WO2009145148A1 - 清掃用シートの製造方法 - Google Patents

清掃用シートの製造方法 Download PDF

Info

Publication number
WO2009145148A1
WO2009145148A1 PCT/JP2009/059536 JP2009059536W WO2009145148A1 WO 2009145148 A1 WO2009145148 A1 WO 2009145148A1 JP 2009059536 W JP2009059536 W JP 2009059536W WO 2009145148 A1 WO2009145148 A1 WO 2009145148A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
fiber
hot air
laminate
cleaning sheet
Prior art date
Application number
PCT/JP2009/059536
Other languages
English (en)
French (fr)
Inventor
高林 圭馬
和田 稔
賢司 石川
和俊 大塚
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN2009801180691A priority Critical patent/CN102036595A/zh
Priority to US12/992,559 priority patent/US8650727B2/en
Priority to AU2009252434A priority patent/AU2009252434B2/en
Priority to EP09754656.8A priority patent/EP2286705B1/en
Publication of WO2009145148A1 publication Critical patent/WO2009145148A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/16Cloths; Pads; Sponges
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/482Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with shrinkage
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • D04H1/495Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet for formation of patterns, e.g. drilling or rearrangement
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • D04H5/03Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns

Definitions

  • the present invention relates to a cleaning sheet suitably used for collecting and removing cotton dust, hair, lint, and the like.
  • the present applicant has previously proposed a technique for manufacturing a bulky sheet by reinforcing a nonwoven fabric formed by entanglement of fibers with a mesh sheet and forming a concavo-convex shape by heat shrinkage treatment of the mesh sheet (Patent Literature). 1 and Patent Document 2). Apart from these bulky sheets, the present applicant has proposed a bulky sheet comprising a fiber assembly formed by hydroentangling a fiber web and having a large number of irregularities formed from the fiber assembly ( (See Patent Document 3). The concavo-convex portion in the bulky sheet is formed by rearranging the constituent fibers by hydroentanglement applied to the fiber assembly and bending the fiber assembly in the thickness direction. is there.
  • the sheets obtained by the methods described in Patent Documents 1 and 2 have moderate unevenness, and are characterized by being soft and soft to the touch.
  • the convex portion is formed by heat shrinkage of the fiber, the fiber density of the convex portion tends to be high. As a result, there is room for improvement in improving the entanglement property of cotton dust and the like by the constituent fibers of the convex portion.
  • the sheet obtained by the method described in Patent Document 3 can be collected between the constituent fibers and can be retained, and relatively large dirt such as bread crumbs that cannot be collected between the constituent fibers is uneven. There is an advantage that it can be collected and held. However, when high-speed production is performed in order to increase productivity, high tension is applied to the sheet being conveyed due to this, and the bulkiness of the unevenness may be reduced.
  • JP-A-5-25763 Japanese Patent Laid-Open No. 5-192285 US6,936,333B2 US7,131,171B2
  • An object of the present invention is to provide a method for manufacturing a cleaning sheet that can eliminate the disadvantages of the above-described conventional technology.
  • the fiber web containing fibers containing polyethylene terephthalate is superposed on one side or both sides of the net-like sheet, and hydroentanglement is applied to these to entangle the constituent fibers of the fiber web.
  • the fiber of the fiber web and the mesh sheet are entangled to obtain a laminate.
  • a method for producing a cleaning sheet in which hot air having a temperature higher than the glass transition point (Tg (° C.)) of the polyethylene terephthalate and less than Tg (° C.) + 70 ° C. is blown onto the laminate by an air-through method. It is.
  • FIG. 2 is an enlarged cross-sectional view showing a cross section taken along line AA of FIG. 1. It is the schematic of the manufacturing apparatus used suitably with the manufacturing method of this invention. It is the schematic of the manufacturing apparatus used suitably with the manufacturing method of this invention.
  • the cleaning sheet 10 includes a fiber assembly 1 formed by hydroentanglement of a fiber web and a net-like sheet 4 disposed inside the fiber assembly 1. .
  • the fiber assembly 1 and the mesh sheet 4 are intertwined with the constituent fibers of the fiber assembly 1 and the mesh sheet 4 by hydroentanglement, and both are integrated.
  • the cleaning sheet 10 has a first surface 10a and a second surface 10b, and is formed by projecting from one surface side to the other surface side. Convex parts 2, 2,. Between the convex portions 2, 2,..., Concave portions 3, 3,.
  • the convex portions 2, 2,... are approximately the same size, have a slightly narrow and narrow mountain shape, and are provided regularly.
  • the distance between the convex portions 2 and 2 is preferably 1 to 10 mm, more preferably 1 to 7 mm in the width direction of the sheet (X direction in FIG. 1, CD direction in the present embodiment), and more preferably 1 to 7 mm.
  • the Y direction in FIG. 1 (MD direction in this embodiment)
  • it is preferably 4 to 20 mm, more preferably 4 to 15 mm.
  • the convex portion 2 may be partly connected to form a continuous body in the width direction and / or the longitudinal direction of the sheet. By providing the convex portions 2 at such intervals, the feel of the sheet 10 can be improved.
  • the cleaning sheet 10 preferably has the same performance on both surfaces, and the shape and spacing of the convex portions 2 on the second surface 10b are preferably substantially the same as those on the first surface 10a.
  • the total area of the convex portions 2 of the second surface 10b is preferably 20 to 100%, more preferably 35 to 100% of the total area of the convex portions 2 of the first surface 10a.
  • the convex portion 2 existing on the first surface of the cleaning sheet 10 is preferably in a front-back relationship with the concave portion 3 existing on the second surface of the sheet 10.
  • the shape of the convex portion 2 is an inversion of the shape of the concave portion 3.
  • the convex portion 2 and the concave portion 3 are composed of the fiber assembly 1 and are formed only by entanglement of the constituent fibers of the fiber assembly 1. For this reason, unlike the convex part formed by fusion-bonding by partially heating and pressing fibers made of a thermoplastic resin, the convex part 2 and the concave part 3 have a good touch, Excellent collection and retention of dirt such as fine dust.
  • the convex part 2 and the concave part 3 in the cleaning sheet 10 are formed by rearrangement / re-entanglement of the constituent fibers by hydroentanglement applied to the fiber assembly 1, the convex part 2 and the concave part 3 itself retains its form. Therefore, the convex portion 2 and the concave portion 3 are difficult to be sagged against the load. Due to the formation of the convex portion 2 and the concave portion 3, the apparent thickness of the cleaning sheet 10 is greater than the thickness of the fiber assembly 1 before the convex portion 2 and the concave portion 3 are applied. Also grows.
  • the cleaning sheet 10 having the convex portion 2 and the concave portion 3 having high form-retaining properties is excellent in the cleaning properties of grooves and uneven surfaces, and the collection and retention properties of bread crumbs.
  • “formed by fiber rearrangement / re-entanglement” means that the fiber assembly once weakly entangled by hydroentanglement has a large number of irregularities or a large number of openings.
  • the fibers are rearranged along the concavo-convex portion and entangled again.
  • the convex portion 2 and the concave portion 3 are formed by bending the fiber assembly 1 in the thickness direction.
  • a large number of bent portions formed in the bend-like fiber assembly 1 correspond to the convex portion 2 and the concave portion 3, respectively.
  • the convex portion 2 and the concave portion 3 are formed by rearrangement of fibers.
  • the constituent fibers of the convex portion 2 flow toward the concave portion 3 due to the pressure of high-pressure water.
  • the distribution of the fibers is very low.
  • a hole will be formed where the convex portion 2 was.
  • the cleaning sheet 10 having the above-described configuration has a large uneven shape despite having a low basis weight.
  • the bending of the fiber assembly 1 may extend in either the flow direction (MD) or the width direction (CD).
  • the energy applied during hydroentanglement may be set to a value described later.
  • the degree of bending of the cleaning sheet 10 is as high as 2 to 15%, particularly 3 to 15%.
  • the bending rate is measured by the method described in US Pat. No. 6,936,333B2 at column 12, line 51 to column 13, line 6. This document is incorporated herein as part of this specification.
  • the convex portion 2 When considering the range of 10 cm ⁇ 10 cm on one surface of the cleaning sheet 10, the convex portion 2 has an average of 50 to 850, particularly 100 to 600, in any position on the surface. Preferably it is formed. By setting the number of the convex portions 2 within the above range, the convex portions 2 and the concave portions 3 are arranged in a well-balanced manner. It is also excellent in the collection and retention of large dirt.
  • the apparent specific volume of the cleaning sheet 10 is preferably 23 to 100 cm 3 / g, more preferably 25 to 90 cm 3 / g, and particularly preferably 30 to 80 cm 3 / g.
  • the value of the apparent specific volume is the value obtained by dividing the value of the apparent thickness, which will be described later, by the basis weight of the fiber assembly (in the case of a sheet intertwined with the mesh sheet, the basis weight excluding the mesh sheet). Defined.
  • the cleaning sheet 10 preferably has an apparent specific volume under a load during cleaning of 18 cm 2 / g or more, particularly 20 cm 2 / g or more.
  • the upper limit is 100 cm 2 / g.
  • the cleaning sheet 10 has an apparent thickness (thickness between the uppermost portion of the first surface 10a and the lowermost portion of the second surface 10b) T, which is the thickness of the fiber assembly 1 itself. It is thicker than t and is extremely bulky.
  • the apparent thickness T of the cleaning sheet 10 itself is 1 to 5 mm, particularly 1.4 to 4 mm, and a sufficient gap is formed in the sheet, resulting in an increase in bulk.
  • the cleaning sheet 10 is suitably used as a cleaning sheet. It is preferable from the point of obtaining.
  • the value of the thickness t of the fiber assembly 1 itself is determined by the basis weight of the fiber assembly 1 and the processing conditions, but is preferably 0.5 to 4 mm, more preferably 1 to 3 mm.
  • the height h of the convex portion is preferably 0.2 mm to 4 mm, more preferably 0.5 mm to 4 mm.
  • the cleaning sheet 10 has an elongation in the flow direction (MD) of 5% or less, particularly 4% or less under the condition that a 5N load is applied to a sample having a width of 30 mm. This is preferable from the viewpoint of preventing the deformation of the convex portion 2 and the concave portion 3 due to the stretching of the cleaning sheet 10 during the manufacturing process or during use, and thus preventing the bulkiness of the cleaning sheet 10 from being lowered.
  • MD flow direction
  • the measuring method of elongation in the flow direction is as follows. A sample having a width of 30 mm is cut from the cleaning sheet 10 in a direction perpendicular to the flow direction, and then the sample is gripped by a tensile tester at a distance between chucks of 100 mm and pulled in the flow direction at a speed of 300 mm / min. Then, the elongation amount of the sample when the tensile load is 5 N is divided by the initial sample length (100 mm), and a value multiplied by 100 is defined as the elongation.
  • the fiber assembly 1 is a nonwoven fabric in which the constituent fibers are intertwined by hydroentanglement of the fiber web. Since the fiber assembly 1 is formed only by the entanglement of the constituent fibers, the degree of freedom of the constituent fibers is larger than that of the web formed only by fusing or bonding the constituent fibers. For this reason, while being excellent in the collection property and retention of dirt, such as hair and fine dust by the constituent fiber, it is good in touch.
  • the fibers constituting the fiber assembly 1 in the present embodiment, fibers containing polyethylene terephthalate (PET) are used.
  • PET polyethylene terephthalate
  • the fiber containing PET include a single fiber made of only PET, a single fiber made of a blend of PET and another thermoplastic resin, and a composite fiber containing PET.
  • this composite fiber for example, a core-sheath type composite fiber having PET as a core component and a side-by-side type composite fiber having PET as one component are used.
  • the PET it is preferable to use a PET having a weight average molecular weight of 5,000 to 100,000, particularly 8,000 to 50,000, from the viewpoint of expressing the bulk of the cleaning sheet 10 by hot air treatment.
  • the fiber assembly 1 may be composed only of fibers containing PET, or may be composed of other fibers in addition to the fibers. As other fibers, for example, fibers described in US Pat. No. 5,525,397A, column 4, lines 3 to 10 can be used. This document is incorporated herein as part of this specification.
  • the amount of the fiber containing PET is preferably 40% by weight or more, particularly 50% by weight or more based on the weight of the fiber assembly 1, The amount is preferably less than 60% by weight, in particular less than 50% by weight, based on the weight of the fiber assembly 1.
  • the fiber assembly 1 is preferably composed only of fibers containing PET.
  • the thickness of the fiber containing PET is not particularly critical with respect to the bulkiness of the cleaning sheet 10 by hot air treatment. From the viewpoint of the ability to collect and retain hair and dirt, the thickness of the fiber containing PET is preferably 0.05 to 100 dtex, particularly 0.5 to 20 dtex.
  • the basis weight of the fiber assembly 1 and the fiber length of the constituent fibers are determined by comprehensively considering processability, cost, and the like.
  • the basis weight of the fiber assembly 1 is preferably 30 to 100 g / m 2 , particularly preferably 40 to 70 g / m 2 .
  • the fiber length of the constituent fibers is preferably 20 to 100 mm, particularly 30 to 65 mm, from the viewpoints of preventing perforation from being generated in the cleaning sheet 10, exhibiting sufficient bulkiness, and maintaining the bulkiness.
  • the netting sheet 4 is disposed in the fiber assembly 1 in the cleaning sheet 10.
  • the net-like sheet 4 is a resin net formed in a lattice shape as a whole.
  • the mesh sheet 4 preferably has an air permeability of 0.1 to 1000 cm 3 / (cm 2 ⁇ sec).
  • a non-woven fabric, paper, film, etc. can be used as the mesh sheet 4 in addition to the net as long as the air permeability is within this range.
  • the fiber assembly 1 is not only intertwined between the constituent fibers, but also the constituent fibers of the fiber assembly 1 and the mesh sheet 4 are intertwined, so that the tensile strength is improved.
  • the wire diameter of the reticulated sheet 4 is preferably 50 to 600 ⁇ m, more preferably 100 to 400 ⁇ m.
  • the distance between the lines is preferably 2 to 30 mm, more preferably 4 to 20 mm.
  • the constituent material of the mesh sheet 4 may be heat shrinkable. When a heat-shrinkable material is used, a heat treatment is performed during the production of the cleaning sheet, whereby the cleaning sheet having a large apparent thickness T and a sharp convex shape can be obtained. However, it is preferable that the reticulated sheet 4 is not thermally shrunk or has a heat shrinkage rate of 3% or less after heating at 140 ° C. for 3 minutes.
  • the cleaning sheet 10 has a basis weight of 30 to 110 g / m 2 , in particular 38 to 80 g / m 2 , particularly 45 to 80 g / m 2 , which gives the sheet a suitable thick feeling and processing. This is preferable from the viewpoint of improving aptitude.
  • the breaking strength is 30 mm in width, it is preferably 5N or more, particularly 7N or more from the viewpoint of providing a sheet having a strength that can be used.
  • the breaking strength is sufficient if it is not less than the above value in any direction of the cleaning sheet 10, but is preferably not less than the above value in the width direction (CD) where the strength is most difficult to be obtained.
  • the upper limit of the breaking strength is about 20N from the viewpoint of actual use.
  • Rupture strength is measured as follows. After cutting a sample having a width of 30 mm in a direction perpendicular to the fiber orientation direction of the sheet, this sample is gripped by a tensile tester at a distance between chucks of 100 mm, and at a speed of 300 mm / min in a direction perpendicular to the fiber orientation direction. The load value (the first peak value of the continuous curve obtained by this measurement) when the sheet starts to be pulled is taken as the breaking strength.
  • a polymerization process for polymerizing the upper layer fiber web 1a and the lower layer fiber web 1b on both surfaces of the mesh sheet 4 and between the constituent fibers of the fiber webs 1a and 1b by hydroentanglement are entangled with each other to form a fiber aggregate, and the constituent fibers and the net-like sheet 4 are entangled to form a laminated body 6 in which both are integrated, and the laminated body 6 has a large number of irregularities.
  • An irregularity imparting step in which a plurality of convex portions corresponding to the concave portions are formed in such a manner that a part of the fiber assembly is protruded into the concave portions and formed into a plurality of convex portions corresponding to the concave portions. . And a hot air spraying process is performed after that.
  • FIG. 3 shows a manufacturing apparatus 20 that is preferably used in the method for manufacturing the cleaning sheet 10.
  • the manufacturing apparatus 20 is roughly divided into a superposition part 20A, an entanglement part 20B, and an unevenness imparting part 20C.
  • the superposition unit 20A includes card machines 21A and 21B for producing fiber webs la and lb, fiber webs la and lb feed rolls 22 and 22, and a net-like sheet feed roll 24, respectively.
  • the entangled portion 20B includes a web support belt 25 made of an endless belt, and a first water jet nozzle 26.
  • the unevenness imparting portion 20 ⁇ / b> C includes a patterning member 27 made of an endless belt and a second water jet nozzle 28.
  • the patterning member 27 is rotated in the direction indicated by the arrow in FIG.
  • the patterning member 27 is liquid-permeable and has a large number of irregularities on its surface. Details thereof are described in US Pat. No. 6,936,333 B2, column 8 to column 9, line 19 and FIGS. 4 (a) and 4 (b). This document is incorporated herein as part of this specification.
  • a conveyor belt 29 is provided after the unevenness imparting portion 20C.
  • the patterning member 27 preferably has a certain thickness. Specifically, the thickness of 5 to 25 mm, particularly 5 to 15 mm, can provide a sufficiently high bulkiness, and can provide unevenness. It is preferable from the viewpoint of energy efficiency. For the same reason, the patterning member 27 preferably has an air permeability of 800 to 3000 cm 3 / (cm 2 ⁇ sec), particularly 800 to 2000 cm 3 / (
  • the fiber webs la and lb are continuously fed out from the card machines 21A and 21B in the superposition unit 20A through the feeding rolls 22 and 22, respectively.
  • At least one of the fiber webs la and lb preferably contains 40% by weight or more of fibers containing polyethylene terephthalate.
  • a roll 23 of the reticulated sheet 4 is disposed between the card machines 21A and 21B, and the reticulated sheet 4 is fed out from a feed roll 24 of the roll 23.
  • the fiber webs la and lb are respectively overlapped on both surfaces of the mesh sheet 4 by the feeding rolls 22 and 22 to form the polymer 5.
  • At least one of the fiber webs 1a and 1b preferably contains 40% by weight or more of fibers containing PET. More preferably, both of the fiber webs 1a and 1b contain 40% by weight or more of fibers containing PET, and more preferably, both of the fiber webs 1a and 1b consist of 100% of fibers containing PET.
  • the polymer 5 transferred and conveyed on the web support belt 25 is entangled by a high-pressure jet water stream ejected from the first water jet nozzle 26.
  • the constituent fibers of the fiber webs la and lb in the polymer 5 are intertwined to form a fiber aggregate, and the constituent fibers and the mesh sheet 4 are intertwined.
  • An integrated laminate 6 is obtained.
  • the fiber which comprises the fiber assembly in the laminated body 6 is a low entanglement state.
  • the entangled state is 0.05 to 2 N ⁇ m / g, particularly 0.2 to 1.2 N ⁇ m / g, expressed as an entanglement coefficient.
  • the entanglement coefficient is a scale representing the entangled state between the constituent fibers, and is represented by the initial slope of the stress-strain curve in the direction perpendicular to the fiber orientation in the fiber assembly 1 of the integrated laminate 6. It can be said that the smaller the is, the weaker the entanglement between the fibers.
  • the fiber orientation is the direction in which the maximum point load value at the time of the tensile strength test is maximized, and the stress is the tensile load, the width (test specimen width at the tensile strength test), and the basis weight of the fiber assembly 1. The value is divided, and the strain indicates the amount of elongation.
  • a specific measurement method is described in US Pat. No. 6,936,333 B2, column 12, lines 32 to 50. This document is incorporated herein as part of this specification.
  • the laminate 6 is transferred and transported onto the patterning member 27 in the unevenness imparting portion 20C.
  • the laminated body 6 is partially pressurized by a high-pressure jet water stream ejected from the second water jet nozzle 28 while being conveyed.
  • a portion of the laminated body 6 located on the concave portion of the patterning member 27 is pressurized, and the pressurized portion protrudes into the concave portion.
  • the pressure portion is a concave portion 3 corresponding to the concave portion.
  • a portion located on the convex portion of the patterning member 27 is not projected, and is formed as the convex portion 2. In this way, a large number of convex portions 2, 2...
  • the shape or the like of the convex portion 2 is determined according to the type of the patterning member 27 and the entanglement energy applied to the fiber assembly by the high-pressure jet water flow in the entangled portion 20B and the unevenness imparting portion 20C. This entanglement energy is controlled by conditions such as the nozzle shape of the water jet nozzle, nozzle pitch, water pressure, number of nozzle stages (lines), and line speed.
  • Em is energy applied when forming the fiber assembly 1 by hydroentangling the fiber web
  • Ef is energy applied when a part of the fiber assembly 1 is projected on the patterning member 27.
  • Em / It is preferable to add each energy so as to satisfy 4 ⁇ Ef ⁇ 3Em / 5, from the viewpoints of imparting sufficient bulkiness, preventing fibers from dropping and forming perforations when imparting irregularities, and exhibiting sufficient sheet strength.
  • Em and Ef are calculated from the following equations, respectively.
  • the laminated body 6 given the uneven shape is then conveyed to the hot air treatment apparatus 30 shown in FIG.
  • the laminated body 6 may be unwound from the roll and conveyed to the hot-air treatment apparatus 30, or the laminated body 6 obtained by the apparatus 20 shown in FIG. You may convey to the hot-air processing apparatus 30 directly, without winding up.
  • the laminate 6 once wound in a roll is drawn out from the roll and subjected to hot air treatment because the effect of bulk recovery becomes more remarkable.
  • corrugated shape performs the drying process by a hot air etc., even if it winds up in roll shape once or it does not wind up.
  • a drying process is performed by the apparatus and conditions normally used for the sheet
  • the drying process is preferably performed at a temperature lower than the melting point of the lowest melting point component of the constituent fibers of the laminate 6.
  • the conveyor belt 32 is endless, and is supported by a pair of support shafts 33 and 33 so as to go around in a predetermined direction.
  • a heating zone H is installed relatively upstream with respect to the circumferential direction of the conveyor belt 32, and a cooling zone C is installed relatively downstream.
  • the conveyor belt 32 is made of a resin such as metal or polyethylene terephthalate. From the viewpoint of heat dissipation efficiency in the heating zone H and the cooling zone C, the conveyor belt 32 is preferably formed of a resin such as polyethylene terephthalate.
  • a first blower 34 is installed on the upper side of the conveyor belt 32 so as to face the conveyor belt 32. Hot air heated to a predetermined temperature is blown out from the first blower 34 toward the conveyor belt 32.
  • a first suction box 35 for sucking hot air blown from the first blower 34 is installed at a position facing the first blower 34 with the conveyor belt 32 interposed therebetween.
  • the first blower 34 and the first suction box 35 constitute a heating zone H. Hot air sucked by the first suction box 35 is sent to the first blower 34 through a duct (not shown). That is, the hot air circulates between the first blower 34 and the first suction box 35.
  • a second blower 36 is installed facing the conveyor belt 32 immediately downstream of the first blower 34 in the circumferential direction of the conveyor belt 32. From the second blower 36, cold air having a predetermined temperature is blown out toward the conveyor belt 32.
  • a second suction box 37 for sucking cold air blown from the second blower 36 is installed at a position facing the second blower 36 across the conveyor belt 32.
  • the second blower 36 and the second suction box 37 constitute a cooling zone C.
  • the cold air sucked by the second suction box 37 is discharged out of the apparatus through a duct (not shown). That is, unlike the hot air in the heating zone H, the cold air does not circulate between the second blower 36 and the second suction box 37. The reason for this is to prevent the cooling air from being heated by circulation and increase the cooling efficiency of the laminate 6.
  • Partition plates 38 and 38 are installed between the first blower 34 and the second blower 36 and between the first suction box 35 and the second suction box 37, respectively.
  • the partition plate 38 prevents hot air and cold air from being mixed.
  • the roll-shaped laminate 6 manufactured by the apparatus 20 shown in FIG. 3 is arranged at a position upstream of the first blower 34 in the apparatus 30 and the laminate 6 is fed out from the roll. It is.
  • the bulk of the laminate 6 in the state of being wound in a roll shape is reduced by the winding pressure. By passing the laminated body 6 in this state through the apparatus 30, the bulk is recovered.
  • the laminate 6 is conveyed together with the conveyor belt 32.
  • the conveyed laminate 6 is sent to the heating zone H.
  • hot air heated to a predetermined temperature is blown out from the first blower 34 toward the conveyor belt 32.
  • hot air is blown onto the laminate 6 by an air-through method. That is, hot air is blown to the laminate 6, and the blown hot air penetrates the laminate 6.
  • the volume of the laminated body 6 in a state where the volume is reduced is increased and recovered to the same level as the volume before winding. Turned out by.
  • the hot air blown to the laminate 6 is set to a temperature exceeding the glass transition point (Tg (° C.)) of PET in the fiber containing PET contained in the laminate and less than Tg (° C.) + 70 ° C.
  • Tg (° C.) glass transition point
  • the temperature of the hot air is equal to or lower than Tg (° C.)
  • the effect of blowing the hot air is not sufficiently exhibited, and the bulk of the laminate 6 is not recovered.
  • the temperature of the hot air is preferably 80 ° C. or higher and 140 ° C. or lower, particularly 85 ° C. or higher and 135 ° C. or lower.
  • the temperature of the hot air sprayed is lower than the melting point of the resin constituting the mesh sheet 4.
  • the Tg is measured using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the measurement conditions using DSC are an atmosphere of nitrogen and a heating rate of 10 ° C./min.
  • Tg the temperature at which the step is observed on the lower temperature side than the temperature at which the endothermic peak is observed.
  • the hot air blowing time is not a critical factor for bulk recovery, and a short time is sufficient.
  • the bulk of the laminate 6 is preferably increased by spraying hot air for a very short time of preferably 0.05 to 3 seconds, more preferably 0.05 to 1 second, and even more preferably 0.05 to 0.5 seconds. Recover. This contributes to improvement in production efficiency and downsizing of the apparatus 30.
  • the reason why the spraying time is short is considered to be largely due to the air-through method.
  • heat can be applied to the laminate 6 by using a constant temperature dryer or a dryer. However, these spraying methods achieve a bulk recovery in a short time. Can not.
  • the wind speed of the hot air depends on the temperature, the basis weight of the laminated body 6 and the conveying speed, but is 0.5 to 10 m / sec, particularly 1 to 5 m / sec. It is preferable from the point.
  • the volume of the laminate 6 is restored to about 1.2 to 3 times the volume before blowing hot air (that is, the volume after blowing hot air is 1 / 1.2 of the volume before blowing. -1/3)), the desired cleaning sheet is obtained. Further, the thickness of the laminated body 6 recovers to about 50 to 100% of the thickness before being wound into a roll.
  • blowing cold air to the nonwoven fabric immediately after the bulk of the cleaning sheet 10 is recovered by blowing hot air means that any operation is performed between the step of blowing hot air to the cleaning sheet 10 and the step of blowing cool air thereafter. It does not mean that there is no time difference between hot air blowing and cold air blowing.
  • cooling zone C cold air of a predetermined temperature is blowing from the second blower 36 toward the conveyor belt 32.
  • cold air is blown onto the cleaning sheet 10 by an air-through method. That is, in the cooling zone C, cold air is blown onto the cleaning sheet 10, and the blown cold air penetrates the cleaning sheet 10.
  • the temperature of the cold air depends on the type of fibers constituting the nonwoven fabric, a sufficient cooling effect can be obtained if it is 50 ° C. or lower, particularly 30 ° C. or lower.
  • the lower limit value of the temperature of the cold air is not particularly limited, but in view of energy cost and simplification of the apparatus 1, a room temperature of about 20 to 25 ° C. is appropriate.
  • the wind speed of the cold air is preferably 1 to 10 m / sec, particularly 1 to 5 m / sec, and particularly preferably 1 to 3 m / sec. . If the wind speed is within this range, a sufficient cooling effect is exhibited. Moreover, the possibility that the stable conveyance of the cleaning sheet 10 is hindered due to the increase in the wind speed is reduced.
  • the inventors of the present invention have found that a short time for the cold air is sufficient in the same way as the time for the hot air.
  • the cleaning sheet 10 is sufficiently cooled by spraying the cold air for an extremely short time of 0.01 seconds or longer, particularly 0.02 to 1 second, particularly 0.05 to 0.5 seconds.
  • the reason why the spraying time is short is considered to be largely due to the air-through method.
  • the sheet 10 may shrink due to the blowing of hot air in the heating zone H.
  • contraction in the width direction of the sheet 10, that is, in a direction orthogonal to the conveyance direction of the sheet 10 easily occurs.
  • the laminated body 6 is heated in the heating zone H and the cooling zone in a state in which both sides in the transport direction of the laminated body 6 are held by a predetermined holding means so that the width of the laminated body 6 does not change.
  • the method of introducing into C is mentioned.
  • a particularly simple method is that when hot air and cold air are blown onto the laminated body 6 in the heating zone H and the cooling zone C, respectively, the laminated body 6 is pressed onto the conveyor belt 32 by adjusting the wind speed of the hot air and the cold air.
  • variety of a change was mentioned.
  • the wind speeds of the hot air and the cold air are as described above, and the wind speed is determined within the range according to the basis weight of the laminate 6 and the conveyance speed.
  • the cleaning sheet 10 becomes bulky.
  • the bulky cleaning sheet 10 is subsequently subjected to various processing steps as the next step.
  • processing steps there are a step of cutting the cleaning sheet 10 into each leaf, a step of stacking a plurality of cleaning sheets 10 cut into every leaf, and storing them in a packaging bag.
  • the obtained cleaning sheet 10 is used as a dry cleaning sheet or as a wet cleaning sheet impregnated with various cleaning agents.
  • the fiber webs 1 a and 1 b are disposed on each surface of the mesh sheet 4, but the fiber web may be disposed only on one surface of the mesh sheet 4 instead.
  • the fiber web preferably contains 40% by weight or more of fibers containing polyethylene terephthalate.
  • the treatment with the cold air is performed after the hot air treatment using the apparatus 30, but the treatment with the cold air is not necessarily essential.
  • Example 1 A PET fiber (1.45 dtex, 38 mm, Tg 78 ° C., weight average molecular weight 20,000) was used as a raw material, and a fiber web having a basis weight of 24 g / m 2 was obtained using a conventional card method. Using a lattice net made of polypropylene (interfiber distance: 8 mm, wire diameter: 300 ⁇ m) as the net-like sheet, the fiber web was polymerized on the top and bottom, and then ejected from a plurality of nozzles under the conditions of water pressure of 1 to 5 MPa shown in FIG.
  • the laminated body which has the fiber assembly of the entanglement coefficient of 0.5 N ⁇ m / g was obtained by entanglement and integration with a jet water flow.
  • the applied energy Em was 295 kJ / kg.
  • a jet water stream ejected from a plurality of nozzles is applied under the condition of a water pressure of 1 to 5 MPa to give a convex shape, followed by hot air drying, and a laminated body having the concave and convex shapes shown in FIG. 1 and FIG. Got.
  • the added energy Ef was 175 kJ / kg.
  • the patterning member the one shown in FIGS. 4A and 4B of US Pat. No. 6,936,333B2 was used. This document is incorporated herein as part of this specification.
  • the laminate thus obtained was once wound into a roll. Then, the laminated body was drawn out from the roll and conveyed to the apparatus 30 shown in 4.
  • the feeding speed was 150 m / min, which is a speed adapted to high-speed production.
  • Hot air having a temperature shown in Table 1 was blown onto the laminated body at a speed of 3 m / sec by an air-through method. After the hot air was blown, natural cooling was performed. In this way, a cleaning sheet was obtained.
  • Examples 2 and 3 and Comparative Example 1 A cleaning sheet was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were adopted as the hot air treatment conditions.
  • Example 2 A fiber web having a basis weight of 27 g / m 2 was used. Moreover, the hot air process was not performed. Except for these, a cleaning sheet was obtained in the same manner as in Example 1.
  • the cleaning sheet was attached to the head part of Quickle Wiper (registered trademark), which is a cleaning tool manufactured by Kao Corporation. At this time, in the manufacturing process of the cleaning sheet, the surface on which the jet water flow is sprayed (hereinafter, this surface is referred to as the back surface) is used as the cleaning surface, and the surface opposite to the surface on which the jet water flow is sprayed (hereinafter, The collection rate was measured when the surface was used as the cleaning surface.
  • Quickle Wiper registered trademark
  • Kao Corporation the surface on which the jet water flow is sprayed
  • a decorative plate of 30 cm x 60 cm is used as a smooth surface with low friction, and 10 hairs of about 10 cm are spread on it, and a cleaning sheet is placed on it, making two reciprocations with a constant stroke (60 cm). The number of hairs that were cleaned and collected on the cleaning sheet was measured. Thereafter, the collection rate was calculated in the same manner as for the normal surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

 網状シート4の片面又は両面に、PETを含有する繊維を含む繊維ウエブ(1a)、(1b)を重ねた状態下に、これらに水流交絡加工を施して、該繊維ウエブの構成繊維どうしを絡合させるとともに、該繊維ウエブの構成繊維と該網状シートとを絡合させて積層体(6)を得、次いでPETのガラス転移点(Tg(℃))超の温度で、かつTg(℃)+70℃未満の温度の熱風を、積層体(6)にエアスルー方式で吹き付ける。繊維ウエブ(1a)、(1b)の構成繊維と網状シート(4)とを絡合させて積層体(6)を得、該積層体(6)を熱風乾燥した後、該積層体(6)にエアスルー方式で熱風を吹き付けることが好ましい。

Description

清掃用シートの製造方法
 本発明は、綿ほこり、髪の毛、糸くず等の捕集・除去のために好適に用いられる清掃用シートに関する。
 本出願人は先に、繊維の絡合で形成された不織布を網状シートで補強し、該網状シートの熱収縮処理により凹凸形状を形成させて、嵩高シートを製造する技術を提案した(特許文献1及び特許文献2参照)。これらの嵩高シートとは別に、本出願人は、繊維ウエブを水流交絡させて形成された繊維集合体を具備し、該繊維集合体から構成される多数の凹凸部を有する嵩高シートを提案した(特許文献3参照)。この嵩高シートにおける凹凸部は、繊維集合体に対して施した水流交絡でその構成繊維が再配列し、かつ該繊維集合体がその厚さ方向に屈曲様になることで形成されているものである。
 特許文献1及び2に記載の方法で得られたシートは適度な凹凸を有し、柔軟で肌触りがよいという特長を有する。しかし、凸部が繊維の熱収縮によって形成されたものなので、該凸部の繊維密度が高くなりがちである。その結果、該凸部の構成繊維による綿ほこり等の絡み取り性の向上には改善の余地があった。
 また、特許文献3に記載の方法で得られたシートは、構成繊維間で捕集し、これを保持することができるとともに、構成繊維間では捕集できないパン粉等の比較的大きな汚れを凹凸によって捕集し、これを保持できるという利点がある。しかし、生産性を高めるために高速生産を行うと、それに起因して搬送中のシートに高いテンションが加わり、凹凸の嵩高さが減じられてしまうことがある。
 これらの嵩高シートの製造技術とは別に、本出願人は、ロール状に捲回された嵩が減じられた長尺シートの嵩を回復させるための方法として、エアスルー方式による熱風処理の技術を提案した(特許文献4参照)。しかし、これらの文献には、この熱風処理の技術を、前記の特許文献1ないし3に開示されている構造のシートに適用し得ることについては何ら言及されていない。
特開平5-25763号公報 特開平5-192285号公報 US6,936,333B2 US7,131,171B2
 本発明の目的は、前述した従来技術が有する欠点を解消し得る清掃用シートの製造方法を提供することにある。
 本発明は、網状シートの片面又は両面に、ポリエチレンテレフタレートを含有する繊維を含む繊維ウエブを重ねた状態下に、これらに水流交絡加工を施して、該繊維ウエブの構成繊維どうしを絡合させるとともに、該繊維ウエブの構成繊維と該網状シートとを絡合させて積層体を得、次いで、
 前記ポリエチレンテレフタレートのガラス転移点(Tg(℃))超の温度で、かつTg(℃)+70℃未満の温度の熱風を、前記積層体にエアスルー方式で吹き付ける清掃用シートの製造方法を提供するものである。
 本発明によれば、高速生産を行った場合でも嵩高さが損なわれにくく、綿ほこり等の捕集性に優れた清掃用シートを製造することができる。
本実施形態の製造方法で得られる清掃用シートの一例を示す模式図である。 図1のA-A線断面を示す拡大断面図である。 本発明の製造方法で好適に用いられる製造装置の概略図である。 本発明の製造方法で好適に用いられる製造装置の概略図である。
 以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。先ず、本発明の製造方法によって製造される清掃用シートの好ましい一実施形態を説明する。図1及び図2に示すように、清掃用シート10は、繊維ウエブの水流交絡で形成された繊維集合体1と該繊維集合体1の内部に配された網状シート4とから構成されている。繊維集合体1と網状シート4とは、後ほど詳述するように、水流交絡によって該繊維集合体1の構成繊維と該網状シート4とが絡合し、両者が一体化している。
 図1及び図2に示すように、清掃用シート10は、第1の面10a及び第2の面10bを有しており、一方の面側から他方の面側に突出して形成された多数の凸状部2,2・・を有している。該凸状部2,2・・間には、それぞれ凹状部3,3・・が形成されており、シート全体が凹凸形状となっている。
 凸状部2,2・・は、図1に示すように、それぞれ略同じ大きさで、やや細長い幅狭な山型形状をしており、規則的に設けられている。凸状部2,2間の間隔は、シートの幅方向(図1中X方向、本実施形態ではCD方向)に好ましくは1~10mm、更に好ましくは1~7mmであり、シートの長手方向(図1中Y方向、本実施形態ではMD方向)に好ましくは4~20mm、更に好ましくは4~15mmである。凸状部2は、シートの幅方向及び/又は長手方向に関し、一部がつながって連続体となっていても良い。凸状部2を、このような間隔で設けることにより、シート10の肌触り感を良好にすることができる。また、フローリングの溝や凹凸面に対する汚れの清掃性に優れ、パン粉等の比較的大きな汚れの捕集性及び保持性に優れたものとなる。
 清掃用シート10は、その両面が同様な性能を有することが好ましく、第2の面10bにおける凸状部2の形状及び間隔は第1の面10aのそれと略同様であることが好ましい。特に、第2の面10bの凸状部2の総面積は、第1の面10aの凸状部2の総面積の好ましくは20~100%、更に好ましくは35~100%である。清掃用シート10の第1の面に存する凸状部2は、該シート10の第2の面に存する凹状部3と表裏の関係にあることが好ましい。また凸状部2の形状は、凹状部3の形状を反転したものであることも好ましい。
 凸状部2及び凹状部3は、繊維集合体1から構成されており、繊維集合体1の構成繊維の絡合のみによって形成されている。このため、熱可塑性樹脂からなる繊維をエンボス加工などで部分的に加熱加圧加工することにより融着形成された凸状部と異なり、凸状部2及び凹状部3は肌触りが良く、髪の毛や細かなほこり等の汚れの捕集性及び保持性に優れる。
 清掃用シート10における凸状部2及び凹状部3は、繊維集合体1に対して施した水流交絡による構成繊維の再配列・再絡合により形成されているので、凸状部2及び凹状部3はそれ自身でその形態を保持している。したがって、凸状部2及び凹状部3は荷重に対してへたり難いものとなる。凸状部2及び凹状部3が形成されることに起因して、清掃用シート10の見掛け厚みは、該凸状部2及び該凹状部3が賦与される前の繊維集合体1の厚みよりも大きくなる。形態保持性の高い凸状部2及び凹状部3を有する清掃用シート10は、溝や凹凸面の清掃性やパン粉等の捕集、保持性に優れる。
 凸状部2の形態保持性は、シートの見掛け厚み(初期厚み、15gf/25cm2〔=59Pa〕荷重下での厚み)と清掃時の荷重下での見掛け厚み(荷重厚み、96gf/25cm2〔=376Pa〕荷重下での厚み)との差(厚み変化量)として評価したとき、荷重時においても凸状部2及び凹状部3の形状が保たれ、かつこの厚み変化量が1mm以下、特に0.8mm以下となる程度であることが好ましい。
 本発明において「繊維の再配列・再絡合により形成されている」とは、水流交絡により一度弱く絡合された繊維集合体が多数の凹凸部を有するか又は多数の開孔を有するパターニング部材上で再度水流交絡されることにより、繊維が凹凸部に沿って配列し直し、再び絡合されることをいう。
 図2に示すように、凸状部2及び凹状部3は、繊維集合体1が厚さ方向に屈曲様になることで形成されている。そして、屈曲様の繊維集合体1に形成された多数の屈曲部が凸状部2及び凹状部3にそれぞれ相当する。前述の通り凸状部2及び凹状部3は繊維の再配列によって形成されているが、その場合、高圧水の圧力によって、凸状部2の構成繊維が凹状部3の方へ流れ込むことに起因する繊維の分配は極めて低い程度に抑えられている。尚、繊維の分配が更に進むと、凸状部2のあったところに孔が空いてしまう。前記構成の清掃用シート10は、低坪量であるにも拘わらず、大きな凹凸形状を有するものとなる。繊維集合体1の屈曲は、流れ方向(MD)及び幅方向(CD)いずれの方向に亘っていてもよい。繊維の分配が起こらないように繊維集合体1を屈曲様とさせるには、例えば水流交絡の際に加えられるエネルギーを後述する値とすればよい。清掃用シート10の屈曲の程度は、屈曲率が2~15%、特に3~15%といった高いものとなる。屈曲率は、US6,936,333B2の第12欄51行~第13欄6行に記載の方法で測定される。この文献を、本明細書の一部として本明細書に組み入れる。
 凸状部2は、清掃用シート10の一面において、10cm×10cmの範囲を考えた場合、該面のいずれの位置においても、該範囲中に平均して50~850個、特に100~600個形成されていることが好ましい。凸状部2の個数を前記範囲内とすることにより、凸状部2と凹状部3とがバランスよく配されるので、細かい汚れの捕集性及び保持性に一層優れるとともに、パン粉等の比較的大きな汚れの捕集性及び保持性にも一層優れる。
 清掃用シート10は、その見掛け比容積が23~100cm3/gであることが好ましく、25~90cm3/g、特に30~80cm3/gであることが更に好ましい。見掛け比容積が23cm3/g以上であることで、溝や凹凸面に十分に追従して汚れを捕集することが可能になる。また、見掛け比容積を100cm3/g以下とすることで、繊維間距離が適度になり、汚れを確実に保持することができる。見掛けの比容積の値は、後述する見掛け厚みの値を、繊維集合体の坪量(網状シートと絡合一体化されたシートの場合、該網状シートを除いた坪量)で除した値と定義される。
 また清掃用シート10は、清掃時の荷重下での見掛け比容積が、18cm2/g以上、特に20cm2/g以上であることが好ましい。上限値は100cm2/gである。
 清掃用シート10は、図2に示すように、その見掛け厚み(第1の面10aの最上部と第2の面10bの最下部との間の厚み)Tが、繊維集合体1自身の厚みtよりも厚くなっており、極めて嵩高な状態となっている。清掃用シート10の見掛け厚みTの値そのものは、1~5mm、特に1.4~4mmであることが、シート内に十分な空隙が形成されて嵩高となり、例えば清掃用シートとして好適に使用され得る点から好ましい。また繊維集合体1自身の厚みtの値そのものは、該繊維集合体1の坪量や加工条件により決定されるが、好ましくは0.5~4mm、更に好ましくは1~3mmである。また、図2に示すように凸状部の高さhは好ましくは0.2mm~4mmであり、更に好ましくは0.5mm~4mmである。繊維集合体1自身の厚みtは、15gf/25cm2(=59Pa)荷重下において、清掃用シート10の断面を光学顕微鏡で観察して測定される。
 清掃用シート10は、その流れ方向(MD)における伸度が、幅30mmの試料に5Nの荷重を負荷した条件下にて5%以下、特に4%以下であることが、清掃用シート10の製造工程中又は使用中に、清掃用シート10が引き伸ばされることに起因する凸状部2及び凹状部3の変形の防止、ひいては清掃用シート10の嵩高さの低下防止の点から好ましい。
 流れ方向の伸度の測定方法は次の通りである。清掃用シート10から、流れ方向と直交する方向に幅30mmのサンプルを切りだした後、このサンプルを引張試験機によって100mmのチャック間距離で把持し、流れ方向に300mm/minの速度で引っ張る。そして、引張荷重が5Nのときのサンプルの伸び量を初期サンプル長(100mm)で除し、100を乗じた値を伸度とする。
 次に、清掃用シート10を構成する繊維集合体1及び網状シート4について説明する。繊維集合体1は、繊維ウエブの水流交絡によりその構成繊維どうしが絡合して形成された不織布状のものである。繊維集合体1は、構成繊維の絡合のみによって形成されているので、構成繊維の融着や接着のみによって形成されているウエブと比べてその構成繊維の自由度が大きい。このため、その構成繊維による髪の毛や細かなほこり等の汚れの捕集性及び保持性に優れるとともに、肌触りが良い。
 繊維集合体1を構成する繊維として、本実施形態においては、ポリエチレンテレフタレート(PET)を含有する繊維を用いている。PETを含有する繊維を用いることで、後述する製造方法における熱風処理によって清掃用シート10の嵩が非常に高くなるという利点がある。PETを含有する繊維には、PETのみからなる単一の繊維、PETと他の熱可塑性樹脂とのブレンドからなる単一の繊維、PETを含有する複合繊維等が挙げられる。この複合繊維としては、例えばPETを芯成分とする芯鞘型複合繊維や、PETを一方の成分とするサイド・バイ・サイド型複合繊維が用いられる。熱風処理によって清掃用シート10を効果的に嵩高くするためには、PETのみからなる単一の繊維を用いることが好ましい。
 PETとしては、重量平均分子量が5千~10万、特に8千~5万のものを用いることが、熱風処理による清掃用シート10の嵩高さ発現の観点から好ましい。
 繊維集合体1は、PETを含有する繊維のみから構成されていてもよく、あるいは該繊維に加えて他の繊維を含んで構成されていてもよい。他の繊維としては、例えば、US5,525,397Aの第4欄3~10行に記載の繊維が使用できる。この文献を、本明細書の一部として本明細書に組み入れる。繊維集合体1が他の繊維を含む場合、PETを含有する繊維の量は、繊維集合体1の重量に対して40重量%以上、特に50重量%以上であることが好ましく、他の繊維の量は、繊維集合体1の重量に対して60重量%未満、特に50重量%未満であることが好ましい。熱風処理によって清掃用シート10を効果的に嵩高くするためには、繊維集合体1は、PETを含有する繊維のみから構成されていることが好ましい。
 PETを含有する繊維の太さは、熱風処理による清掃用シート10の嵩高さに関して特に臨界的なものではない。髪の毛や汚れの捕集性及び保持性の観点から、PETを含有する繊維の太さは0.05~100dtex、特に0.5~20dtexであることが好ましい。
 繊維集合体1の坪量及び構成繊維の繊維長は、加工性、コスト等を総合的に勘案して決定される。繊維集合体1の坪量は30~100g/m2、特に40~70g/m2であることが好ましい。構成繊維の繊維長は20~100mm、特に30~65mmであることが、清掃用シート10に孔あきが発生することの防止、十分な嵩高さの発現、及び嵩高さの維持の点から好ましい。
 清掃用シート10には、前述の通り繊維集合体1内に網状シート4が配されている。網状シート4は図1に示すように、全体として格子状に形成された樹脂製のネットである。網状シート4は、その通気度が0.1~1000cm3/(cm2・sec)あることが好ましい。この範囲の通気度であれば網状シート4としてネット以外に、不織布、紙、フィルム等を用いることもできる。繊維集合体1はその構成繊維間で絡合しているのみならず、繊維集合体1の構成繊維と網状シート4とが絡合しているので、引張強度が向上している。網状シート4の線径は好ましくは50~600μm、更に好ましくは100~400μmである。また、線間距離は好ましくは2~30mm、更に好ましくは4~20mmである。網状シート4の構成材料としては、例えば、US5,525,397Aの第3欄39~46行に記載の材料が使用できる。この文献を、本明細書の一部として本明細書に組み入れる。網状シート4の構成材料は熱収縮性であってもよい。熱収縮性の材料を用いると、清掃用シートの製造時に加熱処理を施すことにより、前記見掛け厚みTが大きく、凸状部の形状がシャープな清掃用シートとすることができる。しかし、網状シート4は、熱収縮されていないか、又は熱収縮される場合には140℃で3分間加熱した後の熱収縮率が3%以下のものであることが好ましい。
 清掃用シート10は、その坪量が30~110g/m2、特に38~80g/m2、とりわけ45~80g/m2であることが、シートに適度な厚手感が賦与されるとともに、加工適性の向上が図られる点から好ましい。また、破断強度が幅30mmのときに5N以上、特に7N以上であることが、使用に耐え得る強度を有するシートとなる点から好ましい。破断強度は、清掃用シート10のいずれかの方向において前記値以上であれば十分であるが、最も強度の出しにくい幅方向(CD)において前記値以上であることが好ましい。破断強度の上限値は、実使用の点からみて20N程度である。
 破断強度は、次のようにして測定される。シートの繊維配向方向と直交する方向に幅30mmのサンプルを切りだした後、このサンプルを引張試験機によって100mmのチャック間距離で把持し、繊維配向方向と直交する方向に300mm/minの速度で引張、シートが切れ始めるときの荷重値(この測定によって得られる連続曲線の最初のピーク値)を破断強度とする。
 次に、上述した清掃用シートの好ましい製造方法を、図3及び図4を参照して説明する。本実施形態の清掃用シート10の製造方法においては、網状シート4の両面に上層繊維ウエブ1a及び下層繊維ウエブ1bをそれぞれ重合する重合工程と、水流交絡によって前記繊維ウエブ1a及び1bの構成繊維間を絡合させて繊維集合体を形成するとともに該構成繊維と網状シート4とを絡合させて、両者が一体化された積層体6を形成する交絡工程と、該積層体6を多数の凹凸部を有するパターニング部材上に搬送し、該凹部内に前記繊維集合体の一部を突出させて、該凹部に対応する多数の凸状部を形成する凹凸賦与工程とが、この順で進行する。そして、その後に熱風吹き付け工程が行われる。
 図3には、清掃用シート10の製造方法に好ましく用いられる製造装置20が示されている。製造装置20は、重合部20A、交絡部20B及び凹凸賦与部20Cに大別される。前記重合部20Aは、繊維ウエブla及びlbをそれぞれ製造するカード機21A及び21Bと、繊維ウエブla及びlbの繰り出しロール22,22と、網状シートの繰り出しロール24とを備えている。前記交絡部20Bは、無端ベルトからなるウエブ支持用ベルト25と、第1のウォータージェットノズル26とを備えている。
 前記凹凸賦与部20Cは、無端ベルトからなるパターニング部材27と第2のウォータージェットノズル28とを備えている。パターニング部材27は、図3中矢印で示す方向に回動している。パターニング部材27は通液性のものであり、その表面に多数の凹凸を有しているものである。その詳細については、US6,936,333B2の第8欄23~第9欄19行並びに図4(a)及び(b)に記載されている。この文献を、本明細書の一部として本明細書に組み入れる。前記凹凸賦与部20Cの後には搬送用ベルト29が備えられている。パターニング部材27は、ある程度の厚みがあることが好ましく、具体的にはその厚みが5~25mm、特に5~15mmであることが、十分に高い嵩高さを賦与し得る点、及び凹凸賦与の際のエネルギー効率の点から好ましい。同様の理由により、パターニング部材27は、その通気度が800~3000cm3/(cm2・sec)、特に800~2000cm3/(cm2・sec)であることが好ましい。
 このような構成の清掃用シート10の製造装置20において、先ず、重合部20Aにおけるカード機21A,21Bの各々から連続的に繊維ウエブla及びlbがその繰り出しロール22,22を介してそれぞれ繰り出される。繊維ウエブla及びlbの少なくとも一方は、ポリエチレンテレフタレートを含有する繊維を40重量%以上含んでいることが好ましい。カード機21A,21Bの間には網状シート4のロール23が配設され、ロール23の繰り出しロール24から網状シート4が繰り出される。そして、網状シート4の両面に前記繰り出しロール22、22にて、繊維ウエブla及びlbがそれぞれ重ね合わされて重合体5が形成される。繊維ウエブ1a,1bのうちの少なくとも一方は、PETを含有する繊維を40重量%以上含んでいることが好ましい。更に好ましくは繊維ウエブ1a,1bの双方が、PETを含有する繊維を40重量%以上含んでおり、一層好ましく繊維ウエブ1a,1bの双方が、PETを含有する繊維を100%からなる。
 交絡部20Bにおいて、ウエブ支持用ベルト25上に移載され搬送される重合体5は、第1のウォータージェットノズル26より噴出される高圧のジェット水流により交絡処理される。これにより、重合体5中の前記繊維ウエブla,lbの構成繊維間が絡合されて繊維集合体が形成されるとともに、該構成織維と網状シート4とが絡合されて、三者が一体化された積層体6が得られる。この場合、積層体6における繊維集合体を構成する繊維は低絡合状態であることが好ましい。その絡合状態は交絡係数で表して0.05~2N・m/g、特に0.2~1.2N・m/gであることが好ましい。積層体における繊維集合体を構成する繊維の絡合状態をこの範囲でコントロールすることにより、後述する凹凸賦与部20Cにおける凹凸賦与時に穴空きなどを生ずることなく、明瞭な凹凸形状が賦与された清掃用シートを得ることができる。
 交絡係数は構成繊維間の絡合状態を表す尺度であり、一体化された積層体6の繊維集合体1における、その繊維配向に対する垂直方向の応力-ひずみ曲線の初期勾配で表され、その値が小さいほど繊維間の絡合が弱いといえる。このとき、繊維配向とは引張強度試験時の最大点荷重値が最大となる方向であり、応力は引張荷重をつかみ幅(引張強度試験時の試験片幅)及び繊維集合体1の坪量で割った値であり、ひずみは伸び量を示す。具体的な測定方法は、US6,936,333B2の第12欄32~50行に記載されている。この文献を、本明細書の一部として本明細書に組み入れる。
 積層体6は、凹凸賦与部20Cにおいてパターニング部材27上に移載され搬送される。積層体6は、搬送されながら、第2のウォータージェットノズル28より噴出する高圧のジェット水流により部分的に加圧される。この際、積層体6のうち、パターニング部材27の凹部上に位置する部分が加圧されて、該加圧部分は該凹部内に突出される。その結果、該加圧部分は凹部に対応する凹状部3とされる。一方、積層体6のうち、パターニング部材27の凸部上に位置する部分は突出されず、凸状部2となされる。このようにして、積層体6に多数の凸状部2,2・・が形成されるとともに、凸状部2,2間にそれぞれ凹状部3が形成され、積層体6全体として凹凸形状が賦与される。凸状部2の形状等は、パターニング部材27の種類や、交絡部20B及び凹凸賦与部20Cおける高圧ジェット水流によって繊維集合体に加わる絡合エネルギーに応じて決定される。この絡合エネルギーはウォータージェットノズルのノズル形状、ノズルピッチ、水圧、ノズル段(本)数及びラインスピード等の条件によってコントロールされる。
 本製造方法においては、繊維ウエブを水流交絡させて繊維集合体1を形成するときに加えるエネルギーをEm、パターニング部材27上で繊維集合体1の一部を突出させるときに加えるエネルギーをEfとしたとき、200(kJ/kg)<Em+Ef<1250(kJ/kg)、特に400(kJ/kg)<Em+Ef<1000(kJ/kg)及び/又はEm/10<Ef<2Em/3、特にEm/4<Ef<3Em/5を満たすように各エネルギーを加えることが、十分な嵩高性の賦与、凹凸賦与時の繊維の脱落や孔あき発生の防止、十分なシート強度の発現の点から好ましい。Em及びEfはそれぞれ次式から算出される。
Figure JPOXMLDOC01-appb-M000001
 凹凸形状を賦与された積層体6は、次いで図4に示す熱風処理装置30に搬送される。この場合、積層体6を一旦ロール状に巻き取った後に、ロールから積層体6を繰り出して熱風処理装置30に搬送してもよく、あるいは図3に示す装置20によって得られた積層体6を巻き取ることなく直接に熱風処理装置30に搬送してもよい。一旦ロール状に捲回された積層体6をロールから繰り出して熱風処理に付すと、嵩回復の効果が一層顕著になるので好ましい。なお、凹凸形状を賦与された積層体6は、一旦ロール状に巻き取るか、巻き取らないにかかわらず、熱風等による乾燥処理を行う。乾燥処理は、水流交絡加工によって製造されるシートに、通常用いられる装置及び条件で行われる。(図示は省略する)。乾燥処理の温度は、積層体6の構成繊維の最低融点成分の融点未満で実施することが好ましい。
 図4に示す装置30は、ワイヤメッシュのコンベアベルト32、加熱ゾーンH及び冷却ゾーンCを備えている。コンベアベルト32は無端のものであり、一対の支持軸33,33に支持されて所定方向に周回するようになっている。コンベアベルト32の周回方向に関して相対的に上流側には加熱ゾーンHが設置されており、相対的に下流側には冷却ゾーンCが設置されている。コンベアベルト32は、金属やポリエチレンテレフタレート等の樹脂から形成されている。加熱ゾーンH及び冷却ゾーンCにおける放熱の効率の点からは、コンベアベルト32はポリエチレンテレフタレート等の樹脂から形成されていることが好ましい。
 コンベアベルト32の上側には、コンベアベルト32に対向して第1ブロア34が設置されている。第1ブロア34からは所定温度に加熱された熱風が、コンベアベルト32に向けて吹き出すようになっている。コンベアベルト32を挟んで第1ブロア34と対向する位置には、第1ブロア34から吹き出された熱風を吸引する第1サクションボックス35が設置されている。そして、第1ブロア34と第1サクションボックス35とによって加熱ゾーンHが構成されている。第1サクションボックス35によって吸引された熱風は、ダクト(図示せず)を通じて第1ブロア34に送り込まれる。つまり熱風は第1ブロア34と第1サクションボックス35との間を循環するようになっている。
 コンベアベルト32の周回方向に関して、第1ブロア34のすぐ下流側には、コンベアベルト32に対向して第2ブロア36が設置されている。第2ブロア36からは、所定温度の冷風がコンベアベルト32に向けて吹き出すようになっている。コンベアベルト32を挟んで第2ブロア36と対向する位置には、第2ブロア36から吹き出された冷風を吸引する第2サクションボックス37が設置されている。そして、第2ブロア36と第2サクションボックス37とによって冷却ゾーンCが構成されている。第2サクションボックス37によって吸引された冷風は、ダクト(図示せず)を通じて装置外へ排出される。つまり、加熱ゾーンHにおける熱風と異なり、冷風は第2ブロア36と第2サクションボックス37との間を循環させない。この理由は、循環による冷風の加熱を防止して、積層体6の冷却効率を高めるためである。
 第1ブロア34と第2ブロア36との間及び第1サクションボックス35と第2サクションボックス37との間には、それぞれ仕切板38,38が設置されている。この仕切板38によって熱風と冷風とが混ざり合うことが防止されている。
 図4に示す実施形態においては、図3に示す装置20によって製造されたロール状の積層体6が、装置30における第1ブロア34よりも上流の位置に配置され、ロールから積層体6が繰り出される。ロール状に捲回された状態にある積層体6は、捲回圧によってその嵩が減じられている。この状態の積層体6を、装置30に通すことによってその嵩を回復させる。
 先ず、積層体6をコンベアベルト32と共に搬送する。搬送された積層体6は、加熱ゾーンHに送られる。加熱ゾーンHにおいては、第1ブロア34からコンベアベルト32に向けて所定温度に加熱された熱風が吹き出ている。加熱ゾーンHにおいて積層体6にはエアスルー方式で熱風が吹き付けられる。つまり、積層体6には熱風が吹き付けられ、吹き付けられた熱風は該積層体6を貫通する。意外にも、この熱風の吹き付け操作によって、嵩が減じられた状態にある積層体6の嵩が増加して、捲回前の嵩と同程度にまで回復することが、本発明者らの検討によって判明した。特に、積層体6が網状シート4を有していることによって、嵩の増加の程度が著しく大きくなることも判明した。
 積層体6に吹き付ける熱風は、積層体に含まれるPETを含有する繊維におけるPETのガラス転移点(Tg(℃))超の温度で、かつTg(℃)+70℃未満の温度とする。熱風の温度がTg(℃)以下であると、熱風を吹き付けることによる効果が十分に発現されず、積層体6の嵩が回復しない。一方、Tg(℃)+70℃以上の熱風を吹き付けると繊維が溶融してしまい、やはり積層体6の嵩が回復しない。積層体6の嵩を一層効果的に回復させる観点から、熱風の温度は80℃以上で、かつ140℃以下、特に85℃以上で、かつ135℃以下であることが好ましい。また、吹き付ける熱風の温度は、網状シート4を構成する樹脂の融点未満であることが好ましい。
 前記のTgは、示差走査熱量計(DSC)を用いて測定される。DSCを用いた測定条件は、雰囲気を窒素、昇温速度10℃/minとする。1回目の昇温で得られた吸熱曲線において、吸熱ピークが観察される温度よりも低温側で段差が観察される温度を、Tgと定義する。
 熱風の吹き付け時間は嵩回復に臨界的な要素ではなく、短時間で十分である。具体的には好ましくは0.05~3秒、更に好ましくは0.05~1秒、一層好ましくは0.05~0.5秒程度という極めて短時間の熱風の吹き付けによって積層体6の嵩が回復する。このことは生産効率の向上及び装置30の小型化に寄与する。吹き付け時間が短時間で済む理由としては、エアスルー方式の寄与が大であると考えられる。積層体6への熱の付与には、エアスルー方式による熱風の吹き付けの他に、恒温乾燥機やドライヤーを用いた熱の付与が考えられるが、これらの吹き付け方法では短時間での嵩回復は達成できない。
 熱風の風速は、その温度や積層体6の坪量及び搬送速度にもよるが、0.5~10m/sec、特に1~5m/secであることが、熱風のコスト及び装置の小型化の点から好ましい。
 以上の操作によって、積層体6の嵩は熱風の吹き付け前の嵩の約1.2~3倍にまで回復し(つまり、熱風の吹き付け後の嵩が、吹き付け前の嵩の1/1.2~1/3となる。)、目的とする清掃用シートが得られる。また、積層体6の厚さは、ロール状に捲回する前の厚さの約50~100%にまで回復する。
 熱風の吹き付けによって嵩が回復した清掃用シート10をロール状に捲回すると、せっかく回復した清掃用シート10の嵩が再び減じてしまう場合のあることが本発明者らの検討によって判明した。そして、これを防止するためには、熱風の吹き付けによる清掃用シート10の嵩の回復後直ちに該清掃用シート10に冷風をエアスルー方式で吹き付けることが効果的であることが判明した。冷風の吹き付けによって、嵩高い状態の清掃用シート10が冷却されてその嵩高さが維持され、その後にロール状に捲回されても嵩が減じることが防止される。そこで、図4に示す装置30においては、清掃用シート10の搬送方向に関し加熱ゾーンHのすぐ下流側に、該加熱ゾーンHに隣接して冷却ゾーンCが設置されている。「熱風の吹き付けによる清掃用シート10の嵩の回復後直ちに該不織布に冷風を吹き付ける」とは、清掃用シート10に熱風を吹き付ける工程とその後に冷風を吹き付ける工程との間に、何らの操作も行わないことを意味し、熱風の吹き付けと冷風の吹き付けとの間に時間差がないことを意味するものではない。
 冷却ゾーンCにおいては、第2ブロア36からコンベアベルト32に向けて所定温度の冷風が吹き出ている。冷却ゾーンCにおいて清掃用シート10にはエアスルー方式で冷風が吹き付けられる。つまり、冷却ゾーンCにおいては、清掃用シート10に冷風が吹き付けられ、吹き付けられた冷風は該清掃用シート10を貫通する。
 冷風の温度は、不織布を構成する繊維の種類にもよるが50℃以下、特に30℃以下であれば十分な冷却効果が得られる。冷風の温度の下限値に特に制限はないが、エネルギーコストや装置1の簡素化の点からは、20~25℃程度の室温であることが適切である。
 熱風が吹き付けられて高温となっている清掃用シート10を十分に冷却させる観点から、冷風の風速は1~10m/sec、特に1~5m/sec、とりわけ1~3m/secであることが好ましい。この範囲の風速であれば、十分な冷却効果が発現する。また風速が高くなることに起因して清掃用シート10の安定な搬送が妨げられるおそれが低減する。
 熱風の吹き付け時間と同様に、冷風の吹き付け時間も短時間で十分であることが本発明者らの検討によって判明した。具体的には0.01秒以上、特に0.02~1秒、とりわけ0.05~0.5秒程度という極めて短時間の冷風の吹き付けによって、清掃用シート10が十分に冷却される。吹き付け時間が短時間で済む理由としては、エアスルー方式の寄与が大であると考えられる。
 清掃用シート10に熱収縮性繊維が含まれている場合、加熱ゾーンHにおける熱風の吹き付けによって、シート10が収縮する場合がある。特にシート10の幅方向、つまりシート10の搬送方向と直交する方向の収縮が起こりやすい。これを防止するため、熱風を吹き付ける前における積層体6の幅(つまり加熱ゾーンHに入る前の積層体6の幅)に対する、冷風を吹き付けた後における清掃用シート10の幅(つまり、冷却ゾーンCを出た後の清掃用シート10の幅)が95%以上、特に97%以上となるように、シートにおける幅方向の収縮を抑えることが好ましい。収縮を抑える方法としては、例えば、積層体6の搬送方向両側部を所定の把持手段によって把持して積層体6の幅が変化しないようにした状態下に積層体6を加熱ゾーンH及び冷却ゾーンCに導入する方法が挙げられる。特に簡便な方法は、加熱ゾーンH及び冷却ゾーンCにおいてそれぞれ熱風及び冷風を積層体6に吹き付けるときに、熱風及び冷風の風速を調整して積層体6をコンベアベルト32上に押さえつけ、積層体6の幅が変化しないようにした状態下に搬送する方法が挙げられる。熱風及び冷風の風速は前述した通りであり、その範囲内で積層体6の坪量や搬送速度に応じて風速を決定する。
 以上の操作によって、清掃用シート10は嵩高いものとなる。嵩高な清掃用シート10は、引き続き次工程である各種加工工程に付される。加工工程としては、清掃用シート10を毎葉に切断する工程や、毎葉に切断された清掃用シート10を複数枚重ねて包装袋に収容する工程などがある。得られた清掃用シート10は、乾式の清掃用シートとして用いられるか、又は各種の洗浄剤が含浸された湿式の清掃用シートとして用いられる。
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記の製造方法においては、網状シート4の各面に繊維ウエブ1a,1bを配したが、これに代えて網状シート4の一方の面にのみ繊維ウエブを配してもよい。この場合、該繊維ウエブは、ポリエチレンテレフタレートを含有する繊維を40重量%以上含んでいることが好ましい。
 また前記実施形態においては、装置30を用いた熱風処理の後に冷風による処理を行ったが、この冷風による処理は必ずしも必須のものではない。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」及び「部」はそれぞれ「重量%」及び「重量部」を意味する。
  〔実施例1〕
 PET繊維(1.45dtex、38mm、Tg78℃、重量平均分子量2万)を原料とし、常法のカード法を用い坪量24g/m2の繊維ウエブを得た。網状シートとしてポリプロピレン製の格子状ネット(繊維間距離8mm、線径300μm)を用い、その上下に該繊維ウエブを重合した後、図3に示す水圧1~5MPaの条件で複数のノズルから噴出したジェット水流で絡合一体化し、交絡係数0.5N・m/gの繊維集合体を有する積層体を得た。加えたエネルギーEmは295kJ/kgであった。次に、パターニング部材上で、水圧1~5MPaの条件で複数のノズルから噴出したジェット水流を当てて凸部形状を賦与し、熱風乾燥を行い図1及び図2に示す凹凸形状を有する積層体を得た。加えたエネルギーEfは175kJ/kgであった。パターニング部材としては、US6,936,333B2の図4(a)及び(b)に示す形態のものを用いた。この文献を、本明細書の一部として本明細書に組み入れる。
 このようにして得られた積層体を一旦ロール状に捲回した。その後、積層体をロールから繰り出して、4に示す装置30に搬送した。繰り出し速度は、高速生産に適応した速度である150m/minとした。この積層体に対して、表1に示す温度の熱風を3m/secの速度で、エアスルー方式で吹き付けた。熱風吹き付け後は自然冷却を行った。このようにして清掃用シートを得た。
  〔実施例2及び3並びに比較例1〕
 熱風処理の条件として表1に示す条件を採用する以外は、実施例1と同様にして清掃用シートを得た。
  〔比較例2〕
 繊維ウエブとして坪量27g/m2のものを用いた。また、熱風処理を行わなかった。これら以外は、実施例1と同様にして清掃用シートを得た。
 〔評価〕
 実施例及び比較例で得られた清掃用シートについて、以下の方法で髪の毛の捕集率及び厚さを測定した。またシートの厚み方向断面における凹凸形状の明瞭さ、シートの加工適性及び製品適性を以下の基準で評価した。それらの結果を表1に示す。
 〔髪の毛の捕集率〕
 清掃用シートを、花王株式会社製の清掃具であるクイックルワイパー(登録商標)のヘッド部に装着した。このとき、清掃用シートの製造過程においてジェット水流が吹き付けられた面(以下、この面を裏面という)を清掃面として用いた場合と、ジェット水流が吹き付けられた面と反対側の面(以下、この面を表面という)を清掃面として用いた場合とで捕集率を測定した。通常のフローリング面として、30cm×60cmのフローリング(松下電工製 ウッディタイルMT613T)を用い、この上に約10cmの髪の毛を10本散布し、その上に清掃用シートを乗せて一定のストローク(60cm)で5往復清掃して清掃用シートに捕集された髪の毛の本数を測定した。この操作を連続3回実施して、30本中何本の髪の毛が捕集されたかを測定した。捕集された髪の毛の数を30で除し、これに100を乗じて、その値を髪の毛の捕集率(%)とした。これに加え、摩擦が低い平滑面として30cm×60cmの化粧板を用い、この上に約10cmの髪の毛を10本散布し、その上に清掃用シートを乗せて一定のストローク(60cm)で2往復清掃して清掃用シートに捕集された髪の毛の本数を測定した。その後は通常面と同様にして捕集率を算出した。
  〔シートの厚み〕
 荷重300Pa及び700Paでの厚みをそれぞれ測定した。
  〔シートの厚み方向断面における凹凸形状の明瞭さ〕
 シートの厚み方向の断面を顕微鏡観察し、凹凸形状の明瞭さを以下の基準で目視評価した。
○:凹凸形状が明瞭である。
△:凹凸形状が一部明瞭である。
×:凹凸形状が不明瞭であるか、又は凹凸形状が認められない。
  〔シートの加工適性〕
 高速加工に適応したか否かを以下の基準で評価した。
◎:シートの幅方向の収縮、及びシート表面から繊維の脱落がともに観察されない。
○:シートの幅方向の収縮、及びシート表面からの繊維の脱落がともに僅かである。
△:切断に影響の出るほどシートが収縮するか、又はシート表面からの繊維脱落が明らかに観察される。
×:シートの幅方向の収縮が著しく、またシート表面から繊維が視認できるほど脱落する。
  〔シートの製品特性〕
○:安定した形状で、かつ良好な風合いである。
△:形状が一定せず、かつシート表面から繊維が脱落しやすい状態になっている。
×:シート表面からの繊維脱落が観察され、また風合いが極端に違う部分がある。
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から明らかなように、各実施例の清掃用シートは、比較例の清掃用シートに比べ、嵩高でかつ髪の毛の捕集性に優れていることが判る。

Claims (4)

  1.  網状シートの片面又は両面に、ポリエチレンテレフタレートを含有する繊維を含む繊維ウエブを重ねた状態下に、これらに水流交絡加工を施して、該繊維ウエブの構成繊維どうしを絡合させるとともに、該繊維ウエブの構成繊維と該網状シートとを絡合させて積層体を得、次いで、
     前記ポリエチレンテレフタレートのガラス転移点(Tg(℃))超の温度で、かつTg(℃)+70℃未満の温度の熱風を、前記積層体にエアスルー方式で吹き付ける清掃用シートの製造方法。
  2.  前記網状シートの両面に前記繊維ウエブが重ねられる場合には、該繊維ウエブの少なくとも一方が、前記網状シートの片面に前記繊維ウエブが重ねられる場合には、該繊維ウエブが、ポリエチレンテレフタレートを含有する繊維を40重量%以上含んでいる請求項1記載の清掃用シートの製造方法。
  3.  前記繊維ウエブの構成繊維と前記網状シートとを絡合させて前記積層体を得、該積層体を熱風乾燥した後、該積層体にエアスルー方式で熱風を吹き付ける請求項1又は2記載の清掃用シートの製造方法。
  4.  前記積層体を熱風乾燥した後に該積層体を一旦ロール状に巻回し、該積層体にエアスルー方式で熱風を吹き付けるときに該積層体をロールから繰り出す請求項3記載の清掃用シートの製造方法。
PCT/JP2009/059536 2008-05-27 2009-05-25 清掃用シートの製造方法 WO2009145148A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801180691A CN102036595A (zh) 2008-05-27 2009-05-25 清扫用片材的制造方法
US12/992,559 US8650727B2 (en) 2008-05-27 2009-05-25 Process for producing cleaning sheet
AU2009252434A AU2009252434B2 (en) 2008-05-27 2009-05-25 Process for producing cleaning sheet
EP09754656.8A EP2286705B1 (en) 2008-05-27 2009-05-25 Process for producing cleaning sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-137435 2008-05-27
JP2008137435 2008-05-27

Publications (1)

Publication Number Publication Date
WO2009145148A1 true WO2009145148A1 (ja) 2009-12-03

Family

ID=41377021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059536 WO2009145148A1 (ja) 2008-05-27 2009-05-25 清掃用シートの製造方法

Country Status (6)

Country Link
US (1) US8650727B2 (ja)
EP (1) EP2286705B1 (ja)
JP (1) JP5255517B2 (ja)
CN (1) CN102036595A (ja)
MY (1) MY150983A (ja)
WO (1) WO2009145148A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110240210A1 (en) * 2010-04-02 2011-10-06 Taiju Terakawa Processing apparatus for hot-air treatment of fiber constituting nonwoven fabric to produce nonwoven fabric, and processing process for the same
WO2014050762A1 (ja) * 2012-09-28 2014-04-03 ユニ・チャーム株式会社 不織布

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047292A1 (ja) * 2008-10-20 2010-04-29 ユニ・チャーム株式会社 不織布の厚さを増加させる方法およびそのための装置
JP5629525B2 (ja) * 2010-08-06 2014-11-19 花王株式会社 不織布の嵩増加装置
JP5752077B2 (ja) * 2012-03-30 2015-07-22 ユニ・チャーム株式会社 不織布および不織布の製造方法
JP5777558B2 (ja) * 2012-04-20 2015-09-09 ユニ・チャーム株式会社 不織布の嵩を回復させる方法及び装置
JP6208949B2 (ja) * 2013-02-07 2017-10-04 ユニ・チャーム株式会社 清掃具
JP6126398B2 (ja) 2013-02-07 2017-05-10 ユニ・チャーム株式会社 清掃具
JP5832477B2 (ja) * 2013-05-31 2015-12-16 ユニ・チャーム株式会社 不織布の嵩回復方法
JP6126968B2 (ja) * 2013-10-18 2017-05-10 ユニ・チャーム株式会社 不織布の嵩回復装置、及び嵩回復方法
JP7055009B2 (ja) * 2017-12-06 2022-04-15 花王株式会社 ワイピングシート及び清掃具
CN108842308B (zh) * 2018-05-24 2020-06-12 任丘市奥东新型建材有限公司 长丝或短丝加筋聚酯毡基布及其制备方法
CN109338593A (zh) * 2018-10-08 2019-02-15 滁州辉煌无纺科技有限公司 一种高宽度sms级纺熔无纺布成型设备
CN110154491A (zh) * 2019-06-04 2019-08-23 杭州千千达科技有限公司 一次性复合毛巾材料的生产装置及其工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525763A (ja) 1991-07-11 1993-02-02 Kao Corp 嵩高性シート及びその製造方法
JPH05192285A (ja) 1991-11-13 1993-08-03 Kao Corp 清掃用物品及びその製造方法
US5525397A (en) 1993-12-27 1996-06-11 Kao Corporation Cleaning sheet comprising a network layer and at least one nonwoven layer of specific basis weight needled thereto
JP2001336052A (ja) * 2000-03-24 2001-12-07 Kao Corp 嵩高シート及びその製造方法
JP2005015938A (ja) * 2003-06-24 2005-01-20 Kao Corp 不織布の嵩回復方法
US7131171B2 (en) 2002-09-25 2006-11-07 Kao Corporation Method for restoring bulkiness of nonwoven fabric
JP2007312931A (ja) * 2006-05-24 2007-12-06 Daiwabo Co Ltd ワイパー

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143779A (en) * 1988-12-23 1992-09-01 Fiberweb North America, Inc. Rebulkable nonwoven fabric
US5368925A (en) * 1989-06-20 1994-11-29 Japan Vilene Company, Ltd. Bulk recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof
US5334446A (en) * 1992-01-24 1994-08-02 Fiberweb North America, Inc. Composite elastic nonwoven fabric
WO1997013020A1 (fr) * 1995-10-06 1997-04-10 Nippon Petrochemicals Company, Limited Etoffe non tissee enchevetree par un jet d'eau et procede pour la fabriquer
JP3657700B2 (ja) * 1996-06-18 2005-06-08 新日本石油化学株式会社 カサ高性不織布の製造方法
JP2003230519A (ja) * 2002-02-07 2003-08-19 Crecia Corp 床用清掃シート
US6739023B2 (en) * 2002-07-18 2004-05-25 Kimberly Clark Worldwide, Inc. Method of forming a nonwoven composite fabric and fabric produced thereof
JP4030484B2 (ja) 2002-09-25 2008-01-09 花王株式会社 不織布の嵩回復方法
JP5069891B2 (ja) * 2006-06-23 2012-11-07 ユニ・チャーム株式会社 不織布
JP5328088B2 (ja) * 2006-06-23 2013-10-30 ユニ・チャーム株式会社 不織布

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525763A (ja) 1991-07-11 1993-02-02 Kao Corp 嵩高性シート及びその製造方法
JPH05192285A (ja) 1991-11-13 1993-08-03 Kao Corp 清掃用物品及びその製造方法
US5525397A (en) 1993-12-27 1996-06-11 Kao Corporation Cleaning sheet comprising a network layer and at least one nonwoven layer of specific basis weight needled thereto
JP2001336052A (ja) * 2000-03-24 2001-12-07 Kao Corp 嵩高シート及びその製造方法
US6936333B2 (en) 2000-03-24 2005-08-30 Kao Corporation Bulky sheet and process for producing the same
US7131171B2 (en) 2002-09-25 2006-11-07 Kao Corporation Method for restoring bulkiness of nonwoven fabric
JP2005015938A (ja) * 2003-06-24 2005-01-20 Kao Corp 不織布の嵩回復方法
JP2007312931A (ja) * 2006-05-24 2007-12-06 Daiwabo Co Ltd ワイパー

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110240210A1 (en) * 2010-04-02 2011-10-06 Taiju Terakawa Processing apparatus for hot-air treatment of fiber constituting nonwoven fabric to produce nonwoven fabric, and processing process for the same
US9481954B2 (en) * 2010-04-02 2016-11-01 Jnc Fibers Corporation Processing apparatus for hot-air treatment of fiber constituting nonwoven fabric to produce nonwoven fabric, and processing process for the same
WO2014050762A1 (ja) * 2012-09-28 2014-04-03 ユニ・チャーム株式会社 不織布
JP2014070317A (ja) * 2012-09-28 2014-04-21 Uni Charm Corp 不織布
AU2013321216B2 (en) * 2012-09-28 2017-09-14 Unicharm Corporation Nonwoven cloth

Also Published As

Publication number Publication date
JP2010007219A (ja) 2010-01-14
MY150983A (en) 2014-03-31
EP2286705A1 (en) 2011-02-23
CN102036595A (zh) 2011-04-27
US20110126388A1 (en) 2011-06-02
JP5255517B2 (ja) 2013-08-07
US8650727B2 (en) 2014-02-18
EP2286705A4 (en) 2011-09-14
EP2286705B1 (en) 2017-07-26
AU2009252434A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5255517B2 (ja) 清掃用シートの製造方法
JP4338578B2 (ja) 嵩高シート及びその製造方法
JP3537775B2 (ja) 嵩高シート及びその製造方法
US9701095B2 (en) Bulky nonwoven fabric
JP5557365B2 (ja) 繊維束及びウェブ
AU2012397883B2 (en) Hydroformed composite nonwoven
WO2012176825A1 (ja) 複合シート及びその製造方法
JP3096094B2 (ja) 嵩高性シート及びその製造方法
JP4516754B2 (ja) 高バルク複合体シートの作製方法
JP5613095B2 (ja) 熱膨張性不織布及びこれを用いた嵩高不織布の製造方法
JPWO2016104795A1 (ja) 自着性不織布
JP4339131B2 (ja) 切り込みネック付与によるスパンボンド方法及び材料
CN104884695A (zh) 压花复合无纺幅材料
JP5242187B2 (ja) 不織布、梱包材および梱包方法
JP5986976B2 (ja) 複合不織布
US20200102678A1 (en) Method for producing fiber molded body
JP2003336157A (ja) 長繊維不織布の製造方法および製造装置
JP4043984B2 (ja) 吸音材及びその製造方法
JP5671259B2 (ja) 人工皮革用基材の製造方法
JP4058372B2 (ja) 表面に凹凸を有する熱水溶解性不織布およびその製造方法
JPH0931857A (ja) 積層不織布及びその製造方法
JP4124688B2 (ja) 表面に凹凸を有する生分解性不織布およびその製造方法
JP4326897B2 (ja) 繊維ウエブの製造方法、およびこの繊維ウエブを用いた不織布の製造方法
JPH0841762A (ja) 積層不織布及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118069.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754656

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009754656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009754656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009252434

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009252434

Country of ref document: AU

Date of ref document: 20090525

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12992559

Country of ref document: US