WO2009157429A1 - 燐光発光性組成物及び同組成物を用いてなる発光素子 - Google Patents

燐光発光性組成物及び同組成物を用いてなる発光素子 Download PDF

Info

Publication number
WO2009157429A1
WO2009157429A1 PCT/JP2009/061366 JP2009061366W WO2009157429A1 WO 2009157429 A1 WO2009157429 A1 WO 2009157429A1 JP 2009061366 W JP2009061366 W JP 2009061366W WO 2009157429 A1 WO2009157429 A1 WO 2009157429A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
nitrogen
residue
containing polycyclic
Prior art date
Application number
PCT/JP2009/061366
Other languages
English (en)
French (fr)
Inventor
喜彦 秋野
Original Assignee
住友化学株式会社
サメイション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, サメイション株式会社 filed Critical 住友化学株式会社
Priority to EP09770139A priority Critical patent/EP2305771A4/en
Priority to CN2009801237365A priority patent/CN102066523A/zh
Priority to US13/000,447 priority patent/US20110114888A1/en
Publication of WO2009157429A1 publication Critical patent/WO2009157429A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a phosphorescent composition and a light emitting device using the composition.
  • a light-emitting material used for a light-emitting layer of a light-emitting element an element using a compound that emits light from a triplet excited state (hereinafter sometimes referred to as a “phosphorescent compound”) has high emission efficiency.
  • a phosphorescent compound is used for the light emitting layer, a composition obtained by adding the compound to a matrix is usually used as the light emitting material.
  • the matrix polyvinyl carbazole is used because a thin film can be formed by coating (Patent Document 1).
  • this compound has a high energy level of the lowest unoccupied molecular orbital (hereinafter referred to as “LUMO”), it is difficult to inject electrons.
  • LUMO lowest unoccupied molecular orbital
  • a conjugated polymer compound such as polyfluorene has a low LUMO, a low driving voltage can be realized relatively easily when it is used as a matrix.
  • T 1 energy since such a conjugated polymer compound has a low minimum triplet excitation energy (hereinafter referred to as “T 1 energy”), it is used as a matrix for emission of light having a wavelength shorter than that of green. It is not suitable for (patent document 2).
  • Non-Patent Document 1 a light-emitting material including polyfluorene that is a conjugated polymer and a triplet light-emitting compound has low light emission efficiency because the light emitted from the triplet light-emitting compound is weak.
  • an object of the present invention is to provide a material having excellent luminous efficiency when used in a light emitting element or the like.
  • the present invention firstly provides the following formulas (1-1), (1-2), (1-3) and (1-4): (In the formula, R represents a hydrogen atom or a substituent. A plurality of R may be the same or different.) A composition comprising a compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds selected from the group consisting of nitrogen-containing polycyclic compounds represented by the formula: and a phosphorescent compound. The present invention secondly provides at least 2 selected from the group consisting of the nitrogen-containing polycyclic compounds represented by the formulas (1-1), (1-2), (1-3) and (1-4). Provided is a polymer compound containing a residue of a species of nitrogen-containing polycyclic compound and a residue of a phosphorescent compound. Thirdly, the present invention provides a thin film and a light-emitting device using the composition or the polymer compound. Fourthly, the present invention provides a planar light source, a display device, and illumination provided with the light emitting element.
  • the composition and polymer compound of the present invention (hereinafter referred to as “the composition of the present invention”) have high luminous efficiency. Therefore, the composition and the like of the present invention are excellent in luminous efficiency when used in the production of a light emitting device or the like.
  • the composition of the present invention usually has a relatively excellent light-emitting property in light emission in a relatively short wavelength region. This is because the T 1 energy of the nitrogen-containing polycyclic compound and the polymer compound of the present invention contained in the composition of the present invention is large.
  • composition of the present invention has a relatively low LUMO energy level, is easy to inject electrons, has a relatively high energy level of the highest occupied molecular orbital (hereinafter referred to as “HOMO”), and injects holes. easy.
  • HOMO highest occupied molecular orbital
  • the composition of the present invention has the formulas (1-1), (1-2), (1-3) and (1-4) (hereinafter referred to as “formulas (1-1) to (1-4)”).
  • the residues of the compounds represented by the formulas (1-1) to (1-4) are R in the compounds represented by the formulas (1-1) to (1-4).
  • the “polymer compound” means a compound in which at least two identical structures (repeating units) are present in the compound.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds is at least selected from the group consisting of compounds represented by the formulas (1-1), (1-2) and (1-3). More preferably, it is a compound having a residue of two types of nitrogen-containing polycyclic compounds, from the group consisting of compounds represented by the formulas (1-1), (1-2) and (1-3). A compound having a residue of at least three selected nitrogen-containing polycyclic compounds is particularly preferable.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds may be a polymer compound, in which case the residue of the nitrogen-containing polycyclic compound is used as a main chain and / or a side chain.
  • the polymer compound is preferably a polymer compound having a repeating unit containing a residue of a nitrogen-containing polycyclic compound represented by the formulas (1-1) to (1-4); In addition to the repeating unit containing the residue of the nitrogen-containing polycyclic compound represented by 1-1) to (1-4), an aromatic ring, a heterocyclic ring containing 5 or more members containing a hetero atom, an aromatic amine, And a polymer compound having a repeating unit containing any one of structures selected from the structures represented by formula (4) described later.
  • R represents a hydrogen atom or a substituent, and preferably at least one of a plurality of R is a substituent, more preferably a plurality of R At least two of them are substituents, and more preferably all of a plurality of Rs are substituents. When two or more R exists, they may be the same or different.
  • substituents examples include a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group which may have a substituent, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, Acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent complex which may have a substituent Ring group, heteroaryl group which may have a substituent, heteroaryloxy group, heteroarylthio group, arylalkenyl group, arylethynyl group, substituted carboxyl group, cyano group and the like, preferably an alkyl group , An alkoxy group, an aryl group which may have a substituent, and
  • the N-valent heterocyclic group (N is 1 or 2) is a remaining atomic group obtained by removing N hydrogen atoms from a heterocyclic compound, and the same applies in this specification.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • At least one R is an alkyl group, an alkoxy group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent. More preferably, at least one R is an alkyl group having 3 to 10 carbon atoms or an alkoxy group having 3 to 10 carbon atoms.
  • At least one R is a substituent having a total number of atoms other than hydrogen atoms of 3 or more, more preferably a substituent having a total number of atoms other than hydrogen atoms of 5 or more. It is particularly preferable that the total number of atoms other than is a substituent having 7 or more.
  • at least one R is preferably a substituent, and more preferably, both two R are substituents.
  • a plurality of R may be the same or different.
  • Examples of the compound having a residue of at least two types of nitrogen-containing polycyclic compounds include the following formula (A-1) or (A-2): (Wherein Z 1 and Z 2 are each independently a nitrogen-containing polycyclic compound represented by the formula (1-1), (1-2), (1-3) or (1-4)).
  • Y 1 represents a residue, —C (R a ) (R b ) —, —N (R c ) —, —O—, —Si (R d ) (R e ) —, —P (R f ) — Or —S—, R a to R f each independently represents a hydrogen atom or a substituent, m is an integer of 0 to 5.
  • Y 1 When a plurality of Y 1 are present, they are the same.
  • Y 2 represents an arylene group which may have a substituent, n is an integer of 1 to 5. When a plurality of Y 2 are present, they may be the same. May be different.) And a compound having a residue thereof.
  • Examples of the substituent represented by R a to R f include an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, aryl Examples include alkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, monovalent heterocyclic group, and halogen atom.
  • Examples of the aryl group represented by R a to R f include a phenyl group and a C 1 to C 12 alkoxyphenyl group (“C 1 to C 12 alkoxy” means that the alkoxy moiety has 1 to 12 carbon atoms. The same shall apply hereinafter.), C 1 -C 12 alkylphenyl group (“C 1 -C 12 alkyl” means that the alkyl moiety has 1 to 12 carbon atoms. The same shall apply hereinafter.
  • the monovalent heterocyclic group represented by R a to R f means a remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the heterocyclic compound is an organic compound having a cyclic structure in which the elements constituting the ring include not only carbon atoms but also hetero atoms such as oxygen atoms, sulfur atoms, nitrogen atoms, and phosphorus atoms in the ring. The thing included in.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds is a polymer compound, it is represented by the formula (A-1) or (A-2) from the viewpoint of T 1 energy. It is preferable that it is a high molecular compound which has a repeating unit containing the residue of the compound made.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds is represented by the following formula (A-3) from the viewpoint of T 1 energy:
  • RING represents the residues of at least two nitrogen-containing polycyclic compounds selected from the group consisting of the nitrogen-containing polycyclic compounds represented by the above formulas (1-1) to (1-4).
  • the ring Z is a cyclic structure containing a carbon atom, X 1 and X 2.
  • X 1 and X 2 each independently represent —C (R) ⁇ , wherein R is as defined above. Have the same meaning.
  • examples of the cyclic structure include an aromatic ring which may have a substituent and a non-aromatic ring which may have a substituent, such as a benzene ring and a heterocyclic ring.
  • An alicyclic hydrocarbon ring, a ring formed by condensing a plurality of these rings, and a ring in which a part of hydrogen atoms of these rings are substituted are preferable.
  • the residues of the compounds represented by the formulas (A-1) to (A-3) mean groups obtained by removing part or all of the hydrogen atoms and R in the compounds.
  • the compound having the residue of at least two kinds of nitrogen-containing polycyclic compounds can be adjusted in energy level by using the residues of nitrogen-containing polycyclic compounds having different HOMO / LUMO. Excellent injection and transportability. Further, in a preferred embodiment, there is a tendency that amorphousness is improved from the viewpoint of improvement in durability in oxidation / reduction by combining donor properties and acceptor properties and symmetry, and film formability is improved.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds may contain other partial structures.
  • the type of the other partial structure is preferably different depending on whether it is present at the terminal.
  • a conjugated polyvalent group is preferred in terms of LUMO or HOMO energy levels.
  • a group include a divalent aromatic group and a trivalent aromatic group.
  • the aromatic group is a group derived from an organic compound exhibiting aromaticity.
  • examples of such an aromatic group include groups in which n ′ (n ′ is 2 or 3) hydrogen atoms are replaced with a bond from an aromatic ring such as benzene, naphthalene, anthracene, pyridine, quinoline, and isoquinoline. .
  • P ring and Q ring are alkyl group, alkoxy group, alkylthio group, aryl group, alkenyl group, alkynyl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group.
  • substituents examples include alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group Selected from the group consisting of a group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, carboxyl group, substituted carboxyl group and cyano group
  • the substituents are preferred.
  • the P ring and the Q ring each independently represent an aromatic ring, but the P ring may or may not exist.
  • Two bonds are present on the P ring or Q ring, respectively, when the P ring is present, and on the 5-membered ring or 6-membered ring containing Y, or on the Q ring, respectively, when the P ring is absent.
  • Arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group It may have a substituent selected from the group consisting of a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group and a cyano group.
  • substituents examples include alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group Selected from the group consisting of a group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, carboxyl group, substituted carboxyl group and cyano group
  • the substituents are preferred.
  • R 0 and R 2 to R 31 are each independently a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, alkenyl group, alkynyl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group Represents a group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, monovalent heterocyclic group or halogen atom.
  • alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substitution Amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, monovalent heterocyclic group, and halogen atom are preferred, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl Group, arylalkoxy group, and monovalent heterocyclic group are preferable, alkyl group, alkoxy group, aryl group, and monovalent heterocyclic group are more preferable, and alkyl group and aryl group are particularly preferable.
  • Examples of the structure represented by the above formula (4) include the following formula (4-1), (4-2) or (4-3): (In the formula, A ring, B ring, and C ring each independently represent an aromatic ring.
  • Formulas (4-1), (4-2), and (4-3) represent an alkyl group, an alkoxy group, Alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, halogen atom, It may have a substituent selected from the group consisting of an acyl group, an acyloxy group, an imine residue, an amide group, an acid imide group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group and a cyano group.
  • D ring, E ring, F ring and G ring are each independently an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group.
  • An aromatic ring which may have a substituent selected from the group consisting of a carboxyl group, a substituted carboxyl group and a cyano group, Y represents the same meaning as described above. The structure represented by is mentioned.
  • a ring, B ring, C ring, D ring, E ring, F ring And an aromatic ring represented by G ring for example, an aromatic ring such as a benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring, phenanthrene ring; Examples thereof include heteroaromatic rings such as a pyridine ring, a bipyridine ring, a phenanthroline ring, a quinoline ring, an isoquinoline ring, a thiophene ring, a furan ring, and a pyrrole ring. These aromatic rings may have the substituent.
  • Ar 6 , Ar 7 , Ar 8 and Ar 9 each independently represent an arylene group or a divalent heterocyclic group.
  • Ar 10 , Ar 11 and Ar 12 each independently represent an aryl group or a monovalent complex.
  • Ar 6 to Ar 12 may have a substituent, x and y each independently represent 0 or 1, and 0 ⁇ x + y ⁇ 1.
  • the aromatic amine structure of the structure represented by these is mentioned.
  • the arylene group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 is an atomic group remaining after removing two hydrogen atoms from an aromatic hydrocarbon.
  • the aromatic hydrocarbon includes a compound having a condensed ring and a compound in which two or more independent benzene rings or condensed rings are bonded directly or via a vinylene group.
  • the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 is a remaining atomic group obtained by removing two hydrogen atoms from a heterocyclic compound.
  • the divalent heterocyclic group usually has 4 to 60 carbon atoms.
  • a heterocyclic compound means a compound in which an element that constitutes a ring includes not only a carbon atom but also hetero atoms such as oxygen, sulfur, nitrogen, phosphorus, and boron in the ring among organic compounds having a cyclic structure. To do.
  • a divalent aromatic heterocyclic group is preferable.
  • the aryl group represented by Ar 10 , Ar 11 , Ar 12 is an atomic group remaining after removing one hydrogen atom from an aromatic hydrocarbon.
  • the aromatic hydrocarbon is as described above.
  • the monovalent heterocyclic group represented by Ar 10 , Ar 11 , Ar 12 means the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the carbon number of the monovalent heterocyclic group is usually 4 to 60.
  • the heterocyclic compound is as described above.
  • As the monovalent heterocyclic group a monovalent aromatic heterocyclic group is preferable.
  • the polystyrene-equivalent weight average molecular weight of the compound is preferably 3 ⁇ 10 2 or more from the viewpoint of film formability. 3 ⁇ 10 2 to 1 ⁇ 10 7 are more preferable, 1 ⁇ 10 3 to 1 ⁇ 10 7 are more preferable, and 1 ⁇ 10 4 to 1 ⁇ 10 7 are particularly preferable.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds can be used in a wide emission wavelength region, and the T 1 energy value of the compound is preferably 3.0 eV or more, More preferably, it is 3.2 eV or more, more preferably 3.4 eV or more, and particularly preferably 3.5 eV or more. Usually, the upper limit is 5.0 eV.
  • the absolute value of the LUMO energy level of the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds is preferably 1.5 eV or more, more preferably 1.7 eV or more. It is more preferably 9 eV or more, particularly preferably 2.0 eV or more, and particularly preferably 2.2 eV or more. In general, the upper limit is 4.0 eV.
  • the absolute value of the energy level of HOMO of the compound having the residue of at least two kinds of nitrogen-containing polycyclic compounds is preferably 6.2 eV or less, more preferably 5.9 eV or less. More preferably, it is 6 eV or less. In general, the lower limit is 5.0 eV.
  • the T 1 energy value, LUMO energy level value, and HOMO energy level value of each compound are values calculated by a computational scientific technique.
  • the quantum chemical calculation program Gaussian03 is used, and the structure of the ground state is optimized by the HF (Hartree-Fock) method.
  • the time dependence of the B3P86 level was used to calculate the T 1 energy value, the LUMO energy level value, and the HOMO energy level value.
  • 6-31 g * was used as a basis function. If the 6-31g * cannot be used as a basis function, LANL2DZ is used.
  • the absolute value of the “LUMO energy level value” that is, when the LUMO energy level value is negative, the absolute value means a value having the negative sign). is there.
  • the energy level value is linearly approximated as a function of (1 / n)
  • T 1 at n ⁇ (where n is the number of polymerization of repeating units) in all cases.
  • the value of the energy calculated in the same manner as described, the value of the lowest the T 1 energy among them is defined as the value of the T 1 energy of the compound.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds includes a heterocyclic structure constituting the nitrogen-containing polycyclic compound and a partial structure adjacent to the heterocyclic structure (here, the partial structure Preferably have at least two ⁇ -conjugated electrons).
  • the dihedral angle between the heterocyclic structure and the partial structure adjacent to the heterocyclic structure is preferably 40 ° or more, more preferably 55 ° or more, and 70 ° or more. More preferably, it is particularly preferably 80 ° or more.
  • all dihedral angles between any aromatic ring and heteroaromatic ring containing the heterocyclic structure are 40 ° or more.
  • it is 55 ° or more, more preferably 70 ° or more, and particularly preferably 80 ° or more.
  • the dihedral angle means an angle calculated from the optimized structure in the ground state.
  • the dihedral angle is, for example, the carbon atom (a 1 ) at the bonding position in the heterocyclic structure constituting the compound having the residue of the at least two kinds of nitrogen-containing polycyclic compounds and the carbon atom adjacent to a 1 or It is defined by a nitrogen atom (a 2 ), an atom (a 3 ) at the bonding position of the structure bonded to the heterocyclic structure, and an atom (a 4 ) adjacent to a 3 .
  • the dihedral angle is calculated in all cases, and the lowest value (90 ° or less) among them is 2 The face angle.
  • the atoms (a 3 ) and (a 4 ) are atoms having a ⁇ -conjugated electron, and more preferably a carbon atom, a nitrogen atom, a silicon atom, or a phosphorus atom.
  • a computational scientific technique that is, the structure having the minimum generation energy of the structure.
  • Examples of the compound having a residue of at least two types of nitrogen-containing polycyclic compounds include compounds represented by the following formulas (2-1) to (2-16).
  • R * represents a hydrogen atom or a substituent.
  • the substituent represented by R * include a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group optionally having a substituent, an aryloxy group, an arylthio group, an arylalkyl group, and an arylalkyloxy group.
  • substituents include a monovalent heterocyclic group, an optionally substituted heteroaryl group, heteroaryloxy group, heteroarylthio group, arylalkenyl group, arylethynyl group, substituted carboxyl group, and cyano group.
  • a plurality of R * may be the same or different.
  • R * is more preferably an alkyl group, an alkoxy group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • a plurality of R * may be the same or different.
  • n represents the number of polymerizations.
  • Examples of the compound having a residue of at least two types of nitrogen-containing polycyclic compounds include the following compounds.
  • Examples of the phosphorescent compound include triplet light-emitting complexes and compounds that have been used as low-molecular EL light-emitting materials. These include, for example, Nature, (1998), 395, 151, Appl. Phys. Lett. (1999), 75 (1), 4, Proc. SPIE-Int. Soc. Opt. Eng. 2001 (2001), 4105 ( Organic Light-Emitting Materials and Devices IV), 119, J. Am. Chem. Soc., (2001), 123, 4304, Appl. Phys. Lett., (1997), 71 (18), 2596, Syn. Met. , (1998), 94 (1), 103, Syn. Met., (1999), 99 (2), 1361, Adv.
  • the ratio of the sum of the orbital coefficients of the outermost shell d orbitals of the central metal in the HOMO of the metal complex is 1/3 or more of the sum of the squares of the total atomic orbital coefficients. This is preferable from the viewpoint of obtaining high luminous efficiency.
  • the phosphorescent compound include ortho-metalated complexes in which the central metal is a transition metal belonging to the sixth period.
  • the central metal of the triplet light-emitting complex is usually a metal having an atomic number of 50 or more, which has a spin-orbit interaction, and can cause an intersystem crossing between the singlet state and the triplet state.
  • Gold, platinum, iridium, osmium, rhenium, tungsten, europium, terbium, thulium, dysprosium, samarium, praseodymium, gadolinium, ytterbium atoms are preferred, more preferably gold, platinum, iridium, osmium, rhenium, tungsten More preferably, they are gold, platinum, iridium, osmium and rhenium atoms, particularly preferably gold, platinum, iridium and rhenium atoms, and particularly preferably platinum and iridium atoms. .
  • Examples of the ligand of the triplet light-emitting complex include 8-quinolinol and derivatives thereof, benzoquinolinol and derivatives thereof, 2-phenyl-pyridine and derivatives thereof, and the like.
  • the phosphorescent compound is a compound having a substituent such as an alkyl group, an alkoxy group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent from the viewpoint of solubility. It is preferable that Further, the substituent preferably has a total number of atoms other than hydrogen atoms of 3 or more, more preferably 5 or more, still more preferably 7 or more, and particularly preferably 10 or more. Moreover, it is preferable that at least one substituent is present in each ligand, and the type of the substituent may be the same or different for each ligand.
  • Examples of the phosphorescent compound include the following compounds.
  • the amount of the phosphorescent compound in the composition of the present invention varies depending on the types of compounds having residues of at least two types of nitrogen-containing polycyclic compounds to be combined and the properties to be optimized,
  • the amount of the compound having a residue of the nitrogen-containing polycyclic compound is 100 parts by weight, it is usually 0.01 to 80 parts by weight, preferably 0.1 to 30 parts by weight, more preferably 0 0.1 to 15 parts by weight, particularly preferably 0.1 to 10 parts by weight.
  • the compound having a residue of at least two kinds of nitrogen-containing polycyclic compounds and the phosphorescent compound may be used singly or in combination of two or more. Good.
  • composition of the present invention may contain an optional component other than the compound having the residue of the at least two nitrogen-containing polycyclic compounds and the phosphorescent compound as long as the object of the present invention is not impaired.
  • the optional component include a hole transport material, an electron transport material, and an antioxidant.
  • Examples of the hole transport material include known aromatic amines, carbazole derivatives, polyparaphenylene derivatives and the like as hole transport materials for organic EL devices.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinones and derivatives thereof, anthraquinones and derivatives thereof, tetracyanoanthraquinodis known as electron transport materials for organic EL devices.
  • Examples include methane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, and metal complexes of 8-hydroxyquinoline and its derivatives.
  • the T 1 energy value (ETH) of the compound having the residue of the at least two kinds of nitrogen-containing polycyclic compounds and the T 1 energy value (ETG) of the phosphorescent compound are: ,
  • the thin film of the present invention can be produced using the composition of the present invention.
  • solution coating vapor deposition, transfer, or the like can be used.
  • An offset printing method, an ink jet printing method, or the like may be used.
  • the solvent is preferably a solvent that can dissolve or uniformly disperse the composition.
  • the solvent include chlorinated solvents (chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene, etc.), ether solvents (tetrahydrofuran, dioxane, etc.), aromatic carbonization.
  • Hydrogen solvents toluene, xylene, etc.
  • aliphatic hydrocarbon solvents cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, etc.
  • ketones Solvents acetone, methyl ethyl ketone, cyclohexanone, etc.
  • ester solvents ethyl acetate, butyl acetate, ethyl cellosolve acetate, etc.
  • polyhydric alcohols and their derivatives ethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene
  • the viscosity of the solution is preferably 1 to 100 mPa ⁇ s at 25 ° C. Further, if the evaporation is so significant, it tends to be difficult to repeat ejection from the head.
  • preferred solvents include, for example, single or mixed solvents including anisole, bicyclohexyl, xylene, tetralin and dodecylbenzene.
  • a solution for ink jet printing suitable for the composition used can be obtained by a method of mixing a plurality of solvents, a method of adjusting the concentration of the composition in the solution, or the like.
  • the polymer compound of the present invention is at least selected from the group consisting of nitrogen-containing polycyclic compounds represented by the formulas (1-1), (1-2), (1-3), and (1-4). It is a polymer compound containing a residue of two kinds of nitrogen-containing polycyclic compounds and a residue of a phosphorescent compound.
  • the phosphorescent compound and the nitrogen-containing polycyclic compound are the same as those described and exemplified in the section of the composition.
  • the polymer compound of the present invention includes (1) a polymer having a phosphorescent compound residue in the main chain, (2) a polymer compound having a phosphorescent compound residue at the terminal, and (3) a side chain. And a polymer compound having a residue of a phosphorescent compound.
  • the light-emitting device of the present invention is formed using the composition of the present invention, and usually contains the composition of the present invention in at least a part of a layer provided between electrodes composed of an anode and a cathode. It is preferable to include them as a light emitting layer in the form of the light emitting thin film. In addition, a known layer having other functions may be included from the viewpoint of improving performance such as luminous efficiency and durability.
  • Such layers include a charge transport layer (ie, hole transport layer, electron transport layer), a charge blocking layer (ie, hole blocking layer, electron blocking layer), a charge injection layer (ie, hole injection layer, Electron injection layer), buffer layer, and the like.
  • a charge transport layer ie, hole transport layer, electron transport layer
  • a charge blocking layer ie, hole blocking layer, electron blocking layer
  • a charge injection layer ie, hole injection layer, Electron injection layer
  • buffer layer and the like.
  • each of the light-emitting layer, the charge transport layer, the charge blocking layer, the charge injection layer, the buffer layer, and the like may be composed of one layer or two or more layers.
  • the light emitting layer is a layer having a function of emitting light.
  • the hole transport layer is a layer having a function of transporting holes.
  • the electron transport layer is a layer having a function of transporting electrons. These electron transport layer and hole transport layer are collectively referred to as a charge transport layer.
  • the charge blocking layer is a layer having a function of confining holes or electrons in the light emitting layer, and a layer that transports electrons and confines holes is called a hole blocking layer. The layer that confines is called an electron blocking layer.
  • buffer layer examples include a layer containing a conductive polymer compound adjacent to the anode.
  • the light emitting device of the present invention include the following structures a) to q). a) anode / light emitting layer / cathode b) anode / hole transport layer / light emitting layer / cathode c) anode / light emitting layer / electron transport layer / cathode d) anode / light emitting layer / hole blocking layer / cathode e) anode / Hole transport layer / light emitting layer / electron transport layer / cathode f) anode / charge injection layer / light emitting layer / cathode g) anode / light emitting layer / charge injection layer / cathode h) anode / charge injection layer / light emitting layer / charge injection Layer / cathode i) anode / charge injection layer / hole transport layer / light emitting layer / cathode j) anode / hole transport layer / light
  • the hole transport material include known materials such as polyvinyl carbazole and its Derivatives, polysilanes and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof
  • polymer hole transport materials such as derivatives, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, and further, JP-A 63-70257 JP 63-175860, JP 2-135359, 2-135361, 2-209988, 3-37992 Also include those described in JP same 3-152184.
  • the electron transport layer contains an electron transport material
  • the electron transport material include known materials such as oxadiazole derivatives and anthraquinodis. Methane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, 8-hydroxyquinoline and its derivatives And metal complexes, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, and the like.
  • the film thicknesses of the hole transport layer and the electron transport layer vary depending on the materials used and may be selected so that the drive voltage and the light emission efficiency are appropriate. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the hole transport layer and the electron transport layer is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • charge injection layers that is, the hole injection layers.
  • the charge injection layer or insulating layer (usually 0.5 nm to 4 nm in average film thickness, which is adjacent to the electrode, hereinafter the same)
  • a thin buffer layer may be inserted at the interface between the charge transport layer and the light-emitting layer in order to improve the adhesion at the interface or prevent mixing.
  • the order and number of layers to be laminated, and the thickness of each layer can be appropriately selected in consideration of light emission efficiency and element lifetime.
  • the charge injection layer is a layer containing a conductive polymer compound, provided between the anode and the hole transport layer, and an ionization potential having an intermediate value between the anode material and the hole transport material contained in the hole transport layer. And a layer containing a material having an electron affinity with an intermediate value between the cathode material and the electron transport material included in the electron transport layer.
  • the material used for the charge injection layer may be appropriately selected in relation to the electrode and the material of the adjacent layer.
  • Polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene Examples include vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, conductive polymer compounds such as polymers containing an aromatic amine structure in the main chain or side chain, metal phthalocyanine (copper phthalocyanine, etc.), carbon, etc. Is done.
  • the insulating layer has a function of facilitating charge injection.
  • the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • the light emitting element provided with the insulating layer include a light emitting element provided with an insulating layer adjacent to the cathode and a light emitting element provided with an insulating layer adjacent to the anode.
  • the light emitting device of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not change when the electrode is formed and the organic layer is formed, and examples thereof include substrates such as glass, plastic, polymer film, and silicon.
  • the opposite electrode is preferably transparent or translucent.
  • At least one of the anode and the cathode included in the light emitting device of the present invention is usually transparent or translucent. Among these, it is preferable that the anode side is transparent or translucent.
  • a conductive metal oxide film, a translucent metal thin film, or the like is usually used. Specifically, a film formed using a conductive inorganic compound made of indium, zinc, tin oxide, indium-tin-oxide (ITO), indium-zinc-oxide, or the like that is a composite thereof ( NESA, etc.), gold, platinum, silver, copper, etc. are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the production method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Further, as the anode, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used. Note that the anode may have a laminated structure of two or more layers.
  • the material for the cathode is usually preferably a material having a low work function.
  • metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like Two or more of these alloys, or one or more of them and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite or graphite intercalation compound, etc. Is used.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the cathode may have a laminated structure of two or more layers.
  • the light-emitting element of the present invention includes a planar light source, a display device (for example, a segment display device, a dot matrix display device, a liquid crystal display device, etc.), and a backlight (for example, a liquid crystal display device including the light-emitting element as a backlight). Etc. can be used.
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a method of emitting light a method of forming either one of the anode or the cathode, or both electrodes in a pattern.
  • both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multi-color display are possible by a method of separately applying a plurality of types of materials having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix element can be driven passively, or may be actively driven in combination with a TFT or the like.
  • a planar light emitting element is usually a self-luminous thin type, and is preferably used as a planar light source for backlight of a liquid crystal display device, illumination (for example, planar illumination, light source for illumination), etc. Can do.
  • illumination for example, planar illumination, light source for illumination
  • a flexible substrate it can also be used as a curved light source, illumination, display device, and the like.
  • composition of the present invention can also be used as a semiconductor material such as an organic semiconductor material, a light emitting material, an optical material, or a conductive material (for example, applied by doping). Furthermore, thin films such as a light-emitting thin film, a conductive thin film, and an organic semiconductor thin film can be produced using the composition of the present invention.
  • the composition of the present invention can be formed into a device by forming a conductive thin film and a semiconductor thin film by a method similar to the method for producing a light emitting thin film used for the light emitting layer of the light emitting element.
  • the semiconductor thin film preferably has a higher electron mobility or hole mobility of 10 ⁇ 5 cm 2 / V / second or higher.
  • the organic semiconductor thin film can be used for organic solar cells, organic transistors, and the like.
  • T 1 energy of the compound (C-1) represented by the formula is 3.3 eV
  • E LUMO of the LUMO energy level is 1.6 eV
  • the minimum dihedral angle is 41 °.
  • the parameter was calculated using the structure of compound (C-1). Specifically, the structure of compound (C-1) was optimized by the HF method. At that time, 6-31 g * was used as a basis function. Then, using the same basis function, the LUMO energy level value and the T1 energy value were calculated by the time-dependent density functional method at the B3P86 level. The dihedral angle was calculated from the structure optimized by the HF method.
  • the T 1 energy value of the phosphorescent compound (MC-1) represented by the formula (1) was calculated by a computational scientific method and found to be 2.8 eV.
  • a light-emitting element is manufactured using a composition comprising the compound (C-1) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 2 Following formula: The T 1 energy value of the compound (C-2) represented by the formula is 3.3 eV, the absolute value E LUMO of the HOMO energy level is 6.2 eV, and the minimum dihedral angle is 55 °. .
  • the calculation of the parameters was performed by the computational scientific method in the same manner as in Example 1 using the structure of the compound (C-2).
  • a light-emitting element is manufactured using a composition comprising the compound (C-2) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 3 Following formula: The T 1 energy value of the compound (C-3) represented by the formula is 3.3 eV, the absolute value E LUMO of the LUMO energy level is 1.8 eV, and the minimum dihedral angle is 45 °. .
  • the parameters were calculated by the computational scientific method in the same manner as in Example 1 using the structure of compound (C-3). When a light-emitting element is manufactured using a composition comprising the compound (C-3) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 4 Following formula: The T 1 energy value of the compound (C-4) represented by the formula is 3.3 eV, the absolute value E LUMO of the energy level of HOMO is 6.1 eV, and the minimum dihedral angle is 54 °. .
  • the calculation of the parameters was performed by the computational scientific method in the same manner as in Example 1 using the structure of the compound (C-4). When a light-emitting element is manufactured using a composition comprising the compound (C-4) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 5 Following formula: The value of T 1 energy of the compound represented by formula (C-5) was 3.4 eV, the absolute value E LUMO of the energy level of HOMO was 6.1 eV, and the minimum dihedral angle was 85 °. . The calculation of the parameters was performed by the computational scientific method in the same manner as in Example 1 using the structure of the compound (C-5). When a light-emitting element is manufactured using a composition comprising the compound (C-5) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 6 Following formula: The T 1 energy value of in represented by compound (C-6) is 3.3 eV, an absolute value E LUMO of HOMO energy level is 6.0 eV, the minimum dihedral angle of 64 ° .
  • the parameters were calculated by the computational scientific method in the same manner as in Example 1 using the structure of compound (C-6). When a light-emitting element is manufactured using a composition comprising the compound (C-6) and the phosphorescent compound (MC-1), it can be confirmed that the luminous efficiency is excellent.
  • Example 7 Following formula: The T 1 energy value of the compound (C-7) represented by the formula was 3.2 eV, and the LUMO energy level absolute value E LUMO was 1.9 eV. The calculation of the parameters was performed by the computational scientific method in the same manner as in Example 1 using the structure of the compound (C-7). When a light-emitting element is manufactured using a composition comprising the compound (C-7) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 8 Following formula: The value of T 1 energy of the compound (C-8) represented by the formula was 3.3 eV, and the absolute value E LUMO of the LUMO energy level was 1.6 eV. The calculation of the parameters was performed by the computational scientific method in the same manner as in Example 1 using the structure of the compound (C-8). When a light-emitting element is manufactured using a composition comprising the compound (C-8) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 9 Following formula: The T 1 energy value of the compound (C-9) represented by the formula was 3.3 eV, and the absolute value E LUMO of the LUMO energy level was 1.9 eV. The parameters were calculated by the computational scientific method in the same manner as in Example 1 using the structure of compound (C-9). When a light-emitting element is manufactured using a composition comprising the compound (C-9) and the phosphorescent compound (MC-1), it can be confirmed that the light emission efficiency is excellent.
  • Example 10 Following formula: The T 1 energy value of the compound (C-10) represented by the formula was 3.3 eV, and the absolute value E LUMO of the LUMO energy level was 1.6 eV. The parameters were calculated by the computational scientific method in the same manner as in Example 1 using the structure of compound (C-10). Also, the following formula: The T 1 energy value of the phosphorescent compound (MC-2) represented by formula (2) was calculated by a computational scientific method to be 2.9 eV. When a light-emitting element is manufactured using a composition comprising the compound (C-10) and the phosphorescent compound (MC-2), it can be confirmed that the light emission efficiency is excellent.
  • Example 11 Following formula: The T 1 energy value of the compound (C-11) represented by the formula was 3.3 eV, and the absolute value E LUMO of the LUMO energy level was 1.7 eV. The parameters were calculated by the computational scientific method in the same manner as in Example 1 using the structure of compound (C-11). When a light-emitting element is manufactured using a composition including the compound (C-11) and the phosphorescent compound (MC-2), it can be confirmed that the light emission efficiency is excellent.
  • Example 12 Following formula: The value of T 1 energy of the compound (C-12) represented by the formula (3.1) was 3.1 eV, and the absolute value E LUMO of the LUMO energy level was 2.0 eV. The calculation of the parameters was performed by the computational scientific method in the same manner as in Example 1 using the structure of the compound (C-12). When a light-emitting element is manufactured using a composition comprising the compound (C-12) and the phosphorescent compound (MC-2), it can be confirmed that the light emission efficiency is excellent.
  • Example 13 Following formula: The T 1 energy value of the compound (C-13) represented by the formula was 3.3 eV, and the absolute value E LUMO of the LUMO energy level was 2.2 eV. The parameters were calculated by the computational scientific method in the same manner as in Example 1 using the structure of compound (C-13). When a light-emitting element is manufactured using a composition comprising the compound (C-13) and the phosphorescent compound (MC-2), it can be confirmed that the luminous efficiency is excellent.
  • Example 14 Following formula: The T 1 energy value of the compound (C-14) represented by the formula was 3.2 eV, and the absolute value E LUMO of the LUMO energy level was 2.0 eV. The parameters were calculated by the computational scientific method in the same manner as in Example 1 using the structure of compound (C-14). When a light-emitting element is manufactured using a composition comprising the compound (C-14) and the phosphorescent compound (MC-2), it can be confirmed that the luminous efficiency is excellent.
  • composition of the present invention When used for a light emitting device or the like, it provides a light emitting device having excellent luminous efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 下記式(1-1)、(1-2)、(1-3)及び(1-4)(式中、Rは水素原子又は置換基を表す。複数存在するRは、同一であっても異なっていてもよい。)で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基を有する化合物と、燐光発光性化合物とを含む組成物。

Description

燐光発光性組成物及び同組成物を用いてなる発光素子
 本発明は、燐光発光性組成物及び同組成物を用いてなる発光素子に関する。
 発光素子の発光層に用いる発光材料として、三重項励起状態からの発光を示す化合物(以下、「燐光発光性化合物」ということがある。)を発光層に用いた素子は発光効率が高いことが知られている。燐光発光性化合物を発光層に用いる場合、通常は、該化合物をマトリックスに添加してなる組成物を発光材料として用いる。マトリックスとしては、塗布によって薄膜が形成できることから、ポリビニルカルバゾールが使用されている(特許文献1)。
 しかし、この化合物は、最低非占分子軌道(以下、「LUMO」という。)のエネルギーレベルが高いため、電子を注入しにくい。一方、ポリフルオレン等の共役系高分子化合物は、LUMOが低いため、これをマトリックスとして用いると、比較的容易に低駆動電圧が実現できる。ところが、このような共役系高分子化合物は、最低三重項励起エネルギー(以下、「T1エネルギー」という。)の値が小さいために、特に緑色よりも短い波長の発光のためのマトリックスとしての使用には適さない(特許文献2)。例えば、共役系高分子であるポリフルオレンと三重項発光化合物とからなる発光材料は、三重項発光化合物からの発光が弱いため、発光効率が低い(非特許文献1)。
特開2002-50483号公報 特開2002-241455号公報
APPLIED PHYSICS LETTERS, 80, 13, 2308(2002)
 そこで、本発明の目的は、発光素子等に用いた場合に発光効率が優れた材料を提供することにある。
 本発明は第一に、下記式(1-1)、(1-2)、(1-3)及び(1-4):
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子又は置換基を表す。複数存在するRは、同一であっても異なっていてもよい。)
で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基を有する化合物と、燐光発光性化合物とを含む組成物を提供する。
 本発明は第二に、前記式(1-1)、(1-2)、(1-3)及び(1-4)で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基と、燐光発光性化合物の残基とを含む高分子化合物を提供する。
 本発明は第三に、前記組成物又は前記高分子化合物を用いてなる薄膜及び発光素子を提供する。
 本発明は第四に、前記発光素子を備えた面状光源、表示装置及び照明を提供する。
 本発明の組成物及び高分子化合物(以下、「本発明の組成物等」という)は、発光効率が高い。したがって、本発明の組成物等は、発光素子等の作製に用いた場合、発光効率が優れたものである。また、本発明の組成物等は、比較的短波長の領域の発光において、通常、比較的優れた発光性を有する。これは、本発明の組成物に含まれる含窒素多環式化合物、本発明の高分子化合物のT1エネルギーが大きいためである。また、本発明の組成物等は、LUMOのエネルギーレベルも比較的低く、電子を注入し易く、最高占有分子軌道(以下、「HOMO」という)のエネルギーレベルが比較的高く、正孔が注入し易い。
 以下、本発明について詳細に説明する。
 <組成物>
 本発明の組成物は、前記式(1-1)、(1-2)、(1-3)及び(1-4)(以下、「式(1-1)~(1-4)」と言う。)で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基を有する化合物(以下、「前記少なくとも2種の含窒素多環式化合物の残基を有する化合物」ということがある。)と、燐光発光性化合物とを含む組成物である。本発明において、例えば、前記式(1-1)~(1-4)で表される化合物の残基とは、前記式(1-1)~(1-4)で表される化合物におけるRの一部又は全部(特には、1~3個)を取り除いてなる基を意味する。また、「高分子化合物」は、同じ構造(繰り返し単位)が少なくとも2個化合物中に存在するものを意味する。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、前記式(1-1)、(1-2)及び(1-3)で表される化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基を有する化合物であることがより好ましく、前記式(1-1)、(1-2)及び(1-3)で表される化合物からなる群から選ばれる少なくとも3種の含窒素多環式化合物の残基を有する化合物であることが特に好ましい。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、高分子化合物であってもよく、その場合、該含窒素多環式化合物の残基を主鎖及び/又は側鎖に有する高分子化合物であることが好ましく、前記式(1-1)~(1-4)で表される含窒素多環式化合物の残基を含む繰り返し単位を有する高分子化合物や、前記式(1-1)~(1-4)で表される含窒素多環式化合物の残基を含む繰り返し単位に加え、芳香環、ヘテロ原子を含有する5員環以上の複素環、芳香族アミン、及び後述の式(4)で表される構造から選ばれる構造のいずれかを含む繰り返し単位を有する高分子化合物が特に好ましい。
 前記式(1-1)~(1-4)中、Rは、水素原子又は置換基を表し、好ましくは複数存在するRの少なくとも1個が置換基であり、より好ましくは複数存在するRの少なくとも2個が置換基であり、さらに好ましくは複数存在するRのすべてが置換基である。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
 前記置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、置換基を有していてもよいアリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいヘテロアリール基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、置換カルボキシル基、シアノ基等が挙げられ、好ましくは、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基である。なお、N価の複素環基(Nは1又は2)とは、複素環式化合物からN個の水素原子を取り除いた残りの原子団であり、本明細書において、同様である。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。
 前記Rの少なくとも1個は、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基であることが好ましい。前記Rの少なくとも1個が、炭素数3~10のアルキル基、又は炭素数3~10のアルコキシ基であることがさらに好ましい。
 前記Rの少なくとも1個が、水素原子以外の原子の総数が3以上である置換基であることが好ましく、水素原子以外の原子の総数が5以上の置換基であることがさらに好ましく、水素原子以外の原子の総数が7以上の置換基であることが特に好ましい。Rが2個存在する場合には、少なくとも1個のRは置換基であることが好ましく、2個のRが共に置換基であることがより好ましい。複数存在するRは、同一であっても異なっていてもよい。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物としては、例えば、下記式(A-1)又は(A-2):
Figure JPOXMLDOC01-appb-C000005
(式中、Z1及びZ2はそれぞれ独立に、前記式(1-1)、(1-2)、(1-3)又は(1-4)で表される含窒素多環式化合物の残基を表す。Y1は、-C(Ra)(Rb)-、-N(Rc)-、-O-、-Si(Rd)(Re)-、-P(Rf)-又は-S-を表す。Ra~Rfはそれぞれ独立に、水素原子又は置換基を表す。mは0~5の整数である。Y1が複数存在する場合、それらは同一であっても異なっていてもよい。Y2は、置換基を有してもよいアリーレン基を表す。nは1~5の整数である。Y2が複数存在する場合、それらは同一であっても異なっていてもよい。)
で表される化合物、その残基を有する化合物も挙げられる。
 Ra~Rfで表される置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基、ハロゲン原子が挙げられる。
 Ra~Rfで表されるアリール基としては、フェニル基、C1~C12アルコキシフェニル基(「C1~C12アルコキシ」は、アルコキシ部分の炭素数が1~12であることを意味する。以下、同様である。)、C1~C12アルキルフェニル基(「C1~C12アルキル」は、アルキル部分の炭素数が1~12であることを意味する。以下、同様である。)、1-ナフチル基、2-ナフチル基、ペンタフルオロフェニル基等が挙げられ、フェニル基、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基が好ましい。
 Ra~Rfで表される1価の複素環基としては、複素環式化合物から水素原子を1個除いた残りの原子団を意味する。ここで、複素環式化合物とは、環式構造を有する有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、燐原子等のヘテロ原子を環内に含むものをいう。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、高分子化合物である場合には、T1エネルギーの観点から、前記式(A-1)又は(A-2)で表される化合物の残基を含む繰り返し単位を有する高分子化合物であることが好ましい。
 また、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、T1エネルギーの観点から、下記式(A-3):
Figure JPOXMLDOC01-appb-C000006
(式中、RINGは、前記式(1-1)~(1-4)で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基を組み合わせてなる基を意味する。Z環は、炭素原子、X1及びX2を含む環状構造である。X1及びX2はそれぞれ独立に、-C(R)=を表す。Rは前記と同じ意味を有する。)
で表される化合物の残基を有することも好ましい。
 前記式(A-3)中、前記環状構造としては、置換基を有していてもよい芳香環、置換基を有していてもよい非芳香環が挙げられ、例えば、ベンゼン環、複素環、脂環式炭化水素環、これらの環が複数縮合してなる環、これらの環の水素原子の一部が置換された環が好ましい。
 前記式(A-1)~(A-3)で表される化合物の残基とは、該化合物における水素原子、Rの一部又は全部を取り除いてなる基を意味する。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、異なるHOMO/LUMOの含窒素多環式化合物の残基を用いることにより、エネルギーレベルを調整することが可能であり、電荷注入輸送性に優れる。また、好ましい実施形態では、ドナー性とアクセプター性を組み合わせることによる酸化還元における耐久性の向上、対称性の観点から非晶質性が向上し、成膜性が向上する傾向がある。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、その他の部分構造を含んでいてもよい。その他の部分構造の種類は、それが末端に存在するか否かによって好ましいその他の部分構造の種類は異なる。
 その他の部分構造が末端に存在しない場合は、LUMOやHOMOのエネルギーレベルの点で、共役する多価の基が好ましい。このような基としては、2価の芳香族基、3価の芳香族基が挙げられる。ここで、芳香族基とは、芳香族性を示す有機化合物から誘導される基である。そのような芳香族基としては、ベンゼン、ナフタレン、アントラセン、ピリジン、キノリン、イソキノリン等の芳香環からn’個(n’は2又は3)の水素原子を結合手に置き換えてなる基が挙げられる。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物に含まれていてもよい好ましいその他の部分構造の一例として、下記式(4):
Figure JPOXMLDOC01-appb-C000007
で表される構造が挙げられる。
 前記式(4)中、P環及びQ環は、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アルケニル基、アルキニル基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基を有していてもよい。この置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基が好ましい。
 前記式(4)中、P環及びQ環はそれぞれ独立に芳香環を示すが、P環は存在してもしなくてもよい。2本の結合手は、P環が存在する場合は、それぞれP環又はQ環上に存在し、P環が存在しない場合は、それぞれYを含む5員環若しくは6員環上又はQ環上に存在する。また、前記P環、Q環、Yを含む5員環若しくは6員環上に、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アルケニル基、アルキニル基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基を有していてもよい。この置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基が好ましい。Yは、-O-、-S-、-Se-、-B(R0)-、-Si(R2)(R3)-、-P(R4)-、-P(R5)(=O)-、-C(R6)(R7)-、-N(R8)-、-C(R9)(R10)-C(R11)(R12)-、-O-C(R13)(R14)-、-S-C(R15)(R16)-、-N-C(R17)(R18)-、-Si(R19)(R20)-C(R21)(R22)-、-Si(R23)(R24)-Si(R25)(R26)-、-C(R27)=C(R28)-、-N=C(R29)-、又は-Si(R30)=C(R31)-を表す。ここで、R0及びR2~R31はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アルケニル基、アルキニル基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基又はハロゲン原子を表す。この中では、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基、ハロゲン原子が好ましく、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、1価の複素環基よりが好ましく、アルキル基、アルコキシ基、アリール基、1価の複素環基が更に好ましく、アルキル基、アリール基が特に好ましい。
 上記式(4)で表される構造としては、下記式(4-1)、(4-2)又は(4-3):
Figure JPOXMLDOC01-appb-C000008
(式中、A環、B環、及びC環はそれぞれ独立に芳香環を表す。式(4-1)、(4-2)及び(4-3)は、それぞれ、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基を有していてもよい。Yは前記と同じ意味を表す。)
で表される構造、及び下記式(4-4)又は(4-5):
Figure JPOXMLDOC01-appb-C000009
(式中、D環、E環、F環及びG環はそれぞれ独立に、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群から選ばれる置換基を有していてもよい芳香環を表す。Yは前記と同じ意味を表す。)
で表される構造が挙げられる。
 上記式(4-1)、(4-2)、(4-3)、(4-4)及び(4-5)中、A環、B環、C環、D環、E環、F環及びG環で表される芳香環としては、非置換のものを一例として示すと、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、フェナントレン環等の芳香族炭化水素環;ピリジン環、ビピリジン環、フェナントロリン環、キノリン環、イソキノリン環、チオフェン環、フラン環、ピロール環等の複素芳香環が挙げられる。これらの芳香環は、前記置換基を有していてもよい。
 また、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物に含まれていてもよい好ましいその他の部分構造の一例として、以下の式:
Figure JPOXMLDOC01-appb-C000010
(式中、Ar6、Ar7、Ar8及びAr9はそれぞれ独立にアリーレン基又は2価の複素環基を示す。Ar10、Ar11及びAr12はそれぞれ独立にアリール基又は1価の複素環基を示す。Ar6~Ar12は置換基を有していてもよい。x及びyはそれぞれ独立に0又は1を示し、0≦x+y≦1である。)
で表される構造の芳香族アミン構造が挙げられる。
 Ar6、Ar7、Ar8、Ar9で表されるアリーレン基とは、芳香族炭化水素から、水素原子2個を除いた残りの原子団である。芳香族炭化水素としては、縮合環をもつ化合物、独立したベンゼン環又は縮合環2個以上が直接又はビニレン基等を介して結合した化合物が含まれる。
 Ar6、Ar7、Ar8、Ar9で表される2価の複素環基とは、複素環式化合物から水素原子2個を除いた残りの原子団である。2価の複素環基の炭素数は、通常、4~60である。複素環式化合物とは、環式構造を持つ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、燐、硼素等のヘテロ原子を環内に含む化合物を意味する。2価の複素環基としては、2価の芳香族複素環基が好ましい。
 Ar10、Ar11、Ar12で表されるアリール基とは、芳香族炭化水素から水素原子1個を除いた残りの原子団である。芳香族炭化水素は、前述のとおりである。
 Ar10、Ar11、Ar12で表される1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団を意味する。1価の複素環基の炭素数は、通常、4~60である。複素環式化合物は、前述のとおりである。1価の複素環基としては、1価の芳香族複素環基が好ましい。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物が高分子化合物である場合、該化合物のポリスチレン換算の重量平均分子量は、成膜性の観点から、3×102以上が好ましく、3×102~1×107がより好ましく、1×103~1×107がさらに好ましく、1×104~1×107が特に好ましい。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、広い発光波長領域にて用いることができるが、該化合物のT1エネルギーの値が3.0eV以上であることが好ましく、3.2eV以上であることがより好ましく、3.4eV以上であることがさらに好ましく、3.5eV以上であることが特に好ましい。また、通常、上限は5.0eVである。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物のLUMOのエネルギーレベルの絶対値は、1.5eV以上であることが好ましく、1.7eV以上であることがより好ましく、1.9eV以上であることがさらに好ましく、2.0eV以上であることがとりわけ好ましく、2.2eV以上であることが特に好ましい。また、通常、上限は4.0eVである。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物のHOMOのエネルギーレベルの絶対値は、6.2eV以下であることが好ましく、5.9eV以下であることがより好ましく、5.6eV以下であることがさらに好ましい。また、通常、下限は5.0eVである。
 本明細書において、各化合物のT1エネルギーの値、LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値は、計算科学的手法にて算出した値である。本明細書において、計算科学的手法として、量子化学計算プログラムGaussian03を用い、HF(Hartree-Fock)法により、基底状態の構造最適化を行い、該最適化された構造において、B3P86レベルの時間依存密度汎関数法を用いて、T1エネルギーの値、LUMOのエネルギーレベルの値及びHOMOのエネルギーレベルの値を算出した。その際、基底関数として6-31g*を用いた。基底関数として前記6-31g*が利用できない場合は、LANL2DZを用いる。本発明では、その「LUMOのエネルギーレベルの値」の絶対値(即ち、LUMOのエネルギーレベルの値が負の場合、絶対値とは当該負の符号を取った値を意味する。)が重要である。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物を構成する繰り返し単位が1種類の場合、該単位をAとすると、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、下記式:
Figure JPOXMLDOC01-appb-C000011
(式中、nは重合数を表す。)
で表される。ここで、n=1、2及び3の構造に対して、T1エネルギーの値、LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値を算出し、算出されたT1エネルギーの値、LUMOのエネルギーレベルの値を(1/n)の関数として線形近似した場合のn=∞の値を、該高分子化合物のT1エネルギーの値、LUMOのエネルギーレベルの値、HOMOのエネルギーレベルの値と定義する。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物を構成する繰り返し単位が複数存在する場合、すべての場合についてn=∞(ここで、nは繰り返し単位の重合数)におけるT1エネルギーの値を前記と同様の方法で算出し、その中で最低のT1エネルギーの値を該化合物のT1エネルギーの値と定義する。LUMOのエネルギーレベルの値は、最低のT1エネルギーの値を与える繰り返し単位におけるn=∞の値を、該高分子化合物のLUMOのエネルギーレベルの値と定義する。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物は、該含窒素多環式化合物を構成する複素環構造と、該複素環構造に隣接する部分構造(ここで、該部分構造は少なくとも2個のπ共役電子を有する)が存在することが好ましい。該複素環構造と、該複素環構造に隣接する該部分構造との間の2面角が40°以上であることが好ましく、55°以上であることがより好ましく、70°以上であることがさらに好ましく、80°以上であることが特に好ましい。
 さらに、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物において、該複素環構造を含むあらゆる芳香環及びヘテロ芳香環の間の2面角が、すべて40°以上であることが好ましく、55°以上であることがより好ましく、70°以上であることがさらに好ましく、80°以上であることが特に好ましい。また、このような2面角を得るためには、前記式(A-3)で表される部分構造を有することが好ましい。
 また、本明細書において、2面角とは、基底状態における最適化構造から算出される角度を意味する。2面角は、例えば、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物を構成する複素環構造において結合位置にある炭素原子(a1)とa1に隣接する炭素原子又は窒素原子(a2)、及び該複素環構造と結合している構造の結合位置にある原子(a3)とa3に隣接する原子(a4)で定義される。ここで、原子(a2)又は原子(a4)が複数選択可能な場合は、すべての場合について2面角を算出し、その中で値が最低の値(90°以下である)を2面角とする。原子(a3)及び(a4)は、π共役電子を有する原子であり、より好ましくは、炭素原子、窒素原子、珪素原子、リン原子である。本明細書においては、計算科学的手法により求められるn=3(nは重合数)の構造の基底状態における最適化構造(即ち、該構造の生成エネルギーが最小となる構造)から算出する。前記複素環構造を有する化合物においては、該2面角も複数存在する。その場合、該化合物における該2面角のすべてが、前記条件を満たしていることが好ましい。
 前記少なくとも2種の含窒素多環式化合物の残基を有する化合物としては、以下の式(2-1)~(2-16)で表される化合物が挙げられる。下式(2-1)~(2-16)中、R*は水素原子又は置換基を表す。R*で表される置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、置換基を有していてもよいアリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいヘテロアリール基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、置換カルボキシル基、シアノ基が例示される。複数個のR*は同一であっても異なっていてもよい。R*としては、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基がより好ましい。複数存在するR*は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式中、nは重合数を表す。)
 また、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物としては、以下の化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 前記燐光発光性化合物としては、三重項発光錯体等や、低分子系のEL発光性材料として利用されてきた化合物が挙げられる。これらは、例えば、Nature, (1998), 395, 151、Appl. Phys. Lett. (1999), 75(1), 4、Proc. SPIE-Int. Soc. Opt. Eng. (2001), 4105(Organic Light-Emitting Materials and DevicesIV), 119、J. Am. Chem. Soc., (2001), 123, 4304、Appl. Phys. Lett., (1997), 71(18), 2596、Syn. Met., (1998), 94(1), 103、Syn. Met., (1999), 99(2), 1361、Adv. Mater., (1999), 11(10), 852、 Inorg. Chem., (2003), 42, 8609、 Inorg. Chem., (2004), 43, 6513、Journal of the SID 11/1、161 (2003)、WO2002/066552、WO2004/020504、WO2004/020448等に開示されている。これらの中でも、金属錯体のHOMOにおける、中心金属の最外殻d軌道の軌道係数の2乗の和が、全原子軌道係数の2乗の和において占める割合が1/3以上であることが、高発光効率を得る観点で好ましい。前記燐光発光性化合物としては、中心金属が第6周期に属する遷移金属である、オルトメタル化錯体等が挙げられる。
 前記三重項発光錯体の中心金属としては、通常、原子番号50以上の原子で、該錯体にスピン-軌道相互作用があり、一重項状態と三重項状態間の項間交差を起こし得る金属であり、金、白金、イリジウム、オスミウム、レニウム、タングステン、ユーロピウム、テルビウム、ツリウム、ディスプロシウム、サマリウム、プラセオジム、ガドリニウム、イッテルビウムの原子が好ましく、より好ましくは、金、白金、イリジウム、オスミウム、レニウム、タングステンの原子であり、さらに好ましくは、金、白金、イリジウム、オスミウム、レニウムの原子であり、特に好ましくは、金、白金、イリジウム、レニウムの原子であり、とりわけ好ましくは、白金及びイリジウムの原子である。
 前記三重項発光錯体の配位子としては、8-キノリノール及びその誘導体、ベンゾキノリノール及びその誘導体、2-フェニル-ピリジン及びその誘導体等が挙げられる。
 前記燐光発光性化合物は、溶解性の観点から、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基等の置換基を有する化合物であることが好ましい。さらに、該置換基は、水素原子以外の原子の総数が3以上であることが好ましく、5以上であることがより好ましく、7以上であることがさらに好ましく、10以上であることが特に好ましい。また、該置換基は、各配位子に少なくとも1個存在することが好ましく、該置換基の種類は、配位子毎に同一であっても異なっていてもよい。
 前記燐光発光性化合物としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 本発明の組成物中における前記燐光発光性化合物の量は、組み合わせる少なくとも2種の含窒素多環式化合物の残基を有する化合物の種類や、最適化したい特性により異なるが、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物の量を100重量部としたとき、通常、0.01~80重量部であり、好ましくは0.1~30重量部であり、より好ましくは0.1~15重量部であり、特に好ましくは0.1~10重量部である。なお、本発明の組成物において、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物、前記燐光発光性化合物は、各々、一種単独で用いても二種以上を併用してもよい。
 本発明の組成物は、本発明の目的を損なわない範囲で、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物、前記燐光発光性化合物以外の任意成分を含んでいてもよい。この任意成分としては、例えば、正孔輸送材料、電子輸送材料、酸化防止剤等が挙げられる。
 前記正孔輸送材料としては、有機EL素子の正孔輸送材料として公知の芳香族アミン、カルバゾール誘導体、ポリパラフェニレン誘導体等が挙げられる。
 前記電子輸送材料としては、有機EL素子の電子輸送材料として公知のオキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体が挙げられる。
 本発明の組成物において、前記少なくとも2種の含窒素多環式化合物の残基を有する化合物のT1エネルギーの値(ETH)と前記燐光発光性化合物のT1エネルギーの値(ETG)とが、下記式:
 ETH > ETG    (eV)
を満たすことが、高効率発光の観点から好ましく、
 ETH > ETG+0.1(eV)
を満たすことが、より好ましく、
 ETH > ETG+0.2(eV)
を満たすことが、さらに好ましい。
 本発明の薄膜は、本発明の組成物等を用いて作製することができる。薄膜の作製には、溶液の塗布、蒸着、転写等を用いることができる。溶液の塗布には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等を用いればよい。
 溶媒としては、組成物を溶解又は均一に分散できる溶媒が好ましい。該溶媒としては、塩素系溶媒(クロロホルム、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等)、エーテル系溶媒(テトラヒドロフラン、ジオキサン等)、芳香族炭化水素系溶媒(トルエン、キシレン等)、脂肪族炭化水素系溶媒(シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン等)、ケトン系溶媒(アセトン、メチルエチルケトン、シクロヘキサノン等)、エステル系溶媒(酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等)、多価アルコール及びその誘導体(エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-ヘキサンジオール等)、アルコール系溶媒(メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等)、スルホキシド系溶媒(ジメチルスルホキシド等)、アミド系溶媒(N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等)が例示され、これらの中から選択して用いることができる。また、これらの有機溶媒は、一種単独で用いても二種以上を併用してもよい。
 インクジェット印刷法を用いる場合には、ヘッドからの吐出性、ばらつき等の改善のために、溶液中の溶媒の選択、添加剤として公知の方法を用いることができる。この場合、溶液の粘度が、25℃において1~100mPa・sであることが好ましい。また、あまり蒸発が著しいとヘッドから吐出を繰り返すことが難しくなる傾向がある。上記のような観点で、好ましい溶媒としては、例えば、アニソール、ビシクロヘキシル、キシレン、テトラリン、ドデシルベンゼンを含む単独又は混合の溶媒が挙げられる。一般的には、複数の溶媒を混合する方法、組成物の溶液中での濃度を調整する方法等によって用いた組成物に合ったインクジェット印刷用の溶液を得ることができる。
 <高分子化合物>
 本発明の高分子化合物は、前記式(1-1)、(1-2)、(1-3)、(1-4)で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基と、燐光発光性化合物の残基とを含む高分子化合物である。前記燐光発光性化合物及び前記含窒素多環式化合物は、前記組成物の項で説明し例示したものと同様である。本発明の高分子化合物としては、(1)主鎖に燐光発光性化合物の残基を有する高分子、(2)末端に燐光発光性化合物の残基を有する高分子化合物、(3)側鎖に燐光発光性化合物の残基を有する高分子化合物等が挙げられる。
 <発光素子>
 次に、本発明の発光素子について説明する。
 本発明の発光素子は、本発明の組成物等を用いてなるものであり、通常、陽極及び陰極からなる電極間に設けられた層の少なくとも一部に本発明の組成物等を含むが、それらを前記発光性薄膜の形態で発光層として含むことが好ましい。また、発光効率、耐久性等の性能を向上させる観点から、他の機能を有する公知の層を含んでいてもよい。このような層としては、電荷輸送層(即ち、正孔輸送層、電子輸送層)、電荷阻止層(即ち、正孔阻止層、電子阻止層)、電荷注入層(即ち、正孔注入層、電子注入層)、バッファ層等が挙げられる。なお、本発明の発光素子において、発光層、電荷輸送層、電荷阻止層、電荷注入層、バッファ層等は、各々、一層からなるものでも二層以上からなるものでもよい。
 発光層は、発光する機能を有する層である。正孔輸送層は、正孔を輸送する機能を有する層である。電子輸送層は、電子を輸送する機能を有する層である。これら電子輸送層と正孔輸送層を総称して電荷輸送層と言う。また、電荷阻止層は、正孔又は電子を発光層に閉じ込める機能を有する層であり、電子を輸送し、かつ正孔を閉じ込める層を正孔阻止層と言い、正孔を輸送し、かつ電子を閉じ込める層を電子阻止層と言う。
 バッファ層としては、陽極に隣接して導電性高分子化合物を含む層が挙げられる。
 本発明の発光素子の具体例としては、以下のa)~q)の構造が挙げられる。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/発光層/正孔阻止層/陰極
e)陽極/正孔輸送層/発光層/電子輸送層/陰極
f)陽極/電荷注入層/発光層/陰極
g)陽極/発光層/電荷注入層/陰極
h)陽極/電荷注入層/発光層/電荷注入層/陰極
i)陽極/電荷注入層/正孔輸送層/発光層/陰極
j)陽極/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
l)陽極/電荷注入層/発光層/電子輸送層/陰極
m)陽極/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
o)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/陰極
p)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
q)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下、同じである。なお、発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。)
 本発明の発光素子が正孔輸送層を有する場合(通常、正孔輸送層は、正孔輸送材料を含有する)、正孔輸送材料としては公知の材料が挙げられ、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体等の高分子正孔輸送材料が挙げられ、さらに、特開昭63-70257号公報、同63-175860号公報、特開平2-135359号公報、同2-135361号公報、同2-209988号公報、同3-37992号公報、同3-152184号公報に記載されているものも挙げられる。
 本発明の発光素子が電子輸送層を有する場合(通常、電子輸送層は、電子輸送材料を含有する)、電子輸送材料としては公知の材料が挙げられ、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。
 正孔輸送層及び電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層及び電子輸送層の膜厚は、通常、1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(即ち、正孔注入層、電子注入層の総称である。以下、同じである。)と呼ばれることがある。
 さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は絶縁層(通常、平均膜厚で0.5nm~4nmであり、以下、同じである。)を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファ層を挿入してもよい。
 積層する層の順番や数、及び各層の厚さは、発光効率や素子寿命を勘案して適宜選択することができる。
 電荷注入層としては、導電性高分子化合物を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層等が挙げられる。
 電荷注入層に用いる材料としては、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子化合物、金属フタロシアニン(銅フタロシアニン等)、カーボン等が例示される。
 絶縁層は、電荷注入を容易にする機能を有するものである。絶縁層の材料としては、例えば、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。絶縁層を設けた発光素子としては、例えば、陰極に隣接して絶縁層を設けた発光素子、陽極に隣接して絶縁層を設けた発光素子が挙げられる。
 本発明の発光素子は、通常、基板上に形成される。基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン等の基板が挙げられる。不透明な基板の場合には、反対の電極が透明又は半透明であることが好ましい。
 本発明の発光素子が有する陽極及び陰極の少なくとも一方は、通常、透明又は半透明である。その中でも、陽極側が透明又は半透明であることが好ましい。
 陽極の材料としては、通常、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性無機化合物を用いて作製された膜(NESA等)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体等の有機の透明導電膜を用いてもよい。なお、陽極を2層以上の積層構造としてもよい。
 前記陰極の材料としては、通常、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2種以上の合金、或いはそれらのうち1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金、グラファイト又はグラファイト層間化合物等が用いられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。なお、陰極を2層以上の積層構造としてもよい。
 本発明の発光素子は、面状光源、表示装置(例えば、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置等)、そのバックライト(例えば、前記発光素子をバックライトとして備えた液晶表示装置)等として用いることができる。
 本発明の発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極のいずれか一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる材料を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。
 さらに、面状の発光素子は、通常、自発光薄型であり、液晶表示装置のバックライト用の面状光源、照明(例えば、面状の照明、該照明用の光源)等として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源、照明、表示装置等としても使用できる。
 本発明の組成物等は、有機半導体材料等の半導体材料、発光材料、光学材料、導電性材料(例えば、ドーピングにより適用する。)として用いることもできる。さらに、本発明の組成物等を用いて、発光性薄膜、導電性薄膜、有機半導体薄膜等の薄膜を作製することができる。
 本発明の組成物等は、前記発光素子の発光層に用いられる発光性薄膜の作製方法と同様の方法で、導電性薄膜及び半導体薄膜を成膜、素子化することができる。半導体薄膜は、電子移動度又は正孔移動度のいずれか大きいほうが、10-5cm2/V/秒以上であることが好ましい。また、有機半導体薄膜は、有機太陽電池、有機トランジスタ等に用いることができる。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 <実施例1>
 下記式:
Figure JPOXMLDOC01-appb-C000017
で表される化合物(C-1)のT1エネルギーの値は3.3eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.6eVであり、最小の2面角は41°であった。パラメータの計算は、化合物(C-1)の構造を用いて行った。具体的には、化合物(C-1)をHF法により構造最適化した。その際、基底関数としては、6-31g*を用いた。その後、同一の基底関数を用い、B3P86レベルの時間依存密度汎関数法により、LUMOのエネルギーレベルの値、及びT1エネルギーの値を算出した。2面角は、HF法により構造最適化された構造から算出した。2面角は、2個存在するが、ここでは最小の値のみを記載する。
 また、下記式:
Figure JPOXMLDOC01-appb-C000018
で表される燐光発光性化合物(MC-1)のT1エネルギーの値を計算科学的手法により算出したところ、2.8eVであった。
 化合物(C-1)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例2>
 下記式:
Figure JPOXMLDOC01-appb-C000019
で表される化合物(C-2)のT1エネルギーの値は3.3eVであり、HOMOのエネルギーレベルの絶対値ELUMOは6.2eVであり、最小の2面角は55°であった。パラメータの計算は、化合物(C-2)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-2)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例3>
 下記式:
Figure JPOXMLDOC01-appb-C000020
で表される化合物(C-3)のT1エネルギーの値は3.3eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.8eVであり、最小の2面角は45°であった。パラメータの計算は、化合物(C-3)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-3)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例4>
 下記式:
Figure JPOXMLDOC01-appb-C000021
で表される化合物(C-4)のT1エネルギーの値は3.3eVであり、HOMOのエネルギーレベルの絶対値ELUMOは6.1eVであり、最小の2面角は54°であった。パラメータの計算は、化合物(C-4)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-4)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例5>
 下記式:
Figure JPOXMLDOC01-appb-C000022
で表される化合物(C-5)のT1エネルギーの値は3.4eVであり、HOMOのエネルギーレベルの絶対値ELUMOは6.1eVであり、最小の2面角は85°であった。パラメータの計算は、化合物(C-5)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-5)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例6>
 下記式:
Figure JPOXMLDOC01-appb-C000023
で表される化合物(C-6)のT1エネルギーの値は3.3eVであり、HOMOのエネルギーレベルの絶対値ELUMOは6.0eVであり、最小の2面角は64°であった。パラメータの計算は、化合物(C-6)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-6)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例7>
 下記式:
Figure JPOXMLDOC01-appb-C000024
で表される化合物(C-7)のT1エネルギーの値は3.2eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.9eVであった。パラメータの計算は、化合物(C-7)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-7)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例8>
 下記式:
Figure JPOXMLDOC01-appb-C000025
で表される化合物(C-8)のT1エネルギーの値は3.3eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.6eVであった。パラメータの計算は、化合物(C-8)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-8)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例9>
 下記式:
Figure JPOXMLDOC01-appb-C000026
で表される化合物(C-9)のT1エネルギーの値は3.3eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.9eVであった。パラメータの計算は、化合物(C-9)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-9)と燐光発光性化合物(MC-1)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例10>
 下記式:
Figure JPOXMLDOC01-appb-C000027
で表される化合物(C-10)のT1エネルギーの値は3.3eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.6eVであった。パラメータの計算は、化合物(C-10)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 また、下記式:
Figure JPOXMLDOC01-appb-C000028
で表される燐光発光性化合物(MC-2)のT1エネルギーの値を計算科学的手法により算出したところ、2.9eVであった。
 化合物(C-10)と燐光発光性化合物(MC-2)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例11>
 下記式:
Figure JPOXMLDOC01-appb-C000029
で表される化合物(C-11)のT1エネルギーの値は3.3eVであり、LUMOのエネルギーレベルの絶対値ELUMOは1.7eVであった。パラメータの計算は、化合物(C-11)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-11)と燐光発光性化合物(MC-2)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例12>
 下記式:
Figure JPOXMLDOC01-appb-C000030
で表される化合物(C-12)のT1エネルギーの値は3.1eVであり、LUMOのエネルギーレベルの絶対値ELUMOは2.0eVであった。パラメータの計算は、化合物(C-12)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-12)と燐光発光性化合物(MC-2)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例13>
 下記式:
Figure JPOXMLDOC01-appb-C000031
で表される化合物(C-13)のT1エネルギーの値は3.3eVであり、LUMOのエネルギーレベルの絶対値ELUMOは2.2eVであった。パラメータの計算は、化合物(C-13)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-13)と燐光発光性化合物(MC-2)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <実施例14>
 下記式:
Figure JPOXMLDOC01-appb-C000032
で表される化合物(C-14)のT1エネルギーの値は3.2eVであり、LUMOのエネルギーレベルの絶対値ELUMOは2.0eVであった。パラメータの計算は、化合物(C-14)の構造を用いて、実施例1と同様にして計算科学的手法で行った。
 化合物(C-14)と燐光発光性化合物(MC-2)とからなる組成物を用いて発光素子を作製すると、発光効率が優れることが確認できる。
 <比較例1>
 下記式:
Figure JPOXMLDOC01-appb-C000033
(式中、nは重合度である。)
で表される高分子化合物(CP-1)のnをn=∞に外挿して算出したT1エネルギーの値は2.6eVであり、LUMOのエネルギーレベルの絶対値ELUMOは2.1eVであり、HOMOのエネルギーレベルの絶対値EHOMOは5.7eVであり、最小の2面角は45°であった。パラメータの計算は、高分子化合物(CP-1)における下記式(CM-1)で表される繰り返し単位(CM-1)を下記式(CM-1a)のとおり簡略化し、実施例3と同様にして計算科学的手法で行った。
Figure JPOXMLDOC01-appb-C000034
 化合物(CP-1)と燐光発光性化合物(MC-1)又は燐光発光性化合物(MC-2)とからなる組成物を用いて発光素子を作製すると、実施例1~14の発光素子に比べて、発光効率が劣ることが確認できる。
 本発明の組成物等は、発光素子等に用いた場合、発光効率が優れた発光素子を提供する。

Claims (21)

  1.  下記式(1-1)、(1-2)、(1-3)及び(1-4):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又は置換基を表す。複数存在するRは、同一であっても異なっていてもよい。)
    で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基を有する化合物と、燐光発光性化合物とを含む組成物。
  2.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物が、前記式(1-1)、(1-2)及び(1-3)で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基を有する化合物である請求項1に記載の組成物。
  3.  前記Rの少なくとも1個が、アルキル基、アルコキシ基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基である請求項1又は2に記載の組成物。
  4.  前記Rの少なくとも1個が、水素原子以外の原子の総数が3以上の置換基である請求項3に記載の組成物。
  5.  前記Rの少なくとも1個が、炭素数3~10のアルキル基、又は炭素数3~10のアルコキシ基である請求項4に記載の組成物。
  6.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物が、下記式(A-1)又は(A-2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Z1及びZ2はそれぞれ独立に、前記式(1-1)、(1-2)、(1-3)又は(1-4)で表される含窒素多環式化合物の残基を表す。Y1は、-C(Ra)(Rb)-、-N(Rc)-、-O-、-Si(Rd)(Re)-、-P(Rf)-又は-S-を表す。Ra~Rfはそれぞれ独立に、水素原子又は置換基を表す。mは0~5の整数である。Y1が複数存在する場合、それらは同一であっても異なっていてもよい。Y2は、置換基を有してもよいアリーレン基を表す。nは1~5の整数である。Y2が複数存在する場合、それらは同一であっても異なっていてもよい。)
    で表される化合物、又はその残基を有する化合物である請求項1~5のいずれか一項に記載の組成物。
  7.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物が高分子化合物である請求項1~6のいずれか一項に記載の組成物。
  8.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物が、前記式(A-1)又は(A-2)で表される化合物の残基を含む繰り返し単位を有する高分子化合物である請求項7に記載の組成物。
  9.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物の計算科学的手法により算出した最低三重項励起エネルギーの値が3.0eV以上である請求項1~8のいずれか一項に記載の組成物。
  10.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物の計算科学的手法により算出した最低非占有分子軌道のエネルギーレベルの絶対値が1.5eV以上である請求項1~9のいずれか一項に記載の組成物。
  11.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物の計算科学的手法により算出した最高占有分子軌道のエネルギーレベルの絶対値が6.2eV以下である請求項1~9のいずれか一項に記載の組成物。
  12.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物の最低三重項励起エネルギーの値(ETH)と、前記燐光発光性化合物の最低三重項励起エネルギーの値(ETG)とが、下記式:
     ETH > ETG (eV)
    を満たす請求項1~11のいずれか一項に記載の組成物。
  13.  前記少なくとも2種の含窒素多環式化合物の残基を有する化合物が、該含窒素多環式化合物を構成する複素環構造と、該複素環構造に隣接する部分構造を有し、該部分構造は少なくとも2個のπ共役電子を有するものであって、該複素環構造と該部分構造との間の2面角が40°以上である化合物である請求項1~12のいずれか一項に記載の組成物。
  14.  前記燐光発光性化合物が、イリジウム錯体又は白金錯体である請求項1~13のいずれか一項に記載の組成物。
  15.  前記燐光発光性化合物が、イリジウム又は白金を中心金属とし、8-キノリノール若しくはその誘導体、ベンゾキノリノール若しくはその誘導体、又は2-フェニル-ピリジン若しくはその誘導体を配位子とする金属錯体である請求項14に記載の組成物。
  16.  下記式(1-1)、(1-2)、(1-3)及び(1-4):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子又は置換基を表す。複数存在するRは、同一であっても異なっていてもよい。)
    で表される含窒素多環式化合物からなる群から選ばれる少なくとも2種の含窒素多環式化合物の残基と、燐光発光性化合物の残基とを含む高分子化合物。
  17.  請求項1~15のいずれか一項に記載の組成物又は請求項16に記載の高分子化合物を用いてなる薄膜。
  18.  請求項1~15のいずれか一項に記載の組成物又は請求項16に記載の高分子化合物を用いてなる発光素子。
  19.  請求項18に記載の発光素子を備えた面状光源。
  20.  請求項18に記載の発光素子を備えた表示装置。
  21.  請求項18に記載の発光素子を備えた照明。
PCT/JP2009/061366 2008-06-23 2009-06-23 燐光発光性組成物及び同組成物を用いてなる発光素子 WO2009157429A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09770139A EP2305771A4 (en) 2008-06-23 2009-06-23 PHOSPHORESCENCE-EMITTING COMPOSITION, AND LIGHT-EMITTING ELEMENT USING THE SAME
CN2009801237365A CN102066523A (zh) 2008-06-23 2009-06-23 发磷光性组合物及使用该组合物的发光元件
US13/000,447 US20110114888A1 (en) 2008-06-23 2009-06-23 Phosphoresence-emitting composition, and light-emitting element utilizing the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-163043 2008-06-23
JP2008163043 2008-06-23

Publications (1)

Publication Number Publication Date
WO2009157429A1 true WO2009157429A1 (ja) 2009-12-30

Family

ID=41444495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061366 WO2009157429A1 (ja) 2008-06-23 2009-06-23 燐光発光性組成物及び同組成物を用いてなる発光素子

Country Status (7)

Country Link
US (1) US20110114888A1 (ja)
EP (1) EP2305771A4 (ja)
JP (1) JP2010031250A (ja)
KR (1) KR20110033823A (ja)
CN (1) CN102066523A (ja)
TW (1) TW201009042A (ja)
WO (1) WO2009157429A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865912B2 (en) 2010-10-06 2014-10-21 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
JP2015020987A (ja) * 2013-07-22 2015-02-02 出光興産株式会社 ベンゾトリアゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US9056874B2 (en) 2012-05-04 2015-06-16 Novartis Ag Complement pathway modulators and uses thereof
US9475806B2 (en) 2013-03-14 2016-10-25 Novartis Ag Complement factor B inhibitors and uses there of
US9676728B2 (en) 2013-10-30 2017-06-13 Novartis Ag 2-benzyl-benzimidazole complement factor B inhibitors and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031248A (ja) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
KR101554700B1 (ko) * 2013-09-24 2015-09-21 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101996526B1 (ko) * 2015-02-09 2019-07-05 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102659372B1 (ko) * 2016-03-04 2024-04-22 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기발광소자
KR20210045541A (ko) * 2019-10-16 2021-04-27 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370257A (ja) 1986-09-12 1988-03-30 Fuji Xerox Co Ltd 電子写真用電荷輸送材料
JPS63175860A (ja) 1987-01-16 1988-07-20 Fuji Xerox Co Ltd 電子写真感光体
JPH02135359A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02135361A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02209988A (ja) 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd 薄膜エレクトロルミネッセンス素子
JPH0337992A (ja) 1989-07-04 1991-02-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JPH03152184A (ja) 1989-11-08 1991-06-28 Nec Corp 有機薄膜el素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002241455A (ja) 2001-02-19 2002-08-28 Fuji Photo Film Co Ltd 新規重合体、それを利用した発光素子用材料および発光素子
WO2002066552A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Metal-containing dendrimers
WO2004020448A1 (en) 2002-08-28 2004-03-11 Isis Innovation Limited Neutral metallic dendrimer complexes
WO2004020504A1 (en) 2002-08-29 2004-03-11 Isis Innovation Limited Blended dendrimers
JP2004346082A (ja) * 2003-09-16 2004-12-09 Tetsuya Nishio 第3級アミン化合物およびそれを使用した有機半導体装置
JP2005082701A (ja) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス用素子材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2005174917A (ja) * 2003-11-21 2005-06-30 Canon Inc 有機発光素子、有機化合物及び表示装置
JP2006513278A (ja) * 2002-08-16 2006-04-20 ザ ユニバーシティ オブ サザン カリフォルニア 有機発光材料及びデバイス
WO2008066196A1 (en) * 2006-11-27 2008-06-05 Fujifilm Corporation Organic electroluminescent device and indole derivative
WO2008066195A1 (en) * 2006-11-27 2008-06-05 Fujifilm Corporation Organic electroluminescent device and indole derivative
JP2008160087A (ja) * 2006-11-27 2008-07-10 Fujifilm Corp 有機電界発光素子
JP2008218986A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2008218988A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2008218987A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2008214616A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2009076865A (ja) * 2007-08-29 2009-04-09 Fujifilm Corp 有機電界発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG128438A1 (en) * 2002-03-15 2007-01-30 Sumitomo Chemical Co Polymer compound and polymer light emitting deviceusing the same
US6916554B2 (en) * 2002-11-06 2005-07-12 The University Of Southern California Organic light emitting materials and devices
US7388100B2 (en) * 2004-07-16 2008-06-17 Tetsuya Nishio Tertiary amine compounds
JP2010031249A (ja) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370257A (ja) 1986-09-12 1988-03-30 Fuji Xerox Co Ltd 電子写真用電荷輸送材料
JPS63175860A (ja) 1987-01-16 1988-07-20 Fuji Xerox Co Ltd 電子写真感光体
JPH02135359A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02135361A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02209988A (ja) 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd 薄膜エレクトロルミネッセンス素子
JPH0337992A (ja) 1989-07-04 1991-02-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JPH03152184A (ja) 1989-11-08 1991-06-28 Nec Corp 有機薄膜el素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002241455A (ja) 2001-02-19 2002-08-28 Fuji Photo Film Co Ltd 新規重合体、それを利用した発光素子用材料および発光素子
WO2002066552A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Metal-containing dendrimers
JP2006513278A (ja) * 2002-08-16 2006-04-20 ザ ユニバーシティ オブ サザン カリフォルニア 有機発光材料及びデバイス
WO2004020448A1 (en) 2002-08-28 2004-03-11 Isis Innovation Limited Neutral metallic dendrimer complexes
WO2004020504A1 (en) 2002-08-29 2004-03-11 Isis Innovation Limited Blended dendrimers
JP2005082701A (ja) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス用素子材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2004346082A (ja) * 2003-09-16 2004-12-09 Tetsuya Nishio 第3級アミン化合物およびそれを使用した有機半導体装置
JP2005174917A (ja) * 2003-11-21 2005-06-30 Canon Inc 有機発光素子、有機化合物及び表示装置
WO2008066196A1 (en) * 2006-11-27 2008-06-05 Fujifilm Corporation Organic electroluminescent device and indole derivative
WO2008066195A1 (en) * 2006-11-27 2008-06-05 Fujifilm Corporation Organic electroluminescent device and indole derivative
JP2008160087A (ja) * 2006-11-27 2008-07-10 Fujifilm Corp 有機電界発光素子
JP2008218986A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2008218988A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2008218987A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2008214616A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
JP2009076865A (ja) * 2007-08-29 2009-04-09 Fujifilm Corp 有機電界発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, vol. 80, no. 13, 2002, pages 2308
See also references of EP2305771A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865912B2 (en) 2010-10-06 2014-10-21 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US9062003B2 (en) 2010-10-06 2015-06-23 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US9156797B2 (en) 2010-10-06 2015-10-13 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US9872860B2 (en) 2010-10-06 2018-01-23 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US10314845B2 (en) 2010-10-06 2019-06-11 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US10660898B2 (en) 2010-10-06 2020-05-26 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US9056874B2 (en) 2012-05-04 2015-06-16 Novartis Ag Complement pathway modulators and uses thereof
US9475806B2 (en) 2013-03-14 2016-10-25 Novartis Ag Complement factor B inhibitors and uses there of
JP2015020987A (ja) * 2013-07-22 2015-02-02 出光興産株式会社 ベンゾトリアゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US9676728B2 (en) 2013-10-30 2017-06-13 Novartis Ag 2-benzyl-benzimidazole complement factor B inhibitors and uses thereof

Also Published As

Publication number Publication date
EP2305771A4 (en) 2012-08-01
JP2010031250A (ja) 2010-02-12
CN102066523A (zh) 2011-05-18
KR20110033823A (ko) 2011-03-31
EP2305771A1 (en) 2011-04-06
US20110114888A1 (en) 2011-05-19
TW201009042A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
JP5358962B2 (ja) 組成物及び該組成物を用いてなる発光素子
JP5504563B2 (ja) 組成物及び該組成物を用いてなる発光素子
US8034420B2 (en) Benzotriazole compound-containing composition and light-emitting device using the composition
WO2009157429A1 (ja) 燐光発光性組成物及び同組成物を用いてなる発光素子
JP5446096B2 (ja) 組成物及び該組成物を用いてなる発光素子
JP2008218987A (ja) 組成物及び該組成物を用いてなる発光素子
WO2009157426A1 (ja) 組成物及び同組成物を用いてなる発光素子
US20100032624A1 (en) Indazole compound-containing composition and light-emitting device using the composition
WO2009157428A1 (ja) 燐光発光性組成物及び該組成物を用いてなる発光素子
WO2009157427A1 (ja) 組成物及びそれを用いてなる発光素子
WO2009157425A1 (ja) 組成物及び該組成物を用いてなる発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123736.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107028557

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009770139

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000447

Country of ref document: US