WO2009154196A1 - バイアススパッタ装置 - Google Patents

バイアススパッタ装置 Download PDF

Info

Publication number
WO2009154196A1
WO2009154196A1 PCT/JP2009/060936 JP2009060936W WO2009154196A1 WO 2009154196 A1 WO2009154196 A1 WO 2009154196A1 JP 2009060936 W JP2009060936 W JP 2009060936W WO 2009154196 A1 WO2009154196 A1 WO 2009154196A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
holder
substrate electrode
rotation holder
electrode
Prior art date
Application number
PCT/JP2009/060936
Other languages
English (en)
French (fr)
Inventor
菅原 聡
泰宏 枝並
一樹 高橋
進 熊川
友松 姜
一郎 塩野
佳弘 高坂
Original Assignee
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シンクロン filed Critical 株式会社シンクロン
Priority to US12/999,425 priority Critical patent/US20110100806A1/en
Priority to CN2009801223663A priority patent/CN102066602B/zh
Priority to EP09766644.0A priority patent/EP2302092B1/en
Priority to KR1020107028578A priority patent/KR101036426B1/ko
Priority to JP2009546606A priority patent/JP4503702B2/ja
Publication of WO2009154196A1 publication Critical patent/WO2009154196A1/ja
Priority to HK11107303.4A priority patent/HK1153242A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering

Definitions

  • the present invention relates to a bias sputtering apparatus, and more particularly to a bias sputtering apparatus including a self-revolving substrate holder.
  • a sputtering power is applied to each of a substrate side and a target disposed facing each other in a vacuum vessel, and plasma is applied between the substrate and the target.
  • a thin film can be formed while sputtering a target film-forming substance with ions (see, for example, Patent Document 1).
  • a method of stabilizing the film thickness by controlling the film formation time and film formation power based on the real-time film thickness measurement result using the film thickness monitor a method of performing film formation while rotating and revolving the substrate holder, Alternatively, an attempt has been made to control the film thickness with high accuracy by providing a correction plate mechanism between the substrate holder and the target (see, for example, Patent Documents 3 to 6).
  • a method of using a radio frequency (RF) power source as a sputtering power source instead of a direct current (DC) power source is called RF bias sputtering, and by using the high frequency power source, sputtering of metals and insulating materials can be performed (for example, patents). References 1, 2, 4).
  • the film forming material sputtered from the target adheres to the substrate holder portion to form a film.
  • the film-forming substance adhering to a portion other than the substrate tends to be formed with a non-uniform film thickness in the uneven portion on the surface of the substrate holder or in the vicinity of the step on the mounting portion of the substrate.
  • the peeled film adheres to the substrate being formed as a foreign object, resulting in poor film formation. It was a cause to cause.
  • the above-described problem is provided with a substrate holder for supporting a substrate in a vacuum container, a substrate electrode provided on the substrate holder side, and the substrate. And a target disposed opposite to the substrate, and applying a power to the substrate electrode and the target to generate plasma between the substrate electrode and the target to form a thin film on the substrate surface.
  • the substrate electrode is provided only on the back side of each of the substrates supported by the substrate holder, and the substrate electrode and the substrate are disposed at a predetermined distance from each other. .
  • the substrate electrode is provided only on the back side of each of the substrates supported by the substrate holder, and the substrate electrode and the substrate are disposed at a predetermined distance. Therefore, power is supplied only to the back side of each substrate attached to the substrate holder. For this reason, the range of the voltage / power value that can be supplied to the substrate can be set to a higher value than before, so that the film quality can be densified or the processing time can be reduced.
  • the “back surface” of the substrate means a surface on the side that is not the sputtering surface, and indicates a surface opposite to the surface facing the target.
  • the predetermined distance between the substrate electrode and the substrate is 0.5 mm or more and 10 mm or less.
  • the substrate can be disposed within a range in which the effect of the self-bias appearing on the substrate electrode is reflected. Further, the self-bias effect reflected on the substrate can be adjusted by changing the distance between the substrate electrode and the substrate.
  • the substrate holder includes a revolving member that rotates relative to the vacuum vessel, and a rotation holder that rotates relative to the revolving member and can support the substrate.
  • the substrate electrode is supported on the other end side of the wiring member whose one end side is directly or indirectly connected to an external power source, and is provided on any of the rotation holder and the revolution member. It is more preferable that it is insulated.
  • the substrate electrode is insulated from both the rotation holder and the revolution member, and is disposed in a state of being directly or indirectly connected to the external power source (specifically, the revolution electrode).
  • the substrate electrode and the rotation holder are not in electrical contact with each other.
  • the “revolving member side” here means in a broad sense all member sides involved in rotationally driving the revolving member. More specifically, one end of the wiring member is a revolving member. In order to rotate, it connects to the application receiving part fixed to the rotating shaft which penetrates the center part of the revolution member.
  • the substrate holder includes a revolving member that rotates relative to the vacuum container, and a rotation holder that rotates relative to the revolving member and can support the substrate.
  • the substrate electrode is supported on the other end side of the wiring member whose one end side is directly or indirectly connected to an external power source, and is provided on any of the rotation holder and the revolution member. It is preferable that the predetermined distance between the substrate electrode and the substrate is configured to be adjustable by changing a mounting position of the wiring member with respect to the revolving member.
  • the distance between the substrate electrode and the substrate can be arbitrarily changed by changing the mounting height of the wiring member on the revolving member side, so that the self-bias effect that appears on the substrate electrode is reflected.
  • the substrate can be disposed on the substrate, and the self-bias effect reflected on the substrate can be arbitrarily adjusted by changing the distance between the substrate electrode and the substrate.
  • the substrate holder includes a revolving member that rotates with respect to the vacuum vessel, and a rotation holder that rotates with respect to the revolving member and can support the substrate.
  • the substrate electrode is supported on the other end side of the wiring member that is directly or indirectly connected to an external power source and insulated from both the rotating holder and the revolving member.
  • the predetermined distance between the substrate electrode and the substrate is configured to be adjustable by changing a mounting position of the wiring member with respect to the revolving member, and the rotation holder is a predetermined proximity to the substrate electrode. It is preferable to have an insulating coating on the surface of the part.
  • the rotation holder has an insulating coating on the surface of a predetermined portion adjacent to the substrate electrode. For this reason, discharge with the substrate electrode can be prevented, and a substrate electrode having a size opposed to almost the entire back surface of the substrate can be disposed. Therefore, the entire substrate can be set to uniform film formation conditions, and highly uniform film formation with high uniformity can be performed.
  • the substrate holder includes a revolving member that rotates with respect to the vacuum container, and a rotation holder that rotates with respect to the revolving member and can support the substrate,
  • the rotation holder is insulated from the revolving member, and the substrate electrode is attached to the rotation holder side.
  • the rotation holder is insulated from the revolving member, and the substrate electrode is attached to the rotation holder side, so that the size of the substrate electrode can be formed in substantially the same shape and size as the substrate. For this reason, the entire substrate can be set to a substantially uniform film formation condition, and film formation with high uniformity such as film thickness and film quality can be performed.
  • the substrate holder includes a revolving member that rotates with respect to the vacuum vessel, and a rotation holder that rotates with respect to the revolving member and can support the substrate.
  • the rotation holder is insulated from the revolving member and is supplied with electric power through a bearing in contact with the rotation holder side, and the substrate electrode is attached to the rotation holder side. It is preferable.
  • a bearing at the connecting portion between the rotation holder and the wiring member through which the power supply for sputtering supplied to the substrate electrode is conducted it is possible to suppress the generation of foreign matter caused by sliding contact of the member, The cleanliness of the film can be improved.
  • the range of the voltage that can be applied can be set to a higher value than before, and the cleanliness of the film can be improved by suppressing the generation of foreign substances.
  • the substrate is disposed within a range in which the effect of the self-bias appearing on the substrate electrode is reflected, and the predetermined distance between the substrate electrode and the substrate is changed. By doing so, the effect of the self-bias reflected on the substrate can be adjusted.
  • foreign matter is not generated and the cleanliness of the film can be improved.
  • the entire substrate can be made to have uniform film formation conditions, and highly uniform film formation with high uniformity can be performed.
  • FIG. 1 is a conceptual diagram of an RF bias sputtering apparatus according to a first embodiment of the present invention. It is upper surface explanatory drawing of the substrate holder which concerns on the 1st Embodiment of this invention. It is a partial cross section explanatory view of the substrate holder concerning a 1st embodiment of the present invention. It is upper surface explanatory drawing of the substrate holder which concerns on the 2nd Embodiment of this invention. It is a partial cross section explanatory view of the substrate holder concerning a 2nd embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of an RF bias sputtering apparatus (hereinafter referred to as a sputtering apparatus 1) according to the first embodiment of the present invention
  • FIG. 2 is a substrate holder.
  • FIG. 3 is a partial cross-sectional explanatory view of the substrate holder.
  • the sputtering apparatus 1 includes a vacuum vessel 10, a shaft 16, a substrate holder 12, and targets 34 and 36 as main components.
  • the vacuum container 10 according to the present embodiment is a stainless steel container that is usually used in a known film forming apparatus, and is a vertically placed cylindrical member.
  • the vacuum vessel 10 is formed with a hole for allowing a shaft 16 (described later) to pass therethrough, and is electrically grounded to a ground potential.
  • the inside of the vacuum vessel 10 is evacuated by an evacuation unit (not shown) so that the internal pressure becomes a predetermined pressure (for example, about 3 ⁇ 10 ⁇ 2 to 10 ⁇ 4 Pa). Further, a process gas for generating plasma such as Ar gas or a reactive gas such as O 2 gas or N 2 gas is appropriately introduced into the vacuum vessel 10 as necessary from a gas introduction pipe (not shown). It is configured to be able to.
  • a process gas for generating plasma such as Ar gas or a reactive gas such as O 2 gas or N 2 gas is appropriately introduced into the vacuum vessel 10 as necessary from a gas introduction pipe (not shown). It is configured to be able to.
  • the shaft 16 is a substantially pipe-shaped member made of stainless steel, and is rotatable with respect to the vacuum vessel 10 via an insulating member 28 disposed in a hole formed above the vacuum vessel 10. It is supported by.
  • the insulating member 28 is formed of an insulator, resin, or the like, and the shaft 16 is electrically insulated from the vacuum vessel 10 by being supported by the vacuum vessel 10 via the insulating member 28. In this state, the vacuum vessel 10 can be rotated.
  • a gear 17b is fixed to the upper end side of the shaft 16 (arranged outside the vacuum vessel 10), and the gear 17b meshes with the gear 17a on the output side of the servo motor M1. For this reason, by driving the servo motor M1, the rotational driving force is transmitted to the gear 17b via the gear 17a, and the shaft 16 rotates.
  • a brush receiving portion 19b is attached to the lower side of the gear 17b.
  • the brush receiving portion 19b is configured to slide with a carbon brush 19a connected to a high frequency (RF) power source via a matching box. Since it is configured in this way, RF power is supplied to the shaft 16 side.
  • RF radio frequency
  • a revolving member 21 to be described later is attached to the lower end portion of the shaft 16 (located inside the vacuum vessel 10).
  • a copper application receiving member 20 to which RF power is connected is attached to a connection portion between the revolving member 21 and the shaft 16.
  • the shaft 16 is configured to move up and down while maintaining airtightness in the vacuum vessel 10 by an air cylinder (not shown), and the position of the shaft 16 can be adjusted by this action. In this way, the distance between the revolving member 21 and the rotation holder 23 (described later) attached to the lower end portion of the shaft 16 and the targets 34 and 36 (described later) can be adjusted by the air cylinder.
  • the substrate holder 12 includes a revolving member 21 and a rotation holder 23 as main components.
  • the revolution member 21 according to the present embodiment is a dome-shaped stainless steel member, and is disposed on the upper side in the vacuum vessel 10 with the center portion supported on the lower end side of the shaft 16.
  • the revolving member 21 is at a ground potential.
  • an insulating member 29 a is disposed between the application receiving member 20 fixed to the lower end portion of the shaft 16 and the revolution member 21. As described above, the revolution member 21 is fixed to the shaft 16 via the insulating member 29 a, so that the revolution member 21 is electrically insulated from the shaft 16.
  • the revolution member 21 is provided with eight attachment openings 21a for attaching a rotation holder 23 described later at predetermined positions (positions separated from each other by a central angle of 45 degrees from the center of the revolution member 21).
  • a bare link 21b configured in a ring shape is disposed on the inner surface side of the attachment opening 21a.
  • a ring-shaped transmission member 24 is disposed on the outer edge side of the revolving member 21.
  • the ring-shaped transmission member 24 is attached to the revolving member 21 via a bearing (not shown), and is configured to be rotatable with respect to the revolving member 21.
  • Teeth 24a and 24b are formed over the entire inner and outer circumferences of the ring-shaped transmission member 24.
  • the rotation holder 23 holds the substrate 14 and is configured as a substantially cylindrical member made of stainless steel. On the upper end side of the rotation holder 23, a gear 23a formed so as to project in the radial direction of the outer peripheral portion is integrally assembled. A fixing flange (not shown) is formed below the rotation holder 23, and the substrate 14 is fixed to the rotation holder 23 by fixing the substrate 14 to the fixing flange. Further, the fixing method of the substrate 14 is not limited to this, and can be appropriately changed without departing from the gist of the present invention. For example, in addition to the fixing flange, other fixing tools such as bolts and leaf springs can be used. In addition, in this embodiment, since it has the structure which attaches the eight rotation holders 23 to the revolution member 21, it has the eight rotation holders 23 of the same shape, but the rotation holder 23 is as needed. Of course, it can be changed to an arbitrary number.
  • maintained at the autorotation holder 23 is suitably selected as needed.
  • a light-transmitting material such as a disk-shaped or plate-shaped or lens-shaped resin (for example, polyimide) or quartz is selected.
  • a semiconductor substrate such as a Si substrate or a GaAs substrate is used.
  • the substrate electrode 30 provided in the rotation holder 23 is a substantially disk-shaped member made of stainless steel disposed on the back side of the substrate 14 (on the opposite side to the surface facing the targets 34 and 36), and is used for RF power.
  • the connected application receiving member 20 and the wiring member 31 are electrically connected.
  • the wiring member 31 is a member made of the same material as the substrate electrode 30, and one end thereof is fixed to the application receiving member 20. The other end is fixed to the substrate electrode 30 by welding and is integrated with the substrate electrode 30.
  • One end of the wiring member 31 is securely fixed to the application receiving member 20 by a fastening member, so that the substrate electrode 30 is held at a predetermined position with the required strength.
  • the targets 34 and 36 are disk-like or substantially rectangular members in which a film-forming material to be formed on the substrate 14 is bonded to the surface, and ions generated in the plasma collide with each other. Thus, the film forming material can be sputtered toward the substrate.
  • a film forming material for example, a metal such as Si, Nb, Al, Ta, or Cu, or an insulator such as SiO 2 , Nb 2 O 5 , or Al 2 O 3 may be appropriately selected as necessary. it can.
  • the configuration includes two types of targets 34 and 36, but the number of targets 34 and 36 can be arbitrarily changed as necessary.
  • the targets 34 and 36 are disposed on the lower side of the vacuum vessel 10 so as to face the substrate 14 disposed on the rotation holder 23.
  • the RF power applied to the substrate electrode 30 and the targets 34 and 36 is supplied while being matched by the matching box Mbox.
  • An RF power source having a frequency of about 10 to 100 MHz can be used.
  • the shaft 16 penetrates from above the vacuum container 10 and is rotatably attached to the vacuum container 10 above the vacuum container 10. This rotation is transmitted to the shaft 16 by transmitting the rotational driving force of the servo motor M1 to the gears 17a and 17b. Simultaneously with the rotational driving force, RF power is supplied to the shaft 16 side by a brush receiving portion 19b configured to slide with a carbon brush 19a connected to a high frequency (RF) power source through a matching box. .
  • the revolution member 21 is arrange
  • targets 34 and 36 are disposed on the lower side of the vacuum vessel 10 so as to face the substrate 14 disposed on the rotation holder 23. The targets 34 and 36 are configured to be supplied with RF power from an RF power source via a matching box Mbox.
  • the eight rotation holders 23 are respectively attached to attachment openings 21 a formed in the revolution member 21.
  • the rotation holder 23 can be easily attached by fitting from the upper side of the attachment opening 21 a of the revolution member 21.
  • the rotation holder 23 is rotatably supported with respect to the revolution member 21.
  • the rotation holder 23 is formed in a substantially cylindrical shape, when it is attached to the attachment opening 21 a of the revolution holder 21, a circular opening region that penetrates the revolution holder 21 in the front and back direction is formed. In a state where the rotation holder 23 is attached to the revolution member 21, the gear 23a formed on the outer peripheral side on the upper side of the rotation holder 23 is exposed on the upper side of the attachment opening 21a.
  • a gear 23 a formed on the outer peripheral side of the rotation holder 23 is disposed so as to mesh with a tooth portion 24 a formed on the inner side of a ring-shaped transmission member 24 that is rotatably disposed on the outer edge side of the revolution member 21.
  • the gear 23a of the holder 23 can be rotated.
  • the tooth portions 24 a and 24 b formed on the ring-shaped transmission member 24 are coated with an insulating coating so as to be electrically insulated from the rotation holder 23.
  • the substrate 14 is fixed to the lower side of each rotation holder 23 with the film formation surface facing downward. That is, the substrate 14 is fixed so as to close the opening area below the rotation holder 23.
  • the lower surface of the revolution member 21 and the height of the film formation surface of the substrate 14 are preferably aligned and fixed so as not to cause irregularities around the film formation surface of the substrate 14.
  • the rotation holder 23 has a structure that can rotate while being attached to the revolving revolution member 21. That is, the substrate holder 12 can perform a self-revolving motion. Therefore, since the substrate 14 attached to the rotation holder 23 also rotates and revolves, uniform film formation can be performed on the substrate 14.
  • the substrate electrode 30 is disposed in parallel with the back surface of the substrate 14 at a position spaced a predetermined distance from the back surface of the substrate 14. At this time, since the substrate electrode 30 is disposed so as not to contact the revolving member 21 and the rotation holder 23, RF power applied to the application receiving portion 20 is supplied to the substrate electrode 30 via the wiring member 31. Is done. Further, since the wiring member 31 is fixed to the application receiving portion 20 fixed to the revolving member 21 side, the substrate electrode 30 fixed to the wiring member 31 also rotates together with the revolving member 21. That is, the substrate electrode 30 rotates together with the revolution member 21. Therefore, the substrate electrode 30 is disposed at a predetermined position on the back side of the substrate 14 regardless of the rotation movement of the rotation holder 23.
  • the substrate electrode 30 is disposed apart from the substrate 14 by a predetermined distance (d).
  • the distance d between the substrate 14 and the substrate electrode 30 (more precisely, the back surface of the substrate 14 and the substrate
  • the distance d from the surface of the electrode 30 (hereinafter referred to as distance d) is set within a range in which the effect of self-bias by the substrate electrode 30 is reflected on the substrate 14.
  • the self-bias effect reflected on the substrate 14 can be adjusted by changing the distance d.
  • the self-bias potential may be adjusted by changing the sputtering power.
  • the self-bias effect by the substrate electrode 30 affects the substrate 14 when the distance d is about 20 mm or less.
  • a good film was obtained within a distance d of 0.5 to 10 mm.
  • the distance d is preferably in the range of 0.5 mm to 10 mm.
  • the adjustment of the self-bias effect is performed by changing the distance d or the RF power value. Of course, the distance d is adjusted within a range of 0.5 to 10 mm.
  • the distance d can be adjusted by fixing with the conductive spacer 38 interposed therebetween.
  • the spacer 38 is a conductive member having an arbitrary thickness disposed at a connection portion between the application receiving portion 20 side and the wiring member 31 while being sandwiched between these members.
  • the application receiving portion 20 side, the wiring member 31, and the spacer 38 are fixed using a fastening member (not shown) such as a bolt that can be fastened through the application receiving portion 20 side.
  • a fastening member not shown
  • the substrate electrode 30 is configured integrally with the wiring member 31 because of such a configuration, the mounting height of the substrate electrode 30 with respect to the rotation holder 23 is determined by connecting the wiring receiving member 20 and the wiring member 31 to each other. It can be adjusted by changing the height (thickness) of the spacer 38 sandwiched between the portions.
  • the wiring member 31 is fixed to the application receiving portion 20 on the revolving member 21 side.
  • the wiring member 31 is fixed to the revolving member 21 side via an insulating spacer member. Further, it may be configured to conduct with the application receiving portion 20 through a flexible conductive member.
  • FIG. 1 the application receiving portion 20 side and the wiring member 31 are fixed with a bolt (not shown) or the like, and the application receiving portion 20 is moved according to the vertical movement of a screw fitted in a screw hole (not shown) formed on the revolving member 21 side.
  • the fixing portion between the side and the wiring member 31 is configured to be movable up and down. With such a configuration, the height of the wiring member 31 and the substrate electrode 30 can be moved up and down according to the rotation of the screw, so that precise height adjustment can be easily performed.
  • an actuator capable of controlling the vertical movement of the wiring member 31 is attached at the connection portion with the application receiving portion 20 side, and the substrate electrode is interlocked with the film forming conditions such as the thickness of the substrate 14, the film forming speed, and the film forming material. It can also be set as the structure which can arrange
  • the substrate electrode 30 and the wiring member 31 may be fixed with bolts, and the substrate electrode position may be adjusted at this connection portion.
  • the distance d is adjusted for each of the eight rotation holders 23.
  • the distance d is set collectively by configuring the eight substrate electrodes 30 as one body. be able to.
  • a conductive ring-shaped member (not shown) having high rigidity is attached to the upper side of the application receiving portion 20 in a state of being inserted through the shaft 16, and this ring-shaped member is connected to the application receiving portion 20. It is good to comprise so that position adjustment is possible in the up-down direction, maintaining.
  • the distance d can be set collectively by fixing all the wiring members 31 to the ring-shaped member.
  • the vertical movement of the ring-shaped member can be performed by sandwiching a conductive spacer with the application receiving portion 20.
  • the distance d between the eight substrates 14 and the substrate electrode 30 can be adjusted at once, and the operating rate of the sputtering apparatus 1 can be improved, that is, the cost of the film forming process can be reduced. Can be planned.
  • the size of the substrate electrode 30 is determined in consideration of the size of the substrate 14.
  • the substrate electrode 30 is formed to have a diameter of 80 to 98% with respect to the diameter of the substrate 14, and is particularly preferably 90% or more of the size of the substrate 14.
  • the substrate electrode 30 since the disk-shaped substrate 14 has a diameter of 100 mm, the substrate electrode 30 has a diameter of 80 to 98 mm.
  • Layer thickness and film quality can be non-uniform.
  • the power for sputtering supplied by discharging between the substrate holder 12 and the substrate electrode 12 may become unstable.
  • the insulating coating 39 is applied to the rotation holder 23 in a region close to the substrate electrode 30.
  • the insulating coating 39 is formed on a predetermined surface of the rotation holder 23 by thermal spraying.
  • the effect of attaching the substrate electrode 30 to the back side of each substrate 14 will be described. Since RF power is supplied to the substrate electrode 30 disposed on the back side of the substrate 14, it is not necessary to apply RF to the entire revolving member 21. Since the area to which the RF current is applied is small, the voltage / current value range that can be applied to the substrate 14 can be set to a higher value than before, and the ion density can be increased. The processing time can be shortened. Since the substrate electrode 30 is not in contact with the rotation holder 21, the generation of foreign matters such as dust due to wear due to the sliding contact between the substrate electrode 30 and the rotation holder 23 is prevented, and the cleanliness of the film is improved. Can be achieved. Furthermore, since the structure is simple, the increase in the number of parts can be suppressed and the cost of the equipment can be reduced.
  • the film forming material is difficult to be formed on the revolving member 21 located in the vicinity of the substrate 14, the film does not peel off even when ions collide by the bombarding process, and adheres to the surface of the substrate electrode 30. Foreign matter (particles) can be reduced. For this reason, it is possible to improve the cleanliness and yield of the film. Furthermore, since the thin film material that adheres to and accumulates on the revolving member 21 and the rotation holder 23 can be reduced, the time required for removing the thin film material (chamber maintenance time) can be shortened and the equipment operation rate can be improved. Furthermore, since the substrate electrode 30 is arranged in parallel with the substrate 14 at a predetermined distance, uniform film formation conditions are maintained on the film formation surface of the substrate 14, and the film thickness and film quality are highly uniform and highly accurate. A film can be formed.
  • the substrate electrode 30 can be applied to the sputtering apparatus 1 having the substrate holder 12 having a self-revolution mechanism, a correction plate for adjusting the film thickness distribution used in the substrate holder having only the revolution mechanism becomes unnecessary.
  • the substrate electrode 30 according to the present embodiment can also be applied to a bias sputtering apparatus of a type that includes only the revolution mechanism in the substrate holder 12, and the range of voltage and current values that can be applied to the substrate 14 is increased and the film formed The degree of cleanliness can be improved.
  • the present invention is configured as a bipolar RF bias sputtering apparatus (sputtering apparatus 1), but the configuration according to the present invention is applied to any sputtering apparatus that applies a current to the substrate 14. It is possible. For example, it may be configured as a tripolar or quadrupolar sputtering apparatus using a stabilizing electrode.
  • an RF power source is used as a sputtering power source.
  • a DC power source may be used. When a DC power source is used, the same effect as that of the sputtering apparatus 1 according to the present embodiment can be obtained except that the insulator cannot be sputtered.
  • non-reactive sputtering can be performed without introducing an active gas such as O 2 or N 2 during film formation.
  • a shutter (not shown) that can be controlled to open and close is provided above the targets 34 and 36, and the target 34 and 36 to be sputtered and the amount of sputtering can be adjusted by adjusting the opening of the shutter.
  • FIG. 4 and 5 show a second embodiment of the present invention
  • FIG. 4 is a top view of the substrate holder
  • FIG. 5 is a partial cross-sectional view of the substrate holder.
  • the same reference numerals are assigned to the same members and arrangements as those in the first embodiment, and detailed description thereof is omitted.
  • the substrate electrode 40 according to the present embodiment is fixed to the rotation holder 43 and rotates with the rotation holder 43.
  • the substrate electrode 40 is a substantially disk-shaped member made of stainless steel, and is fixed to each rotation holder 43 side by a fixing member 40a so as to be disposed on the back surface side of the substrate 14 with respect to the targets 34 and 36. . Since the rotation holder 43 is electrically connected to the wiring member 41 and the application receiving member 20 via a bearing 45 that abuts on the outer periphery of the rotation holder 43, the substrate electrode 40 is connected to the substrate electrode 40 via the rotation holder 43. RF power is supplied. Moreover, since the rotation holder 43 is attached to the revolution member 21 via the insulating member 29b, it is electrically insulated from the revolution member 21.
  • the substrate electrode 40 is disposed in parallel with the substrate 14 at a position separated from the back surface of the substrate 14 by a predetermined distance (d).
  • the distance d is set within a range in which self-bias by the substrate electrode 40 appears and is reflected on the substrate 14.
  • the distance d is preferably 0.5 mm or more and 10 mm or less.
  • the effect of the self-bias reflected on the substrate 14 can be adjusted by changing the distance d, but can also be adjusted by changing the RF power value.
  • the distance d can be adjusted by changing the position of the substrate electrode 40 when the substrate electrode 40 is attached to the rotation holder 43. Since the substrate electrode 40 is fixed to the rotation holder 43, it can be disposed on the entire back surface of the substrate 14. That is, even when the insulating coating 39 is not applied to the rotation holder 43, the substrate electrode 40 can be formed in substantially the same shape and size as the substrate 14. Since the influence of the self-bias effect reflected on the surface of the substrate 14 can be made uniform, the thickness and quality of the film formation layer formed on the substrate 14 can be made uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

【課題】成膜面に付着する異物の発生を低減することができる自公転機構を有するバイアススパッタ装置を提供する。 【解決手段】自公転機構を有する基板ホルダ12を備えたバイアススパッタ装置1において、基板ホルダ12は公転部材21と自転ホルダ23とを有してなり、自転ホルダ23に取り付けられたそれぞれの基板14の裏面側には、基板14から0.5~10mm離間した位置に、基板14と同等サイズの円板状の基板電極30が設けられている。

Description

バイアススパッタ装置
 本発明は、バイアススパッタ装置に係り、特に、自公転式基板ホルダを備えるバイアススパッタ装置に関する。
 一般に使用されているバイアススパッタ装置においては、真空容器内に対向して配設された基板側とターゲットのそれぞれにスパッタ用電力が印加されるように構成されており、基板とターゲットの間にプラズマを発生させて、ターゲット状の成膜物質をイオンでスパッタしながら薄膜を形成することができる(例えば、特許文献1参照)。
 また、バイアススパッタ装置においては、光学デバイス、半導体デバイスなどの薄膜デバイスの品質及び歩留まりの向上のために様々な対策が施されている。
 例えば、製造コスト削減の試みとして、防着板を設けることにより、真空容器内に蓄積した薄膜材料の除去に要する時間(チャンバメンテナンス時間)を短縮し、設備稼働率の向上が図られている(例えば、特許文献2参照)。
 また、膜厚モニタを用いたリアルタイムの膜厚計測結果に基づく成膜時間及び成膜電力の制御によって膜厚の安定化を図る方法や、基板ホルダを自転及び公転させながら成膜を行う方法、若しくは、基板ホルダとターゲットの間に補正板機構を設けて高精度に膜厚を制御する試みがなされている(例えば、特許文献3乃至6参照)。
 さらに、スパッタ用電源として直流(DC)電源の代わりに高周波(RF)電源を用いる方式をRFバイアススパッタといい、高周波電源を用いることで、金属及び絶縁物質のスパッタを可能としている(例えば、特許文献1,2,4参照)。
特開2000-129441号公報 特開1997-087835号公報 特開2002-030435号公報 特開2006-265692号公報 特開1995-292471号公報 特開2006-070330号公報
 ところで、バイアススパッタ装置では、基板ホルダ全体にスパッタ用電源が印加されることから、基板ホルダ部分にもターゲットからスパッタされた成膜物質が付着して成膜されてしまうこととなる。この基板以外の部分(例えば、基板ホルダ)に付着した成膜物質は、基板ホルダ表面の凹凸部分や、基板の取り付け部分の段差近傍では、不均一な膜厚に成膜される傾向がある。特に、基板の近傍に積層された不均一な膜が、成膜中のボンバード処理によるイオンの衝突で剥離した場合、この剥離した膜が異物として成膜中の基板に付着して、成膜不良を起こす原因となっていた。
 また、大型のドーム状の基板ホルダを備えるバイアススパッタ装置では、スパッタ用電源が印加される基板ホルダの面積が大きいため、基板ホルダ全体のセルフバイアスの電位を高くすることが困難であった。特に、上記特許文献4若しくは5に示された技術のように、基板ホルダに自転公転機構を備えた自公転式スパッタ装置においては、基板ホルダが大型化、複雑化するため、高い電位を基板上に発生させることが困難であると共に、イオンの衝突による異物の発生が問題となっていた。
 本発明の目的は、上記問題点に鑑み、清浄度が高く且つ高精度の薄膜デバイスを製造することができるバイアススパッタ装置を提供することである。
 また、本発明の他の目的は、薄膜デバイスの製造コスト低減を図ることができるバイアススパッタ装置を提供することである。
 上記課題は、請求項1のバイアススパッタ装置によれば、自公転機構を有し、真空容器内に基板を支持するための基板ホルダと、該基板ホルダ側に設けられた基板電極と、前記基板に対向して配設されるターゲットと、を備え、前記基板電極及び前記ターゲットに電力を印加し、前記基板電極及び前記ターゲットの間にプラズマを発生させて前記基板表面に薄膜を形成するバイアススパッタ装置において、前記基板電極は、前記基板ホルダに支持された前記基板のそれぞれの裏面側にのみ備えられ、前記基板電極と前記基板とは、所定距離離間して配設されることにより解決される。
 このように、本発明に係るバイアススパッタ装置によれば、基板電極は、基板ホルダに支持された基板のそれぞれの裏面側にのみ備えられ、基板電極と基板とは所定距離離間して配設されているため、基板ホルダに取り付けられたそれぞれの基板の裏面側にのみ電力が供給されることとなる。このため、基板に供給できる電圧・電力値の範囲を従来よりも高い値に設定することができ、膜質の緻密化若しくは処理時間の短縮を図ることができる。
 また、本発明に係るバイアススパッタ装置基板ホルダに付着する成膜物質を減らすことで、成膜中にイオンの衝突により膜の一部が剥離して生じる異物の発生を抑えて膜の清浄度の向上を図ることができる。
 なお、基板の「裏面」とは、スパッタ面ではない側の面という意味であり、ターゲットと対向する面と反対側の面を指す。
 具体的には、請求項2のように、前記基板電極と前記基板との前記所定距離は、0.5mm以上10mm以下であると好適である。
 このように、基板電極と基板との所定距離を0.5mm以上10mm以下とすることで、基板電極に現出するセルフバイアスの効果が反映される範囲内に基板を配設することができる。また、基板電極と基板との距離を変更することで、基板に反映されるセルフバイアス効果を調整することができる。
 具体的には、請求項3のように、前記基板ホルダは、前記真空容器に対して回転する公転部材と、該公転部材に対して回転すると共に、前記基板を支持可能な自転ホルダと、を有して構成されており、前記基板電極は、外部電源と直接的若しくは間接的に一端部側が接続された配線部材の他端側に支持されると共に、前記自転ホルダ及び前記公転部材のいずれに対しても絶縁されているとさらに好適である。
 このように、基板電極は、自転ホルダ及び公転部材のいずれに対しても絶縁されると共に、外部電源と直接的若しくは間接的に接続された状態で配設されるため(具体的には、公転部材側に接続される)、基板電極と自転ホルダとが電気的に接触しない構成とすることができる。このため、基板電極と自転ホルダとの接触による異物の発生を防止することができ、膜の清浄度を向上することができる。
 なお、ここでいう「公転部材側」とは、広い意味で公転部材を回転駆動するために関わる全ての部材側という意味であり、より具体的には、配線部材の一端部は、公転部材を回転させるために公転部材の中央部に貫通する回転軸に固定された印加受け部に接続される。
 さらに具体的には、請求項4のように、前記基板ホルダは、前記真空容器に対して回転する公転部材と、前記公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有して構成されており、前記基板電極は、外部電源と直接的若しくは間接的に一端部側が接続された配線部材の他端側に支持されると共に、前記自転ホルダ及び前記公転部材のいずれに対しても絶縁され、前記基板電極と前記基板との前記所定距離は、前記配線部材の前記公転部材に対する取り付け位置を変更することで調整可能に構成されていると好適である。
 上記構成により、配線部材の公転部材側に対する取り付け高さを変更することで、基板電極と基板との距離を任意に変更できるため、基板電極に現出するセルフバイアスの効果が反映される範囲内に基板を配設することができ、また、基板電極と基板との距離を変更することで、基板に反映されるセルフバイアス効果を任意に調整することができる。
 また、請求項5のように、前記基板ホルダは、前記真空容器に対して回転する公転部材と、前記公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有して構成されており、前記基板電極は、外部電源と直接的若しくは間接的に一端部側が接続された配線部材の他端側に支持されると共に、前記自転ホルダ及び前記公転部材のいずれに対しても絶縁され、前記基板電極と前記基板との前記所定距離は、前記配線部材の前記公転部材に対する取り付け位置を変更することで調整可能に構成されており、前記自転ホルダは、前記基板電極と近接する所定部分の表面に絶縁性のコーティングを有するように構成されていると好適である。
 このように、自転ホルダは、基板電極と近接する所定部分の表面に絶縁性のコーティングを有する。このため、基板電極との放電を防止でき、基板裏面のほぼ全面と対向する大きさの基板電極を配置することができるようになる。よって、基板全体を均一な成膜条件にすることでき、均一性の高い高精度な成膜を行うことができる。
 さらに、請求項6のように、前記基板ホルダは、前記真空容器に対して回転する公転部材と、該公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有し、前記自転ホルダは、前記公転部材に対して絶縁され、前記基板電極は、前記自転ホルダ側に取り付けられると好適である。
 このように、自転ホルダが公転部材に対して絶縁されると共に、基板電極が自転ホルダ側に取り付けられることで、基板電極の大きさを基板とほぼ同じ形状及び大きさに形成することができる。このため、基板全体をほぼ均一な成膜条件にすることでき、膜厚・膜質などの均一性が高く高精度な成膜を行うことができる。
 具体的には、請求項7のように、前記基板ホルダは、前記真空容器に対して回転する公転部材と、該公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有し、前記自転ホルダは、前記公転部材に対して絶縁されるとともに、前記自転ホルダ側に当接するベアリングを介して電力が供給されており、前記基板電極は、前記自転ホルダ側に取り付けられていると好適である。
 上記構成のように、基板電極に供給されるスパッタ用電源が導通される自転ホルダと配線部材との接続部分にベアリングを用いることで、部材の摺接により生じる異物の発生を抑えることができ、膜の清浄度を向上することができる。
 請求項1に係るバイアススパッタ装置によれば、印加できる電圧の範囲を従来よりも高い値に設定することができると共に、異物の発生を抑えて膜の清浄度の向上を図ることができる。
 また、請求項2及び4に係るバイアススパッタ装置によれば、基板電極に現出するセルフバイアスの効果が反映される範囲内に基板を配設すると共に、基板電極と基板との所定距離を変更することで、基板に反映されるセルフバイアスの効果を調整することができる。
 更に、請求項3及び7に係るバイアススパッタ装置によれば、異物が発生せず膜の清浄度を向上することができる。
 また更に、請求項5及び6に係るバイアススパッタ装置によれば、基板全体を均一な成膜条件にすることができ、均一性の高い高精度な成膜を行うことができる。
本発明の第1の実施形態に係るRFバイアススパッタ装置の概念図である。 本発明の第1の実施形態に係る基板ホルダの上面説明図である。 本発明の第1の実施形態に係る基板ホルダの部分断面説明図である。 本発明の第2の実施形態に係る基板ホルダの上面説明図である。 本発明の第2の実施形態に係る基板ホルダの部分断面説明図である。
M1,M2 サーボモータ
Mbox マッチングボックス
d 基板と基板電極との距離
1 スパッタ装置
10 真空容器
12 基板ホルダ
14 基板
16 シャフト
17a,17b,23a 歯車
19a カーボンブラシ
19b ブラシ受け部
20 印加受け部材
21 公転部材
21a 取り付け開口部
23,43 自転ホルダ
24 リング状伝達部材
24a,24b 歯部
28,29a,29b 絶縁部材
30,40 基板電極
40a 固定部材
31,41 配線部材
34,36 ターゲット
38 スペーサ
39 絶縁コーティング
21b,45 ベアリング
 以下に、本発明の一実施形態について図面を参照して説明する。なお、以下に説明する部材,配置等は発明を具体化した一例であって本発明を限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。
(第1の実施形態)
 図1乃至3は本発明に係る第1の実施形態を示し、図1は本発明の第1の実施形態に係るRFバイアススパッタ装置(以下、スパッタ装置1)の概念図、図2は基板ホルダの上面説明図、図3は基板ホルダの部分断面説明図である。
 以下に、図1乃至図3に基づいて、本発明の一実施形態に係るスパッタ装置1の構成部材について説明する。
 本実施形態に係るスパッタ装置1は、図1の概念図に示すように、真空容器10、シャフト16、基板ホルダ12、ターゲット34,36、を主要構成としている。
 本実施形態に係る真空容器10は、真空容器10は、公知の成膜装置で通常用いられるステンレス製の容器であり、縦置き円筒形状部材である。
 この真空容器10は、上方に後述するシャフト16を貫通させるための孔が形成されており、電気的に接地されて接地電位とされている。
 なお、真空容器10の内側は、不図示の排気手段によって、その内圧が所定の圧力(例えば3×10―2~10-4 Pa程度)となるように排気される。
 また、不図示のガス導入管からは、Arガスなどのプラズマを発生させるためのプロセスガスや、Oガス若しくはNガスなどの反応性ガスを必要に応じて適宜真空容器10内に導入することができるよう構成されている。
 本実施形態に係るシャフト16は、ステンレス製の略パイプ状部材であり、真空容器10の上方に形成された孔部分に配設された絶縁部材28を介して、真空容器10に対して回転可能に支持されている。
 なお、この絶縁部材28は、碍子や樹脂などで形成されており、この絶縁部材28を介して真空容器10に支持されることにより、シャフト16は、真空容器10に対して電気的に絶縁された状態で、真空容器10に対して回転可能となる。
 シャフト16の上端側(真空容器10の外側に配設される)には、歯車17bが固着されており、この歯車17bは、サーボモータM1の出力側の歯車17aと歯合している。
 このため、サーボモータM1を駆動することにより、歯車17aを介して歯車17bに回転駆動力が伝達され、シャフト16が回転することとなる。
 また、歯車17bの下側には、ブラシ受け部19bが取り付けられている。
 このブラシ受け部19bは、マッチングボックスを介して高周波(RF)電源に接続されたカーボンブラシ19aと摺動するように構成されている。
 このように構成されているため、シャフト16側にRF電源が供給される。
 シャフト16の下端部(真空容器10の内側に位置している)には、後述する公転部材21が取り付けられている。
 この公転部材21とシャフト16との接続部分には、RF電力が接続された銅製の印加受け部材20が取り付けられている。
 なお、シャフト16は、不図示のエアシリンダによって真空容器10内の気密を維持したまま上下方向に動くように構成されており、この作用によりシャフト16の位置調整が可能となっている。
 このように、このエアシリンダによって、シャフト16下端部側に取り付けられた後述する公転部材21及び自転ホルダ23と後述するターゲット34,36との距離を調整することができる。
 本実施形態に係る基板ホルダ12は、公転部材21と、自転ホルダ23を主要構成として構成されている。
 本実施形態に係る公転部材21は、ドーム状のステンレス製部材であり、その中央部がシャフト16の下端側に支持された状態で、真空容器10内の上側に配設される。
 なお、この公転部材21は、接地電位とされている。
 また、シャフト16下端部に固着された印加受け部材20と公転部材21との間には絶縁部材29aが配置されている。このように、絶縁部材29aを介して、公転部材21がシャフト16に固着されることで、公転部材21がシャフト16に対して電気的に絶縁される構成となっている。
 更に、公転部材21には、後述する自転ホルダ23を取り付けるための取り付け開口部21aが所定位置(公転部材21の中心を基点に各々中心角45度離隔した位置)に8箇所設けられている。この取り付け開口部21aには内面側にリング状に構成されたベアリンク21bが配置されている。
 また、公転部材21の外縁側には、リング状伝達部材24が配設されている。リング状伝達部材24は、不図示のベアリングを介して公転部材21側に取り付けられており、公転部材21に対して回転可能に構成されている。このリング状伝達部材24の内側及び外側の全周に渡って歯部24a,24bが形成されている。
 本実施形態に係る自転ホルダ23は、基板14を保持するものであって、略円筒状のステンレス製部材として構成されている。
 この自転ホルダ23の上端部側には外周部の径方向に張り出して形成された歯車23aが一体として組み付けられている。
 また、自転ホルダ23下側には、固定フランジ(不図示)が形成されており、この固定フランジに基板14を固定することで、基板14が自転ホルダ23に固定される。また、基板14の固定方法としては、これに限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。例えば、固定フランジ以外にも、ボルト、板ばねなどの他の固定具を用いることができる。
 なお、本実施形態においては、8個の自転ホルダ23を公転部材21に取り付ける構成を有しているため、同一形状の自転ホルダ23を8個有しているが、自転ホルダ23は必要に応じて任意の数に変更可能なことは勿論である。
 自転ホルダ23に保持される基板14は、必要に応じて適宜選択される。
 例えば、光学デバイスを作製する場合は、円板状又は板状若しくはレンズ形状の樹脂(例えば、ポリイミド)や石英などの光透過性を有する材料が選択される。また、電子デバイスを作製する場合は、Si基板やGaAs基板などの半導体基板が用いられる。
 自転ホルダ23に装備される基板電極30は、基板14の裏側(ターゲット34,36に対向する側の面と反対側)に配置されたステンレス製の略円板状の部材であり、RF電力に接続された印加受け部材20と配線部材31を介して電気的に接続されている。
 この配線部材31は、基板電極30と同素材で作製された部材であり、一方の端部が印加受け部材20に固定されている。また、他方の端部側は、基板電極30に溶接により固着されて基板電極30と一体となっている。配線部材31は、その一方の端部を印加受け部材20に締結部材により確実に固定されており、このため、基板電極30は所定位置に要求される強度をもって保持されることとなる。
 本実施形態に係るターゲット34,36は、基板14に成膜される成膜材料が表面に接合された円板状若しくは略矩形状の部材であり、プラズマ中で発生したイオンが衝突を起こすことにより成膜物質を基板に向けてスパッタすることができる。成膜材料としては、例えば、Si,Nb,Al,Ta,Cuなどの金属や、SiO、Nb、Alのような絶縁物などを必要に応じて適宜選択することができる。本実施形態においては、2種類のターゲット34,36を有する構成とされているが、必要に応じてターゲット34,36の数も任意に変更することができる。
 このターゲット34,36は、真空容器10の下方側に、自転ホルダ23に配設された基板14と対向するように配設される。
 基板電極30とターゲット34,36に印可するRF電力は、マッチングボックスMboxにより整合をとりながら供給される。RF電源としては、10~100MHz程度の周波数のものを用いることができる。
 以上のように、真空容器10内部の上方には、シャフト16が、真空容器10の外部上方から貫通しており、真空容器10に対して回転可能に取り付けられている。
 この回転は、サーボモータM1の回転駆動力を歯車17a,17bと伝達することによって、シャフト16に伝導される。また、回転駆動力と同時に、マッチングボックスを介して高周波(RF)電源に接続されたカーボンブラシ19aと摺動するように構成されたブラシ受け部19bにより、シャフト16側にRF電源が供給される。
 そして、シャフト16の下端側には、公転部材21が配設されるとともに、この公転部材21には、本実施形態においては8個の自転ホルダ23が配設される。
 また、真空容器10の下方側に、自転ホルダ23に配設された基板14と対向するようにターゲット34,36が配設される。このターゲット34,36には、マッチングボックスMboxを介して、RF電源よりRF電力が供給されるよう構成されている。
 次に、上述した各部材の関係について説明する。
 8個の自転ホルダ23は、公転部材21に形成された取り付け開口部21aにそれぞれ取り付けられる。自転ホルダ23は、公転部材21の取り付け開口部21aの上側から嵌め込むことで容易に取り付けることができる。
 このとき、自転ホルダ23の外周部は、取り付け開口部21aに配置されたベアリング21bに支持されて配設されるため、自転ホルダ23は公転部材21に対して回転可能に支持される。
 また、自転ホルダ23は略円筒状に形成されているため、公転ホルダ21の取り付け開口部21aに取り付けられると、公転ホルダ21を表裏方向に貫通する円形の開口領域が形成される。
 自転ホルダ23が公転部材21に取り付けられた状態では、自転ホルダ23の上側の外周側に形成された歯車23aが、取り付け開口部21aの上側に露出した状態となっている。
 自転ホルダ23の外周側に形成された歯車23aは、公転部材21の外縁側に回転可能に配設されるリング状伝達部材24の内側に形成された歯部24aと歯合するように配設されている。このように構成されているため、サーボモータM2によってリング状伝達部材24の外側に形成された24bを回転させることにより、リング状伝達部材24の内側に形成された歯部24bに歯合する自転ホルダ23の歯車23aを回転させることができる。こうして、自転ホルダ23は、公転部材21に取り付けられた状態で自転することができる。
 なお、リング状伝達部材24に形成された歯部24a,24bには絶縁性のコーティングが施されており自転ホルダ23と電気的に絶縁されている。
 それぞれの自転ホルダ23の下側には基板14が成膜面を下向きにして固定される。すなわち、自転ホルダ23下側の開口領域を塞ぐように基板14は固定される。もちろん、基板14を支持する治具や接着剤などの他の固着手段を用いて基板14を固定してもよい。
 このとき、基板14の成膜面の周囲に凹凸が生じないように、公転部材21の下面と基板14の成膜面の高さを揃えて固定するとよい。
 以上のように、公転部材21と自転ホルダ23とを組み立てて基板ホルダ12を構成することにより、自転ホルダ23は、公転する公転部材21に取り付けられた状態で自転できる構造を有している。すなわち、基板ホルダ12は自公転運動を行うことができる。従って、自転ホルダ23に取り付けられた基板14も自公転運動を行うため、基板14に対して、均一な成膜を行うことができる。
 基板電極30は、基板14の裏面から所定の距離離間した位置に、基板14の裏面と対向して平行に配設される。
 このとき、基板電極30は、公転部材21及び自転ホルダ23とは接触しないように配設されているため、印加受け部20に印加されるRF電力が配線部材31を介して基板電極30に供給される。また、配線部材31は、公転部材21側に固着された印加受け部20に固定されるため、配線部材31に固着されている基板電極30も公転部材21と共に回転する。すなわち、基板電極30は公転部材21と共に回転する。このため、基板電極30は、自転ホルダ23の自転運動に関わらず基板14の裏側の所定位置に配置される。
 ここで、基板電極30は、基板14と所定の距離(d)だけ離間して配設されるが、この基板14と基板電極30との距離d(より正確には、基板14の裏面と基板電極30の表面との距離d;以下、距離dとする)は、基板電極30によるセルフバイアスの効果が基板14に反映される範囲内に設定される。また、基板14に反映されるセルフバイアス効果は、距離dを変化させることによって調整することができる。もちろん、スパッタ用電力を変更することでセルフバイアス電位を調整してもよい。
 また、成膜条件にもよるが、本実施形態においては、距離dが20mm程度以下のときに、基板電極30によるセルフバイアスの効果が基板14に影響する。基板14材料やRF電力値、成膜雰囲気などの成膜条件を変化させて成膜実験を行った結果、距離dは0.5~10mmの範囲内で良好な膜が得られたことから、距離dは0.5mm以上10mm以下の範囲とされると好適である。また、セルフバイアス効果の調整は、距離d若しくは、RF電力値の変更によって行われる。もちろん、距離dは0.5~10mmの範囲内で調整される。
 距離dは、導電性のスペーサ38を挟んで固定することによって調整できる。
 このスペーサ38は、印加受け部20側と配線部材31との接続部分に、これらの部材に挟持された状態で配設される任意の厚さを有する導電性の部材である。
 印加受け部20側と配線部材31及びスペーサ38は、これらを貫いて締結できるボルトなどの締結部材(不図示)を用いて固定される。
 このように構成されているため、基板電極30は配線部材31と一体に構成されているため、自転ホルダ23に対する基板電極30の取り付け高さを、印加受け部20側と配線部材31との接続部分に挟むスペーサ38の高さ(厚さ)を変更することによって調整できる。
 なお、本実施形態においては、配線部材31は、公転部材21側の印加受け部20に固定されているが、配線部材31を公転部材21側に絶縁性のスペーサ用部材を介して固定して、屈曲自在な導電性部材を介して印加受け部20と導通させる構成としてもよい。
 なお、スペーサ38の代わりにネジにより配線部材31の高さを調整する機構としてもよい。この場合、印加受け部20側と配線部材31を不図示のボルトなどで固着し、公転部材21側に形成したネジ穴(不図示)に嵌合させたネジの上下動に従って、印加受け部20側と配線部材31との固着部分を上下動可能に構成するとよい。このような構成とすることにより、ネジの回転に従って配線部材31及び基板電極30の高さを上下動させることができるため、容易に精密な高さ調整を行うことができる。
 さらに、印加受け部20側との接続部分において、配線部材31を上下動制御可能なアクチュエータを取り付けて、基板14の厚さや成膜速度、成膜材料などの成膜条件と連動させて基板電極30の配設位置制御が可能な構成とすることもできる。
 もちろん、基板電極30と配線部材31とをボルトで固定して、この接続部分で基板電極位置を調整する構成としてもよい。
 また、本実施形態において、距離dは、8個それぞれの自転ホルダ23毎に調整を行っているが、8個の基板電極30を一体として構成することにより、一括して距離dの設定を行うことができる。
 例えば、印加受け部20側の上側に、高い剛性を有する導電性のリング状部材(不図示)を、シャフト16に挿通した状態で取り付けて、このリング状部材を印加受け部20と導通状態を維持したまま上下方向に位置調整可能に構成するとよい。このリング状部材に全ての配線部材31を固定することで一括して距離dの設定を行うことができる。このリング状部材の上下動は、印加受け部20との間に導電性のスペーサを挟んで行うことができる。もちろん、ネジを用いて上下動可能に構成してもよい。このように構成することで、8カ所の基板14と基板電極30との距離dの調整を一括して行うことができ、スパッタ装置1の稼働率の向上、すなわち成膜処理の低コスト化を図ることができる。
 基板電極30の大きさは、基板14の大きさを考慮して決定される。この基板電極30は、基板14の直径に対して80~98%の直径を有して形成され、特に、基板14サイズの90%以上の大きさであることが好ましい。本実施形態においては、円板状の基板14は直径100mmであるため、基板電極30の直径は80~98mmに形成されている。
 ここで、基板14の大きさに対して基板電極30が小さすぎると、基板14表面に反映されるセルフバイアスの効果を均一とすることが困難になるため、基板14上に形成される成膜層の厚さや膜質が不均一になる可能性がある。
 一方、基板電極30が自転ホルダ23などの他の部材と接近しすぎると、基板ホルダ12との間で放電して供給されるスパッタ用電力が不安定になる虞がある。このため、基板電極30の大きさを基板14の直径に対して90%程度以上に形成する場合には、基板電極30と接近する領域の自転ホルダ23に絶縁性コーティング39が施されている。絶縁性コーティング39は溶射によって自転ホルダ23の所定の表面に形成される。
 ここで、基板電極30を、それぞれの基板14の裏面側に取り付けた効果について説明する。
 基板14の裏面側に配設された基板電極30にRF電源が供給されるため、公転部材21全体にRFを印可する必要がない。RF電流が印加される面積が小さいために、基板14に印可できる電圧・電流値の範囲を従来よりも高い値に設定して、イオンの密度を高くすることができることから、膜質の緻密化若しくは処理時間の短縮化を図ることができる。
 そして、基板電極30は自転ホルダ21と接触しない構成であるので、基板電極30と自転ホルダ23との摺接による摩耗を原因とした粉塵などの異物の発生を防止し、膜の清浄度の向上を図ることができる。さらに、簡単な構造であるため部品点数の増加を抑えて設備の低コスト化を図ることができる。
 また、基板14の近傍に位置する公転部材21には成膜材料が成膜されづらくなるため、ボンバード処理によってイオンが衝突しても膜が剥離することがなく、基板電極30の表面に付着する異物(パーティクル)を減少させることができる。このため、膜の清浄度及び歩留まりの向上を図ることができる。さらに、公転部材21や自転ホルダ23に付着して蓄積する薄膜材料を減らすことができるため、薄膜材料の除去に要する時間(チャンバメンテナンス時間)を短縮して設備稼働率を向上することができる。
 さらに、基板電極30は、基板14と所定距離離間して平行に配置されるため、基板14の成膜面では均一な成膜条件が保たれ、膜厚・膜質の均一性の高い高精度な成膜を行うことができる。
 また、基板電極30は、基板ホルダ12に自公転機構を備えるスパッタ装置1に適用できるため、公転機構のみの基板ホルダで採用されていた膜厚分布調整のための補正板が不要となる。もちろん、基板ホルダ12に公転機構のみ備える型式のバイアススパッタ装置にも本実施形態に係る基板電極30を適用することができ、基板14に印可できる電圧・電流値の範囲拡大及び成膜された膜の清浄度の向上を図ることができる。
 本実施形態においては、二極のRFバイアススパッタ装置(スパッタ装置1)として本発明は構成されているが、基板14に電流を印可する方式のスパッタ装置であれば本発明に係る構成を適用することが可能である。例えば、安定化電極を用いた三極又は四極のスパッタ装置として構成してもよい。
 また、本実施形態においては、スパッタ用電源としてRF電源を用いているが、DC電源を用いて構成してもよい。DC電源を用いた場合には、絶縁物のスパッタができないことを除いて本実施形態に係るスパッタ装置1と同様の効果を得ることができる。
 なお、成膜中にOやNなどの活性ガスを導入せず、反応性でないスパッタを行うことができることはもちろんである。
 また、ターゲット34,36の上側に開閉制御可能なシャッタ(不図示)を設けて、シャッタの開度を調整することで、スパッタされるターゲット34,36やスパッタ量を調整できる構成としてもよい。
(第2の実施形態)
 図4及び図5は本発明の第2の実施形態を示し、図4は基板ホルダの上面説明図、図5は基板ホルダの部分断面説明図である。
 なお、以下の各実施の形態において、第1の実施の形態と同様部材、配置等には同一符号を付してその詳細な説明を省略する。
 本実施形態では、第1の実施形態に係るスパッタ装置1において、基板電極40の取り付け構造に違いがある。本実施形態に係る基板電極40は、自転ホルダ43に固着されており、自転ホルダ43と共に回転する構成である。
 基板電極40は、ステンレス製の略円板状の部材であり、ターゲット34,36に対して基板14の裏面側に配置されるように、各自転ホルダ43側に固定部材40aによって固定されている。自転ホルダ43は、自転ホルダ43の外周部に当接するベアリング45を介して、配線部材41及び印加受け部材20と電気的に接続されているため、基板電極40には、自転ホルダ43を介してRF電力が供給されている。
 また、自転ホルダ43は、公転部材21に絶縁部材29bを介して取り付けられるため、公転部材21とは電気的に絶縁されている。
 基板電極40は、第1の実施形態の場合と同様に、基板14の裏面から所定の距離(d)だけ離間した位置に、基板14と対向して平行に配設されている。
 距離dは、基板14に基板電極40によるセルフバイアスが現出、反映される範囲内に設定される。なお、本実施形態においても、距離dは0.5mm以上10mm以下とされると好適であった。
 また、基板14に反映されるセルフバイアスの効果は、距離dを変化させることによって調整することができるが、RF電力値の変更によっても調整可能である。
 距離dは、基板電極40を自転ホルダ43に取り付ける際に、基板電極40の位置を変更することによって調整できる。
 基板電極40は、自転ホルダ43に固着されているために基板14の裏面全体に配置することができる。すなわち、絶縁コーティング39を自転ホルダ43に施さない状態であっても、基板電極40を基板14とほぼ同じ形状及び大きさに形成することができる。基板14表面に反映されるセルフバイアスの効果の影響を均一にすることができるため、基板14上に形成される成膜層の厚さや膜質の均一化を図ることができる。
 また、ベアリング45を介して自転ホルダ43と配線部材41とを導通させることで、配線部材41を自転ホルダ43の外周部に摺接させる場合のように、部材の摩耗による粉塵などの異物の発生を防止し、膜の清浄度の向上を図ることができる。

Claims (7)

  1.  自公転機構を有し、真空容器内に基板を支持するための基板ホルダと、該基板ホルダ側に設けられた基板電極と、前記基板に対向して配設されるターゲットと、を備え、前記基板電極及び前記ターゲットに電力を印加し、前記基板電極及び前記ターゲットの間にプラズマを発生させて前記基板表面に薄膜を形成するバイアススパッタ装置において、
     前記基板電極は、前記基板ホルダに支持された前記基板のそれぞれの裏面側にのみ備えられ、
     前記基板電極と前記基板とは、所定距離離間して配設されることを特徴とするバイアススパッタ装置。
  2.  前記基板電極と前記基板との前記所定距離は、0.5mm以上10mm以下であることを特徴とする請求項1に記載のバイアススパッタ装置。
  3.  前記基板ホルダは、前記真空容器に対して回転する公転部材と、該公転部材に対して回転すると共に、前記基板を支持可能な自転ホルダと、を有して構成されており、
     前記基板電極は、外部電源と直接的若しくは間接的に一端部側が接続された配線部材の他端側に支持されると共に、前記自転ホルダ及び前記公転部材のいずれに対しても絶縁されていることを特徴とする請求項1に記載のバイアススパッタ装置。
  4.  前記基板ホルダは、前記真空容器に対して回転する公転部材と、前記公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有して構成されており、
     前記基板電極は、外部電源と直接的若しくは間接的に一端部側が接続された配線部材の他端側に支持されると共に、前記自転ホルダ及び前記公転部材のいずれに対しても絶縁され、
     前記基板電極と前記基板との前記所定距離は、前記配線部材の前記公転部材に対する取り付け位置を変更することで調整可能に構成されることを特徴とする請求項1に記載のバイアススパッタ装置。
  5.  前記基板ホルダは、前記真空容器に対して回転する公転部材と、前記公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有して構成されており、
     前記基板電極は、外部電源と直接的若しくは間接的に一端部側が接続された配線部材の他端側に支持されると共に、前記自転ホルダ及び前記公転部材のいずれに対しても絶縁され、
     前記基板電極と前記基板との前記所定距離は、前記配線部材の前記公転部材に対する取り付け位置を変更することで調整可能に構成されており、
     前記自転ホルダは、前記基板電極と近接する所定部分の表面に絶縁性のコーティングを有することを特徴とする請求項1に記載のバイアススパッタ装置。
  6.  前記基板ホルダは、前記真空容器に対して回転する公転部材と、該公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有し、
     前記自転ホルダは、前記公転部材に対して絶縁され、
     前記基板電極は、前記自転ホルダ側に取り付けられることを特徴とする請求項1に記載のバイアススパッタ装置。
  7.  前記基板ホルダは、前記真空容器に対して回転する公転部材と、該公転部材に対して回転し、前記基板を支持可能な自転ホルダと、を有し、
     前記自転ホルダは、前記公転部材に対して絶縁されるとともに、前記自転ホルダ側に当接するベアリングを介して電力が供給されており、
     前記基板電極は、前記自転ホルダ側に取り付けられていることを特徴とする請求項1に記載のバイアススパッタ装置。
PCT/JP2009/060936 2008-06-17 2009-06-16 バイアススパッタ装置 WO2009154196A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/999,425 US20110100806A1 (en) 2008-06-17 2009-06-16 Bias sputtering device
CN2009801223663A CN102066602B (zh) 2008-06-17 2009-06-16 偏压溅射装置
EP09766644.0A EP2302092B1 (en) 2008-06-17 2009-06-16 Bias sputtering apparatus
KR1020107028578A KR101036426B1 (ko) 2008-06-17 2009-06-16 바이어스 스퍼터장치
JP2009546606A JP4503702B2 (ja) 2008-06-17 2009-06-16 バイアススパッタ装置
HK11107303.4A HK1153242A1 (en) 2008-06-17 2011-07-13 Bias sputtering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008157879 2008-06-17
JP2008-157879 2008-06-17

Publications (1)

Publication Number Publication Date
WO2009154196A1 true WO2009154196A1 (ja) 2009-12-23

Family

ID=41434112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060936 WO2009154196A1 (ja) 2008-06-17 2009-06-16 バイアススパッタ装置

Country Status (8)

Country Link
US (1) US20110100806A1 (ja)
EP (1) EP2302092B1 (ja)
JP (1) JP4503702B2 (ja)
KR (1) KR101036426B1 (ja)
CN (1) CN102066602B (ja)
HK (1) HK1153242A1 (ja)
TW (1) TW201009101A (ja)
WO (1) WO2009154196A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135810A1 (ja) * 2010-04-28 2011-11-03 株式会社アルバック 成膜装置
WO2016203585A1 (ja) * 2015-06-17 2016-12-22 株式会社シンクロン 成膜方法及び成膜装置
CN110857464A (zh) * 2018-08-24 2020-03-03 安徽纯源镀膜科技有限公司 一种新的真空镀膜设备的偏压系统
JP7017832B1 (ja) * 2021-06-08 2022-02-09 株式会社シンクロン バイアス印加装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077207B2 (en) * 2011-11-30 2018-09-18 Corning Incorporated Optical coating method, apparatus and product
JP5939147B2 (ja) * 2012-12-14 2016-06-22 東京エレクトロン株式会社 成膜装置、基板処理装置及び成膜方法
JP5727073B1 (ja) * 2014-06-03 2015-06-03 株式会社シンクロン 可搬型回転装置及び成膜装置
JP6019310B1 (ja) * 2015-04-16 2016-11-02 ナルックス株式会社 蒸着装置及び蒸着装置による成膜工程を含む製造方法
JP6845877B2 (ja) * 2019-02-14 2021-03-24 Towa株式会社 ワーク保持部回転ユニット及び真空処理装置
EP3987079A4 (en) 2019-06-24 2023-03-01 TRUMPF Huettinger Sp. Z o. o. PROCEDURE FOR ADJUSTING THE POWER OUTPUT OF A POWER SUPPLY FOR A PLASMA, PLASMA DEVICE AND POWER SUPPLY
JP7111380B2 (ja) * 2020-04-01 2022-08-02 株式会社シンクロン スパッタ装置及びこれを用いた成膜方法
CN117626201A (zh) * 2023-12-01 2024-03-01 科廷表面科技(浙江)有限公司 一种dlc溅射等离子涂层工艺及涂层装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305081A (ja) * 1991-04-02 1992-10-28 Hitachi Metals Ltd セラミックス材料のメタライズ処理装置
JPH08315432A (ja) * 1995-05-15 1996-11-29 Nippondenso Co Ltd 光情報記録媒体の製造装置及び製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893019A (en) * 1987-05-27 1990-01-09 Mitsubishi Denki Kabushiki Kaisha Ion current generator system for thin film formation, ion implantation, etching and sputtering
JPH0791645B2 (ja) * 1989-04-28 1995-10-04 株式会社日立製作所 薄膜形成装置
JP3378043B2 (ja) * 1993-03-05 2003-02-17 同和鉱業株式会社 スパッタリング装置
JP2002293427A (ja) 2001-03-29 2002-10-09 Sumitomo Electric Ind Ltd 回転台車
EP1419285A4 (en) * 2001-08-24 2009-08-19 Nanonexus Inc METHOD AND DEVICE FOR GENERATING UNIFORM ISOTROPIC VOLTAGES IN A SPOTTED FILM
JP2007051337A (ja) * 2005-08-18 2007-03-01 Ulvac Japan Ltd スパッタ電極及びスパッタ電極を備えたスパッタリング装置
CN100477147C (zh) * 2006-03-16 2009-04-08 东京毅力科创株式会社 基板载置台及基板处理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305081A (ja) * 1991-04-02 1992-10-28 Hitachi Metals Ltd セラミックス材料のメタライズ処理装置
JPH08315432A (ja) * 1995-05-15 1996-11-29 Nippondenso Co Ltd 光情報記録媒体の製造装置及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302092A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135810A1 (ja) * 2010-04-28 2011-11-03 株式会社アルバック 成膜装置
WO2016203585A1 (ja) * 2015-06-17 2016-12-22 株式会社シンクロン 成膜方法及び成膜装置
JPWO2016203585A1 (ja) * 2015-06-17 2018-04-05 株式会社シンクロン 成膜方法及び成膜装置
CN110857464A (zh) * 2018-08-24 2020-03-03 安徽纯源镀膜科技有限公司 一种新的真空镀膜设备的偏压系统
JP7017832B1 (ja) * 2021-06-08 2022-02-09 株式会社シンクロン バイアス印加装置
WO2022259368A1 (ja) * 2021-06-08 2022-12-15 株式会社シンクロン バイアス印加装置

Also Published As

Publication number Publication date
JP4503702B2 (ja) 2010-07-14
CN102066602B (zh) 2012-10-31
KR101036426B1 (ko) 2011-05-23
KR20110014657A (ko) 2011-02-11
EP2302092A4 (en) 2014-05-14
EP2302092B1 (en) 2015-12-23
TW201009101A (en) 2010-03-01
HK1153242A1 (en) 2012-03-23
CN102066602A (zh) 2011-05-18
US20110100806A1 (en) 2011-05-05
JPWO2009154196A1 (ja) 2011-12-01
EP2302092A1 (en) 2011-03-30
TWI348498B (ja) 2011-09-11

Similar Documents

Publication Publication Date Title
JP4503702B2 (ja) バイアススパッタ装置
TWI703236B (zh) 用於共同濺射多個靶材之方法和設備
KR102215801B1 (ko) 성막 장치
WO2000026430A1 (fr) Appareil de pulverisation
WO2012033198A1 (ja) スパッタ装置
WO2019130471A1 (ja) 成膜方法および成膜装置
US7625472B2 (en) Plasma-assisted sputter deposition system
US20140110248A1 (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
WO2020080016A1 (ja) プラズマ成膜装置およびプラズマ成膜方法
WO2022030189A1 (ja) 表面処理装置および表面処理方法
JP2006299362A (ja) スパッタ成膜装置
CN110965030B (zh) 成膜装置
WO2022158271A1 (ja) 表面処理装置および表面処理方法
JP4437347B2 (ja) 前処理エッチング装置及び薄膜作成装置
JP4881335B2 (ja) スパッタ装置
JPH10110267A (ja) スパッタ装置及びコリメータ付着物の処理方法
US20230304140A1 (en) Film-forming device, film-forming unit, and film-forming method
KR20130109218A (ko) 캐소드
JP2009299191A (ja) プラズマ支援スパッタ成膜装置
JP2001247963A (ja) Ecrスパッタ成膜装置
EP2143125B1 (en) Ion Source
JP2006336083A (ja) 多段カソード電極機構
JP2005187864A (ja) 成膜装置および成膜方法
JP2010270388A (ja) 成膜装置及び成膜方法
JP2003092272A (ja) スパッタリング装置および半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122366.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009546606

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107028578

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12999425

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009766644

Country of ref document: EP