WO2009139217A1 - 回転軸の軸受潤滑構造 - Google Patents

回転軸の軸受潤滑構造 Download PDF

Info

Publication number
WO2009139217A1
WO2009139217A1 PCT/JP2009/054471 JP2009054471W WO2009139217A1 WO 2009139217 A1 WO2009139217 A1 WO 2009139217A1 JP 2009054471 W JP2009054471 W JP 2009054471W WO 2009139217 A1 WO2009139217 A1 WO 2009139217A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
pair
bearings
oil
separator
Prior art date
Application number
PCT/JP2009/054471
Other languages
English (en)
French (fr)
Inventor
大輔 柴垣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112009001115T priority Critical patent/DE112009001115B4/de
Priority to CN2009801166213A priority patent/CN102016336B/zh
Priority to US12/992,213 priority patent/US8376623B2/en
Publication of WO2009139217A1 publication Critical patent/WO2009139217A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0409Features relating to lubrication or cooling or heating characterised by the problem to increase efficiency, e.g. by reducing splash losses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing

Definitions

  • the present invention relates to a bearing lubrication structure of a rotating shaft, and in particular, when the lubricating oil adheres directly to the rotating shaft or excessive lubricating oil is supplied to the bearing, the rotating shaft is driven by the viscous resistance or shear resistance of the lubricating oil.
  • the present invention relates to a technique for suppressing the occurrence of power loss and impairing power transmission efficiency.
  • the lubricating oil scraped up by the ring gear is guided to the oil supply port and flows into the annular space surrounded by the pair of bearings on the outer peripheral side of the shaft of the drive pinion. These bearings are lubricated and cooled by passing through and being discharged to the outside.
  • the lubricating oil supplied between the pair of bearings from the oil supply port is a rotating shaft or a member (such as a spacer) that rotates integrally with the rotating shaft. Since the oil adheres directly to the outer peripheral surface of the oil and is stirred or stirred, there is a problem in that power loss occurs in the rotating shaft due to viscosity resistance and shear resistance due to the stirring of the lubricating oil, and power transmission efficiency is impaired. .
  • the lubricating oil supplied to the oil supply port is supplied to the bearing as it is and used for lubrication and cooling, excess lubricating oil in excess of the amount required for lubrication and cooling may be passed through the bearing. Power loss increases due to the viscous resistance and shear resistance of the lubricating oil, and power transmission efficiency is impaired.
  • the lubricating oil is sucked into the bearing and discharged to the outside by the pumping action that occurs based on the change in the diameter of the tapered roller, and the amount of oil that passes through the pumping action depends on the rotational speed.
  • the amount of lubricating oil required for lubrication and cooling increases as the number of revolutions increases, but the rate of increase in the amount of penetrating oil is greater than the rate of increase in required oil.
  • a large amount of lubricating oil is allowed to pass through the bearing, and a large power loss occurs due to the viscous resistance of the lubricating oil.
  • the present invention has been made in the background of the above circumstances, and the object of the present invention is that the lubricating oil adheres directly to the rotating shaft or the lubricating oil more than necessary is supplied to the bearing, thereby
  • the purpose is to prevent power loss from occurring in the rotating shaft due to viscous resistance and shear resistance, and impairing power transmission efficiency.
  • the present invention provides: (a) a pair of bearings that are disposed in an axially separated manner in the eaves support case and that support a predetermined rotation shaft so as to be rotatable about an axis; (b) In a bearing lubrication structure for a rotary shaft, which has an oil supply port provided in the support case for supplying lubricating oil for lubricating the pair of bearings between the pair of bearings, (c) Between the pair of bearings, a separator for receiving the lubricating oil supplied from the oil supply port is integrally disposed in the support case, and (d) ⁇ ⁇ at both ends of the separator, the support A pair of side walls protruding toward the inner peripheral surface of the case and brought into close contact with the pair of bearings are provided, and (e) a lubricating oil supplied from the oil supply port is provided on the pair of side walls. Oil is given to the pair of bearings. A communication hole that allows the flow-out at a flow rate
  • a bearing lubrication structure for a rotating shaft wherein (a) the separator is a cylindrical oil receiving portion disposed substantially concentrically with the rotating shaft on the outer peripheral side of the rotating shaft; There are a pair of annular side walls provided so as to extend from both ends of the oil receiving portion to the outer peripheral side, closely contacted with the cylindrical inner peripheral surface of the support case, and facing the pair of bearings. (B) The plurality of communication holes provided in the pair of side walls are provided at equiangular intervals around the center line of the oil receiving portion.
  • a separator is disposed between a pair of bearings, and the lubricating oil supplied from the oil supply port is received by the separator, so that the rotating shaft or the rotating shaft is integrated.
  • Lubricating oil directly adheres to rotating members (such as spacers), reducing power loss caused by rotation or stirring.
  • the lubricating oil received by the separator is supplied to the pair of bearings at a predetermined flow rate from the communication holes in the side walls provided at both ends of the separator, and is used for lubrication and cooling of the bearing. The large amount of power loss caused by viscous resistance, shear resistance, etc. is suppressed by supplying the lubricating oil.
  • the separator according to the second aspect of the invention is provided with a cylindrical oil receiving portion disposed substantially concentrically on the outer peripheral side of the rotating shaft, and provided so as to extend from the both ends of the oil receiving portion to the outer peripheral side.
  • a pair of annular side walls that are brought into close contact with the inner circumferential surface of the cylinder and faced with a pair of bearings, and each of the pair of side walls includes a plurality of equiangular intervals around the center line of the oil receiving portion. Since the communication hole is provided, it is not necessary to consider the phase around the center line when the support hole is disposed in the support case, and it can be easily assembled integrally with the support case by press-fitting or the like at an arbitrary phase.
  • FIG. 2 is a cross-sectional view showing a bearing lubrication structure of a drive pinion to which the present invention is applied in the final reduction gear of the power transmission system of FIG. 1. It is a figure which shows the separator of FIG. 2 independently, and is a figure which shows the upper half from the centerline S, (a) is a left side view, (b) is a sectional view cut in parallel with the centerline S, (c) Is a right side view.
  • FIG. 3 is a diagram for explaining the relationship between the amount of oil penetrating oil passing through the bearing of FIG.
  • the bearing lubrication structure of the rotating shaft according to the present invention is, for example, a lubricating structure for a bearing that rotatably supports a drive pinion (small gear) that transmits rotation from a propeller shaft of a vehicle to a ring gear (large gear) of a differential device.
  • a drive pinion small gear
  • a ring gear large gear
  • it can also be applied to a bearing lubrication structure of a rotating shaft in other parts of a vehicle power transmission path, or can be applied to a bearing lubricating structure of various rotating shafts other than for a vehicle. It is.
  • the rotating shaft is arranged in a substantially horizontal posture, and the oil supply port is provided above the rotating shaft in the vertical direction so that the lubricating oil flows down, for example, by gravity and is supplied between the pair of bearings. Although desirable, it may be provided obliquely upward, and a plurality of oil supply ports may be provided.
  • an oil supply port is provided at the side of the same height as the rotating shaft, and the lubricating oil is supplied into the support case from the side. You may make it.
  • Lubricating oil can be supplied to the oil supply port by using, for example, scraping with a ring gear of a differential device or scraping with other gears, etc. Embodiments are possible.
  • the pair of bearings that support the rotating shaft various types of bearings such as a tapered roller bearing, a cylindrical roller bearing, and a ball bearing can be adopted depending on the type of the rotating shaft.
  • a tapered roller bearing the lubricating oil is sucked into the bearing and discharged to the outside by the pumping action that occurs based on the difference in the diameter of the tapered roller, and the amount of oil penetrating the bearing by this pumping action depends on the rotational speed.
  • the amount of lubricating oil required for lubrication and cooling increases as the number of revolutions increases, but in general, the rate of increase in the through oil amount is larger than the rate of increase in the required oil amount, which is more than necessary at high revolutions.
  • the lubricating oil suction action by the pump action is not particularly obtained, it is lubricated and cooled by the lubricating oil supplied from the separator communicating hole, so the position and number of the communicating holes, Viscosity resistance of the lubricating oil by appropriately setting the size and limiting the amount of oil supplied so that the smallest possible amount of lubricating oil is supplied to the bearing while ensuring the minimum lubricating oil required for lubrication and cooling. It is the same as that of the tapered roller bearing that power loss due to the above or the like can be suppressed, or the supply position and supply oil amount can be individually set for the pair of bearings.
  • the double row ball bearing can also obtain the lubricating oil suction action by the same pump action as the tapered roller.
  • the position of the communication hole that is, the supply position of the lubricating oil to the bearing is the non-rotating side where the power loss due to the viscous resistance or shear resistance due to the supply of the lubricating oil is relatively small, that is, the outer ring side fixed integrally to the support case It is desirable to provide in. Specifically, it is desirable to set the position of the communication hole so that the lubricating oil is supplied to the portion between the cage that holds the rolling elements and the outer ring. However, the lubricating oil may be supplied to the rotating side, that is, the inner ring side.
  • the separator is provided with a cylindrical oil receiving portion disposed substantially concentrically on the outer peripheral side of the rotating shaft, and provided so as to extend from both ends of the oil receiving portion to the outer peripheral side. It has a pair of annular side walls that are brought into close contact with the cylindrical inner peripheral surface of the case, and is configured to form an annular cylindrical oil reservoir by the separator and the inner peripheral surface of the support case. Desirably, for example, a semi-cylindrical oil receiver that covers only the upper half of the rotating shaft, and a fan-shaped oil receiver that extends from both axial ends of the oil receiver to the outer periphery.
  • a separator having the shape May be by the inner peripheral surface of the lifting casing configured to form an oil reservoir portion of the semi-annular tubular shape.
  • the angle range of the separator around the axis of the rotating shaft can be any angle other than the entire circumference or half circumference as described above, and various modes are possible.
  • the lubricating oil supplied from the oil supply port is received by the separator to prevent it from adhering directly to the rotating shaft and the like, and the lubricating oil is formed between the separator and the support case. It is sufficient that the oil is directly supplied to the bearing at a predetermined flow rate from the communication hole provided in the side wall while being held in the oil reservoir.
  • the separator can be integrally formed by, for example, pressing a metal cylinder or flat plate, etc., but the cylindrical oil receiving portion and the side wall are formed separately and integrated by welding or the like.
  • Various modes are possible, such as being fixed to
  • the separator is easy to press the separator so that the outer peripheral portion of the side wall is in close contact with the cylindrical inner peripheral surface of the support case, and to fix the separator integrally.
  • the separator is fixed integrally by fastening means such as bolts or welding.
  • fastening means such as bolts or welding.
  • Various modes are possible, such as a non-detachable attachment using a snap ring or the like.
  • a pair of cylindrical or semi-cylindrical folded portions are formed by drawing or the like so as to extend inward from the outer peripheral edges of the side walls on both sides in the axial direction. If it is provided with a predetermined length and press-fitted so that the folded portion is in close contact with the support case, a predetermined fixing strength can be obtained easily and stably.
  • the communication hole provided on the side wall is preferably a circular hole, but various shapes such as an elliptical shape, an oval shape, a quadrangular shape, and a slit shape can be employed.
  • a plurality of communication holes are provided at equiangular intervals around the center line of an arc such as a cylinder or a semi-cylinder of the oil receiving portion of the separator, but may be provided at unequal intervals.
  • the number, size, shape, interval, etc. of the communication holes provided in the side walls on both sides may be different.
  • FIG. 1 is a diagram illustrating a power transmission mechanism of a front engine rear wheel drive (FR) type vehicle 10 having a final reduction gear device 20 having a bearing lubrication structure to which the present invention is applied.
  • a vehicle 10 includes an engine 12 as a power source, a pair of left and right front wheels 14L and 14R, an automatic transmission 16 for shifting the output rotation of the engine 12, and an automatic transmission 16
  • a propeller shaft 18 for transmitting the driving force output from the output shaft, a final reduction gear 20 that functions as a rear wheel driving force distribution device, and a transmission force distributed by the final reduction gear 20.
  • a pair of left and right rear wheel axles 22L and 22R and a pair of left and right rear wheels 24L and 24R to which driving force is transmitted via the rear wheel axles 22L and 22R are provided.
  • FIG. 2 is a cross-sectional view showing a part of the final reduction gear 20.
  • the drive pinion 30 is integrally connected to the propeller shaft 18 and is driven to rotate around the axis O, and the meshing teeth of the drive pinion 30.
  • a hypoid gear includes a differential device 34 having a ring gear 32 that meshes with 30t and is driven to rotate, and power is distributed to the left and right rear wheel axles 22L and 22R by the differential device 34.
  • the drive pinion 30 corresponds to a predetermined rotation axis, and can rotate around the axis O through a pair of bearings 38 and 40 in the support case 36 in a substantially horizontal posture in which the axis O is in the longitudinal direction of the vehicle.
  • the support case 36 is integrally fixed to a frame of the vehicle body via a differential housing (not shown).
  • the drive pinion 30 and the bearing structure are configured symmetrically around the axis O, and the lower half of the axis O is omitted in FIG.
  • the pair of bearings 38 and 40 are tapered roller bearings having tapered rollers 38r and 40r, respectively.
  • the pair of bearings 38 and 40 are spaced apart in the axial direction in the support case 36 and separated in the axial direction of the stepped shaft 42 of the drive pinion 30. These two locations are supported rotatably.
  • the bearings 38 and 40 are both arranged in such a posture that the large diameter side of the tapered rollers 38r and 40r is outside in the axial direction, and the bearing 38 on the side close to the meshing teeth 30t of the drive pinion 30 is the other bearing 40.
  • the pitch diameter of the tapered roller 38r is larger than the pitch diameter of the tapered roller 40r.
  • a portion of the support case 36 that is directly above the axis O in the vertical direction and is positioned between the bearings 38 and 40 in the axial direction of the drive pinion 30 is used.
  • a single oil supply port 44 is provided, and a part of the lubricating oil scraped up by the rotation of the ring gear 32 is introduced into the oil supply port 44.
  • a cylindrical separator 46 that receives the lubricating oil supplied from the oil supply port 44 is integrally disposed in the support case 36 between the pair of bearings 38 and 40 so as to be substantially concentric with the shaft center O. Yes.
  • FIG. 3 is a view showing the separator 46 alone.
  • the separator 46 is a cylindrical oil receiving portion disposed substantially concentrically with the stepped shaft 42 on the outer peripheral side of the stepped shaft 42 of the drive pinion 30. 47 and the both ends of the oil receiving portion 47 in the axial direction extend to the outer peripheral side substantially at right angles to the center line S, and are brought into close contact with the cylindrical inner peripheral surface of the support case 36 and a pair of bearings 38, 40.
  • a pair of annular side walls 48, 50 that face each other are integrally provided, and an annular cylindrical oil reservoir 60 is formed by the separator 46 and the inner peripheral surface of the support case 36.
  • the pair of side walls 48 and 50 are provided with a plurality of communication holes 52 and 54, respectively, and the lubricating oil supplied from the oil supply port 44 is stored in the oil reservoir 60, and these communication holes are also provided. It is made to flow out to the bearings 38 and 40 side from the 52 and 54 at a predetermined flow rate.
  • the separator 46 has an axial length that is substantially the same as the distance between the pair of bearings 38 and 40, and the side walls 48 and 50 are located close to the ends of the bearings 38 and 40, respectively.
  • Lubricating oil that has flowed out of the holes 52 and 54 is well distributed to the rolling elements of the bearings 38 and 40, that is, the tapered rollers 38r and 40r.
  • FIG. 2 indicate the flow of the lubricating oil supplied to the pair of bearings 38 and 40 through the oil reservoir 60 by the lubricating oil supplied to the oil supply port 44.
  • FIG. 3 are views showing the upper half of the center line S of the separator 46 (substantially the same as the axis O in the arrangement state on the support case 36), and (a) is a side wall. 48 is a left side view seen from the side 48, (b) is a cross-sectional view parallel to the center line S corresponding to FIG. 2, and (c) is a right side view seen from the side wall 50 side.
  • the lubricating oil is sucked into the bearings 38 and 40 by the pump action generated based on the difference in diameter of the tapered rollers 38r and 40r and discharged to the outside.
  • the amount of penetrating oil flowing through the bearings 38 and 40 by this pumping action depends on the rotational speed, and increases as the rotational speed increases as shown in FIG. It will be more. 4 (a) represents the amount of penetrating oil when a sufficient amount of lubricating oil is supplied to the small diameter side of the tapered rollers 38r and 40r, that is, when the small diameter side is buried in the lubricating oil.
  • the amount of lubricating oil required for lubrication and cooling increases as the rotational speed increases, but in general, the rate of increase in the through oil amount is greater than the rate of increase in the required oil amount, and there is no limit to the amount of oil supplied. For example, a large amount of lubricating oil more than necessary is allowed to flow through the bearings 38 and 40 during high rotation, and a large power loss occurs due to the viscous resistance and shear resistance of the lubricating oil.
  • the separator 46 having the cylindrical oil receiving portion 47 and the pair of side walls 48 and 50 is disposed, and the amount of lubricating oil supplied to the bearings 38 and 40 is limited.
  • the position and number of communication holes 52 and 54 provided in the side walls 48 and 50 so that as little lubricant as possible is supplied from the separator 46 to the bearings 38 and 40 while ensuring the minimum lubricating oil necessary for lubrication and cooling.
  • the bearing 38 and the bearing 38 are optimized so that the lubricating oil supply position and amount are optimized.
  • the size of the side walls 48, 50 and the position, number, size, etc. of the communication holes 52, 54 are set separately according to the diameter size of 40. Specifically, the communication hole 52 of the side wall 48 on the side of the bearing 38 having a large diameter dimension and a large amount of required oil has a larger diameter dimension than the communication hole 54 on the opposite side.
  • the position of the communication holes 52, 54 that is, the supply position of the lubricating oil to the bearings 38, 40 is on the non-rotating side, that is, the support case 36, where the power loss due to the viscous resistance and shear resistance due to the supply of the lubricating oil is relatively small.
  • the diameter of the separator 46 is determined and the side wall 48 is set so that the lubricating oil is supplied to the outer ring 38g, 40g side fixed integrally, specifically, to the outer peripheral side of the cages 38c, 40c.
  • the outer diameter is larger than that of the opposite side wall 50, and the communication hole 52 is provided on the outer peripheral side of the communication hole 54.
  • FIG. 4 (b) is a diagram for explaining the total amount of oil penetrating through the bearings 38 and 40 on both sides, and the alternate long and short dash line is a conventional case not provided with the separator 46, and the required oil amount indicated by a broken line is shown in FIG.
  • the supply amount is limited by the communication holes 52 and 54, while a large amount of extra lubricating oil is circulated particularly on the high rotation side. The amount of oil is reduced, and the power loss due to the viscous resistance of the lubricating oil is reduced especially on the high rotation side.
  • both the communication holes 52 and 54 are provided with circular holes, and a plurality of them are provided at equal angular intervals on the circumference centered on the center line S.
  • the separator 46 of the present embodiment is integrally formed, for example, by subjecting a metal cylinder or flat plate to bending processing or drawing processing by press processing, and from the outer peripheral edges of the side walls 48 and 50 on both sides.
  • a pair of cylindrical folded portions 56 and 58 are provided with a predetermined length so as to extend inward and approach each other in parallel with the center line S.
  • the folded portions 56 and 58 are press-fitted and fixed to the support case 36 so that the folded portions 56 and 58 are in close contact with the cylindrical inner peripheral surface of the support case 36. The strength can be obtained easily and stably.
  • the cylindrical separator 46 is disposed substantially concentrically with the drive pinion 30 between the pair of bearings 38 and 40, and the oil supply port 44. Since the lubricating oil supplied from is received by the oil receiving portion 47 of the separator 46, the lubricating oil directly adheres to the stepped shaft 42 of the drive pinion 30 or the spacer 62 that rotates integrally with the stepped shaft 42. Power loss caused by rotation and stirring is reduced.
  • the lubricating oil received by the oil receiving portion 47 of the separator 46 is held in the oil reservoir 60 and a pair of bearings 38 at a predetermined flow rate from the communication holes 52 and 54 provided in the side walls 48 and 50 on both sides.
  • the separator 46 of this embodiment includes a cylindrical oil receiving portion 47 disposed substantially concentrically on the outer peripheral side of the stepped shaft 42 of the drive pinion 30, and an outer peripheral side from both ends of the oil receiving portion 47.
  • a pair of annular side walls 48, 50 which are provided so as to extend to the cylindrical inner peripheral surface of the support case 36 and face the pair of bearings 38, 40, and the pair of side walls 48 and 50 are provided with a plurality of communication holes 52 and 54 at equal angular intervals around the center line S of the oil receiving portion 47, respectively. Therefore, it is possible to easily and integrally assemble the support case 36 by press-fitting at an arbitrary phase.
  • the sizes of the side walls 48 and 50 are set so that the lubricating oil supply position and supply amount are optimized for the bearings 38 and 40 according to the diameters of the bearings 38 and 40 on both sides. Since the position, number, size, and the like of the communication holes 52 and 54 are set separately, an appropriate amount of lubricating oil is supplied to an appropriate supply position regardless of the difference in diameter of the bearings 38 and 40. Is done.
  • annular separator 46 is used which is disposed substantially concentrically on the outer peripheral side of the stepped shaft 42 of the drive pinion 30 and surrounds the entire circumference.
  • a semi-cylindrical oil receiving portion 72 that covers only the upper half of the stepped shaft 42, and a support case provided in a fan shape so as to extend from both axial ends of the oil receiving portion 72 to the outer peripheral side.
  • a pair of semi-annular side walls 74, 76 that are in close contact with the inner peripheral surface of 36, and an inner periphery of the support case 36 provided so as to extend from the side edges on both sides of the oil receiving portion 72 to the outer peripheral side.
  • FIG. 5 is a view corresponding to FIG. 3, and FIG. 3 is a view showing the upper half of the center line S, whereas FIG. 5 is a view showing the entire separator 70. Is a left side view, (b) is a cross-sectional view cut in parallel with the center line S, and (c) is a right side view.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 潤滑油がドライブピニオンに直接付着したり必要以上の潤滑油が軸受に供給されたりすることにより、潤滑油の粘性抵抗やせん断抵抗によって動力損失が発生し、動力伝達効率が損なわれることを抑制する。  一対の軸受38、40の間に円筒形状のセパレータ46が配設されており、油供給口44から供給された潤滑油はセパレータ46によって受け止められるため、ドライブピニオン30の段付シャフト42等に潤滑油が直接付着して連れ廻りや攪拌等により発生する動力損失が低減される。また、セパレータ46によって受け止められた潤滑油は、両側の側壁48、50に設けられた連通孔52、54から所定の流量で一対の軸受38、40側へ流出して潤滑や冷却に用いられるため、必要以上の潤滑油が軸受38、40に供給されて粘性抵抗等により大きな動力損失が発生することが抑制され、全体として動力伝達効率が向上する。

Description

回転軸の軸受潤滑構造
 本発明は回転軸の軸受潤滑構造に係り、特に、潤滑油が回転軸に直接付着したり必要以上の潤滑油が軸受に供給されたりすることにより、潤滑油の粘性抵抗やせん断抵抗によって回転軸に動力損失が発生し、動力伝達効率が損なわれることを抑制する技術に関するものである。
 (a) 支持ケース内に軸方向に離間して配設され、所定の回転軸を軸心まわりに回転可能に支持している一対の軸受と、(b) その一対の軸受を潤滑するための潤滑油をその一対の軸受間に供給するために前記支持ケースに設けられた油供給口と、を有する回転軸の軸受潤滑構造が知られている。特許文献1、2に記載の軸受潤滑構造はその一例で、プロペラシャフトからディファレンシャル装置のリングギヤに回転を伝達するドライブピニオンを軸心まわりに回転可能に支持する軸受の潤滑構造について記載されており、リングギヤによって掻き上げられた潤滑油が油供給口へ導かれて、ドライブピニオンのシャフトの外周側であって一対の軸受で囲まれた環状の空間内に流入し、両側の軸受をそれぞれ軸方向へ貫通して外部へ排出されることにより、それ等の軸受を潤滑、冷却するようになっている。
特開2007-315456号公報 特開2006-329257号公報
 しかしながら、このような従来の回転軸の軸受潤滑構造においては、油供給口から一対の軸受の間に供給された潤滑油が、回転軸或いはその回転軸と一体的に回転する部材(スペーサなど)の外周面に直接付着して連れ廻り乃至は攪拌されるため、その潤滑油の攪拌による粘性抵抗やせん断抵抗等によって回転軸に動力損失が発生し、動力伝達効率が損なわれるという問題があった。また、油供給口へ供給された潤滑油がそのまま軸受に供給されて潤滑や冷却に使用されると、潤滑や冷却に必要な量以上の余分な潤滑油が軸受を通過させられる場合があり、この潤滑油の粘性抵抗やせん断抵抗等によって動力損失が大きくなり、動力伝達効率が損なわれる。例えば、円すいころ軸受の場合、円すいころの径寸法の変化に基づいて発生するポンプ作用により潤滑油が軸受に吸引されて外部へ排出され、このポンプ作用による軸受の貫通油量は回転数に依存する一方、潤滑や冷却に必要な潤滑油量も回転数の増加に伴って多くなるが、必要油量の増加率よりも貫通油量の増加率の方が大きいため、特に高回転時に必要以上の潤滑油が大量に軸受を通過させられることになり、潤滑油の粘性抵抗等によって大きな動力損失が発生する。
 本発明は以上の事情を背景として為されたもので、その目的とするところは、潤滑油が回転軸に直接付着したり必要以上の潤滑油が軸受に供給されたりすることにより、潤滑油の粘性抵抗やせん断抵抗によって回転軸に動力損失が発生し、動力伝達効率が損なわれることを抑制することにある。
 かかる目的を達成するために、本発明は、(a) 支持ケース内に軸方向に離間して配設され、所定の回転軸を軸心まわりに回転可能に支持している一対の軸受と、(b) その一対の軸受を潤滑するための潤滑油をその一対の軸受間に供給するために前記支持ケースに設けられた油供給口と、を有する回転軸の軸受潤滑構造において、(c) 前記一対の軸受間には、前記油供給口から供給された潤滑油を受け止めるセパレータが前記支持ケースに一体的に配設されているとともに、(d) そのセパレータの両端部には、それぞれ前記支持ケースの内周面に向かって突き出して密着させられるとともに前記一対の軸受に対面させられる一対の側壁が設けられており、(e) その一対の側壁には、前記油供給口から供給された潤滑油が前記一対の軸受側へ所定の流量で流出することを許容する連通孔が設けられていることを特徴とする。
 第2発明は、第1発明の回転軸の軸受潤滑構造において、(a) 前記セパレータは、前記回転軸の外周側にその回転軸と略同心に配設される円筒形状の油受け部と、その油受け部の両端部からそれぞれ外周側へ延び出すように設けられて前記支持ケースの円筒内周面に密着させられるとともに前記一対の軸受と対面させられる一対の円環形状の側壁とを有し、(b) その一対の側壁に設けられる前記連通孔は、それぞれ前記油受け部の中心線まわりに等角度間隔で複数設けられていることを特徴とする。
 このような回転軸の軸受潤滑構造においては、一対の軸受間にセパレータが配設され、油供給口から供給された潤滑油はそのセパレータによって受け止められるため、回転軸或いはその回転軸と一体的に回転する部材(スペーサなど)に潤滑油が直接付着して連れ廻りや攪拌等により発生する動力損失が低減される。また、セパレータによって受け止められた潤滑油は、セパレータの両端部に設けられた側壁の連通孔から所定の流量で一対の軸受側へ供給されて、その軸受の潤滑や冷却に用いられるため、必要以上の潤滑油が軸受に供給されて粘性抵抗やせん断抵抗等により大きな動力損失が発生することが抑制される。すなわち、油供給口から供給された潤滑油をセパレータによって受け止めて回転軸等に直接付着することを防止しつつ、側壁に設けられる連通孔の位置や数、大きさを適当に設定することにより、潤滑や冷却に必要な最少限の潤滑油を確保しつつできるだけ少量の潤滑油がセパレータから軸受に直接供給されるようにして、潤滑油の粘性抵抗等による回転軸の動力損失を低減し、動力伝達効率を向上させることができるのである。
 第2発明のセパレータは、回転軸の外周側に略同心に配設される円筒形状の油受け部と、その油受け部の両端部からそれぞれ外周側へ延び出すように設けられて支持ケースの円筒内周面に密着させられるとともに一対の軸受と対面させられる一対の円環形状の側壁とを有し、その一対の側壁には、それぞれ油受け部の中心線まわりに等角度間隔で複数の連通孔が設けられているため、支持ケースに配設する際に中心線まわりの位相を考慮する必要がなく、任意の位相で圧入等により簡便に支持ケースに一体的に組み付けることができる。
本発明が適用された軸受潤滑構造を有するFR車両の動力伝達系を説明する概略図である。 図1の動力伝達系の終減速装置において、本発明が適用されたドライブピニオンの軸受潤滑構造を示す断面図である。 図2のセパレータを単独で示す図で、中心線Sよりも上半分を示す図であり、(a) は左側面図、(b) は中心線Sと平行に切断した断面図、(c) は右側面図である。 図2の軸受を通過する貫通油量と回転数との関係を説明する図で、(a) は軸受単独の場合であり、(b) は図2のようにドライブピニオンを支持している場合にセパレータの有無によって異なることを説明する図である。 本発明の他の実施例を説明する図で、図3と同様にセパレータを単独で示す図であり、(a) は左側面図、(b) は中心線Sと平行に切断した断面図、(c) は右側面図である。
符号の説明
 30:ドライブピニオン(回転軸)  36:支持ケース  38、40:軸受  44:油供給口  46、70:セパレータ  47、72:油受け部  48、50、74、76:側壁  52、54:連通孔  O:軸心  S:中心線
 本発明の回転軸の軸受潤滑構造は、例えば車両のプロペラシャフトからディファレンシャル装置のリングギヤ(大歯車)に回転を伝達するドライブピニオン(小歯車)を軸心まわりに回転可能に支持する軸受の潤滑構造に好適に適用されるが、車両用動力伝達経路の他の部位の回転軸の軸受潤滑構造に適用することもできるし、車両用以外の各種の回転軸の軸受潤滑構造に適用することも可能である。
 上記回転軸は略水平になる姿勢で配置され、油供給口は、例えば重力によって潤滑油が流下して一対の軸受の間に供給されるように、回転軸の鉛直方向の上方に設けることが望ましいが、斜め上方に設けることも可能で、複数の油供給口を設けても良い。歯車によって掻き上げられるなどして潤滑油が所定の流速を有する場合は、回転軸と略同じ高さ位置の側方に油供給口を設けて、側方から支持ケース内に潤滑油が供給されるようにしても良い。
 油供給口に対する潤滑油の供給は、例えばディファレンシャル装置のリングギヤによる掻き上げ、或いはその他の歯車等による掻き上げを利用できるが、連通路等の所定の供給油路を設けることもできるなど、種々の態様が可能である。
 回転軸を支持する一対の軸受としては、回転軸の種類等に応じて円すいころ軸受や円筒ころ軸受、玉軸受など種々の軸受を採用できる。円すいころ軸受を用いる場合、円すいころの径寸法の相違に基づいて発生するポンプ作用により潤滑油が軸受に吸引されて外部へ排出され、このポンプ作用による軸受の貫通油量は回転数に依存する一方、潤滑や冷却に必要な潤滑油量も回転数の増加に伴って多くなるが、一般に必要油量の増加率よりも貫通油量の増加率の方が大きく、高回転時に必要以上の潤滑油が大量に軸受を通過させられ、潤滑油の粘性抵抗等によって大きな動力損失が発生する。このため、セパレータの側壁に設ける連通孔の位置や数、大きさを適当に設定し、潤滑や冷却に必要な最少限の潤滑油を確保しつつできるだけ少量の潤滑油がセパレータから軸受に供給されるようにすることにより、潤滑油の粘性抵抗等によって大きな動力損失が発生することを抑制することができる。両側の軸受の径寸法等に応じて、側壁の大きさや連通孔の位置、数、大きさ等を別々に設定することにより、各軸受について潤滑油の供給位置や供給量を個別に設定することができる。但し、両側の側壁が互いに同じ大きさで、その側壁の同じ位置に同じ大きさの連通孔が設けられても良い。
 円すいころ軸受以外の軸受については、特にポンプ作用による潤滑油の吸引作用は得られないものの、セパレータの連通孔から供給される潤滑油によって潤滑、冷却されるため、その連通孔の位置や数、大きさを適当に設定し、潤滑や冷却に必要な最少限の潤滑油を確保しつつできるだけ少量の潤滑油が軸受に供給されるように供給油量を制限することにより、潤滑油の粘性抵抗等による動力損失を抑制したり、一対の軸受について個別に供給位置や供給油量を設定したりできる点は、円すいころ軸受の場合と同じである。なお、複列玉軸受も円すいころと同じポンプ作用による潤滑油の吸引作用が得られる。
 上記連通孔の位置、すなわち軸受に対する潤滑油の供給位置は、潤滑油の供給による粘性抵抗やせん断抵抗等による動力損失が比較的小さい非回転側、すなわち支持ケースに一体的に固定される外輪側に設けることが望ましい。具体的には、転動体を保持している保持器と外輪との間の部分に潤滑油が供給されるように、連通孔の位置を設定することが望ましい。但し、回転側すなわち内輪側に潤滑油が供給されるようになっていても良い。
 セパレータは、第2発明のように回転軸の外周側に略同心に配設される円筒形状の油受け部と、その油受け部の両端部からそれぞれ外周側へ延び出すように設けられて支持ケースの円筒内周面に密着させられる一対の円環形状の側壁とを有し、そのセパレータと支持ケースの内周面とによって円環筒形状の油溜部を形成するように構成することが望ましいが、例えば回転軸の上半分だけを覆い囲む半円筒形状の油受け部と、その油受け部の軸方向の両端部からそれぞれ外周側へ延び出すように扇形に設けられて支持ケースの内周面に密着させられる一対の半円環形状の側壁と、油受け部の両側の側端縁からそれぞれ外周側へ延び出すように設けられて支持ケースの内周面に密着させられる一対の平板状の閉塞部とを有し、そのセパレータと支持ケースの内周面とによって半円環筒形状の油溜部を形成するように構成することもできる。回転軸の軸心まわりにおけるセパレータの角度範囲は、上記のように全周または半周の他、任意の角度とすることが可能で、種々の態様が可能である。要するに、油供給口から供給された潤滑油がセパレータによって受け止められることにより回転軸等に直接付着することを防止するとともに、その潤滑油をセパレータと支持ケースとの間に形成される円環筒形状等の油溜部に保持しつつ、側壁に設けられた連通孔から所定の流量で軸受に直接供給されるようになっておれば良い。
 上記セパレータは、例えば金属の円筒や平板等にプレス加工等を施すことによって一体に構成することができるが、円筒形状等の油受け部と側壁とを別体に構成して溶接等により一体的に固設しても良いなど、種々の態様が可能である。
 セパレータは、例えば支持ケースの円筒内周面に側壁の外周部が密着するように圧入して一体的に固定することが簡便であるが、ボルト等の締結手段や溶接等で一体的に固定したり、スナップリング等を用いて離脱不能に取り付けるようにしたりしても良いなど、種々の態様が可能である。支持ケースの円筒内周面に圧入固定する場合、両側の側壁の外周縁からそれぞれ軸方向において互いに接近する内方へ延びるように絞り加工等により一対の円筒状、半円筒状等の折返し部を所定の長さ寸法で設け、その折返し部が支持ケースに密着するように圧入されるようにすれば、所定の固定強度が容易に安定して得られる。
 側壁に設けられる連通孔は、円形孔が望ましいが、楕円形や長円形、四角形、スリット状など種々の形状の連通孔を採用できる。この連通孔は、例えばセパレータの油受け部の円筒や半円筒等の円弧の中心線まわりに等角度間隔で複数設けられるが、不等間隔で設けることもできる。両側の側壁に設けられる連通孔の数や大きさ、形状、間隔等が異なっていても差し支えない。
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は、本発明が適用された軸受潤滑構造を備えている終減速装置20を有する前置エンジン後輪駆動(FR)形式の車両10の動力伝達機構を説明する図である。この図1において、車両10は、動力源であるエンジン12と、左右1対の前輪14L、14Rと、上記エンジン12の出力回転を変速するための自動変速機16と、その自動変速機16の出力軸から出力される駆動力を伝達するためのプロペラシャフト18と、後輪用駆動力分配装置として機能する終減速装置20と、その終減速装置20により分配された駆動力を伝達するための左右1対の後輪車軸22L、22Rと、その後輪車軸22L、22Rを介して駆動力が伝達される左右1対の後輪24L、24Rとを備えている。
 図2は、上記終減速装置20の一部を示す断面図で、前記プロペラシャフト18に一体的に連結されて軸心Oまわりに回転駆動されるドライブピニオン30と、そのドライブピニオン30の噛合歯(例えばハイポイドギヤ)30tと噛み合わされて回転駆動されるリングギヤ32を有するディファレンシャル装置34とを備えており、そのディファレンシャル装置34により左右の後輪車軸22L、22Rに動力が分配される。ドライブピニオン30は所定の回転軸に相当し、軸心Oが車両の前後方向となる略水平な姿勢で、支持ケース36内に一対の軸受38、40を介して軸心Oまわりに回転可能に配設されており、支持ケース36は、図示しないデフハウジング等を介して車体のフレーム等に一体的に固設されている。このドライブピニオン30および軸受構造は、軸心Oまわりにおいて対称的に構成されており、図2では軸心Oの下半分が省略されている。
 上記一対の軸受38、40は、それぞれ円すいころ38r、40rを有する円すいころ軸受で、支持ケース36内に軸方向に離間して配設され、ドライブピニオン30の段付シャフト42の軸方向に離間した2箇所を回転可能に支持している。軸受38、40は、何れも円すいころ38r、40rの大径側が軸方向の外側となる姿勢で配設されているとともに、ドライブピニオン30の噛合歯30tに近い側の軸受38は他方の軸受40よりも大径で、円すいころ38rのピッチ径は円すいころ40rのピッチ径よりも大きい。
 これ等の軸受38、40を潤滑するために、支持ケース36のうち鉛直方向において軸心Oの真上であって、ドライブピニオン30の軸方向において軸受38と40との間に位置する部分には、単一の油供給口44が設けられ、リングギヤ32の回転で掻き上げられた潤滑油の一部が、その油供給口44内に導入されるようになっている。また、一対の軸受38、40の間には、油供給口44から供給された潤滑油を受け止める円筒形状のセパレータ46が、軸心Oと略同心に支持ケース36に一体的に配設されている。
 図3は、上記セパレータ46を単独で示す図で、このセパレータ46は、ドライブピニオン30の段付シャフト42の外周側にその段付シャフト42と略同心に配設される円筒形状の油受け部47と、その油受け部47の軸方向の両端部からそれぞれ中心線Sに対して略直角に外周側へ延び出し、支持ケース36の円筒内周面に密着させられるとともに一対の軸受38、40に対面させられる一対の円環形状の側壁48、50とを一体に備えており、セパレータ46と支持ケース36の内周面とによって円環筒形状の油溜部60が形成される。上記一対の側壁48、50にはそれぞれ複数の連通孔52、54が設けられており、油供給口44から供給された潤滑油は油溜部60内に貯留されるとともに、これ等の連通孔52、54から所定の流量で軸受38、40側へ流出させられる。セパレータ46は、一対の軸受38、40の離間寸法と略同じ軸方向長さを備えており、上記側壁48、50は、それぞれ軸受38、40の端部に近接して位置しており、連通孔52、54から流出した潤滑油はそれらの軸受38、40の転動体すなわち円すいころ38r、40rに良好に散布される。図2の太線の矢印は、油供給口44に供給された潤滑油が油溜部60を経て一対の軸受38、40へ供給される潤滑油の流れを示したものである。図3の(a) ~(c) は、何れもセパレータ46の中心線S(支持ケース36への配設状態では軸心Oと略同じ)の上半分を示す図で、(a) は側壁48側から見た左側面図、(b) は図2に対応する中心線Sと平行な断面図、(c) は側壁50側から見た右側面図である。
 ここで、円すいころ軸受にて構成されている軸受38、40は、円すいころ38r、40rの径寸法の相違に基づいて発生するポンプ作用により潤滑油が軸受38、40に吸引されて外部へ排出されるが、このポンプ作用により軸受38、40を流通する貫通油量は回転数に依存し、図4の(a) に示すように回転数が高くなる程多くなり、また、径寸法が大きい程多くなる。この図4の(a) は、円すいころ38r、40rの小径側に十分な量の潤滑油が供給されている場合、すなわち小径側が潤滑油に埋没している場合の貫通油量である。一方、潤滑や冷却に必要な潤滑油量も回転数の増加に伴って多くなるが、一般に必要油量の増加率よりも貫通油量の増加率の方が大きく、供給油量に制限が無ければ高回転時に必要以上の潤滑油が大量に軸受38、40を流通させられ、潤滑油の粘性抵抗やせん断抵抗等により大きな動力損失が発生する。
 これに対し、本実施例では円筒形状の油受け部47および一対の側壁48、50を有するセパレータ46が配設され、軸受38、40に供給される潤滑油の油量が制限されるため、潤滑や冷却に必要な最少限の潤滑油を確保しつつできるだけ少量の潤滑油がセパレータ46から軸受38、40に供給されるように、側壁48、50に設ける連通孔52、54の位置や数、大きさを適当に設定することにより、潤滑油の粘性抵抗等によって大きな動力損失が発生することを抑制できる。また、軸受38、40の径寸法に応じて潤滑や冷却に必要な潤滑油量は異なるため、それ等の軸受38、40について潤滑油の供給位置や供給量が最適となるように、軸受38、40の径寸法に応じて側壁48、50の大きさや連通孔52、54の位置、数、大きさ等が別々に設定されている。具体的には、径寸法が大きくて必要油量が多い軸受38側の側壁48の連通孔52は、反対側の連通孔54よりも径寸法が大きくされている。また、連通孔52、54の位置、すなわち軸受38、40に対する潤滑油の供給位置は、潤滑油の供給による粘性抵抗やせん断抵抗等による動力損失が比較的小さい非回転側、すなわち支持ケース36に一体的に固定される外輪38g、40g側で、具体的には保持器38c、40cよりも外周側に潤滑油が供給されるように、セパレータ46の径寸法が定められているとともに、側壁48の外径は反対側の側壁50よりも大きくされて、連通孔52が連通孔54よりも外周側に設けられている。
 図4の(b) は、両側の軸受38、40を流通するトータルの貫通油量を説明する図で、一点鎖線はセパレータ46を備えていない従来の場合で、破線で示す必要油量に対して特に高回転側で大量に余分な潤滑油が流通させられるのに対し、セパレータ46を設けた本実施例では、連通孔52、54によって供給量が制限されるため、実線で示すように貫通油量が少なくなり、特に高回転側において潤滑油の粘性抵抗等による動力損失が低減される。なお、高回転時にはリングギヤ32の掻き上げで油供給口44に供給される潤滑油量も多くなるが、連通孔52、54による供給制限で余った余分な潤滑油は、油供給口44からのオーバーフローにより支持ケース36の外側を通って流下する。また、図4の(a) 、(b) に示すグラフは、何れも概念的に比較して示したもので、実際に測定した値ではない。
 本実施例ではまた、図3から明らかなように、連通孔52、54として何れも円形孔が設けられているとともに、中心線Sを中心とする円周上に等角度間隔で複数設けられている。また、本実施例のセパレータ46は、例えば金属の円筒や平板にプレス加工による曲げ加工や絞り加工等が施されることにより一体に構成されているとともに、両側の側壁48、50の外周縁からそれぞれ中心線Sと平行に互いに接近する内方へ延びるように一対の円筒状の折返し部56、58が所定の長さ寸法で設けられている。そして、その折返し部56、58が支持ケース36の円筒内周面に密着するように、その支持ケース36に圧入固定されており、セパレータ46を簡便に支持ケース36に固定できるとともに、所定の固定強度が容易に安定して得られる。
 このように、本実施例のドライブピニオン30の軸受潤滑構造においては、一対の軸受38、40の間に円筒形状のセパレータ46がドライブピニオン30と略同心に配設されており、油供給口44から供給された潤滑油はそのセパレータ46の油受け部47によって受け止められるため、ドライブピニオン30の段付シャフト42や段付シャフト42と一体的に回転するスペーサ62等に潤滑油が直接付着して連れ廻りや攪拌等により発生する動力損失が低減される。また、セパレータ46の油受け部47で受け止められた潤滑油は油溜部60に保持されるとともに、両側の側壁48、50に設けられた連通孔52、54から所定の流量で一対の軸受38、40側へ供給され、その軸受38、40の潤滑や冷却に用いられるため、必要以上の潤滑油が軸受38、40に供給されて粘性抵抗やせん断抵抗等により大きな動力損失が発生することが抑制される。すなわち、油供給口44から供給された潤滑油をセパレータ46によって受け止めてドライブピニオン30の段付シャフト42等に直接付着することを防止しつつ、側壁48、50に設けられる連通孔52、54の位置や数、大きさを適当に設定することにより、潤滑や冷却に必要な最少限の潤滑油を確保しつつできるだけ少量の潤滑油がセパレータ46から軸受38、40に直接供給されるようになり、潤滑油の粘性抵抗等によるドライブピニオン30の動力損失が低減されて、動力伝達効率が向上させられるのである。
 また、本実施例のセパレータ46は、ドライブピニオン30の段付シャフト42の外周側に略同心に配設される円筒形状の油受け部47と、その油受け部47の両端部からそれぞれ外周側へ延び出すように設けられて支持ケース36の円筒内周面に密着させられるとともに一対の軸受38、40と対面させられる一対の円環形状の側壁48、50とを有し、その一対の側壁48、50には、それぞれ油受け部47の中心線Sまわりに等角度間隔で複数の連通孔52、54が設けられているため、支持ケース36に配設する際に中心線Sまわりの位相を考慮する必要がなく、任意の位相で圧入により簡便に支持ケース36に一体的に組み付けることができる。
 また、本実施例では、両側の軸受38、40の径寸法に応じて、それ等の軸受38、40について潤滑油の供給位置や供給量が最適となるように、側壁48、50の大きさや連通孔52、54の位置、数、大きさ等が別々に設定されているため、それ等の軸受38、40の径寸法の相違に拘らず適切な供給位置に適切な量の潤滑油が供給される。
 なお、上記実施例ではドライブピニオン30の段付シャフト42の外周側に略同心に配設されて全周を囲む円環形状のセパレータ46が用いられていたが、図5に示すセパレータ70のように、段付シャフト42の上半分だけを覆い囲む半円筒形状の油受け部72と、その油受け部72の軸方向の両端部からそれぞれ外周側へ延び出すように扇形に設けられて支持ケース36の内周面に密着させられる一対の半円環形状の側壁74、76と、油受け部72の両側の側端縁からそれぞれ外周側へ延び出すように設けられて支持ケース36の内周面に密着させられる一対の平板状の閉塞部78、80とを有し、そのセパレータ70と支持ケース36の内周面とによって半円環筒形状の油溜部が形成されるように構成することもできる。この場合も、両側の側壁74、76の外周縁からそれぞれ中心線Sと平行に互いに接近する内方へ延びるように一対の半円筒状の折返し部84、86を所定の長さ寸法で設けることが望ましい。この図5は、前記図3に対応する図であるが、図3は中心線Sの上半分を示した図であるのに対し、図5はセパレータ70の全部を示す図で、(a) は左側面図、(b) は中心線Sと平行に切断した断面図、(c) は右側面図である。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。

Claims (2)

  1.  支持ケース内に軸方向に離間して配設され、所定の回転軸を軸心まわりに回転可能に支持している一対の軸受と、
     該一対の軸受を潤滑するための潤滑油を該一対の軸受間に供給するために前記支持ケースに設けられた油供給口と、
     を有する回転軸の軸受潤滑構造において、
     前記一対の軸受間には、前記油供給口から供給された潤滑油を受け止めるセパレータが前記支持ケースに一体的に配設されているとともに、
     該セパレータの両端部には、それぞれ前記支持ケースの内周面に向かって突き出して密着させられるとともに前記一対の軸受に対面させられる一対の側壁が設けられており、
     該一対の側壁には、前記油供給口から供給された潤滑油が前記一対の軸受側へ所定の流量で流出することを許容する連通孔が設けられている
     ことを特徴とする回転軸の軸受潤滑構造。
  2.  前記セパレータは、前記回転軸の外周側に該回転軸と略同心に配設される円筒形状の油受け部と、該油受け部の両端部からそれぞれ外周側へ延び出すように設けられて前記支持ケースの円筒内周面に密着させられるとともに前記一対の軸受と対面させられる一対の円環形状の側壁とを有し、
     該一対の側壁に設けられる前記連通孔は、それぞれ前記油受け部の中心線まわりに等角度間隔で複数設けられている
     ことを特徴とする請求項1に記載の回転軸の軸受潤滑構造。
PCT/JP2009/054471 2008-05-12 2009-03-09 回転軸の軸受潤滑構造 WO2009139217A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009001115T DE112009001115B4 (de) 2008-05-12 2009-03-09 Lagerschmierstruktur für eine Drehwelle
CN2009801166213A CN102016336B (zh) 2008-05-12 2009-03-09 旋转轴的轴承润滑结构
US12/992,213 US8376623B2 (en) 2008-05-12 2009-03-09 Bearing lubricating structure for rotating shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-125222 2008-05-12
JP2008125222A JP4930453B2 (ja) 2008-05-12 2008-05-12 回転軸の軸受潤滑構造

Publications (1)

Publication Number Publication Date
WO2009139217A1 true WO2009139217A1 (ja) 2009-11-19

Family

ID=41318590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054471 WO2009139217A1 (ja) 2008-05-12 2009-03-09 回転軸の軸受潤滑構造

Country Status (5)

Country Link
US (1) US8376623B2 (ja)
JP (1) JP4930453B2 (ja)
CN (1) CN102016336B (ja)
DE (1) DE112009001115B4 (ja)
WO (1) WO2009139217A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081969B2 (ja) * 2010-12-06 2012-11-28 トヨタ自動車株式会社 ハイブリッド駆動装置およびハイブリッド駆動装置の制御装置
JP5490322B2 (ja) * 2011-06-24 2014-05-14 三菱電機株式会社 減速歯車装置
CN102359549A (zh) * 2011-08-25 2012-02-22 苏州嘉信重型机床有限公司 一种齿轮箱
WO2014165474A1 (en) * 2013-04-05 2014-10-09 American Axle & Manufacturing, Inc. Axle assembly
CN104806641B (zh) * 2015-04-30 2017-03-29 盐城市三川轴承制造有限公司 圆锥滚子轴承润滑结构
CN104806640B (zh) * 2015-04-30 2017-05-24 德清德曼汽车零部件有限公司 圆锥滚子轴承外圈
DE102015210242B4 (de) * 2015-06-03 2022-08-25 Schaeffler Technologies AG & Co. KG Radlageranordnung für ein Fahrzeug
KR101745118B1 (ko) * 2015-07-29 2017-06-08 현대자동차 유럽기술연구소 고압펌프
DE102015009697B4 (de) * 2015-07-30 2021-12-30 Schenck Process Europe Gmbh Getriebe mit Ölleitblech-Taschenkombinationen und Richterreger mit Schmierfluid-Verteilerring
DE102015215462A1 (de) * 2015-08-13 2017-02-16 Schaeffler Technologies AG & Co. KG Wälzlageranordnung mit Schmiermittelzuführung
MX2018005839A (es) * 2015-11-13 2018-11-09 Dana Heavy Vehicle Sys Group Sistema regulador del flujo de lubricante y el ensamble de eje que se fabrica con el mismo.
JP6556644B2 (ja) * 2016-02-26 2019-08-07 株式会社神戸製鋼所 速度切換減速機
JP6394670B2 (ja) * 2016-10-06 2018-09-26 トヨタ自動車株式会社 車両用動力伝達装置
FR3084425B1 (fr) * 2018-07-26 2021-01-22 Safran Trans Systems Dispositif du type reducteur ou differentiel pour une turbomachine d'aeronef
JP7077915B2 (ja) * 2018-10-25 2022-05-31 トヨタ自動車株式会社 車両用動力伝達装置
JP6721657B2 (ja) * 2018-10-29 2020-07-15 三菱重工業株式会社 複列軸受
JP2021085435A (ja) * 2019-11-26 2021-06-03 株式会社ジェイテクト 転がり軸受装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160352U (ja) * 1980-04-30 1981-11-30
JPS60147898U (ja) * 1984-03-14 1985-10-01 株式会社小松製作所 軸受部の潤滑装置
JPS63150160U (ja) * 1987-03-23 1988-10-03
JPH0165454U (ja) * 1987-10-15 1989-04-26
JP2007315456A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp デファレンシャル

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272757A (en) * 1940-12-19 1942-02-10 Gen Electric Bearing and supporting structure
US4227427A (en) * 1977-09-08 1980-10-14 Dana Corporation Drive unit assembly
FR2450975A1 (fr) * 1979-03-06 1980-10-03 Skf Cie Applic Mecanique Dispositif de lubrification controlee pour paliers a roulements
JPS56160352A (en) * 1980-05-13 1981-12-10 Tohoku Electric Power Co Manufacture of pressure molded gypsum construction material
JPS6111057U (ja) 1984-06-25 1986-01-22 トヨタ自動車株式会社 デフドライブピニオンシヤフト支持装置の潤滑装置
DE3705607A1 (de) * 1987-02-21 1988-09-01 Porsche Ag Lagerung eines achsantrieb-kegelritzels
JP2579497B2 (ja) * 1987-09-07 1997-02-05 オリエンタル酵母工業株式会社 肝臓疾患診断剤
US5328275A (en) * 1993-05-06 1994-07-12 Stemco Inc. Unitized wheel hub and bearing assembly
DE69605257T2 (de) * 1995-07-24 2000-04-13 Nsk Ltd Kegelrollenlager zur Lagerung einer Ritzelwelle eines Differentialgetriebes
NL1003110C2 (nl) * 1996-05-14 1997-11-18 Skf Ind Trading & Dev Kegellager met vasthoudmiddel voor vet, alsmede vasthoudmiddel voor vet.
US6021868A (en) * 1997-09-02 2000-02-08 Eaton Corporation Mechanical transmission cooling and lubrication using associated engine systems
US6293704B1 (en) * 2000-03-21 2001-09-25 The Timken Company Shaft mounting with enhanced stability
DE10107706A1 (de) * 2001-02-19 2002-10-02 Rexroth Star Gmbh Drehlager mit Schmierkanalanordnung Gewindetrieb mit drehgelagerter Gewindemutter
US6851863B2 (en) * 2001-12-07 2005-02-08 Koyo Seiko Co., Ltd. Double row tapered rolier bearing apparatus
JP4057327B2 (ja) * 2002-03-29 2008-03-05 いすゞ自動車株式会社 転がり軸受の給油装置
US6854892B2 (en) * 2003-03-24 2005-02-15 Sikorsky Aircraft Corporation Baffled centrifugal lubrication spacer
JP4151472B2 (ja) * 2003-04-25 2008-09-17 株式会社ジェイテクト ころ軸受装置およびころ軸受の潤滑方法
JP2004360828A (ja) * 2003-06-05 2004-12-24 Ntn Corp 転がり軸受の潤滑装置
JP2006329257A (ja) 2005-05-24 2006-12-07 Jtekt Corp 車両用ピニオン軸支持装置
JP2008089039A (ja) * 2006-09-29 2008-04-17 Jtekt Corp 円すいころ軸受及びディファレンシャル装置
JP2009174682A (ja) * 2008-01-28 2009-08-06 Jtekt Corp ディファレンシャル装置の潤滑構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160352U (ja) * 1980-04-30 1981-11-30
JPS60147898U (ja) * 1984-03-14 1985-10-01 株式会社小松製作所 軸受部の潤滑装置
JPS63150160U (ja) * 1987-03-23 1988-10-03
JPH0165454U (ja) * 1987-10-15 1989-04-26
JP2007315456A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp デファレンシャル

Also Published As

Publication number Publication date
US8376623B2 (en) 2013-02-19
CN102016336B (zh) 2013-08-21
JP2009275732A (ja) 2009-11-26
US20110064344A1 (en) 2011-03-17
DE112009001115B4 (de) 2013-03-21
JP4930453B2 (ja) 2012-05-16
DE112009001115T5 (de) 2011-04-14
CN102016336A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4930453B2 (ja) 回転軸の軸受潤滑構造
EP3260736B1 (en) Two-motor vehicle drive device
US8167758B2 (en) Drive axle assembly with gear mesh lubrication systems for lubricating gear mesh and/or differential bearings
US8657073B2 (en) Power transmission apparatus
US8512193B1 (en) Differential lubrication feed system in a drive axle assembly
CN108204446B (zh) 动力装置
US20100304914A1 (en) Limited slip differential with positive lube flow to clutch plates
US10663055B2 (en) Differential gear device
US7958969B2 (en) Transfer device for vehicle
US20160138702A1 (en) Differential device
US8733506B2 (en) Vehicle differential device
CN111503251A (zh) 差速装置的润滑结构
JP2008115971A (ja) ディファレンシャル装置
US8152382B2 (en) Output tube assembly for drive axle covers and method of use
CN110553024B (zh) 具有差速器总成和差速器润滑装置的传动系统部件
JP4525208B2 (ja) ピニオン軸支持用軸受装置
JP4713824B2 (ja) 駆動力伝達装置の潤滑構造
JP3641607B2 (ja) デファレンシャル装置
JPH07239011A (ja) 4輪駆動車用動力伝達装置の潤滑構造
KR102488467B1 (ko) 구동 차축의 유성기어 어셈블리
JP3650359B2 (ja) 4輪駆動車の動力系
JP2022007781A (ja) 車両用駆動装置
JPH0262462A (ja) トランスファの潤滑油誘導装置
JP5316649B6 (ja) 車両用差動装置
KR100692133B1 (ko) 하이브리드 차량용 차동기어장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116621.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12992213

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001115

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09746424

Country of ref document: EP

Kind code of ref document: A1