WO2009139272A1 - 多層セラミック基板およびその製造方法 - Google Patents

多層セラミック基板およびその製造方法 Download PDF

Info

Publication number
WO2009139272A1
WO2009139272A1 PCT/JP2009/057896 JP2009057896W WO2009139272A1 WO 2009139272 A1 WO2009139272 A1 WO 2009139272A1 JP 2009057896 W JP2009057896 W JP 2009057896W WO 2009139272 A1 WO2009139272 A1 WO 2009139272A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermal expansion
expansion coefficient
low thermal
wall portion
Prior art date
Application number
PCT/JP2009/057896
Other languages
English (en)
French (fr)
Inventor
裕一 飯田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN200980117809XA priority Critical patent/CN102027813A/zh
Priority to JP2010511935A priority patent/JP5182367B2/ja
Publication of WO2009139272A1 publication Critical patent/WO2009139272A1/ja
Priority to US12/940,073 priority patent/US8993105B2/en
Priority to US14/465,876 priority patent/US20140361470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/183Components mounted in and supported by recessed areas of the printed circuit board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/562Using constraining layers before or during sintering made of alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/702Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the constraining layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/063Lamination of preperforated insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/462Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4697Manufacturing multilayer circuits having cavities, e.g. for mounting components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/901Printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a multilayer ceramic substrate and a method for manufacturing the same, and more particularly to an improvement for improving the strength of a multilayer ceramic substrate having a cavity.
  • Patent Document 1 An example of a method for producing a multilayer ceramic substrate that is of interest to the present invention is described in Japanese Patent Application Laid-Open No. 2003-273513 (Patent Document 1).
  • Patent Document 1 when a multi-layer ceramic substrate with a cavity is manufactured using a so-called non-shrinking process, the shrinkage suppressing action by the outer constraining layer is weakened at a position farther from the opening end of the cavity.
  • the firing process is performed in a state where the raw laminate is sandwiched between the outer constraining layers containing the shrinkage-inhibiting inorganic material powder.
  • the shrinkage suppression effect by the interlayer constraining layer works, and the ceramic green layer shrinks in the main surface direction.
  • a multilayer ceramic substrate can be obtained which can be substantially prevented from occurring and is free from unwanted deformation in the cavity.
  • the multilayer ceramic substrate having a cavity is relatively thin at the bottom wall portion that defines the bottom surface of the cavity and relatively thick at the peripheral wall portion that defines the peripheral surface of the cavity, the thickness is not uniform.
  • undesired deformation such as warpage is likely to occur due to firing.
  • deformation such as warping may occur more significantly. Therefore, if it is attempted to suppress deformation such as warpage, the degree of freedom in designing the multilayer ceramic substrate may be limited.
  • an object of the present invention is to provide a multilayer ceramic substrate that is less likely to be damaged at the bottom wall portion that defines the bottom surface of the cavity, and a method for manufacturing the same.
  • a more specific object of the present invention is to provide a multilayer ceramic substrate and a method for manufacturing the same, in which the bottom wall portion of the cavity is less likely to be damaged and undesired deformation such as warpage can be suppressed. Is to try to provide.
  • the present invention relates to a multilayer ceramic with a cavity having a peripheral wall portion made of a first ceramic layer having a through hole for forming a cavity and a bottom wall portion made of a second ceramic layer having no through hole for forming a cavity.
  • the bottom wall portion has a high thermal expansion coefficient layer and a thermal expansion coefficient that have a relatively high thermal expansion coefficient as the second ceramic layer.
  • a laminated structure is formed in which at least two types of ceramic layers including a low thermal expansion coefficient layer having a relatively low value are disposed, and at least a part of the high thermal expansion coefficient layer is sandwiched between the first and second low thermal expansion coefficient layers. It is characterized by having.
  • the surface facing the outer side of the bottom wall is provided by the first low thermal expansion coefficient layer, and the surface of the bottom wall contacting the peripheral wall is provided by the second low thermal expansion coefficient layer. It is preferred that
  • a high thermal expansion coefficient layer having a higher thermal expansion coefficient than that of the second low thermal expansion coefficient layer is disposed on the peripheral wall portion, and a third coefficient of thermal expansion is relatively low in the outermost layer. More preferably, a low thermal expansion coefficient layer is disposed.
  • the bottom wall portion further includes a first interlayer constraining layer disposed as a second ceramic layer in contact with the second low thermal expansion coefficient layer.
  • the first interlayer constrained layer includes an inorganic material powder that does not substantially sinter under firing conditions capable of sintering the ceramic material included in the low thermal expansion coefficient layer, and is included in the low thermal expansion coefficient layer.
  • the inorganic material powder is in a solidified state due to permeation of.
  • the first interlayer constraining layer is not limited to being sandwiched between the low thermal expansion coefficient layers.
  • the peripheral wall portion further includes a second interlayer constraining layer disposed as a first ceramic layer along a surface of the peripheral wall portion in contact with the bottom wall portion.
  • the second interlayer constrained layer includes an inorganic material powder that does not substantially sinter under firing conditions capable of sintering the ceramic material included in the low thermal expansion coefficient layer, and the material included in the low thermal expansion coefficient layer.
  • the inorganic material powder is in a solidified state due to permeation of.
  • the inner peripheral edge defining the cavity forming through hole included in the second interlayer constraining layer has a cavity forming through hole included in the first ceramic layer in contact with the second interlayer constraining layer on the peripheral wall portion.
  • the present invention has a peripheral wall portion made of a first ceramic layer having a through hole for forming a cavity, and a bottom wall portion made of a second ceramic layer having no through hole for forming a cavity.
  • As the second ceramic layer at least two kinds of ceramic layers including a high thermal expansion coefficient layer having a relatively high thermal expansion coefficient and a low thermal expansion coefficient layer having a relatively low thermal expansion coefficient are arranged, and high thermal expansion is provided.
  • the present invention is also directed to a method of manufacturing a multilayer ceramic substrate in which a laminated structure is formed in which at least a part of a coefficient layer is sandwiched between first and second low thermal expansion coefficient layers.
  • the method for manufacturing a multilayer ceramic substrate according to the present invention is to be the first ceramic layer by firing, and includes a low-temperature sintered ceramic material and the first ceramic green having the cavity forming through hole.
  • a step of producing a composite laminate comprising an outer constraining layer including an inorganic material powder that is not substantially sintered under firing conditions capable of sintering the low-temperature sintered ceramic material, and low-temperature firing of the composite laminate. It is characterized by comprising a firing step of firing under a firing condition in which the sintered ceramic material is sintered, and then a step of removing the outer constraining layer from the composite laminate.
  • the raw laminate further includes a first interlayer constraining layer disposed as a second ceramic green layer in contact with the second low thermal expansion coefficient green layer.
  • This first interlayer constrained layer includes an inorganic material powder that does not substantially sinter under firing conditions capable of sintering a low-temperature sintered ceramic material. As a result of the firing step, the material included in the low thermal expansion coefficient green layer The inorganic material powder is solidified by the permeation of.
  • the raw laminated body is arranged as a first ceramic green layer along the surface of the peripheral wall portion of the multilayer ceramic substrate that is in contact with the bottom wall portion.
  • An interlayer constraining layer is further provided.
  • the second interlayer constrained layer includes an inorganic material powder that does not substantially sinter under firing conditions capable of sintering the ceramic material contained in the low thermal expansion coefficient layer.
  • the inorganic material powder is solidified by permeation of the contained material.
  • the laminated structure in which at least a part of the high thermal expansion coefficient layer is sandwiched between the first and second low thermal expansion coefficient layers is formed in the bottom wall portion of the cavity, in the cooling process after firing. Compressive stress is generated in the first and second low thermal expansion coefficient layers. As a result, the strength at the bottom wall can be improved, and it is possible to make it difficult for the bottom wall to be damaged.
  • the surface facing the outer side of the bottom wall portion is provided by the first low thermal expansion coefficient layer and the surface in contact with the peripheral wall portion of the bottom wall portion is provided by the second low thermal expansion coefficient layer, the above-mentioned compressive stress generated in the second low thermal expansion coefficient layer is exerted over the entire thickness direction of the bottom wall portion, and the strength of the entire bottom wall portion can be improved more reliably.
  • the overall strength of the multilayer ceramic substrate can be improved, Warpage due to a stress difference between the front and back surfaces of the multilayer ceramic substrate can be suppressed.
  • the bottom wall portion and the peripheral wall portion are disposed during firing. As a result, undesired deformation and cracks such as warpage of the multilayer ceramic substrate can be suppressed.
  • the degree of freedom in designing the multilayer ceramic substrate having a cavity can be increased.
  • the composite laminate to be fired includes an outer constraining layer together with the raw laminate to be a multilayer ceramic substrate.
  • the contraction of the is suppressed.
  • the raw laminate includes the first interlayer constraining layer, shrinkage at the boundary between the bottom wall portion and the peripheral wall portion is suppressed. Undesirable deformation and cracks that can occur can be suppressed, and the dimensional accuracy can be further increased.
  • the raw laminate further includes a second interlayer constraining layer disposed along a surface of the peripheral wall portion of the multilayer ceramic substrate that contacts the bottom wall portion. Since shrinkage at the boundary between the bottom wall portion and the peripheral wall portion is suppressed, deformation and cracks occurring in this portion can be reliably suppressed.
  • the cavity forming through hole of the second interlayer constraining layer is made smaller than the cavity forming through hole of the first ceramic green layer in contact with the second interlayer constraining layer of the peripheral wall portion, Cavity of the second interlayer constraining layer, even when the through hole for forming the cavity is displaced between the second interlayer constraining layer and the first ceramic green layer in contact with the second interlayer constraining layer during the production of the raw laminate
  • the inner peripheral edge defining the forming through hole is not located outside the inner peripheral edge defining the cavity forming through hole of the first ceramic green layer in contact with the second interlayer constraining layer of the peripheral wall portion.
  • the cavity forming through hole which the first ceramic green layer in contact with the second interlayer constraining layer of the peripheral wall portion has at least a part of the inner peripheral edge defining the cavity forming through hole of the two interlayer constraining layers. It is possible to increase the probability that can be positioned inside the inner peripheral edge defining the hole. Therefore, after firing, deformation, cracks, and the like in the bottom wall portion of the cavity can be more reliably suppressed.
  • FIG. 5 is a cross-sectional view schematically showing multilayer ceramic substrates 61 to 65 according to Comparative Examples 1 to 3 and Examples 1 and 2 manufactured in an experimental example carried out to confirm the effect of the present invention.
  • FIG. 1 is a cross-sectional view showing a functional module 31 including a multilayer ceramic substrate 1 according to the first embodiment of the present invention.
  • a cavity 3 is formed in the multilayer ceramic substrate 1.
  • the multilayer ceramic substrate 1 has a bottom wall portion 4 that defines the bottom surface of the cavity 3 and a peripheral wall portion 5 that defines the peripheral surface of the cavity 3.
  • the multilayer ceramic substrate 1 has a structure in which a plurality of first ceramic layers 2a having a through hole for forming a cavity and a plurality of second ceramic layers 2b having no through hole for forming a cavity are laminated.
  • 5 is composed of the first ceramic layer 2a
  • the bottom wall portion 4 is composed of the second ceramic layer 2b.
  • the concave cavity 3 is formed in the multilayer ceramic substrate 1.
  • the bottom wall portion 4 includes, as the second ceramic layer 2b, a first high thermal expansion coefficient layer 6 having a relatively high thermal expansion coefficient and first and second low thermal expansions having a relatively low thermal expansion coefficient.
  • Coefficient layers 7 and 8 are arranged, and a laminated structure in which at least a part of the first high thermal expansion coefficient layer 6 is sandwiched between the first and second low thermal expansion coefficient layers 7 and 8 is formed.
  • the outwardly facing surface of the bottom wall portion 4 is provided by the first low thermal expansion coefficient layer 7, and the surface of the bottom wall portion 4 in contact with the peripheral wall portion 5 is the second low thermal expansion coefficient layer. Is given by 8.
  • a second high thermal expansion coefficient layer 9 having a higher thermal expansion coefficient than that of the second low thermal expansion coefficient layer 8 is disposed on the peripheral wall portion 5, and the outermost layer has a relative thermal expansion coefficient.
  • a third low low thermal expansion coefficient layer 10 is disposed.
  • first interlayer constraining layer 11 is disposed on the bottom wall portion 4 as the second ceramic layer 2b in a state of being in contact with the second low thermal expansion coefficient layer 8.
  • first interlayer constraining layer 11 is sandwiched between the second low thermal expansion coefficient layers 8.
  • the second interlayer constraining layer 12 is disposed along the surface of the peripheral wall portion 5 that is in contact with the bottom wall portion 4.
  • the first interlayer constrained layer 11 may be disposed in a state sandwiched between the second low thermal expansion coefficient layer 8 and the first high thermal expansion coefficient layer 6.
  • the multilayer ceramic substrate 1 includes various wiring conductors.
  • the wiring conductor is used to form a passive element such as a capacitor or an inductor, or to perform connection wiring such as an electrical connection between elements, and is typically as shown in FIG. In addition, it is composed of several conductor films 13 to 16 and several via-hole conductors 17.
  • the conductor film 13 is formed inside the multilayer ceramic substrate 1.
  • Conductive films 14 and 15 are formed on one main surface and the other main surface of multilayer ceramic substrate 1, respectively.
  • the conductor film 16 is formed on the bottom surface of the cavity 3.
  • the via-hole conductor 17 is provided so as to penetrate any one of the ceramic layers 2a and 2b in the thickness direction while being electrically connected to any of the conductor films 13 to 16.
  • Chip components 18 and 19 are mounted on one main surface of the multilayer ceramic substrate 1 in a state of being electrically connected to the external conductor film 14.
  • FIG. 1 shows a bump electrode 20 for electrically connecting the chip component 19 to the external conductor film 14.
  • FIG. 1 shows a bump electrode 22 for electrically connecting the chip component 21 to the cavity bottom conductor film 16.
  • the functional module 31 is configured by mounting the chip components 18, 19 and 21 on the multilayer ceramic substrate 1.
  • the external conductor film 15 formed on the other main surface of the multilayer ceramic substrate 1 is used as an electrical connection means when the functional module 31 is mounted on a mother board (not shown).
  • the multilayer ceramic substrate 1 described above is manufactured, for example, as follows.
  • FIG. 2 is a cross-sectional view showing a composite laminate 41 produced during the production of the multilayer ceramic substrate 1.
  • the composite laminate 41 includes a raw laminate 42 to be the multilayer ceramic substrate 1 by firing, and first and second outer constraining layers 43 and 44 disposed on both main surfaces of the raw laminate 42. And.
  • the conductor films 13 to 16 and the via-hole conductor 17 provided in association with the raw laminate 42 are not shown.
  • the raw laminated body 42 includes a peripheral wall portion 4 that defines the bottom surface of the cavity 3 and a peripheral wall portion 5 that defines the peripheral surface of the cavity 3, as in the case of the multilayer ceramic substrate 1. And have.
  • the bottom wall portion 4 of the raw laminate 42 has a first high thermal expansion coefficient green to be the first high thermal expansion coefficient layer 6 as the second ceramic green layer to be the second ceramic layer 2b.
  • the first low thermal expansion coefficient green layer 47 to be the layer 46 and the first low thermal expansion coefficient layer 7 and the second low thermal expansion coefficient green layer 48 to be the second low thermal expansion coefficient layer 8 are laminated.
  • the peripheral wall portion 5 of the raw laminate 42 has a second high thermal expansion coefficient green layer to be the second high thermal expansion coefficient layer 9 as the first ceramic green layer to be the first ceramic layer 2a. 49 and the third low thermal expansion coefficient green layer 50 to be the third low thermal expansion coefficient layer 10 are laminated.
  • These green layers 46 to 50 contain a low-temperature sintered ceramic material.
  • the first interlayer constraining layer 11 is formed as the second ceramic green layer
  • the second interlayer constraining layer 12 is formed as the first ceramic green layer.
  • These interlayer constrained layers 11 and 12 contain inorganic material powders that are not substantially sintered under firing conditions capable of sintering the above-described low-temperature sintered ceramic material.
  • Each of the above-described green layers 46 to 50 is usually composed of a plurality of layers as can be seen from the fact that a plurality of ceramic layers 2a and a plurality of ceramic layers 2b are shown in FIG. In FIG. 2, illustration of the interface of these several layers is abbreviate
  • Each of the outer constraining layers 43 and 44 may be composed of a plurality of layers.
  • the raw laminate 42 is usually formed by laminating a plurality of ceramic green sheets, but instead, it may be formed by repeatedly applying ceramic slurry.
  • the first and second outer constraining layers 43 and 44 are laminated on both main surfaces of the raw laminate 42, and the composite laminate 41 is obtained by pressure bonding.
  • the second outer constraining layer 44 located on the cavity 3 side is provided with a through hole 51 communicating with the cavity 3.
  • the composite laminate 41 is fired under the firing conditions in which the low-temperature sintered ceramic material described above is sintered.
  • the inorganic material powder contained in the interlayer constraining layers 11 and 12 and the outer constraining layers 43 and 44 is not substantially sintered, the interlayer constraining layers 11 and 12 and the outer constraining layers 43 and 44 are substantially Contraction does not occur. Therefore, the shrinkage suppressing action by the interlayer constraining layers 11 and 12 and the outer constraining layers 43 and 44 is exerted on the raw laminate 42 until the sintered multilayer ceramic substrate 1 is obtained. As a result, undesired deformation such as warpage is less likely to occur in the obtained multilayer ceramic substrate 1, and the dimensional accuracy can be increased.
  • the outer constraining layers 43 and 44 are removed from the fired composite laminate 41 by, for example, ultrasonic cleaning or blasting. Since the outer constraining layers 43 and 44 after firing are in a porous state, they can be easily pulverized and removed.
  • the interlayer constrained layers 11 and 12 as a result of the firing process, the penetration of the material (glass component or the like) contained in the low thermal expansion coefficient green layer 48 and / or the high thermal expansion coefficient green layer 49 adjacent thereto.
  • the inorganic material powder is solidified.
  • the interlayer constraining layers 11 and 12 need to have a thickness that enables solidification by penetration of such materials.
  • the multilayer ceramic substrate 1 is obtained as described above.
  • the bottom wall portion 4 in the obtained multilayer ceramic substrate 1 there is a laminate in which at least a part of the first high thermal expansion coefficient layer 6 is sandwiched between the first and second low thermal expansion coefficient layers 7 and 8. A structure is formed. Therefore, compressive stress is generated in the first and second low thermal expansion coefficient layers 7 and 8 in the cooling process after the firing step, and as a result, the mechanical strength of the bottom wall portion 4 can be improved.
  • the third low thermal expansion coefficient layer 10 is provided, and also here, compressive stress is generated in the cooling process after firing. Therefore, undesired deformation such as warpage due to the stress difference between the front and back surfaces of the multilayer ceramic substrate 1 can be suppressed.
  • each thickness of the low thermal expansion coefficient layers 7, 8 and 10 is preferably 10 to 100 ⁇ m after firing. The reason is as follows.
  • each of the low thermal expansion coefficient layers 7, 8 and 10 and each of the high thermal expansion coefficient layers 6 and 9 acts due to the difference in thermal expansion coefficient. More specifically, a compressive stress acts on the low thermal expansion coefficient layers 7, 8, and 10, and this compressive stress decreases as the distance from the interface increases. On the other hand, a tensile stress acts on the high thermal expansion coefficient layers 6 and 9, and this tensile stress decreases as the distance from the interface increases. This is because stress is relaxed as the distance from the interface increases. When the distance from the interface exceeds 100 ⁇ m, the compressive stress almost does not act and the effect is hardly seen. Therefore, the thickness of each of the low thermal expansion coefficient layers 7, 8 and 10 is preferably 100 ⁇ m or less.
  • each of the low thermal expansion coefficient layers 7, 8 and 10 when the thickness of each of the low thermal expansion coefficient layers 7, 8 and 10 is less than 10 ⁇ m, the high thermal expansion coefficient layers 6 and 9, whose strength has been reduced due to the acting tensile stress, It exists in the outer surface vicinity area
  • Each of the low thermal expansion coefficient layers 7, 8 and 10 preferably has a thickness of 10 ⁇ m or more.
  • the thicknesses of the high thermal expansion coefficient layers 6 and 9 are appropriately determined according to the total thickness of the multilayer ceramic substrate 1 and the thicknesses of the low thermal expansion coefficient layers 7, 8 and 10, but are 10 to 100 ⁇ m after firing. It is preferable.
  • the thickness of the first and second low thermal expansion coefficient layers 7 and 8 sandwiching the first high thermal expansion coefficient layer 6 is such that the thinner the thickness of the first high thermal expansion coefficient layer 6 is, the more efficiently the compressive stress is used. This is preferable because it can be performed.
  • the thicknesses of the second and third low thermal expansion coefficient layers 8 and 10 sandwiching the second high thermal expansion coefficient layer 9 are preferably thinner than the thickness of the second high thermal expansion coefficient layer 9.
  • the first to third low thermal expansion coefficient layers 7, 8, and 10 are shown to have the same thickness, but the balance between the bottom wall portion 4 and the peripheral wall portion 5, the cavity These thicknesses may be made different from each other in accordance with the design of the multilayer ceramic substrate 1 such as the size of the diameter of 3.
  • the low thermal expansion coefficient layer 7 is illustrated as being composed of three ceramic layers 2b.
  • the thickness of the low thermal expansion coefficient layer 7 is one layer of the ceramic layer 2b. It is not the thickness of the minute but the total thickness of the three ceramic layers 2b. The same applies to the thicknesses of the other low thermal expansion coefficient layers 8 and 10 and the thicknesses of the high thermal expansion coefficient layers 6 and 9.
  • the difference in thermal expansion coefficient between the low thermal expansion coefficient layers 7, 8 and 10 and the high thermal expansion coefficient layers 6 and 9 is preferably 1.0 ppmK ⁇ 1 or more and 4.3 ppmK ⁇ 1 or less.
  • the warp of the bottom wall portion 4 can be greatly reduced by setting the difference in thermal expansion coefficient to 1.0 ppm K ⁇ 1 or more. That is, the relationship between the amount of warpage and the difference in thermal expansion coefficient is as follows. In the region where the difference in thermal expansion coefficient is less than 1.0 ppmK ⁇ 1 , the amount of warpage decreases as the difference in thermal expansion coefficient increases, and at 1.0 ppmK ⁇ 1 or more, It was found to be almost constant.
  • the in-plane stress that acts to warp the multilayer ceramic substrate 1 is relatively smaller than the stress that acts in the in-plane direction on the front and back surfaces due to the difference in thermal expansion coefficient. It is presumed that.
  • SiO 2 contained in the glass contained in the material constituting the low thermal expansion coefficient coefficient layers 7, 8 and 10 is 34 to 73 wt%, and is contained in the material constituting the high thermal expansion coefficient coefficient layers 6 and 9. SiO 2 contained in the glass is 22 to 60% by weight.
  • the preferable composition and the content thereof as described above are obtained by using a borosilicate glass-based material to reduce the difference in thermal expansion coefficient between the low thermal expansion coefficient coefficient layers 7, 8 and 10 and the high thermal expansion coefficient coefficient layers 6 and 9 by 1.
  • 0.0 ppm K ⁇ 1 or more is suitable and the weight ratio of common components is suitable to be 75% by weight or more.
  • a sufficient bonding force is obtained between each of the low thermal expansion coefficient coefficient layers 7, 8 and 10 and each of the high thermal expansion coefficient coefficient layers 6 and 9 by setting the weight ratio of the common components to 75% by weight or more. Can do.
  • the SiO 2 component contained in the glass contributes to lowering the thermal expansion coefficient, and the MO component contributes to raising the thermal expansion coefficient.
  • the glass composition is preferably close to the precipitated crystal composition.
  • the glass composition is preferably close to the precipitated crystal composition.
  • crystals of MAl 2 Si 2 O 8 and MSiO 3 are likely to precipitate, so that SiO 2 is close to this crystal composition. It is preferable to adjust the ratio of MO to MO.
  • the glass composition of the low thermal expansion coefficient coefficient layer 7, 8 and 10 for decreasing the thermal expansion coefficient the ratio of SiO 2 to MO is well closer to 2
  • the ratio between SiO 2 and MO is preferably close to 1 in order to increase the thermal expansion coefficient.
  • the glass composition of the high thermal expansion coefficient coefficient layers 6 and 9 has a higher MO ratio than the low thermal expansion coefficient coefficient layers 7, 8 and 10, and is susceptible to erosion in the plating process after firing, but is exposed to the surface portion. Because it is not, it has a structure that is less susceptible to fatal damage.
  • the ratio of SiO 2 and MO in the glass can be selected in the ranges as described above for the low thermal expansion coefficient coefficient layers 7, 8 and 10 and the high thermal expansion coefficient coefficient layers 6 and 9, respectively. preferable.
  • the glass contained in the material constituting the low coefficient of thermal expansion coefficient layers 7, 8 and 10 is composed of 34 to 73 wt% SiO 2 , 14 to 41 wt% MO, 0 to 30 wt% B 2 O 3 , 0-30 wt% Al 2 O 3, and the glass included in the material constituting the high coefficient of thermal expansion coefficient layers 6 and 9 has 22-60 wt% SiO 2 and 22-60 wt% MO. And 0 to 20 wt% B 2 O 3 and 0 to 30 wt% Al 2 O 3 are more preferable. The reason is as follows.
  • B 2 O 3 imparts an appropriate viscosity to the glass so that sintering proceeds smoothly during firing.
  • B 2 O 3 is too large, the viscosity is too low, becomes excessive sintering, pores on the surface becomes poor insulation occurs.
  • B 2 O 3 is too small, high viscosity, a sintering defect.
  • Al 2 O 3 is a component constituting the precipitated crystal. Even if the Al 2 O 3 is too much or too little, crystal precipitation hardly occurs.
  • the material constituting the low thermal expansion coefficient coefficient layers 7, 8 and 10 contains 30 to 60% by weight of Al 2 O 3 as a filler, and the material constituting the high thermal expansion coefficient coefficient layers 6 and 9 is Al 2 as a filler. More preferably, it contains 40 to 70% by weight of O 3 . The reason is as follows.
  • the Al 2 O 3 filler contributes to improving the mechanical strength. If there is too little Al 2 O 3 filler, sufficient strength cannot be obtained. In particular, in the high thermal expansion coefficient coefficient layers 6 and 9 on which tensile stress is applied, if the mechanical strength is not sufficient, the high thermal expansion coefficient coefficient layers 6 and 9 are broken from the high thermal expansion coefficient coefficient layers 6 and 9. The effect of strengthening 10 cannot be obtained sufficiently. For this reason, the high thermal expansion coefficient coefficient layers 6 and 9 contain more Al 2 O 3 filler than the low thermal expansion coefficient layers 7, 8 and 10, and by increasing the strength, it is possible to increase the difference in thermal expansion coefficient. In addition, the effect of strengthening the low coefficient of thermal expansion coefficient layers 7, 8 and 10 can be obtained.
  • the Al 2 O 3 filler Since the Al 2 O 3 filler has an intermediate contribution to the thermal expansion coefficient between the glass in the low thermal expansion coefficient coefficient layers 7, 8 and 10 and the glass in the high thermal expansion coefficient layer 6 and 9, If there is too much Al 2 O 3 filler, the difference in thermal expansion coefficient cannot be obtained.
  • the first to third low thermal expansion coefficient layers 7, 8, and 10 do not have to have the same composition and have the same thermal expansion coefficient, and the first and second high thermal expansion coefficients.
  • the layers 6 and 10 need not have the same composition and the same thermal expansion coefficient.
  • the thermal expansion coefficient of each of the first and second low thermal expansion coefficient layers 7 and 8 is smaller than the thermal expansion coefficient of the first high thermal expansion coefficient layer 6, the thermal expansion coefficient of the first low thermal expansion coefficient layer 7.
  • the thermal expansion coefficient of the second low thermal expansion coefficient layer 8 may be different from each other.
  • the thermal expansion coefficient of each of the second and third low thermal expansion coefficient layers 8 and 10 is smaller than the thermal expansion coefficient of the second high thermal expansion coefficient layer 9, the thermal expansion coefficient of the second low thermal expansion coefficient layer 8 will be described.
  • the thermal expansion coefficient of the third low thermal expansion coefficient layer 10 may be different from each other. Therefore, as long as the above conditions are satisfied, each coefficient of thermal expansion can be freely set, and as a result, the degree of freedom in designing the cavity 3 can be improved.
  • FIGS. 3 and 4 are for explaining a second embodiment of the present invention, and correspond to FIGS. 1 and 2, respectively. 3 and 4, elements corresponding to those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description is omitted.
  • the inner peripheral edge defining the through hole for forming a cavity of the second interlayer constraining layer 12a is the second interlayer constraining of the peripheral wall portion 5.
  • the first ceramic layer 2a in contact with the layer 12a is located on the inner side of the inner peripheral edge defining the cavity forming through hole.
  • first cavity forming through-hole all of the inner peripheral edge defining the cavity forming through-hole (hereinafter referred to as “first cavity forming through-hole”) of the second interlayer constraining layer 12a is formed in the second interlayer constraining layer 12a. It is not always necessary that the first ceramic layer 2a in contact with the first ceramic layer 2a is located on the inner side of the inner peripheral edge defining the cavity forming through hole (hereinafter referred to as "second cavity forming through hole”). . That is, it is only necessary that at least a part of the inner peripheral edge defining the first cavity forming through hole is located inside the inner peripheral edge defining the second cavity forming through hole.
  • the inner peripheral edge that defines the first cavity forming through hole is not located outside the inner peripheral edge that defines the second cavity forming through hole.
  • a part of the inner peripheral edge that defines the first cavity forming through hole is at least the second edge even if it is not located inside the inner peripheral edge that defines the second cavity forming through hole. It must be in the same position as the inner peripheral edge that defines the cavity forming through hole.
  • the inner peripheral edge defining the first cavity forming through-hole is the other two sides of the quadrangle, That is, it should not be outside the inner peripheral edge defining the second cavity forming through hole, and at least be in the same position.
  • the first cavity forming through-hole is made smaller, so that at least a part of the inner peripheral edge defining the first cavity forming through hole is smaller than the inner peripheral edge defining the second cavity forming through hole. Also be positioned inside.
  • a green sheet laminating step is performed.
  • the second layer is undesirably performed.
  • the inner peripheral edge defining the first cavity forming through hole is the second cavity.
  • At least a part of the inner peripheral edge defining the first cavity forming through-hole is not located outside the inner peripheral edge defining the forming through-hole, and the inner peripheral edge defining the second cavity forming through-hole.
  • FIG. 5 is a sectional view showing a multilayer ceramic substrate 1a according to the third embodiment of the present invention.
  • the multilayer ceramic substrate 1b is illustrated in a simplified manner as compared with FIG. 1, but the elements corresponding to the elements illustrated in FIG. .
  • the multilayer ceramic substrate 1b shown in FIG. 5 is characterized by not including an interlayer constraining layer.
  • the other configuration may be understood to be the same as that of the multilayer ceramic substrate 1 shown in FIG. 1 or the multilayer ceramic substrate 1a shown in FIG.
  • the multilayer ceramic substrate 1, 1a or 1b may not include the third low thermal expansion coefficient layer 10.
  • the multilayer ceramic substrate 65 according to Example 2 has the configuration of the multilayer ceramic substrate 1 shown in FIG.
  • the ceramic layers constituting the bottom wall portion 4 are all provided by the low thermal expansion coefficient layer 7.
  • All the ceramic layers constituting the peripheral wall portion 5 are provided by the low thermal expansion coefficient layer 10.
  • the ceramic layers constituting the peripheral wall portion 4 are all provided by the high thermal expansion coefficient layer 6, and the ceramic layers constituting the peripheral wall portion 5 are all provided by the high thermal expansion coefficient layer 9. It is characterized by.
  • the multilayer ceramic substrate 63 according to Comparative Example 3 is characterized in that the bottom wall portion 4 does not include the second low thermal expansion coefficient layer 8 and the high thermal expansion coefficient layer 6 is formed in this portion.
  • the multilayer ceramic substrate 64 according to the first embodiment is characterized in that the third low thermal expansion coefficient layer 10 is not provided and the high thermal expansion coefficient layer 9 is formed up to this portion.
  • the thermal expansion coefficients of the low thermal expansion coefficient layers 7, 8 and 10 were set to 5.3 ppmK ⁇ 1 . Further, in order to form the low thermal expansion coefficient layers 7, 8 and 10, a green sheet having a thickness of 50 ⁇ m was prepared, and an appropriate number of green sheets were laminated so as to have a desired thickness as described later.
  • the green sheets for the low coefficient of thermal expansion layers 7, 8 and 10 contain borosilicate glass powder and ceramic powder in a weight ratio of 60:40, and the total amount of glass powder and ceramic powder is 100 parts by weight.
  • 50 parts by weight of an organic solvent, 10 parts by weight of a butyral binder and 1 part by weight of a plasticizer were added and mixed to form a slurry. After removing bubbles from the slurry, the slurry was formed into a sheet by a doctor blade method. And obtained by drying.
  • the borosilicate glass powder includes 46 wt% SiO 2 , 30 wt% B 2 O 3 , 14 wt% CaO, 5 wt% Al 2 O 3 and 5 wt% TiO 2. Al 2 O 3 powder was used as the ceramic powder.
  • the thermal expansion coefficients of the high thermal expansion coefficient layers 6 and 9 were set to 7.7 ppmK- 1 . Further, in order to form the high thermal expansion coefficient layers 6 and 9, a green sheet having a thickness of 50 ⁇ m was prepared, and an appropriate number of green sheets were laminated so as to have a desired thickness as described later.
  • High thermal expansion coefficient layers 6 and 9 The green sheets for the high thermal expansion coefficient layers 6 and 9 contain borosilicate glass powder and ceramic powder in a weight ratio of 70:30. An organic solvent, a butyral binder and a plasticizer were added in the same ratio as in the case of the low thermal expansion coefficient layer described above with respect to a total of 100 parts by weight, and the same operation was performed.
  • the borosilicate glass powder used those containing 40 wt% of SiO 2, 5 wt% of B 2 O 3, 40 wt% of CaO, 5 wt% of MgO and 10% by weight of Al 2 O 3
  • the ceramic powder Al 2 O 3 powder was used.
  • a green sheet having a thickness of 10 ⁇ m was prepared in order to form the interlayer constraining layers 11 and 12, and a green sheet having a thickness of 100 ⁇ m was prepared in order to form an outer constraining layer (not shown in FIG. 6).
  • the green sheets for the interlayer constraining layers 11 and 12 and the outer constraining layer include 100 parts by weight of alumina powder, 10 parts by weight of a butyral binder, and 1 part by weight of a plasticizer. It was obtained through the same operation as in.
  • a paste containing 48 parts by weight of silver powder, 3 parts by weight of ethylcellulose binder and 49 parts by weight of organic solvent terpenes is used.
  • this conductive paste was applied to a specific one of the above green sheets.
  • various green sheets are laminated in a number as shown in “Number of used green sheets” in Table 1 below to produce raw laminates to be the multilayer ceramic substrates 61 to 65, respectively.
  • a composite laminate was produced by forming outer constraining layers on the top and bottom.
  • the outer constraining layer was formed by laminating four green sheets each having a thickness of 100 ⁇ m for the outer constraining layer above and below the raw laminate.
  • the composite laminate was baked under the condition of holding at a temperature of 870 ° C. for 10 minutes.
  • the outer constraining layer adhering in a porous state to the surface of the fired composite laminate is removed using an ultrasonic cleaner, and the multilayers according to Comparative Examples 1 to 3 and Examples 1 and 2 are used. Ceramic substrates 61 to 65 were obtained.
  • Each of the multilayer ceramic substrates 61 to 65 was mounted on a mounting substrate using solder, the mounting substrate was attached to the inside of a rectangular parallelepiped housing, and dropped toward the concrete block. At this time, dropping each of the six surfaces of the casing sequentially downward was regarded as one cycle, and this test was performed up to 10 cycles. In each bottom wall 4 of each of the multilayer ceramic substrates 61 to 64, the number of cycles at which breakage or crack generation occurred was evaluated. The results are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 キャビティを有する多層セラミック基板が薄型化されたとき、キャビティの底面を規定する底壁部が薄型化されるため、この底壁部が破損しやすいという課題がある。  多層セラミック基板(1)のキャビティ(3)を規定する底壁部(4)において、高熱膨張係数層(6)が第1および第2の低熱膨張係数層(7および8)に挟まれる積層構造を形成する。このような構成によれば、焼成後の冷却過程で低熱膨張係数層(7および8)に圧縮応力が発生し、その結果、底壁部(4)での機械的強度を向上させることができる。

Description

多層セラミック基板およびその製造方法
 この発明は、多層セラミック基板およびその製造方法に関するもので、特に、キャビティを有する多層セラミック基板の強度を向上させるための改良に関するものである。
 この発明にとって興味ある多層セラミック基板の製造方法として、たとえば特開2003-273513号公報(特許文献1)に記載されたものがある。特許文献1では、いわゆる無収縮プロセスを用いてキャビティ付き多層セラミック基板を製造しようとするとき、外側拘束層による収縮抑制作用が弱まる、キャビティの開口端からより離れた位置で、比較的高い度合いの収縮が生じ、キャビティが不所望に変形することがある、という課題を解決するため、多層セラミック基板となるべき生の積層体の、キャビティが形成された部分に位置するセラミックグリーン層に沿って、収縮抑制用無機材料粉末を含む層間拘束層を形成しながら、生の積層体を、収縮抑制用無機材料粉末を含む外側拘束層によって挟んだ状態で、焼成工程を実施するようにされる。
 上述した特許文献1に記載の製造方法によれば、焼成工程において、外側拘束層による収縮抑制作用に加えて、層間拘束層による収縮抑制作用が働き、セラミックグリーン層の主面方向への収縮が実質的に生じないようにすることができるとともに、キャビティにおいて不所望な変形のない多層セラミック基板を得ることができる。
 しかしながら、キャビティを有する多層セラミック基板においては、キャビティの底面を規定する底壁部が破損しやすいという問題がある。
 多層セラミック基板には、それが用いられる電子機器の小型化に伴い、薄型化の要請がある。そのため、特にキャビティを有する多層セラミック基板にあっては、キャビティに収納すべき実装部品の大きさが決まっている場合には、底壁部を薄くして多層セラミック基板の薄型化を実現しなければならない状況にある。あるいは、キャビティに様々な寸法および形状の実装部品を収納するために、キャビティの周面を規定する周壁部の高さを高くしなければならない場合には、周壁部の高さを高くする分、底壁部をより薄くする必要がある。このような状況の結果として、底壁部が破損しやすく、このような破損の抑制が大きな課題となっている。
 また、キャビティを有する多層セラミック基板は、キャビティの底面を規定する底壁部において比較的薄く、キャビティの周面を規定する周壁部において比較的厚いというように、厚みが一様でないため、本来的に、焼成によって反りなどの不所望な変形が生じやすい。この場合、底壁部の厚みと周壁部の高さとの関係によっては、反りなどの変形がより顕著に生じてしまうことがある。したがって、反りなどの変形を抑制しようとすると、多層セラミック基板の設計の自由度が制限されてしまうことがある。
特開2003‐273513号公報
 そこで、この発明の目的は、キャビティの底面を規定する底壁部において破損が生じにくい多層セラミック基板およびその製造方法を提供しようとすることである。
 この発明のより特定的な目的は、上述したように、キャビティの底壁部が破損しにくくされるとともに、反りなどの不所望な変形を抑制することができる、多層セラミック基板およびその製造方法を提供しようとすることである。
 この発明は、キャビティ形成用貫通孔を有する第1のセラミック層からなる周壁部と、キャビティ形成用貫通孔を有しない第2のセラミック層からなる底壁部とを有する、キャビティ付きの、多層セラミック基板にまず向けられるものであって、上述した技術的課題を解決するため、底壁部には、上記第2のセラミック層として、熱膨張係数が相対的に高い高熱膨張係数層および熱膨張係数が相対的に低い低熱膨張係数層を含む、少なくとも2種類のセラミック層が配置され、かつ高熱膨張係数層の少なくとも一部が第1および第2の低熱膨張係数層に挟まれる積層構造が形成されていることを特徴としている。
 この発明に係る多層セラミック基板において、底壁部の外方に向く面が第1の低熱膨張係数層によって与えられ、底壁部の、周壁部と接する面が第2の低熱膨張係数層によって与えられることが好ましい。
 上述の場合、周壁部には、第2の低熱膨張係数層より高い熱膨張係数を有する高熱膨張係数層が配置されるとともに、その最外層には、熱膨張係数が相対的に低い第3の低熱膨張係数層が配置されていることがより好ましい。
 また、上述の実施態様において、底壁部は、第2のセラミック層として、第2の低熱膨張係数層に接触する状態で配置される第1の層間拘束層をさらに備えることが好ましい。ここで、第1の層間拘束層は、低熱膨張係数層に含まれるセラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含みかつ低熱膨張係数層に含まれていた材料の浸透によって無機材料粉末が固化された状態にある。ただし、第1の層間拘束層は低熱膨張係数層に挟まれることに限定されるものではない。
 この発明に係る多層セラミック基板において、周壁部は、第1のセラミック層として、当該周壁部の、底壁部と接する面に沿って配置される第2の層間拘束層をさらに備えることが好ましい。ここで、第2の層間拘束層は、低熱膨張係数層に含まれるセラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含みかつ低熱膨張係数層に含まれていた材料の浸透によって無機材料粉末が固化された状態にある。
 上述の実施態様において、第2の層間拘束層が有するキャビティ形成用貫通孔を規定する内周縁は、周壁部の、第2の層間拘束層に接する第1のセラミック層が有するキャビティ形成用貫通孔を規定する内周縁よりも外側に位置せず、かつ、その少なくとも一部は、周壁部の、第2の層間拘束層に接する第1のセラミック層が有するキャビティ形成用貫通孔を規定する内周縁よりも内側に位置していることが好ましい。
 この発明は、キャビティ形成用貫通孔を有する第1のセラミック層からなる周壁部と、キャビティ形成用貫通孔を有しない第2のセラミック層からなる底壁部とを有し、底壁部には、上記第2のセラミック層として、熱膨張係数が相対的に高い高熱膨張係数層および熱膨張係数が相対的に低い低熱膨張係数層を含む、少なくとも2種類のセラミック層が配置され、かつ高熱膨張係数層の少なくとも一部が第1および第2の低熱膨張係数層に挟まれる積層構造が形成されている、多層セラミック基板を製造する方法にも向けられる。
 この発明に係る多層セラミック基板の製造方法は、焼成することによって上記第1のセラミック層となるべきものであり、低温焼結セラミック材料を含み、上記キャビティ形成用貫通孔を有する第1のセラミックグリーン層を準備する工程と、焼成することによって上記第2のセラミック層となるべき第2のセラミックグリーン層として、それぞれ低温焼結セラミック材料を含む、上記高熱膨張係数層となるべき高熱膨張係数グリーン層と上記第1の低熱膨張係数層となるべき第1の低熱膨張係数グリーン層と上記第2の低熱膨張係数層となるべき第2の低熱膨張係数グリーン層とを準備する工程と、これら第1のセラミックグリーン層と第2のセラミックグリーン層とを積層してなる、生の積層体と、この生の積層体の両主面上に配置され、上記低温焼結セラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含む、外側拘束層とを備える、複合積層体を作製する工程と、この複合積層体を低温焼結セラミック材料が焼結する焼成条件で焼成する焼成工程と、次いで、複合積層体から外側拘束層を除去する工程とを備えることを特徴としている。
 この発明に係る製造方法は、好ましくは、底壁部の外方に向く面が第1の低熱膨張係数層によって与えられ、底壁部の周壁部と接する面が第2の低熱膨張係数層によって与えられている、多層セラミック基板を製造するために適用される。この場合、生の積層体は、第2のセラミックグリーン層として、第2の低熱膨張係数グリーン層に接触する状態で配置される第1の層間拘束層をさらに備えることが好ましい。この第1の層間拘束層は、低温焼結セラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含み、焼成工程の結果、低熱膨張係数グリーン層に含まれていた材料の浸透によって無機材料粉末が固化された状態になる。
 また、この発明に係る製造方法において、好ましくは、生の積層体は、第1のセラミックグリーン層として、多層セラミック基板における周壁部の、底壁部と接する面に沿って配置される第2の層間拘束層をさらに備える。この場合、第2の層間拘束層は、低熱膨張係数層に含まれるセラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含み、焼成工程の結果、低熱膨張係数層に含まれていた材料の浸透によって無機材料粉末が固化された状態になる。
 上述の実施態様の場合、より好ましくは、生の積層体において、第2の層間拘束層が有するキャビティ形成用貫通孔を、周壁部の、第2の層間拘束層に接する第1のセラミックグリーン層が有するキャビティ形成用貫通孔よりも小さくされる。
 この発明によれば、キャビティの底壁部において、高熱膨張係数層の少なくとも一部が第1および第2の低熱膨張係数層に挟まれる積層構造が形成されているので、焼成後の冷却過程において、第1および第2の低熱膨張係数層に圧縮応力が発生する。その結果、底壁部での強度を向上させることができ、底壁部において破損を生じさせにくくすることができる。
 特に、底壁部の外方に向く面が第1の低熱膨張係数層によって与えられ、底壁部の周壁部と接する面が第2の低熱膨張係数層によって与えられていると、第1および第2の低熱膨張係数層に発生する上述の圧縮応力が、底壁部の厚み方向全体にわたって及ぼされることになり、底壁部全体の強度をより確実に向上させることができる。
 上述の場合において、周壁部に高熱膨張係数が配置されるとともに、周壁部の最外層に第3の低熱膨張係数層が配置されると、多層セラミック基板全体の強度を向上させることができるとともに、多層セラミック基板の表裏の応力差による反りを抑制することができる。
 前述した底壁部の、周壁部と接する面を与える第2の低熱膨張係数層に接触する状態で、第1の層間拘束層が配置されると、焼成時において、底壁部と周壁部との界面での収縮が抑制され、その結果、多層セラミック基板の反りなどの不所望な変形やクラックを抑制することができる。
 上述のように、多層セラミック基板の反りなどの不所望な変形が抑制されると、キャビティを有する多層セラミック基板の設計の自由度を高めることができる。
 この発明に係る多層セラミック基板の製造方法によれば、焼成されるべき複合積層体が、多層セラミック基板となるべき生の積層体とともに、外側拘束層を備えるので、焼成時において、生の積層体の収縮が抑制される。その結果、得られた多層セラミック基板の寸法精度を高めることができるとともに、反りなどの不所望な変形を抑制することができる。
 この発明に係る多層セラミック基板の製造方法において、生の積層体が第1の層間拘束層を備えていると、底壁部と周壁部との境目での収縮が抑制されるので、この部分で生じ得る不所望な変形やクラックを抑制することができ、さらに寸法精度を高めることができる。
 また、この発明に係る多層セラミック基板の製造方法において、生の積層体が、多層セラミック基板における周壁部の、底壁部と接する面に沿って配置される第2の層間拘束層をさらに備える場合、底壁部と周壁部との境界での収縮が抑制されるため、この部分で生じる変形やクラックを確実に抑制することができる。
 また、この第2の層間拘束層が有するキャビティ形成用貫通孔が、周壁部の、第2の層間拘束層に接する第1のセラミックグリーン層が有するキャビティ形成用貫通孔よりも小さくされると、生の積層体の作製時に、第2の層間拘束層とこれに接する第1のセラミックグリーン層との間でキャビティ形成用貫通孔の位置ずれが生じても、第2の層間拘束層が有するキャビティ形成用貫通孔を規定する内周縁が、周壁部の、第2の層間拘束層に接する第1のセラミックグリーン層が有するキャビティ形成用貫通孔を規定する内周縁よりも外側に位置せず、第2の層間拘束層が有するキャビティ形成用貫通孔を規定する内周縁の少なくとも一部を、周壁部の、第2の層間拘束層に接する第1のセラミックグリーン層が有するキャビティ形成用貫通孔を規定する内周縁よりも内側に位置させ得る確率を高めることができる。よって、焼成後において、キャビティの底壁部における変形やクラック等をより確実に抑制できるようになる。
この発明の第1の実施形態による多層セラミック基板1を備える機能モジュール31を示す断面図である。 図1に示した多層セラミック基板1を製造する途中で作製される複合積層体41を簡略的に示す断面図である。 この発明の第2の実施形態による多層セラミック基板1aを備える機能モジュール31を示す断面図である。 図3に示した多層セラミック基板1aを製造する途中で作製される複合積層体41aを簡略的に示す断面図である。 この発明の第3の実施形態による多層セラミック基板1bを簡略的に示す断面図である。 この発明による効果を確認するために実施した実験例において作製された比較例1~3ならびに実施例1および2に係る多層セラミック基板61~65を簡略的に示す断面図である。
 図1は、この発明の第1の実施形態による多層セラミック基板1をもって構成される機能モジュール31を示す断面図である。
 多層セラミック基板1には、キャビティ3が形成されている。多層セラミック基板1は、キャビティ3の底面を規定する底壁部4と、キャビティ3の周面を規定する周壁部5とを有している。
 多層セラミック基板1は、キャビティ形成用貫通孔を有する複数の第1のセラミック層2aとキャビティ形成用貫通孔を有しない複数の第2のセラミック層2bとが積層された構造を有し、周壁部5は第1のセラミック層2aからなり、底壁部4は第2のセラミック層2bからなる。キャビティ形成用貫通孔を有する第1のセラミック層2aと、キャビティ形成用貫通孔を有しない第2のセラミック層2bとが積層されると、多層セラミック基板1に凹型のキャビティ3が形成される。また、底壁部4には、第2のセラミック層2bとして、熱膨張係数が相対的に高い第1の高熱膨張係数層6および熱膨張係数が相対的に低い第1および第2の低熱膨張係数層7および8が配置され、かつ第1の高熱膨張係数層6の少なくとも一部が第1および第2の低熱膨張係数層7および8に挟まれる積層構造が形成されている。特に、この実施形態では、底壁部4の外方に向く面が第1の低熱膨張係数層7によって与えられ、底壁部4の、周壁部5と接する面が第2の低熱膨張係数層8によって与えられている。
 他方、周壁部5には、上記第2の低熱膨張係数層8より高い熱膨張係数を有する第2の高熱膨張係数層9が配置されるとともに、その最外層には、熱膨張係数が相対的に低い第3の低熱膨張係数層10が配置される。
 また、底壁部4には、第2の低熱膨張係数層8に接触する状態で、第2のセラミック層2bとして、第1の層間拘束層11が配置される。この実施形態では、第1の層間拘束層11は、第2の低熱膨張係数層8に挟まれた状態となっている。また、周壁部5の、底壁部4と接する面に沿って、第2の層間拘束層12が配置される。なお、第1の層間拘束層11は、第2の低熱膨張係数層8と第1の高熱膨張係数層6とに挟まれた状態で配置されてもよい。
 多層セラミック基板1は、種々の配線導体を備えている。配線導体は、たとえばコンデンサまたはインダクタのような受動素子を構成したり、あるいは素子間の電気的接続のような接続配線を行なったりするためのもので、典型的には、図1に示したように、いくつかの導体膜13~16ならびにいくつかのビアホール導体17をもって構成される。
 導体膜13は、多層セラミック基板1の内部に形成される。導体膜14および15は、それぞれ、多層セラミック基板1の一方主面上および他方主面上に形成される。導体膜16は、キャビティ3の底面上に形成される。ビアホール導体17は、導体膜13~16のいずれかと電気的に接続されながら、セラミック層2aおよび2bのいずれか特定のものを厚み方向に貫通するように設けられる。
 多層セラミック基板1の一方主面上には、外部導体膜14に電気的に接続された状態で、チップ部品18および19が搭載される。図1には、チップ部品19を外部導体膜14に電気的に接続するためのバンプ電極20が図示されている。
 また、キャビティ3内には、キャビティ底面導体膜16に電気的に接続された状態で、チップ部品21が搭載される。図1には、チップ部品21をキャビティ底面導体膜16に電気的に接続するためのバンプ電極22が図示されている。
 このように、多層セラミック基板1にチップ部品18、19および21が搭載されることによって、機能モジュール31が構成される。多層セラミック基板1の他方主面上に形成された外部導体膜15は、この機能モジュール31を図示しないマザーボード上に実装する際の電気的接続手段として用いられる。
 上述した多層セラミック基板1は、たとえば、次のようにして製造される。
 図2は、多層セラミック基板1の製造の途中で作製される複合積層体41を示す断面図である。複合積層体41は、焼成することによって多層セラミック基板1となるべき生の積層体42と、生の積層体42の両主面上に配置される第1および第2の外側拘束層43および44とを備えている。なお、図2では、生の積層体42に関連して設けられる導体膜13~16ならびにビアホール導体17の図示が省略されている。
 図2を図1とともに参照しながら説明すると、生の積層体42は、多層セラミック基板1の場合と同様、キャビティ3の底面を規定する周壁部4とキャビティ3の周面を規定する周壁部5とを有している。
 生の積層体42の底壁部4には、前述した第2のセラミック層2bとなるべき第2のセラミックグリーン層として、第1の高熱膨張係数層6となるべき第1の高熱膨張係数グリーン層46と第1の低熱膨張係数層7となるべき第1の低熱膨張係数グリーン層47と第2の低熱膨張係数層8となるべき第2の低熱膨張係数グリーン層48とが積層される。生の積層体42の周壁部5には、前述した第1のセラミック層2aとなるべき第1のセラミックグリーン層として、第2の高熱膨張係数層9となるべき第2の高熱膨張係数グリーン層49と第3の低熱膨張係数層10となるべき第3の低熱膨張係数グリーン層50とが積層される。これらグリーン層46~50は、低温焼結セラミック材料を含んでいる。
 また、生の積層体42には、第2のセラミックグリーン層として、第1の層間拘束層11が形成されているとともに、第1のセラミックグリーン層として、第2の層間拘束層12が形成されている。これら層間拘束層11および12は、上述の低温焼結セラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含んでいる。
 なお、上述したグリーン層46~50の各々は、図1に複数のセラミック層2aおよび複数のセラミック層2bが図示されていることからわかるように、通常、複数の層から構成されるが、図2では、これら複数の層の界面の図示を省略している。また、外側拘束層43および44の各々についても、複数の層から構成されることがある。
 生の積層体42は、通常、複数のセラミックグリーンシートを積層することによって形成されるが、これに代えて、セラミックスラリーの塗布を繰り返すことによって形成されてもよい。
 生の積層体42の両主面上に第1および第2の外側拘束層43および44が積層され、圧着されることにより、複合積層体41が得られる。なお、キャビティ3側に位置する第2の外側拘束層44には、キャビティ3に連通する貫通孔51が設けられている。
 次に、上述した低温焼結セラミック材料が焼結する焼成条件で複合積層体41が焼成される。この焼成工程において、層間拘束層11および12ならびに外側拘束層43および44に含まれる無機材料粉末は実質的に焼結しないため、これら層間拘束層11および12ならびに外側拘束層43および44には実質的な収縮が生じない。したがって、層間拘束層11および12ならびに外側拘束層43および44による収縮抑制作用が、焼結した多層セラミック基板1が得られるまでの生の積層体42に及ぼされる。その結果、得られた多層セラミック基板1において反りなどの不所望な変形が生じにくくなり、また、寸法精度を高めることができる。
 次に、焼成後の複合積層体41から外側拘束層43および44が、たとえば超音波洗浄またはブラスト処理されることにより除去される。焼成後の外側拘束層43および44はポーラスな状態となっているので、これを容易に粉砕して除去することができる。
 他方、層間拘束層11および12にあっては、焼成工程の結果、これに隣接する低熱膨張係数グリーン層48および/または高熱膨張係数グリーン層49に含まれていた材料(ガラス成分等)の浸透によって無機材料粉末が固化された状態となっている。なお、層間拘束層11および12は、このような材料の浸透による固化を可能とする厚みである必要がある。
 以上のようにして、多層セラミック基板1が得られる。得られた多層セラミック基板1における底壁部4に着目すると、そこには、第1の高熱膨張係数層6の少なくとも一部が第1および第2の低熱膨張係数層7および8によって挟まれる積層構造が形成されている。したがって、焼成工程の後の冷却過程で第1および第2の低熱膨張係数層7および8に圧縮応力が発生し、その結果、底壁部4の機械的な強度を向上させることができる。
 また、この実施形態では、第3の低熱膨張係数層10を備え、ここにも、焼成後の冷却過程で圧縮応力が発生している。そのため、多層セラミック基板1の表裏の応力差による反りなどの不所望な変形を抑制することができる。
 以上のような実施形態において、低熱膨張係数層7、8および10の各厚みは、焼成後において、10~100μmであることが好ましい。その理由は、次のとおりである。
 低熱膨張係数層7、8および10の各々と高熱膨張係数層6および9の各々との界面において、熱膨張係数の差による応力が働く。より詳細には、低熱膨張係数層7、8および10側では圧縮応力が働き、この圧縮応力は、界面から離れるに従って小さくなる。他方、高熱膨張係数層6および9には引っ張り応力が働き、この引っ張り応力は、界面から離れるに従い小さくなる。これは、界面から離れるに従って、応力が緩和されることによる。界面からの距離が100μmを超えると、圧縮応力がほぼ作用しなくなり、その効果がほとんど見られなくなるため、低熱膨張係数層7、8および10の各厚みは100μm以下であることが好ましい。
 他方、低熱膨張係数層7、8および10の各厚みが10μm未満になると、引っ張り応力が働いているために強度低下した高熱膨張係数層6および9が、低熱膨張係数層7、8および10の各々の外表面から10μm未満の外表面近傍領域に存在することになる。このため、高熱膨張係数層6および9の各々の外表面近傍部分から破壊が起こりやすくなり、低熱膨張係数層7、8および10に圧縮応力を生じさせることによって強化した効果が見られなくなり、したがって、低熱膨張係数層7、8および10の各厚みは10μm以上であることが好ましい。
 高熱膨張係数層6および9の各厚みは、多層セラミック基板1全体の厚みと低熱膨張係数層7、8および10の各厚みに応じて適宜決定されるが、焼成後において、10~100μmであることが好ましい。
 また、第1の高熱膨張係数層6を挟む第1および第2の低熱膨張係数層7および8の各厚みは、第1の高熱膨張係数層6の厚みより薄い方が圧縮応力を効率良く利用することができるため好ましい。同様に、第2の高熱膨張係数層9を挟む第2および第3の低熱膨張係数層8および10の各厚みは、第2の高熱膨張係数層9の厚みより薄い方が好ましい。また、図1では、第1ないし第3の低熱膨張係数層7、8および10の各々の厚みは互いに同じであるように図示されたが、底壁部4と周壁部5とのバランス、キャビティ3の径の大きさなど、多層セラミック基板1の設計に合わせて、これらの厚みを互いに異ならせてもよい。
 なお、低熱膨張係数層7は、図1では、3層のセラミック層2bから構成されているように図示されているが、上記の低熱膨張係数層7の厚みとは、セラミック層2bの1層分の厚みではなく、3層のセラミック層2bの合計厚みのことである。他の低熱膨張係数層8および10の各厚みならびに高熱膨張係数層6および9の各厚みについても同様である。
 低熱膨張係数層7、8および10と高熱膨張係数層6および9との間での熱膨張係数の差は、1.0ppmK-1以上かつ4.3ppmK-1以下とされることが好ましい。
 熱膨張係数の差を1.0ppmK-1以上とすることにより、底壁部4の反りを大きく低減できることがわかった。すなわち、反り量と熱膨張係数差との関係は、熱膨張係数差が1.0ppmK-1未満の領域では、反り量が熱膨張係数差の増加とともに減少し、1.0ppmK-1以上では、ほぼ一定であることがわかった。多層セラミック基板1を反らせるように作用する面内方向の応力が、熱膨張係数差に起因して表裏面の面内方向に作用する応力に比べて相対的に小さくなる結果、反りが矯正されるためであると推測される。
 他方、4.3ppmK-1以下とすることによって、熱膨張係数差に起因する、低熱膨張係数層7、8および10と高熱膨張係数層6および9との境界部でのデラミネーションやボイドなどの欠陥をより確実に生じさせにくくすることができる。
 低熱膨張係数係数層7、8および10を構成する材料は、SiOおよびMO(ただし、MOは、CaO、MgO、SrOおよびBaOから選ばれた少なくとも1種)を含むガラスを含み、SiO:MO=23:7~17:13であり、高熱膨張係数係数層6および9を構成する材料は、SiOおよびMOを含むガラスを含み、SiO:MO=19:11~11:19であることが好ましい。
 より好ましくは、低熱膨張係数係数層7、8および10を構成する材料に含まれるガラスに含まれるSiOは34~73重量%であり、高熱膨張係数係数層6および9を構成する材料に含まれるガラスに含まれるSiOは22~60重量%である。
 上述したような好ましい組成およびその含有量は、ホウケイ酸ガラス系の材料を用いて、低熱膨張係数係数層7、8および10と高熱膨張係数係数層6および9との熱膨張係数の差を1.0ppmK-1以上設け、共通する成分の重量比率を75重量%以上とするのに適している。共通する成分の重量比率を75重量%以上とすることにより、低熱膨張係数係数層7、8および10の各々と高熱膨張係数係数層6および9の各々との間で十分な接合力を得ることができる。
 ガラス中に含まれるSiO成分は、熱膨張係数を下げることに寄与し、MO成分は、熱膨張係数を上げることに寄与する。
 また、焼成過程でガラスから適量の結晶が析出する方が、機械強度特性の点で有利となるため、ガラス組成は析出結晶組成に近い方が良い。たとえば、SiO-MO-Al-B系のガラスの場合、MAlSiやMSiOの結晶が析出しやすいため、この結晶組成に近くなるように、SiOとMOとの比率を調整するのが好ましい。よって、低熱膨張係数係数層7、8および10のガラス組成は、熱膨張係数を下げるため、SiOとMOとの比率は2に近い方が良く、高熱膨張係数係数層6および9のガラス組成は、熱膨張係数を上げるためSiOとMOとの比率は1に近い方が良い。
 高熱膨張係数係数層6および9のガラス組成は、低熱膨張係数係数層7、8および10に比べて、MO比率が高くなり、焼成後のめっき処理で浸食を受けやすいが、表面部に露出していないため、致命的なダメージは受けにくい構造になっている。
 熱膨張係数の差をより大きくするため、低熱膨張係数係数層7、8および10において、ガラス中のSiOを多くしすぎると、焼成時のガラス粘度が十分下がらなくなるため、焼結不良が起きる。MOを多くしすぎると、熱膨張係数の差を十分に取れなくなる。
 また、熱膨張係数の差をより大きくするため、高熱膨張係数係数層6および9においてガラス中のMOを多くしすぎると、耐湿性が低下するため、絶縁不良が起きる。SiOを多くしすぎると、熱膨張係数の差を十分取れなくなる。
 以上のようなことから、ガラス中のSiOとMOとの比率を、低熱膨張係数係数層7、8および10と高熱膨張係数係数層6および9とにおいてそれぞれ前述したような範囲に選ぶことが好ましい。
 低熱膨張係数係数層7、8および10を構成する材料に含まれるガラスは、34~73重量%のSiOと、14~41重量%のMOと、0~30重量%のBと、0~30重量%のAlとを含み、高熱膨張係数係数層6および9を構成する材料に含まれるガラスは、22~60重量%のSiOと、22~60重量%のMOと、0~20重量%のBと、0~30重量%のAlとを含むことがより好ましい。その理由は次のとおりである。
 Bは、焼成時に焼結が円滑に進行するよう、ガラスに適度な粘度を与える。Bが多すぎると、粘度が下がりすぎるため、過焼成となり、表面に気孔が生じて絶縁不良になる。他方、Bが少なすぎると、粘度が高く、焼結不良となる。
 Alは、低熱膨張係数係数層7、8および10の場合、析出結晶を構成する成分となる。このAlが多すぎても、少なすぎても、結晶析出が起こりにくくなる。
 また、Alにより、ガラスの化学的安定性が向上するため、MOが相対的に多い高熱膨張係数係数層6および9では、めっき耐性および耐湿性が向上する。熱膨張係数に対しては、AlはSiOとMOとの中間的な寄与をするので、これが多すぎると、熱膨張係数の差が取れなくなる。
 低熱膨張係数係数層7、8および10を構成する材料は、フィラーとしてのAlを30~60重量%含み、高熱膨張係数係数層6および9を構成する材料は、フィラーとしてのAlを40~70重量%含むことがより好ましい。その理由は次のとおりである。
 Alフィラーは、機械的強度を向上させるのに寄与する。Alフィラーが少なすぎると、十分な強度が得られなくなる。特に、引っ張り応力が働く高熱膨張係数係数層6および9では、機械的強度が十分にないと、高熱膨張係数係数層6および9から破壊するため、圧縮応力により低熱膨張係数係数層7、8および10を強化した効果が十分に得られなくなる。このため、高熱膨張係数係数層6および9では、低熱膨張係数係数層7、8および10より多くAlフィラーを含み、強度を上げておくことで、より大きな熱膨張係数の差にも耐えるようになり、さらに低熱膨張係数係数層7、8および10の強化の効果が得られるようになる。
 Alフィラーは、熱膨張係数に対しては、低熱膨張係数係数層7、8および10中のガラスと高熱膨張係数係数層6および9中のガラスとの中間的な寄与をするので、Alフィラーが多すぎると、熱膨張係数の差が取れなくなる。
 なお、フィラーとして、Alのほか、たとえばZrO等の他のセラミックを用いてもよい。
 なお、第1ないし第3の低熱膨張係数層7、8および10は、互いに同じ組成であり、互いに同じ熱膨張係数を有している必要はなく、また、第1および第2の高熱膨張係数層6および10についても、互いに同じ組成であり、互いに同じ熱膨張係数を有している必要はない。
 すなわち、第1および第2の低熱膨張係数層7および8の各々の熱膨張係数が第1の高熱膨張係数層6の熱膨張係数より小さければ、第1の低熱膨張係数層7の熱膨張係数と第2の低熱膨張係数層8の熱膨張係数とが互いに異なっていてもよい。また、第2および第3の低熱膨張係数層8および10の各々の熱膨張係数が第2の高熱膨張係数層9の熱膨張係数より小さければ、第2の低熱膨張係数層8の熱膨張係数と第3の低熱膨張係数層10の熱膨張係数とは互いに異なっていてもよい。したがって、上記の条件を満足する限り、各々の熱膨張係数を自由に設定することが可能となり、その結果、キャビティ3の設計の自由度を向上させることができる。
 図3および図4は、この発明の第2の実施形態を説明するためのもので、それぞれ、図1および図2に対応している。図3および図4において、図1および図2に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
 第2の実施形態による多層セラミック基板1aでは、図3に示すように、第2の層間拘束層12aが有するキャビティ形成用貫通孔を規定する内周縁が、周壁部5の、第2の層間拘束層12aに接する第1のセラミック層2aが有するキャビティ形成用貫通孔を規定する内周縁よりも内側に位置していることを特徴としている。
 なお、第2の層間拘束層12aが有するキャビティ形成用貫通孔(以下、「第1のキャビティ形成用貫通孔」と言う。)を規定する内周縁のすべてが、第2の層間拘束層12aに接する第1のセラミック層2aが有するキャビティ形成用貫通孔(以下、「第2のキャビティ形成用貫通孔」と言う。)を規定する内周縁よりも内側に位置していることは必ずしも必要ではない。すなわち、第1のキャビティ形成用貫通孔を規定する内周縁の少なくとも一部が、第2のキャビティ形成用貫通孔を規定する内周縁よりも内側に位置していればよい。
 上記の場合、第1のキャビティ形成用貫通孔を規定する内周縁は、第2のキャビティ形成用貫通孔を規定する内周縁よりも外側に位置していないことが重要である。たとえば、第1のキャビティ形成用貫通孔を規定する内周縁の一部については、第2のキャビティ形成用貫通孔を規定する内周縁よりも内側に位置していなくても、少なくとも、上記第2のキャビティ形成用貫通孔を規定する内周縁と同じ位置でなければならない。
 より具体的に説明すると、第1および第2のキャビティ形成用貫通孔が四角形であるとき、四角形の2辺についてのみ、第1のキャビティ形成用貫通孔を規定する内周縁が、第2のキャビティ形成用貫通孔を規定する内周縁よりも内側に位置しているにすぎない場合であっても、四角形の他の2辺については、第1のキャビティ形成用貫通孔を規定する内周縁が、第2のキャビティ形成用貫通孔を規定する内周縁よりも外側にあってはならず、少なくとも、同じ位置でなければならない、ということである。
 第2の実施形態による多層セラミック基板1aを製造しようとする場合、図4に示すように、複合積層体41aに備える生の積層体42において、第1のキャビティ形成用貫通孔を、第2のキャビティ形成用貫通孔よりも小さくすることが行なわれ、それによって、第1のキャビティ形成用貫通孔を規定する内周縁の少なくとも一部が、第2のキャビティ形成用貫通孔を規定する内周縁よりも内側に位置するようにされる。
 この第2の実施形態によれば、生の積層体42を作製するにあたって、多くの場合、グリーンシートの積層工程が実施されるが、このような積層工程において、不所望にも、第2の層間拘束層12aとこれに接する第1のセラミックグリーン層との間でキャビティ形成用貫通孔の位置ずれが生じても、第1のキャビティ形成用貫通孔を規定する内周縁が、第2のキャビティ形成用貫通孔を規定する内周縁よりも外側に位置せず、第1のキャビティ形成用貫通孔を規定する内周縁の少なくとも一部を、第2のキャビティ形成用貫通孔を規定する内周縁よりも内側に位置させ得る確率を高めることができる。よって、焼成後において、キャビティ3の底壁部4における変形やクラック等をより確実に抑制できるようになる。
 図5は、この発明の第3の実施形態による多層セラミック基板1aを示す断面図である。図5において、図1に比べて、多層セラミック基板1bが簡略的に図示されているが、図1に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
 図5に示した多層セラミック基板1bは、層間拘束層を備えていないことを特徴としている。その他の構成は、図1に示した多層セラミック基板1または図3に示した多層セラミック基板1aと同様であると理解すればよい。
 この発明のさらに他の実施形態として、多層セラミック基板1、1aまたは1bにおいて、第3の低熱膨張係数層10を備えないものもあり得る。
 次に、この発明による効果を確認するために実施した実験例について説明する。この実験例では、図6に断面図で示すような比較例1~3ならびに実施例1および2の各々に係る多層セラミック基板61~65を作製した。なお、図6において、図1に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
 実施例2に係る多層セラミック基板65が、図1に示した多層セラミック基板1が有する構成を備えている。
 以下、この実施例2に係る多層セラミック基板65との比較で説明すると、比較例1に係る多層セラミック基板61は、底壁部4を構成するセラミック層がすべて低熱膨張係数層7によって与えられ、周壁部5を構成するセラミック層がすべて低熱膨張係数層10によって与えられたことを特徴としている。
 比較例2に係る多層セラミック基板62は、周壁部4を構成するセラミック層がすべて高熱膨張係数層6によって与えられ、周壁部5を構成するセラミック層がすべて高熱膨張係数層9によって与えられたことを特徴としている。
 比較例3に係る多層セラミック基板63は、底壁部4において第2の低熱膨張係数層8を備えず、この部分にまで高熱膨張係数層6が形成されたことを特徴としている。
 実施例1に係る多層セラミック基板64は、第3の低熱膨張係数層10を備えず、この部分にまで高熱膨張係数層9が形成されたことを特徴としている。
 この実験例では、低熱膨張係数層7、8および10の熱膨張係数を5.3ppmK-1とした。また、低熱膨張係数層7、8および10を形成するため、厚み50μmのグリーンシートを作製し、このグリーンシートを、後述するように、適当枚数積層して所望の厚みとなるようにした。
 低熱膨張係数層7、8および10のためのグリーンシートは、ホウケイ酸系ガラス粉末とセラミック粉末とを重量比で60:40の割合で含むもので、ガラス粉末とセラミック粉末との合計100重量部に対して、有機溶剤50重量部、ブチラール系バインダ10重量部および可塑剤1重量部を加えて混合してスラリーとし、このスラリーから気泡を除去した後、ドクターブレード法によってスラリーをシート状に成形し、乾燥することによって得た。上記のホウケイ酸系ガラス粉末としては、46重量%のSiO、30重量%のB、14重量%のCaO、5重量%のAlおよび5重量%のTiOを含むものを用い、セラミック粉末としては、Al粉末を用いた。
 高熱膨張係数層6および9の熱膨張係数を7.7ppmK-1とした。また、高熱膨張係数層6および9を形成するため、厚み50μmのグリーンシートを作製し、このグリーンシートを、後述するように、適当枚数積層して所望の厚みとなるようにした。
 高熱膨張係数層6および9高熱膨張係数層6および9のためのグリーンシートは、ホウケイ酸ガラス粉末とセラミック粉末とを重量比で70:30の割合で含むもので、ガラス粉末とセラミック粉末との合計100重量部に対して、前述した低熱膨張係数層の場合と同様の比率で有機溶剤、ブチラール系バインダおよび可塑剤を加え、同様の操作を経て得た。上記のホウケイ酸ガラス粉末としては、40重量%のSiO、5重量%のB、40重量%のCaO、5重量%のMgOおよび10重量%のAlを含むものを用い、セラミック粉末としては、Al粉末を用いた。
 層間拘束層11および12を形成するため、厚み10μmのグリーンシートを作製し、図6では図示しない外側拘束層を形成するため、厚み100μmのグリーンシートを作製した。これら層間拘束層11および12ならびに外側拘束層のためのグリーンシートは、100重量部のアルミナ粉末と10重量部のブチラール系バインダと1重量部の可塑剤とを含むもので、低熱膨張係数層等の場合と同様の操作を経て得た。
 図6には図示しない導体膜およびビアホール導体のための導電性ペーストとして、48重量部の銀粉末と3重量部のエチルセルロースバインダと49重量部の有機溶剤テルペン類とを含むものを用い、図1に示すような導体膜13~16ならびにビアホール導体17を形成するため、上記のグリーンシートの特定のものに、この導電性ペーストを付与した。
 次に、各種グリーンシートを、以下の表1の「用いたグリーンシート枚数」に示すような枚数をもって積層し、多層セラミック基板61~65の各々となるべき生の積層体を作製するとともに、その上下に外側拘束層を形成することによって、複合積層体を作製した。ここで、外側拘束層は、前述した外側拘束層のための厚み100μmのグリーンシートを、生の積層体の上下に4枚ずつ積層することによって形成した。
Figure JPOXMLDOC01-appb-T000001
 次いで、複合積層体を870℃の温度で10分間保持する条件で焼成した。次に、焼成後の複合積層体の表面にポーラスな状態で付着している外側拘束層を、超音波洗浄機を用いて除去して、比較例1~3ならびに実施例1および2に係る多層セラミック基板61~65を得た。
 次に、落下衝撃に対する多層セラミック基板61~65の各々の機械的強度を比較するため、以下の試験を行なった。
 多層セラミック基板61~65の各々を実装基板上にはんだを用いて実装し、実装基板を直方体の筐体の内部に取り付けて、コンクリートブロックに向かって落下させた。このとき、筐体の6面の各々を順次下方に向けて落下させることを1サイクルとし、この試験を最大10サイクルまで行なった。多層セラミック基板61~64の各々の底壁部4において、破壊またはクラック発生が何サイクル目で起こるかについて評価した。その結果が表2に示されている。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、比較例1および2では、4サイクル目で多層セラミック基板61および62の底壁部4が破壊した。また、比較例3では、完全な破壊を抑制できたものの、7サイクル目で底壁部4にクラックが生じた。
 これらに対して、実施例1および2では、10サイクルまで破壊やクラックが生じなかった。
 1,1a,1b 多層セラミック基板
 2a,2b セラミック層
 3 キャビティ
 4 底壁部
 5 周壁部
 6 第1の高熱膨張係数層
 7 第1の低熱膨張係数層
 8 第2の低熱膨張係数層
 9 第2の高熱膨張係数層
 10 第3の低熱膨張係数層
 11 第1の層間拘束層
 12,12a 第2の層間拘束層
 41,41a 複合積層体
 42 生の積層体
 43,44 外側拘束層
 46 第1の高熱膨張係数グリーン層
 47 第1の低熱膨張係数グリーン層
 48 第2の低熱膨張係数グリーン層
 49 第2の高熱膨張係数グリーン層
 50 第3の低熱膨張係数グリーン層

Claims (10)

  1.  キャビティ形成用貫通孔を有する第1のセラミック層からなる周壁部と、前記キャビティ形成用貫通孔を有しない第2のセラミック層からなる底壁部とを有する、キャビティ付きの、多層セラミック基板であって、
     前記底壁部には、前記第2のセラミック層として、熱膨張係数が相対的に高い高熱膨張係数層および熱膨張係数が相対的に低い低熱膨張係数層を含む、少なくとも2種類のセラミック層が配置され、かつ前記高熱膨張係数層の少なくとも一部が第1および第2の前記低熱膨張係数層に挟まれる積層構造が形成されている、多層セラミック基板。
  2.  前記底壁部の外方に向く面が前記第1の低熱膨張係数層によって与えられ、前記底壁部の、前記周壁部と接する面が前記第2の低熱膨張係数層によって与えられる、請求項1に記載の多層セラミック基板。
  3.  前記周壁部には、前記第2の低熱膨張係数層より高い熱膨張係数を有する高熱膨張係数層が配置されるとともに、その最外層には、熱膨張係数が相対的に低い第3の低熱膨張係数層が配置されている、請求項2に記載の多層セラミック基板。
  4.  前記底壁部は、前記第2のセラミック層として、前記第2の低熱膨張係数層に接触する状態で配置される第1の層間拘束層をさらに備え、前記第1の層間拘束層は、前記低熱膨張係数層に含まれるセラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含みかつ前記低熱膨張係数層に含まれていた材料の浸透によって前記無機材料粉末が固化された状態にある、請求項2または3に記載の多層セラミック基板。
  5.  前記周壁部は、前記第1のセラミック層として、当該周壁部の、前記底壁部と接する面に沿って配置される第2の層間拘束層をさらに備え、前記第2の層間拘束層は、前記低熱膨張係数層に含まれるセラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含みかつ前記低熱膨張係数層に含まれていた材料の浸透によって前記無機材料粉末が固化された状態にある、請求項1ないし4のいずれかに記載の多層セラミック基板。
  6.  前記第2の層間拘束層が有する前記キャビティ形成用貫通孔を規定する内周縁は、前記周壁部の、前記第2の層間拘束層に接する前記第1のセラミック層が有する前記キャビティ形成用貫通孔を規定する内周縁よりも外側に位置せず、かつ、その少なくとも一部は、前記周壁部の、前記第2の層間拘束層に接する前記第1のセラミック層が有する前記キャビティ形成用貫通孔を規定する内周縁よりも内側に位置している、請求項5に記載の多層セラミック基板。
  7.  キャビティ形成用貫通孔を有する第1のセラミック層からなる周壁部と、前記キャビティ形成用貫通孔を有しない第2のセラミック層からなる底壁部とを有し、前記底壁部には、前記第2のセラミック層として、熱膨張係数が相対的に高い高熱膨張係数層および熱膨張係数が相対的に低い低熱膨張係数層を含む、少なくとも2種類のセラミック層が配置され、かつ前記高熱膨張係数層の少なくとも一部が第1および第2の前記低熱膨張係数層に挟まれる積層構造が形成されている、キャビティ付きの、多層セラミック基板を製造する方法であって、
     焼成することによって前記第1のセラミック層となるべきものであり、低温焼結セラミック材料を含み、前記キャビティ形成用貫通孔を有する第1のセラミックグリーン層を準備する工程と、
     焼成することによって前記第2のセラミック層となるべき第2のセラミックグリーン層として、それぞれ低温焼結セラミック材料を含む、前記高熱膨張係数層となるべき高熱膨張係数グリーン層と前記第1の低熱膨張係数層となるべき第1の低熱膨張係数グリーン層と前記第2の低熱膨張係数層となるべき第2の低熱膨張係数グリーン層とを準備する工程と、
     前記第1のセラミックグリーン層と前記第2のセラミックグリーン層とを積層してなる、生の積層体と、前記生の積層体の両主面上に配置され、前記低温焼結セラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含む、外側拘束層とを備える、複合積層体を作製する工程と、
     前記複合積層体を前記低温焼結セラミック材料が焼結する焼成条件で焼成する焼成工程と、
     次いで、前記複合積層体から前記外側拘束層を除去する工程と
    を備える、多層セラミック基板の製造方法。
  8.  前記多層セラミック基板において、前記底壁部の外方に向く面が前記第1の低熱膨張係数層によって与えられ、前記底壁部の前記周壁部と接する面が前記第2の低熱膨張係数層によって与えられ、前記生の積層体は、前記第2のセラミックグリーン層として、前記第2の低熱膨張係数グリーン層に接触する状態で配置される第1の層間拘束層をさらに備え、前記第1の層間拘束層は、前記低温焼結セラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含み、前記焼成工程の結果、前記低熱膨張係数グリーン層に含まれていた材料の浸透によって前記無機材料粉末が固化された状態になる、請求項7に記載の多層セラミック基板の製造方法。
  9.  前記生の積層体は、前記第1のセラミックグリーン層として、前記多層セラミック基板における前記周壁部の、前記底壁部と接する面に沿って配置される第2の層間拘束層をさらに備え、前記第2の層間拘束層は、前記低熱膨張係数層に含まれるセラミック材料を焼結させ得る焼成条件では実質的に焼結しない無機材料粉末を含み、前記焼成工程の結果、前記低熱膨張係数層に含まれていた材料の浸透によって前記無機材料粉末が固化された状態になる、請求項7または8に記載の多層セラミック基板の製造方法。
  10.  前記生の積層体において、前記第2の層間拘束層が有する前記キャビティ形成用貫通孔は、前記周壁部の、前記第2の層間拘束層に接する前記第1のセラミックグリーン層が有する前記キャビティ形成用貫通孔よりも小さくされる、請求項9に記載の多層セラミック基板の製造方法。
PCT/JP2009/057896 2008-05-15 2009-04-21 多層セラミック基板およびその製造方法 WO2009139272A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980117809XA CN102027813A (zh) 2008-05-15 2009-04-21 多层陶瓷基板及其制造方法
JP2010511935A JP5182367B2 (ja) 2008-05-15 2009-04-21 多層セラミック基板およびその製造方法
US12/940,073 US8993105B2 (en) 2008-05-15 2010-11-05 Multilayer ceramic substrate and method for producing the same
US14/465,876 US20140361470A1 (en) 2008-05-15 2014-08-22 Multilayer ceramic substrate and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008128102 2008-05-15
JP2008-128102 2008-05-15
JP2008332086 2008-12-26
JP2008-332086 2008-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/940,073 Continuation US8993105B2 (en) 2008-05-15 2010-11-05 Multilayer ceramic substrate and method for producing the same

Publications (1)

Publication Number Publication Date
WO2009139272A1 true WO2009139272A1 (ja) 2009-11-19

Family

ID=41318645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057896 WO2009139272A1 (ja) 2008-05-15 2009-04-21 多層セラミック基板およびその製造方法

Country Status (4)

Country Link
US (2) US8993105B2 (ja)
JP (1) JP5182367B2 (ja)
CN (2) CN104589738A (ja)
WO (1) WO2009139272A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071420A (ja) * 2013-08-26 2019-05-09 日立金属株式会社 実装基板用ウエハ、多層セラミックス基板、実装基板、チップモジュール、及び実装基板用ウエハの製造方法
JP2020193896A (ja) * 2019-05-29 2020-12-03 日本特殊陶業株式会社 電気検査用基板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846187B2 (ja) * 2013-12-05 2016-01-20 株式会社村田製作所 部品内蔵モジュール
US20150289365A1 (en) * 2014-04-08 2015-10-08 Apple Inc. Circuit Carrier With Interior Plating Lines and Peripheral Shielding
US20180277395A1 (en) * 2015-10-09 2018-09-27 Hitachi Metals ,Ltd. Method for manufacturing multilayer ceramic substrate
FR3042647B1 (fr) * 2015-10-20 2017-12-01 Soitec Silicon On Insulator Structure composite et procede de fabrication associe
CN114208402A (zh) * 2019-08-06 2022-03-18 日本电气硝子株式会社 陶瓷布线基板、陶瓷布线基板用陶瓷生片以及陶瓷布线基板用玻璃陶瓷粉末
CN111892350B (zh) * 2020-07-03 2022-04-15 大连大学 一种提升水泥砂浆、混凝土抗折强度的方法
CN112321163B (zh) * 2020-10-28 2021-06-15 中国科学院上海硅酸盐研究所 一种高强度ltcc基板材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629664A (ja) * 1992-07-10 1994-02-04 Nippon Cement Co Ltd 多層セラミックス配線基板
JP2004095767A (ja) * 2002-08-30 2004-03-25 Murata Mfg Co Ltd セラミック多層基板およびその製造方法
JP2007067364A (ja) * 2004-09-03 2007-03-15 Murata Mfg Co Ltd チップ型電子部品を搭載したセラミック基板及びその製造方法
JP2007073728A (ja) * 2005-09-07 2007-03-22 Murata Mfg Co Ltd 多層セラミック基板およびその製造方法ならびに電子部品
JP2008030995A (ja) * 2006-07-28 2008-02-14 Murata Mfg Co Ltd 多層セラミック基板およびその製造方法ならびに多層セラミック基板作製用複合グリーンシート

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656484B2 (ja) * 1999-03-03 2005-06-08 株式会社村田製作所 セラミック多層基板の製造方法
JP2001230548A (ja) * 2000-02-21 2001-08-24 Murata Mfg Co Ltd 多層セラミック基板の製造方法
US6809413B1 (en) * 2000-05-16 2004-10-26 Sandia Corporation Microelectronic device package with an integral window mounted in a recessed lip
JP3757788B2 (ja) * 2000-11-27 2006-03-22 株式会社村田製作所 多層セラミック基板およびその製造方法
JP4748435B2 (ja) * 2001-08-21 2011-08-17 日本電気硝子株式会社 積層ガラスセラミック材料及び積層ガラスセラミック焼結体
JP2003273513A (ja) 2002-03-14 2003-09-26 Murata Mfg Co Ltd キャビティ付き多層セラミック基板の製造方法およびキャビティ付き多層セラミック基板
JP3972957B2 (ja) 2004-09-03 2007-09-05 株式会社村田製作所 チップ型電子部品を搭載したセラミック基板の製造方法
JP4557002B2 (ja) * 2005-07-01 2010-10-06 株式会社村田製作所 多層セラミック基板およびその製造方法ならびに多層セラミック基板作製用複合グリーンシート
JP4994052B2 (ja) * 2006-03-28 2012-08-08 京セラ株式会社 基板およびこれを用いた回路基板
WO2007142112A1 (ja) * 2006-06-02 2007-12-13 Murata Manufacturing Co., Ltd. 多層セラミック基板およびその製造方法ならびに電子部品
JP5104761B2 (ja) * 2007-04-09 2012-12-19 株式会社村田製作所 セラミック基板およびその製造方法
JP4821855B2 (ja) * 2007-04-11 2011-11-24 株式会社村田製作所 多層セラミック基板およびその製造方法
WO2009069398A1 (ja) * 2007-11-30 2009-06-04 Murata Manufacturing Co., Ltd. セラミック複合多層基板及びその製造方法並びに電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629664A (ja) * 1992-07-10 1994-02-04 Nippon Cement Co Ltd 多層セラミックス配線基板
JP2004095767A (ja) * 2002-08-30 2004-03-25 Murata Mfg Co Ltd セラミック多層基板およびその製造方法
JP2007067364A (ja) * 2004-09-03 2007-03-15 Murata Mfg Co Ltd チップ型電子部品を搭載したセラミック基板及びその製造方法
JP2007073728A (ja) * 2005-09-07 2007-03-22 Murata Mfg Co Ltd 多層セラミック基板およびその製造方法ならびに電子部品
JP2008030995A (ja) * 2006-07-28 2008-02-14 Murata Mfg Co Ltd 多層セラミック基板およびその製造方法ならびに多層セラミック基板作製用複合グリーンシート

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071420A (ja) * 2013-08-26 2019-05-09 日立金属株式会社 実装基板用ウエハ、多層セラミックス基板、実装基板、チップモジュール、及び実装基板用ウエハの製造方法
JP2020193896A (ja) * 2019-05-29 2020-12-03 日本特殊陶業株式会社 電気検査用基板
JP7296784B2 (ja) 2019-05-29 2023-06-23 日本特殊陶業株式会社 電気検査用基板

Also Published As

Publication number Publication date
CN102027813A (zh) 2011-04-20
US20140361470A1 (en) 2014-12-11
JP5182367B2 (ja) 2013-04-17
US8993105B2 (en) 2015-03-31
CN104589738A (zh) 2015-05-06
US20110045242A1 (en) 2011-02-24
JPWO2009139272A1 (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5182367B2 (ja) 多層セラミック基板およびその製造方法
JP4957723B2 (ja) 多層セラミック基板およびその製造方法ならびに電子部品
JP4793447B2 (ja) 多層セラミック基板およびその製造方法ならびに電子部品
JP5029699B2 (ja) セラミック複合多層基板及びその製造方法並びに電子部品
JP2001358247A (ja) 多層配線基板の製造方法
JP4613878B2 (ja) 積層基板及びその製造方法
JP2011040604A (ja) 積層型セラミック電子部品およびその製造方法
JP4788544B2 (ja) 多層セラミック基板およびその製造方法
JP2012227310A (ja) セラミックス多層基板とその製造方法
JP4826356B2 (ja) セラミック基板の製造方法
JP4497247B2 (ja) 積層型セラミック電子部品の製造方法
CN110024498B (zh) 多层陶瓷基板以及电子装置
JP4028810B2 (ja) 多層配線基板の製造方法
WO2009151006A1 (ja) セラミック成形体の製造方法
JP5354011B2 (ja) 多層セラミック基板の製造方法
JP4089356B2 (ja) 多層セラミック基板の製造方法
US20130266782A1 (en) Metal base substrate
WO2010007878A1 (ja) 多層セラミック基板およびその製造方法
JP2008159726A (ja) 多層配線基板
JP6336841B2 (ja) 配線基板
JP2005216931A (ja) 樹脂フィルム付き金属箔、樹脂フィルム付き配線ユニット及び配線基板並びにその製造方法。
JP2006135195A (ja) セラミック多層基板の製造方法、並びにこの製造方法に用いられるセラミックグリーンシート
JP2007266353A (ja) 多層セラミックス基板の製造方法
JP2006181738A (ja) セラミック積層体
JP2008186907A (ja) 多層回路基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117809.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511935

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746479

Country of ref document: EP

Kind code of ref document: A1