WO2009151064A1 - 丸鋸 - Google Patents

丸鋸 Download PDF

Info

Publication number
WO2009151064A1
WO2009151064A1 PCT/JP2009/060558 JP2009060558W WO2009151064A1 WO 2009151064 A1 WO2009151064 A1 WO 2009151064A1 JP 2009060558 W JP2009060558 W JP 2009060558W WO 2009151064 A1 WO2009151064 A1 WO 2009151064A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
power transmission
gear
circular saw
transmission path
Prior art date
Application number
PCT/JP2009/060558
Other languages
English (en)
French (fr)
Inventor
学 徳永
平林 伸治
竜 橋本
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008152167A external-priority patent/JP5435900B2/ja
Priority claimed from JP2008152146A external-priority patent/JP5435899B2/ja
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Priority to EP09762494.4A priority Critical patent/EP2298482B1/en
Priority to US12/996,838 priority patent/US8739417B2/en
Priority to RU2010153877/02A priority patent/RU2496615C2/ru
Priority to CN2009801215968A priority patent/CN102056697B/zh
Publication of WO2009151064A1 publication Critical patent/WO2009151064A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/12Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of drives for circular saw blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19293Longitudinally slidable
    • Y10T74/19298Multiple spur gears
    • Y10T74/19307Selective
    • Y10T74/19312Direct clutch and drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19377Slidable keys or clutches
    • Y10T74/19414Single clutch shaft
    • Y10T74/19419Progressive
    • Y10T74/19442Single key
    • Y10T74/19447Clutch and ratchet

Definitions

  • the present invention relates to a technique for constructing a circular saw for cutting a workpiece.
  • Patent Document 1 A circular saw for cutting a workpiece is disclosed, for example, in Japanese Patent Application No. 01-99714 (Patent Document 1).
  • the circular saw described in Patent Document 1 has the possibility of changing the cutting speed of the saw blade according to the cutting area of the workpiece, etc., but this kind of circular saw that performs the cutting operation of the workpiece is designed. In this case, a technique is demanded that enables the cutting speed of the saw blade to be smoothly controlled in accordance with the actual cutting work, thereby improving the smoothness of the cutting work.
  • Japanese Patent Application No. 01-99714 Japanese Patent Application No. 01-99714
  • the present invention has been made in view of the above points, and in a circular saw that performs a cutting operation of a workpiece, a technique that contributes to an improvement in the smoothness of the cutting operation by enabling the cutting speed of the saw blade to be controlled smoothly.
  • the purpose is to provide.
  • a circular saw includes a power source, a saw blade that is rotationally driven to cut a workpiece, and a rotation of the saw blade interposed between the power source and the saw blade. At least a speed change mechanism that makes the speed variable is provided.
  • a circular saw for woodworking, metalworking, ceramics, or plastic that performs a cutting work of a workpiece by a rotating saw blade can be preferably used.
  • a saw or a table-type circular saw is included in the “circular saw” referred to herein.
  • the “saw blade” referred to here widely includes a tip saw, a saw blade, a cutting grindstone, a diamond wheel, and the like.
  • the “power source” referred to here typically corresponds to an electric motor, but preferably includes an air motor other than the electric motor, a prime mover such as an engine, and the like.
  • the speed change mechanism is engaged with the first and second rotating shafts arranged in parallel with each other, and the drive gear is engaged with each other and transmits the torque of the first rotating shaft to the second rotating shaft.
  • the first gear train and the second gear train have a gear ratio different from each other.
  • a torque transmission path via the first gear train is defined as the first power transmission path
  • a torque transmission path via the second gear train is defined as the second power transmission path.
  • the transmission path is switched between the first power transmission path and the second power transmission path.
  • One of the first and second power transmission paths here is typically set as a power transmission path for high speed and low torque, and the other is set as a power transmission path for low speed and high torque. .
  • the gear ratio (reduction ratio) of the first gear train that is a component of the first power transmission path and the second gear train that is a component of the second power transmission path is set to be different from each other. For this reason, when the load acting on the saw blade is small due to switching of the transmission path between the first power transmission path and the second power transmission path, for example, the first power transmission is small.
  • the machining operation can be performed at a high speed and a low torque using the path, and when the load acting on the saw blade is large, the machining operation can be performed at a low speed and a high torque using the second power transmission path having a large gear ratio.
  • the switching of the transmission path between the first power transmission path and the second power transmission path may be performed automatically based on actual torque detection information or work. It may be a manual type performed by manual operation of the operation member by a person.
  • the first clutch that performs power transmission and power interruption on the first power transmission path, and the first clutch that performs power transmission and power interruption on the second power transmission path. 2 clutches are further provided. Then, the first power transmission path and the second power transmission path remain in the meshing engagement state of the first and second gear trains by switching between the power transmission state and the power cutoff state of the first and second clutches. The transmission path is switched between the power transmission paths.
  • “the transmission path is switched between the first power transmission path and the second power transmission path in the meshed engagement state of the first and second gear trains” means that the first and second power transmission paths are meshed with each other.
  • the use transmission path can be switched between the first power transmission path and the second power transmission path while fixing the position of the gear train to be engaged and engaged, so that the speed change operation can be performed. It is possible to perform smoothly, and the smoothness of the shifting operation can be obtained.
  • the circular saw has an input shaft driven by a power source, and the input shaft is connected to the first rotation shaft by meshing engagement with a gear, while the second rotation.
  • the shaft is configured as the output shaft of the saw blade.
  • it is set as the parallel triaxial type in which the input shaft was further arrange
  • the three axes are arranged parallel to each other.
  • the meshing engagement by the gears is interposed between the input shaft and the first rotating shaft, and between the first rotating shaft and the second rotating shaft, respectively.
  • the speed reduction structure using only the second rotating shaft it is possible to have variations in setting the speed reduction ratio.
  • At least one of the first and second clutches includes a drive side clutch member disposed on the first or second rotating shaft so as to face each other.
  • a power transmission position that is configured by a driven clutch member, and in which either the driving clutch member or the driven clutch member is engaged and engaged with each other based on the torque acting on the saw blade.
  • the sliding engagement clutch is configured to be capable of sliding in the longitudinal direction between the power cutoff position where the meshing engagement is released and the power is cut off. According to such a configuration, there is provided a circular saw including a sliding engagement clutch as an automatic switching clutch that automatically switches between a power transmission state and a power cutoff state based on torque acting on the saw blade. .
  • the speed change mechanism includes a latch mechanism that holds the switched state after the sliding engagement clutch is once switched to the power cut-off state. Is done. According to such a configuration, it is possible to prevent frequent switching around the switching torque by using the latch mechanism.
  • the speed change mechanism has a reset mechanism for returning the sliding mesh clutch to a power transmission state when the power source is stopped. According to such a configuration, it is possible to prepare for a cutting operation after the power source is stopped, which is reasonable.
  • the speed change mechanism is configured such that the sliding mesh clutch is switched between the power transmission state and the power cut-off state by the inertia of the saw blade when the power source is started.
  • the switching restriction mechanism for restricting the movement is further included.
  • the speed change mechanism further includes a switching set value adjusting mechanism operated by an operator, and the switching set value adjusting mechanism transmits power of the sliding mesh clutch.
  • the switching setting value that regulates switching of the transmission path between the state and the power cut-off state is adjusted.
  • the switching set value can be adjusted by using the switching set value adjusting mechanism, so that the switching timing of the torque transmission path according to the operator's request can be obtained.
  • the speed change mechanism includes at least a first setting mode and a second setting mode.
  • the first setting mode relates to the output characteristic or efficiency characteristic of the saw blade in the normal use torque range between the minimum torque and the maximum torque, and is at least 1 in a torque region below the intermediate torque between the minimum torque and the maximum torque.
  • the setting mode forms a first characteristic curve having an approximately mountain shape having two peaks.
  • the second setting mode relates to the output characteristic or efficiency characteristic of the saw blade in the normal use torque range between the minimum torque and the maximum torque, and at least 1 in a torque region exceeding the intermediate torque between the minimum torque and the maximum torque.
  • the setting mode is to form a substantially mountain-shaped second characteristic curve having two peaks.
  • the minimum torque is typically a torque defined based on the minimum cutting depth of the workpiece by the saw blade
  • the maximum torque is typically based on the maximum cutting depth of the workpiece by the saw blade.
  • the torque is defined as The torque may be defined not only based on the depth of cut of the workpiece, but also based on the type of the workpiece, how to cut the workpiece (right angle cut, inclined cut, etc.), and the like.
  • a speed change mechanism that includes at least the first setting mode and the second setting mode, it becomes possible to smoothly perform the cutting operation in response to a change in load torque that occurs during the cutting operation.
  • the output and efficiency can be stabilized at a high level, and the first setting particularly at light load.
  • the switching between the first setting mode and the second setting mode may be automatic, which is automatically performed based on actual torque detection information, or by manual operation of the operation member by the operator. It may be performed manually.
  • the speed change mechanism includes a first torque corresponding to a peak of the first characteristic curve in the first setting mode, and a second torque in the second setting mode.
  • the ratio of the second torque to the first torque is 1.5 to 2.5. According to such a configuration, it is possible to configure a speed change mechanism that is practically highly smooth in speed change operation.
  • the speed change mechanism has a first power transmission path and a second power transmission path.
  • the first power transmission path is configured as a power transmission path for transmitting torque of the input shaft driven by the power source to the output shaft of the saw blade in the first setting mode, and is connected to the input shaft.
  • the second power transmission path is configured as a power transmission path for transmitting the torque of the input shaft driven by the power source to the output shaft of the saw blade in the second setting mode, and is a second drive connected to the input shaft.
  • the second gear ratio relative to the first gear ratio is related to the first gear ratio of the first driven gear to the first drive gear and the second gear ratio of the second driven gear to the second drive gear.
  • the gear ratio is preferably 1.5 to 2.5. According to such a configuration, it is possible to configure a speed change mechanism that is practically highly smooth in speed change operation.
  • the circular saw of the further form which concerns on this invention is a structure provided with the detection mechanism which detects the torque which acts on a saw blade.
  • the “detection mechanism” referred to here widely includes a mechanical detection mechanism using a spring or the like, or an electrical detection mechanism using a sensor or the like that detects torque continuously or intermittently.
  • the speed change mechanism switches from the first setting mode to the second setting mode when the detected torque exceeds the intermediate torque, based on the detected torque detected by the detecting mechanism, When the torque falls below the intermediate torque, the second setting mode is switched to the first setting mode.
  • switching between the first setting mode and the second setting mode can be automatically performed according to the work load, which is reasonable.
  • the second setting mode is maintained in order to prevent frequent switching around the switching torque. It is preferable to provide a function to
  • FIG. 1 is a side view showing the overall configuration of the circular saw 101 according to the present embodiment
  • FIG. 2 is a side sectional view showing the overall configuration of the circular saw 101
  • FIG. 3 shows the overall configuration of the circular saw 101. It is sectional drawing seen from the front.
  • the circular saw 101 according to the present embodiment is generally a base that is placed on a workpiece (not shown for convenience) and moved in the cutting direction. 111 and a circular saw main body 103 disposed above the base 111.
  • the circular saw body 103 accommodates a blade case 104 that covers substantially the upper half of a disk-shaped blade (saw blade) 113 that rotates in a vertical plane, a motor housing 105 that houses a drive motor 115, and a speed change mechanism 117.
  • the gear housing 107 and the handgrip 109 that the operator grips and operates the circular saw 101 are mainly configured.
  • the blade 113 is a saw blade that is rotationally driven to cut the workpiece, and corresponds to the “saw blade” in the present invention, and the drive motor 115 corresponds to the “power source” in the present invention.
  • a safety cover 106 covering the lower half of the blade 113 is rotatably attached to the blade case 104.
  • the lower edge portion of the blade 113 including the safety cover 106 protrudes to the lower surface side through an opening 111a (see FIG. 3) formed in the base 111.
  • the handgrip 109 is connected to the upper side of the gear housing 107 and includes a trigger 109a that energizes and drives the drive motor 115 by pulling.
  • the blade 113 is rotationally driven via the speed change mechanism 117 when the drive motor 115 is energized.
  • the speed change mechanism 117 here is a mechanism that is interposed between the drive motor 115 and the blade 113 and makes the rotational speed of the blade 113 variable, and corresponds to a “speed change mechanism” in the present invention.
  • a battery 108 is detachably attached to the end of the hand grip 109.
  • the drive motor 115 according to the present embodiment is a motor with a brake, and a rare earth motor is used. Moreover, as the battery 108, it is preferable to use a lithium ion battery of 42 volts or less.
  • the speed change mechanism 117 includes an input shaft 121 coaxially connected to the motor shaft 116 of the drive motor 115, a blade mounting shaft 125 as an output shaft to which the blade 113 is mounted, and the input shaft 121 and the blade mounting shaft.
  • the intermediate shafts 123 arranged between the two are parallel triaxial types arranged parallel to each other, and the power transmission path is automatically changed from high speed low torque to low speed high according to the load acting on the blade 113. It is configured as a two-stage switching type that switches to torque.
  • the intermediate shaft 123, the blade mounting shaft (output shaft) 125, and the input shaft 121 here correspond to the “first rotating shaft”, “second rotating shaft”, and “input shaft” in the present invention, respectively.
  • 4 and 5 are developed cross-sectional views of the parallel triaxial transmission mechanism 117.
  • FIG. 4 shows a state where the power transmission path is switched to the high speed and low torque side
  • FIG. 5 shows that the power transmission path is the low speed and high torque.
  • the state switched to the side is shown.
  • the blade mounting shaft 125 is referred to as an output shaft.
  • the transmission mechanism 117 has a first power transmission path in which the torque of the input shaft 121 is transmitted from the pinion gear 131 to the output shaft 125 via the first intermediate gear 132, the intermediate shaft 123, the second intermediate gear 133, and the first driven gear 134.
  • the gear ratio (reduction ratio) between the second intermediate gear 133 and the first driven gear 134 is set smaller than the gear ratio (reduction ratio) between the third intermediate gear 135 and the second driven gear 136.
  • the first power transmission path P1 is defined as a high-speed and low-torque power transmission path
  • the second power transmission path P2 is defined as a low-speed and high-torque power transmission path.
  • the first power transmission path P1 and the second power transmission path P2 are indicated by thick lines with arrows.
  • the first power transmission path P1 here corresponds to the “first power transmission path” in the present invention
  • the second power transmission path P2 here is the “second power transmission path” in the present invention.
  • the second intermediate gear 133 and the first driven gear 134 referred to here constitute the “first gear train” in the present invention
  • the third intermediate gear 135 and the second driven gear 136 constitute the “first gear train” in the present invention. 2 gear trains "are configured.
  • the input shaft 121, the intermediate shaft 123, and the output shaft 125 in the speed change mechanism 117 are rotatably supported by the gear housing 107 through bearings 121a, 123a, and 125a, respectively.
  • a pinion gear 131 as a drive gear is formed integrally with the input shaft 121.
  • the first intermediate gear 132 and the third intermediate gear 135 are arranged in parallel on one end side of the intermediate shaft 123 (on the drive motor 115 side and on the left side in the drawing), and the intermediate shaft 123 via a common key 137.
  • the first intermediate gear 132 is always meshed and engaged with the pinion gear 131, and the third intermediate gear 135 is always meshed with the second driven gear 136 provided on one end side of the output shaft 125.
  • the second intermediate gear 133 is attached to the other end side of the output shaft 125 (on the blade 113 side, the right side in the figure) via a bearing 138 and is disposed on the other end side of the output shaft 125.
  • the first driven gear 134 integrated with the output shaft 125 is always meshed and engaged via the key 139.
  • the output shaft 125 At the initial stage of the cutting operation with a small load acting on the blade 113 during the cutting operation of the workpiece by the blade 113, the output shaft 125, i.
  • the load applied to the blade 113 reaches a certain value or more as the cutting operation progresses, it is automatically switched to the second power transmission path P2 of low speed and high torque. Configured.
  • Such switching from the first power transmission path P1 to the second power transmission path P2 is realized by providing a sliding engagement clutch 141 on the intermediate shaft 123 and a one-way clutch 155 on the output shaft 125. Has been.
  • the sliding engagement clutch 141 here corresponds to the “sliding engagement clutch” in the present invention, and the “first and second” in the present invention is defined by the sliding engagement clutch 141 and the one-way clutch 155 herein.
  • the clutch is configured. A specific setting for switching from the first power transmission path P1 to the second power transmission path P2 will be described later with reference to FIGS.
  • FIGS. 6 to 10 The configuration of the sliding engagement clutch 141 is shown in FIGS. 6 to 10 in addition to FIGS. 6 is an external view of the sliding engagement clutch 141, and FIG. 7 is a cross-sectional view taken along line AA of FIG. 8 shows the drive side clutch member 142, FIG. 9 shows the driven side clutch member 143, and FIG. 10 shows the torque ring 152.
  • the sliding engagement clutch 141 includes a driving side clutch member 142 and a driven side clutch member 143 that are arranged opposite to each other in the major axis direction of the intermediate shaft 123, and a driving side clutch member 142.
  • the main component is a clutch spring 144 that presses and urges the driven clutch member 143 toward the driven clutch member 143.
  • each of the driving side clutch member 142 and the driven side clutch member 143 has a plurality of (for example, three) substantially trapezoidal chevron cams 141a and 143a on the side surfaces facing each other.
  • the angle cams 141a and 143a mesh with each other to transmit torque (see FIGS. 4 and 6), and the meshing engagement is released so that torque transmission is interrupted (FIG. 5). reference).
  • the drive side clutch member 142 is fitted to the intermediate shaft 123 in a loose fit. That is, it is slidably attached to the intermediate shaft 123 in the circumferential direction and the long axis direction, and is rotationally driven via a torque ring 152 as a torque transmission member press-fitted and fixed to the intermediate shaft 123.
  • the torque ring 152 includes a plurality of (three) projecting portions 152 a that project in the outer diameter direction at circumferentially equal positions.
  • a housing space 153 having a shape substantially corresponding to the outer shape of the torque ring 152 is formed on the side surface of the drive-side clutch member 142 where the chevron cam 142 a is formed.
  • the torque ring 152 is formed in the housing space 153. It is housed so that it cannot move in the circumferential direction. Therefore, when the torque ring 152 is rotated together with the intermediate shaft 123, the driving side clutch member 142 is in the radial direction of the engagement recess 153a (see FIG. 8) that engages with the protrusion 152a of the torque ring 152 in the accommodation space 153.
  • the wall surface, that is, the torque transmission surface 153b is pressed in the circumferential direction to rotate integrally.
  • the driven clutch member 143 is integrated with the second intermediate gear 133.
  • the drive-side clutch member 142 is in a position where the mountain cam 142a is engaged with and engaged with the mountain cam 143a of the driven clutch member 143 by a clutch spring 144 formed of a compression coil spring as an elastic member, that is, power transmission. Energized to position.
  • the clutch spring 144 is arranged in a resilient manner between the drive side clutch member 142 and the first intermediate gear 132.
  • FIG. 11A shows a state in which the sliding mesh clutch 141 changes from the power transmission state to the power cutoff state.
  • the sliding engagement clutch 141 When the sliding engagement clutch 141 is switched to the power cut-off state, the one-way clutch 145 is operated, and the power transmission path is changed from the first power transmission path P1 having high speed and low torque to the second power transmission path P2 having low speed and high torque. And can be switched.
  • the configuration of the one-way clutch 145 is shown in FIGS. 15 and 16.
  • 15 is a side view showing each member provided on the output shaft 125
  • FIG. 16 is a cross-sectional view taken along the line CC in FIG.
  • the one-way clutch 145 mainly includes an outer ring 146 that rotates together with the second driven gear 136, and a plurality of needle rollers 147 and a spring 148 that are interposed between the outer ring 146 and the output shaft 125.
  • the needle rollers 147 are rotatably disposed in cam grooves 146a formed at a predetermined interval in the circumferential direction of the outer ring 146, and are urged toward the meshing position of the cam surface 146b by a spring 148.
  • the speed change mechanism 117 configured as described above, when the drive motor 115 is stopped, the sliding mesh clutch 141 is moved closer to the driven clutch member 143 by the urging force of the clutch spring 144. It has been moved to the side. In other words, the angle cams 142a and 123a of both clutch members 142 and 143 are held in a power transmission state in which the clutches 142a and 123a are engaged with each other. In this state, when the drive motor 115 is energized to cut the workpiece, the torque of the drive motor 115 is transmitted to the output shaft 125 via the first power transmission path P1.
  • the blade 113 is driven to rotate at high speed and low torque through the pinion gear 131, the first intermediate gear 132, the intermediate shaft 123, the sliding mesh clutch 141, the second intermediate gear 133, the first driven gear 134, and the output shaft 125.
  • the outer ring 146 of the one-way clutch 145 is also rotated from the intermediate shaft 123 via the third intermediate gear 135 and the second driven gear 136.
  • the rotational speed of the output shaft 125 is higher than the rotational speed of the outer ring 146. Is high speed, the outer ring 146 rotates idly.
  • the work for cutting the workpiece by the blade 113 starts at a high speed and a low torque using the first power transmission path P1.
  • the sliding mesh clutch 141 is switched to the power cut-off state. Change. That is, as shown in FIG. 11A, the drive-side clutch member 142 has a long-axis direction component acting on the drive-side clutch member 142 via the cam surfaces (slopes) of the angle cams 142a and 143a. The clutch is separated from the driven clutch member 143 against the urging force, and the meshing engagement of the angle cams 142a and 143a is released.
  • the workpiece when the load acting on the blade 113 is small, the workpiece is cut at high speed and low torque using the first power transmission path P1 having a small reduction ratio.
  • the cutting operation can be performed at low speed and high torque using the second power transmission path P2 having a large gear ratio.
  • the torque transmission path is automatically switched from the high-speed and low-torque first power transmission path P1 to the low-speed and high-torque second power transmission path P2 according to the load acting on the blade 113.
  • the drive motor 115 can be prevented from burning and the amount of cutting work per charge of the battery 108 can be improved.
  • the second power is transmitted from the first power transmission path P1 in a state where the meshing engagement of each gear in the gear train constituting the transmission mechanism 117 is maintained, that is, the position of each gear is fixed. Since the transmission path P2 can be switched, the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
  • the sliding engagement clutch 141 is provided on the intermediate shaft 123 and the one-way clutch 145 is provided on the output shaft 125, the operation of the sliding engagement clutch 141 is controlled. Only by this, switching of the use transmission path from the first power transmission path P1 to the second power transmission path P2 is realized, and a rational speed change mechanism 117 can be constructed.
  • the sliding engagement clutch 141 is provided on the intermediate shaft 123 that rotates at a higher speed and lower torque than the output shaft 125, the load acting on the sliding engagement clutch 141 can be reduced. This is effective in improving the protection or durability of the clutch.
  • the intermediate shaft 123 is disposed closer to the center of the gear housing 107 when viewed from the arrangement of the shafts with respect to the gear housing 107. For this reason, it is possible to suppress an increase in the size of the gear housing 107 by disposing the sliding engagement clutch 141 that is larger in the radial direction than the one-way clutch 145 on the intermediate shaft 123.
  • the maximum cutting depth of the circular saw 101 (the amount of protrusion of the lower edge portion of the blade 111 from the lower surface of the base 111) is determined by the operator pressing the handgrip 109 downward in FIG.
  • the maximum cutting depth provided in the gear housing 107 is omitted for the sake of convenience. Is regulated by abutting against the stopper of the base 111. Therefore, for example, when the sliding engagement clutch 141 having a large outer diameter is provided on the output shaft 125, the distance from the center of the output shaft 125 to the lower end surface 107L of the gear housing 107 increases, which affects the maximum cutting ability. To do.
  • the sliding engagement clutch 141 is provided on the intermediate shaft 123, the output shaft 125 to the lower end surface 107L of the gear housing 107 are provided. Since the distance can be set small, the maximum cutting ability is not affected.
  • the one-way clutch 145 is provided on the output shaft 125.
  • the second driven gear 136 on the output shaft 125 on the deceleration side is set to have a larger diameter than the third intermediate gear 135 on the intermediate shaft 123. Therefore, by providing the one-way clutch 145 between the output shaft 125 and the second driven gear 136, it is easy to secure an arrangement space for the one-way clutch 145, and the one-way clutch 145 can be easily incorporated. .
  • the speed change mechanism 117 includes a latch mechanism that holds the switched engagement clutch 141 after the sliding engagement clutch 141 is once switched to the power cut-off state, and a disconnection mechanism. After the work is stopped (when the drive motor 115 is stopped), a reset mechanism for returning to the initial state, that is, the power transmission state is provided.
  • the latch mechanism 151 When the drive-side clutch member 142 in the sliding engagement clutch 141 moves to the power cut-off position, the latch mechanism 151 moves the drive-side clutch member 142 to the power cut-off position, more specifically, the angle cam 142a of the drive-side clutch member 142 It is provided as a mechanism for holding the driven side clutch member 143 at a position separated from the angle cam 143a (position facing the gap).
  • the latch mechanism 151 is composed mainly of the torque ring 152 described above.
  • the latch mechanism here corresponds to a “latch mechanism” in the present invention.
  • the forward direction of the engaging recess 153a with which the protrusion 152a of the torque ring 152 engages is upwardly inclined.
  • a slope 153c is formed which is inclined at.
  • FIG. 11A shows the operation of the clutch
  • FIG. 11B shows the operation of the torque ring 152 as a latch member.
  • the surface of the protrusion 152a facing the inclined surface 153c is formed as an inclined surface or an arcuate curved surface.
  • the protrusion 152a of the torque ring 152 is engaged with the engagement recess as described above. It is engaged with the torque transmission surface 153b of 153a and held in a torque transmission state.
  • the torque ring 152 moves relative to the drive side clutch member 142 in the circumferential direction, and the protrusion 152a of the torque ring 152 rides on the end of the inclined surface 153c (see the second step from the top in FIG. 11).
  • the drive-side clutch member 142 is pushed in the major axis direction by the riding-up operation of the protrusion 152a. That is, a force is applied to the driving side clutch member 142 in a direction (long axis direction) in which the angle cam 142a is separated from the angle cam 143a of the driven clutch member 143, thereby assisting the separation of the angle cams 142a, 143a. .
  • the protrusion 152a that rides on the slope 153c is engaged with a stopper surface 153d that stands upright in front of the slope 153c, and then the torque ring 152 and the drive-side clutch member 142 rotate together.
  • This state is shown in the lowermost part of FIG. That is, when the driving side clutch member 142 is switched from the power transmission state to the power cutoff state, the torque ring 152 is a power that causes the angle cam 142a of the driving side clutch member 142 to be separated from the angle cam 143a of the driven side clutch member 143.
  • the position is moved further backward than the blocking position, that is, moved to an isolation position where a predetermined gap in the major axis direction is ensured between the angle cams 142a and 143a and held at the isolation position.
  • the torque ring 152 is returned (reset) to the initial position, and thereby, the holding of the power cut-off state of the sliding engagement clutch 141 is automatically released. That is, a reset mechanism using the brake of the drive motor 115 and the inertia of the drive side clutch member 142 is configured.
  • the reset mechanism here corresponds to a “reset mechanism” in the present invention.
  • the speed change mechanism 117 includes a speed change restriction mechanism 161 that restricts the speed change at the time of activation.
  • the shift restriction mechanism 161 here constitutes the “switching restriction mechanism” in the present invention.
  • FIGS. 12 is a cross-sectional view taken along line BB in FIG. 6,
  • FIG. 13 is a perspective view of the driving side clutch member 142 viewed from the clutch spring mounting side, and
  • FIG. 14 is a perspective view of the stopper 162.
  • the shift restriction mechanism 161 according to the present embodiment is mainly configured by a plurality of (for example, three) stoppers 162 radially arranged on the drive side clutch member 142 and a compression coil spring 163 as an elastic member.
  • Each stopper 162 and compression coil spring 163 are housed in a stopper housing recess 164 formed at a circumferentially equal position on the side of the clutch spring mounting surface side (opposite to the angle cam 142a) of the drive side clutch member 142, and in the radial direction. It can be moved.
  • Each stopper 162 has a distal end on the inner diameter side opposed to the outer peripheral surface of the intermediate shaft 123 and is pressed and urged toward the intermediate shaft 123 by a compression coil spring 163.
  • a circumferential annular groove 165 is formed in a region facing the stopper 162.
  • each stopper 162 When the driving side clutch member 142 is placed at the power transmission position, the distal end portion in the radial direction of each stopper 162 enters the annular groove 165 on the outer periphery of the intermediate shaft 123 from the radial direction and is engaged in a resilient manner. Accordingly, the driving side clutch member 142 is held at the power transmission position. This state is shown in FIGS.
  • the operation of the compression coil spring 163 is stabilized by a guide pin 166 provided on the stopper 162. Further, as shown in FIGS. 4 and 5, a disk-shaped cover member 167 that covers the stopper 162 and the compression coil spring 163 housed in the stopper housing recess 164 is attached to the side surface of the drive side clutch member 142. The urging force of the clutch spring 144 acts on the cover member 167.
  • the shift restriction mechanism 161 is configured as described above.
  • the sliding engagement clutch 141 is in a power transmission state.
  • the stopper 162 urged in the inner diameter direction by the compression coil spring 163 is engaged with the annular groove 165 of the intermediate shaft 123.
  • the drive motor 115 is started, the movement of the drive side clutch member 142 in the long axis direction is restricted by the stopper 162 that engages with the annular groove 165 of the intermediate shaft 123, and the drive side clutch member 142.
  • the malfunctioning of the sliding mesh clutch 141 at the time of starting the motor can be prevented.
  • the stopper 162 is moved outward against the urging force of the compression coil spring 163 by the centrifugal force acting on the stopper 162 rotating together with the drive side clutch member 142. It moves and escapes from the annular groove 165 (see FIG. 5). As a result, the movement restriction by the stopper 162 of the drive side clutch member 142 is released, and switching from the power transmission state to the power cut-off state according to the load applied to the blade 113 of the drive side clutch member 142 is allowed.
  • the speed change mechanism 117 is shifted by the inertia of the blade 113 when the drive motor 115 is started.
  • a malfunction such as switching from the first power transmission path P1 to the second power transmission path P2 can be prevented, and the advantage of the speed change mechanism 117 can be fully utilized.
  • a speed regulation mechanism 161 is not limited to the circular saw 101, and the mass of the tip tool is large, such as a grinder used for polishing and grinding work and a diamond core drill used for drilling a relatively large diameter. This is particularly effective for power tools.
  • the shift restriction mechanism 161 is provided on the intermediate shaft 123.
  • the annular groove 165 is formed on the intermediate shaft 123 having a torque smaller than that of the output shaft 125. Therefore, even if the shaft diameter of the groove portion is reduced, the annular shaft 165 is compared with the case where the output shaft 125 is provided with large torque. This is effective in improving durability.
  • the stopper 162 is arranged at the three equal positions in the circumferential direction. Therefore, in the state where the stopper 162 is engaged with the annular groove 165, the force in the long axis direction acting on the drive side clutch member 142 is applied. It can be received by the surface receiving structure including the rotation center of the drive side clutch member 142. For this reason, the drive side clutch member 142 is supported so as not to incline with respect to the intermediate shaft 123, and the runout can be prevented.
  • FIG. 17 shows a state where the torque limiter 154 is assembled to the output shaft 125.
  • the output shaft 125 is divided into two in the major axis direction into a base side shaft portion 125A to which the first and second driven gears 134 and 136 are attached and a tip side shaft portion 125B to which the blade 113 is attached. They are connected by a torque limiter 154 interposed in the divided part.
  • the base-side shaft portion 125A and the distal-end-side shaft portion 125B of the output shaft 125 are arranged coaxially via a circular protrusion and a circular recess that are fitted in a loosely fitting manner, and have flanges 125Aa and 125Ba that face each other. I have.
  • the torque limiter 154 exerts an urging force in a direction in which the friction plate 155 sandwiched between the flange portion 125Aa of the base side shaft portion 125A and the flange portion 125Ba of the distal end side shaft portion 125B and the flange portions 125Aa and 125Ba are pressed against each other.
  • a maximum transmission torque is determined by the plate spring 156.
  • the transmission mechanism 117 includes a mode switching mechanism 181 that switches (selects) the transmission mode.
  • the mode switching mechanism 181 corresponds to the “mode switching mechanism” in the present invention.
  • the mode switching mechanism 181 is an automatic transmission mode in which the torque transmission path is automatically switched from the first power transmission path P1 to the second power transmission path P2 according to the load acting on the blade 113, and the torque transmission path is the first. It is configured to be switchable between a high speed mode fixed (limited) to the first power transmission path P1 and a low speed mode fixed (limited) to the second power transmission path P2.
  • FIG. FIG. 18 is an external view of the mode switching mechanism 181, and FIGS. 19 to 21 are developed sectional views.
  • the gear housing 107 has a substantially cylindrical inner housing 107A, and the above-described speed change mechanism 117 is accommodated in the inner housing 107A (see FIGS. 2 and 3).
  • the inner housing 107A has a major axis direction defined in parallel with the major axis direction of the intermediate shaft 123 in the speed change mechanism 117, and thus the major axis direction of the sliding engagement clutch 141.
  • the inner housing 107A has a mode switching mechanism 181. Is installed.
  • the mode switching mechanism 181 is substantially a mode in which the sliding engagement clutch 141 is automatically switched between a power transmission state and a power cut-off state according to a load acting on the blade 113, that is, an automatic transmission mode.
  • the power transmission state is fixed regardless of the size of the load, that is, the high speed mode, and the mode of fixing the power cutoff state regardless of the size of the load, that is, the low speed mode can be switched.
  • the mode switching mechanism 181 includes a mode switching sleeve 182 attached to the outer peripheral surface of the inner housing 107A so as to be rotatable in the circumferential direction, and a plurality (two in this embodiment) of rods attached to the mode switching sleeve 182.
  • the actuating body 183 is mainly used.
  • a single (or plural) guide groove 107b is formed on the outer peripheral surface of the inner housing 107A.
  • the mode switching sleeve 182 has a protrusion 182a on its inner peripheral surface, and the protrusion 182a is engaged with the guide groove 107b of the inner housing 107A, and the movement in the long axis direction is restricted with respect to the inner housing 107A. It can be rotated around the long axis. Although the mode switching sleeve 182 can be rotated by an operator, the rotation operation is not shown for the sake of convenience.
  • the mode switching sleeve 182 is opened through an opening formed in the gear housing 107. It is configured in such a manner that it is operated directly with a finger or a mode switching handle provided integrally with the mode switching sleeve 182 is exposed to the outside through the opening of the gear housing 107 and operated through this mode switching handle. Is possible.
  • the mode switching sleeve 182 has a number (two) of helical pores (lead grooves) 182b corresponding to the operating body 183 formed on the same circumference with a predetermined length in the circumferential direction.
  • one end (base end) of the long axis direction of the operating body 183 is slidably engaged with each of the pores 182b.
  • the operating body 183 extends in the radial direction toward the center of the intermediate shaft 123 in the inner housing 107A through a slit 107c formed in the inner housing 107A extending in the long axis direction.
  • the actuating body 183 is allowed to move in the long axis direction along the slit 107c in a state where movement in the circumferential direction is restricted by the slit 107c. Therefore, when the mode switching sleeve 182 is rotated to one side or the other side, the operating body 183 slidably engaged with the fine hole 182b is moved in the long axis direction along the slit 107c of the inner housing 107A.
  • the operating state of the meshing clutch 141 is switched using the movement (displacement) of the operating body 183 in the long axis direction.
  • the rotation end position when the mode switching sleeve 182 is rotated in the LO direction in FIG. 18 is defined as the low speed mode position
  • the rotation end position when the mode switching sleeve 182 is rotated in the HI direction is defined as the high speed mode position.
  • the intermediate position between the two positions is determined as the automatic transmission mode position.
  • the tip of the actuating body 183 is inserted between the side surface of the spring receiving ring 184 that receives one end of the clutch spring 144 and the side surface of the cover member 167 fixed to the driving side clutch member 142.
  • a cylindrical portion 184 a protruding in the long axis direction is formed at the center of the spring receiving ring 184.
  • the cylindrical portion 184a of the spring receiving ring 184 is fitted loosely on the outer periphery of the cylindrical portion 167a formed at the center portion of the cover member 167 so as to be capable of relative movement in the major axis direction, and its end surface is covered. It is in contact with the side surface of the member 167.
  • the urging force of the clutch spring 144 acts on the side surface of the drive side clutch member 142 via the cover member 167.
  • the side surface of the spring receiving ring 184 and the side surface of the cover member 167 are opposed to each other with a predetermined interval, and the tip of the operating body 183 is inserted therebetween.
  • the mode switching mechanism 181 is configured as described above. Therefore, when the mode switching sleeve 182 is placed at the automatic transmission mode position, for example, the tip of the operating body 183 is moved to the side surface side of the spring receiving ring 184 and is separated from the side surface of the cover member 167. At this time, the distance in the long axis direction between the front end of the operating body 183 and the side surface of the cover member 167 is a length that can disengage the meshing engagement between the driving side clutch member 142 and the driven side clutch member 143, that is, driving. The length is set to allow the angle cam 142 a of the side clutch member 142 to be separated from the angle cam 143 a of the driven clutch member 143. This state is shown in FIGS.
  • the sliding mesh clutch 141 can be operated normally. For this reason, when the workpiece is processed by the circular saw 101, the switching of the power transmission path according to the load applied to the blade 113 is automatically performed.
  • the tip of the operating body 183 pushes the side surface of the spring receiving ring 184 and separates the spring receiving ring 184 from the side surface of the cover member 167.
  • the distance between the end surface of the cylindrical portion 184a of the spring receiving ring 184 and the side surface of the cover member 167 is set to a length that can release the meshing engagement between the driving side clutch member 142 and the driven side clutch member 143.
  • the urging force of the clutch spring 144 against the drive side clutch member 142 does not act. This state is shown in FIG.
  • the blade 113 is driven at a high speed and a low torque according to the thickness (cutting depth), hardness, etc. of the workpiece with respect to the speed change mechanism 117. It is possible to select the high-speed mode, the low-speed mode driven by low-speed high-torque, or the automatic transmission mode that automatically switches the transmission path between high-speed low-torque and low-speed high-torque, and it can be used properly according to the purpose Become. For this reason, convenience is improved.
  • FIG. 22 is an external view showing the mode switching mechanism 181 and the shift torque adjusting mechanism 191
  • FIG. 23 is a developed sectional view.
  • a shift torque adjusting mechanism that allows an operator to arbitrarily adjust a shift setting value (shift torque value) for switching from the first power transmission path P1 to the second power transmission path P2.
  • the other components are the same as those in the first embodiment described above. Accordingly, the components shown in FIGS. 22 and 23 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the shift torque adjusting mechanism 191 is provided together with the mode switching mechanism 181 described above, and thus functions when the automatic transmission mode is selected by the mode switching mechanism 181.
  • the shift torque adjusting mechanism 191 corresponds to the “switching set value adjusting mechanism” in the present invention.
  • the transmission torque adjusting mechanism 191 is substantially configured to adjust the urging force of the spring that determines the switching setting value of the sliding mesh clutch 141.
  • a sub-clutch spring 195 is further provided, and the urging force of the sub-clutch spring 195 can be adjusted.
  • the shift torque adjusting mechanism 191 is mainly configured by a shift torque adjusting sleeve 192 and a bias receiving force adjusting spring receiving member 193 attached to the shift torque adjusting sleeve 192.
  • the spring receiving member 193 includes a spring receiving disk portion 193a that receives one end of the sub-clutch spring 195, and a plurality of (two in this embodiment) arm portions extending from the spring receiving disk portion 193a in the outer diameter direction. 193b.
  • the end portion of the arm portion 193b passes through the slit 107e formed in the inner housing 107A extending in the long axis direction, and the spiral shape formed in the speed change torque adjusting sleeve 192.
  • the biasing force of the sub-clutch spring 195 is adjusted by using the movement (displacement) of the spring receiving member 193 in the major axis direction.
  • the sub clutch spring 195 is interposed between the spring receiving disk portion 193a of the spring receiving member 193 and the spring receiving ring 184, and moves the driving side clutch member 142 to the power transmission position via the spring receiving ring 184. It is energized in the direction to make it.
  • the rotational operation of the transmission torque adjusting sleeve 192 is configured to be operated in the same manner as the mode switching sleeve 182.
  • the shift torque adjusting mechanism 191 is configured as described above. Accordingly, when the shift torque adjusting sleeve 192 is rotated in the direction D in FIG. 22 in a state where the automatic transmission mode is selected by the mode switching mechanism 181, the spring receiving member 193 moves in a direction away from the spring receiving ring 184. In addition, the biasing force of the sub clutch spring 194 is weakened. On the other hand, when the transmission torque adjusting sleeve 192 is rotated in the direction E in FIG. 22, the spring receiving member 193 moves in a direction approaching the spring receiving ring 184, and the urging force of the sub clutch spring 194 becomes stronger.
  • the transmission torque adjusting mechanism 191 As described above, according to the transmission torque adjusting mechanism 191 according to the present embodiment, the second power transmission from the first power transmission path P1 by adjusting the urging force of the sub clutch spring 194 of the sliding mesh clutch 141.
  • the operator can arbitrarily adjust the switching setting value of the shift to be switched to the path P2.
  • the shift torque adjusting sleeve 192 is adjusted by a screw type using the spiral groove 107d, the shift switching set value is adjusted steplessly and fine adjustment is possible.
  • the sliding engagement clutch 141 is provided on the intermediate shaft 123, but this can be provided on the output shaft 125.
  • FIGS. 25. 24 and 25 are developed cross-sectional views showing the configuration of the speed change mechanism 117. However, in FIGS. 24 and 25, the mode switching mechanism 181 and the shift torque adjusting mechanism 191 are not shown for convenience.
  • the sliding engagement clutch 141 is mounted on the output shaft 125.
  • the second intermediate gear 133 arranged on the intermediate shaft 123 is fixed to the intermediate shaft 123 by the key 139, and the first intermediate gear 133 is always engaged with and engaged with the second intermediate gear 133.
  • the driven gear 134 is rotatably supported on the output shaft 125 via a bearing 138.
  • the sliding engagement clutch 141 is composed mainly of the driving side clutch member 142, the driven side clutch member 143, and the clutch spring 144 as in the case of the first embodiment described above.
  • the power transmission direction is reversed from the case of the first embodiment configured to be disposed on the intermediate shaft 123. That is, the clutch member 143 that rotates together with the first driven gear 134 is the drive side, and the clutch member 142 that rotates together with the output shaft 125 via the torque ring 152 is the driven side.
  • the clutch spring 144 is interposed between the driven-side clutch member 142 and the second driven gear 136 to which the one-way clutch 145 is assembled, and biases the driven-side clutch member 142 in the direction in which the driven-side clutch member 142 approaches the driving-side clutch member 143. is doing.
  • the torque of the drive motor 115 is such that the pinion gear 131 of the input shaft 121, the first intermediate gear 132, the intermediate shaft 123, the second intermediate gear 133, the first driven gear 134, the sliding gear.
  • the power is transmitted to the blade 113 via the first power transmission path P1 constituted by the dynamic meshing clutch 141 and the output shaft 125, and the blade 113 is driven to rotate at high speed and low torque. This state is shown in FIG.
  • the driven clutch member 142 moves from the power transmission position against the urging force of the clutch spring 144 and the sub-clutch spring. It is moved to the power shut-off position. As a result, the angle cam 142a of the driven clutch member 142 is separated from the angle cam 143a of the drive side clutch member 143, and the meshing engagement is released. Then, the torque of the drive motor 115 is constituted by the pinion gear 131, the first intermediate gear 132, the intermediate shaft 123, the third intermediate gear 135, the second driven gear 136, the one-way clutch 145, and the output shaft 125 of the input shaft 121. The power is transmitted to the blade 113 via the second power transmission path P2, and the blade 113 is driven to rotate at low speed and high torque. This state is shown in FIG.
  • the state where the meshing engagement of each gear in the gear train constituting the transmission mechanism 117 is maintained that is, the position of each gear is fixed.
  • the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
  • the specific setting of the switching between the first power transmission path P1 and the second power transmission path P2 in the transmission mechanism 117 having the above configuration will be described in detail below.
  • at least the first setting mode and the second setting mode can be formed by appropriately selecting a gear combination.
  • the first setting mode is defined as a setting mode (high speed-low torque mode) in which the torque of the blade 113 is relatively low and the rotational speed is relatively high.
  • the second setting mode is defined as a setting mode (low speed-high torque mode) in which the torque of the blade 113 is relatively high and the rotational speed is relatively low.
  • FIGS. 26 to 28 are referred to.
  • FIG. 26 shows a correlation graph between the torque [N ⁇ m] and the rotation speed [min ⁇ 1 ] related to the rotation of the blade 113 of the drive motor 115 of the present embodiment
  • FIG. 26 shows a correlation graph between the torque [N ⁇ m] and the rotation speed [min ⁇ 1 ] related to the rotation of the blade 113 of the drive motor 115 of the present embodiment
  • FIG. 28 shows the blade 113 of the drive motor 115 of the present embodiment.
  • a correlation graph between the torque [N ⁇ m] and the efficiency [%] related to the rotation of is shown.
  • a first rotational speed characteristic line S1 is formed in a torque region below the intermediate torque TM.
  • the second rotational speed characteristic straight line in the torque region exceeding the intermediate torque TM. S2 is formed.
  • the second rotational speed characteristic line S2 is formed continuously from the first rotational speed characteristic line S1.
  • the characteristic straight line related to the rotational speed is switched between a light load (also referred to as “low load”) and a heavy load (also referred to as “high load”) with the intermediate torque TM as a boundary.
  • a rotation speed setting it is possible to obtain a high rotation state as compared with the case where only one of the rotation speed characteristic lines is used, and in particular, it is possible to increase the rotation speed at a light load.
  • the first setting mode regarding the output characteristics of the blade 113 in the normal use torque range ⁇ T between the minimum torque TL and the maximum torque TH, between the minimum torque TL and the maximum torque TH.
  • the first output characteristic curve C1 having a substantially mountain shape having one peak in the case of FIG. 27, an output between the minimum torque TL and the intermediate torque TM is formed in a torque region below the intermediate torque TM.
  • the second setting mode regarding the output characteristics of the blade 113 in the normal use torque range ⁇ T between the minimum torque TL and the maximum torque TH, there is one peak in the torque region exceeding the intermediate torque TM (in the case of FIG. 27). , And an output corresponding to the maximum torque TH).
  • the second output characteristic curve C2 is formed continuously from the first output characteristic curve C1. That is, in the present embodiment, the characteristic curve relating to the output is set to be switched between the light load and the heavy load with the intermediate torque TM as a boundary.
  • the minimum torque TL is defined based on the minimum cutting depth of the workpiece by the blade 113
  • the maximum torque TH is defined based on the maximum cutting depth of the workpiece by the blade 113.
  • the intermediate torque TM can be defined as a predetermined value or a predetermined numerical range by setting the urging force of the clutch spring 144. In such an output setting, a high output state can be stably obtained as compared with the case where only one of the output characteristic curves is used.
  • the torque may be defined not only based on the depth of cut of the workpiece, but also based on the type of the workpiece, how to cut the workpiece (right angle cut, inclined cut, etc.), and the like.
  • the efficiency characteristic of the blade 113 in the normal use torque range ⁇ T between the minimum torque TL and the maximum torque TH is between the minimum torque TL and the maximum torque TH.
  • the first efficiency characteristic curve C3 having a substantially mountain shape having one peak (in the case of FIG. 28, the efficiency between the minimum torque TL and the intermediate torque TM) is formed in the torque region below the intermediate torque TM.
  • the efficiency characteristic of the blade 113 in the normal use torque range ⁇ T between the minimum torque TL and the maximum torque TH one peak (in the case of FIG. 28) in the torque region exceeding the intermediate torque TM. , An efficiency between the intermediate torque TM and the maximum torque TH) is formed.
  • the second efficiency characteristic curve C4 is formed continuously from the first efficiency characteristic curve C3. That is, in the present embodiment, the characteristic curve relating to efficiency is set to be switched between a light load and a heavy load with the intermediate torque TM as a boundary. In such an efficiency setting, a high efficiency state can be stably obtained as compared with the case where only one of the efficiency characteristic curves is used. Especially in the second setting mode under heavy load, it can be set to a gear ratio that generates a large torque, so that it is possible to prevent locking when using a large blade with heavy load. Can be installed.
  • At least two setting modes are provided according to the load torque applied to the output shaft 125, so as to cope with fluctuations in the load torque generated during the cutting operation. It is possible to smoothly perform the cutting operation, and therefore it is possible to improve the smoothness of the cutting operation. Further, when compared with the speed change mechanism set to only one of the two setting modes, the output and the efficiency can be stabilized at a high level.
  • the setting mode the rotation speed of the blade 113 can be increased, while in the second setting mode under heavy load, it can be set to a gear ratio that generates a large torque, and a large-diameter blade is mounted. It becomes possible. Thereby, the maximum cutting ability can be improved.
  • another setting mode may be set in addition to the first setting mode and the second setting mode of the present embodiment.
  • an approximately chevron-shaped output characteristic curve having at least one peak is formed as necessary, and an approximately chevron-shaped efficiency characteristic having at least one peak. It is possible to set so that a curve is formed.
  • the first torque corresponding to the peak of the first output characteristic curve C1 in the first setting mode and the peak of the second output characteristic curve C2 in the second setting mode is preferable to adopt a setting in which the ratio of the second torque to the first torque is 1.5 to 2.5.
  • the first torque corresponding to the peak of the first efficiency characteristic curve C3 in the first setting mode and the second torque corresponding to the peak of the second efficiency characteristic curve C4 in the second setting mode It is preferable to adopt a setting in which the ratio of the second torque to the first torque is 1.5 to 2.5.
  • the first gear is related to the first gear ratio of the first driven gear 134 to the second intermediate gear 133 and the second gear ratio of the second driven gear 136 to the third intermediate gear 135. It is preferable to adopt a setting in which the ratio of the second gear ratio to the ratio is 1.5 to 2.5. According to such settings regarding the torque and the gear ratio, it is possible to configure a transmission mechanism that is practically highly smooth in shifting operation.
  • the switching between the first setting mode and the second setting mode is performed by a mechanical detection mechanism using the clutch spring 144 as in the above-described embodiment, or by an electric sensor or the like that detects torque continuously or intermittently. It may be an automatic type that is automatically performed based on actual detection information by a typical detection mechanism, or may be a manual type that is performed by manual operation of an operation member by an operator.
  • the second setting mode is held via the latch mechanism 151 . However, when the latch mechanism 151 is omitted, the second setting mode is changed when the detected torque exceeds the intermediate torque. While the setting mode is switched from the first setting mode to the second setting mode, the second setting mode is switched to the first setting mode when the detected torque falls below the intermediate torque.
  • the transmission mechanism 117 may be a two-axis type constituted by two parallel axes of an input shaft and an output shaft.
  • the one-way clutch 145 is also provided on the intermediate shaft 123 side.
  • the transmission mechanism 117 of the present embodiment the case where the gear is always meshed is described.
  • the present invention is applied to a transmission mechanism of a type in which the meshing engagement of the gear is temporarily released as necessary. It is also possible to do.
  • At least one of the latch mechanism 151, the shift restricting mechanism (switching restricting mechanism) 161, and the shift torque adjusting mechanism (switching set value adjusting mechanism) 191 according to the present embodiment is omitted as appropriate.
  • a clutch other than the sliding engagement clutch 141 of the present embodiment for example, an electromagnetic clutch or the like may be employed.
  • a circular saw that uses an AC power supply instead of a battery, or a hand-held type as shown in the figure, or a tabletop circle that performs cutting work by placing the workpiece on a table installed on the base It can be applied to saws and tabletop slide circular saws, and can be applied to any of woodworking, metalworking, ceramics and plastics.
  • a saw blade, a saw blade, a cutting grindstone, a diamond wheel, or the like can be used as the saw blade.
  • FIG. 4 is a developed cross-sectional view of a parallel three-axis transmission mechanism, showing a state where the power transmission path is switched to the high speed and low torque side.
  • FIG. 4 is a developed cross-sectional view of a parallel three-axis transmission mechanism, showing a state where the power transmission path is switched to the low speed and high torque side. It is an external view of a sliding mesh clutch.
  • FIG. 7 is a sectional view taken along line AA in FIG. 6.
  • FIG. 7 is a sectional view taken along line BB in FIG. 6. It is the perspective view which looked at the drive side clutch member from the clutch spring mounting side. It is a perspective view which shows a stopper. It is a side view which shows each member provided in the output shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sawing (AREA)

Abstract

【課題】 被加工材の切断作業を行なう丸鋸において、鋸刃の切断速度を円滑に制御可能とすることで切断作業の円滑化向上に資する技術を提供する。 【解決手段】 本発明にかかる丸鋸101の変速機構117は、互いに平行に配置された第1及び第2の回転軸と、互いに噛合い係合されるとともに第1の回転軸のトルクを第2の回転軸に伝達する駆動ギアと被動ギアの組み合わせを1単位とし、かつ互いにギア比が異なる第1及び第2のギア列を有し、第1のギア列を経由するトルクの伝達経路が第1の動力伝達経路として定められ、第2のギア列を経由するトルクの伝達経路が第2の動力伝達経路として定められるとともに、第1の動力伝達経路と第2の動力伝達経路との間で伝達経路の切替えがなされる構成とされる。

Description

丸鋸
 本発明は、被加工材の切断作業を行なう丸鋸の構築技術に関する。
 被加工材の切断作業を行なう丸鋸は、例えば、特願平01-99714号公報(特許文献1)に開示されている。この特許文献1に記載の丸鋸は、被加工材の切断面積等に応じて鋸刃の切断速度を変化させる可能性を有するが、被加工材の切断作業を行なうこの種の丸鋸の設計に際しては、実際の切断作業に応じて鋸刃の切断速度を円滑に制御可能とし、以って切断作業の円滑化向上を図る技術が要請される。
特願平01-99714号公報
 本発明は、かかる点に鑑みてなされたものであり、被加工材の切断作業を行なう丸鋸において、鋸刃の切断速度を円滑に制御可能とすることで切断作業の円滑化向上に資する技術を提供することを目的とする。
 上記課題を達成するため、本発明に係る丸鋸は、動力源と、被加工材を切断するべく回転駆動される鋸刃と、動力源と鋸刃との間に介在して鋸刃の回転速度を可変とする変速機構を少なくとも備える。ここでいう「丸鋸」としては、回転運動する鋸刃によって被加工材の切断作業を行なう木工用、金工用、窯業用或いはプラスチック用の丸鋸を好適に用いることができ、可搬式の丸鋸或いは卓上式の丸鋸等がここでいう「丸鋸」に包含される。また、ここでいう「鋸刃」には、チップソー、ノコ刃、切断砥石、ダイヤモンドホイール等が広く包含される。また、ここでいう「動力源」として、典型的には、電動モータがこれに該当するが、電動モータ以外のエアーモータ、エンジン等の原動機が好適に包含される。
 本発明では特に変速機構が、互いに平行に配置された第1及び第2の回転軸と、互いに噛合い係合されるとともに第1の回転軸のトルクを第2の回転軸に伝達する駆動ギアと被動ギアの組み合わせを1単位とし、かつ互いにギア比の異なる第1及び第2のギア列を有する。そして、第1のギア列を経由するトルクの伝達経路が第1の動力伝達経路として定められ、第2のギア列を経由するトルクの伝達経路が第2の動力伝達経路として定められている。そして、第1の動力伝達経路と第2の動力伝達経路との間で伝達経路の切替えがなされる構成とされる。ここでいう第1及び第2の動力伝達経路は、典型的には、そのいずれか一方が高速低トルク用の動力伝達経路として設定され、他方が低速高トルク用の動力伝達経路として設定される。このような構成によれば、第1の動力伝達経路の構成要素である第1のギア列のギア比(減速比)と、第2の動力伝達経路の構成要素である第2のギア列のギア比は、互いに異なるように設定される。このため、第1の動力伝達経路と第2の動力伝達経路との間での伝達経路の切り替えによって、例えば鋸刃に作用する負荷が小さい状態では、ギア比の小さい、例えば第1の動力伝達経路を用いて高速低トルクで加工作業を行い、鋸刃に作用する負荷が大きい状態では、ギア比の大きい、第2の動力伝達経路を用いて低速高トルクで加工作業を行なうことができる。
 なお、第1の動力伝達経路と第2の動力伝達経路との間での伝達経路の切り替えは、実際のトルクの検知情報に基づいて自動で行なわれる自動式であってもよいし、或いは作業者による操作部材の手動操作によって行なわれる手動式であってもよい。
 また、本発明に係る丸鋸の好ましい形態では、第1の動力伝達経路上において動力伝達と動力遮断を行う第1のクラッチ、及び第2の動力伝達経路上において動力伝達と動力遮断を行う第2のクラッチを更に備える。そして、第1及び第2のクラッチの動力伝達状態と動力遮断状態の間での切替わりによって第1及び第2のギア列の噛合い係合状態のままで第1の動力伝達経路と第2の動力伝達経路間で伝達経路の切替えがなされる構成になっている。なお、本発明において「第1及び第2のギア列の噛み合い係合状態のままで第1の動力伝達経路と第2の動力伝達経路間で伝達経路の切替えがなされる」とは、互いに噛み合い係合するギアの位置を固定したままの状態で、第1の動力伝達経路と第2の動力伝達経路間での伝達経路の切替わりが行なわれる態様、すなわち一方のクラッチが動力伝達状態に切替わったときに、他方のクラッチが動力遮断状態に切替わり、また一方のクラッチが動力遮断状態に切替わったときに、他方のクラッチが動力伝達状態に切替わる態様を包含する。このような構成によれば、噛み合い係合するギア列の位置を固定したままで、第1の動力伝達経路と第2の動力伝達経路間で使用伝達経路を切替えることができるため、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を得ることができる。特に、従来の変速機構のように、ギアを軸に沿ってスライドさせてギアの噛み合いを切替えることで変速する構成の場合であれば、軸とギアの嵌合面のクリアランスによるがたつきがあり、摩耗を生じ易く、ギアの耐久性に問題がある。また、ギアの噛み合いを切替える際、ギアが切り離される間際、及びギアが噛み合う初期に、歯面の微小な領域でトルクを受けることから、歯の欠けあるいは摩耗といった強度上の問題が生ずることになり、更には、噛み合うときには、歯の干渉によって異音が発生するといった問題もある。しかしながら、本発明によれば、ギアを常時噛み合い式とすることで、ギアの噛み合いを切替える従来方式に見受けられる上記の各問題を解決することができる。
 また、本発明に係る丸鋸の好ましい形態では、動力源によって駆動される入力軸を有するとともに、当該入力軸がギアによる噛み合い係合によって第1の回転軸に接続される一方、第2の回転軸が鋸刃の出力軸として構成される。そして、互いに平行に配置された第1及び第2の回転軸に対し更に入力軸が平行に配置された平行3軸式とされる。すなわち、本構成では、入力軸と、鋸刃の出力軸である第2の回転軸と、これら入力軸と第2の回転軸との間に配置された中間軸としての第1の回転軸の3つの軸が互いに平行配置とされる。このような構成によれば、入力軸と第1の回転軸との間、及び第1の回転軸と第2の回転軸との間にそれぞれギアによる噛み合い係合が介在するため、第1及び第2の回転軸のみによる減速構造を用いる場合に比して、減速比の設定に関しバリエーションを持たせることが可能となる。
 また、本発明に係る丸鋸の好ましい形態では、前記の第1及び第2のクラッチの少なくとも一方は、第1または第2の回転軸上において、互いに対向状に配置された駆動側クラッチ部材と被動側クラッチ部材によって構成されるとともに、駆動側クラッチ部材及び被動側クラッチ部材のいずれか一方が、鋸刃に作用するトルクに基づき、互いに噛み合い係合して動力伝達状態とされる動力伝達位置と、噛み合い係合を解除して動力遮断状態とされる動力遮断位置との間で長軸方向にスライド動作可能な摺動式噛み合いクラッチによって構成される。このような構成によれば、鋸刃に作用するトルクに基づいて動力伝達状態と動力遮断状態とに自動的に切り替わる自動切替式のクラッチとしての摺動式噛み合いクラッチを備える丸鋸が提供される。
 また、本発明に係る丸鋸の好ましい形態では、前記の変速機構は、摺動式噛み合いクラッチが一旦動力遮断状態に切替わった後は、当該切替わった状態を保持するラッチ機構を有する構成とされる。このような構成によれば、ラッチ機構を用いることによって、切り替えトルク周辺での切り替わりが頻繁に発生するのを防止することが可能となる。
 また、本発明に係る丸鋸の好ましい形態では、前記の変速機構は、動力源の停止時において摺動式噛み合いクラッチを動力伝達状態に戻すリセット機構を有する構成とされる。このような構成によれば、動力源を停止した後の切断作業に備えることができ合理的である。
 また、本発明に係る丸鋸の好ましい形態では、前記の変速機構は、動力源の起動時において鋸刃の慣性によって摺動式噛み合いクラッチが動力伝達状態と動力遮断状態との間で切替わるのを規制する切替規制機構を更に有する構成とされる。鋸刃の質量が大きく慣性が大きい場合には、動力伝達状態から動力遮断状態に切替わり変速する誤動作の可能性があるところ、上記構成の切替規制機構を用いることによって、動力源の起動時における誤動作を防止することが可能となる。
 また、本発明に係る丸鋸の好ましい形態では、前記の変速機構は、作業者によって操作される切替設定値調節機構を更に有し、切替設定値調節機構は、摺動式噛み合いクラッチの動力伝達状態と動力遮断状態との間での伝達経路の切替わりを規定する切替設定値を調節する構成とされる。このような構成によれば、切替設定値調節機構を用いることによって切替設定値の調節を可能としたことにより、作業者の要求に応じたトルクの伝達経路の切替わりタイミングを得ることができる。
 更に本発明では、変速機構につき、第1の設定モード及び第2の設定モードを少なくとも含む構成とするのが好ましい。第1の設定モードは、最小トルクと最大トルクとの間の通常使用トルク範囲における鋸刃の出力特性ないし効率特性に関し、最小トルクと最大トルクとの間の中間トルクを下回るトルク領域にて少なくとも1つのピークを有する略山形の第1の特性曲線を形成する設定モードとされる。第2の設定モードは、最小トルクと最大トルクとの間の通常使用トルク範囲における鋸刃の出力特性ないし効率特性に関し、最小トルクと最大トルクとの間の中間トルクを上回るトルク領域にて少なくとも1つのピークを有する略山形の第2の特性曲線を形成する設定モードとされる。最小トルクは、典型的には鋸刃による被加工材の最小切り込み深さに基づいて規定されるトルクとされ、最大トルクは、典型的には鋸刃による被加工材の最大切り込み深さに基づいて規定されるトルクとされる。なお、被加工材の切り込み深さに限らず、被加工材の材種や被加工材の切り方(直角切り、傾斜切り等)などに基づいてトルクが規定されてもよい。
 第1の設定モード及び第2の設定モードを少なくとも含む変速機構を採用することによって、切断作業時に生じる負荷トルクの変動に対応して円滑に切断作業を遂行することが可能となる。2つの設定モードのうちのいずれか一方の設定モードのみに設定された変速機構と比較した場合、出力及び効率を高いレベルで安定化させることが可能となり、特に軽負荷時での第1の設定モードにおいては鋸刃の回転速度を高めることが可能となる一方、重負荷時での第2の設定モードにおいては高トルクに設定可能となる。
 なお、第1の設定モードと第2の設定モードとの切り替えは、実際のトルクの検知情報に基づいて自動で行なわれる自動式であってもよいし、或いは作業者による操作部材の手動操作によって行なわれる手動式であってもよい。
 また、本発明に係る更なる形態の丸鋸では、前記の変速機構は、第1の設定モードにおける第1の特性曲線のピークに対応する第1トルクと、第2の設定モードにおける第2の特性曲線のピークに対応する第2トルクとに関し、第1トルクに対する第2トルクの比率が1.5~2.5とされた構成であるのが好ましい。このような構成によれば、実用的に変速動作の円滑性の高い変速機構を構成することが可能となる。
 また、本発明に係る更なる形態の丸鋸では、前記の変速機構は、第1の動力伝達経路及び第2の動力伝達経路を有する。第1の動力伝達経路は、第1の設定モード時に動力源によって駆動される入力軸のトルクを鋸刃の出力軸に伝達する動力伝達経路として構成され、入力軸に接続される第1の駆動ギアと、第1の駆動ギアに噛み合い係合するとともに出力軸に接続される第1の被動ギアを含む。第2の動力伝達経路は、第2の設定モード時に動力源によって駆動される入力軸のトルクを鋸刃の出力軸に伝達する動力伝達経路として構成され、入力軸に接続される第2の駆動ギアと、第2の駆動ギアに噛み合い係合するとともに出力軸に接続される第2の被動ギアを含む。特にこの変速機構では、第1の駆動ギアに対する第1の被動ギアの第1ギア比と、第2の駆動ギアに対する第2の被動ギアの第2ギア比とに関し、第1ギア比に対する第2ギア比の比率が1.5~2.5とされた構成であるのが好ましい。このような構成によれば、実用的に変速動作の円滑性の高い変速機構を構成することが可能となる。
 また、本発明に係る更なる形態の丸鋸は、鋸刃に作用するトルクを検知する検知機構を備える構成であるのが好ましい。ここでいう「検知機構」には、バネ等による機械的な検知機構、或いはトルクを連続的或いは断続的に検出するセンサ等による電気的な検知機構などが広く包含される。この構成において、前記の変速機構は、検知機構によって検知された検知トルクに基づき、当該検知トルクが中間トルクを上回った場合に第1の設定モードから第2の設定モードへと切り替わる一方、当該検知トルクが中間トルクを下回った場合に第2の設定モードから第1の設定モードへと切り替わる構成とされる。このような構成によれば、第1の設定モードと第2の設定モードとの間の切り替えを作業負荷に応じて自動で行なうことができるため合理的である。なお、典型的には、第1の設定モードから第2の設定モードへと切り替わった状態においては、切り替えトルク周辺での切り替わりが頻繁に発生するのを防止するべく、第2の設定モードを保持する機能を設けるのが好ましい。
 以上のように、本発明によれば、被加工材の切断作業を行なう丸鋸において、鋸刃の切断速度を円滑に制御可能とすることで切断作業の円滑化向上を図ることが可能となった。
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態につき、図面を参照しつつ説明する。本実施の形態は、本発明における「丸鋸」の一例としてバッテリを搭載した充電式の丸鋸(動力工具ともいう)を用いて説明する。図1は本実施の形態に係る丸鋸101の全体構成を示す側面図であり、図2は丸鋸101の全体構成を示す側断面図であり、図3は丸鋸101の全体構成を示す正面から見た断面図である。図1~図3に示すように、本実施の形態に係る丸鋸101は、概括的に見て、被加工材(便宜上図示を省略する)上に載置されて切断方向に移動されるベース111と、当該ベース111の上方に配置される丸鋸本体部103を主体として構成される。
 丸鋸本体部103は、鉛直面内で回転される円板状のブレード(鋸刃)113の概ね上半分を覆蓋するブレードケース104、駆動モータ115を収容するモータハウジング105、変速機構117を収容するギアハウジング107、及び作業者が把持して丸鋸101を操作するハンドグリップ109を主体として構成される。ブレード113は、被加工材を切断するべく回転駆動される鋸刃であり、本発明における「鋸刃」に対応し、駆動モータ115は、本発明における「動力源」に対応する。
 ブレードケース104には、ブレード113の下半分を覆うセーフティカバー106が回動自在に付設されている。そして当該セーフティカバー106を含めたブレード113の下縁部が、ベース111に形成された開口111a(図3参照)を通して下面側に突出されている。セーフティカバー106は、被加工材を切断するべくベース111の前端部(図2において右側)を被加工材上に載置して前方(図1及び図2において右方向)へ移動させたとき、当該被加工材によって前端部を押されることで退避し、ブレードケース104内に収容される。ハンドグリップ109は、ギアハウジング107の上方に連接されるとともに、引き操作することによって駆動モータ115を通電駆動するトリガ109aを備えている。ブレード113は、駆動モータ115が通電駆動されると、変速機構117を介して回転駆動される。ここでいう変速機構117は、駆動モータ115とブレード113との間に介在してブレード113の回転速度を可変とする機構であり、本発明における「変速機構」に相当する。またハンドグリップ109の端部には、バッテリ108が着脱自在に装着される。なお、本実施の形態に係る駆動モータ115は、ブレーキ付きモータであって、また希土類モータが用いられている。また、バッテリ108としては、42ボルト以下のリチウムイオンバッテリを用いることが好ましい。
 次に変速機構117につき、図4及び図5を参照して説明する。本実施の形態に係る変速機構117は、駆動モータ115のモータ軸116に同軸で接続された入力軸121、ブレード113が取付けられる出力軸としてのブレード取付軸125、及び入力軸121とブレード取付軸125の間に配置された中間軸123が、互いに平行に配置された平行3軸式であり、ブレード113に作用する負荷の大きさに応じて自動的に動力伝達経路が高速低トルクから低速高トルクに切替わる2段切替式として構成される。ここでいう中間軸123、ブレード取付軸(出力軸)125及び入力軸121がそれぞれ、本発明における「第1の回転軸」、「第2の回転軸」及び「入力軸」に対応する。図4及び図5は平行3軸式の変速機構117の展開断面図であり、図4は動力伝達経路が高速低トルク側に切替えられた状態を示し、図5は動力伝達経路が低速高トルク側に切替えられた状態を示す。なお、以下の説明では、ブレード取付軸125を出力軸という。
 変速機構117は、入力軸121のトルクがピニオンギア131から第1中間ギア132、中間軸123、第2中間ギア133、第1被動ギア134を経て出力軸125に伝達される第1動力伝達経路P1と、入力軸121のトルクがピニオンギア131から第1中間ギア132、中間軸123、第3中間ギア135、第2被動ギア136を経て出力軸125に伝達される第2動力伝達経路P2を有する。そして、第2中間ギア133と第1被動ギア134のギア比(減速比)が第3中間ギア135と第2被動ギア136のギア比(減速比)よりも小さく設定されている。これにより、第1動力伝達経路P1が高速低トルクの動力伝達経路として定められ、第2動力伝達経路P2が低速高トルクの動力伝達経路として定められている。第1動力伝達経路P1及び第2動力伝達経路P2が矢印付き太線によって示される。ここでいう第1動力伝達経路P1が、本発明における「第1の動力伝達経路」に相当し、またここでいう第2動力伝達経路P2が、本発明における「第2の動力伝達経路」に相当する。また、ここでいう第2中間ギア133と第1被動ギア134により、本発明における「第1のギア列」が構成され、第3中間ギア135と第2被動ギア136により、本発明における「第2のギア列」が構成される。
 変速機構117における、入力軸121、中間軸123及び出力軸125は、それぞれ軸受121a,123a,125aを介してギアハウジング107に回転自在に支持される。駆動ギアとしてのピニオンギア131は、入力軸121に一体に形成されている。第1中間ギア132と第3中間ギア135は、中間軸123上の一端側(駆動モータ115側であって、図示左側)に並列に配置されるとともに、共通のキー137を介して中間軸123と一体化されており、第1中間ギア132がピニオンギア131に常時に噛み合い係合され、第3中間ギア135が出力軸125上の一端側に設けられた第2被動ギア136と常時に噛み合い係合する構成とされる。第2中間ギア133は、出力軸125上の他端側(ブレード113側であって、図示右側)に軸受138を介して相対回転可能に取付けられており、出力軸125の他端側に配置されるとともにキー139を介して当該出力軸125と一体化された第1被動ギア134と常時に噛み合い係合している。
 本実施の形態に係る丸鋸101においては、ブレード113による被加工材の切断作業時において、ブレード113に作用する負荷が小さい切断作業の初期段階では、出力軸125、すなわちブレード113を、高速低トルクの第1動力伝達経路P1によって回転駆動し、切断作業の進行に伴いブレード113に加わる負荷が一定値以上に達したときには、自動的に低速高トルクの第2動力伝達経路P2に切替わるように構成される。このような第1動力伝達経路P1から第2動力伝達経路P2への切替わりは、中間軸123上に摺動式噛み合いクラッチ141を設け、出力軸125上にはワンウェイクラッチ155を設けることで実現されている。ここでいう摺動式噛み合いクラッチ141が、本発明における「摺動式噛み合いクラッチ」に相当し、またここでいう摺動式噛み合いクラッチ141及びワンウェイクラッチ155によって、本発明における「第1及び第2のクラッチ」が構成される。なお、第1動力伝達経路P1から第2動力伝達経路P2への切替わりの具体的な設定に関しては、図26~図28を参照しつつ後述する。
 摺動式噛み合いクラッチ141の構成が図4及び図5の他、図6~図10に示される。図6は摺動式噛み合いクラッチ141の外観図であり、図7は図6のA-A線断面図である。また図8は駆動側クラッチ部材142を示し、図9は被動側クラッチ部材143を示し、図10はトルクリング152を示している。摺動式噛み合いクラッチ141は、図6に示すように、中間軸123の長軸方向において、互いに対向状に配置された駆動側クラッチ部材142及び被動側クラッチ部材143と、駆動側クラッチ部材142を被動側クラッチ部材143に向けて押圧付勢するクラッチバネ144を主体として構成される。駆動側クラッチ部材142と被動側クラッチ部材143は、図8及び図9に示すように、互いに対向する側面にそれぞれ周方向に複数(例えば3個)の略台形状の山形カム141a,143aを有し、それら山形カム141a,143aが互いに噛み合い係合することによってトルクを伝達し(図4及び図6参照)、噛み合い係合が解除することでトルク伝達が遮断される構成とされる(図5参照)。
 駆動側クラッチ部材142は、中間軸123に遊嵌状に嵌合されている。すなわち、中間軸123に対し周方向及び長軸方向に摺動自在に取付けられており、当該中間軸123に圧入固定されたトルク伝達部材としてのトルクリング152を介して回転駆動される構成とされる。トルクリング152は、図10に示すように、周方向等分位置に外径方向に突出する複数(3個)のトルク伝達部としての突部152aを備えている。駆動側クラッチ部材142の山形カム142aが形成されている方の側面には、トルクリング152の外形形状に概ね対応する形状の収容空間153が形成されており、当該収容空間153にトルクリング152が周方向への相対移動不能に収容されている。従って、中間軸123と共にトルクリング152が回転されると、駆動側クラッチ部材142は、収容空間153における当該トルクリング152の突部152aと係合する係合凹部153a(図8参照)の径方向の壁面、すなわちトルク伝達面153bを周方向に押圧されることで一体状に回転する。一方、被動側クラッチ部材143は、第2中間ギア133に一体化されている。
 駆動側クラッチ部材142は、弾性部材としての圧縮コイルバネからなるクラッチバネ144によって、山形カム142aが被動側クラッチ部材143の山形カム143aに噛み合い係合して動力伝達状態とされる位置、すなわち動力伝達位置へと付勢されている。なお、クラッチバネ144は、駆動側クラッチ部材142と第1中間ギア132の間に弾発状に配置されている。
 第1動力伝達経路P1によってブレード113が回転駆動されている状態において、当該ブレード113にクラッチバネ144の付勢力を超える一定値以上の負荷が作用すると、山形カム142a,143aの斜面に作用する長軸方向成分の力で駆動側クラッチ部材142が被動側クラッチ部材143から離間する方向へと移動(後退動作)される。すなわち、駆動側クラッチ部材142は、動力解除位置へと移動され、山形カム142a,143aの噛み合い係合が解除されて動力遮断状態とされる。図11(A)には摺動式噛み合いクラッチ141が動力伝達状態から動力遮断状態に変化する態様が示される。そして、摺動式噛み合いクラッチ141が動力遮断状態に切替わると、ワンウェイクラッチ145が作動し、動力伝達経路が高速低トルクの第1動力伝達経路P1から低速高トルクの第2動力伝達経路P2へと切り替えられる。
 次にワンウェイクラッチ145につき説明する。ワンウェイクラッチ145の構成が図15及び図16に示される。図15は出力軸125に設けられた各部材を示す側面図であり、図16は図15におけるC-C線断面図である。ワンウェイクラッチ145は、第2被動ギア136と共に回転する外輪146と、外輪146と出力軸125の間に介在される複数の針状ころ147及びバネ148を主体として構成されている。針状ころ147は、外輪146の周方向に所定間隔で形成されたカム溝146a内に転動可能に配置され、バネ148によってカム面146bの噛み合い位置に向かって付勢されている。
 従って、第1被動ギア134と共に外輪146が出力軸125に対して図16において右回りに回転されると、バネ148の付勢力によって針状ころ147がカム面146bと出力軸125との間に噛み込み、楔作用によって出力軸125を駆動する。この状態が図16に示される。一方、出力軸125が外輪146よりも高速で回転するときには、外輪146が出力軸125に対し相対的に図示左回りに回転することになる。このため、針状ころ147は、カム面146bから離れ、外輪146が出力軸125に対し空転する。つまり、摺動式噛み合いクラッチ141が動力伝達状態にあるときは、外輪146が出力軸125に対し相対的に図示左回りに回転されるため、ワンウェイクラッチ145は、空転し、動力伝達をしない。
 上記のように構成された変速機構117によれば、駆動モータ115の停止状態では、摺動式噛み合いクラッチ141は、クラッチバネ144の付勢力で駆動側クラッチ部材142が被動側クラッチ部材143と接近する側へと移動されている。すなわち、両クラッチ部材142,143の山形カム142a,123aが互いに噛み合い係合する動力伝達状態に保持されている。かかる状態で、被加工材の切断作業を行なうべく駆動モータ115が通電駆動されると、駆動モータ115のトルクは、第1動力伝達経路P1を経て出力軸125に伝達される。すなわち、ピニオンギア131、第1中間ギア132、中間軸123、摺動式噛み合いクラッチ141、第2中間ギア133、第1被動ギア134及び出力軸125を経てブレード113が高速低トルクで回転駆動される。
 このとき、中間軸123から第3中間ギア135及び第2被動ギア136を経てワンウェイクラッチ145の外輪146も回転されるが、前述したように、外輪146の回転速度よりも出力軸125の回転速度が高速であるため、外輪146は空転する。
 上記のように、ブレード113による被加工材の切断作業は、第1動力伝達経路P1を使用しての高速低トルクで開始する。そして、切断作業が進行し、ブレード113に作用する負荷が摺動式噛み合いクラッチ141のクラッチバネ144にて設定される切替設定値を超えると、当該摺動式噛み合いクラッチ141が動力遮断状態に切替わる。すなわち、図11の(A)に示すように、駆動側クラッチ部材142に対し山形カム142a,143aのカム面(斜面)を経て作用する長軸方向成分で駆動側クラッチ部材142がクラッチバネ144の付勢力に抗して被動側クラッチ部材143から離間され、山形カム142a,143aの噛み合い係合が解除される。かくして、摺動式噛み合いクラッチ141が動力遮断状態に切替わり、出力軸125の回転速度がワンウェイクラッチ145の外輪146の回転速度を下回ると、バネ148の付勢力によって針状ころ147がカム面146bと出力軸125との間に噛み込み、楔作用によって出力軸125を駆動する。これにより駆動モータ115のトルクの伝達経路が第1動力伝達経路P1から第2動力伝達経路P2に切替わり、ブレード113は、ピニオンギア131と第1中間ギア13のギア比、及び第3中間ギア135と第2被動ギア136とのギア比で定められた低速高トルクで回転駆動される。
 上記のように、本実施の形態によれば、ブレード113に作用する負荷が小さい状態では、減速比の小さい第1動力伝達経路P1を使用して高速低トルクで被加工材の切断作業を遂行し、一方、ブレード113に大きな負荷が加わる状態では、ギア比の大きい第2動力伝達経路P2を使用して低速高トルクで切断作業を行なうことができる。
 このように、ブレード113に作用する負荷に応じてトルクの伝達経路が高速低トルクの第1動力伝達経路P1から低速高トルクの第2動力伝達経路P2に自動的に切替わる構成としたことにより、変速機構を有しない丸鋸に比べて、駆動モータ115の焼損防止が図れるとともに、バッテリ108の1充電当たりの切断作業量を向上することができる。
 特に、本実施の形態においては、変速機構117を構成するギア列における各ギアの噛み合い係合を保持した状態、すなわち各ギアの位置を固定した状態で、第1動力伝達経路P1から第2動力伝達経路P2に切替えることができるため、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を向上することができる。
 また、本実施の形態によれば、中間軸123上に摺動式噛み合いクラッチ141を設ける一方、出力軸125上にワンウェイクラッチ145を設けているため、摺動式噛み合いクラッチ141の動作をコントロールすることのみで第1動力伝達経路P1から第2動力伝達経路P2への使用伝達経路の切替えが実現されることになり、合理的な変速機構117を構築することができる。
 また、本実施の形態では、摺動式噛み合いクラッチ141を出力軸125よりも高速低トルクで回転する中間軸123上に設けたので、摺動式噛み合いクラッチ141に作用する負荷を小さくできる。このため、クラッチの保護あるいは耐久性を向上する上で有効となる。また、ギアハウジング107に対する各軸の配置から見て、中間軸123はギアハウジング107の中央寄りに配置される。このため、ワンウェイクラッチ145に比べて径方向に大型の摺動式噛み合いクラッチ141を中間軸123上に配置することで、ギアハウジング107の大型化を抑えることが可能になる。
 ところで、丸鋸101の最大切り込み深さ(ベース111下面からのブレード111の下縁部の突出量)は、図2において、作業者が、ハンドグリップ109を下向きに押し下げて丸鋸本体部103を、ベース111の前端部に設定された回動軸(便宜上図示を省略する)を回動支点にして回動させたとき、便宜上図示を省略するが、ギアハウジング107に設けられた最大切り込み深さの規制部がベース111のストッパに当接することで規定される。従って、例えば外径の大きい摺動式噛み合いクラッチ141を出力軸125に設けたときは、出力軸125の中心からギアハウジング107の下端面107Lまでの距離が大きくなってしまい、最大切り込み能力に影響する。つまり最大切り込み能力が低下することになるが、本実施の形態によれば、中間軸123に摺動式噛み合いクラッチ141を設ける構成としたことにより、出力軸125からギアハウジング107の下端面107Lまでの距離を小さく設定することが可能なため、最大切り込み能力に影響しない。
 一方、ワンウェイクラッチ145は、出力軸125上に設けている。減速側である出力軸125上の第2被動ギア136は、中間軸123上の第3中間ギア135よりも大径に設定される。このことから、ワンウェイクラッチ145を出力軸125と第2被動ギア136の間に設ける構成とすることで、ワンウェイクラッチ145の配置スペースが確保し易く、ワンウェイクラッチ145を容易に組み込むことが可能になる。
 ところで、ブレード113に加わる負荷に応じて自動的に摺動式噛み合いクラッチ141の切替えを行なう構成の場合、ブレード113に加わる負荷がクラッチバネ144にて設定される切替設定値の周辺で変動した場合、摺動式噛み合いクラッチ141が頻繁に切替わることになる。そこで、かかる課題を解決するべく、本実施形態に係る変速機構117は、摺動式噛み合いクラッチ141が一旦動力遮断状態に切替わった後は、当該切替わった状態に保持するラッチ機構、及び切断作業の停止後(駆動モータ115の停止時)には、初期状態すなわち動力伝達状態に戻すリセット機構を有している。
 以下、ラッチ機構151につき、主に図7、図8、及び図10、図11を参照して説明する。ラッチ機構151は、摺動式噛み合いクラッチ141における駆動側クラッチ部材142が動力遮断位置へ移動した際に、当該駆動側クラッチ部材142を動力遮断位置、詳しくは駆動側クラッチ部材142の山形カム142aが被動側クラッチ部材143の山形カム143aから引き離された位置(隙間を置いて対向する位置)に保持する機構として備えられる。ラッチ機構151は、前述のトルクリング152を主体として構成されている。ここでいうラッチ機構が、本発明における「ラッチ機構」に相当する。
 トルクリング152を収容するべく形成された駆動側クラッチ部材142の収容空間153において、トルクリング152の突部152aが係合する係合凹部153aの回転方向前方領域には、前方に向かって上り勾配で傾斜する斜面153cが形成されている。そして、トルクリング152は、駆動側クラッチ部材142が動力伝達位置から動力遮断位置側へと移動して動力遮断状態とされる際、収容空間153から脱出して突部152aが斜面153c上に乗り上げ、これにより駆動側クラッチ部材142の山形カム142aを被動側クラッチ部材143の山形カム143aから引き離すように構成されている。このときの動作態様が図11に示される。図11における(A)がクラッチの動作を示し、(B)がラッチ部材としてのトルクリング152の動作を示している。なお、トルクリング152の突部152aの斜面153cへの乗り上げを円滑化するべく、突部152aの斜面153cとの対向面は、斜面あるいは円弧状の曲面で形成されている。
 図11の最上段に示すように、駆動側クラッチ部材142が動力伝達位置に置かれた山形カム142a,143aの噛み合い係合状態では、前述のようにトルクリング152の突部152aが係合凹部153aのトルク伝達面153bと係合し、トルク伝達状態に保持されている。かかる状態において、クラッチバネ144にて設定された一定値以上の負荷がブレード113に作用し、駆動側クラッチ部材142が動力遮断位置に向かって後退動作すると、中間軸123に固定されているトルクリング152が駆動側クラッチ部材142に対し長軸方向、すなわち収容空間153から抜け出る(浮き上がる)方向に相対移動する。これにより、トルクリング152の突部152aが係合凹部153aから抜け出し、トルク伝達面153bから外れると、トルクを受けなくなった駆動側クラッチ部材142とトルクリング152との間に回転速度差が生じる。このため、トルクリング152が駆動側クラッチ部材142に対し周方向に相対移動し、トルクリング152の突部152aが斜面153cの端部に乗り上げる(図11の上から2段目参照)。この突部152aの乗り上げ動作により、駆動側クラッチ部材142が長軸方向に押される。すなわち、駆動側クラッチ部材142に対し山形カム142aを被動側クラッチ部材143の山形カム143aから切り離す方向(長軸方向)に力が加えられ、これにより、山形カム142a,143aの切り離しがアシストされる。その結果、山形カム142a,143aのカム面に作用する負荷が軽減されることになる。このことは、山形カム142a,143aの摩耗を低減することが可能となり、ひいてはクラッチバネ144にて設定される切替設定値の変動を抑制できる。
 駆動側クラッチ部材142が更に後退動作し、山形カム142a,143aの噛み合い係合が解除されると、トルクリング152が駆動側クラッチ部材142に対し周方向に更に相対移動する。このため、突部152aが斜面153cに更に乗り上げる。すなわち、この乗り上げによる山形カム142a,143aの切り離しのアシストは、当該山形カム142a,143aの噛み合い係合の解除後も継続される。これにより駆動側クラッチ部材142が被動側クラッチ部材143から更に離間され、山形カム142a,143a間に長軸方向の隙間が生ずる。斜面153cに乗り上げた突部152aは、斜面153c前方に直立するストッパ面153dに係止し、その後、トルクリング152と駆動側クラッチ部材142は一体となって回転する。この状態が図11(B)の最下段に示される。
 すなわち、トルクリング152は、駆動側クラッチ部材142が動力伝達状態から動力遮断状態へと切替わる際、当該駆動側クラッチ部材142の山形カム142aが被動側クラッチ部材143の山形カム143aから離間する動力遮断位置よりも更に後退移動された位置、つまり山形カム142a,143a間に長軸方向の所定の隙間が確保される隔離位置へと移動させて当該隔離位置に保持する。このように、摺動式噛み合いクラッチ141は、一旦動力遮断側に切替わると、その後ブレード113に加わる負荷の如何に拘わらず動力遮断状態を保持するため、ブレード113に加わる負荷がクラッチバネ144にて設定される切替設定値の周辺で変動した場合であっても、第2動力伝達経路P2を使用しての低速高トルクでの安定した切断作業を遂行することが可能となる。また、駆動側クラッチ部材142が隔離位置へと移動されて当該隔離位置に保持されることで、山形カム142a,143a間に長軸方向に一定の隙間が確保されるので、確実な動力遮断状態が得られ、山形カム142a,143aの当接による異音あるいは振動の発生を防止できる。
 一方、切断作業後、駆動モータ115の通電駆動を停止すると、当該駆動モータ115のブレーキが作動する。これにより回転速度が減速される中間軸123と一体に回転するトルクリング152と、慣性トルクによって回転速度を維持しようとする駆動側クラッチ部材142の間には回転速度差が生じ、両部材が周方向に相対的に回動する。この周方向の相対回動は、トルクリング152の突部152aが駆動側クラッチ部材142の斜面153cから下りる方向である。このため、突部152cが収容空間153の係合凹部153aに嵌り込む。すなわち、トルクリング152は、初期位置へと復帰(リセット)することになり、これにより摺動式噛み合いクラッチ141の動力遮断状態の保持が自動的に解除される。つまり、駆動モータ115のブレーキ及び駆動側クラッチ部材142の慣性を利用したリセット機構が構成されている。ここでいうリセット機構が、本発明における「リセット機構」に相当する。なお、トルクリング152による動力遮断状態保持が解除されると、駆動側クラッチ部材142は、クラッチバネ144の付勢力によって動力伝達位置へと移動され、次の切断作業に備える。
 また、本実施の形態に係る変速装置117の場合、駆動モータ115が起動する際、ブレード113の質量が大きく、慣性が大きいと、摺動式噛み合いクラッチ141が誤動作、すなわち、動力伝達状態から動力遮断状態に切替わり、変速する可能性がある。このような不具合を解決するべく本実施の形態に係る変速機構117は、起動時の変速を規制する変速規制機構161を備えている。ここでいう変速規制機構161が、本発明における「切替規制機構」を構成する。
 以下、変速規制機構161につき、主に図12~14を参照して説明する。図12は図6におけるB-B線断面図であり、図13は駆動側クラッチ部材142をクラッチバネ装着側から見た斜視図であり、図14はストッパ162を示す斜視図である。本実施の形態に係る変速規制機構161は、駆動側クラッチ部材142に放射状に配置された複数(例えば3個)のストッパ162及び弾性部材としての圧縮コイルバネ163を主体として構成されている。
 各ストッパ162及び圧縮コイルバネ163は、駆動側クラッチ部材142のクラッチバネ装着面側(山形カム142aと反対側)の側面周方向等分位置に形成されたストッパ収容凹部164に収容され、径方向に移動可能とされている。各ストッパ162は、内径側の先端部が中間軸123の外周面と対向するとともに、圧縮コイルバネ163によって中間軸123側に向かって押圧付勢されている。中間軸123の外周面には、ストッパ162と対向する領域に周方向の環状溝165が形成されている。そして、駆動側クラッチ部材142が動力伝達位置に置かれたとき、各ストッパ162の径方向の先端部が中間軸123外周の環状溝165に径方向から突入されて弾発状に係合され、これにより駆動側クラッチ部材142を動力伝達位置に保持する構成とされる。この状態が図12及び図4に示される。
 なお、圧縮コイルバネ163は、ストッパ162に設けたガイドピン166によって動作の安定化が図られている。また、駆動側クラッチ部材142の側面には、図4及び図5に示すように、ストッパ収容凹部164に収容されたストッパ162及び圧縮コイルバネ163を覆う円板状のカバー部材167が取付けられ、このカバー部材167には、クラッチバネ144の付勢力が作用している。
 本実施の形態に係る変速規制機構161は、上記のように構成されている。駆動モータ115の停止状態では、摺動式噛み合いクラッチ141が動力伝達状態にある。このため、圧縮コイルバネ163によって内径方向へと付勢されているストッパ162は、中間軸123の環状溝165に係合されている。従って、駆動モータ115の起動時においては、中間軸123の環状溝165に係合するストッパ162によって駆動側クラッチ部材142の長軸方向の移動が規制されることになり、当該駆動側クラッチ部材142は、山形カム142aが被動側クラッチ部材142の山形カム143aと噛み合い係合する動力伝達位置に保持される。これにより、モータ起動時の摺動式噛み合いクラッチ141の誤動作を防止することができる。
 しかして、駆動モータ115が起動し、回転数が上昇すると、それに伴い駆動側クラッチ部材142とともに回転するストッパ162に作用する遠心力によって当該ストッパ162が圧縮コイルバネ163の付勢力に抗して外側に移動し、環状溝165から脱出する(図5参照)。これにより駆動側クラッチ部材142のストッパ162による移動規制が解除され、駆動側クラッチ部材142のブレード113に加わる負荷に応じた動力伝達状態から動力遮断状態への切替わりが許容される。
 このように、本実施の形態に係る変速規制機構161によれば、ブレード113の慣性が大きい電動丸鋸101において、駆動モータ115の起動時にブレード113の慣性で変速機構117が変速する、すなわち第1動力伝達経路P1から第2動力伝達経路P2に切替わるといった誤動作を防止でき、これにより変速機構117の利点を十分に活用することが可能になる。また、このような変速規制機構161は、丸鋸101に限らず、研磨、研削作業に用いられるグラインダや比較的大径の穴明け作業に用いられるダイヤコアドリルのように、先端工具の質量が大きい動力工具において特に有効である。
 また、本実施の形態では、変速規制機構161を中間軸123上に設けている。このことにより、出力軸125よりもトルクの小さい中間軸123上に環状溝165が形成されるので、たとえ溝部の軸径が細くなっても、大きなトルクが作用する出力軸125に設ける場合に比べると、耐久性を向上する上で有効となる。
 また、本実施の形態では、ストッパ162を周方向3等分位置に配置したので、ストッパ162が環状溝165に係合した状態において、駆動側クラッチ部材142に作用する長軸方向の力を当該駆動側クラッチ部材142の回転中心を含む面受け構造で受けることができる。このため、駆動側クラッチ部材142が中間軸123に対し傾かないように支持し、芯振れを防止できる。
 ところで低速高トルクでの切断作業中には、ブレード113に過大な負荷が作用する可能性がある。そこで、このような過大な負荷が作用した場合に備えて出力軸125上には、トルクリミッター154が設定されている。図17には出力軸125にトルクリミッター154が組み付けられた状態が示される。出力軸125は、その長軸方向において、第1及び第2被動ギア134,136が取付けられる基部側軸部125Aと、ブレード113が取り付けられる先端側軸部125Bとに2分割されるとともに、当該分割部位に介在されたトルクリミッター154によって接続されている。
 出力軸125の基部側軸部125Aと先端側軸部125Bは、互いに遊嵌状に嵌合する円形突起と円形凹部を介して同軸上に配置されるとともに、互いに対向する鍔部125Aa,125Baを備えている。トルクリミッター154は、基部側軸部125Aの鍔部125Aaと先端側軸部125Bの鍔部125Ba間に挟み込まれた摩擦板155と、両鍔部125Aa,125Baが互いに押し付け合う方向に付勢力を作用する板バネ156により構成されており、板バネ156によって最大伝達トルクが定められている。
 このように、最終軸である出力軸125上のトルクリミッター154によって最大伝達トルクが管理されるため、切断作業中において、ブレード113に過大な負荷が作用した場合には、摩擦板155が鍔部125Aa,125Baに対して滑ることで過大な負荷に対応することができる。
 さて、本実施の形態に係る変速機構117は、変速モードを切替える(選択する)モード切替機構181を備えている。モード切替機構181は、本発明における「モード切替機構」に対応する。モード切替機構181は、ブレード113に作用する負荷に応じて、トルクの伝達経路が自動的に第1動力伝達経路P1から第2動力伝達経路P2に切替わる自動変速モード、トルクの伝達経路が第1動力伝達経路P1に固定(限定)される高速モード、第2動力伝達経路P2に固定(限定)される低速モードの間で切替可能に構成される。
 以下、モード切替機構181につき、主として図4、図5及び図18~図21を参照して説明する。図18はモード切替機構181の外観図であり、図19~図21は展開断面図である。なお、ギアハウジング107は、略円筒形状のインナハウジング107Aを有し、このインナハウジング107A内に前述した変速機構117が収容されている(図2及び図3参照)。インナハウジング107Aは、その長軸方向が変速機構117における中間軸123の長軸方向、従って摺動式噛み合いクラッチ141の長軸方向と平行に定められており、このインナハウジング107Aにモード切替機構181が取付けられている。
 モード切替機構181は、実質的には、摺動式噛み合いクラッチ141につき、ブレード113に作用する負荷に応じて動力伝達状態と動力遮断状態との間で自動的に切替わる態様、すなわち自動変速モード、負荷の大小に拘わらず動力伝達状態に固定する態様、すなわち高速モード、負荷の大小に拘わらず動力遮断状態に固定する態様、すなわち低速モードの間で切替えることができるように構成される。モード切替機構181は、インナハウジング107Aの外周面に周方向に回動自在に取付けられたモード切替スリーブ182と、当該モード切替スリーブ182に取付けられた複数(本実施の形態では2本)の棒状の作動体183とを主体として構成されている。
 インナハウジング107Aの外周面には、単一(複数でも可)のガイド溝107bが形成されている。モード切替スリーブ182は、その内周面に突条182aを有し、当該突条182aがインナハウジング107Aのガイド溝107bに係合され、インナハウジング107Aに対し長軸方向の移動が規制された状態で長軸回りに回動可能とされている。なお、モード切替スリーブ182は作業者により回動操作可能とされるが、当該回動操作については、便宜上図示を省略するが、例えば、ギアハウジング107に形成された開口部を通してモード切替スリーブ182を直接にて指で操作する、あるいはモード切替スリーブ182に一体状に設けたモード切替ハンドルをギアハウジング107の開口部を通して外部に露出させ、このモード切替ハンドルを介して操作するというような態様で構成することが可能である。
 また、モード切替スリーブ182には、作動体183に対応する数(2個)の螺旋状の細孔(リード溝)182bが同一円周上に周方向に所定長さで形成されている。そして、各細孔182bには、作動体183の長軸方向の一端(基端)が摺動自在に係合されている。作動体183は、インナハウジング107Aに形成された長軸方向に延在するスリット107cを貫通してインナハウジング107A内の中間軸123の中心に向かって径方向に延在されている。すなわち、作動体183は、スリット107cによって周方向の移動が規制された状態で、当該スリット107cに沿う長軸方向への移動が許容されている。従って、モード切替スリーブ182が一方側あるいは他方側に回動操作されると、細孔182bに摺動自在に係合している作動体183がインナハウジング107Aのスリット107cに沿って長軸方向一方側あるいは他方側に移動し、この作動体183の長軸方向の移動(変位)を利用して噛み合いクラッチ141の作動状態の切替えが遂行される。モード切替スリーブ182を、図18においてLO方向に回動させたときの回動端位置が低速モード位置として定められ、HI方向に回動させたときの回動端位置が高速モード位置として定められ、両位置の中間位置が自動変速モード位置として定められている。
 作動体183の先端は、クラッチバネ144の一端を受けるバネ受リング184の側面と、駆動側クラッチ部材142に固定されたカバー部材167の側面との間に挿入されている。バネ受リング184の中心部には、長軸方向に突出する円筒部184aが形成されている。バネ受リング184の円筒部184aは、カバー部材167の中心部に形成された円筒部167aの外周に長軸方向への相対移動が可能に遊嵌状に嵌合されるとともに、その端面がカバー部材167の側面に当接されている。これによりクラッチバネ144の付勢力がカバー部材167を介して駆動側クラッチ部材142の側面に作用する。バネ受リング184の側面とカバー部材167の側面とは、所定の間隔を置いて対向しており、この間に作動体183の先端が挿入されている。
 本実施の形態に係るモード切替機構181は、上記のように構成されている。従って、モード切替スリーブ182が、例えば自動変速モード位置に置かれたときは、作動体183の先端は、バネ受リング184の側面側に移動され、カバー部材167の側面から離間している。このとき、作動体183の先端とカバー部材167の側面との間の長軸方向の距離が、駆動側クラッチ部材142と被動側クラッチ部材143との噛み合い係合を解除し得る長さ、すなわち駆動側クラッチ部材142の山形カム142aが被動側クラッチ部材143の山形カム143aから離間することを許容する長さに設定される。この状態が図4及び図5に示される。
 このように、自動変速モードが選択された場合には、摺動式噛み合いクラッチ141が通常通り作動することが可能とされる。このため、丸鋸101による被加工材の加工作業時において、既述のブレード113に加わる負荷に応じた動力伝達経路の切替わりが自動的に遂行される。
 モード切替スリーブ182が高速モード位置に切替えられたときには、作動体183の先端が、動力伝達位置に置かれた駆動クラッチ部材142のカバー部材167の側面に当接される。この状態が図19に示される。作動体183の先端がカバー部材167の側面に当接された状態では、丸鋸101の駆動時において、駆動側クラッチ部材142のクラッチ解除方向への移動が作動体183によって規制されるため、摺動式噛み合いクラッチ141はブレード113に加わる負荷の変動に関係なく、噛み合い係合状態が継続的に維持される。従って、駆動モータ115のトルクは、前述したように、摺動式噛み合いクラッチ141を経由する第1動力伝達経路P1を介してブレード113に伝達される。すなわち、高速モードが選択された場合には、変速機構117を第1動力伝達経路P1に固定した状態でブレード113を高速低トルクで駆動することができる。
 次にモード切替スリーブ182が低速モード位置に切替えられたときには、作動体183の先端がバネ受リング184の側面を押動し、当該バネ受リング184をカバー部材167の側面から離間させる。このとき、バネ受リング184の円筒部184aの端面とカバー部材167の側面との間の距離が、駆動側クラッチ部材142と被動側クラッチ部材143との噛み合い係合を解除し得る長さに設定され、駆動側クラッチ部材142に対するクラッチバネ144の付勢力が作用しない。この状態が図20に示される。
 この状態において、丸鋸101が駆動されると、駆動側クラッチ部材142の山形カム142aが被動側クラッチ143の山形カム143aから負荷を受けると、当該駆動側クラッチ部材142が動力解除位置へと後退動作されるとともに、前述したトルクリング152の作用により山形カム142aが被動側クラッチ143の山形カム143aから離間した動力解除位置に保持される。この状態が図21に示される。従って、駆動モータ115のトルクは、前述したように、ワンウェイクラッチ145を経由する第2動力伝達経路P2を介してブレード113に伝達される。すなわち、低速モードが選択された場合には、変速機構117を第2動力伝達経路P2に固定した状態でブレード113を低速高トルクで駆動することができる。
 このように、本実施の形態に係るモード切替機構181によれば、変速機構117につき、被加工材の厚み(切り込み深さ)や硬度等に応じて、ブレード113を高速低トルクで駆動される高速モード、あるいは低速高トルクで駆動される低速モード、あるいは高速低トルクと低速高トルクの間で伝達経路が自動的に切替わる自動変速モードを適宜選択し、目的に応じて使い分けることが可能となる。このため、利便性が向上する。
(本発明の第2の実施形態)
 次に本発明の第2の実施形態につき、図22及び図23を参照して説明する。図22はモード切替機構181及び変速トルク調節機構191を示す外観図であり、図23は展開断面図である。本実施の形態は、第1動力伝達経路P1から第2動力伝達経路P2に切替わる変速の切替設定値(変速トルク値)につき、作業者が任意に調節することを可能とした変速トルク調節機構191を備えたものであり、この構成以外については、前述した第1の実施形態と同様に構成される。従って、図22及び図23に示された各構成部材については、同一符号を付してその説明を省略あるいは簡略化する。なお、変速トルク調節機構191は、前述したモード切替機構181と併設されており、従って、モード切替機構181によって自動変速モードが選択された場合に機能する。変速トルク調節機構191は、本発明における「切替設定値調節機構」に対応する。
 変速トルク調節機構191は、実質的には、摺動式噛み合いクラッチ141の切替設定値を決定するバネの付勢力を調整するように構成される。本実施の形態では、既設のクラッチバネ144に加え、更にサブクラッチバネ195が備えられ、このサブクラッチバネ195の付勢力が調整可能とされる。変速トルク調節機構191は、変速トルク調節スリーブ192と、当該変速トルク調節スリーブ192に取付けられた付勢力調整用のバネ受部材193とを主体として構成される。
 変速トルク調節スリーブ192は、モード切替スリーブ182の場合と同様、インナハウジング107Aに形成されたガイド溝107dに突条192aを介して長軸方向の移動が規制された状態で長軸回りに回動自在に取付けられている。バネ受部材193は、サブクラッチバネ195の一端を受けるバネ受円板部193aと、当該バネ受円板部193aから外径方向に延在する複数(本実施の形態では2本)のアーム部193bによって構成されている。そして、アーム部193bの端部が、作動体183の場合と同様、インナハウジング107Aに形成された長軸方向に延在するスリット107eを貫通するとともに、変速トルク調節スリーブ192に形成された螺旋状の細孔(リード溝)192bに摺動自在に係合されている。従って、変速トルク調節スリーブ192が一方側あるいは他方側に回動操作されると、細孔192bに摺動自在に係合しているバネ受部材193がインナハウジング107Aのスリット107eに沿って長軸方向一方側あるいは他方側に移動し、このバネ受部材193の長軸方向の移動(変位)を利用してサブクラッチバネ195の付勢力が調整される。なお、サブクラッチバネ195は、バネ受部材193のバネ受円板部193aとバネ受リング184との間に介在され、当該バネ受リング184を介して駆動側クラッチ部材142を動力伝達位置へ移動させる方向に付勢している。
 また、変速トルク調節スリーブ192の回動操作については、モード切替スリーブ182の場合と同様の態様で操作できるように構成される。
 本実施の形態に係る変速トルク調節機構191は、上述のように構成されている。従って、モード切替機構181によって自動変速モードを選択した状態において、変速トルク調節スリーブ192を図22におけるD方向に回動させたときには、バネ受部材193がバネ受リング184から離間する方向へと移動し、サブクラッチバネ194の付勢力が弱くなる。一方、変速トルク調節スリーブ192を図22におけるE方向に回動させたときには、バネ受部材193がバネ受リング184に近づく方向へと移動し、サブクラッチバネ194の付勢力が強くなる。
 このように、本実施の形態に係る変速トルク調節機構191によれば、摺動式噛み合いクラッチ141のサブクラッチバネ194の付勢力を調整することにより、第1動力伝達経路P1から第2動力伝達経路P2に切替わる変速の切替設定値を作業者が任意に調整することができる。また、本実施の形態では、螺旋状溝107dを利用したネジ式によって変速トルク調節スリーブ192を調整する構成のため、変速の切替設定値の調整が無段階調整となり、きめ細かい調整が可能となる。
 なお、上述した第1及び第2の実施形態では、摺動式噛み合いクラッチ141を中間軸123上に設けたが、これを出力軸125に設けることが可能であり、このことが図24及び図25に示される。図24及び図25は変速機構117の構成を示す展開断面図である。ただし、図24及び図25では、モード切替機構181及び変速トルク調節機構191については、便宜上図示が省略されている。
 摺動式噛み合いクラッチ141は、出力軸125上に取付けられている。このような配置構成としたことにより、中間軸123上に配置される第2中間ギア133が当該中間軸123にキー139によって固定され、当該第2中間ギア133と常時に噛み合い係合する第1被動ギア134は、出力軸125に軸受138を介して回転自在に支持される。
 また、摺動式噛み合いクラッチ141は、駆動側クラッチ部材142と被動側クラッチ部材143とクラッチバネ144を主体として構成されることについては、前述した第1の実施形態の場合と同様であるが、中間軸123上に配置する構成とした第1の実施形態の場合とは、動力の伝達方向が逆転している。つまり、第1被動ギア134と共に回転するクラッチ部材143が駆動側とされ、トルクリング152を介して出力軸125と共に回転するクラッチ部材142が被動側となる。そしてクラッチバネ144は、被動側クラッチ部材142と、ワンウェイクラッチ145が組み付けられる第2被動ギア136との間に介在され、当該被動側クラッチ部材142を駆動側クラッチ部材143に接近させる方向に付勢している。
 従って、ブレード113に加わる負荷が小さい状態では、駆動モータ115のトルクは、入力軸121のピニオンギア131、第1中間ギア132、中間軸123、第2中間ギア133、第1被動ギア134、摺動式噛み合いクラッチ141及び出力軸125によって構成される第1動力伝達経路P1を経てブレード113に伝達され、ブレード113は、高速低トルクで回転駆動される。この状態が図24に示される。
 そして、クラッチバネ144及びサブクラッチバネにて定められる切替設定値を超える負荷がブレード113に作用すると、被動側クラッチ部材142がクラッチバネ144及びサブクラッチバネの付勢力に抗して動力伝達位置から動力遮断位置へ移動される。これにより被動側クラッチ部材142の山形カム142aが駆動側クラッチ部材143の山形カム143aから離間して噛み合い係合が解除される。すると、駆動モータ115のトルクは、入力軸121のピニオンギア131、第1中間ギア132、中間軸123、第3中間ギア135、第2被動ギア136、ワンウェイクラッチ145及び出力軸125によって構成される第2動力伝達経路P2を経てブレード113に伝達され、ブレード113は、低速高トルクで回転駆動される。この状態が図25に示される。
 上記のように、本実施の形態においても、前述した第1の実施形態と同様、変速機構117を構成するギア列における各ギアの噛み合い係合を保持した状態、すなわち各ギアの位置を固定した状態で、第1動力伝達経路P1から第2動力伝達経路P2に切替えることができるため、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を向上することができる。
 ここで、上記構成の変速機構117において、第1動力伝達経路P1と第2動力伝達経路P2との間での切替わりの具体的な設定につき、以下に詳細に説明する。この設定では、ギアの組み合わせを適宜選択することによって、第1の設定モード及び第2の設定モードを少なくとも形成可能とされる。
 第1の設定モードは、ブレード113のトルクが相対的に低く且つ回転速度が相対的に高い設定モード(高速-低トルクモード)として規定される。一方、第2の設定モードは、ブレード113のトルクが相対的に高く且つ回転速度が相対的に低い設定モード(低速-高トルクモード)として規定される。これら第1の設定モード及び第2の設定モードの典型例に関しては、図26~図28が参照される。ここで図26には、本実施の形態の駆動モータ115のブレード113の回転に係るトルク[N・m]と回転数[min-1]との相関グラフが示され、図27には、本実施の形態の駆動モータ115のブレード113の回転に係るトルク[N・m]と出力[W]との相関グラフが示され、また図28には、本実施の形態の駆動モータ115のブレード113の回転に係るトルク[N・m]と効率[%]との相関グラフが示される。
 図26に示すように、第1の設定モードでは、最小トルクTLと最大トルクTHとの間の通常使用トルク範囲ΔTにおけるブレード113の回転数特性に関し、最小トルクTLと最大トルクTHとの間の中間トルクTMを下回るトルク領域にて第1の回転数特性直線S1を形成する。一方、第2の設定モードでは、最小トルクTLと最大トルクTHとの間の通常使用トルク範囲ΔTにおけるブレード113の回転数特性に関し、中間トルクTMを上回るトルク領域にて第2の回転数特性直線S2を形成する。この第2の回転数特性直線S2は、第1の回転数特性直線S1から連続して形成される。すなわち、本実施の形態では、中間トルクTMを境界として、軽負荷時(「低負荷時」ともいう)と重負荷時(「高負荷時」ともいう)とで、回転数に関する特性直線が切り替わるように設定される。このような回転数設定においては、いずれか一方のみの回転数特性直線を用いる場合に比して、高回転状態を得ることができ、とりわけ軽負荷時における回転数を高めることが可能となる。
 また、図27に示すように、第1の設定モードでは、最小トルクTLと最大トルクTHとの間の通常使用トルク範囲ΔTにおけるブレード113の出力特性に関し、最小トルクTLと最大トルクTHとの間の中間トルクTMを下回るトルク領域にて1つのピーク(図27の場合、最小トルクTLと中間トルクTMとの間の出力)を有する略山形の第1の出力特性曲線C1を形成する。一方、第2の設定モードでは、最小トルクTLと最大トルクTHとの間の通常使用トルク範囲ΔTにおけるブレード113の出力特性に関し、中間トルクTMを上回るトルク領域にて1つのピーク(図27の場合、最大トルクTHに対応する出力)を有する略山形の第2の出力特性曲線C2を形成する。この第2の出力特性曲線C2は、第1の出力特性曲線C1から連続して形成される。すなわち、本実施の形態では、中間トルクTMを境界として、軽負荷時と重負荷時とで、出力に関する特性曲線が切り替わるように設定される。なお、ここでいう最小トルクTLは、ブレード113による被加工材の最小切り込み深さに基づいて規定され、また最大トルクTHは、ブレード113による被加工材の最大切り込み深さに基づいて規定される。また、中間トルクTMは、クラッチバネ144の付勢力の設定によって所定の値、或いは所定の数値範囲として規定され得る。このような出力設定においては、いずれか一方のみの出力特性曲線を用いる場合に比して、高出力状態が安定して得られることとなる。なお、被加工材の切り込み深さに限らず、被加工材の材種や被加工材の切り方(直角切り、傾斜切り等)などに基づいてトルクが規定されてもよい。
 また、図28に示すように、第1の設定モードでは、最小トルクTLと最大トルクTHとの間の通常使用トルク範囲ΔTにおけるブレード113の効率特性に関し、最小トルクTLと最大トルクTHとの間の中間トルクTMを下回るトルク領域にて1つのピーク(図28の場合、最小トルクTLと中間トルクTMとの間の効率)を有する略山形の第1の効率特性曲線C3を形成する。一方、第2の設定モードでは、最小トルクTLと最大トルクTHとの間の通常使用トルク範囲ΔTにおけるブレード113の効率特性に関し、中間トルクTMを上回るトルク領域にて1つのピーク(図28の場合、中間トルクTMと最大トルクTHとの間の効率)を有する略山形の第2の効率特性曲線C4を形成する。第2の効率特性曲線C4は、第1の効率特性曲線C3から連続して形成される。すなわち、本実施の形態では、中間トルクTMを境界として、軽負荷時と重負荷時とで、効率に関する特性曲線が切り替わるように設定される。このような効率設定においては、いずれか一方のみの効率特性曲線を用いる場合に比して、高効率状態が安定して得られることとなる。とりわけ重負荷時での第2の設定モードにおいては、大きなトルクを発生させるギア比に設定可能であるため、重負荷のかかる大径のブレード使用時におけるロックを防止することでき、大径のブレードを搭載可能となる。
 本実施の形態の変速機構117におけるこのような設定によれば、出力軸125に加わる負荷トルクに応じて、少なくとも2つの設定モードを設けることで、切断作業時に生じる負荷トルクの変動に対応して円滑に切断作業を遂行することが可能となり、以って切断作業の円滑化向上を図ることが可能となる。また、2つの設定モードのうちのいずれか一方の設定モードのみに設定された変速機構と比較した場合、出力及び効率を高いレベルで安定化させることが可能となり、特に軽負荷時での第1の設定モードにおいてはブレード113の回転速度を高めることが可能となる一方、重負荷時での第2の設定モードにおいては大きなトルクを発生させるギア比に設定可能であり、大径のブレードを搭載可能となる。これにより、最大切断能力を向上させることが可能となる。
 具体的な効果として、バッテリのみを用いる形式の丸鋸の場合には、効率を高いレベルで安定化させることで、作業量を向上させ或いは作業時間を短縮することが可能となる上に、トルクの細いDC機においてもAC機のような使用感を持たせることが可能となる。また、バッテリ(DC)及びAC電源を用いる形式の丸鋸の場合には、出力を高いレベルで安定化させることで、重負荷時においてブレード113がロックされる回数を低減させ或いはロックトルク値を高め、また電流消費を低減させることができ、以って駆動モータ115の焼損防止、バッテリ過電流の保護を図ることが可能となる。また、材料に応じた最適設定によって切断速度を向上させることが可能となる。更に、ブレード113の周速を高めることによって細かい切断を行なうことができ、以って切断面(バリ、面粗度)の向上を図ることが可能となる。
 なお、本発明では、本実施の形態の第1の設定モード及び第2の設定モードに加えて、更なる別の設定モードが設定されてもよい。また、第1の設定モード及び第2の設定モードでは、必要に応じて少なくとも1つのピークを有する略山形の出力特性曲線が形成されるように、また少なくとも1つのピークを有する略山形の効率特性曲線が形成されるように設定することが可能である。
 また、本実施の形態の変速機構117では、第1の設定モードにおける第1の出力特性曲線C1のピークに対応する第1トルクと、第2の設定モードにおける第2の出力特性曲線C2のピークに対応する第2トルクとに関し、第1トルクに対する第2トルクの比率が1.5~2.5とされた設定を採用するのが好ましい。同様に、第1の設定モードにおける第1の効率特性曲線C3のピークに対応する第1トルクと、第2の設定モードにおける第2の効率特性曲線C4のピークに対応する第2トルクとに関し、第1トルクに対する第2トルクの比率が1.5~2.5とされた設定を採用するのが好ましい。また、本実施の変速機構117では、第2中間ギア133に対する第1被動ギア134の第1ギア比と、第3中間ギア135に対する第2被動ギア136の第2ギア比とに関し、第1ギア比に対する第2ギア比の比率が1.5~2.5とされた設定を採用するのが好ましい。トルク及びギア比に関するこのような設定によれば、実用的に変速動作の円滑性の高い変速機構を構成することが可能となる。
 なお、第1の設定モードと第2の設定モードとの切り替えは、上記実施の形態のようなクラッチバネ144による機械的な検知機構、或いはトルクを連続的或いは断続的に検出するセンサ等による電気的な検知機構による実際の検知情報に基づいて自動で行なわれる自動式であってもよいし、或いは作業者による操作部材の手動操作によって行なわれる手動式であってもよい。また、上記実施の形態では、第2の設定モードがラッチ機構151を介して保持される場合について記載したが、ラッチ機構151を省略した場合には、検知トルクが中間トルクを上回った場合に第1の設定モードから第2の設定モードへと切り替わる一方、当該検知トルクが中間トルクを下回った場合に第2の設定モードから第1の設定モードへと切り替わる構成とされる。
 また、本実施の形態に係る変速機構117は、3軸平行式の場合で説明したが、入力軸と出力軸との2本の平行軸から構成される2軸式であっても成立する。また、ワンウェイクラッチ145を中間軸123側に設けても成立する。また、本実施の形態の変速機構117では、ギアを常時噛み合い式とする場合について記載したが、必要に応じてギアの噛み合い係合が一時的に解除されるタイプの変速機構に本発明を適用することも可能である。また、本発明では、本実施の形態のラッチ機構151、変速規制機構(切替規制機構)161、変速トルク調節機構(切替設定値調節機構)191のうちの少なくとも1つを必要に応じて適宜省略することもできる。また、本発明では、本実施の形態の摺動式噛み合いクラッチ141以外のクラッチ、例えば電磁式のクラッチ等を採用することもできる。また、本実施の形態は、充電式の丸鋸101の場合で説明したが、これに限られるものではない。丸鋸であっても、バッテリの代わりにAC電源を用いる形式の丸鋸、あるいは図示のような手持式のほか、ベースに設置されたテーブル上に被加工材を載せて切断作業を行なう卓上丸鋸や卓上スライド丸鋸に適用できるし、木工用、金工用、窯業用或いはプラスチック用のいずれにも適用することが可能である。この場合、鋸刃として、チップソー、ノコ刃、切断砥石、ダイヤモンドホイールなどを用いることが可能である。
本発明の第1の実施形態に係る丸鋸の全体構成を示す側面図である。 丸鋸の全体構成を示す側断面図である。 丸鋸の全体構成を示す正面から見た断面図である。 平行3軸式の変速機構の展開断面図であり、動力伝達経路が高速低トルク側に切替えられた状態を示す。 平行3軸式の変速機構の展開断面図であり、動力伝達経路が低速高トルク側に切替えられた状態を示す。 摺動式噛み合いクラッチの外観図である。 図6のA-A線断面図である。 摺動式噛み合いクラッチにおける駆動側クラッチ部材を示す斜視図である。 摺動式噛み合いクラッチにおける被動側クラッチ部材143を斜視図である。 摺動式噛み合いクラッチにおけるトルクリング152を示す斜視図である。 摺動式噛み合いクラッチの動作を説明する図であり、(A)は山形カムの動作態様を示し、(B)はラッチ部材としてのトルクリングの動作態様を示す。 図6のB-B線断面図である。 駆動側クラッチ部材をクラッチバネ装着側から見た斜視図である。 ストッパを示す斜視図である。 出力軸に設けられた各部材を示す側面図である。 図15のC-C線断面図である。 変形例を示す展開断面図である。 モード切替機構を示す外観図である。 モード切替機構が高速モードに固定された状態を示す展開断面図である。 モード切替機構が低速モードに固定された状態を示す展開断面図であり、丸鋸の起動前の状態を示す。 モード切替機構が低速モードに固定された状態を示す展開断面図であり、丸鋸の起動後の状態を示す。 本発明の第2の実施形態に係るモード切替機構及び変速トルク調節機構を示す外観図である。 同じくモード切替機構及び変速トルク調節機構を示す展開断面図である。 変速機構における摺動式噛み合いクラッチの配置に関する変形例を示す展開断面図であり、動力伝達経路が高速低トルク側に切替えられた状態を示す。 同じく変速機構における摺動式噛み合いクラッチの配置に関する変形例を示す展開断面図であり、動力伝達経路が低速高トルク側に切替えられた状態を示す。 本実施の形態の駆動モータ115のブレード113の回転に係るトルク[N・m]と回転数[min-1]との相関グラフを示す。 実施の形態の駆動モータ115のブレード113の回転に係るトルク[N・m]と出力[W]との相関グラフを示す。 本実施の形態の駆動モータ115のブレード113の回転に係るトルク[N・m]と効率[%]との相関グラフを示す。
101 丸鋸(動力工具)
103 丸鋸本体部(動力工具本体)
104 ブレードケース
105 モータハウジング
106 セーフティカバー
107 ギアハウジング
107A インナハウジング
107L 下端面
107b 螺旋状溝
107c 細孔
107d 螺旋状溝
107e 細孔
108 バッテリ
109 ハンドグリップ
109a トリガ
111 ベース
111a 開口
113 ブレード
115 駆動モータ
116 モータ軸
117 変速機構
121 入力軸
121a 軸受
123 中間軸(第1の回転軸)
123a 軸受
125 出力軸(第2の回転軸)
125a 軸受
125A 基部側軸部
125B 先端側軸部
125Aa 鍔部
125Bb 鍔部
131 ピニオンギア
132 第1中間ギア
133 第2中間ギア
134 第1被動ギア
135 第3中間ギア
136 第2被動ギア
137 キー
138 軸受
139 キー
141 摺動式噛み合いクラッチ(第1のクラッチ)
142 駆動側クラッチ部材
142a 山形カム
143 被動側クラッチ部材
143a 山形カム
144 クラッチバネ
145 ワンウェイクラッチ(第2のクラッチ)
146 外輪
146a カム溝
146b カム面
147 針状ころ
148 バネ
151 ラッチ機構
152 トルクリング
152a 突部
153 収容空間
153a 係合凹部
153b トルク伝達面
153c 斜面
153d ストッパ面
154 トルクリミッター
155 摩擦板
156 板バネ
161 変速規制機構(切替規制機構)
162 ストッパ(移動規制部材)
163 圧縮コイルバネ
164 ストッパ収容凹部
165 環状溝(係合部)
166 ガイドピン
167 カバー部材
167a 円筒部
171 電磁ソレノイド
172 ストッパ(移動規制部材)
175 モータ制御回路(モータ制御装置)
176 起動スイッチ
177 制御部
178 スイッチ素子
181 モード切替機構
182 モード切替スリーブ
183 作動体
184 バネ受リング
184a 円筒部
191 変速トルク調節機構
192 トルク調節スリーブ
192a 突条
193 バネ受部材
193a 円板部
193b アーム部

Claims (13)

  1.  動力源と、被加工材を切断するべく回転駆動される鋸刃と、前記動力源と前記鋸刃との間に介在して前記鋸刃の回転速度を可変とする変速機構を有する丸鋸であって、
     前記変速機構は、互いに平行に配置された第1及び第2の回転軸と、互いに噛合い係合されるとともに前記第1の回転軸のトルクを第2の回転軸に伝達する駆動ギアと被動ギアの組み合わせを1単位とし、かつ互いにギア比が異なる第1及び第2のギア列を有し、前記第1のギア列を経由するトルクの伝達経路が第1の動力伝達経路として定められ、前記第2のギア列を経由するトルクの伝達経路が第2の動力伝達経路として定められるとともに、前記第1の動力伝達経路と前記第2の動力伝達経路との間で伝達経路の切替えがなされる構成であることを特徴とする丸鋸。
  2.  請求項1に記載の丸鋸であって、
     前記第1の動力伝達経路上において動力伝達と動力遮断を行う第1のクラッチ、及び前記第2の動力伝達経路上において動力伝達と動力遮断を行う第2のクラッチを更に有し、
     前記第1及び第2のクラッチの動力伝達状態と動力遮断状態の間での切替わりによって、前記第1及び第2のギア列の噛合い係合状態のままで前記第1の動力伝達経路と第2の動力伝達経路間で伝達経路の切替えがなされる構成であることを特徴とする丸鋸。
  3.  請求項1または2に記載の丸鋸であって、
     前記動力源によって駆動される入力軸を有するとともに、当該入力軸がギアによる噛み合い係合によって前記第1の回転軸に接続される一方、前記第2の回転軸が前記鋸刃の出力軸とされ、
     互いに平行に配置された前記第1及び第2の回転軸に対し更に前記入力軸が平行に配置された平行3軸式とされた構成であることを特徴とする丸鋸。
  4.  請求項2に記載の丸鋸であって、
     前記第1及び第2のクラッチの少なくとも一方は、前記第1または第2の回転軸上において、互いに対向状に配置された駆動側クラッチ部材と被動側クラッチ部材によって構成されるとともに、前記駆動側クラッチ部材及び被動側クラッチ部材のいずれか一方が、前記鋸刃に作用するトルクに基づき、互いに噛み合い係合して動力伝達状態とされる動力伝達位置と、噛み合い係合を解除して動力遮断状態とされる動力遮断位置との間で長軸方向にスライド動作可能な摺動式噛み合いクラッチによって構成されていることを特徴とする丸鋸。
  5.  請求項4に記載の丸鋸であって、
     前記変速機構は、前記摺動式噛み合いクラッチが一旦前記動力遮断状態に切替わった後は、当該切替わった状態を保持するラッチ機構を有する構成であることを特徴とする丸鋸。
  6.  請求項5に記載の丸鋸であって、
     前記変速機構は、前記動力源の停止時において前記摺動式噛み合いクラッチを前記動力伝達状態に戻すリセット機構を有する構成であることを特徴とする丸鋸。
  7.  請求項4に記載の丸鋸であって、
     前記変速機構は、前記動力源の起動時において前記鋸刃の慣性によって前記摺動式噛み合いクラッチが前記動力伝達状態と前記動力遮断状態との間で切替わるのを規制する切替規制機構を更に有する構成であることを特徴とする丸鋸。
  8.  請求項4に記載の丸鋸であって、
     前記変速機構は、作業者によって操作される切替設定値調節機構を更に有し、前記切替設定値調節機構は、前記摺動式噛み合いクラッチの前記動力伝達状態と前記動力遮断状態との間での伝達経路の切替わりを規定する切替設定値を調節する構成であることを特徴とする丸鋸。
  9.  請求項1から8までのいずれかに記載の丸鋸であって、
     前記変速機構は、前記鋸刃による被加工材の最小切り込み深さに基づいて規定される最小トルクと、前記鋸刃による被加工材の最大切り込み深さに基づいて規定される最大トルクとの間の通常使用トルク範囲における前記鋸刃の出力特性ないし効率特性に関し、前記最小トルクと前記最大トルクとの間の中間トルクを下回るトルク領域にて少なくとも1つのピークを有する略山形の第1の特性曲線を形成する第1の設定モードと、前記中間トルクを上回るトルク領域にて少なくとも1つのピークを有する略山形の第2の特性曲線を形成する第2の設定モードを含む構成であることを特徴とする丸鋸。
  10.  動力源と、被加工材を切断するべく回転駆動される鋸刃と、前記動力源と前記鋸刃との間に介在して前記鋸刃の回転速度を可変とする変速機構を有する丸鋸であって、
     前記変速機構は、前記鋸刃による被加工材の最小切り込み深さに基づいて規定される最小トルクと、前記鋸刃による被加工材の最大切り込み深さに基づいて規定される最大トルクとの間の通常使用トルク範囲における前記鋸刃の出力特性ないし効率特性に関し、前記最小トルクと前記最大トルクとの間の中間トルクを下回るトルク領域にて少なくとも1つのピークを有する略山形の第1の特性曲線を形成する第1の設定モードと、前記中間トルクを上回るトルク領域にて少なくとも1つのピークを有する略山形の第2の特性曲線を形成する第2の設定モードを含む構成であることを特徴とする丸鋸。
  11.  請求項10に記載の丸鋸であって、
     前記変速機構は、前記第1の設定モードにおける前記第1の特性曲線のピークに対応する第1トルクと、前記第2の設定モードにおける前記第2の特性曲線のピークに対応する第2トルクとに関し、前記第1トルクに対する前記第2トルクの比率が1.5~2.5とされた構成であることを特徴とする丸鋸。
  12.  請求項10に記載の丸鋸であって、
     前記変速機構は、前記第1の設定モード時に前記動力源によって駆動される入力軸のトルクを前記鋸刃の出力軸に伝達する第1の動力伝達経路と、前記第2の設定モード時に前記入力軸のトルクを前記出力軸に伝達する第2の動力伝達経路を有し、
     前記第1の動力伝達経路は、前記入力軸に接続される第1の駆動ギアと、前記第1の駆動ギアに噛み合い係合するとともに前記出力軸に接続される第1の被動ギアを含み、
     前記第2の動力伝達経路は、前記入力軸に接続される第2の駆動ギアと、前記第2の駆動ギアに噛み合い係合するとともに前記出力軸に接続される第2の被動ギアを含み、
     前記第1の駆動ギアに対する前記第1の被動ギアの第1ギア比と、前記第2の駆動ギアに対する前記第2の被動ギアの第2ギア比とに関し、前記第1ギア比に対する前記第2ギア比の比率が1.5~2.5とされた構成であることを特徴とする丸鋸。
  13.  請求項10~12のうちのいずれか一項に記載の丸鋸であって、
     前記鋸刃に作用するトルクを検知する検知機構を備え、
     前記変速機構は、前記検知機構によって検知された検知トルクに基づき、当該検知トルクが前記中間トルクを上回った場合に前記第1の設定モードから前記第2の設定モードへと切り替わる一方、当該検知トルクが前記中間トルクを下回った場合に前記第2の設定モードから前記第1の設定モードへと切り替わる構成であることを特徴とする丸鋸。
PCT/JP2009/060558 2008-06-10 2009-06-09 丸鋸 WO2009151064A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09762494.4A EP2298482B1 (en) 2008-06-10 2009-06-09 Circular saw
US12/996,838 US8739417B2 (en) 2008-06-10 2009-06-09 Circular saw
RU2010153877/02A RU2496615C2 (ru) 2008-06-10 2009-06-09 Циркулярная пила
CN2009801215968A CN102056697B (zh) 2008-06-10 2009-06-09 圆锯

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-152167 2008-06-10
JP2008152167A JP5435900B2 (ja) 2008-06-10 2008-06-10 丸鋸
JP2008152146A JP5435899B2 (ja) 2008-06-10 2008-06-10 丸鋸
JP2008-152146 2008-06-10

Publications (1)

Publication Number Publication Date
WO2009151064A1 true WO2009151064A1 (ja) 2009-12-17

Family

ID=41416770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060558 WO2009151064A1 (ja) 2008-06-10 2009-06-09 丸鋸

Country Status (5)

Country Link
US (1) US8739417B2 (ja)
EP (1) EP2298482B1 (ja)
CN (1) CN102056697B (ja)
RU (1) RU2496615C2 (ja)
WO (1) WO2009151064A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037867A1 (zh) * 2010-09-20 2012-03-29 胡必松 具有安全换挡装置的多功能电动工具
USD668922S1 (en) 2012-01-20 2012-10-16 Milwaukee Electric Tool Corporation Powered cutting tool
US9339938B2 (en) 2010-10-08 2016-05-17 Milwaukee Electric Tool Corporation Powered cutting tool

Families Citing this family (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8632535B2 (en) 2007-01-10 2014-01-21 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7604151B2 (en) 2007-03-15 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8695224B2 (en) * 2007-09-13 2014-04-15 Black & Decker Inc. Saw with increased depth of cut
BRPI0901282A2 (pt) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc instrumento cirúrgico de corte e fixação dotado de eletrodos de rf
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8269612B2 (en) 2008-07-10 2012-09-18 Black & Decker Inc. Communication protocol for remotely controlled laser devices
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CA2751664A1 (en) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
BR112013027794B1 (pt) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc Conjunto de cartucho de grampos
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9757806B2 (en) * 2011-10-20 2017-09-12 Makita Corporation Hand-held cutting tools
US9908182B2 (en) 2012-01-30 2018-03-06 Black & Decker Inc. Remote programming of a power tool
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
CN103291844A (zh) * 2012-03-02 2013-09-11 博世电动工具(中国)有限公司 电动工具及其传动装置
BR112014024102B1 (pt) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc Conjunto de cartucho de prendedores para um instrumento cirúrgico, e conjunto de atuador de extremidade para um instrumento cirúrgico
RU2644272C2 (ru) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Узел ограничения, включающий компенсатор толщины ткани
JP6105041B2 (ja) 2012-03-28 2017-03-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 低圧環境を画定するカプセルを含む組織厚コンペンセーター
US8919456B2 (en) 2012-06-08 2014-12-30 Black & Decker Inc. Fastener setting algorithm for drill driver
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
RU2636861C2 (ru) 2012-06-28 2017-11-28 Этикон Эндо-Серджери, Инк. Блокировка пустой кассеты с клипсами
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
JP2014079874A (ja) * 2012-09-26 2014-05-08 Makita Corp 動力工具
JP2014148006A (ja) * 2013-02-01 2014-08-21 Makita Corp 電動工具及び携帯用マルノコ
MX368026B (es) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal.
BR112015021082B1 (pt) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
JP2014217921A (ja) * 2013-05-09 2014-11-20 株式会社マキタ 切断工具
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
JP6416260B2 (ja) 2013-08-23 2018-10-31 エシコン エルエルシー 動力付き外科用器具のための発射部材後退装置
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (ja) 2014-02-24 2019-01-30 エシコン エルエルシー 発射部材ロックアウトを備える締結システム
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
CN106456176B (zh) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 包括具有不同构型的延伸部的紧固件仓
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
BR112016023807B1 (pt) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc Conjunto de cartucho de prendedores para uso com um instrumento cirúrgico
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6612256B2 (ja) 2014-04-16 2019-11-27 エシコン エルエルシー 不均一な締結具を備える締結具カートリッジ
DE102014208584A1 (de) * 2014-05-07 2015-11-12 Keuro Besitz Gmbh & Co. Edv-Dienstleistungs Kg Sägemaschine und Verfahren zum Steuern einer Sägemaschine
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (es) 2014-09-26 2017-12-04 Ethicon Llc Refuerzos de grapas quirúrgicas y materiales auxiliares.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
RU2703684C2 (ru) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Хирургический инструмент с упором, который выполнен с возможностью избирательного перемещения относительно кассеты со скобами вокруг дискретной неподвижной оси
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US9475385B1 (en) 2015-08-18 2016-10-25 Borgwarner Inc. Electronic shift on the fly part-time electro mechanical transfer case
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US9463691B1 (en) 2016-01-08 2016-10-11 Borgwarner Inc. Electronic shift on the fly part-time electro mechanical transfer case
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
CN108882932B (zh) 2016-02-09 2021-07-23 伊西康有限责任公司 具有非对称关节运动构造的外科器械
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
JP6632504B2 (ja) * 2016-10-03 2020-01-22 株式会社ミツバ 動力伝達機構、アクチュエータ、および車両用アクチュエータ
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
CN110087565A (zh) 2016-12-21 2019-08-02 爱惜康有限责任公司 外科缝合系统
JP7086963B2 (ja) 2016-12-21 2022-06-20 エシコン エルエルシー エンドエフェクタロックアウト及び発射アセンブリロックアウトを備える外科用器具システム
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
JP6983893B2 (ja) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US10875109B1 (en) 2018-04-30 2020-12-29 Kreg Enterprises, Inc. Adaptive cutting system
DE102019206810A1 (de) * 2018-05-31 2019-12-05 Bosch Limited Eine Halteanordnung für ein Kreissägewerkzeug
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
CN109093777B (zh) * 2018-08-31 2020-10-23 惠安县螺阳林飞燕汽车维修中心 一种根据受力不同进行不同切割的自动化木材切割设备
EP3858552B1 (en) 2018-09-28 2024-03-27 Koki Holdings Co., Ltd. Work machine
CN109278112B (zh) * 2018-11-01 2020-12-08 温州炘都工业设计有限公司 一种手持型电圆锯
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
RU193142U1 (ru) * 2019-06-28 2019-10-15 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" (НИИСФ РААСН) Инструмент для создания плоских граней на поверхности бревна
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
CN110744132B (zh) * 2019-11-06 2024-06-07 广州亿海餐饮设备有限公司 一种电动切割机
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
EP3854556B1 (de) * 2020-01-22 2024-03-06 Andreas Stihl AG & Co. KG Verfahren zum betreiben eines handgeführten bearbeitungsgeräts und handgeführtes bearbeitungsgerät
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
JP1687730S (ja) * 2020-09-04 2021-06-14
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
JP2022128135A (ja) * 2021-02-22 2022-09-01 株式会社マキタ 電動工具
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11897114B1 (en) * 2022-08-16 2024-02-13 Techtronic Cordless Gp Accessory storage location for power tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817926U (ja) * 1981-07-24 1983-02-03 株式会社 ワタイマシンツ−ル 鉄、非鉄兼用鋸装置
JPH0199714A (ja) 1987-05-20 1989-04-18 Bekaert Sa:Nv ゴム製品強化用の鋼ワイヤの製造方法及びその鋼ワイヤ
JPH03221401A (ja) * 1990-01-26 1991-09-30 Hiroshi Tanaka 遊星ギヤー減速装置によるハンドカッター及びチェーンソー
JPH0479017U (ja) * 1990-11-20 1992-07-09
JP3009160U (ja) * 1994-09-05 1995-03-28 金波 黄 丸ノコ盤
JP2007290235A (ja) * 2006-04-25 2007-11-08 Makita Corp 切断機

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1396512A (en) * 1919-03-08 1921-11-08 Pierce Arrow Motor Car Company Change-speed-gear transmission
US3713217A (en) * 1971-04-26 1973-01-30 American Standard Inc Door latch cut-out forming
DE7141263U (de) 1971-11-02 1973-04-19 Bosch R Gmbh Elektrowerkzeug insbesondere elektrische schlagbohrmaschine
US3858317A (en) * 1973-12-13 1975-01-07 Clancy B Ford Pipe cutting adapter for power drills
DE2746192C3 (de) * 1977-10-14 1980-04-24 Ernst Prof. Dr.-Ing. 2106 Bendestorf Salje Kreissäge-Werkzeug
US4710071A (en) * 1986-05-16 1987-12-01 Black & Decker Inc. Family of electric drills and two-speed gear box therefor
US5239758A (en) * 1992-04-20 1993-08-31 Lindell Lester G Hand drill powered mini chain saw
JPH07217709A (ja) * 1994-02-02 1995-08-15 Sanwa Seiki Co Ltd 変速装置
DE19625850B4 (de) * 1995-06-27 2008-01-31 Matsushita Electric Works, Ltd., Kadoma Planetengetriebe
GB9621202D0 (en) * 1996-10-11 1996-11-27 Black & Decker Inc Mode change switch
CN2292902Y (zh) 1997-01-15 1998-09-30 陈月 电钻的回转锤击切换装置
DE10023174A1 (de) 2000-05-11 2001-11-22 Bosch Gmbh Robert Werkzeugmaschine, insbesondere Handwerkzeugmaschine
US6676557B2 (en) 2001-01-23 2004-01-13 Black & Decker Inc. First stage clutch
TW558475B (en) * 2003-02-25 2003-10-21 Power Network Industry Co Ltd Power transmission device capable of automatic gear shifting
GB0505457D0 (en) 2005-03-18 2005-04-20 Black & Decker Inc Torque overload clutch for rotary hammer drills
JP4593387B2 (ja) * 2005-07-04 2010-12-08 株式会社マキタ 電動工具
JP4628988B2 (ja) * 2006-04-14 2011-02-09 本田技研工業株式会社 平行軸式変速機
US7798245B2 (en) * 2007-11-21 2010-09-21 Black & Decker Inc. Multi-mode drill with an electronic switching arrangement
US7854274B2 (en) * 2007-11-21 2010-12-21 Black & Decker Inc. Multi-mode drill and transmission sub-assembly including a gear case cover supporting biasing
US8172004B2 (en) * 2009-08-05 2012-05-08 Techtronic Power Tools Technology Limited Automatic transmission for a power tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817926U (ja) * 1981-07-24 1983-02-03 株式会社 ワタイマシンツ−ル 鉄、非鉄兼用鋸装置
JPH0199714A (ja) 1987-05-20 1989-04-18 Bekaert Sa:Nv ゴム製品強化用の鋼ワイヤの製造方法及びその鋼ワイヤ
JPH03221401A (ja) * 1990-01-26 1991-09-30 Hiroshi Tanaka 遊星ギヤー減速装置によるハンドカッター及びチェーンソー
JPH0479017U (ja) * 1990-11-20 1992-07-09
JP3009160U (ja) * 1994-09-05 1995-03-28 金波 黄 丸ノコ盤
JP2007290235A (ja) * 2006-04-25 2007-11-08 Makita Corp 切断機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2298482A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037867A1 (zh) * 2010-09-20 2012-03-29 胡必松 具有安全换挡装置的多功能电动工具
US9339938B2 (en) 2010-10-08 2016-05-17 Milwaukee Electric Tool Corporation Powered cutting tool
US9757868B2 (en) 2010-10-08 2017-09-12 Milwaukee Electric Tool Corporation Powered cutting tool
USD668922S1 (en) 2012-01-20 2012-10-16 Milwaukee Electric Tool Corporation Powered cutting tool

Also Published As

Publication number Publication date
US8739417B2 (en) 2014-06-03
RU2010153877A (ru) 2012-07-20
EP2298482B1 (en) 2016-01-13
CN102056697B (zh) 2013-05-29
CN102056697A (zh) 2011-05-11
US20110167651A1 (en) 2011-07-14
EP2298482A1 (en) 2011-03-23
EP2298482A4 (en) 2012-02-29
RU2496615C2 (ru) 2013-10-27

Similar Documents

Publication Publication Date Title
WO2009151064A1 (ja) 丸鋸
WO2009151059A1 (ja) 動力工具
JP5017185B2 (ja) 動力工具
EP2338645B1 (en) Power tool
JP5562540B2 (ja) 電動工具
WO2010021252A1 (ja) 電動工具
JP5017187B2 (ja) 動力工具
JP5566840B2 (ja) 回転工具
JP5017188B2 (ja) 動力工具
JP5435900B2 (ja) 丸鋸
JP5435899B2 (ja) 丸鋸
JP4270927B2 (ja) 電動スクリュードライバ
JP5017186B2 (ja) 動力工具
WO2019159819A1 (ja) 作業工具
JP2005238389A (ja) 回転工具
US7594856B2 (en) Overload clutch device, clutch disk, and driving toothed wheel
JP5975328B2 (ja) 変速装置、及び変速装置を備えた動力工具
JP4177597B2 (ja) 電動スクリュードライバ
JP3811414B2 (ja) 電動スクリュードライバ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121596.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010153877

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12996838

Country of ref document: US