WO2009142283A1 - リチウム二次電池用正極活物質及びリチウム二次電池 - Google Patents
リチウム二次電池用正極活物質及びリチウム二次電池 Download PDFInfo
- Publication number
- WO2009142283A1 WO2009142283A1 PCT/JP2009/059403 JP2009059403W WO2009142283A1 WO 2009142283 A1 WO2009142283 A1 WO 2009142283A1 JP 2009059403 W JP2009059403 W JP 2009059403W WO 2009142283 A1 WO2009142283 A1 WO 2009142283A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- lithium secondary
- lithium
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material for a lithium secondary battery, in particular, a polyanionic positive electrode active material, and a lithium secondary battery using the same.
- lithium secondary batteries typified by lithium secondary batteries with high energy density and low self-discharge and good cycle performance have been attracting attention as power sources for mobile devices such as mobile phones and notebook computers, and electric vehicles. ing.
- the current mainstream of lithium secondary batteries is for consumer use, mainly for mobile phones of 2 Ah or less.
- Many positive electrode active materials for lithium secondary batteries have been proposed.
- the most commonly known positive electrode active materials are lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide whose operating voltage is around 4V. object is a (LiNiO 2), or lithium manganese oxide having a spinel structure lithium-containing transition metal oxide to basic configuration (LiMn 2 O 4) or the like.
- lithium cobalt oxide is widely adopted as a positive electrode active material for small-capacity lithium secondary batteries up to a battery capacity of 2 Ah because of its excellent charge / discharge characteristics and energy density.
- polyanionic active materials with excellent thermal stability have attracted attention.
- This polyanion-based active material is immobilized by covalently bonding oxygen to elements other than transition metals, so it does not release oxygen even at high temperatures and can be used as an electrode active material for battery safety. It is thought that can be dramatically improved.
- LiFePO 4 lithium iron phosphate having an olivine structure
- LiFePO 4 has a theoretical capacity as large as 170 mAh / g, since the 3.4V (vs.Li/Li +) lithium insertion and desorption at high potential is conducted, the energy density is high in about comparable to LiCoO 2, LiCoO There is great expectation as a positive electrode active material that can replace 2 .
- Patent Document 1 LiCo 0.25 Fe 0.75 PO 4 , LiCo 0.5 Fe 0.5 PO 4 , LiCo 0. 5 corresponding to 25%, 50%, 75% and 100% as Co substitution amounts .
- 75 Fe 0.25 PO 4 and LiCoPO 4 were synthesized by a solid phase method, and this was used as a positive electrode active material, and a non-aqueous electrolyte battery was fabricated using metallic lithium as a negative electrode, and the discharge capacity was charged to 5.3 V.
- the result of the evaluation was described, "The higher the cobalt content, the higher the discharge voltage, and the voltage at the flat portion of the discharge voltage exceeds 4.5 V" (paragraph 0022), the discharge capacity associated with the amount of Co Is described as increasing or decreasing according to the discharge end voltage (Table 1).
- Non-Patent Document 1 LiFe 0.8 Co 0.2 PO 4 , LiFe 0.5 Co 0.5 PO 4, and LiFe 0.2 Co corresponding to Co substitution amounts of 20%, 50%, and 80% are disclosed.
- 0.8 PO 4 was synthesized by a solid phase method, a single electrode evaluation cell was prepared using this as a positive electrode active material, a charge / discharge cycle test was conducted at a charging potential of 5 V, and LiFePO 4 was used as a positive electrode active material. As a result, the results of conducting a charge / discharge cycle test at a charge potential of 4 V are described.
- Non-Patent Document 2 LiFe 0.9 Co 0.1 PO 4 corresponding to 10% of the Co substitution amount was synthesized by a solid phase method, and this was used as a positive electrode active material, and metallic lithium was used for the negative electrode.
- a non-aqueous electrolyte battery was fabricated and the result of comparing the 2.0 V end discharge capacity after charging to 4.5 V with LiFePO 4 was described, the high rate discharge characteristics at 5 C discharge were improved, but 0.2 C It is described that the discharge capacity in discharge decreased (see FIG. 3).
- An initial discharge test and a charge / discharge cycle test were performed at a charge voltage of 5.1 V, and LiFePO 4 The results of comparison with the case where the charging voltage was set to 4.25 V using the battery were described, and it was described in FIG. 7 that the discharge capacity was reduced compared to LiFePO 4 in all the batteries replaced with Co.
- Non-Patent Document 3 the various positive electrode active materials described above are prepared by dissolving LiOH.H 2 O and FeC 2 O 4 .2H 2 O in nitric acid, and dropping (NH 4 ) H 2 PO 4 solution together with citric acid into this.
- the gel obtained by heating to 75 ° C. is dried at 110 ° C. to obtain a precursor, which is synthesized by baking at 850 ° C. for 2 hours in an Ar atmosphere followed by 750 ° C. for 10 hours. And it is described from the X-ray diffraction pattern that the presence of a small amount of Fe 2 P impurity phase was confirmed in all the synthesized samples irrespective of the presence or absence of Co substitution.
- Non-Patent Document 4 the improvement in electron conductivity is not due to the doping of a small amount of different elements, but the phase-separated Fe formed by mixing and mixing such different elements.
- be phosphide phase such as 2 P is present, in combination with transmission that contribute to the improvement of electron conductivity electron microscope (TEM) electron energy loss spectroscopy (electron energy-loss spectroscopy, EELS ) measurements It is clear from the results.
- TEM electron conductivity electron microscope
- EELS electron energy loss spectroscopy
- the redox reaction accompanying electrochemical lithium insertion / extraction with respect to LiFePO 4 proceeds at a relatively low potential in the vicinity of 3.4 V (vs. Li / Li + ), whereas in LiCoPO 4 , 4. It is known to proceed at a relatively high potential in the vicinity of 8 V (vs. Li / Li + ).
- the aim of substituting part of Fe of LiFePO 4 with Co is to expect high energy density as a positive electrode active material by utilizing the high redox potential of LiCoPO 4 . For this reason, in the above-described prior art documents, battery performance is evaluated by adopting a high potential sufficient to change the valence of Co by charging.
- the present invention relates to a lithium secondary battery used in a region where the positive electrode potential does not exceed 4.2V.
- the positive electrode potential at the time of charging was 3.8 V or 3. Except for the charge / discharge tests, high rate discharge tests, and charge / discharge cycle tests of Examples 5 to 8 and Comparative Examples 6 to 10. The voltage was 6V.
- Patent Document 1 states that “as the negative electrode active material, lithium alloys and lithium compounds other than lithium, other conventionally known alkali metals such as sodium, potassium, and magnesium, alkaline earth metals, or alkali metals or alkaline earth metals. Substances capable of occluding and releasing ions, such as alloys of the above metals, carbon materials, etc., can be used ”(paragraph 0005), and carbon materials are also described as one line that can be used as the negative electrode active material.
- the present invention has been made in view of the above problems, and is a polyanion-type positive electrode active material capable of improving the storage performance (particularly, high-temperature storage performance) and charge / discharge cycle performance of a lithium secondary battery. And a lithium secondary battery using the same.
- the present invention relates to a lithium secondary battery comprising lithium cobalt iron phosphate represented by the general formula Li y Fe (1-x) Co x PO 4 (0 ⁇ x ⁇ 0.019, 0 ⁇ y ⁇ 1.2). Cathode active material.
- the x is preferably 0.005 ⁇ x ⁇ 0.019.
- the present invention is a lithium secondary battery including a positive electrode including the positive electrode active material, a negative electrode, and a non-aqueous electrolyte.
- the negative electrode preferably contains a carbon material capable of inserting and extracting lithium ions.
- the positive electrode active material according to the present invention can be represented by the general formula Li y Fe (1-x) Co x PO 4 (0 ⁇ x ⁇ 0.019, 0 ⁇ y ⁇ 1.2). However, it is not excluded that a part of Fe or Li is substituted with a transition metal element other than Fe or Co, such as Mn or Ni, or Al or a metal element other than Li, Fe or Co.
- the polyanion part (PO 4 ) may be partially dissolved (SiO 4 ), and such a part is also included in the scope of the present invention.
- the method for producing a positive electrode active material according to the present invention is not limited, but basically, a raw material containing a metal element (Li, Fe, Co) constituting the active material and a raw material to be a phosphoric acid source are used. It can be obtained by adjusting the raw materials contained according to the composition of the active material and firing it. At this time, the composition of the compound actually obtained may slightly vary compared to the composition calculated from the raw material composition ratio.
- the present invention can be carried out without departing from the technical idea or main features thereof, and the scope of the present invention is only that the composition of the product obtained as a result of the production does not exactly match the above composition formula. Needless to say, it should not be construed as not belonging to. In particular, it is known that a part of the lithium source easily volatilizes during firing. For this reason, it is usually performed that the lithium source is charged in a larger amount than equimolar with respect to Fe as a raw material before firing.
- the positive electrode active material of the present invention may contain a Co compound not dissolved in the olivine structure as an impurity, and the positive electrode is mixed with another active material such as LiCoO 2 in addition to the positive electrode active material of the present invention. And such an aspect is also included in the scope of the present invention.
- the Li composition varies particularly during the synthesis of the active material. In addition to being easy, in the battery, the positive electrode material is released by charging and Li can reach 0, and Li is occluded by discharging and can reach 1.2, so 0 ⁇ y ⁇ 1 .2.
- a polyanion that can be excellent in high-temperature storage performance (capacity maintenance ratio), battery performance after storage (remaining capacity ratio, recovery capacity ratio), charge / discharge cycle performance, etc.
- a positive electrode active material and a lithium secondary battery using the same can be provided.
- the method for synthesizing the polyanionic positive electrode active material according to the present invention is not particularly limited. Specific examples include a solid phase method, a liquid phase method, a sol-gel method, and a hydrothermal method.
- the polyanion-type positive electrode active material can be finally obtained by firing. Then, in order to the positive electrode active material for a rechargeable lithium battery exhibiting good high-temperature storage performance, composite after firing, it is preferable that as an impurity phase of Fe 2 P is not observed.
- the present inventors have confirmed that when the positive electrode active material contains an Fe 2 P phase, Fe 2 P is eluted in the electrolyte solution, particularly affects the negative electrode side and lowers the high-temperature storage performance. .
- the production conditions for making the Fe 2 P impurity phase not recognized in the composite after firing are not limited, but one is that the raw materials before firing are uniformly mixed. Very important. It is important that the firing atmosphere is not a reducing atmosphere. For example, firing in a nitrogen atmosphere containing 5% hydrogen is not preferable because formation of an Fe 2 P phase is easily observed. Moreover, it is preferable that a calcination temperature is not too high, for example, 720 degrees C or less is preferable.
- the polyanion-type positive electrode active material is preferably used for a positive electrode for a lithium secondary battery as a powder having an average secondary particle size of 100 ⁇ m or less.
- the particle size is small, the average particle size of the secondary particles is more preferably 0.5 to 20 ⁇ m, and the particle size of the primary particles constituting the secondary particles is preferably 1 to 500 nm.
- the specific surface area of the powder particles is preferably large in order to improve the high rate discharge characteristics of the positive electrode, and preferably 1 to 100 m 2 / g. More preferably, it is 5 to 100 m 2 / g.
- a pulverizer or a classifier can be used.
- a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like can be used.
- wet pulverization in which an organic solvent such as water or alcohol or hexane coexists may be used.
- the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used dry or wet as necessary.
- conductive agent and the binder well-known ones can be used in a well-known prescription.
- the amount of water contained in the positive electrode containing the positive electrode active material of the present invention is smaller, specifically, less than 500 ppm.
- the thickness of the electrode mixture layer is preferably 20 to 500 ⁇ m in view of the energy density of the battery.
- the negative electrode of the battery of the present invention is not limited in any way, but lithium metal, lithium alloy (lithium metal such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy) Alloys), alloys capable of inserting and extracting lithium, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12) Etc.), polyphosphoric acid compounds and the like.
- graphite is preferable as a negative electrode material because it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage.
- artificial graphite and natural graphite are preferable.
- graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging.
- non-aqueous electrolyte battery is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent.
- non-aqueous solvent examples include cyclic carbonates such as propylene carbonate and ethylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
- cyclic carbonates such as propylene carbonate and ethylene carbonate
- cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone
- chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
- Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl jig
- ethers such as lime; nitriles such as acetonitrile and benzonitrile; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof. Limited to is not.
- the electrolyte salt examples include ionic compounds such as LiBF 4 and LiPF 6 , and these ionic compounds can be used alone or in admixture of two or more.
- the concentration of the electrolyte salt in the nonaqueous electrolyte is preferably 0.5 mol / l to 5 mol / l, more preferably 1 mol / l to 2.5 mol, in order to reliably obtain a nonaqueous electrolyte battery having high battery characteristics. / L.
- the non-aqueous electrolyte battery is particularly described in detail among lithium secondary batteries, and the positive electrode active material according to the present invention may be used for the positive electrode of an aqueous lithium secondary battery.
- the effect of the present invention is effectively exhibited.
- Example 1 (Synthesis of LiFe 0.995 Co 0.005 PO 4 ) Iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), cobalt acetate (Co (CH 3 COO) 2 .4H 2 O), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) and lithium carbonate ( Li 2 CO 3 ) was weighed so that the molar ratio was 0.995: 0.005: 1: 0.51. Ethanol was added thereto to make a paste, and wet mixing was performed for 2 hours using a ball mill (FRISCH planetary mill, ball diameter: 1 cm).
- the mixture was put in an alumina bowl (outside dimension 90 ⁇ 90 ⁇ 50 mm), and the atmosphere was replaced with a nitrogen gas (flow rate 1) using an atmosphere substitution type firing furnace (a tabletop vacuum gas substitution furnace KDF-75 manufactured by Denken). And firing was performed at a rate of 0.0 l / min).
- the firing temperature was 700 ° C., and the firing time (the time for maintaining the firing temperature) was 2 hours.
- the rate of temperature increase was 5 ° C./minute, and the temperature was naturally cooled.
- the obtained product was confirmed to have a composition of LiFe 0.995 Co 0.005 PO 4 by ICP emission spectroscopic analysis.
- the positive electrode active material for lithium secondary batteries was produced.
- Example 2 Synthesis of LiFe 0.99 Co 0.01 PO 4
- FeC 2 O 4 .2H 2 O iron oxalate dihydrate
- Co (CH 3 COO) 2 .4H 2 O cobalt acetate
- NH 4 H 2 PO 4 ammonium dihydrogen phosphate
- Li 2 CO 3 lithium carbonate
- Example 3 Synthesis of LiFe 0.985 Co 0.015 PO 4
- iron oxalate dihydrate FeC 2 O 4 .2H 2 O
- cobalt acetate Co (CH 3 COO) 2 .4H 2 O
- ammonium dihydrogen phosphate NH 4 H
- Li 2 CO 3 lithium carbonate
- the molar ratio was 0.985: 0.015: 1: 0.51.
- a positive electrode active material for a lithium secondary battery was produced.
- the composition of LiFe 0.985 Co 0.015 PO 4 was confirmed by ICP emission spectroscopic analysis.
- Example 4 Preparation of LiFe 0.981 Co 0.019 PO 4 .
- iron oxalate dihydrate FeC 2 O 4 .2H 2 O
- cobalt acetate Co (CH 3 COO) 2 .4H 2 O
- ammonium dihydrogen phosphate NH 4 H
- Li 2 CO 3 lithium carbonate
- ICP emission spectroscopic analysis confirmed the composition of LiFe 0.981 Co 0.019 PO 4 .
- LiFePO 4 (Comparative Example 1) (Preparation of LiFePO 4 )
- lithium carbonate (Li 2 CO 3 ) LiFePO 4 was obtained in the same manner as in Example 1 except that the molar ratio was 1: 1: 0.51.
- FIG. 1 shows X-ray diffraction patterns for some examples and comparative examples.
- the BET specific surface area was about 1 m 2 / g.
- lithium secondary batteries were assembled by the following procedure using the positive electrode active materials of Examples 1 to 4 and Comparative Examples 1 to 5, and the battery performance was evaluated by the following high-temperature storage test. Went. At that time, in order to eliminate as much as possible the factors that may affect the battery performance and accurately grasp the characteristic change of the lithium cobalt iron phosphate compound itself, carbon coating was not intentionally performed on the positive electrode active material particles.
- the positive electrode active material, acetylene black as a conductive agent and polyvinylidene fluoride (PVdF) as a binder are contained at a weight ratio of 80: 8: 12, and N-methyl-2-pyrrolidone (NMP) is used as a solvent.
- NMP N-methyl-2-pyrrolidone
- a positive electrode paste was prepared. The positive electrode paste is applied on both sides of an aluminum mesh current collector to which aluminum terminals are attached, and after removing NMP at 80 ° C., the applied portions are doubled and folded so that the projected area of the applied portion is halved. Then, press working was performed so that the total thickness after bending was 400 ⁇ m, and a positive electrode was obtained.
- the positive electrode was vacuum-dried at 150 ° C. for 5 hours or longer to remove moisture from the electrode plate.
- a negative electrode was prepared by attaching a 300 ⁇ m-thick lithium metal foil to both surfaces of a SUS316 mesh current collector to which a SUS316 terminal was attached, and pressing it.
- a reference electrode was prepared by attaching a 300 ⁇ m thick lithium metal foil to a SUS316 current collector rod.
- a non-aqueous electrolyte was produced by dissolving LiPF 6 as a fluorine-containing electrolyte salt at a concentration of 1.2 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7.
- the amount of water in the non-aqueous electrolyte was less than 50 ppm.
- a glass non-aqueous electrolyte battery was assembled in an Ar box having a dew point of ⁇ 40 ° C. or lower.
- Each of the positive electrode, the negative electrode, and the reference electrode was sandwiched between gold-plated clips whose conductors were previously fixed to the lid portion of the container, and then fixed so that the positive and negative electrodes were opposed to each other.
- the reference electrode was fixed at a position on the back side of the positive electrode when viewed from the negative electrode.
- a polypropylene cup containing a certain amount of electrolyte was placed in a glass container, and a battery was assembled by covering the positive electrode, the negative electrode, and the reference electrode so as to be immersed therein.
- the lithium secondary battery was subjected to a charging / discharging process of charging / discharging two cycles at a temperature of 25 ° C.
- the charging conditions are a current of 0.1 ItmA (about 10 hours rate), a voltage of 3.8 V, and a constant current constant voltage charging of 15 hours.
- the discharging conditions are a current of 0.1 ItmA (about 10 hours rate) and a final voltage of 2.0 V. Constant current discharge.
- the discharge capacity obtained in the second cycle was recorded as “discharge capacity before high-temperature storage (mAh)”.
- Example 1 to 4 and Comparative Examples 1 to 5 described above the present invention was applied to the battery without performing carbon coating on the positive electrode active material particles. However, in producing a lithium secondary battery for industrial use, It is preferable to perform carbon coating on the active material particles. Since the present inventors performed the same test also about the case where a positive electrode active material particle is carbon-coated and it applies to a battery, it shows below.
- Example 5 The positive electrode active material (LiFe 0.995 Co 0.005 PO 4 ) obtained in Example 1 and polyvinyl alcohol (degree of polymerization: about 1500) were weighed so that the mass ratio was 1: 1, and then dried by a ball mill. After mixing, this mixture was put in an alumina sagger and baked at 700 ° C. for 1 hour in a nitrogen flow (1.0 liter / min) in an atmosphere substitution type baking furnace to perform carbon coating.
- alumina sagger The positive electrode active material obtained in Example 1 and polyvinyl alcohol (degree of polymerization: about 1500) were weighed so that the mass ratio was 1: 1, and then dried by a ball mill. After mixing, this mixture was put in an alumina sagger and baked at 700 ° C. for 1 hour in a nitrogen flow (1.0 liter / min) in an atmosphere substitution type baking furnace to perform carbon coating.
- Example 6 The positive electrode active material (LiFe 0.99 Co 0.01 PO 4 ) obtained in Example 2 was carbon coated in the same manner as in Example 5.
- Example 7 The positive electrode active material (LiFe 0.985 Co 0.015 PO 4 ) obtained in Example 3 was carbon coated in the same manner as in Example 5.
- Example 8 The positive electrode active material (LiFe 0.981 Co 0.019 PO 4 ) obtained in Example 4 was carbon coated in the same manner as in Example 5.
- Comparative Example 6 The positive electrode active material (LiFePO 4 ) obtained in Comparative Example 1 was carbon coated in the same manner as in Example 5.
- Comparative Example 7 The positive electrode active material (LiFe 0.98 Co 0.02 PO 4 ) obtained in Comparative Example 2 was carbon coated in the same manner as in Example 5.
- Comparative Example 8 The positive electrode active material (LiFe 0.97 Co 0.03 PO 4 ) obtained in Comparative Example 3 was carbon coated in the same manner as in Example 5.
- Comparative Example 9 The positive electrode active material (LiFe 0.95 Co 0.05 PO 4 ) obtained in Comparative Example 4 was carbon coated in the same manner as in Example 5.
- Comparative Example 10 The positive electrode active material (LiFe 0.90 Co 0.10 PO 4 ) obtained in Comparative Example 5 was carbon coated in the same manner as in Example 5.
- the BET specific surface area of the positive electrode active material after carbon coating was about 6 m 2 / g.
- a lithium secondary battery was assembled by the same procedure as in Example 1, and the following charge / discharge test, high rate discharge test, charge / discharge were performed. The battery performance was evaluated by a cycle test.
- the lithium secondary battery was subjected to a charge / discharge process in which charge / discharge of two cycles was performed at a temperature of 25 ° C.
- the charging conditions were a current of 0.1 ItmA (approximately 10 hour rate), a voltage of 4.9 V, and a constant current constant voltage charge of 15 hours.
- the discharging conditions were a current of 0.1 ItmA (approximately 10 hour rate) and a final voltage of 2.0 V. Constant current discharge.
- the results of the discharge capacity obtained in the first cycle are shown in Table 2.
- the value of x is 0 ⁇ x ⁇ 0.019, preferably the value of x is 0.005 or more and 0.019. It has been found that the following effect can be provided that a polyanion-type positive electrode active material having a larger discharge capacity than LiFePO 4 can be provided, which cannot be predicted from the prior art. From Table 1, it can be seen that the value of x is more preferably 0.005 or more and 0.015 or less, and further preferably 0.010 or more and 0.015 or less.
- the value of x is 0 ⁇ x ⁇ 0.019, preferably the value of x is 0.005 or more and 0.019.
- a polyanion type positive electrode active material having a large discharge capacity be provided, but also a positive electrode active material having excellent high rate discharge characteristics can be provided.
- the high rate discharge characteristics are rather improved in the range where the value of x is 0.005 or more and 0.019 or less.
- the value of x is 0.010 or more and 0. It can be seen that the high rate discharge characteristic is particularly excellent when it is .015 or less.
- the value of x is 0 ⁇ x ⁇ 0.019, preferably the value of x is 0.005 or more and 0.019.
- the charge / discharge cycle performance is rather improved in the range where the value of x is 0.005 or more and 0.015 or less.
- the value of x is 0.010 or more. It can be seen that the charge / discharge cycle performance is particularly excellent when it is 0.015 or less.
- the present inventors presume as follows. That is, when a part of Fe of LiFePO 4 is replaced with Co, the crystal forms a solid solution. In this solid solution, the lattice constant of the crystal approaches the lattice constant of LiCoPO 4 according to the amount of Co substitution. However, this phenomenon appears when the Co substitution amount is 2% or more.
- the lattice constant almost coincides with LiFePO 4 . That is, the presence of Co having a small ionic radius but a little smaller than Fe while maintaining the same lattice volume has resulted in some effects such as the expansion of the Li ion path in the solid phase, resulting in Li ions. It is thought that this is because it becomes easier to move or because the structural stability is increased.
- the amount of Co substitution is 2% or more, the lattice constant changes according to the amount of Co substitution. Therefore, it is considered that various electrochemical characteristics of the active material are deteriorated by losing the special effects as described above. It is done.
- Example 9 (Production of LiFe 0.995 Co 0.005 PO 4 / C) First, iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), cobalt acetate tetrahydrate (Co (CH 3 COO) 2 .4H 2 O), and ammonium dihydrogen phosphate (NH 4 H) 2 PO 4 ) and lithium carbonate (Li 2 CO 3 ) in a molar ratio of 0.995: 0.005: 1.00: 0.51, Using an alcohol as a solvent, pulverization and mixing were performed for 2 hours in a ball mill to obtain a LiFe 0.995 Co 0.005 PO 4 precursor.
- FeC 2 O 4 .2H 2 O iron oxalate dihydrate
- Co (CH 3 COO) 2 .4H 2 O) cobalt acetate tetrahydrate
- NH 4 H) 2 PO 4 ammonium dihydrogen phosphate
- Li 2 CO 3 lithium carbonate
- LiFe 0.995 Co 0.005 PO 4 precursor After drying the LiFe 0.995 Co 0.005 PO 4 precursor, the amount of carbon produced by thermal decomposition of methanol is reduced to a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized. While supplying 2% by mass of LiFe 0.995 Co 0.005 PO 4 , it was calcined at 700 ° C. for 6 hours, and cobalt iron phosphate substituted with 0.5% of Co according to the present invention. Lithium A (LiFe 0.995 Co 0.005 PO 4 / C) was produced. The rotational speed of the kiln is 1 r. p. m. It was. Moreover, the mixed gas of vaporized methanol and nitrogen was manufactured by enclosing a methanol solution maintained at 45 ° C. in a sealed container and bubbling with nitrogen as a carrier gas.
- the amount of carbon in the obtained lithium cobalt iron phosphate A (LiFe 0.995 Co 0.005 PO 4 / C) was investigated using elemental analysis. Further, the composition of LiFe 0.995 Co 0.005 PO 4 was confirmed by ICP emission spectroscopic analysis.
- the mass ratio of lithium cobalt iron phosphate A (LiFe 0.995 Co 0.005 PO 4 / C) manufactured by the above method, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder is 87.
- N: Methyl-2-pyrrolidone (NMP) as a solvent so as to have a ratio of 5: 8 was sufficiently kneaded to produce a positive electrode paste.
- This positive electrode paste was applied to both sides of an aluminum foil current collector with a thickness of 20 ⁇ m, dried, and then pressed to obtain a positive electrode plate.
- a separator which is a continuous porous body having a thickness of 25 ⁇ m and an air permeability of 90 seconds / 100 cc, is arranged between both electrodes, this is 48 mm high, 30 mm wide and 5 mm thick. Inserted into a 2 mm container. Furthermore, a lithium secondary battery A according to the present invention was assembled by injecting a non-aqueous liquid electrolyte (electrolytic solution) into the container and finally sealing the liquid injection port.
- a non-aqueous liquid electrolyte electrolytic solution
- the electrolyte solution used was a solution of 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1. It was.
- the design capacity was 500 mAh.
- Example 10 (Production of LiFe 0.99 Co 0.01 PO 4 / C) First, iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), cobalt acetate tetrahydrate (Co (CH 3 COO) 2 .4H 2 O), and ammonium dihydrogen phosphate (NH 4 H) 2 PO 4 ) and lithium carbonate (Li 2 CO 3 ) in a molar ratio of 0.99: 0.01: 1.00: 0.51 Using an alcohol as a solvent, the mixture was pulverized and mixed with a ball mill for 2 hours to obtain a LiFe 0.99 Co 0.01 PO 4 precursor.
- FeC 2 O 4 .2H 2 O iron oxalate dihydrate
- Co (CH 3 COO) 2 .4H 2 O) cobalt acetate tetrahydrate
- NH 4 H ammonium dihydrogen phosphate
- Li 2 CO 3 lithium carbonate
- the amount of carbon produced by the thermal decomposition of methanol is reduced to a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized.
- a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized.
- firing was performed at 700 ° C. for 6 hours, and lithium cobalt phosphate B substituted with 1% of Co according to the present invention B (LiFe 0.99 Co 0.01 PO 4 / C) was produced.
- the rotational speed of the kiln is 1 r. p. m. It was.
- the mixed gas of vaporized methanol and nitrogen was manufactured by enclosing a methanol solution maintained at 45 ° C. in a sealed container and bubbling with nitrogen as a carrier gas.
- the amount of carbon in the obtained lithium cobalt iron phosphate B (LiFe 0.99 Co 0.01 PO 4 / C) was examined using elemental analysis. In addition, the composition of LiFe 0.99 Co 0.01 PO 4 was confirmed by ICP emission spectroscopic analysis.
- a lithium secondary battery B according to the present invention was assembled in the same manner as in Example 9 except that lithium cobalt iron phosphate B was used.
- Example 11 (Production of LiFe 0.981 Co 0.019 PO 4 / C) First, iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), cobalt acetate tetrahydrate (Co (CH 3 COO) 2 .4H 2 O), and ammonium dihydrogen phosphate (NH 4 H) 2 PO 4 ) and lithium carbonate (Li 2 CO 3 ) in a molar ratio of 0.981: 0.019: 1.00: 0.51 Using alcohol as a solvent, the mixture was pulverized and mixed with a ball mill for 2 hours to obtain a LiFe 0.981 Co 0.019 PO 4 precursor.
- LiFe 0.981 Co 0.019 PO 4 precursor is dried, the amount of carbon produced by thermal decomposition of methanol is reduced to a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized. While supplying 2% by mass of LiFe 0.981 Co 0.019 PO 4 , it was calcined at 700 ° C. for 6 hours, and cobalt iron phosphate substituted with 1.9% of Co according to the present invention. Lithium C (LiFe 0.981 Co 0.019 PO 4 / C) was produced. The rotational speed of the kiln is 1 r. p. m. It was. Moreover, the mixed gas of vaporized methanol and nitrogen was manufactured by enclosing a methanol solution maintained at 45 ° C. in a sealed container and bubbling with nitrogen as a carrier gas.
- the amount of carbon in the obtained lithium cobalt iron phosphate C (LiFe 0.981 Co 0.019 PO 4 / C) was examined using elemental analysis. Further, the composition of LiFe 0.981 Co 0.019 PO 4 was confirmed by ICP emission spectroscopic analysis.
- a lithium secondary battery C according to the present invention was assembled in the same manner as in Example 9 except that lithium cobalt iron phosphate C was used.
- the LiFePO 4 precursor After drying the LiFePO 4 precursor, it is put into a rotary kiln, and the amount of carbon produced by thermal decomposition of methanol is 2% by mass of LiFePO 4 by vaporizing the mixed gas of methanol and nitrogen.
- the mixture was baked at 700 ° C. for 6 hours to produce lithium iron phosphate D (LiFePO 4 / C) not substituted for Co.
- the rotational speed of the kiln is 1 r. p. m. It was.
- the mixed gas of vaporized methanol and nitrogen was manufactured by enclosing a methanol solution maintained at 45 ° C. in a sealed container and bubbling with nitrogen as a carrier gas.
- the amount of carbon in the obtained lithium iron phosphate D (LiFePO 4 / C) was investigated using elemental analysis. Further, the composition of LiFePO 4 was confirmed by ICP emission spectroscopic analysis.
- a lithium secondary battery D was assembled in the same manner as in Example 9 except that lithium iron phosphate D was used.
- the amount of carbon produced by thermal decomposition of methanol is reduced to a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized. While supplying 2% by mass of LiFe 0.98 Co 0.02 PO 4 , it was calcined at 700 ° C. for 6 hours, and lithium cobalt cobalt phosphate E (2%) substituted with Co of the present invention by 2%. LiFe 0.98 Co 0.02 PO 4 / C) was produced. The rotational speed of the kiln is 1 r. p. m. It was. Moreover, the mixed gas of vaporized methanol and nitrogen was manufactured by enclosing a methanol solution maintained at 45 ° C. in a sealed container and bubbling with nitrogen as a carrier gas.
- the amount of carbon in the obtained lithium cobalt iron phosphate E (LiFe 0.98 Co 0.02 PO 4 / C) was examined using elemental analysis. Further, the composition of LiFe 0.98 Co 0.02 PO 4 was confirmed by ICP emission spectroscopic analysis.
- a lithium secondary battery E according to the present invention was assembled by the same method as in Example 9 except that lithium cobalt iron phosphate E was used.
- the amount of carbon produced by the thermal decomposition of methanol is reduced to a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized.
- a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized.
- LiFe 0.95 Co 0.05 PO 4 a mixed gas of methanol and nitrogen that is put into a rotary kiln and vaporized.
- LiFe 0.95 Co 0.05 PO 4 / C lithium iron cobalt phosphate F substituted with 5% of Co according to the present invention
- the rotational speed of the kiln is 1 r. p. m. It was.
- the mixed gas of vaporized methanol and nitrogen was manufactured by enclosing a methanol solution maintained at 45 ° C. in a sealed container and bubbling with nitrogen as a carrier gas.
- LiFe 0.95 Co 0.05 PO 4 / C The amount of carbon in the obtained lithium cobalt iron phosphate F (LiFe 0.95 Co 0.05 PO 4 / C) was investigated using elemental analysis. Further, the composition of LiFe 0.95 Co 0.05 PO 4 was confirmed by ICP emission spectroscopic analysis.
- a lithium secondary battery F according to the present invention was assembled in the same manner as in Example 9 except that lithium cobalt iron phosphate F was used.
- the assembled lithium secondary batteries A to F were initially charged and discharged at 25 ° C.
- the initial charging was constant current constant voltage charging for 3 hours in total at a constant current of 1 It (about 1 hour rate, 500 mA) up to 3.6 V, and further at a constant voltage of 3.6 V.
- the subsequent initial discharge was a constant current discharge of up to 2.0 V at a constant current of 1 It (about 1 hour rate, 500 mA), and the amount of discharge at this time was recorded as “initial discharge capacity (mAh)”.
- the charging was performed at a constant current of 1 It (about 1 hour rate, 500 mA) up to 3.6 V, and further at a constant voltage of 3.6 V for a total current of 3 hours.
- the subsequent discharge was a constant current discharge up to 2.0 V at a constant current of 1 It (about 1 hour rate, 500 mA), and the amount of electricity discharged at this time was recorded as “recovery discharge capacity (mAh)”.
- the percentage of the “remaining discharge capacity (mAh)” with respect to the “initial discharge capacity (mAh)” was calculated as “remaining capacity ratio (%)”.
- the results are shown in Table 4 and FIG. Further, the percentage of the “recovery discharge capacity (mAh)” with respect to the “initial discharge capacity (mAh)” was calculated as “recovery capacity ratio (%)”.
- the results are shown in Table 5 and FIG.
- a battery using a carbon material capable of inserting and extracting lithium ions in the negative electrode by selecting 0 ⁇ x ⁇ 0.019 as the value of x in LiFe (1-x) Co x PO 4
- the battery performance after storage that is, the remaining capacity ratio or the recovery capacity ratio can be increased. It can also be seen that the value of x is preferably around 0.01.
- the capacity balance of the battery of the present invention is designed to limit the negative electrode, and the capacity balance of the negative electrode limit does not change even after going through the charge / discharge cycle test and the storage test.
- “Capacity ratio” and “recovery capacity ratio” are evaluations of the Li holding capacity on the negative electrode side during the storage test. From this, it is clear that the difference in the Co content in the positive electrode active material has influenced the Li holding capacity on the negative electrode side. It is a matter that the present inventor could not have predicted that such an action effect is achieved, and its action mechanism is not clear at the present time.
- the charging was performed at a constant current of 1 It (about 1 hour rate, 500 mA) up to 3.6 V, and further at a constant voltage of 3.6 V for a total current of 3 hours.
- the subsequent discharge was a constant current discharge of up to 2.0 V at a constant current of 1 It (about 1 hour rate, 500 mA), and the amount of electricity discharged at this time was recorded as “discharge capacity after 50 cycles (mAh)”. Further, the percentage of the “discharge capacity after 50 cycles (mAh)” with respect to the “initial discharge capacity (mAh)” was calculated as “charge / discharge cycle performance (%)”. The results are shown in Table 6 and FIG.
- a battery using a carbon material capable of inserting and extracting lithium ions in the negative electrode by selecting 0 ⁇ x ⁇ 0.019 as the value of x in LiFe (1-x) Co x PO 4
- the charge / discharge cycle performance can be improved. It can also be seen that the value of x is more preferably 0.005 or more.
- Non-Patent Document 3 a part of LiFePO 4 was replaced with Co, the initial discharge capacity was reduced, and the capacity during the charge / discharge cycle was low.
- the difference is significant, there is no Fe 2 P impurity phase in the positive electrode active material, the positive battery reaching the charge is different, and the negative electrode is not a lithium cell or a single electrode cell, It is presumed that this is due to differences such as being a cell using a carbon material.
- a lithium secondary battery excellent in high-temperature storage performance, charge / discharge cycle performance, etc. can be provided using a thermally stable polyanionic positive electrode active material, and future development is expected.
- Industrial batteries, such as electric vehicles, are particularly suitable for applications in fields where long life, high capacity and high output are required, and their industrial applicability is extremely large.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
さらに、特許文献1には、「負極活物質としては、リチウム以外にリチウム合金やリチウム化合物、その他ナトリウム、カリウム、マグネシウム等従来公知のアルカリ金属、アルカリ土類金属、又はアルカリ金属若しくはアルカリ土類金属イオンを吸蔵、放出可能な物質、例えば前記金属の合金、炭素材料等が使用できる。」(段落0005)と記載され、負極活物質として用いうる材料として炭素材料についても一行記載がある。しかしながら、上記したいずれの特許文献、非特許文献にも、LiFePO4のFeの一部をCoで置換した正極活物質を用い、負極に炭素材料を用いた電池の具体的記載は無く、LiFePO4のFeの一部をCoで置換した正極活物質を用い、負極に炭素材料を用いた電池の保存後の電池性能(残存容量率および回復容量率)及び充放電サイクル性能がどのようであるかについての記載も示唆も無い。
また、負極にリチウムイオンを吸蔵・放出しうる炭素材料を用いた場合の残存容量率および回復容量率がどのようであるかについては、負極に金属リチウムを用いた電池しか具体的に記載のない上記特許文献、非特許文献からは全く予測できないものである。なぜなら、残存容量率および回復容量率は、負極にカーボンを用いた場合には、正極活物質に存在していたLiの一部が充電によって負極の炭素材料に到達し、その後、放置したのちの放電時に負極の炭素材料から戻ってくることのできるLiの割合を評価したものであるからである。
さらに、負極にリチウムイオンを吸蔵・放出しうる炭素材料を用いた場合の充放電サイクル性能がどのようであるかについては、負極に金属リチウムを用いた電池しか具体的に記載のない上記特許文献、非特許文献からは全く予測できないものである。なぜなら、負極に金属リチウムを用いた場合には一般的に負極容量が過剰となり容量バランスが正極制限電池となるのに対し、負極に炭素材料を用いた場合は、全てのリチウム源は正極側から供給されるので、容量バランスは通常負極制限となり、従って、充放電サイクル性能は、多分に負極の性能によって左右されるものであるためである。
また、後述する実施例では、y=1のLiFe(1-x)CoxPO4の正極活物質を提案しているが、上記したように活物質の合成過程で特にLi組成については変動し易いことに加え、電池内において該正極物質は充電によって放出されLiが0にまで至り得るものであり、放電によってLiが吸蔵され1.2にまで至り得るものであるから、0≦y≦1.2とする。
(LiFe0.995Co0.005PO4の合成)
蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.995:0.005:1:0.51になるように秤取った。そこにエタノ-ルを加えてペースト状とし、ボ-ルミル(FRITSCH社製プラネタリーミル、ボール径1cm)を用いて2時間湿式混合を行った。
(LiFe0.99Co0.01PO4の合成)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.99:0.01:1:0.51になるように秤取ったことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を作製した。なお、ICP発光分光分析により、LiFe0.99Co0.01PO4の組成を確認した。
(LiFe0.985Co0.015PO4の合成)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.985:0.015:1:0.51になるように秤取ったことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を作製した。なお、ICP発光分光分析により、LiFe0.985Co0.015PO4の組成を確認した。
(LiFe0.981Co0.019PO4の作製)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.981:0.019:1:0.51になるように秤取ったことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を作製した。なお、ICP発光分光分析により、LiFe0.981Co0.019PO4の組成を確認した。
(LiFePO4の作製)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が1:1:0.51になるように秤取ったことを除いては実施例1と同様にしてLiFePO4を得た。
(LiFe0.98Co0.02PO4の作製)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.98:0.02:1:0.51になるように秤取ったことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を作製した。なお、ICP発光分光分析により、LiFe0.98Co0.02PO4の組成を確認した。
(LiFe0.97Co0.03PO4の作製)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.97:0.03:1:0.51になるように秤取ったことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を作製した。なお、ICP発光分光分析により、LiFe0.97Co0.03PO4の組成を確認した。
(LiFe0.95Co0.05PO4の作製)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.95:0.05:1:0.51になるように秤取ったことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を作製した。なお、ICP発光分光分析により、LiFe0.95Co0.05PO4の組成を確認した。
(LiFe0.90Co0.10PO4の作製)
上記正極活物質の作製にあたり、蓚酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト(Co(CH3COO)2・4H2O)とリン酸二水素アンモニウム(NH4H2PO4)と炭酸リチウム(Li2CO3)とをモル比が0.90:0.10:1:0.51になるように秤取ったことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を作製した。なお、ICP発光分光分析により、LiFe0.90Co0.10PO4の組成を確認した。
前記正極活物質、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を80:8:12の重量比で含有し、N-メチル-2-ピロリドン(NMP)を溶媒とする正極ペーストを調整した。該正極ペーストをアルミ端子を取り付けたアルミニウムメッシュ集電体上の両面に塗布し、80℃でNMPを除去した後、塗布部分同士が二重に重なり塗布部分の投影面積が半分となるように折り曲げ、折り曲げた後の全体の厚みが400μmになるようにプレス加工を行い、正極とした。正極は150℃で5時間以上の真空乾燥を行い、極板中の水分を除去して使用した。
SUS316端子を取り付けたSUS316メッシュ集電体の両面に厚さ300μmのリチウム金属箔を貼り付けてプレス加工したものを負極とした。
(参照極の作製)
SUS316集電棒に厚さ300μmのリチウム金属箔を貼り付けたものを参照極とした。
エチレンカーボネート、ジエチルカーボネートを体積比3:7の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPF6を1.2mol/lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
露点-40℃以下のArボックス中においてガラス製の非水電解質電池を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに正極と負極と参照極とを各1枚ずつ挟んだ後、正・負極が対向するように固定した。参照極は負極から見て正極の裏側となる位置に固定した。次に、一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに正極、負極及び参照極が浸かるように蓋をすることで電池を組み立てた。
まず、上記リチウム二次電池に対して温度25℃において、2サイクルの充放電を行う充放電工程に供した。充電条件は、電流0.1ItmA(約10時間率)、電圧3.8V、15時間の定電流定電圧充電とし、放電条件は、電流0.1ItmA(約10時間率)、終止電圧2.0Vの定電流放電とした。このとき、2サイクル目に得られた放電容量を「高温保存前放電容量(mAh)」として記録した。
実施例1で得られた正極活物質(LiFe0.995Co0.005PO4)とポリビニルアルコール(重合度約1500)とを質量比が1:1になるように秤量した後、ボールミルで乾式混合し、この混合物をアルミナ製の匣鉢に入れ、雰囲気置換式焼成炉にて窒素流通下(1.0リットル/分)で700℃、1時間焼成することでカーボンコートを行った。
実施例2で得られた正極活物質(LiFe0.99Co0.01PO4)について、実施例5と同様にしてカーボンコートを行った。
実施例3で得られた正極活物質(LiFe0.985Co0.015PO4)について、実施例5と同様にしてカーボンコートを行った。
実施例4で得られた正極活物質(LiFe0.981Co0.019PO4)について、実施例5と同様にしてカーボンコートを行った。
比較例1で得られた正極活物質(LiFePO4)について、実施例5と同様にしてカーボンコートを行った。
比較例2で得られた正極活物質(LiFe0.98Co0.02PO4)について、実施例5と同様にしてカーボンコートを行った。
比較例3で得られた正極活物質(LiFe0.97Co0.03PO4)について、実施例5と同様にしてカーボンコートを行った。
比較例4で得られた正極活物質(LiFe0.95Co0.05PO4)について、実施例5と同様にしてカーボンコートを行った。
比較例5で得られた正極活物質(LiFe0.90Co0.10PO4)について、実施例5と同様にしてカーボンコートを行った。
リチウム二次電池を温度25℃において、2サイクルの充放電を行う充放電工程に供した。充電条件は、電流0.1ItmA(約10時間率)、電圧4.9V、15時間の定電流定電圧充電とし、放電条件は、電流0.1ItmA(約10時間率)、終止電圧2.0Vの定電流放電とした。1サイクル目に得られた放電容量の結果を表2に示す。
温度25℃において、上記初期充放電工程と同一の条件で充電を行った後、放電電流2.0ItmA(約0.5時間率)、放電終止電圧2.0Vの定電流放電を行った。このときの放電容量の前記充放電工程の0.1ItmAの放電容量に対する百分率を求め、「高率放電特性値(%)」とした。結果を表2に併せて示す。
高率放電試験を終えた電池を温度25℃において充放電サイクル試験に供した。充電条件は、電流1.0ItmA(約1時間率)、電圧4.9V、1.5時間の定電流定電圧充電とし、放電条件は電流1.0ItmA(約1時間率)、終止電圧2.0Vの定電流放電とした。この充放電サイクル試験における1サイクル目の放電容量に対する50サイクル後の放電容量の百分率を求め、「充放電サイクル性能(%)」とした。結果を表2に併せて示す。
実施例6、8、比較例6、9、10の正極活物質を用い、実施例1と同様にしてリチウム二次電池を組み立て、上記と同様の手順に従って、「容量維持率(%)」(高温保存性能)を評価した。結果を表3に示す。
(LiFe0.995Co0.005PO4/Cの製作)
まず、シュウ酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト四水和物(Co(CH3COO)2・4H2O)と、リン酸二水素アンモニウム(NH4H2PO4)と、炭酸リチウム(Li2CO3)とをモル比が0.995:0.005:1.00:0.51になるように計り取ったのちに、これらを窒素雰囲気下において溶媒にアルコールを用いて、ボールミルで2時間、粉砕・混合をおこないLiFe0.995Co0.005PO4前駆体を得た。つぎに、そのLiFe0.995Co0.005PO4前駆体を乾燥させたのちに、ロータリーキルンに投入し、気化させたメタノールと窒素との混合ガスを、メタノールの熱分解により生成するカーボン量がLiFe0.995Co0.005PO4の2質量%になるように供給しながら、700℃、6時間の条件で焼成して、本発明に係るCoを0.5%置換したリン酸コバルト鉄リチウムA(LiFe0.995Co0.005PO4/C)を製作した。なお、そのキルンの回転速度は1r.p.m.とした。また、気化させたメタノールと窒素との混合ガスは、45℃に保持したメタノール溶液を密閉容器に封入し、キャリアガスとして窒素を用いてバブリングさせることによって製作した。
上記の方法により製作したリン酸コバルト鉄リチウムA(LiFe0.995Co0.005PO4/C)と導電剤であるアセチレンブラックと結着剤であるポリフッ化ビニリデン(PVdF)とを質量比87:5:8の割合になるように、溶媒としてN-メチル-2-ピロリドン(NMP)を用いて、充分混練して、正極ペーストを製作した。この正極ペーストを厚さ20μmのアルミニウム箔集電体上の両面に塗布し、乾燥した後に、プレス加工をおこなったものを正極板とした。
負極材料である人造黒鉛(平均粒径6μm、X線回折分析による面間隔(d002)0.337nm、c軸方向の結晶の大きさ(Lc)55nm)と結着剤であるPVdFとを質量比94:6の割合になるように、溶媒としてN-メチル-2-ピロリドン(NMP)を用いて、充分混練して、負極ペーストを製作した。この負極ペーストを厚さ10μmの銅箔集電体上の両面に塗布し、乾燥した後に、プレス加工を行ったものを負極板とした。負極板には負極端子を抵抗溶接により溶接した。
(LiFe0.99Co0.01PO4/Cの製作)
まず、シュウ酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト四水和物(Co(CH3COO)2・4H2O)と、リン酸二水素アンモニウム(NH4H2PO4)と、炭酸リチウム(Li2CO3)とをモル比が0.99:0.01:1.00:0.51になるように計り取ったのちに、これらを窒素雰囲気下において溶媒にアルコールを用いて、ボールミルで2時間、粉砕・混合をおこないLiFe0.99Co0.01PO4前駆体を得た。つぎに、そのLiFe0.99Co0.01PO4前駆体を乾燥させたのちに、ロータリーキルンに投入し、気化させたメタノールと窒素との混合ガスを、メタノールの熱分解により生成するカーボン量がLiFe0.99Co0.01PO4の2質量%になるように供給しながら、700℃、6時間の条件で焼成して、本発明に係るCoを1%置換したリン酸コバルト鉄リチウムB(LiFe0.99Co0.01PO4/C)を製作した。なお、そのキルンの回転速度は1r.p.m.とした。また、気化させたメタノールと窒素との混合ガスは、45℃に保持したメタノール溶液を密閉容器に封入し、キャリアガスとして窒素を用いてバブリングさせることによって製作した。
(LiFe0.981Co0.019PO4/Cの製作)
まず、シュウ酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト四水和物(Co(CH3COO)2・4H2O)と、リン酸二水素アンモニウム(NH4H2PO4)と、炭酸リチウム(Li2CO3)とをモル比が0.981:0.019:1.00:0.51になるように計り取ったのちに、これらを窒素雰囲気下において溶媒にアルコールを用いて、ボールミルで2時間、粉砕・混合をおこないLiFe0.981Co0.019PO4前駆体を得た。つぎに、そのLiFe0.981Co0.019PO4前駆体を乾燥させたのちに、ロータリーキルンに投入し、気化させたメタノールと窒素との混合ガスを、メタノールの熱分解により生成するカーボン量がLiFe0.981Co0.019PO4の2質量%になるように供給しながら、700℃、6時間の条件で焼成して、本発明に係るCoを1.9%置換したリン酸コバルト鉄リチウムC(LiFe0.981Co0.019PO4/C)を製作した。なお、そのキルンの回転速度は1r.p.m.とした。また、気化させたメタノールと窒素との混合ガスは、45℃に保持したメタノール溶液を密閉容器に封入し、キャリアガスとして窒素を用いてバブリングさせることによって製作した。
(LiFePO4/Cの製作)
まず、シュウ酸鉄二水和物(FeC2O4・2H2O)と、リン酸二水素アンモニウム(NH4H2PO4)と、炭酸リチウム(Li2CO3)とをモル比が1.00:1.00:0.51になるように計り取ったのちに、これらを窒素雰囲気下において溶媒にアルコールを用いて、ボールミルで2時間、粉砕・混合をおこないLiFePO4前駆体を得た。つぎに、そのLiFePO4前駆体を乾燥させたのちに、ロータリーキルンに投入し、気化させたメタノールと窒素との混合ガスを、メタノールの熱分解により生成するカーボン量がLiFePO4の2質量%になるように供給しながら、700℃、6時間の条件で焼成して、Coを置換していないリン酸鉄リチウムD(LiFePO4/C)を製作した。なお、そのキルンの回転速度は1r.p.m.とした。また、気化させたメタノールと窒素との混合ガスは、45℃に保持したメタノール溶液を密閉容器に封入し、キャリアガスとして窒素を用いてバブリングさせることによって製作した。
(LiFe0.98Co0.02PO4/Cの製作)
まず、シュウ酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト四水和物(Co(CH3COO)2・4H2O)と、リン酸二水素アンモニウム(NH4H2PO4)と、炭酸リチウム(Li2CO3)とをモル比が0.98:0.02:1.00:0.51になるように計り取ったのちに、これらを窒素雰囲気下において溶媒にアルコールを用いて、ボールミルで2時間、粉砕・混合をおこないLiFe0.98Co0.02PO4前駆体を得た。つぎに、そのLiFe0.98Co0.02PO4前駆体を乾燥させたのちに、ロータリーキルンに投入し、気化させたメタノールと窒素との混合ガスを、メタノールの熱分解により生成するカーボン量がLiFe0.98Co0.02PO4の2質量%になるように供給しながら、700℃、6時間の条件で焼成して、本発明によるCoを2%置換したリン酸コバルト鉄リチウムE(LiFe0.98Co0.02PO4/C)を製作した。なお、そのキルンの回転速度は1r.p.m.とした。また、気化させたメタノールと窒素との混合ガスは、45℃に保持したメタノール溶液を密閉容器に封入し、キャリアガスとして窒素を用いてバブリングさせることによって製作した。
(LiFe0.95Co0.05PO4/Cの製作)
まず、シュウ酸鉄二水和物(FeC2O4・2H2O)と、酢酸コバルト四水和物(Co(CH3COO)2・4H2O)と、リン酸二水素アンモニウム(NH4H2PO4)と、炭酸リチウム(Li2CO3)とをモル比が0.95:0.05:1.00:0.51になるように計り取ったのちに、これらを窒素雰囲気下において溶媒にアルコールを用いて、ボールミルで2時間、粉砕・混合をおこないLiFe0.95Co0.05PO4前駆体を得た。つぎに、そのLiFe0.95Co0.05PO4前駆体を乾燥させたのちに、ロータリーキルンに投入し、気化させたメタノールと窒素との混合ガスを、メタノールの熱分解により生成するカーボン量がLiFe0.95Co0.05PO4の2質量%になるように供給しながら、700℃、6時間の条件で焼成して、本発明によるCoを5%置換したリン酸コバルト鉄リチウムF(LiFe0.95Co0.05PO4/C)を製作した。なお、そのキルンの回転速度は1r.p.m.とした。また、気化させたメタノールと窒素との混合ガスは、45℃に保持したメタノール溶液を密閉容器に封入し、キャリアガスとして窒素を用いてバブリングさせることによって製作した。
リン酸コバルト鉄リチウムFを用いることを除いては、実施例9と同様の方法によって、本発明によるリチウム二次電池Fを組み立てた。
組み立てたリチウム二次電池A~Fに対して、初期充放電を25℃で行った。初期充電は、1It(約1時間率、500mA)定電流で3.6Vまで、さらに3.6Vの定電圧で、合計3時間の定電流定電圧充電とした。続く初期放電は、1It(約1時間率、500mA)定電流で2.0Vまでの定電流放電とし、このときの放電電気量を「初期放電容量(mAh)」として記録した。つづいて、1It(約1時間率、500mA)定電流で3.6Vまで、さらに3.6Vの定電圧で、合計3時間の定電流定電圧充電を25℃で行ったのちに、その電池を60℃で10日間保存した。その後、1It(約1時間率、500mA)定電流で2.0Vまでの定電流放電を25℃でおこない、このときの放電電気量を「残存放電容量(mAh)」として記録した。続いて、1サイクルの充放電を25℃で行った。その充電は、1It(約1時間率、500mA)定電流で3.6Vまで、さらに3.6Vの定電圧で、合計3時間の定電流定電圧充電とした。続く放電は、1It(約1時間率、500mA)定電流で2.0Vまでの定電流放電とし、このときの放電電気量を「回復放電容量(mAh)」として記録した。また、前記「初期放電容量(mAh)」に対する前記「残存放電容量(mAh)」の百分率を「残存容量率(%)」として算出した。結果を表4及び図2に示す。さらに、前記「初期放電容量(mAh)」に対する前記「回復放電容量(mAh)」の百分率を「回復容量率(%)」として算出した。結果を表5及び図3に示す。
次に、組み立てたリチウム二次電池A~Fに対して、充放電サイクル試験を行った。上記保存試験の場合と同様に初期充放電を行った。つづいて、サイクル試験を45℃で50サイクル行った。その充電は、1It(約1時間率、500mA)定電流で3.6Vまで、さらに3.6Vの定電圧で、合計3時間の定電流定電圧充電とした。続く放電は、1It(約1時間率、500mA)定電流で2.0Vまでの定電流放電とした。その後、再び充放電試験を25℃で行った。その充電は、1It(約1時間率、500mA)定電流で3.6Vまで、さらに3.6Vの定電圧で、合計3時間の定電流定電圧充電とした。続く放電は、1It(約1時間率、500mA)定電流で2.0Vまでの定電流放電とし、このときの放電電気量を「50サイクル後の放電容量(mAh)」として記録した。また、前記「初期放電容量(mAh)」に対する前記「50サイクル後の放電容量(mAh)」の百分率を「充放電サイクル性能(%)」として算出した。結果を表6及び図4に示す。
Claims (4)
- 一般式LiyFe(1-x)CoxPO4(0<x≦0.019、0≦y≦1.2)で表されるリン酸コバルト鉄リチウムを含むリチウム二次電池用正極活物質。
- 前記xが、0.005≦x≦0.019であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質。
- 請求項1又は2記載の正極活物質を含む正極と、負極と、非水電解質を備えたリチウム二次電池。
- 前記負極が、リチウムイオンを吸蔵・放出しうる炭素材料を含むことを特徴とする請求項3に記載のリチウム二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09750645.5A EP2287947B1 (en) | 2008-05-22 | 2009-05-22 | Positive electrode active material for lithium secondary battery and lithium secondary battery |
US12/736,901 US8431271B2 (en) | 2008-05-22 | 2009-05-22 | Positive active material for lithium secondary battery and lithium secondary battery |
KR1020107019502A KR101457974B1 (ko) | 2008-05-22 | 2009-05-22 | 리튬 2차 전지용 양극 활물질 및 리튬 2차 전지 |
CN2009801186077A CN102084524A (zh) | 2008-05-22 | 2009-05-22 | 锂二次电池用正极活性物质及锂二次电池 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008133914 | 2008-05-22 | ||
JP2008-133914 | 2008-05-22 | ||
JP2008-143252 | 2008-05-30 | ||
JP2008143252 | 2008-05-30 | ||
JP2008160076 | 2008-06-19 | ||
JP2008160075 | 2008-06-19 | ||
JP2008-160076 | 2008-06-19 | ||
JP2008-160075 | 2008-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009142283A1 true WO2009142283A1 (ja) | 2009-11-26 |
Family
ID=41340210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059403 WO2009142283A1 (ja) | 2008-05-22 | 2009-05-22 | リチウム二次電池用正極活物質及びリチウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8431271B2 (ja) |
EP (1) | EP2287947B1 (ja) |
KR (1) | KR101457974B1 (ja) |
CN (1) | CN102084524A (ja) |
WO (1) | WO2009142283A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120003529A1 (en) * | 2010-07-02 | 2012-01-05 | Semiconductor Energy Laboratory Co., Ltd. | Electrode material and method for forming electrode material |
US20120135290A1 (en) * | 2010-11-30 | 2012-05-31 | Samsung Sdi Co., Ltd. | Olivine-based positive active material for rechargeable lithium battery and rechargeable lithium battery using same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8834700B2 (en) * | 1999-11-24 | 2014-09-16 | Encite, Llc | Method and apparatus for electro-chemical reaction |
WO2013138541A1 (en) * | 2012-03-15 | 2013-09-19 | Imra America, Inc. | Iron phosphates: negative electrode materials for aqueous rechargeable sodium ion energy storage devices |
CN103682270A (zh) * | 2013-12-05 | 2014-03-26 | 北京大学 | 一种类聚阴离子的锂离子电池层状正极材料及其制备方法 |
JP6160602B2 (ja) * | 2014-03-24 | 2017-07-12 | 株式会社デンソー | リチウムイオン二次電池 |
WO2020047228A1 (en) * | 2018-08-30 | 2020-03-05 | HYDRO-QUéBEC | Coated lithium ion rechargeable battery active materials |
KR102513972B1 (ko) * | 2020-08-28 | 2023-03-24 | 주식회사 에코프로비엠 | 양극 활물질 및 이를 포함하는 리튬 이차전지 |
JP7531546B2 (ja) * | 2022-05-26 | 2024-08-09 | プライムプラネットエナジー&ソリューションズ株式会社 | リチウムイオン二次電池の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001085010A (ja) * | 1999-09-16 | 2001-03-30 | Nippon Telegr & Teleph Corp <Ntt> | リチウム二次電池 |
JP2007317538A (ja) * | 2006-05-26 | 2007-12-06 | Sony Corp | 電池 |
JP2007317539A (ja) * | 2006-05-26 | 2007-12-06 | Sony Corp | 正極材料および電池 |
JP2007317534A (ja) * | 2006-05-26 | 2007-12-06 | Sony Corp | 非水電解質二次電池 |
JP2008034218A (ja) * | 2006-07-28 | 2008-02-14 | Gs Yuasa Corporation:Kk | 非水電解質二次電池 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3523397B2 (ja) * | 1995-11-07 | 2004-04-26 | 日本電信電話株式会社 | 非水電解質二次電池 |
CA2344903C (en) * | 2000-04-25 | 2013-03-05 | Sony Corporation | Positive electrode active material and non-aqueous electrolyte cell |
JP3982165B2 (ja) * | 2000-10-05 | 2007-09-26 | ソニー株式会社 | 固体電解質電池 |
US7422823B2 (en) * | 2002-04-03 | 2008-09-09 | Valence Technology, Inc. | Alkali-iron-cobalt phosphates and related electrode active materials |
JP4159954B2 (ja) * | 2003-09-24 | 2008-10-01 | 株式会社東芝 | 非水電解質電池 |
CN1684290A (zh) | 2004-04-13 | 2005-10-19 | 中国科学院物理研究所 | 一种用于二次锂电池的正极材料和用途 |
CN100413781C (zh) * | 2006-03-24 | 2008-08-27 | 山东科技大学 | 锂离子电池正极材料磷酸亚铁锂的合成方法 |
JP4296205B2 (ja) * | 2007-03-29 | 2009-07-15 | 株式会社東芝 | 非水電解質電池、電池パック及び自動車 |
JP2009048981A (ja) | 2007-08-23 | 2009-03-05 | Sony Corp | 非水電解液二次電池 |
US20090186276A1 (en) * | 2008-01-18 | 2009-07-23 | Aruna Zhamu | Hybrid nano-filament cathode compositions for lithium metal or lithium ion batteries |
US8022009B2 (en) * | 2009-01-16 | 2011-09-20 | Intematix Corporation | Process for synthesizing LixFeMZO4/ carbon and LixMZO4/ carbon composite materials |
-
2009
- 2009-05-22 EP EP09750645.5A patent/EP2287947B1/en not_active Not-in-force
- 2009-05-22 CN CN2009801186077A patent/CN102084524A/zh active Pending
- 2009-05-22 US US12/736,901 patent/US8431271B2/en active Active
- 2009-05-22 KR KR1020107019502A patent/KR101457974B1/ko active IP Right Grant
- 2009-05-22 WO PCT/JP2009/059403 patent/WO2009142283A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001085010A (ja) * | 1999-09-16 | 2001-03-30 | Nippon Telegr & Teleph Corp <Ntt> | リチウム二次電池 |
JP2007317538A (ja) * | 2006-05-26 | 2007-12-06 | Sony Corp | 電池 |
JP2007317539A (ja) * | 2006-05-26 | 2007-12-06 | Sony Corp | 正極材料および電池 |
JP2007317534A (ja) * | 2006-05-26 | 2007-12-06 | Sony Corp | 非水電解質二次電池 |
JP2008034218A (ja) * | 2006-07-28 | 2008-02-14 | Gs Yuasa Corporation:Kk | 非水電解質二次電池 |
Non-Patent Citations (5)
Title |
---|
D. WANG ET AL., ELECTROCHIMICA ACTA, vol. 50, 2005, pages 2955 |
L. F. NAZAR ET AL., NATURE MATERIALS, vol. 3, no. 3, March 2004 (2004-03-01), pages 147 - 152 |
N. PENAZZI ET AL., JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 24, 2004, pages 1381 |
See also references of EP2287947A4 |
SHANMUKARAJ ET AL., MATERIALS SCIENCE AND ENGINEERING B, vol. 149, 2008, pages 93 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120003529A1 (en) * | 2010-07-02 | 2012-01-05 | Semiconductor Energy Laboratory Co., Ltd. | Electrode material and method for forming electrode material |
US9419271B2 (en) * | 2010-07-02 | 2016-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Electrode material and method for forming electrode material |
US10256467B2 (en) | 2010-07-02 | 2019-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Electrode material and method for forming electrode material |
US20120135290A1 (en) * | 2010-11-30 | 2012-05-31 | Samsung Sdi Co., Ltd. | Olivine-based positive active material for rechargeable lithium battery and rechargeable lithium battery using same |
Also Published As
Publication number | Publication date |
---|---|
EP2287947B1 (en) | 2014-04-16 |
KR101457974B1 (ko) | 2014-11-20 |
US8431271B2 (en) | 2013-04-30 |
EP2287947A1 (en) | 2011-02-23 |
US20110068293A1 (en) | 2011-03-24 |
CN102084524A (zh) | 2011-06-01 |
KR20110021711A (ko) | 2011-03-04 |
EP2287947A4 (en) | 2013-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5381024B2 (ja) | リチウム二次電池用正極及びリチウム二次電池 | |
JP5761617B2 (ja) | 非水電解質二次電池用正極活物質及び非水電解質二次電池 | |
JP5682040B2 (ja) | ピロリン酸塩化合物およびその製造方法 | |
EP2383820B1 (en) | Positive electrode active material for lithium secondary battery, and lithium secondary battery | |
US8822080B2 (en) | Positive active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery | |
WO2009142283A1 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 | |
JP5434720B2 (ja) | 非水電解質二次電池用電極及び非水電解質二次電池 | |
JP5298659B2 (ja) | リチウム二次電池用活物質及びリチウム二次電池 | |
WO2013119571A1 (en) | Mixed phase lithium metal oxide compositions with desirable battery performance | |
JP5434727B2 (ja) | 非水電解質二次電池用電極及び非水電解質二次電池 | |
JP5262318B2 (ja) | リチウム二次電池用正極活物質およびリチウム二次電池。 | |
JP5604962B2 (ja) | 二次電池用正極活物質及び二次電池 | |
JP5483413B2 (ja) | リチウムイオン二次電池 | |
JP5277707B2 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 | |
JP5055780B2 (ja) | 正極活物質の製造方法およびそれを用いた電池 | |
JP5445912B2 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 | |
JP5045135B2 (ja) | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 | |
JP4951879B2 (ja) | リチウム二次電池及びリチウム二次電池用正極活物質 | |
JP5446036B2 (ja) | リチウム二次電池用正極活物質およびリチウム二次電池 | |
JP5277929B2 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980118607.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09750645 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107019502 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009750645 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12736901 Country of ref document: US Ref document number: 7456/CHENP/2010 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |