と、燐光発光性化合物とを含有する組成物を提供する。
 本発明は第二に、後述の式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)及び(2-4)からなる群から選ばれる式で表される化合物の残基と、前記燐光発光性化合物の残基とを有する高分子化合物を提供する。
 本発明は第三に、前記組成物又は前記高分子化合物を用いてなる薄膜及び発光素子を提供する。
 本発明は第四に、前記発光素子を備えた面状光源、表示装置及び照明を提供する。
 本発明の組成物、高分子化合物(以下、「本発明の組成物等」という)は、発光効率が高い。したがって、発光素子等の作製に用いた場合、発光効率が優れた発光素子が得られるものである。また、本発明の組成物等は、緑色~青色の発光において、通常、比較的優れた発光性を有する。これは、本発明の組成物に含まれる窒素原子を含む環の構成員数が5以上の飽和複素環構造を有する化合物、本発明の高分子化合物のT1エネルギーが大きいためである。
 以下、本発明について詳細に説明する。なお、本明細書において、構造式中のアルキル基、アルコキシ基に接頭辞(t-等)が付いていない場合、n-を意味する。
 <組成物>
 本発明の組成物は、窒素原子を含む環の構成員数が5以上の飽和複素環構造を有する化合物と、燐光発光性化合物とを含有する組成物である。本明細書において、「飽和複素環構造」とは、飽和複素環式化合物における水素原子の一部又は全部(特には、1個又は2個)を取り除いてなる基を意味する。また、本明細書において、「高分子化合物」は、同じ構造(繰り返し単位)が一分子中に2個以上存在する化合物を意味する。
 -飽和複素環構造を有する化合物-
 前記飽和複素環構造を有する化合物は、例えば、下記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)及び(2-4):
Figure JPOXMLDOC01-appb-C000004
(式中、R*は、水素原子又は置換基を表すか、同一の炭素原子に結合した2個のR*が一体となって=Oを表す。複数存在するR*は、同一であっても異なっていてもよい。)
からなる群から選ばれる式で表される化合物の残基(即ち、該化合物における水素原子の一部又は全部を取り除いてなる基)を有する化合物であるが、これらの化合物の残基を少なくとも二種有することが好ましい。
 前記飽和複素環構造を有する化合物が高分子化合物である場合、飽和複素環構造を高分子化合物の主鎖、側鎖若しくは末端、又はこれらの組み合わせで有することができるが、主鎖及び/又は側鎖に有することが好ましい。
 前記飽和複素環構造を有する化合物が高分子化合物である場合、前記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)及び(2-4)からなる群から選ばれる式で表される化合物の残基を繰り返し単位として有する高分子化合物、前記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)及び(2-4)からなる群から選ばれる式で表される化合物の残基と、芳香環を有する構造、ヘテロ原子を含有する構成員数が5以上の複素環を有する構造、芳香族アミン構造、及び後述の式(4)で表される構造から選ばれる一種以上とを、各々、繰り返し単位として含む高分子化合物がより好ましい。
 前記式(1-1)~(2-4)中、R*で表される置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、置換基を有していてもよいアリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいヘテロアリール基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、置換カルボキシル基、シアノ基等が挙げられ、好ましくは、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基である。なお、N価の複素環基(Nは1又は2)とは、複素環式化合物からN個の水素原子を取り除いた残りの原子団であり、本明細書において、同様である。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。
 前記R*で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 前記R*で表されるアルキル基は、直鎖、分岐又は環状のいずれでもよい。このアルキル基の炭素数は、通常、1~10程度である。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられ、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、デシル基、3,7-ジメチルオクチル基が好ましい。
 前記R*で表されるアルコキシ基は、直鎖、分岐又は環状のいずれでもよい。このアルコキシ基の炭素数は、通常、1~10程度である。アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2-メトキシエチルオキシ基等が挙げられ、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基が好ましい。
 前記R*で表されるアルキルチオ基は、直鎖、分岐又は環状のいずれでもよい。このアルキルチオ基の炭素数は、通常、1~10程度である。アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基等が挙げられ、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基が好ましい。
 前記R*で表されるアリール基は、炭素数が、通常、6~60程度のものであり、好ましくは7~48のものである。アリール基としては、フェニル基、C1~C12アルコキシフェニル基(「C1~C12アルコキシ」は、アルコキシ部分の炭素数が1~12であることを意味する。以下、同様である。)、C1~C12アルキルフェニル基(「C1~C12アルキル」は、アルキル部分の炭素数が1~12であることを意味する。以下、同様である。)、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ペンタフルオロフェニル基等が挙げられ、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基が好ましい。ここで、アリール基とは、芳香族炭化水素から水素原子1個を除いた残りの原子団である。この芳香族炭化水素としては、縮合環をもつもの、独立したベンゼン環又は縮合環2個以上が直接又はビニレン基等を介して結合したものが含まれる。さらに、該アリール基は置換基を有していてもよく、該置換基としては、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基等が挙げられる。
 前記C1~C12アルコキシフェニル基としては、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。
 前記C1~C12アルキルフェニル基としては、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、s-ブチルフェニル、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。
 前記R*で表されるアリールオキシ基は、炭素数が、通常、6~60程度のものであり、好ましくは7~48のものである。アリールオキシ基としては、フェノキシ基、C1~C12アルコキシフェノキシ基、C1~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられ、C1~C12アルコキシフェノキシ基、C1~C12アルキルフェノキシ基が好ましい。
 前記C1~C12アルコキシフェノキシ基としては、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、s-ブトキシフェノキシ基、t-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基、ラウリルオキシフェノキシ基等が挙げられる。
 前記C1~C12アルキルフェノキシ基としては、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、s-ブチルフェノキシ基、t-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。
 前記R*で表されるアリールチオ基は、炭素数が、通常、6~60程度のものであり、好ましくは7~48のものである。アリールチオ基としては、フェニルチオ基、C1~C12アルコキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基等が挙げられ、C1~C12アルコキシフェニルチオ基、C1~C12アルキルフェニルチオ基が好ましい。
 前記R*で表されるアリールアルキル基は、炭素数が、通常、7~60程度のものであり、好ましくは7~48のものである。アリールアルキル基としては、フェニル-C1~C12アルキル基、C1~C12アルコキシフェニル-C1~C12アルキル基、C1~C12アルキルフェニル-C1~C12アルキル基、1-ナフチル-C1~C12アルキル基、2-ナフチル-C1~C12アルキル基等が挙げられ、C1~C12アルコキシフェニル-C1~C12アルキル基、C1~C12アルキルフェニル-C1~C12アルキル基が好ましい。
 前記R*で表されるアリールアルコキシ基は、炭素数が、通常、7~60程度のものであり、好ましくは7~48のものである。アリールアルコキシ基としては、フェニルメトキシ基、フェニルエトキシ基、フェニルブトキシ基、フェニルペンチロキシ基、フェニルヘキシロキシ基、フェニルヘプチロキシ基、フェニルオクチロキシ基等のフェニル-C1~C12アルコキシ基、C1~C12アルコキシフェニル-C1~C12アルコキシ基、C1~C12アルキルフェニル-C1~C12アルコキシ基、1-ナフチル-C1~C12アルコキシ基、2-ナフチル-C1~C12アルコキシ基等が挙げられ、C1~C12アルコキシフェニル-C1~C12アルコキシ基、C1~C12アルキルフェニル-C1~C12アルコキシ基が好ましい。
 前記R*で表されるアリールアルキルチオ基は、炭素数が、通常、7~60程度のものであり、好ましくは7~48のものである。アリールアルキルチオ基としては、フェニル-C1~C12アルキルチオ基、C1~C12アルコキシフェニル-C1~C12アルキルチオ基、C1~C12アルキルフェニル-C1~C12アルキルチオ基、1-ナフチル-C1~C12アルキルチオ基、2-ナフチル-C1~C12アルキルチオ基等が挙げられ、C1~C12アルコキシフェニル-C1~C12アルキルチオ基、C1~C12アルキルフェニル-C1~C12アルキルチオ基が好ましい。
 前記R*で表されるアシル基は、炭素数が、通常、2~20程度のものであり、好ましくは2~18のものである。アシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。
 前記R*で表されるアシルオキシ基は、炭素数が、通常、2~20程度のものであり、好ましくは2~18のものである。アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。
 前記R*で表されるアミド基は、炭素数が、通常、2~20程度のものであり、好ましくは2~18のものである。アミド基としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基等が挙げられる。
 前記R*で表される酸イミド基とは、酸イミドからその窒素原子に結合した水素原子を1個除いて得られる1価の残基を意味する。この酸イミド基は、炭素数が、通常、2~60程度のものであり、好ましくは2~48のものである。酸イミド基としては、以下の構造式で示される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、窒素原子から延びた線は結合手を表し、Meはメチル基、Etはエチル基、n-Prはn-プロピル基を表す。以下、同様である。)
 前記R*で表されるイミン残基とは、イミン化合物(即ち、分子内に-N=C-を持つ有機化合物である。その例としては、アルジミン、ケチミン、及びこれらの分子中の窒素原子に結合した水素原子が、アルキル基等で置換された化合物等が挙げられる。)から水素原子1個を除いた1価の残基を意味する。このイミン残基は、通常炭素数2~20程度であり、好ましくは2~18である。具体的には、以下の構造式で示される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式中、i-Prはイソプロピル基、n-Buはn-ブチル基、t-Buはt-ブチル基を表す。波線で示した結合は、「楔形で表される結合」及び/又は「破線で表される結合」であることを意味する。ここで、「楔形で表される結合」とは、紙面からこちら側に向かって出ている結合を意味し、「破線で表される結合」とは、紙面の向こう側に出ている結合を意味する。)
 前記R*で表される置換アミノ基は、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1個又は2個の基で置換されたアミノ基を意味する。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。置換アミノ基の炭素数は、該置換基の炭素数を含めないで、通常、1~60程度であり、好ましくは2~48である。置換アミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基フェニルアミノ基、ジフェニルアミノ基、C1~C12アルコキシフェニルアミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基フェニル-C1~C12アルキルアミノ基、C1~C12アルコキシフェニル-C1~C12アルキルアミノ基、C1~C12アルキルフェニル-C1~C12アルキルアミノ基、ジ(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基、2-ナフチル-C1~C12アルキルアミノ基等が挙げられる。
 前記R*で表される置換シリル基は、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1、2又は3個の基で置換されたシリル基を意味する。置換シリル基の炭素数は、通常、1~60程度であり、好ましくは3~48である。なお、該アルキル基、アリール基、アリールアルキル基及び1価の複素環基は置換基を有していてもよい。置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、t-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシル-ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチル-ジメチルシリル基、ラウリルジメチルシリル基、フェニル-C1~C12アルキルシリル基、C1~C12アルコキシフェニル-C1~C12アルキルシリル基、C1~C12アルキルフェニル-C1~C12アルキルシリル基、1-ナフチル-C1~C12アルキルシリル基、2-ナフチル-C1~C12アルキルシリル基、フェニル-C1~C12アルキルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t-ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。
 前記R*で表される置換シリルオキシ基は、アルコキシ基、アリールオキシ基、アリールアルコキシ基及び1価の複素環オキシ基からなる群から選ばれる1、2又は3個の基で置換されたシリルオキシ基を意味する。置換シリルオキシ基の炭素数は、通常、1~60程度であり、好ましくは3~48である。該アルコキシ基、アリールオキシ基、アリールアルコキシ基及び1価の複素環オキシ基は置換基を有していてもよい。置換シリルオキシ基としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリプロピルシリルオキシ基、トリイソプロピルシリルオキシ基、ジメチルイソプロピルシリルオキシ基、ジエチルイソプロピルシリルオキシ基、t-ブチルジメチルシリルオキシ基、ペンチルジメチルシリルオキシ基、ヘキシルジメチルシリルオキシ基、ヘプチルジメチルシリルオキシ基、オクチルジメチルシリルオキシ基、2-エチルヘキシル-ジメチルシリルオキシ基、ノニルジメチルシリルオキシ基、デシルジメチルシリルオキシ基、3,7-ジメチルオクチル-ジメチルシリルオキシ基、ラウリルジメチルシリルオキシ基、フェニル-C1~C12アルキルシリルオキシ基、C1~C12アルコキシフェニル-C1~C12アルキルシリルオキシ基、C1~C12アルキルフェニル-C1~C12アルキルシリルオキシ基、1-ナフチル-C1~C12アルキルシリルオキシ基、2-ナフチル-C1~C12アルキルシリルオキシ基、フェニル-C1~C12アルキルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ-p-キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、t-ブチルジフェニルシリルオキシ基、ジメチルフェニルシリルオキシ基等が挙げられる。
 前記R*で表される置換シリルチオ基は、アルキルチオ基、アリールチオ基、アリールアルキルチオ基及び1価の複素環チオ基からなる群から選ばれる1、2又は3個の基で置換されたシリルチオ基を意味する。置換シリルチオ基の炭素数は、通常、1~60程度であり、好ましくは3~48である。該アルコキシ基、アリールチオ基、アリールアルキルチオ基及び1価の複素環チオ基は置換基を有していてもよい。置換シリルチオ基としては、トリメチルシリルチオ基、トリエチルシリルチオ基、トリプロピルシリルチオ基、トリイソプロピルシリルチオ基、ジメチルイソプロピルシリルチオ基、ジエチルイソプロピルシリルチオ基、t-ブチルジメチルシリルチオ基、ペンチルジメチルシリルチオ基、ヘキシルジメチルシリルチオ基、ヘプチルジメチルシリルチオ基、オクチルジメチルシリルチオ基、2-エチルヘキシル-ジメチルシリルチオ基、ノニルジメチルシリルチオ基、デシルジメチルシリルチオ基、3,7-ジメチルオクチル-ジメチルシリルチオ基、ラウリルジメチルシリルチオ基、フェニル-C1~C12アルキルシリルチオ基、C1~C12アルコキシフェニル-C1~C12アルキルシリルチオ基、C1~C12アルキルフェニル-C1~C12アルキルシリルチオ基、1-ナフチル-C1~C12アルキルシリルチオ基、2-ナフチル-C1~C12アルキルシリルチオ基、フェニル-C1~C12アルキルジメチルシリルチオ基、トリフェニルシリルチオ基、トリ-p-キシリルシリルチオ基、トリベンジルシリルチオ基、ジフェニルメチルシリルチオ基、t-ブチルジフェニルシリルチオ基、ジメチルフェニルシリルチオ基等が挙げられる。
 前記R*で表される置換シリルアミノ基は、アルキルアミノ基、アリールアミノ基、アリールアルキルアミノ基及び1価の複素環アミノ基からなる群から選ばれる1、2又は3個の基で置換されたシリルアミノ基を意味する。置換シリルアミノ基の炭素数は、通常、1~60程度であり、好ましくは3~48である。該アルコキシ基、アリールアミノ基、アリールアルキルアミノ基及び1価の複素環アミノ基は置換基を有していてもよい。置換シリルアミノ基としては、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリプロピルシリルアミノ基、トリイソプロピルシリルアミノ基、ジメチルイソプロピルシリルアミノ基、ジエチルイソプロピルシリルアミノ基、t-ブチルジメチルシリルアミノ基、ペンチルジメチルシリルアミノ基、ヘキシルジメチルシリルアミノ基、ヘプチルジメチルシリルアミノ基、オクチルジメチルシリルアミノ基、2-エチルヘキシル-ジメチルシリルアミノ基、ノニルジメチルシリルオアミノ基、デシルジメチルシリルアミノ基、3,7-ジメチルオクチル-ジメチルシリルアミノ基、ラウリルジメチルシリルアミノ基、フェニル-C1~C12アルキルシリルオキシ基、C1~C12アルコキシフェニル-C1~C12アルキルシリルアミノ基、C1~C12アルキルフェニル-C1~C12アルキルシリルアミノ基、1-ナフチル-C1~C12アルキルシリルアミノ基、2-ナフチル-C1~C12アルキルシリルアミノ基、フェニル-C1~C12アルキルジメチルシリルアミノ基、トリフェニルシリルアミノ基、トリ-p-キシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、t-ブチルジフェニルシリルオアミノ基、ジメチルフェニルシリルアミノ基等が挙げられる。
 前記R*で表される1価の複素環基は、複素環式化合物から水素原子1個を除いた残りの原子団を意味する。1価の複素環基の炭素数は、通常、3~60程度であり、好ましくは3~20である。なお、1価の複素環基の炭素数には、置換基の炭素数は含まれない。ここで、複素環式化合物とは、環式構造を持つ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、燐、硼素等のヘテロ原子を環内に含むものをいう。1価の複素環基としては、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基、ピペリジル基、キノリル基、イソキノリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ピラゾリル基、イミダゾリル基、ピラゾリル基、オキサジアゾリル基、トリアゾリル基、テトラゾリル基、ピリジル基、ピリミジル基、ピリダジニル基、ピラジニル基、トリアジニル基、インドリル基、インダゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、カルバゾリル基、フェノキサジニル基等が挙げられる。また、1価の複素環基は、1価の芳香族複素環基(ヘテロアリール基)であることが好ましい。
 前記R*で表されるヘテロアリールオキシ基は、炭素数が、通常、6~60程度のものであり、好ましくは7~48のものである。ヘテロアリールオキシ基としては、ピリジルオキシ基、C1~C12アルコキシピリジルオキシ基、C1~C12アルキルピリジルオキシ基、イソキノリルオキシ基等が挙げられ、C1~C12アルコキシピリジルオキシ基、C1~C12アルキルピリジルオキシ基が好ましい。
 前記C1~C12アルキルピリジルオキシ基としては、メチルピリジルオキシ基、エチルピリジルオキシ基、ジメチルピリジルオキシ基、プロピルピリジルオキシ基、1,3,5-トリメチルピリジルオキシ基、メチルエチルピリジルオキシ基、イソプロピルピリジルオキシ基、ブチルピリジルオキシ基、イソブチルピリジルオキシ基、s-ブチルピリジルオキシ基、t-ブチルピリジルオキシ基、ペンチルピリジルオキシ基、イソアミルピリジルオキシ基、ヘキシルピリジルオキシ基、ヘプチルピリジルオキシ基、オクチルピリジルオキシ基、ノニルピリジルオキシ基、デシルピリジルオキシ基、ドデシルピリジルオキシ基等が挙げられる。
 前記R*で表されるヘテロアリールチオ基は、炭素数が、通常、6~60程度のものであり、好ましくは7~48のものである。ヘテロアリールチオ基としては、ピリジルチオ基、C1~C12アルコキシピリジルチオ基、C1~C12アルキルピリジルチオ基、イソキノリルチオ基等が挙げられ、C1~C12アルコキシピリジルチオ基、C1~C12アルキルピリジルチオ基が好ましい。
 前記R*で表されるアリールアルケニル基は、炭素数が、通常、8~60程度のものであり、好ましくは8~48のものである。アリールアルケニル基としては、フェニル-C2~C12アルケニル基(「C2~C12アルケニル」は、アルケニル部分の炭素数が2~12であることを意味する。以下、同様である。)、C1~C12アルコキシフェニル-C2~C12アルケニル基、C1~C12アルキルフェニル-C2~C12アルケニル基、1-ナフチル-C2~C12アルケニル基、2-ナフチル-C2~C12アルケニル基等が挙げられ、C1~C12アルコキシフェニル-C2~C12アルケニル基、C2~C12アルキルフェニル-C1~C12アルケニル基が好ましい。
 前記R*で表されるアリールアルキニル基は、炭素数が、通常、8~60程度のものであり、好ましくは8~48のものである。アリールアルキニル基としては、フェニル-C2~C12アルキニル基(「C2~C12アルキニル」は、アルキニル部分の炭素数が2~12であることを意味する。以下、同様である。)、C1~C12アルコキシフェニル-C2~C12アルキニル基、C1~C12アルキルフェニル-C2~C12アルキニル基、1-ナフチル-C2~C12アルキニル基、2-ナフチル-C2~C12アルキニル基等が挙げられ、C1~C12アルコキシフェニル-C2~C12アルキニル基、C1~C12アルキルフェニル-C2~C12アルキニル基が好ましい。
 前記R*で表される置換カルボキシル基は、炭素数が、通常、2~60程度のものであり、好ましくは2~48のものであり、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換されたカルボキシル基を意味する。置換カルボキシル基としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、s-ブトキシカルボニル基、t-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、ピリジルオキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。該アルキル基、アリール基、アリールアルキル基及び1価の複素環基は、置換基を有していてもよい。置換カルボキシル基の炭素数には、該置換基の炭素数は含まれない。
 前記飽和複素環構造を有する化合物としては、例えば、下記式(3):
Figure JPOXMLDOC01-appb-C000007
(式中、HTは前記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の残基を表す。nは1~5の整数である。nが2以上の場合、複数存在するHTは同一であっても異なっていてもよい。Y1及びY2はそれぞれ独立に、-C(Ra)(Rb)-、-N(Rc)-、-O-、-Si(Rd)(Re)-、-P(Rf)-、-S-、-C(=O)-又は-C(Rg)=C(Rh)-を表す。Ra、Rb、Rc、Rd、Re、Rf、Rg及びRhはそれぞれ独立に、水素原子又は置換基を表す。m1及びm2はそれぞれ独立に、0~5の整数である。m1が2以上の場合、複数存在するY1は同一であっても異なっていてもよい。m2が2以上の場合、複数存在するY2は同一であっても異なっていてもよい。ET1及びET2はそれぞれ独立に、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表す。)
で表される化合物、及びその残基(即ち、該化合物における水素原子の一部又は全部を取り除いてなる基)を有する化合物が挙げられる。
 前記式(3)中、nは、好ましくは1~3の整数であり、より好ましくは1又は2であり、特に好ましくは1である。
 前記式(3)中、m1及びm2は、好ましくは0~3の整数であり、より好ましくは0又は1である。
 一般に、化合物が大きく剛直な方が熱的安定性に優れる。本発明の組成物に含まれる前記飽和複素環構造を有する化合物においては、T1エネルギーを大きく低下させることなく該化合物の剛直性を維持することにより、配向性やキャリア輸送性等へ対する悪影響を抑制することができる。
 前記式(3)中、ET1及びET2で表される置換基を有していてもよいアリール基としては、フェニル基、C1~C12アルコキシフェニル基(「C1~C12アルコキシ」は、アルコキシ部分の炭素数が1~12であることを意味する。以下、同様である。)、C1~C12アルキルフェニル基(「C1~C12アルキル」は、アルキル部分の炭素数が1~12であることを意味する。以下、同様である。)、1-ナフチル基、2-ナフチル基、ペンタフルオロフェニル基等が挙げられ、フェニル基、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基が好ましい。
 前記式(3)中、ET1及びET2で表される置換基を有していてもよいヘテロアリール基としては、環を構成する原子として炭素原子の他に、酸素原子、硫黄原子及び窒素原子からなる群から選ばれるヘテロ原子を含有するヘテロアリール基等が挙げられ、例えば、チエニル基、フリル基、ピロリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ピラゾリル基、イミダゾリル基、ピラゾリル基、オキサジアゾリル基、トリアゾリル基、テトラゾリル基、ピリジル基、ピリミジル基、ピリダジニル基、ピラジニル基、トリアジニル基、インドリル基、インダゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、カルバゾリル基、フェノキサジニル基等が好ましく、ピリジル基、ピリミジル基、ピリダジニル基、ピラジニル基、トリアジニル基、インドリル基、インダゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、カルバゾリル基がより好ましい。
 前記式(3)中、溶解性や最高占有軌道(以下、「HOMO」という。)又はLUMOのエネルギーレベルの観点から、ET1及びET2の少なくとも一方が、置換基を有していてもよいヘテロアリール基であることが好ましく、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基で置換されたヘテロアリール基であることがより好ましく、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、炭素数3~10のアルキル基若しくは炭素数3~10のアルコキシ基で置換されたアリール基、又は炭素数3~10のアルキル基若しくは炭素数3~10のアルコキシ基で置換されたヘテロアリール基であることが特に好ましい。
 前記式(3)中、Ra、Rb、Rc、Rd、Re、Rf、Rg及びRhで表される置換基は、前記R*で表される置換基として説明し例示したものと同じである。
 前記飽和複素環構造を有する化合物は、その他の部分構造を含んでいてもよい。その他の部分構造の種類は、それが末端に存在するか否かによって好ましいその他の部分構造の種類は異なる。
 その他の部分構造が末端に存在する場合は、安定な置換基であればよく、合成の容易さ等の観点から、前記R*で表される置換基又は水素原子が好ましい。
 その他の部分構造が末端以外に存在する場合は、通常、安定な多価の基であるが、LUMOやHOMOのエネルギーレベルの点で、共役する性質の多価の基が好ましい。このような基として、2価の芳香族基、3価の芳香族基が挙げられる。ここで、芳香族基とは、芳香族性を示す有機化合物から誘導される基である。そのような芳香族基としては、例えば、ベンゼン、ナフタレン、アントラセン、ピリジン、キノリン、イソキノリン等の芳香環からn’個(n’は2又は3)の水素原子を結合手に置き換えてなる基が挙げられる。
 前記飽和複素環構造を有する化合物に含まれていてもよいその他の部分構造としては、下記式(4):
Figure JPOXMLDOC01-appb-C000008
(式中、P環及びQ環はそれぞれ独立に芳香環を示すが、P環は存在してもしなくてもよい。2本の結合手は、P環が存在する場合は、それぞれP環又はQ環上に存在し、P環が存在しない場合は、それぞれYを含む5員環若しくは6員環上又はQ環上に存在する。また、前記P環、Q環、Yを含む5員環若しくは6員環上に、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アルケニル基、アルキニル基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基を有していてもよい。この置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基が好ましい。Yは、-O-、-S-、-Se-、-B(R0)-、-Si(R2)(R3)-、-P(R4)-、-P(R5)(=O)-、-C(R6)(R7)-、-N(R8)-、-C(R9)(R10)-C(R11)(R12)-、-O-C(R13)(R14)-、-S-C(R15)(R16)-、-N-C(R17)(R18)-、-Si(R19)(R20)-C(R21)(R22)-、-Si(R23)(R24)-Si(R25)(R26)-、-C(R27)=C(R28)-、-N=C(R29)-、又は-Si(R30)=C(R31)-を表す。R0及びR2~R31はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基又はハロゲン原子を表す。)
で表される構造が好ましい。
 前記式中、R0及びR2~R31としては、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基、ハロゲン原子が好ましく、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、1価の複素環基がより好ましく、アルキル基、アルコキシ基、アリール基、1価の複素環基が更に好ましく、アルキル基、アリール基が特に好ましい。
 前記式(4)で表される構造としては、下記式(4-1)、(4-2)又は(4-3):
Figure JPOXMLDOC01-appb-C000009
(式中、A環、B環、及びC環はそれぞれ独立に芳香環を示す。式(4-1)、(4-2)及び(4-3)は、それぞれ、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基を有していてもよい。Yは前記と同じ意味を表す。)
で表される構造、及び下記式(4-4)又は(4-5):
Figure JPOXMLDOC01-appb-C000010
(式中、D環、E環、F環及びG環はそれぞれ独立に、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基を有していてもよい芳香環を表す。Yは前記と同じ意味を表す。)
で表される構造が挙げられる。
 前記式(4-4)及び(4-5)中、Yは、発光効率の観点から、炭素原子、窒素原子、酸素原子又は硫黄原子が好ましい。
 前記式(4-1)~(4-5)中、A環~G環で表される芳香環としては、非置換のものを一例として示すと、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、フェナントレン環等の芳香族炭化水素環;ピリジン環、ビピリジン環、フェナントロリン環、キノリン環、イソキノリン環、チオフェン環、フラン環、ピロール環等の複素芳香環が挙げられる。これらの芳香環は、置換基を有していてもよい。
 前記飽和複素環構造を有する化合物に含まれていてもよいその他の部分構造としては、以下の式で表される構造の芳香族アミン構造も挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式中、Ar6、Ar7、Ar8及びAr9はそれぞれ独立にアリーレン基又は2価の複素環基を示す。Ar10、Ar11及びAr12はそれぞれ独立にアリール基又は1価の複素環基を示す。Ar6~Ar12は置換基を有していてもよい。x及びyはそれぞれ独立に0又は1を示し、0≦x+y≦1である。)
 Ar6、Ar7、Ar8、Ar9で表されるアリーレン基とは、芳香族炭化水素から、水素原子2個を除いた残りの原子団である。芳香族炭化水素としては、縮合環をもつ化合物、独立したベンゼン環又は縮合環2個以上が直接又はビニレン基等を介して結合した化合物が含まれる。
 Ar6、Ar7、Ar8、Ar9で表される2価の複素環基とは、複素環式化合物から水素原子2個を除いた残りの原子団である。2価の複素環基の炭素数は、通常、4~60程度である。複素環式化合物とは、環式構造を持つ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、燐、硼素等のヘテロ原子を環内に含む化合物を意味する。2価の複素環基としては、2価の芳香族複素環基が好ましい。
 Ar10、Ar11、Ar12で表されるアリール基とは、芳香族炭化水素から水素原子1個を除いた残りの原子団である。芳香族炭化水素は、前述のとおりである。
 Ar10、Ar11、Ar12で表される1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団を意味する。1価の複素環基の炭素数は、通常、4~60程度である。複素環式化合物は、前述のとおりである。1価の複素環基としては、1価の芳香族複素環基が好ましい。
 前記飽和複素環構造を有する化合物が高分子化合物である場合、該化合物のポリスチレン換算の重量平均分子量は、成膜性の観点から、3×102以上が好ましく、3×102~1×107がより好ましく、1×103~1×107がさらに好ましく、1×104~1×107が特に好ましい。
 前記飽和複素環構造を有する化合物は、広い発光波長領域で用いることができるが、そのためには、好ましくは、該化合物のT1エネルギーの値が3.0eV以上であることが好ましく、3.2eV以上であることがより好ましく、3.4eV以上であることがさらに好ましく、3.6eV以上であることが特に好ましい。また、通常、上限は5.0eVである。
 前記飽和複素環構造を有する化合物のHOMOのエネルギーレベルの絶対値は、6.0eV以下であることが好ましく、5.8eV以下であることがより好ましく、5.6eV以下であることがさらに好ましい。また、通常、下限は5.0eVである。
 前記飽和複素環構造を有する化合物のLUMOのエネルギーレベルの絶対値は、1.5eV以上であることが好ましく、1.7eV以上であることがより好ましく、1.9eV以上であることがさらに好ましく、2.1eV以上であること特に好ましい。また、通常、上限は4.0eVである。
 本明細書において、各化合物のT1エネルギーの値、LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値は、計算科学的手法により算出した値を用いる。本明細書において、計算科学的手法としては、量子化学計算プログラムGaussian03を用い、HF(Hartree-Fock)法により基底状態の構造最適化を行い、該最適化された構造において、B3P86レベルの時間依存密度汎関数法を用いて、T1エネルギー及びLUMOのエネルギーレベルの値を算出する。その際、基底関数として6-31g*を用いる。基底関数6-31g*を使用できない場合は、LANL2DZを用いる。
 前記飽和複素環構造を有する化合物が高分子化合物であって、該高分子化合物を構成する繰り返し単位が1種類の場合、該繰り返し単位をAとすると、該飽和複素環式化合物を有する化合物は、下記式:
Figure JPOXMLDOC01-appb-C000012
(式中、nは重合数を表す。)
で表される。ここで、n=1、2及び3の構造に対して、T1エネルギーの値、LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値を算出し、算出されたT1エネルギーの値、LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値を(1/n)の関数として線形近似した場合のn=∞の値を、該高分子のT1エネルギーの値、LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値と定義する。
 前記飽和複素環構造を有する化合物が高分子化合物であって、該高分子化合物を構成する繰り返し単位が2種類以上存在する場合、組成比を満足するすべての場合についてn=∞(ここで、nは繰り返し単位の重合数)におけるT1エネルギーの値を前記と同様の方法で算出し、その中で最低のT1エネルギーの値を該化合物のT1エネルギーの値と定義する。LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値は、最低のT1エネルギーの値を与える繰り返し単位におけるn=∞の値を、該高分子化合物のLUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値と定義する。本発明では、その「LUMOのエネルギーレベルの値」及び「HOMOのエネルギーレベルの値」の絶対値(即ち、LUMO、HOMOのエネルギーレベルの値が負の場合、絶対値とは当該負の符号を取った値を意味する。)が重要である。
 前記飽和複素環構造を有する化合物が、前記式(3)で表される化合物の残基を含む場合には、ET1及びET2で表される基の少なくとも一方(好ましくは、ET1及びET2で表される基)が、少なくとも2個のπ共役電子を有する部分構造と結合していることが好ましい。さらに、ET1及びET2で表される基が、少なくとも2個のπ共役電子を有する部分構造と結合しており、ET1及びET2で表される基と該部分構造との間の2面角が20°以上であることが好ましく、30°以上であることがより好ましく、50°以上であることがさらに好ましく、65°以上であることが特に好ましく、75°以上であることがとりわけ好ましい。
 また、前記飽和複素環構造を有する化合物において、芳香環、ヘテロ芳香環等の不飽和環が結合して存在する場合、あらゆる不飽和環の間の2面角が、30°以上であることが好ましく、50°以上であることがより好ましく、65°以上であることがさらに好ましく、75°以上であることが特に好ましい。
 ここで、本明細書において、「2面角」とは、基底状態における最適化構造から算出される角度を意味する。2面角は、例えば、前記式(3)では、ET1又はET2で表される基において結合位置にある炭素原子(a1)とa1に隣接する炭素原子又は窒素原子(a2)、及びET1又はET2で表される基と結合している構造の結合位置にある原子(a3)とa3に隣接する原子(a4)で規定される。ここで、原子(a2)又は原子(a4)が複数選択可能な場合は、すべての場合について2面角を算出し、その中で値が最低の値(180°以下である)を2面角とする。原子(a3)及び(a4)は、π共役電子を有する原子であり、より好ましくは、炭素原子、窒素原子、珪素原子、リン原子である。本明細書においては、計算科学的手法により求められるn=3(nは重合数)の構造の基底状態における最適化構造(即ち、該構造の生成エネルギーが最小となる構造)から算出する。前記飽和複素環構造を有する化合物において、前記2面角が複数存在する場合は、すべての2面角が前記条件を満たしていることが好ましい。
 前記飽和複素環構造を有する化合物としては、以下の式(5-1)~(5-30)で表される化合物が挙げられる。下式(5-1)~(5-30)中、Rは水素原子又は置換基を表す。Rで表される置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、置換基を有していてもよいアリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいヘテロアリール基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、置換カルボキシル基、シアノ基が挙げられ、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基が好ましい。複数存在するR及びR*は、それぞれ、同一であっても異なっていてもよい。R*は、前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 前記飽和複素環構造を有する化合物としては、以下の化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(式中、nは重合数を表す。)
 -燐光発光性化合物-
 前記燐光発光性化合物としては、三重項発光錯体等の公知の化合物が使用でき、例えば、従来から低分子系のEL発光性材料として利用されてきた化合物が挙げられる。これらは、例えば、Nature, (1998), 395, 151、Appl. Phys. Lett. (1999), 75(1), 4、Proc. SPIE-Int. Soc. Opt. Eng. (2001), 4105(Organic Light-Emitting Materials and DevicesIV), 119、J. Am. Chem. Soc., (2001), 123, 4304、Appl. Phys. Lett., (1997), 71(18), 2596、Syn. Met., (1998), 94(1), 103、Syn. Met., (1999), 99(2), 1361、Adv. Mater., (1999), 11(10), 852、Inorg. Chem., (2003), 42, 8609、Inorg. Chem., (2004), 43, 6513、Journal of the SID 11/1、161(2003)、WO2002/066552、WO2004/020504、WO2004/020448等に開示されている。これらの中でも、金属錯体のHOMOにおける、中心金属の最外殻d軌道の軌道係数の2乗の和が、全原子軌道係数の2乗の和において占める割合が1/3以上であることが、高発光効率を得る観点で好ましく、例えば、中心金属が第6周期に属する遷移金属である、オルトメタル化錯体等が挙げられる。
 前記三重項発光錯体の中心金属としては、通常、原子番号50以上の原子で、該錯体にスピン-軌道相互作用があり、一重項状態と三重項状態間の項間交差を起こし得る金属であり、金、白金、イリジウム、オスミウム、レニウム、タングステン、ユーロピウム、テルビウム、ツリウム、ディスプロシウム、サマリウム、プラセオジム、ガドリニウム、イッテルビウムの原子が好ましく、より好ましくは、金、白金、イリジウム、オスミウム、レニウム、タングステンの原子であり、さらに好ましくは、金、白金、イリジウム、オスミウム、レニウムの原子であり、特に好ましくは、金、白金、イリジウム、レニウムの原子であり、とりわけ好ましくは、白金及びイリジウムの原子である。
 前記三重項発光錯体の配位子としては、8-キノリノール及びその誘導体、ベンゾキノリノール及びその誘導体、2-フェニル-ピリジン及びその誘導体等が挙げられる。
 前記燐光発光性化合物は、溶解性の観点から、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基等の置換基を有する化合物であることが好ましい。さらに、該置換基は、水素原子以外の原子の総数が3以上のであることが好ましく、5以上であることがより好ましく、7以上であることがさらに好ましく、10以上であることが特に好ましい。また、該置換基は、各配位子に少なくとも1個存在することが好ましく、該置換基の種類は、配位子毎に同一であっても異なっていてもよい。
 前記燐光発光性化合物としては、例えば、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(式中、tBuは、tert-ブチル基を表す。)
 本発明の組成物における前記燐光発光性化合物の含有量は、前記飽和複素環構造を有する化合物100重量部に対して、通常、0.01~80重量部であり、好ましくは0.1~30重量部であり、より好ましくは0.1~15重量部であり、特に好ましくは0.1~10重量部である。なお、本発明の組成物において、前記飽和複素環構造を有する化合物、前記燐光発光性化合物は、各々、一種単独で用いても二種以上を併用してもよい。
 本発明の組成物は、本発明の目的を損なわない範囲で、前記飽和複素環構造を有する化合物、前記燐光発光性化合物以外の任意成分を含んでいてもよい。この任意成分としては、例えば、正孔輸送材料、電子輸送材料、酸化防止剤等が挙げられる。
 前記正孔輸送材料としては、有機EL素子等の発光素子の正孔輸送材料として公知の芳香族アミン、カルバゾール誘導体、ポリパラフェニレン誘導体等が挙げられる。
 前記電子輸送材料としては、有機EL素子等の発光素子の電子輸送材料として公知のオキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体が挙げられる。
 本発明の組成物において、前記飽和複素環構造を有する化合物のT1エネルギーの値(ETP)と前記燐光発光性化合物のT1エネルギーの値(ETT)とが、下記式:
 ETP > ETT     (eV)
を満たすことが、高効率発光の観点から好ましく、
 ETP > ETT+0.1 (eV)
を満たすことが、より好ましく、
 ETP > ETT+0.2 (eV)
を満たすことが、さらに好ましい。
 <高分子>
 本発明の高分子化合物は、前記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)及び(2-4)からなる群から選ばれる式で表される化合物の残基と、前記燐光発光性化合物の残基とを有する高分子化合物である。前記燐光発光性化合物及び前記飽和複素環構造を有する化合物は、前記組成物の項で説明し例示したものと同様である。本発明の高分子化合物は、前記燐光発光性化合物の残基を、分子鎖の主鎖、末端、側鎖のいずれに有していてもよい。
 <薄膜>
 本発明の薄膜には、発光性薄膜、有機半導体薄膜等がある。これらの薄膜は、本発明の組成物等を用いてなるものである。
 本発明の薄膜は、溶液の塗布、蒸着、転写等により作製することができる。溶液の塗布には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット法等を用いればよい。
 前記溶液の調製に用いる溶媒としては、本発明の組成物等を溶解又は均一に分散できるものが好ましい。該溶媒としては、塩素系溶媒(クロロホルム、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等)、エーテル系溶媒(テトラヒドロフラン、ジオキサン等)、芳香族炭化水素系溶媒(トルエン、キシレン等)、脂肪族炭化水素系溶媒(シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン等)、ケトン系溶媒(アセトン、メチルエチルケトン、シクロヘキサノン等)、エステル系溶媒(酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等)、多価アルコール及びその誘導体(エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-ヘキサンジオール等)、アルコール系溶媒(メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等)、スルホキシド系溶媒(ジメチルスルホキシド等)、アミド系溶媒(N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等)が挙げられる。これらの溶媒は、一種単独で用いても二種以上を併用してもよい。
 インクジェット法を用いる場合には、ヘッドからの吐出性、ばらつき等の改善のために、溶液中の溶媒の選択、添加剤として公知の方法を用いることができる。この場合、溶液の粘度が、25℃において1~100mPa・sであることが好ましい。また、あまり蒸発が著しいとヘッドから吐出を繰り返すことが難しくなる傾向がある。上記のような観点で、用いられる好ましい溶媒としては、アニソール、ビシクロヘキシル、キシレン、テトラリン、ドデシルベンゼン等を含む単独又は混合の溶媒が挙げられる。一般的には、複数の溶媒を混合する方法、組成物の溶液中での濃度を調整する方法等によって用いた組成物に合ったインクジェット用の溶液を得ることができる。
 <発光素子>
 次に、本発明の発光素子について説明する。
 本発明の発光素子は、本発明の組成物等を用いてなるものであり、通常、陽極及び陰極からなる電極間に本発明の組成物等を含むが、それらは前記薄膜の形態で発光層として含まれることが好ましい。また、発光効率、耐久性等の性能を向上させる観点から、他の機能を有する公知の層を含んでいてもよい。このような層としては、例えば、電荷輸送層(即ち、正孔輸送層、電子輸送層)、電荷阻止層(即ち、正孔阻止層、電子阻止層)、電荷注入層(即ち、正孔注入層、電子注入層)、バッファ層等が挙げられる。なお、本発明の発光素子において、発光層、電荷輸送層、電荷阻止層、電荷注入層、バッファ層等は、各々、一層からなるものでも二層以上からなるものでもよい。
 前記発光層は、発光する機能を有する層である。前記正孔輸送層は、正孔を輸送する機能を有する層である。前記電子輸送層は、電子を輸送する機能を有する層である。これら電子輸送層と正孔輸送層を総称して電荷輸送層と言う。また、電荷阻止層は、正孔又は電子を発光層に閉じ込める機能を有する層であり、電子を輸送し、かつ正孔を閉じ込める層を正孔阻止層と言い、正孔を輸送し、かつ電子を閉じ込める層を電子阻止層と言う。
 前記バッファ層としては、陽極に隣接して導電性高分子化合物を含む層が挙げられる。
 本発明の発光素子の具体例としては、以下のa)~q)の構造が挙げられる。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/発光層/正孔阻止層/陰極
e)陽極/正孔輸送層/発光層/電子輸送層/陰極
f)陽極/電荷注入層/発光層/陰極
g)陽極/発光層/電荷注入層/陰極
h)陽極/電荷注入層/発光層/電荷注入層/陰極
i)陽極/電荷注入層/正孔輸送層/発光層/陰極
j)陽極/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
l)陽極/電荷注入層/発光層/電子輸送層/陰極
m)陽極/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
o)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/陰極
p)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
q)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下、同じである。なお、発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。)
 本発明の発光素子が正孔輸送層を有する場合(通常、正孔輸送層は、正孔輸送材料を含有する)、正孔輸送材料としては公知の材料が挙げられ、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体等の高分子正孔輸送材料が挙げられ、さらに、特開昭63-70257号公報、同63-175860号公報、特開平2-135359号公報、同2-135361号公報、同2-209988号公報、同3-37992号公報、同3-152184号公報に記載されている化合物も挙げられる。
 本発明の発光素子が電子輸送層を有する場合(通常、電子輸送層は、電子輸送材料を含有する)、電子輸送材料としては公知の材料が挙げられ、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。
 正孔輸送層及び電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層及び電子輸送層の膜厚は、例えば、1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(即ち、正孔注入層、電子注入層の総称である。以下、同じである。)と呼ばれることがある。
 さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は絶縁層(通常、平均膜厚で0.5nm~4nmである。)を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファ層を挿入してもよい。
 積層する層の順番や数、及び各層の厚さは、発光効率や素子寿命を勘案して適宜選択することができる。
 電荷注入層としては、導電性高分子化合物を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層等が挙げられる。
 電荷注入層に用いる材料としては、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子化合物、金属フタロシアニン(銅フタロシアニン等)、カーボン等が挙げられる。
 絶縁層は、電荷注入を容易にする機能を有するものである。前記絶縁層の材料としては、例えば、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。前記絶縁層を設けた発光素子としては、陰極に隣接して絶縁層を設けた発光素子、陽極に隣接して絶縁層を設けた発光素子が挙げられる。
 本発明の発光素子は、通常、基板上に形成される。前記基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン等の基板が挙げられる。不透明な基板の場合には、反対の電極が透明又は半透明であることが好ましい。
 本発明の発光素子が有する陽極及び陰極の少なくとも一方は、通常、透明又は半透明である。その中でも、陽極側が透明又は半透明であることが好ましい。
 陽極の材料としては、通常、導電性の金属酸化物膜、半透明の金属薄膜等が用いられ、例えば、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性無機化合物を用いて作製された膜(NESA等)や、金、白金、銀、銅等が挙げられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。その作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。なお、陽極を2層以上の積層構造としてもよい。
 陰極の材料としては、通常、仕事関数の小さい材料が好ましく、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2個以上の合金、又はそれらのうち1個以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1個以上との合金、グラファイト又はグラファイト層間化合物等が用いられる。合金の具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。なお、陰極を2層以上の積層構造としてもよい。
 本発明の発光素子は、面状光源、表示装置(例えば、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置等)、そのバックライト(例えば、前記発光素子をバックライトとして備えた液晶表示装置)等として用いることができる。
 本発明の発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極のいずれか一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる材料を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。
 さらに、前記面状の発光素子は、通常、自発光薄型であり、液晶表示装置のバックライト用の面状光源、照明(例えば、面状の照明、該照明用の光源)等として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源、照明、表示装置等としても使用できる。
 本発明の組成物等は、素子の作製に有用であるだけではなく、有機半導体材料等の半導体材料、発光材料、光学材料、導電性材料(例えば、ドーピングにより適用する。)として用いることもできる。したがって、本発明の組成物等を用いて、発光性薄膜、導電性薄膜、有機半導体薄膜等の薄膜を作製することができる。
 本発明の組成物等は、前記発光素子の発光層に用いられる薄膜(発光性薄膜)の作製方法と同様の方法で、導電性薄膜及び半導体薄膜を製膜、素子化することができる。半導体薄膜は、電子移動度又は正孔移動度のいずれか大きい方が、10-5cm2/V/秒以上であることが好ましい。また、有機半導体薄膜は、有機太陽電池、有機トランジスタ等に用いることができる。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 <実施例1>
 WO02/066552に記載の方法で合成した下記式:
Figure JPOXMLDOC01-appb-C000023
で表される燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000024
で表される化合物(C-1)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、前記燐光発光性化合物(MC-1)からの強い緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 化合物(C-1)のT1エネルギーの値は3.6eVであり、HOMOのエネルギーレベルの絶対値EHOMOは5.9eVであった。また、燐光発光性化合物(MC-1)のT1エネルギーの値は2.7eVであった。
 パラメータの計算は、発明の詳細な説明に記載の計算科学的手法で行った。具体的には、化合物(C-1)に対して、HF法により構造最適化を行った。その際、基底関数としては、6-31G*を用いた。その後、同一の基底関数を用いて、B3P86レベルの時間依存密度汎関数法により、HOMOのエネルギーレベルの値及びT1エネルギーの値を算出した。
 <実施例2>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000025
で表される化合物(C-2)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-2)のT1エネルギーの値は3.4eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.7eVであった。
 <実施例3>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000026
で表される化合物(C-3)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-3)のT1エネルギーの値は3.8eVであった。
 <実施例4>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000027
で表される化合物(C-4)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-4)のT1エネルギーの値は4.0eVであった。
 <実施例5>
 実施例1において、燐光発光性化合物(MC-1)に代えて下記式:
Figure JPOXMLDOC01-appb-C000028
で表される燐光発光性化合物(MC-2)を用いた以外は、実施例1と同様にして、混合物(溶液)を調製し、得られた固体膜に254nmの紫外線を照射したところ、燐光発光性化合物(MC-2、アメリカンダイソース社製、商品名:ADS065BE)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 計算科学的手法により算出した燐光発光性化合物(MC-2)のT1エネルギーの値は2.9eVであった。
 <実施例6>
 実施例2において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例2と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例7>
 実施例3において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例3と同様にして、混合物(溶液)を調製し、254nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例8>
 実施例4において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例4と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例9>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000029
で表される化合物(C-5)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-5)のT1エネルギーの値は3.4eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.5eVであった。
 <実施例10>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000030
で表される化合物(C-6)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-6)のT1エネルギーの値は3.4eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.7eVであった。
 <実施例11>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000031
で表される化合物(C-7)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例12>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000032
で表される化合物(C-8)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-8)のT1エネルギーの値は3.8eVであった。
 <実施例13>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000033
で表される化合物(C-9)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-9)のT1エネルギーの値は3.1eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.5eVであった。
 <実施例14>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000034
で表される化合物(C-10)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-10)のT1エネルギーの値は3.5eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.7eVであった。
 <実施例15>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000035
で表される化合物(C-11)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-11)のT1エネルギーの値は3.6eVであった。
 <実施例16>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000036
で表される化合物(C-12)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-12)のT1エネルギーの値は3.6eVであった。
 <実施例17>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000037
で表される化合物(C-13)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-13)のT1エネルギーの値は3.6eVであった。
 <実施例18>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000038
で表される化合物(C-14)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-14)のT1エネルギーの値は3.8eVであった。
 <実施例19>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000039
で表される化合物(C-15)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-15)のT1エネルギーの値は3.6eVであった。
 <実施例20>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000040
で表される化合物(C-16)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-16)のT1エネルギーの値は3.4eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.5eVであった。
 <実施例21>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000041
で表される化合物(C-17)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-17)のT1エネルギーの値は3.8eVであった。
 <実施例22>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000042
で表される化合物(C-18)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-18)のT1エネルギーの値は3.6eVであった。
 <実施例23>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000043
で表される化合物(C-19)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-19)のT1エネルギーの値は3.6eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.5eVであった。
 <実施例24>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000044
で表される化合物(C-20)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-20)のT1エネルギーの値は3.5eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.6eVであった。
 <実施例25>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000045
で表される化合物(C-21)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-21)のT1エネルギーの値は3.5eVであり、LUMOのエネルギーレベルの絶対値ELUMOは2.2eVであった。
 <実施例26>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000046
で表される化合物(C-22)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-22)のT1エネルギーの値は3.7eVであり、LUMOのエネルギーレベルの絶対値ELUMOは2.2eVであった。
 <実施例27>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000047
で表される化合物(C-23)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例28>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000048
で表される化合物(C-24)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-24)のT1エネルギーの値は3.8eVであった。
 <実施例29>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000049
で表される化合物(C-25)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-25)のT1エネルギーの値は3.6eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.9eVであった。
 <実施例30>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000050
で表される化合物(C-26)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-26)のT1エネルギーの値は3.5eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.9eVであった。
 <実施例31>
 燐光発光性化合物(MC-1)のTHF溶液(0.05重量%)に対して、約5倍重量の下記式:
Figure JPOXMLDOC01-appb-C000051
で表される化合物(C-27)のTHF溶液(約1重量%)を混合し、混合物(溶液)を調製した。この混合物10μlをスライドガラスに滴下し、風乾させることにより、固体膜を得た。この固体膜に、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの緑色発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 パラメータの計算は、実施例1と同様に計算科学的手法で行った。化合物(C-27)のT1エネルギーの値は3.8eVであった。
 <実施例32>
 実施例9において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例9と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例33>
 実施例10において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例10と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例34>
 実施例14において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例14と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例35>
 実施例22において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例22と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例36>
 実施例23において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例23と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例37>
 実施例25において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例25と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例38>
 実施例26において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例26と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <実施例39>
 実施例29において、燐光発光性化合物(MC-1)に代えて燐光発光性化合物(MC-2)を用いた以外は、実施例29と同様にして、混合物(溶液)を調製し、365nmの紫外線を照射したところ、燐光発光性化合物(MC-2)からの強い発光が得られたことから、前記混合物の発光効率が高いことが認められた。
 <比較例1>
 下記式:
Figure JPOXMLDOC01-appb-C000052
(式中、nは重合数である。)
で表される高分子化合物(P-1)のn=∞における外挿値である最低三重項励起エネルギーの値T1(1/n=0)は2.6eVであり、最低非占分子軌道のエネルギーレベルの絶対値ELUMO(1/n=0)は2.1eVであり、最小の2面角は45°であった。
 パラメータの計算は、下記の簡略化した繰り返し単位(M-3):
Figure JPOXMLDOC01-appb-C000053
を用いて、実施例1と同様にして算出した。
 次いで、高分子化合物(P-3)と燐光発光性化合物(MC-1)とからなる混合物10μlを調製し、それをスライドガラスに滴下し、風乾させることにより、固体膜を得た。これに、365nmの紫外線を照射したところ、燐光発光性化合物(MC-1)からの発光が弱かったことから、前記混合物の発光効率が低いことが認められた。
 本発明の組成物等は発光効率が優れた発光素子を作製するために用いることができる。

Claims (18)

  1.  窒素原子を含む環の構成員数が5以上の飽和複素環構造を有する化合物と、燐光発光性化合物とを含有する組成物。
  2.  前記飽和複素環構造を有する化合物が、下記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)及び(2-4)からなる群から選ばれる式で表される化合物の残基を有する化合物である請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R*は、水素原子又は置換基を表すか、同一の炭素原子に結合した2個のR*が一体となって=Oを表す。複数存在するR*は、同一であっても異なっていてもよい。)
  3.  前記飽和複素環構造を有する化合物が、下記式(3)で表される化合物、又はその残基を有する化合物である請求項2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、HTは前記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の残基を表す。nは1~5の整数である。nが2以上の場合、複数存在するHTは同一であっても異なっていてもよい。Y1及びY2はそれぞれ独立に、-C(Ra)(Rb)-、-N(Rc)-、-O-、-Si(Rd)(Re)-、-P(Rf)-、-S-、-C(=O)-又は-C(Rg)=C(Rh)-を表す。Ra、Rb、Rc、Rd、Re、Rf、Rg及びRhはそれぞれ独立に、水素原子又は置換基を表す。m1及びm2はそれぞれ独立に、0~5の整数である。m1が2以上の場合、複数存在するY1は同一であっても異なっていてもよい。m2が2以上の場合、複数存在するY2は同一であっても異なっていてもよい。ET1及びET2はそれぞれ独立に、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表す。)
  4.  前記ET1及びET2の少なくとも一方が、置換基を有していてもよいヘテロアリール基である請求項3に記載の組成物。
  5.  前記置換基を有していてもよいヘテロアリール基が、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基で置換されたヘテロアリール基である請求項4に記載の組成物。
  6.  前記置換基を有していてもよいヘテロアリール基が、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、炭素数3~10のアルキル基若しくは炭素数3~10のアルコキシ基で置換されたアリール基、又は炭素数3~10のアルキル基若しくは炭素数3~10のアルコキシ基で置換されたヘテロアリール基である請求項5に記載の組成物。
  7.  計算科学的手法により算出した、前記飽和複素環構造を有する化合物の最低三重項励起エネルギーの値が3.0eV以上である請求項1~6のいずれか一項に記載の組成物。
  8.  計算科学的手法により算出した、前記飽和複素環構造を有する化合物の最低非占有分子軌道のエネルギーレベルの絶対値が1.5eV以上である1~7のいずれか一項に記載の組成物。
  9.  計算科学的手法により算出した、前記飽和複素環構造を有する化合物の最高占有分子軌道のエネルギーレベルの絶対値が6.0eV以下である1~7のいずれか一項に記載の組成物。
  10.  前記式(3)で表される化合物又はその残基を含む化合物において、ET1及びET2で表される基が、少なくとも2個のπ共役電子を有する部分構造と結合しており、ET1及びET2で表される基と該部分構造との間の2面角が20°以上である請求項3~9のいずれか一項に記載の組成物。
  11.  前記飽和複素環構造を有する化合物の最低三重項励起エネルギーの値(ETP)と前記燐光発光性化合物の最低三重項励起エネルギーの値(ETT)とが、下記式:
     ETP > ETT (eV)
    を満たす請求項1~10のいずれか一項に記載の組成物。
  12.  前記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の残基を繰り返し単位として有する化合物が高分子化合物である請求項2~11のいずれか一項に記載の組成物。
  13.  下記式(1-1)、(1-2)、(1-3)、(2-1)、(2-2)、(2-3)及び(2-4)からなる群から選ばれる式で表される化合物の残基と、前記燐光発光性化合物の残基とを有する高分子化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R*は、水素原子又は置換基を表すか、同一の炭素原子に結合した2個のR*が一体となって=Oを表す。複数存在するR*は、同一であっても異なっていてもよい。)
  14.  請求項1~12のいずれか一項に記載の組成物又は請求項13に記載の高分子化合物を用いてなる薄膜。
  15.  請求項1~12のいずれか一項に記載の組成物又は請求項13に記載の高分子化合物を用いてなる発光素子。
  16.  請求項15に記載の発光素子を備えた面状光源。
  17.  請求項15に記載の発光素子を備えた表示装置。
  18.  請求項15に記載の発光素子を備えた照明。
PCT/JP2009/061363 2008-06-23 2009-06-23 組成物及び同組成物を用いてなる発光素子 WO2009157426A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980129129XA CN102106015A (zh) 2008-06-23 2009-06-23 组合物以及使用该组合物制成的发光元件
EP09770136A EP2309563A4 (en) 2008-06-23 2009-06-23 COMPOSITION AND LIGHT-EMITTING ELEMENT USING THE COMPOSITION
US13/000,523 US20110121236A1 (en) 2008-06-23 2009-06-23 Composition and light-emitting element using the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-163040 2008-06-23
JP2008163040 2008-06-23

Publications (1)

Publication Number Publication Date
WO2009157426A1 true WO2009157426A1 (ja) 2009-12-30

Family

ID=41444492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061363 WO2009157426A1 (ja) 2008-06-23 2009-06-23 組成物及び同組成物を用いてなる発光素子

Country Status (7)

Country Link
US (1) US20110121236A1 (ja)
EP (1) EP2309563A4 (ja)
JP (1) JP2010031247A (ja)
KR (1) KR20110018376A (ja)
CN (1) CN102106015A (ja)
TW (1) TW201009041A (ja)
WO (1) WO2009157426A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015051715A1 (en) * 2013-10-10 2015-04-16 International Business Machines Corporation Methods of preparing polyhemiaminals and polyhexahydrotriazines
US9676891B2 (en) 2014-08-22 2017-06-13 International Business Machines Corporation Synthesis of dynamic covalent 3D constructs
US9981975B2 (en) 2016-03-28 2018-05-29 Incyte Corporation Pyrrolotriazine compounds as tam inhibitors
US10015970B2 (en) 2014-06-19 2018-07-10 International Business Machines Corporation Antimicrobial PHT coatings

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041289A1 (de) * 2009-09-16 2011-03-17 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
GB2514818B (en) * 2013-06-05 2015-12-16 Cambridge Display Tech Ltd Polymer and organic electronic device
JP6907739B2 (ja) * 2017-06-14 2021-07-21 住友化学株式会社 組成物及びそれを用いた発光素子
JP6711808B2 (ja) * 2017-11-21 2020-06-17 住友化学株式会社 発光素子および該発光素子に用いる組成物
US12108665B2 (en) 2019-09-02 2024-10-01 Merck Kgaa Materials for organic electroluminescent devices
DE102022116253A1 (de) * 2022-06-29 2024-01-04 Heliatek Gmbh Organisches elektronisches Bauelement mit einer chemischen Verbindung der allgemeinen Formel I, sowie Verwendung einer solchen chemischen Verbindung als n-Dotand in einem organischen elektronischen Bauelement

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370257A (ja) 1986-09-12 1988-03-30 Fuji Xerox Co Ltd 電子写真用電荷輸送材料
JPS63175860A (ja) 1987-01-16 1988-07-20 Fuji Xerox Co Ltd 電子写真感光体
JPH02135361A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02135359A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02209988A (ja) 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd 薄膜エレクトロルミネッセンス素子
JPH0337992A (ja) 1989-07-04 1991-02-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JPH03152184A (ja) 1989-11-08 1991-06-28 Nec Corp 有機薄膜el素子
JPH10284253A (ja) * 1997-04-04 1998-10-23 Futaba Corp 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002241455A (ja) 2001-02-19 2002-08-28 Fuji Photo Film Co Ltd 新規重合体、それを利用した発光素子用材料および発光素子
WO2002066552A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Metal-containing dendrimers
WO2004020448A1 (en) 2002-08-28 2004-03-11 Isis Innovation Limited Neutral metallic dendrimer complexes
WO2004020504A1 (en) 2002-08-29 2004-03-11 Isis Innovation Limited Blended dendrimers
JP2004091388A (ja) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd カルバゾール系化合物、着色組成物および有機エレクトロルミネッセンス素子
WO2007060795A1 (ja) * 2005-11-28 2007-05-31 Idemitsu Kosan Co., Ltd. アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子
JP2008044923A (ja) * 2005-10-07 2008-02-28 Toyo Ink Mfg Co Ltd カルバゾ−ル含有アミン化合物およびその用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276986A (ja) * 1999-03-24 2000-10-06 Matsuo Seisakusho:Kk 小型サーマルプロテクター
EP2248870B1 (en) * 2002-11-26 2018-12-26 Konica Minolta Holdings, Inc. Organic electroluminscent element and display and illuminator
JP4198654B2 (ja) * 2003-08-07 2008-12-17 三星エスディアイ株式会社 イリジウム化合物及びそれを採用した有機電界発光素子
US7138763B2 (en) * 2003-11-14 2006-11-21 Eastman Kodak Company Organic electroluminescent devices having a stability-enhancing layer
US7074502B2 (en) * 2003-12-05 2006-07-11 Eastman Kodak Company Organic element for electroluminescent devices
TWI426092B (zh) * 2005-06-22 2014-02-11 Sumitomo Chemical Co 高分子材料及高分子發光元件
KR100924157B1 (ko) * 2009-04-10 2009-10-28 정해양 서모 프로텍터 및 그 제조 방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370257A (ja) 1986-09-12 1988-03-30 Fuji Xerox Co Ltd 電子写真用電荷輸送材料
JPS63175860A (ja) 1987-01-16 1988-07-20 Fuji Xerox Co Ltd 電子写真感光体
JPH02135361A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02135359A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02209988A (ja) 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd 薄膜エレクトロルミネッセンス素子
JPH0337992A (ja) 1989-07-04 1991-02-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JPH03152184A (ja) 1989-11-08 1991-06-28 Nec Corp 有機薄膜el素子
JPH10284253A (ja) * 1997-04-04 1998-10-23 Futaba Corp 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002241455A (ja) 2001-02-19 2002-08-28 Fuji Photo Film Co Ltd 新規重合体、それを利用した発光素子用材料および発光素子
WO2002066552A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Metal-containing dendrimers
WO2004020448A1 (en) 2002-08-28 2004-03-11 Isis Innovation Limited Neutral metallic dendrimer complexes
WO2004020504A1 (en) 2002-08-29 2004-03-11 Isis Innovation Limited Blended dendrimers
JP2004091388A (ja) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd カルバゾール系化合物、着色組成物および有機エレクトロルミネッセンス素子
JP2008044923A (ja) * 2005-10-07 2008-02-28 Toyo Ink Mfg Co Ltd カルバゾ−ル含有アミン化合物およびその用途
WO2007060795A1 (ja) * 2005-11-28 2007-05-31 Idemitsu Kosan Co., Ltd. アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 11, no. 10, 1999, pages 852
APPL. PHYS. LETT., vol. 71, no. 18, 1997, pages 2596
APPL. PHYS. LETT., vol. 75, no. 1, 1999, pages 4
APPLIED PHYSICS LETTERS, vol. 80, no. 13, 2002, pages 2308
INORG. CHEM., vol. 42, 2003, pages 8609
INORG. CHEM., vol. 43, 2004, pages 6513
J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
JOURNAL OF THE SID, vol. 11/1, 2003, pages 161
NATURE, vol. 395, 1998, pages 151
ORGANIC LIGHT-EMITTING MATERIALS AND DEVICESIV, pages 119
PROC. SPIE-INT. SOC. OPT. ENG., 2001, pages 4105
SYN. MET., vol. 94, no. 1, 1998, pages 103
SYN. MET., vol. 99, no. 2, 1999, pages 1361

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015051715A1 (en) * 2013-10-10 2015-04-16 International Business Machines Corporation Methods of preparing polyhemiaminals and polyhexahydrotriazines
US9243107B2 (en) 2013-10-10 2016-01-26 International Business Machines Corporation Methods of preparing polyhemiaminals and polyhexahydrotriazines
CN105636998A (zh) * 2013-10-10 2016-06-01 国际商业机器公司 制备聚半缩醛胺和聚六氢三嗪的方法
GB2535360A (en) * 2013-10-10 2016-08-17 Ibm Methods of preparing polyhemiaminals and polyhexahydrotriazines
GB2535360B (en) * 2013-10-10 2017-04-12 Ibm Methods of preparing polyhemiaminals and polyhexahydrotriazines
CN105636998B (zh) * 2013-10-10 2017-09-12 国际商业机器公司 制备聚半缩醛胺和聚六氢三嗪的方法
US9951184B2 (en) 2013-10-10 2018-04-24 International Business Machines Corporation Methods of preparing polyhemiaminals and polyhexahydrotriazines
US10015970B2 (en) 2014-06-19 2018-07-10 International Business Machines Corporation Antimicrobial PHT coatings
US9676891B2 (en) 2014-08-22 2017-06-13 International Business Machines Corporation Synthesis of dynamic covalent 3D constructs
US9809673B2 (en) 2014-08-22 2017-11-07 International Business Machines Corporation Synthesis of dynamic covalent 3D constructs
US9981975B2 (en) 2016-03-28 2018-05-29 Incyte Corporation Pyrrolotriazine compounds as tam inhibitors

Also Published As

Publication number Publication date
TW201009041A (en) 2010-03-01
EP2309563A1 (en) 2011-04-13
JP2010031247A (ja) 2010-02-12
CN102106015A (zh) 2011-06-22
KR20110018376A (ko) 2011-02-23
US20110121236A1 (en) 2011-05-26
EP2309563A4 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
EP2128168B1 (en) Metal complex, polymer compound and device containing those
JP5867489B2 (ja) 高分子材料およびそれを用いた素子
JP5076433B2 (ja) 共重合体およびそれを用いた高分子発光素子
EP2305772B1 (en) Composition containing a metal complex and organic compound, and light emitting element using said compound
EP1932851B1 (en) Metal complex, light-emitting material, and light-emitting device
WO2009157426A1 (ja) 組成物及び同組成物を用いてなる発光素子
EP1894976A1 (en) Polymer composition and polymer light-emitting device using same
JP2007119763A (ja) 高分子材料及び高分子発光素子
US20090043064A1 (en) Metal complex, polymer compound, and device containing it
JP2008255344A (ja) 高分子化合物およびそれを含む組成物
EP1961780A1 (en) Polymer compound and polymer light-emitting device using same
WO2009157429A1 (ja) 燐光発光性組成物及び同組成物を用いてなる発光素子
JP2008095080A (ja) 高分子化合物および高分子発光素子
JP5124942B2 (ja) 金属錯体および素子
JP4626235B2 (ja) 高分子錯体化合物およびそれを用いた高分子発光素子
EP1961782A1 (en) Polymer material and polymer light-emitting device using same
US20100264812A1 (en) Metal complex, light-emitting material, and light-emitting device
WO2009157428A1 (ja) 燐光発光性組成物及び該組成物を用いてなる発光素子
JP2007162008A (ja) 高分子化合物及び高分子発光素子
JP4952037B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
WO2009157427A1 (ja) 組成物及びそれを用いてなる発光素子
WO2011149056A1 (ja) 新規化合物及びそれを用いた発光素子
JP4724440B2 (ja) 高分子化合物及びそれを用いた高分子発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129129.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107028555

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009770136

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000523

Country of ref document: US