WO2009140847A1 - 含酸劣质原油改质催化剂及其制备方法和应用 - Google Patents

含酸劣质原油改质催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2009140847A1
WO2009140847A1 PCT/CN2009/000031 CN2009000031W WO2009140847A1 WO 2009140847 A1 WO2009140847 A1 WO 2009140847A1 CN 2009000031 W CN2009000031 W CN 2009000031W WO 2009140847 A1 WO2009140847 A1 WO 2009140847A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mesoporous material
acid
crude oil
oxide
Prior art date
Application number
PCT/CN2009/000031
Other languages
English (en)
French (fr)
Inventor
龙军
张久顺
田辉平
朱玉霞
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008101120024A external-priority patent/CN101584984B/zh
Priority claimed from CN2008101133931A external-priority patent/CN101591551B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020107028272A priority Critical patent/KR101536187B1/ko
Priority to CA2724999A priority patent/CA2724999C/en
Priority to BRPI0912829-8A priority patent/BRPI0912829B1/pt
Priority to JP2011509840A priority patent/JP5587297B2/ja
Priority to US12/993,637 priority patent/US9259711B2/en
Publication of WO2009140847A1 publication Critical patent/WO2009140847A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J35/615
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/04Metals, or metals deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used

Definitions

  • Acid-inferior crude oil upgrading catalyst, preparation method and application thereof are Acid-inferior crude oil upgrading catalyst, preparation method and application thereof
  • the invention relates to a hydrocarbon oil reforming catalytic material and a preparation method thereof, and the application of the catalytic material to a pretreatment catalytic reforming process of acid-poor crude oil, and more particularly to A catalytic material for catalytically upgrading an acid-containing inferior crude oil in the absence of hydrogen and a preparation method thereof.
  • the acid-poor crude oil has a low hydrogen content, a high content of metals such as Ni and V, a high content of fused aromatic hydrocarbons, a high content of S and N, a high density, a large residual carbon value, and difficulty in cracking.
  • the catalytic cracking unit for processing such acid-containing inferior raw materials is forced to be a large amount of external slurry because the raw materials are difficult to be cracked, and as a result, the total yield of the liquid products (liquefied gas, gasoline, diesel) is decreased; due to the content of Ni and V Higher, the content of hydrogen in the product is greatly increased, and the catalyst is also strongly destructive.
  • a non-catalytic pretreatment method is to introduce the high residual carbon value and the high metal content of the feedstock oil into the demetallization and disability of the device similar to the fluid catalytic cracking.
  • the carbon zone in contact with the inert particles, at a temperature of at least 480 ° C and a contact time of less than 2 seconds, the coke and metal in the feedstock are deposited on the inert particles, and the particles are recycled into the charred zone to burn off the coke and burn off.
  • the inert particles of coke are recycled to the demetallization and carbon residue zones for re-contact with the acid-poor feedstock oil.
  • the feedstock oil treated by this method can be used as a raw material for FCC.
  • the acidic substances in crude oil refer to inorganic acids, phenols, mercaptans, aliphatic carboxylic acids and naphthenic acids. Naphthenic acid is the most important acidic oxide in crude oil, and its content accounts for about 90% of the acidic oxide. Studies have shown that acid values in crude oil reaching 0.5 mg KOH / g cause significant corrosion to production and refining equipment, so the acid value of crude oil exceeding 0.5 mg KOH / g is called high acid crude oil.
  • naphthenic acid in petroleum can directly react with iron, causing corrosion of furnace tubes, heat exchangers and other refinery equipment; it can also react with protective film FeS on petroleum equipment to expose new metal equipment.
  • the surface is subject to new corrosion.
  • petroleum products such as gasoline, diesel, and kerosene quality indicators, there are usually acid values. Excessive acid values are likely to cause the same corrosion problems for end users.
  • Literature and patents describe methods for deacidification of crude oil, such as physical adsorption, heat treatment, thermal cracking, and catalytic hydrogenation, but these methods have not been put into practical use.
  • the heat treatment is carried out at a temperature to adsorb the acid-containing compound in the crude oil, and the adsorbent can be a spent catalytic cracking catalyst. Or heating a mixture of crude oil and alkaline earth metal oxide at 100-300 ° C to react an alkaline earth metal oxide with an organic acid or sulfide in the crude oil to form a precipitate of an alkaline earth metal carbonate and an alkaline earth metal sulfide, after separation A crude oil obtained by removing naphthenic acid and sulfide is obtained.
  • the catalytic hydrogenation method uses a Ni-Mo or Ni-Co hydrotreating catalyst supported on alumina, and hydrotreats the acid-containing crude oil under the conditions of a hydrogen partial pressure of 2 to 3 MPa and a reaction temperature of 250 ° C.
  • the alkanoic acid is decomposed into CO, C0 2 , H 2 0 and low molecular weight petroleum hydrocarbons, and the total acid value of the crude oil can be reduced from 2.6 mg KOH/g to 0.15 KOH/g.
  • Catalytic hydrogenation is a good deacidification effect, but it needs high pressure and high temperature resistant equipment, and hydrogen is required. The equipment investment is high and the process investment is large.
  • the high acid crude oil can be treated with Ni-Mo or Ni-Co hydrotreating catalyst at a temperature of 285-345 °C, and the total acid value of the crude oil can be reduced from 4.0 mgKOH/g to 1. 8 mg KOH / g.
  • CN 1827744A discloses a method for processing high acid value crude oil, which is to make the total after pretreatment
  • the crude oil having an acid value of more than 0.5 mgKOH/g is preheated and then injected into the fluid catalytic cracking reactor to be contacted with the catalyst, and the reaction is carried out under the catalytic cracking reaction, and the naphthenic acid in the crude oil is cracked into hydrazine and co 2 .
  • the reacted oil and gas and the catalyst are separated, and the reaction oil is sent to a subsequent separation system, and the reacted catalyst is recycled after being stripped and regenerated.
  • the common practice of processing acid-poor crude oil is to mix with low-acid crude oil.
  • the acid value of the mixed crude oil is not more than 0.5 mgKOH/g, so the blending ratio of the acid-containing crude oil is limited.
  • the object of the present invention is to provide an organic acid capable of decomposing an acid-containing inferior crude oil, particularly a crude oil having an acid value of more than 0.5 mg OH/g, and adsorbing a mesoporous material of carbon residue and metal in an acid-poor crude oil, thereby realizing Modification of the acid-containing crude oil.
  • a second object of the invention is to provide a process for the preparation of the mesoporous material.
  • a third object of the present invention is to provide a catalyst comprising the above mesoporous material.
  • a fourth object of the present invention is to provide a process for catalytically upgrading an acid-poor crude oil using a catalyst containing the above-mentioned mesoporous material to remove organic acids, carbon residues and metals in the crude oil.
  • the mesoporous material provided by the present invention is an amorphous material containing an alkaline earth metal oxide, silicon oxide and aluminum oxide, and the anhydrous chemical expression is: (0-0.3) Na 2 0-( 1 -50 ) ⁇ ( 6-58 ) Al 2 O ( 40-92 ) Si ⁇ 2 .
  • M is selected from one or more of Mg, Ca and Ba, preferably Mg and/or Ca.
  • the mesoporous material has a specific surface area of 200-400 m 2 /g, a pore volume of 0.5-2.0 ml/g, preferably 1.0-2.0 ml/g; an average pore diameter of 8-20 nm, preferably 10-20 nm; The pore size is 5-15 nm, preferably 10-15 nm.
  • the mesoporous material has an anhydrous chemical formula of (0-0.2) Na 2 0-( 2-30 ) ⁇ ( 6-35 ) ⁇ 1 based on the weight percent of the oxide. 2 0 3 ⁇ ( 60-92 ) Si0 2 .
  • the mesoporous material in anhydrous form contains from 0.1 to 0.2% of Na 2 0, from 60 to 85% of SiO 2 and from 6 to 20% of A1 2 0 3 , based on the weight percent of the oxide.
  • the mesoporous material in anhydrous form contains 5-30% MO by weight percent of the oxide.
  • the method for preparing the mesoporous material provided by the invention comprises the steps of: neutralizing the aluminum source, the silicon source and the alkaline earth solution at room temperature to 85 ° C, and adjusting the gelation end point pH to 7-9 by acid or alkali, at room temperature. After aging for 10 hours at 90 ° C, the obtained solid precipitate was subjected to ammonium exchange to remove impurity ions to obtain an ammonium exchanged gel, or further dried and calcined.
  • the aluminum source is selected from one or more of aluminum nitrate, aluminum sulfate, aluminum chloride and sodium metaaluminate; and the silicon source is selected from the group consisting of water glass.
  • the silicon source is selected from the group consisting of water glass.
  • the acid is selected from one or more of acid, hydrochloric acid and nitric acid;
  • the alkali is selected from the group consisting of ammonia water and hydroxide One or more of potassium and sodium hydroxide.
  • the invention provides an acid-containing acid-inferior crude oil catalytic reforming catalyst, which comprises 1-95 ⁇ % of mesoporous material, 0-99w% of heat-resistant inorganic oxide and 0-70w% based on the total amount of catalyst.
  • the mesoporous material is an amorphous material containing an alkaline earth metal oxide, silicon oxide, and aluminum oxide as described above, wherein an optional content of each component is as previously described for a mesoporous material;
  • it is 10-20 nm
  • the most porous pore size is 5-15 nm, preferably 10-15 nm.
  • the catalyst contains 10-50% by weight of the mesoporous material, 10-70 vv% of a heat resistant inorganic oxide, and 0-60% of clay based on the total amount of the catalyst. More preferably, the catalyst contains 30-50% by weight of said mesoporous material, 20-40% by weight of a heat resistant inorganic oxide, and 30-50% of clay, based on the total amount of the catalyst. And/or its precursor and water are mixed and beaten, with or without adding clay, adding a mesoporous material, drying the obtained slurry, and then calcining, wherein before or after adding the mesoporous material, an acid is added before or after the addition of the clay.
  • the pH of the slurry is 1 -5 and aged at 30-90 Torr for 0 hours; after aging, the remaining heat-resistant inorganic oxide and/or its precursor are added; the mesoporous material is the front An amorphous material containing an alkaline earth metal oxide, a silicon carbide, and an alumina, wherein an optional content of each component is as described above for the mesoporous material; M is selected from one of Mg, Ca, and Ba or Several; its specific surface area is 200-400 m 2 /g, the pore volume is 0.5-2.0 ml / g, preferably 1.0-2.0 ml / g, the average pore diameter is 8-20nm, preferably 10-20nm, the most pore diameter is 5 -15 nm, preferably 10-15 nm.
  • the amount of each component is such that the final catalyst contains, based on the total amount of the catalyst, 1-95 vv% of the mesoporous material, 0-99 w% of the heat resistant inorganic oxide, and 0-70 vv% of the clay. More preferably, the catalyst contains 30-50 vv% of said mesoporous material, 20-40 w% of a heat resistant inorganic oxide, and 30-50% of clay based on the total amount of the catalyst.
  • the catalytic upgrading method of the acid-poor crude oil provided by the invention is to preheat the acid-poor crude oil to
  • the reactor After being introduced into the reactor at 100-250 ° C, it is contacted with the catalytic upgrading catalyst as described above to carry out catalytic Shielding reaction. After the reaction is completed, the reaction oil and carbon deposition catalyst are separated, and the separated reaction oil and gas is introduced into the subsequent separation system for separation. A part of the light product and the crude oil after deacidification, decarbonization and demetallization are obtained, and the separated carbonaceous catalyst is recycled by steam stripping and charring regeneration.
  • the catalytic upgrading reaction conditions are: a reaction temperature of 300-600 ° C, a reaction pressure of 0.15-0.4 MPa, a weight hourly space velocity of 1 -150 ⁇ , and a mass ratio of the catalyst to the hydrocarbon oil feedstock of 1 - 30. More preferably, the catalytic upgrading reaction conditions are: a reaction temperature of 350-520 ° C, a reaction pressure of 0.15-0.35 MPa, a weight hourly space velocity of 1200 h, and a mass ratio of the catalyst to the hydrocarbon oil feedstock is 2- 15.
  • the reactor is a riser reactor and / or a fluidized bed reactor.
  • the catalyst provided by the present invention contains a mesoporous material containing an alkaline earth metal oxide, silicon oxide and aluminum oxide, the specific surface area is 200-400 m 2 /g, the pore volume is 0.5-2.0 ml/g, and the average pore diameter is 8. -20nm, wherein the presence of alkaline earth metal oxides is beneficial to promote the catalytic decomposition of organic acids in acid-containing acid-poor crude oil, and the high specific surface area, large pore volume and mesoporous pore size are favorable for heavy metal chelation in acid-containing acid-poor crude oil. Entry and adsorption of molecules and colloidal molecules. Therefore, the catalytic upgrading catalyst provided by the invention can effectively reduce the acid value, residual carbon and metal content of the acid-containing acid-poor crude oil, and the quality of the crude oil is improved to be used as a raw material for catalytic cracking.
  • the acid-containing acid-poor crude oil has a high acid value, which will seriously corrode the equipment during the atmospheric and vacuum distillation process, and the high residual carbon value and the high metal content make the acid-poor crude oil not directly used as a raw material for catalytic cracking.
  • the catalytic upgrading method of the acid-containing acid-poor crude oil provided by the invention can crack the organic acid in the crude oil, convert the carboxyl group in the naphthenic acid into carbon monoxide or carbon dioxide, convert the alkyl group into a hydrocarbon substance, and the deacidification rate can reach 90. Above 100%, the acid value of crude oil is reduced; at the same time, the residual carbon value and metal content of crude oil are reduced by catalyst adsorption to improve the quality of crude oil.
  • the crude oil modified by the method provided by the invention can be directly used as a raw material for catalytic cracking or as a raw material for the atmospheric and vacuum distillation device, thereby reducing equipment investment and equipment anti-corrosion costs, and improving economic benefits.
  • the mesoporous material provided by the present invention is an amorphous material containing an alkaline earth metal oxide, silicon oxide and aluminum oxide.
  • the anhydrous chemical expression of the oxide is (0-0.3) Na 2 0- ( 1 -50 ) MO' ( 6-58 ) ⁇ 1 2 0 3 ⁇ ( 40-92 ) Si0 2 , preferably, the anhydrous chemical expression is: ( 0-0.2 ) Na 2 0- ( 2-30 ) ⁇ ( 6-35 ) ⁇ 1 2 0 3 ⁇ ( 60-92 ) Si0 2 .
  • the soil metal M is selected from one or more of Mg, Ca and Ba, preferably Mg and
  • the mesoporous material in anhydrous form contains from 0.1 to 0.2% of Na 2 0, from 60 to 85% of SiO 2 and from 6 to 20% of A1 2 0 3 , based on the weight percent of the oxide.
  • the mesoporous material in anhydrous form contains 5-30% MO by weight percent of the oxide.
  • the catalytic upgrading catalyst provided by the present invention comprises the mesoporous material, optionally containing a heat resistant inorganic oxide, optionally containing clay, based on the total amount of the catalyst, the mesoporous material content is 1 - 95 w%, heat resistant The content of the inorganic oxide is 0 to 99 vv%, and the content of the clay is 0 to 70 w%.
  • the mesoporous material is contained in an amount of 10 to 50% by weight
  • the heat resistant inorganic oxide is contained in an amount of 10 to 70% by weight
  • the clay is contained in an amount of 0 to 60% by weight.
  • the heat resistant inorganic oxide is selected from one or more of a heat resistant inorganic oxide used as a cracking catalyst substrate and a binder component, such as alumina, silica and none.
  • a binder component such as alumina, silica and none.
  • One or more of the shaped silicon aluminum are well known to those skilled in the art.
  • the clay is selected from the group consisting of one or a mixture of clays used as an active component of a cracking catalyst, such as kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, and rector a mixture of one or more of sepiolite, attapulgite, hydrotalcite and bentonite. Among them, a mixture of one or more of kaolin, halloysite and montmorillonite is preferred. These clays are well known to those skilled in the art.
  • the heat resistant inorganic oxide is SiO ⁇ A1 2 0 3
  • the clay is kaolin.
  • the preparation method of the catalyst provided by the invention may be added or partially added to the heat-resistant inorganic oxide and/or its precursor before aging. In order to make the catalyst have better wear resistance, it is preferred to add before the aging. Part of the heat-resistant inorganic oxide and/or its precursor, after aging, the remaining heat-resistant inorganic oxide and/or its precursor, the first added portion and the later added portion are added to the heat-resistant inorganic oxide added first in the catalyst.
  • the weight ratio of the substance to the heat-resistant inorganic oxide added later is 1: (0J - 10 ), preferably 1: (0.1 - 5 ).
  • the clay may be added before or after aging, and the order in which the clay is added has no effect on the performance of the catalyst.
  • an acid is added to make the pH of the slurry 1-5, and the temperature is aged at 30-90 ° C. 10 hours.
  • the acid is selected from one or more of a water-soluble inorganic acid and an organic acid, and is preferably a mixture of one or more of hydrochloric acid, nitric acid, phosphoric acid and a carboxylic acid having 10 carbon atoms.
  • the acid is used in an amount such that the pH of the slurry is from 1 to 5, preferably from 1.5 to 4.
  • the aging temperature is 30-90 ° C, preferably 40-80 ° C, and the aging time is 0.1 - 10 hours, preferably 0.5 - 8 hours.
  • the precursor of the heat resistant inorganic oxide refers to one or more of substances capable of forming the heat resistant inorganic oxide during the preparation of the catalyst.
  • the precursor of the alumina may be selected from the group consisting of hydrated alumina and/or aluminum sol; the hydrated alumina is selected from the group consisting of boehmite (boehmite) and pseudo-boehmite (pseudo-boehmite).
  • boehmite boehmite
  • pseudo-boehmite pseudo-boehmite
  • the precursor of silicon oxide may be selected from one or more of silica sol, silicone gel and water glass.
  • the precursor of the amorphous silicon aluminum may be selected from the group consisting of a silica alumina sol, a mixture of a silica sol and an aluminum sol, and one or more of a silica-alumina gel. Precursors of these heat resistant inorganic oxides are well known to those skilled in the art.
  • the amount of each component is such that the final catalyst contains, based on the total amount of the catalyst, 95 w% of the mesoporous material, 0-99 w% of the heat resistant inorganic oxide and 0-70 vv%. clay.
  • the amount of each component is such that the final catalyst contains, based on the total amount of the catalyst, the catalyst contains 10-50% by weight of the mesoporous material, 10-70% by weight of the heat resistant inorganic oxide, and 0-60vv% clay. More preferably, the catalyst contains 30-50 vv% of said mesoporous material, 20-40 vv% of a heat resistant inorganic oxide, and 30-50% of clay based on the total amount of the catalyst.
  • the drying method and conditions of the slurry are well known to those skilled in the art.
  • the drying method may be air drying, drying, blast drying or spray drying, preferably spray drying.
  • the drying temperature may be from room temperature to 400 ° C, preferably from 100 to 350 ° C.
  • the solid content of the slurry before drying is preferably 10-50 vv%, more preferably
  • the calcination conditions after drying the slurry are also known to those skilled in the art.
  • the calcination temperature after drying of the slurry is 400-700 ° C, preferably 450-650 ° C, and the calcination time is at least 0.5 hour. Preferably, it is from 0.5 to 100 hours, more preferably from 0.5 to 10 hours.
  • the method for preparing the mesoporous material provided by the invention comprises the steps of: neutralizing the aluminum source, the silicon source and the alkaline earth solution at room temperature to 85 ° C, and adjusting the gelatinization end point pH to 7-9 by acid or alkali, at room temperature to After aging at 90 ° C for 1-10 hours, the obtained solid precipitate is subjected to ammonium exchange to remove impurity ions to obtain an ammonium exchanged gel, which can be further dried and calcined.
  • the aluminum source used is selected from the group consisting of aluminum nitrate, aluminum sulfate, aluminum chloride and sodium metaaluminate; or the mixture of silicon sources selected from the group consisting of water glass, sodium silicate, tetraethyl a mixture of one or more of silicon and silicon oxide;
  • the acid used is selected from the group consisting of one or more of sulphuric acid, hydrochloric acid and nitric acid;
  • the base used is selected from the group consisting of ammonia, potassium hydroxide and hydrogen. a mixture of one or more of sodium oxide.
  • the ammonium salt used for the exchange is selected from any one of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium hydrogencarbonate.
  • the mesoporous material may be added in the form of a gel during the preparation of the catalyst, or may be added as a solid after drying or calcination, the form of addition of the mesoporous material having no effect on the performance of the catalyst.
  • the catalyst provided by the invention is suitable for upgrading crude oil having a crude acid value of more than 0.5 mgKOH/g and a residual carbon value of more than 3 vv%.
  • the catalyst provided by the present invention is used for modification.
  • the quality treatment can effectively reduce the acid value, residual carbon and heavy metal content of the acid-containing crude oil, so that the quality of the crude oil can be improved to be used as a raw material for catalytic cracking, which has better economic benefits.
  • Hydrochloric acid is produced by Beijing Chemical Plant, chemically pure, concentration 36-38w%;
  • Sodium water glass is commercially available, and the concentration of SiO 2 is 26.0 w%, and the modulus is 3.2;
  • the polyhydrate kaolin is produced by Suzhou Kaolin Company with a solid content of 74.0 vv%;
  • the pseudo-boehmite is an industrial product of Shandong Aluminum Factory with a solid content of 62.0w%;
  • the aluminum sol is a product of Qilu Catalyst Branch of Sinopec Corp., and the A1 2 0 3 content is 21 .5w%;
  • Examples 1 to 6 illustrate the inferior crude oil catalytic reforming catalyst containing no heat resistant inorganic oxide and containing no clay and the preparation method thereof.
  • Example 1
  • the N 1 was dried at 120 Torr for 15 hours and calcined at 600 ° C for 3 hours to obtain a reforming catalyst having a composition of 100 vv% of mesoporous material, abbreviated as C l .
  • the elemental analysis weight composition of the sample was 0.2Na 2 O'9.8CaO' 19.8Al 2 O 3 '70.2SiO 2 ; the specific surface parameters such as surface and pore volume are listed in Table 1.
  • the catalyst was dried at 120 ° C for 15 hours and calcined at 600 ° C for 3 hours to obtain a reforming catalyst having a composition of 100 vv% of a mesoporous material, abbreviated as C2.
  • the elemental analysis weight composition of the sample was 0.1Na 2 0'5.1 CaO9.8Al 2 O 3 '85.0Si0 2 ; the specific surface parameters such as surface and pore volume are listed in Table 1.
  • the reforming catalyst for mesoporous materials is abbreviated as C3.
  • the elemental analysis weight chemical composition of the sample is
  • a reforming catalyst of the present invention having a composition of 100% mesoporous material, abbreviated as C4.
  • the elemental analysis weight composition of this sample was 0.1Na 2 O4.5BaO34.8Al 2 O 3 '60.6SiO 2 ; the specific surface parameters such as surface and pore volume are listed in Table 1.
  • the catalyst was dried at 120 ° C for 15 hours and calcined at 600 ° C for 3 hours to obtain a reforming catalyst having a composition of 100 vv% of the mesoporous material, abbreviated as C5.
  • the elemental analysis weight chemical composition of the sample is
  • a reforming catalyst having a composition of 100 w% of a mesoporous material provided by the present invention, abbreviated as C6.
  • the elemental analysis weight of the sample was determined by chemical composition. 0.1Na 2 O'3.1 BaO6.1Al 2 0 3 '90.7Si0 2 ; The physicochemical parameters such as specific surface and pore volume are listed in Table I.
  • This comparative example illustrates a comparative catalyst containing a V 2 0 5 mesoporous material and a process for its preparation.
  • the catalyst was prepared as in Example 1, except that vanadium oxalate was used instead of calcium chloride to obtain a comparative catalyst having a composition of 100 w% of vanadium-containing mesoporous material, abbreviated as CB1.
  • the elemental analysis weight composition of this sample was 0.2 Na 2 O'9.8 V 2 O 5 ' 19.8 Al 2 O 3 '70.2 SiO 2 .
  • This comparative example illustrates a comparative catalyst containing a Ti0 2 mesoporous material and a method for its preparation.
  • a catalyst was prepared as in Example 1, except that titanium chloride was used instead of calcium chloride to obtain a comparative catalyst having a composition of 100 w% of a mesoporous material containing titanium, abbreviated as CB2.
  • the elemental analysis weight composition of this sample was 0.2 Na 2 O9.8Ti0 2 ' 19.8 Al 2 0 3 '70.2 SiO 2 .
  • Examples 7-9 illustrate the inferior crude oil catalytic upgrading catalyst provided by the present invention and preparation thereof Law.
  • Example 8 4.0 kg (dry basis) of the mesoporous material C 1 prepared in Example 1 was vigorously introduced into 6.8 Kg of decationized water, and after sufficiently dispersed by a homogenizer, the pH was adjusted to 3.5 with dilute hydrochloric acid.
  • the mesoporous material slurry was added to the above silica sol-clay slurry and stirred for 0.5 hour to obtain a catalyst slurry having a solid content of 22.3 vv% and a pH of 2.9.
  • the slurry was spray-molded at a tail gas temperature of 250 ° C, washed, dried, and calcined.
  • a modified catalyst having a composition of 40 vv% mesoporous material, 40 vv% kaolin, and 20 w% SiO 2 binder was obtained, which is abbreviated as C7.
  • Example 8 A modified catalyst having a composition of 40 vv% mesoporous material, 40 vv% kaolin
  • Comparative Example 3 illustrates a comparative catalyst containing no mesoporous material and a process for its preparation.
  • the catalyst was prepared in the same manner as in Example 7 except that the mesoporous material was not added, and the amount of the halloysite was 10.8 kg, and the composition was found to be 80 w/.
  • Example 10-12 A comparative catalyst of kaolin, 20>v% SiO 2 binder, abbreviated as CB3.
  • Examples 10-12 illustrate the catalytic upgrading of the catalytic upgrading catalysts provided by the present invention.
  • the reforming catalyst C 1 -C3 aged at 800 with 100% steam for 17 hours was charged a small fixed bed reactor apparatus, at a reaction temperature 400 ⁇ , catalyst to oil weight ratio of 5, a weight hourly space velocity of 1611-1 Under the conditions of Nai, the crude oil A shown in Table 2 was passed, and the liquid phase product after the reaction was collected and analyzed for product distribution, acid value, residual carbon and metal content, and the reforming effect of the reforming catalyst was examined. The results are shown in Table 3.
  • Comparative Example 4-5 illustrates the catalytic upgrading effect of the comparative catalyst.
  • Example 13- 15 The catalytic performance of the catalyst was aged and evaluated in the same manner as in Example 10 except that the comparative catalysts CB 1 and CB2 described in Comparative Examples 1 and 2 were used in place of the catalyst Cl provided herein. The results are shown in Table 3. Example 13- 15
  • Examples 13-15 illustrate the catalytic upgrading effect of the catalytic upgrading catalyst provided by the present invention.
  • the modified catalysts C4-C6 were respectively subjected to metal contamination, and the amount of pollution was Fe: 20000 ppm, Ni: 30000 ppm, Ca: 10000 ppm, and then the contaminated modified catalyst was aged under 100% steam for 8 hours.
  • the reactor charged with the small fixed bed device, under the condition of a reaction temperature of 400 ° C, a weight ratio of the agent oil of 5, and a weight hourly space velocity of 161 ⁇ 1 , the crude oil B shown in Table 2 was passed, and the reaction was collected.
  • the liquid phase products were analyzed for product distribution, acid value, carbon residue and metal content, and the modification effect of the reforming catalyst was examined. The results are shown in Table 4.
  • Examples 16-18 illustrate the catalytic upgrading effect of the catalytically modified catalyst provided by the present invention.
  • the modified catalysts C7-C9 were respectively subjected to metal contamination, and the amount of pollution was Fe: 20000 ppm, Ni: 30000 ppm, Ca: 10000 ppm, and then the contaminated modified catalyst was aged under 100% water vapor for 17 hours.
  • the crude oil A shown in Table 2 was passed, and the reaction was carried out at a reaction temperature of 450 ° C, a weight ratio of the agent oil of 5, and a weight hourly space velocity of 10 hours.
  • the liquid phase products were analyzed for product distribution, acid value, carbon residue and metal content, and the modification effect of the reforming catalyst was examined. The results are shown in Table 5.
  • Comparative Example 6 illustrates the catalytic upgrading effect of the comparative catalyst.
  • the catalytic performance of the catalyst was contaminated, aged and evaluated in the same manner as in Example 16 except that the comparative catalyst CB3 described in Comparative Example 3 was used instead of the catalyst C7 provided by the present invention.
  • the results are shown in Table 5.
  • the metal removal rate was maintained at 91.3% for Ni removal, 30.9 percentage points higher than the comparative example; the removal rate of Fe was 89.5%, which was higher than the comparison ratio by 32.5 percentage points; the removal rate of Ca was 52.3%, which was higher than the comparison ratio of 38.7. Percentage points.

Description

含酸劣质原油改质催化剂及其制备方法和应用 技术领域
本发明是关于一种烃油改质催化材料及其制备方法,以及该催化材料 制成催化剂后在含酸劣质原油的预处理催化改质过程中的应用,更具体地 说, 是关于一种不存在氢的情况下, 将含酸劣质原油进行催化改质的催化 材料及其制备方法。 背景技术
随着世界对石油的需求量越来越大, 原油不断开采, 轻质原油资源逐 渐减少, 重质、 含酸劣质原油所占比例不断加大。 世界原油质量总的趋势 是变重, 变劣。 高硫含量、 高酸值、 高金属含量以及高残炭原油产量增长 很快。 据预测, 世界含酸劣质原油的产量将由现在的 16 %提高到 2010年 的 20 %。 在此背景下, 催化裂化装置加工含酸劣质油品原料是必须面对 的问题。
含酸劣质原油的氢含量低, Ni、 V等金属含量高,稠环芳烃的含量高, S、 N含量高, 密度大、 残炭值大、 难以裂解。 加工该类含酸劣质原料的 催化裂化装置, 由于原料难以裂解, 被迫大量外甩油浆, 其结果是液体产 品 (液化气、 汽油、 柴油)的总收率下降; 由于 Ni、 V的含量较高, 造成产 物中氢气的含量大大提高, 对催化剂也有较强的破坏作用, 为维持催化剂 的平衡活性, 势必要增加催化剂的单耗, 加注金属钝化剂也难以实现理想 的效果。 因此对于这类含酸劣质原油, 在进行加工之前最好能够进行改质 处理, 提高原料的氢碳比, 减小金属含量和残炭值。
为了改善裂化原料油的性质、 降低残炭值和金属含量, 一种非催化 预处理方法是将高残炭值和高金属含量的原料油引入类似于流化催化裂 化的装置的脱金属和残炭区, 与惰性颗粒接触, 在至少 480°C和接触时间 少于 2秒的条件下, 原料油中的焦炭和金属沉积在惰性颗粒上, 这些颗粒 循环进入烧焦区烧去焦炭,烧掉焦炭的惰性颗粒重新循环进入脱金属和残 炭区, 与含酸劣质原料油再次接触。 经过该方法处理后的原料油可以作为 FCC的原料。
近年来, 含酸劣质原油的加工逐渐受到人们的重视, 国际市场上高酸 原油的数量也在不断增加, 2005年, 世界高酸原油产量已经占原油总产 量的 5.5 %。 原油中酸性物质是指无机酸、 酚类、 硫醇、 脂肪羧酸和环烷 酸等, 环烷酸是原油中最主要的酸性氧化物, 其含量占酸性氧化物的- 90 %左右。研究表明原油中的酸值达到 0.5mgKOH/g时就会对生产和炼制设 备造成显著腐蚀, 因此将原油中酸值超过 0.5mgKOH/g称为高酸原油。 在 石油加工过程中, 石油中的环烷酸可以直接与铁发生反应, 造成炉管、 换 热器及其它炼油设备腐蚀; 也可以与石油设备上的保护膜 FeS发生反应, 使金属设备露出新的表面, 受到新的腐蚀。 一般石油产品, 如汽油、 柴油、 煤油质量指标中通常也有酸值要求,过高的酸值容易给最终用户带来同样 的腐蚀问题。
文献和专利介绍原油脱酸的方法还有物理吸附法,热处理、热裂解法, 催化加氢法, 但这些方法还没有得到实际应用。
物理吸附法,在吸附剂存在的奈件下,含酸原油或馏份进行在 250-350
°。的温度下进行热处理, 可以吸附转移原油中的含酸化合物, 吸附剂可以 采用废催化裂化催化剂。 或者在 100-300°C加热原油和碱土金属氧化物的 混合物, 使碱土金属的氧化物与原油中的有机酸或硫化物反应, 生成碱土 金属碳酸盐和碱土金属硫化物的沉淀,分离后得到脱除环烷酸和硫化物的 原油。
催化加氢法, 采用载体为氧化铝的 Ni-Mo或 Ni-Co加氢精制催化剂, 在氢分压为 2- 3MPa和反应温度为 250°C的条件下加氢处理含酸原油, 使 环烷酸分解为 CO、 C02、 H20和低分子量的石油烃, 可将原油总酸值由 2.6mgKOH/g降为 0.15KOH/g。 催化加氢法是脱酸效果较好, 但需要耐高 压高温设备, 还需氢气, 其设备投资高, 工艺投资大。 在无氢气存在的条 件下, 采用 Ni-Mo或 Ni-Co加氢精制催化剂在 285-345 °C的温度下处理高 酸原油, 可将原油的总酸值由 4.0mgKOH/g降为 1 ,8mgKOH/g。
热处理、 热裂解法 (包括催化热裂解法), US 5891325公开了一种采 用多级热处理的方法降低原油中的酸值的方法。 该方法采用多级热反应, 每级热反应在一定温度和压力下分解部分石油酸,反应生成可挥发的有机 酸、 可挥发的石油烃和不可挥发的石油烃。 在反应的同时用惰性气体吹扫 反应体系,收集可挥发组分,并用 IIA族碱金属盐如 CaO、Ca(OH)2、CaC03、 MgO 等中和可挥发组分中的大部分有机酸, 得到可挥发的石油烃。 然后 将可挥发的石油烃和不挥发的石油烃混合得到脱除了石油酸的原油。
CN 1827744A公开了一种加工高酸值原油的方法, 是使预处理后的总 酸值大于 0.5mgKOH/g 的原油经预热后注入流化催化裂化反应器中与催 化剂接触, 并在催化裂化反应奈件下进行反应, 原油中的环烷酸被裂化为 炷和 co2, 分离反应后的油气和催化剂, 反应油气送至后续分离系统, 而 反应后的催化剂经汽提、 再生后循环使用。
目前, 加工含酸劣质原油普遍的做法是和低酸原油进行混炼, 一般要 求混合原油的酸值不超过 0.5mgKOH/g, 因此含酸原油的掺炼比例受到一 定的限制。 含酸原油的酸值越高, 原油密度越大, 残炭越高, 其加工难度 越大。 发明内容
本发明的目的是提供一种能够分解含酸劣质原油, 特别是酸值超过 0.5mg OH/g的原油中的有机酸, 吸附含酸劣质原油中的残炭和金属的中 孔材料, 从而实现对所述含酸原油的改质。
本发明的第二个目的是提供该中孔材料的制备方法。
本发明的第三个目的是提供含上述中孔材料的催化剂。
本发明的第四个目的是提供一种使用含上述中孔材料的催化剂来进 行含酸劣质原油催化改质, 脱除原油中的有机酸、 残炭和金属的方法。 本发明提供的中孔材料, 该中孔材料为含有碱土金属氧化物、 氧化硅 和氧化铝的无定形材料,以氧化物的重量百分比计,其无水化学表达式为: ( 0-0.3 ) Na20- ( 1 -50 ) ΜΟ· ( 6-58 ) Al2O ( 40-92 ) Si〇2
其中, M选自 Mg、 Ca和 Ba中的一种或几种、 优选 Mg和 /或 Ca。 所述中孔材料的比表面积为 200-400m2/g, 孔容为 0.5-2.0ml/g, 优选为 1.0-2.0ml/g;平均孔径为 8-20nm,优选为 10-20nm;最可几孔径为 5-15nm, 优选为 10- 15nm。
在一个优选的实施方案中, 以氧化物的重量百分比计, 所述中孔材料 的无水化学表达式为 ( 0-0.2 ) Na20- ( 2-30 ) ΜΟ· ( 6-35 ) Α1203· ( 60-92 ) Si02
优选地, 以氧化物的重量百分比计, 无水形式的所述中孔材料中含有 0.1-0.2 %的 Na20, 60-85 %的 Si02和 6-20%的 A1203
优选地, 以氧化物的重量百分比计, 无水形式的所述中孔材料中含有 5-30 %的 MO。 本发明提供的中孔材料的制备方法, 包括将铝源、硅源与碱土溶液在 室温至 85 °C下中和成胶, 并采用酸或碱调节成胶终点 pH为 7-9, 在室温 至 90°C下老化卜 10小时, 将所得固体沉淀物进行铵交换除去杂质离子, 得到铵交换的凝胶, 或者进一步进行干燥和焙烧。
本发明提供的中孔材料的制备方法中, 所述的铝源选自硝酸铝、硫酸 铝、氯化铝和偏铝酸钠中的一种或几种;所述的硅源选自水玻璃、硅酸钠、 四乙基硅和氧化硅中的一种或几种; 所述的酸选自 ^酸、 盐酸和硝酸中的 一种或几种; 所述的碱选自氨水、 氢氧化钾和氢氧化钠中的一种或几种。
本发明提供的含酸含酸劣质原油催化改质催化剂,以催化剂总量为基 准, 该催化剂含有 1 - 95νν%的中孔材料、 0-99w%的耐热无机氧化物和 0-70w%的粘土; 其中, 所述中孔材料为如前面所述的含碱土金属氧化物、 氧化硅和氧化铝的无定形材料, 其中, 各组分的可选含量如前对于中孔材 料所迷; M选自 Mg、Ca和 Ba中的一种或几种;其比表面积为 200-400m2/g, 孔容为 0.5-2.0ml/g、优选 1.0-2.0ml/g,平均孔径为 8-20nm、优选 10-20nm, 最可几孔径为 5-15nm、 优选 10-15nm。
优选地, 以催化剂总量为基准, 所述催化剂含有 10-50w%的所述的中 孔材料、 10- 70vv%的耐热无机氧化物、 和 0-60 %的粘土。 更优选地, 以 催化剂总量为基准, 该催化剂含有 30-50w%的所述的中孔材料、 20-40w% 的耐热无机氧化物、 和 30-50 %的粘土。 和 /或其前身物及水混合打浆, 加入或不加入粘土, 加入中孔材料, 干燥 得到的浆液, 然后焙烧, 其中, 在加入中孔材料前, 加入粘土前或后, 还 加入一种酸使浆液的 pH值为 1 -5 , 并在 30-90Ό的温度下老化 0.卜 10小 时; 老化后加入剩余的耐热无机氧化物和 /或其前身物; 所述中孔材料为 前面所述的含碱土金属氧化物、 氣化硅和氧化铝的无定形材料, 其中, 各 组分的可选含量如前对于中孔材料所述; M选自 Mg、 Ca和 Ba中的一种 或几种;其比表面积为 200-400m2/g,孔容为 0.5-2.0ml/g、优选 1.0-2.0ml/g, 平均孔径为 8-20nm、优选 10-20nm,最可几孔径为 5-15nm、优选 10-15nm。 各组分的用量使最终催化剂中含有, 以催化剂总量为基准, l - 95vv%的中 孔材料、 0-99w%的耐热无机氧化物和 0-70vv%的粘土。 更优选地, 以催化 剂总量为基准, 该催化剂含有 30-50vv%的所述的中孔材料、 20-40w%的耐 热无机氧化物、 和 30-50 %的粘土。 本发明提供的含酸劣质原油催化改质方法是将含酸劣质原油预热到
100-250°C后引入到反应器内与如前面所述的催化改质催化剂接触进行催 化改盾反应, 反应完成后分离反应油气与积炭的催化剂, 分离出的反应油 气引入后续分离系统分离得到一部分的轻质产物和脱酸、 脱炭、 脱金属后 的原油, 分离出的积炭的催化剂经汽提、 烧焦再生后循环使用。
优选地, 所述的催化改质反应条件为: 反应温度为 300-600°C , 反应 压力为 0.15-0.4MPa, 重时空速为 1 -150^ ,催化剂与烃油原料的质量比为 1 -30。 更优选地, 所述的催化改质反应条件为: 反应温度为 350-520°C , 反应压力为 0.15-0.35MPa, 重时空速为 卜 l OOh , 催化剂与烃油原料的质 量比为 2-15。
优选地, 所述反应器为提升管反应器和 /或流化床反应器。
本发明提供的含酸原油催化改质催化剂及其制备方法的有益效果体 现在:
由于本发明提供的催化剂含有一种含碱土金属氧化物、氧化硅和氧化 铝的中孔材料, 其比表面积为 200-400m2/g , 孔容为 0.5-2.0ml/g, 平均孔 径为 8-20nm , 其中碱土金属氧化物的存在有利于促进含酸含酸劣质原油 中有机酸的催化分解, 同时高比表面积、 大孔容和中孔孔径有利于含酸含 酸劣质原油中重金属螯合物和胶质分子的进入和吸附。 因此, 本发明提供 的催化改质催化剂可以有效地降低含酸含酸劣质原油的酸值、 残炭、 金属 含量, 使原油的质量得到提升以便作为催化裂化的原料。
与现有技术相比本发明提供的含酸原油催化改质方法的有益效果体 现在:
含酸含酸劣质原油酸值较高,在进行常减压蒸馏过程中会严重腐蚀设 备,而高残炭值和高金属含量使含酸劣质原油不能直接作为催化裂化的原 料。本发明提供的含酸含酸劣质原油的催化改质方法可以裂解原油中的有 机酸, 使环烷酸中的羧基转变成一氧化碳或二氧化碳, 烷基转变成烃类物 质, 脱酸率可以达到 90 %以上, 降低了原油的酸值; 同时通过催化剂吸 附作用降低原油的残炭值和金属含量, 提升原油品质。 经本发明提供的方 法改质后的原油可直接作为催化裂化的原料或作为常减压装置的原料,减 少了设备的投资和设备防腐费用, 提高了经济效益。 具体实施方式 本发明提供的中孔材料为含碱土金属氧化物、氧化硅和氧化铝的无定 形材料, 以氧化物的重量百分比计, 其无水化学表达式为: (0-0.3 ) Na20- ( 1 -50 ) MO' ( 6-58 ) Α1203· ( 40-92 ) Si02 , 优选情况下, 其无水化 学表达式为: ( 0-0.2 ) Na20- ( 2-30 ) ΜΟ· ( 6-35 ) Α1203· ( 60-92 ) Si02
所述的城土金属 M选自 Mg、 Ca和 Ba中的一种或几种, 优选 Mg和
/或 Ca。 优选地, 以氧化物的重量百分比计, 无水形式的所述中孔材料中 含有 0.1 -0.2 %的 Na20, 60-85 %的 Si02和 6-20%的 A1203。 优选地, 以氧 化物的重量百分比计, 无水形式的所述中孔材料中含有 5-30 %的 MO。
本发明提供的催化改质催化剂含有所述的中孔材料,任选含有耐热无 机氧化物, 任选含有粘土, 以催化剂总量为基准, 中孔材料的含量为 1 - 95w%、 耐热无机氧化物的含量为 0-99vv%、 粘土的含量为 0-70w%。 优选 情况下,中孔材料的含量为 10-50w%,耐热无机氧化物的含量为 10-70w%, 粘土的含量为 0-60w%。 所述的
本发明提供的催化剂中,所述的耐热无机氧化物选自用作裂化催化剂 基质和粘结剂组分的耐热无机氧化物中的一种或几种, 如氧化铝、 氧化硅 和无定型硅铝中的一种或几种。这些耐热无机氧化物为本领域技术人员所 公知。
所述的粘土选自用作裂化催化剂活性组分的粘土中的一种或几种的 混合物, 如高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托 土、海泡石、 凹凸棒石、水滑石和膨润土中的一种或几种的混合物。其中, 优选高岭土、 多水高岭土和蒙脱土中的一种或几种的混合物。 这些粘土为 本领域技术人员所公知。
优选地, 在所述催化剂中, 所述耐热无机氧化物为 SiO^ A1203, 所 述粘土为高岭土。
本发明提供的催化剂的制备方法, 在老化前, 可以将耐热无机氧化物 和 /或其前身物全部加入或部分加入, 为了使催化剂具有更好的耐磨性能, 优选在老化前, 先加入部分耐热无机氧化物和 /或其前身物, 老化后再加 入剩余的耐热无机氧化物和 /或其前身物, 先加入的部分与后加入的部分 使催化剂中先加入的耐热无机氧化物与后加入的耐热无机氧化物的重量 比为 1 : ( 0J - 10 ) 、 优选 1 : ( 0.1 -5 ) 。
本发明提供的催化剂制备方法中,所述的粘土可以在老化前或老化后 加入, 所述粘土加入的顺序对催化剂的性能没有影响。 本发明提供的催化剂制备方法中, 在加入中孔材料前, 加入粘土前或 后,还加入一种酸使浆液的 pH值为 1 -5,并在 30-90°C的温度下老化 0.1 - 10 小时。 所述的酸选自可溶于水的无机酸和有机酸中的一种或几种, 优选为 盐酸、 硝酸、 磷酸和碳原子数为 10的羧酸中的一种或几种的混合物。 酸的用量使浆液的 pH值为 1 -5、 优选 1 .5-4。
所述老化温度为 30-90°C、 优选 40-80°C , 老化的时间为 0.1 -10小时、 优选 0.5-8小时。
本发明提供的催化剂制备方法中,所述耐热无机氧化物的前身物指在 所述催化剂制备过程中,能形成所述耐热无机氧化物的物质中的一种或几 种。 如氧化铝的前身物可选自水合氧化铝和 /或铝溶胶; 所述水合氧化铝 选自一水软铝石 (薄水铝石) 、 假一水软铝石 (拟薄水铝石) 、 三水合氧 化铝和无定形氢氧化铝中的一种或几种。 氧化硅的前身物可选自硅溶胶, 硅凝胶和水玻璃中的一种或几种。 无定形硅铝的前身物可选自硅铝溶胶, 硅溶胶和铝溶胶的混合物以及硅铝凝胶中的一种或几种。这些耐热无机氧 化物的前身物为本领域技术人员所公知。
本发明提供的催化剂制备方法中, 各组分的用量使最终催化剂中含 有, 以催化剂总量为基准, 95w%的中孔材料、 0-99w%的耐热无机氧化 物和 0-70vv%的粘土。 优选情况下, 各组分的用量使最终催化剂中含有, 以催化剂总量为基准, 所述催化剂含有 10-50w%的所述的中孔材料、 10-70w%的耐热无机氧化物、 和 0-60vv%的粘土。 更优选地, 以催化剂总 量为基准, 该催化剂含有 30-50vv%的所述的中孔材料、 20-40vv%的耐热无 机氧化物、 和 30-50 %的粘土。
本发明提供的催化剂制备方法中,浆液的干燥方法和条件为本领域技 术人员所公知, 例如, 干燥的方法可以是晾干、 烘干、 鼓风干燥或喷雾干 燥, 优选喷雾干燥。 干燥的温度可以是室温至 400°C , 优选为 100-350°C。 为了便于喷雾干燥, 干燥前浆液的固含量优选为 10-50vv%, 更优选为
20-50w%o
所述浆液干燥后的焙烧条件也为本领域技术人员所公知, 一般来说, 所述浆液干燥后的焙烧温度均为 400-700°C、优选 450-650°C , 焙烧时间至 少为 0.5小时、 优选 0.5- 100小时, 更优选为 0.5- 10小时。
本发明提供的中孔材料的制备方法包括将铝源、硅源与碱土溶液在室 温至 85 °C下中和成胶, 并采用酸或碱调节成胶终点 pH为 7-9, 在室温至 90°C下老化 1-10 小时, 将所得固体沉淀物进 ^"铵交换除去杂质离子, 得 到铵交换的凝胶, 还可以进一步进行干燥和焙烧。
其中, 所使用的铝源选自硝酸铝、 硫酸铝、 氯化铝和偏铝酸钠中的一 种或几种的混合物; 所使用的硅源选自水玻璃、 硅酸钠、 四乙基硅和氧化 硅中的一种或几种的混合物; 所使用的酸选自石克酸、 盐酸和硝酸中的一种 或几种的混合物; 所使用的碱选自氨水、 氢氧化钾和氢氧化钠中的一种或 几种的混合物。
其中,所采用的铵交换,是将经老化处理后的固体沉淀物按沉淀物(干 基) : 铵盐: H20 = 1 : ( 0.1 -1 ) : ( 10-30 ) 的重量比在室温至 100Ό下 交换 1 -3次, 每次交换 0.3-1 小时, 直至固体沉淀物 (干基) 中钠含量低 于 0.2 %。 交换所用的铵盐选自氯化铵、 硝酸铵、 碳酸铵和碳酸氢铵中的 任一种。
所述中孔材料可以在催化剂制备过程中以凝胶的形式加入,也可以以 干燥或焙烧后的固体形式加入,所述中孔材料的加入形式对催化剂的性能 没有影响。
本发明提供的催化剂适用于原油酸值大于 0.5mgKOH/g, 残碳值高于 3vv%的原油进行改质处理。 优选的, 对于其中原油酸值大于 lmgKOH/g、 残炭值高于 5w%, Ni含量高于 10ppm, Fe含量高于 lOppm, Ca含量高于 l Oppm的原油, 采用本发明提供的催化剂进行改质处理, 可以有效的降低 含酸原油的酸值、 残炭和重金属含量, 使原油的质量得到提升以便作为催 化裂化的原料, 具有更好的经济效益。
下面的实施例将对本发明做进一步的说明, 但并不因此而限定本发 明。 其中, 中孔材料的无水化学表达式是用 X射线荧光光谱法测定其元 素组成, 再经换算得到。 实施例
实施例和对比例中使用的材料如下:
盐酸由北京化工厂生产, 化学纯, 浓度 36-38w%;
钠水玻璃为市售, 含 Si02浓度为 26.0w%, 模数为 3.2;
多水高岭土由苏州高岭土公司生产, 固含量为 74.0vv%;
拟薄水铝石为山东铝厂工业产品, 固含量为 62.0w%;
铝溶胶为中石化股份公司齐鲁催化剂分公司产品, A1203含量为 21 .5w%; 实施例 1 -6说明本发明提供的不含耐热无机氧化物、 不含粘土的劣质 原油催化改质催化剂及其制备方法。 实施例 1
取 1 750g浓度为 4vv% (以 Si02计) 的水玻璃溶液置于烧杯中, 在搅 拌条件下将 350g浓度为 4w% (以 A1203计) 的偏铝酸钠溶液、 150g浓度 为 4vv% (以 A1203计)的硫酸铝溶液和 250g浓度为 4w% (以 CaO计)的 氯化钙溶液同时加入到上述水玻璃溶液中, 升温至 80°C老化 4小时; 经 铵离子交换得到凝胶态的中孔材料, 简记为 N l。
铵离子交换方法: 用 NH4C1溶液按沉淀物 (干基) : 铵盐: H20 = 1 : 0.8: 1 5的重量比在 60°C下对沉淀物进行离子交换以除去其中的钠离子, 交换重复进行两次, 每次进行 0.5小时, 每次交换后进行水洗过滤。
将 N 1在 120Γ下干燥 15小时、 在 600°C下焙烧 3小时即得本发明提 供的组成为 100vv%中孔材料的改质催化剂, 简记为 C l。 该样品的元素分 析重量化学组成为 0.2Na2O'9.8CaO' 19.8Al2O3'70.2SiO2; 其比表面、 孔体 积等物化参数均列于表 1。 实施例 2
在 400g浓度为 2.5vv% (以 A1203计 ) 的硫酸铝溶液中加入 1 25g浓度 为 4w% (以 CaO计) 的氯化钙溶液, 在搅拌奈件下将上述混合溶液加入 到 1700g浓度为 5vv% (以 Si02计) 的水玻璃溶液中 , 升温至 80°C老化 4 小时; 采用实施例 1 中的方法进行铵离子交换得到凝胶态的中孔材料, 简 记为 N2。 然后在 120°C下干燥 15小时、 在 600°C下焙烧 3小时即得本发 明提供的组成为 100vv%中孔材料的改质催化剂, 简记为 C2。 该样品的元 素分析重量化学组成为 0.1Na20'5.1 CaO9.8Al2O3'85.0Si02; 其比表面、 孔 体积等物化参数均列于表 1。 实施例 3
取 500g浓度为 4vv% (以 MgO计) 的石充酸镁溶液置于烧杯中, 在搅 拌条件下将 1300g浓度为 5vv% (以 Si02计) 的水玻璃溶液加入到上述硫 酸镁溶液中, 再加入 500g浓度为 3w% (以 A1203计) 的偏铝酸钠溶液, 升温至 80°C老化 4小时; 采用实施例 1 中的方法进行铵离子交换得到凝 胶态的中孔材料, 简记为 N3。 然后在 120°C下干燥 15小时、 在 60CTC下 焙烧 3小时即得本发明提供的组成为 100w°/。中孔材料的改质催化剂, 简 记为 C3。 该样品的元素分析重量化学组成为
0.1Na2O-21 .5MgO- 12.3 Α1203·66. 1 Si02; 其比表面、 孔体积等物化参数均列 于表 1。 实施例 4
取 121 0g浓度为 5w% (以 Si02计) 的水玻璃溶液置于烧杯中, 在搅 拌条件下将 400g浓度为 5w% (以 A1203计 ) 的偏铝酸钠溶液、 300g浓度 为 5w% (以 A1203计) 的石克酸铝溶液和 450g浓度为 1 w% (以 BaO计)的 硝酸钡溶液同时加入到上述水玻璃溶液中, 升温至 80°C老化 4小时; 采 用实施例 1 中的方法进行铵离子交换得到凝胶态的中孔材料, 简记为 N4。 然后在 1 20Γ下干燥 1 5小时、在 600°C下焙烧 3小时即得本发明提供的组 成为 100 %中孔材料的改质催化剂, 简记为 C4。 该样品的元素分析重量 化学组成为 0.1Na2O4.5BaO34.8Al2O3'60.6SiO2; 其比表面、 孔体积等物 化参数均列于表 1。 实施例 5
取 750g浓度为 4vv% (以 MgO计 ) 的硫酸镁溶液置于烧杯中, 在搅 拌条件下将 1600g浓度为 4vv% (以 Si02计) 的水玻璃溶液加入到上述硫 酸镁溶液中, 再加入 1 50g浓度为 4w% (以 A1203计) 的偏铝酸钠溶液, 升温至 80°C老化 4小时; 采用实施例 1 中的方法进行铵离子交换得到凝 胶态的中孔材料, 简记为 N5。 然后在 120°C下干燥 1 5小时、 在 600°C下 焙烧 3小时即得本发明提供的组成为 100vv%中孔材料的改质催化剂, 简 记为 C5。 该样品的元素分析重量化学组成为
0.1 Na2O-29.8MgO-6.2Al2O3-63.9SiO2; 其比表面、 孔体积等物化参数均列 于表 1。 实施例 6
在 200g浓度为 3vv% (以 A1203计)的硫酸铝溶液中加入 300g浓度为 l w% (以 BaO计) 的硝酸钡溶液, 在搅拌条件下将上述混合溶液加入到 1800g浓度为 5vv% (以 Si02计) 的水玻璃溶液中, 升温至 80Ό老化 4小 时; 采用实施例 1 中的方法进行铵离子交换得到凝胶态的中孔材料, 简记 为 N6。 然后在 120°C下干燥 15小时、 在 60(TC下焙烧 3小时即得本发明 提供的组成为 100w%中孔材料的改质催化剂, 简记为 C6。 该样品的元素 分析重量化学组成为 0.1Na2O'3.1 BaO6.1Al203'90.7Si02; 其比表面、 孔体 积等物化参数均列于表 I。
Figure imgf000012_0001
^^匕列 1
本对比例说明含 V205中孔材料的对比催化剂及其制备方法。
按实例 1的方法制备催化剂, 不同的是以草酸钒代替氯化钙, 得到组 成为 100w%含钒的中孔材料的对比催化剂, 简记为 CB 1。 该样品的元素 分析重量化学组成为 0.2Na2O'9.8V2O5' 19.8Al2O3'70.2SiO2
^ t 列 2
本对比例说明含 Ti02中孔材料的对比催化剂及其制备方法。
按实例 1 的方法制备催化剂, 不同的是以四氯化钛代替氯化钙, 得到 组成为 100w%含钛的中孔材料的对比催化剂, 简记为 CB2。 该样品的元 素分析重量化学组成为 0.2Na2O9.8Ti02' 19.8Al203'70.2SiO2。 实施例 7-9说明本发明提供的劣质原油催化改质催化剂及其制备方 法。 实施例 7
取 1 .7L盐酸, 用 8.0Kg脱阳离子水进行稀释。 取 7.7Kg钠水玻璃, 加 8.0Kg脱阳离子水进行稀释,搅拌下将稀释过的钠水玻璃緩慢加入上述 盐酸稀溶液中, 得到 Si02浓度 7.8vv%, pH值 2.8的硅溶胶。 在上述硅溶 胶中加入 5.4Kg多水高岭土, 搅拌 1小时, 使高岭土充分分散。
在 6.8Kg脱阳离子水中力口入 4.0Kg (干基) 实施例 1 中制备的中孔材 料 C 1 , 经均质器充分分散后, 用稀盐酸调 pH值为 3.5。 将中孔材料浆液 加入到上迷硅溶胶-粘土浆液中, 搅拌 0.5小时, 得到固含量为 22.3vv%、 pH值为 2.9的催化剂浆液。将此浆液于尾气温度 250°C下喷雾成型,洗涤, 干燥, 焙烧。 得到本发明提供的组成为 40vv%中孔材料、 40vv%高岭土、 20w%SiO2粘结剂的改质催化剂, 简记为 C7。 实施例 8
18公斤脱阳离子水中, 加入 4.1公斤多水高岭土打浆, 再加入 4.8公 斤拟薄水铝石, 用盐酸将其 pH调至 2, 搅拌均匀, 在 70°C下静置老化 1 小时, 加入 4.7公斤铝溶胶, 老化前后加入的耐热无机氧化物前身物使老 化前后加入的耐热无机氧化物的重量比为 1 : 0.33 , 搅拌均匀。
在 5.5Kg脱阳离子水中加入 3.0Kg (干基) 实施例 2中制备的中孔材 料 C2, 经均质器充分分散后, 用稀盐酸调 pH值为 3.5。 将中孔材料浆液 加入到上迷氧化铝-粘土浆液中, 搅拌 0.5h, 得到固含量为 23.5vv%的催化 剂浆液, 将得到的浆液在 250°C的温度下喷雾干燥成型, 洗涤, 干燥, 焙 烧。 得到本发明提供的组成为 30w%中孔材料、 30 %高岭土、 40w。/。Al2O3 粘结剂的改质催化剂, 简记为 C8。 实施例 9
24公斤脱阳离子水中, 加入 6.8公斤多水高岭土打浆, 再加入 4.8公 斤拟薄水铝石, 用盐酸将其 pH调至 2, 搅拌均匀, 在 70Ό下静置老化 1 小时, 再加入 2.0Kg (干基) 实例 3中制备的凝胶态中孔材料 N3 , 搅拌 均匀, 得到固含量为 18.3vv%的浆液, 将得到的浆液在 250°C的温度下喷 雾干燥成型, 洗涤, 干燥, 焙烧。 得到本发明提供的组成为 20vv%中孔材 料、 50w%高岭土、 30νν%Α12Ο3粘结剂的改质催化剂, 简记为 C9。 对比例 3
对比例 3说明不含中孔材料的对比催化剂及其制备方法。
按实施例 7的方法制备催化剂, 不同的是不加入中孔材料, 多水高岭 土的用量为 10.8公斤, 得到组成为 80w°/。高岭土、 20>v%SiO2粘结剂的对 比催化剂, 简记为 CB3。 实施例 10-12
实施例 10- 12说明本发明提供的催化改质催化剂的催化改质效杲。 将改质催化剂 C 1 -C3在 800 用 100 %水蒸汽老化 17小时, 装入小 型固定床装置的反应器中, 在反应温度为 400Ό , 剂油重量比为 5, 重时 空速为 1611-1的奈件下, 通入表 2所示原油 A, 收集反应后的液相产品并 分析其产品分布、 酸值、 残炭和金属含量, 考察改质催化剂的改质效果, 结果见表 3。
脱酸率的计算方法如下: 脱酸率 = (高酸原油原料的总酸值-所得液 相产品的总酸值) /高酸原油原料的总酸值 X 100 %。 对比例 4-5
对比例 4-5说明对比催化剂的催化改质效果。
按实施例 10的方法老化并评价催化剂的催化性能, 不同的是用对比 例 1和 2所述的对比催化剂 CB 1和 CB2分别代替本发明提供的催化剂 Cl。 结果列于表 3中。 实施例 13- 15
实施例 13-15说明本发明提供的催化改质催化剂的催化改质效果。 将改质催化剂 C4-C6分别进行金属污染, 其污染量为 Fe: 20000ppm , Ni: 30000ppm, Ca: 10000ppm , 然后将污染后的改质催化剂在 100 %水蒸 汽条件下老化 8小时。 装入小型固定床装置的反应器中, 在反应温度为 400°C , 剂油重量比为 5 , 重时空速为 161 ·1的条件下, 通入表 2所示原油 B , 收集反应后的液相产品并分析其产品分布、 酸值、 残炭和金属含量, 考察改质催化剂的改质效果, 结果见表 4。 实施例 16-18
实施例 16-18说明本发明提供的催化改质催化剂的催化改质效果。 将改质催化剂 C7-C9分别进行金属污染, 其污染量为 Fe: 20000ppm, Ni: 30000ppm, Ca: 10000ppm, 然后将污染后的改质催化剂在 100 %水蒸 汽条件下老化 17小时。 装入小型固定床装置的反应器中, 通入表 2所示 原油 A, 在反应温度为 450°C , 剂油重量比为 5 , 重时空速为 10小时 的 奈件下反应, 收集反应后的液相产品并分析其产品分布、 酸值、 残炭和金 属含量, 考察改质催化剂的改质效果, 结果见表 5。
^ t匕^' j 6
对比例 6说明对比催化剂的催化改质效果。
按实施例 16的方法污染、 老化并评价催化剂的催化性能, 不同的是 用对比例 3所述的对比催化剂 CB3代替本发明提供的催化剂 C7。 结果列 于表 5中。
表 2
Figure imgf000016_0001
表 3
Figure imgf000017_0001
由表 3可见, 采用本发明提供的催化改质催化剂对劣质原油进行预处 理, 改质后的原油的脱酸率为 90%以上, 残炭值降低 72.3%以上, 金属 Ni脱除 93.2%以上, 金属 Fe脱除 91.5%以上, Ca脱除 44.1 %以上。 表 4
Figure imgf000018_0001
实例编号 实施例 16 实施例 17 实施例 18 ^f t匕列 6 改质催化剂 C7 C8 C9 CB3 总酸值, 1 .77
0. 15 0.05 0.06
mg OH/g
脱酸率, % 95.5 98.5 98.2 47.5 残炭, m% 1 .7 1 .0 1.2 3.9 金属含量, ppm
Ni 2.7 0.6 0.5 12.3
Fe 2.1 1.4 1.5 8.6
Ca 5.3 6.6 3.5 9.6 产品分布
干气 0.62 0.58 0.51 0.39 液化气 1 .05 1 .37 1 .19 0.82
C5汽油 7.88 9.77 9.71 6.74 柴油 16. 14 17.23 15.28 13.72 重油 69.22 65.57 68.08 73.54 焦炭 5.09 5.48 5.23 4.79 转化率 14.64 17.20 16.64 12.74 由表 5可见, 本发明提供的催化改质催化剂经金属污染后, 脱酸率仍 在 95.5%以上, 大大高于对比例的脱酸率 47.5%。 残炭值降低 68.6%, 比 对比例多降低 40.7个百分点。 金属脱除率保持在 Ni脱除 91.3%, 高于对 比例 30.9个百分点; Fe脱除率为 89.5%, 高于对比例 32.5个百分点; Ca 的脱除率为 52.3%, 高于对比例 38.7个百分点。

Claims

权 利 要 求
1、 一种中孔材料, 其特征在于该中孔材料为含有碱土金属氧化物、 氧化硅和氧化铝的无定形材料, 以氧化物的重量百分比计, 其无水化学表 达式为: ( 0-0.3 ) Na20' ( 1 -50 ) ΜΟ· ( 6-58 ) Α1203· ( 40-92 ) Si02, 其中, M选自 Mg、 Ca和 Ba中的一种或几种; 其比表面积为 200-400m2/g, 孔 容为 0.5-2.0ml/g, 平均孔径为 8- 20nm, 最可几孔径为 5-15nm。
2、 按照权利要求 1的中孔材料, 其特征在于以氧化物的重量百分比 计, 所述中孔材料的无水化学表达式为 ( 0-0.2 ) Na20- ( 2-30 ) ΜΟ· ( 6-35 ) Α1203· ( 60-92 ) Si02
3、 按照权利要求 2的中孔材料, 其特征在于以氧化物的重量百分比 计,所述中孔材料含有 0.1 -0.2 %的 Na20, 60-85 %的 Si02和 6-20%的 A1203
4、 按照权利要求 2的中孔材料, 其特征在于以氧化物的重量百分比 计, 所迷中孔材料含有 5-30 %的 MO。
5、 按照权利要求 1的中孔材料, 其特征在于所述的碱土金属 M选自
Mg和 Ca。
6、按照权利要求 1的中孔材料,其特征在于所述的孔容为 1.0-2.0ml/g, 平均孔径为 10-20nm , 最可几孔径为 10-15nm。
7、 权利要求 1 的中孔材料的制备方法, 其特征在于包括将铝源、 硅 源与碱土溶液在室温至 85°C下中和成胶, 并采用酸或碱调节成胶终点 pH 为 7-9,在室温至 90°C下老化 1-10小时,将所得固体沉淀物进行铵交换除 去杂质离子, 得到铵交换的凝胶, 或者进一步进行干燥和焙烧。
8、 按照权利要求 7的方法, 其特征在于所述的铝源选自硝酸铝、 硫 酸铝、 氯化铝和偏铝酸钠中的一种或几种; 所述的硅源选自水玻璃、 硅酸 钠、 四乙基硅和氧化硅中的一种或几种; 所述的酸选自硫酸、 盐酸和硝酸 中的一种或几种; 所述的碱选自氨水、 氢氧化鉀和氢氧化钠中的一种或几 种。
9、 一种催化改质催化剂, 其特征在于以催化剂总量为基准, 该催化 剂含有 l -95w%的权利要求 1 ~ 6中任何一项所述的中孔材料、 0-99vv%的 耐热无机氧化物和 0-70vv%的粘土。
10、按照权利要求 9的催化改质催化剂, 其特征在于以催化剂总量为 基准, 该催化剂含有 10-50vv%的所述的中孔材料、 10-70vv%的耐热无机氧 化物、 和 0-60w%的粘土。
1 1、 按照权利要求 10的催化改质催化剂, 其特征在于以催化剂总量 为基准, 该催化剂含有 30-50w%的所述的中孔材料、 20-40w%的耐热无机 氧化物、 和 30-50w%的粘土。
12、 按照权利要求 9的催化转化催化剂, 其特征在于所述的耐热无机 氧化物选自氣化铝、 氧化硅和无定型硅铝中的一种或几种的混合物; 所述 的粘土选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托 土、 海泡石、 凹凸棒石、 水滑石和膨润土中的一种或几种的混合物。
1 3、 权利要求 9的催化剂的制备方法, 其特征在于该方法包括将全部 或部分耐热无机氧化物和 /或其前身物及水混合打浆, 加入或不加入粘土, 加入中孔材料, 干燥得到的浆液, 然后焙烧, 其中, 在加入中孔材料前, 加入粘土前或后,还加入一种酸使浆液的 pH值为 1 -5 , 并在 30-90Ό的温 度下老化 0.1 - 10小时; 老化后加入剩余的耐热无机氧化物和 /或其前身物; 各组分的用量使最终催化剂中含有, 以催化剂总量为基准, 1 - 95w%的中 孔材料、 0-99^%的耐热无机氧化物和 0-70w%的粘土。
14、 按照权利要求 13的方法, 其特征在于在老化前, 先加入部分耐 热无机氧化物和 /或其前身物, 老化后再加入剩余的耐热无机氧化物和 /或 其前身物,先加入的部分与后加入的部分使催化剂中先加入的耐热无机氧 化物与后加入的耐热无机氧化物的重量比为 1 : ( 0.1 - 10 ) 。
15、 一种使用权利要求 1、 9- 12任何之一的催化改质催化剂来进行含 酸原油催化改质的方法, 其包括将原料油预热到 100-250°C后引入反应器 中与权利要求 9-13任何之一的催化改质催化剂接触进行催化改质反应, 反应完成后分离反应油气与积炭的催化剂,分离出的反应油气经后续分离 得到一部分的轻质产物和脱酸、 脱金属后的原油, 分离出的积炭的催化剂 经汽提、 烧焦再生后循环使用。
16、 按照权利要求 15的方法, 其特征在于所述的催化改质反应条件 为:反应温度为 30O-6O0°C ,反应压力为 0.15-0.4MPa,重时空速为 l -150h"' , 催化剂与烃油原料的质量比为 1 -30。
17、 按照权利要求 16的方法, 其特征在于所述的催化改质反应奈件 为: 反应温度为 350- 520°C, 反应压力为 0.15-0.35MPa, 重时空速为
1 -睡 -1 , 催化剂与烃油原料的质量比为 2- 15。
18、 按照权利要求 1 5的方法, 其特征在于所述的原料油为酸值大于
0.5mgKOH/g、 残碳值高于 3w%的原油。
19、 按照权利要求 18的方法, 其特征在于所述的原料油为酸值大于 lmgKOH/g, 残炭值高于 5w%、 Ni含量高于 10yg/g、 Fe含量高于 10μ g/g、 Ca含量高于 lO g/g的原油。
PCT/CN2009/000031 2008-05-20 2009-01-09 含酸劣质原油改质催化剂及其制备方法和应用 WO2009140847A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107028272A KR101536187B1 (ko) 2008-05-20 2009-01-09 산성 저급 원유의 개질용 촉매, 그의 제조 및 응용 방법
CA2724999A CA2724999C (en) 2008-05-20 2009-01-09 Catalyst for upgrading inferior acid-containing crude oil, process for manufacturing the same, and application thereof
BRPI0912829-8A BRPI0912829B1 (pt) 2008-05-20 2009-01-09 Processo para beneficiar óleo bruto contendo ácido inferior
JP2011509840A JP5587297B2 (ja) 2008-05-20 2009-01-09 含酸劣質原油改質触媒、その製造方法、およびその応用
US12/993,637 US9259711B2 (en) 2008-05-20 2009-01-09 Catalyst for upgrading inferior acid-containing crude oil, process for manufacturing the same, and application thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810112002.4 2008-05-20
CN2008101120024A CN101584984B (zh) 2008-05-20 2008-05-20 一种劣质原油催化改质催化剂及其制备方法
CN200810113393.1 2008-05-29
CN2008101133931A CN101591551B (zh) 2008-05-29 2008-05-29 一种劣质原油的催化改质方法

Publications (1)

Publication Number Publication Date
WO2009140847A1 true WO2009140847A1 (zh) 2009-11-26

Family

ID=41339742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000031 WO2009140847A1 (zh) 2008-05-20 2009-01-09 含酸劣质原油改质催化剂及其制备方法和应用

Country Status (6)

Country Link
US (1) US9259711B2 (zh)
JP (1) JP5587297B2 (zh)
KR (1) KR101536187B1 (zh)
BR (1) BRPI0912829B1 (zh)
CA (1) CA2724999C (zh)
WO (1) WO2009140847A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207661B1 (ko) 2010-07-21 2012-12-03 (주)포스코켐텍 원유 방제용 방제제, 그 제조방법 및 원유 방제 방법
CN104588071A (zh) * 2013-10-31 2015-05-06 中国石油化工股份有限公司 一种含磷、镁和稀土的介孔催化材料
US10843182B2 (en) 2017-11-17 2020-11-24 Industrial Technology Research Institute Composite material comprising porous silicate particles and active metals

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450214B2 (ja) * 2010-04-02 2014-03-26 株式会社三共刃型工業 プラスチック油化用シリカアルミナ触媒及びそれを用いたプラスチック油化装置、プラスチック油化方法
KR101696773B1 (ko) * 2015-12-01 2017-01-16 한국에너지기술연구원 글리세롤 또는 그 유도체와 촉매를 사용하여 원유 내의 유기산을 제거하는 방법
JP7061299B2 (ja) * 2017-09-21 2022-04-28 水澤化学工業株式会社 二金属分散Al酸化物からなる排ガス浄化用触媒担体
CN109746039B (zh) * 2017-11-06 2021-12-10 湖南长岭石化科技开发有限公司 一种多级孔硅铝催化材料及其制备方法和应用
CN108355638A (zh) * 2018-01-02 2018-08-03 浙江大学 改性类水滑石型脱酸催化剂、活性组分及其制备方法和应用
CN111992199B (zh) * 2020-05-31 2023-06-30 南京克米斯璀新能源科技有限公司 一种用于费托油脱除酸的催化剂及其制备方法
CN116273037A (zh) * 2023-02-09 2023-06-23 安徽理工大学 一种煤层气低温氧化制甲醇球形微介孔复合材料催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122111A (zh) * 1994-02-09 1996-05-08 巴西石油公司 制备改性y沸石的方法
US5883035A (en) * 1997-11-05 1999-03-16 Engelhard Corporation Mesoporous silicoaluminate products and production thereof by controlled acid extraction of aluminum from calcium bentonite clay
CN1978593A (zh) * 2005-11-30 2007-06-13 中国石油化工股份有限公司 一种裂化催化剂

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248411A (ja) * 1988-08-05 1990-02-19 Mizusawa Ind Chem Ltd 膨潤性合成サポナイト型粘土鉱物の製法
US5891325A (en) * 1998-08-11 1999-04-06 Exxon Research And Engineering Co. Process for reducing total acid number of crude oil
JP2000119014A (ja) * 1998-08-12 2000-04-25 Fuji Chem Ind Co Ltd 無晶形ケイ酸アルミン酸カルシウム複合酸化物及びその製造方法並びに制酸剤
JP2004051457A (ja) * 2002-07-23 2004-02-19 Rikogaku Shinkokai アルミノシリケート非晶質体およびその製造方法、並びに、重金属イオン除去材料
SG158176A1 (en) * 2004-12-28 2010-01-29 China Petroleum & Chemical A catalyst and a method for cracking hydrocarbons
CN100363467C (zh) 2005-03-03 2008-01-23 中国石油化工股份有限公司 一种加工高酸值原油的方法
JP5188034B2 (ja) * 2006-04-27 2013-04-24 旭化成ケミカルズ株式会社 耐磨耗性に優れた機能を有する金担持粒子
DE102006040432A1 (de) * 2006-08-29 2008-03-20 Oxeno Olefinchemie Gmbh Katalysator und Verfahren zur Herstellung von Isoolefinen
CN101134913B (zh) * 2006-08-31 2011-05-18 中国石油化工股份有限公司 一种烃类催化转化方法
WO2009092282A1 (zh) 2008-01-09 2009-07-30 China Petroleum & Chemical Corporation 含酸劣质原油转化催化剂及其制备方法和应用
JP4424427B2 (ja) * 2008-03-18 2010-03-03 トヨタ自動車株式会社 車両の制御装置および制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122111A (zh) * 1994-02-09 1996-05-08 巴西石油公司 制备改性y沸石的方法
US5883035A (en) * 1997-11-05 1999-03-16 Engelhard Corporation Mesoporous silicoaluminate products and production thereof by controlled acid extraction of aluminum from calcium bentonite clay
CN1978593A (zh) * 2005-11-30 2007-06-13 中国石油化工股份有限公司 一种裂化催化剂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207661B1 (ko) 2010-07-21 2012-12-03 (주)포스코켐텍 원유 방제용 방제제, 그 제조방법 및 원유 방제 방법
CN104588071A (zh) * 2013-10-31 2015-05-06 中国石油化工股份有限公司 一种含磷、镁和稀土的介孔催化材料
US10843182B2 (en) 2017-11-17 2020-11-24 Industrial Technology Research Institute Composite material comprising porous silicate particles and active metals

Also Published As

Publication number Publication date
BRPI0912829B1 (pt) 2023-09-26
KR101536187B1 (ko) 2015-07-13
JP5587297B2 (ja) 2014-09-10
US20110139682A1 (en) 2011-06-16
CA2724999A1 (en) 2009-11-26
CA2724999C (en) 2016-11-08
JP2011522688A (ja) 2011-08-04
KR20110018905A (ko) 2011-02-24
BRPI0912829A2 (pt) 2015-10-13
US9259711B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2009140847A1 (zh) 含酸劣质原油改质催化剂及其制备方法和应用
WO2009092282A1 (zh) 含酸劣质原油转化催化剂及其制备方法和应用
CN108927207B (zh) 一种表面富铝的多孔催化材料及其制备方法
CN101767034B (zh) 一种含zsm-5/y型复合分子筛催化材料的制备方法
JP2002204959A (ja) 水素化処理用触媒並びに水素化処理方法
WO2012082597A2 (en) Process for metal recovery from catalyst waste
JP5911446B2 (ja) 炭化水素油の接触分解触媒の製造方法
JP2012504493A (ja) 水素化脱金属の触媒及び方法
CN101584984B (zh) 一种劣质原油催化改质催化剂及其制备方法
JP2005532146A (ja) ニッケルとバナジウムを含有する供給材料用のfcc触媒
CN101591551B (zh) 一种劣质原油的催化改质方法
CN101767030A (zh) 一种含zsm-5分子筛的催化材料的制备方法
CN101480621B (zh) 一种含酸劣质原油转化催化剂及其制备方法
CN101586038B (zh) 一种含酸劣质原油催化转化方法
CN114426872B (zh) 一种劣质原油催化转化方法
CN114426865B (zh) 一种降低油品中金属含量的方法及应用
CN1796492A (zh) 一种石油烃催化裂化方法
JP3978064B2 (ja) 重質炭化水素油の2段階水素化処理方法
JPH11156197A (ja) 炭化水素油の分解触媒
CN113318773B (zh) 含有磷钨酸改性介孔材料的催化裂化助剂及其制备方法和应用
CN102049311B (zh) 一种催化裂化催化剂的制备方法
JP2008173529A (ja) 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
JP2008173530A (ja) 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2724999

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011509840

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8391/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107028272

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12993637

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09749390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0912829

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101118