WO2009139055A1 - 希土類系永久磁石 - Google Patents

希土類系永久磁石 Download PDF

Info

Publication number
WO2009139055A1
WO2009139055A1 PCT/JP2008/058873 JP2008058873W WO2009139055A1 WO 2009139055 A1 WO2009139055 A1 WO 2009139055A1 JP 2008058873 W JP2008058873 W JP 2008058873W WO 2009139055 A1 WO2009139055 A1 WO 2009139055A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating film
film
permanent magnet
plating
rare earth
Prior art date
Application number
PCT/JP2008/058873
Other languages
English (en)
French (fr)
Inventor
幸光 宮尾
勉 中村
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2008548380A priority Critical patent/JP4241906B1/ja
Priority to PCT/JP2008/058873 priority patent/WO2009139055A1/ja
Priority to CN2008801291810A priority patent/CN102027552B/zh
Priority to US12/990,341 priority patent/US9287027B2/en
Priority to KR1020107028129A priority patent/KR101555730B1/ko
Publication of WO2009139055A1 publication Critical patent/WO2009139055A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • Y10T428/325Magnetic layer next to second metal compound-containing layer

Definitions

  • the present invention relates to a rare earth permanent magnet having a plating film.
  • the present invention relates to a rare earth permanent magnet having a plating film with improved adhesion.
  • Rare earth permanent magnets such as R—Fe—B permanent magnets (R: rare earth elements including Y) are used in various fields today because of their high magnetic properties, and their demand has increased in recent years. ing.
  • R—Fe—B permanent magnet contains a highly reactive rare earth element: R, it is easily oxidized and corroded in the atmosphere, and when used without any surface treatment, a slight amount of acid or Corrosion progresses from the surface due to the presence of alkali, moisture, etc., and rust is generated, which causes deterioration and variation in magnet characteristics.
  • a magnet with rust is incorporated into an apparatus such as a magnetic circuit, the rust may scatter and contaminate peripheral components.
  • a surface treatment of a rare earth-based permanent magnet a rust prevention treatment using a Ni plating film, a Cu plating film or a combination thereof is disclosed in Patent Document 1 and widely used.
  • Patent Document 2 proposes a technique of pickling the surface of the Ni plating film with an organic carboxylic acid. This technique is excellent as a method for restoring the adhesion of the Ni plating film. However, if the bonded structure bonded by the method proposed in Patent Document 2 is left under a moisture resistance test, the bonding strength is lowered. In particular, when a silicone-based adhesive is used as the adhesive, the decrease becomes significant.
  • Patent Document 3 and Patent Document 4 describe a rare earth magnet having high magnetic properties and excellent corrosion resistance after a single layer of Cu plating or a single layer of Ni plating is applied to the surface of a magnet containing a rare earth element, followed by Cu alloy plating.
  • a technique for obtaining the above is disclosed.
  • this patent document does not consider improvement in adhesiveness, and does not disclose the composition of the base plating film or the composition of the Cu alloy film that enhances the adhesiveness.
  • an object of the present invention is to provide a rare earth-based permanent magnet having a coating that is excellent in corrosion resistance and that can be bonded even after an acceleration test such as a moisture resistance test without causing a decrease in adhesive strength.
  • the present inventor can solve the above problem by including a Cu plating film having excellent smoothness as the base film, and further forming a multilayer plating film that is a Ni plating film immediately below the SnCu alloy plating film. As a result, the present invention has been achieved.
  • the rare earth permanent magnet of the present invention based on the above knowledge is a rare earth permanent magnet having a multilayer plating film, and the outermost layer of the plating film is a SnCu alloy plating film having a film thickness of 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the composition of the SnCu alloy plating film is such that Sn is 35 mass% or more and less than 55 mass% and the balance is Cu, and the SnCu alloy plating film has two or more base plating films below the SnCu alloy plating film
  • a rare earth-based permanent magnet having a structure including at least a Ni plating film and a Cu plating film, wherein the Ni plating film is directly below the SnCu alloy plating film of the base plating film. Furthermore, the following structure is proposed as a more preferable aspect.
  • the Cu plating film is a rare earth permanent magnet having a film thickness of 3 ⁇ m or more and 17 ⁇ m or less.
  • the Ni plating film is a rare earth permanent magnet having a film thickness of 2 ⁇ m or more and 8 ⁇ m or less.
  • the rare earth permanent magnet of the present invention is characterized in that the rare earth permanent magnet further includes a chemical conversion treatment film on the SnCu alloy plating film.
  • the rare earth permanent magnet of the present invention is characterized by a ring shape.
  • the bonded structure of the present invention is a bonded structure in which other members are bonded to the rare earth permanent magnet via a silicone adhesive.
  • a rare earth permanent magnet having a SnCu alloy plating film on two or more laminated plating films including at least a Ni plating film and a Cu plating film formed on the surface of the rare earth permanent magnet body.
  • the bonded structure in which the rare earth permanent magnet and another member are bonded using an adhesive can maintain high bonding strength even after the moisture resistance test.
  • the rare earth permanent magnet of the present invention is a rare earth permanent magnet having a SnCu alloy plating film on a two or more layered underlying plating film including at least a Ni plating film and a Cu plating film, and the outermost layer of the plating film is It is a SnCu alloy plating film.
  • the base of the SnCu alloy plating film requires at least two plating films.
  • a combination including a Ni plating film and a Cu plating film is employed in order to improve the corrosion resistance and smoothness of the film.
  • a smooth and highly oxidation-resistant laminated film can be obtained as a base film for SnCu alloy plating.
  • an SnCu alloy plating film with few protrusions can be obtained. Even if a magnet body having such a film is bonded to another member using an adhesive, the film does not peel off due to the protrusions and can have high adhesive strength.
  • the effect of the rare earth-based permanent magnet of the present invention having a film with improved adhesion on the surface makes use of the characteristics of each film laminated as a base, and is obtained for the first time in the above combination.
  • Sn is 35 mass% (22.3 atomic%) or more and less than 55 mass% (39.5 atomic%), and preferably 40 mass% or more and 50 mass% or less.
  • Sn is less than 35 mass%, oxidation or corrosion is likely to occur due to an increase in the Cu ratio.
  • Sn is 55 mass% or more, the hardness of the film itself rapidly decreases as the Sn ratio increases, and the film is easily damaged.
  • the SnCu alloy plating film having the above composition is highly brittle, and as the film thickness increases, the film peels off inside the film, or a protrusion is generated on the surface of the film. And the problem of large film peeling tends to occur. If the film thickness exceeds 2 ⁇ m, peeling of the film or generation of protrusions is a concern. For this reason, the film thickness of the SnCu alloy plating film is 2 ⁇ m or less.
  • the SnCu alloy plating film is preferably as thin as possible in order to effectively use the original magnetic properties of the rare earth permanent magnet.
  • the film thickness is 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more. Since the SnCu alloy plating film of the present invention is thin, the surface roughness of the obtained SnCu alloy plating film follows the surface roughness of the underlying multilayer plating film, and becomes rough when the surface roughness of the underlying plating film is rough. Tends to be produced in the SnCu alloy plating film. For this reason, it is desirable that the base plating film is smooth. As for the smoothness of the base plating film, the surface roughness Rmax is desirably 0.5 to 15 ⁇ m, more desirably 0.5 to 10 ⁇ m, and further desirably 0.5 to 5 ⁇ m.
  • the base plating film of the SnCu alloy plating film has a kind and a film thickness that can maintain smoothness. Any plating film can be selected as long as the film has high smoothness.
  • Cu plating has many types of plating solutions, and a Cu plating film is used because it is easy to obtain a smooth film.
  • the Cu plating film is easily oxidized and discolored in the atmosphere. For this reason, it is preferable to perform Ni plating on the Cu plating film because it prevents the corrosion resistance of the Cu plating film from being deteriorated due to discoloration or oxidation, and further improves the corrosion resistance of the SnCu alloy plating film. For this reason, the Ni plating film is directly under the SnCu alloy plating film.
  • the film thickness of the Ni plating film formed on the Cu plating film is desirably a film thickness that can prevent oxidation of the Cu plating film while maintaining the smoothness of the underlying Cu plating film.
  • the base plating film of the SnCu alloy plating film As an example of the base plating film of the SnCu alloy plating film, a preferable film thickness range when a three-layer film of Ni plating-Cu plating-Ni plating is formed is shown.
  • Ni the lower limit film thickness with which the magnet body is covered with the plating film and the upper limit film thickness that is not disadvantageous in industrial production
  • Cu film thickness range: 3 to 17 ⁇ m
  • Ni Thiickness range: 2 to 8 ⁇ m
  • the thickness of the Cu plating film is less than 3 ⁇ m, the uneven structure of the underlying Ni plating film located below the Cu plating film cannot be sufficiently smoothed, and if it exceeds 17 ⁇ m, the total thickness of the multilayer plating film becomes thick and industrial production. It is disadvantageous. If the Ni plating film thickness of the uppermost layer of the base plating film (the outermost layer of the three-layer film) is less than 2 ⁇ m, the rust prevention effect of protecting the Cu plating film immediately below from corrosion and oxidation is low, and if it exceeds 8 ⁇ m, the Ni plating film As the film grows, the surface roughness of the film increases and the surface roughness increases.
  • a preferred film thickness range when a two-layer film of Cu plating-Ni plating is formed as the base film of the SnCu alloy plating film is shown.
  • Cu film thickness range: 3 to 17 ⁇ m
  • Ni film thickness range: 2 to 8 ⁇ m
  • the film thickness of the Cu plating film is less than 3 ⁇ m, the surface structure of the magnet body roughened by the plating pretreatment cannot be smoothed by Cu plating. If the film thickness exceeds 17 ⁇ m, the total thickness of the multilayer plating film becomes thick and industrial production. It is disadvantageous.
  • the Ni plating film thickness of the uppermost layer of the base plating film (the outermost layer of the two-layer film) is less than 2 ⁇ m, the rust prevention effect of protecting the Cu plating film directly below from corrosion and oxidation is low. Because of this structure, the surface roughness increases. In addition, what is necessary is just to measure the film thickness of a plating film in an adhesive surface in this invention.
  • the film thickness ratio between the SnCu alloy plating film and the Cu plating film is preferably 0.006 to 0.67, and more preferably 0.011 to 0.67. . If it is less than 0.006, the film thickness of the SnCu alloy plating film is too thin, and there is a possibility that it does not contribute to the improvement of adhesion. If it exceeds 0.67, the film thickness of the SnCu alloy plating film is too thick, and there is a risk that the magnetic properties will deteriorate or the SnCu alloy plating film will be easily peeled off.
  • the film thickness ratio between the Ni plating film and the Cu plating film is preferably 0.12 to 2.67, and more preferably 0.3 to 1.0. . If it is less than 0.12, the thickness of the Ni plating film is too thin, and the effect of improving the corrosion resistance may be reduced. If it exceeds 2.67, the film thickness of the Ni plating film is too thick, and the smoothing effect by the Cu plating film may be diminished.
  • any known bath can be used as long as it is a liquid bath that forms a film having the composition range described in claim 1.
  • a pyrophosphate bath, a cyan bath, an acid bath, and the like for example, a pyrophosphate bath, a cyan bath, an acid bath, and the like.
  • a technique of SnCu alloy plating that does not use extremely toxic cyan is introduced in Japanese Patent Application Laid-Open No. 2004-10907, and it is preferable to use such a bath.
  • any conditions that can be controlled by the film having the composition range and film thickness according to claim 1 can be used.
  • the plating method barrel plating or rack plating can be used as appropriate, but when the magnet body to be plated has a ring shape and electroplating is performed, rack plating is desirable. In rack plating, it is easy to control the current value flowing through the outer diameter and inner diameter of the ring, and it is easy to make the film thickness of the plating film formed on the outer diameter portion and the inner diameter portion uniform.
  • the current density on the type of plating solution, barrel plating can be appropriately selected by methods of the rack plating plating, 0.1 A / dm 2 or more 10A / dm 2 or less, 0 .5A / dm 2 or more 5A / dm 2 or less is more preferred.
  • the SnCu alloy plating film may be subjected to chemical conversion treatment using sodium phosphate or the like.
  • the chemical conversion treatment conditions are, for example, after immersing a rare earth permanent magnet having a SnCu alloy plating film on the outermost layer in a sodium phosphate solution having a concentration of 10 g / L to 30 g / L and a liquid temperature of 20 ° C., followed by washing and drying. Just do it.
  • a chemical conversion treatment discoloration of the SnCu alloy plating film can be suppressed without lowering the adhesiveness.
  • a solution diluted to 1 to 80 g / L in terms of phosphate ion is heated to 30 to 60 ° C., and a rare earth permanent magnet having a SnCu alloy plating film on the outermost layer is immersed for about 30 seconds to 5 minutes to form a chemical film.
  • the base plating film is activated with an acid, whereby the adhesion between the base plating film and the SnCu alloy plating film can be further improved and stable production can be achieved.
  • Alkaline treatment has a degreasing effect, but activation is not sufficient, and alkali is difficult to wash with water and tends to remain as a residue on the surface, so peeling occurs between the SnCu alloy plating film and the base plating film Because there is, it needs attention.
  • As the acid hydrochloric acid or sulfuric acid is preferable.
  • the concentration of hydrochloric acid is preferably 10 vol% or more and 50 vol% or less.
  • sulfuric acid it may be used in the same concentration range as hydrochloric acid.
  • acids other than hydrochloric acid and sulfuric acid organic acids such as oxalic acid and phosphoric acid can also be suitably used.
  • the desirable form of the base plating film of a SnCu alloy plating film is shown.
  • a plating containing a pyrophosphoric acid bath, a sulfuric acid bath, a cyan bath, an electroless bath, and a Fe ion chelating agent described in Japanese Patent No. 3972111 and Japanese Patent No. 4033441 You can choose a bath.
  • Electro Cu plating with a pyrophosphoric acid bath is excellent in electrical conductivity, flexibility, and spreadability, and has good film throwing power. For this reason, electroplating with a pyrophosphoric acid bath can be used suitably for plating of a ring-shaped object.
  • the film throwing power here refers to the ability of the plating to cover the material, for example, the ability of the plating to adhere to a portion where the current density becomes low, such as the concave portion of the object to be plated and the inner diameter portion of the ring magnet. .
  • electroplating using a pyrophosphoric acid bath has no cell structure and excellent smoothness, and the smoothness of SnCu alloy plating plated thereon can be maintained.
  • the electro Cu plating described in Japanese Patent No. 3972111 and Japanese Patent No. 4033241 is glossy, and a very dense film can be formed directly on the R—Fe—B rare earth magnet.
  • a conductive protective layer as an underlayer. Since the pyrophosphoric acid Cu bath contains a large amount of free Cu ions in the bath, when an R—Fe—B magnet is directly immersed in the pyrophosphoric acid bath, it is electrically connected to an electrically base metal such as Fe constituting the surface of the magnet. In addition, there is a possibility that a Cu film having poor adhesion is formed on the surface of the magnet due to a substitution plating reaction with noble Cu.
  • an electric Ni plating film that can form a plating film having excellent adhesion directly on the surface of the R—Fe—B based magnet body is desirable as the base of the plating film using the Cu pyrophosphate bath.
  • Electro-Ni plating is easy to manage the composition of the plating solution and can easily control the film thickness. Electric Cu plating using a cyan bath can be used, but safety must be taken into consideration.
  • the base plating is not necessarily required.
  • plating baths such as watt bath, sulfamic acid bath, and neutral bath can be used as long as they are electroplated. Also, electroless plating with high film thickness uniformity can be performed.
  • the plating method for Ni plating and Cu plating may be selected depending on the shape, weight, and size of the object to be plated, such as barrel plating or rack plating.
  • rack plating is preferred when the rare earth permanent magnet is ring-shaped and electroplating is performed.
  • Rack plating is easy to control the current flowing in the outer and inner diameter portions of the ring, and it is easy to make the film thickness of the plating film formed on the outer and inner diameter portions uniform.
  • Its current density type of plating solution may be determined by the plating method, 0.1 A / dm 2 or more 10A / dm 2 or less are preferred when selecting the electroplating, 0.5A / dm 2 or more 5A / dm 2 The following is more preferable.
  • Arbitrary methods can be used for the pretreatment of the plating of the magnet, and mixed acid of nitric acid and other acids, sulfuric acid, hydrochloric acid, organic acid, etc., and electrolytic etching can also be selected.
  • the present invention can be applied to all known rare earth permanent magnets as long as they can be plated.
  • the rare earth permanent magnet has a linear expansion coefficient of, for example, 5 ⁇ 10 ⁇ 6 / ° C. in the C // direction and ⁇ 1.5 ⁇ 10 ⁇ 6 / ° C. in the C ⁇ direction in the case of the R—Fe—B permanent magnet. Because it is very small, use other materials such as iron-based materials with a large linear expansion coefficient (for example, iron has a linear expansion coefficient of 12 ⁇ 10 ⁇ 6 / ° C.) and a hard adhesive such as an epoxy-based adhesive. When a bonded structure is produced by bonding, cracks may occur in the magnet due to the stress generated from the difference in linear expansion coefficient during heat curing.
  • This phenomenon is prominent when an iron-based material yoke is inserted into the inner diameter of an R—Fe—B ring magnet and an adhesive is applied to form a rotor for a motor.
  • the material expands and causes magnet breakage.
  • a silicone adhesive having a low hardness is widely used as an adhesive.
  • an addition reaction type silicone adhesive which is cured by heating in a relatively short time is often used. Silicone-based adhesives absorb such stress and are less likely to crack the magnet.
  • the bonding structure produced using a silicone-based adhesive has a sharp decrease in adhesive strength due to a high-temperature and high-humidity environment, particularly in the case of a rare-earth permanent magnet having a Ni plating film on the outermost layer of the magnet body. Is remarkable.
  • the bonded structure in which the rare earth permanent magnet having the SnCu alloy plating film of the present invention as the outermost layer is bonded to another member using a silicone adhesive solves this problem, and the adhesive strength decreases even after the moisture resistance test. Therefore, stable adhesive strength can be ensured over a long period of time. Moreover, even if it adhere
  • the rare earth-based permanent magnet of the present invention is not only reduced in adhesive strength even if it is subjected to the moisture resistance test after being bonded to another member with an adhesive, but also heated even if the surface is oxidized before bonding to the other member. The adhesiveness can be easily recovered by the treatment. When the rare earth permanent magnet of the present invention is stored for a long time without adhering other members and the heat treatment at 150 ° C.
  • the rare earth permanent magnet of the present invention can further extend the period during which the adhesiveness can be maintained by heat treatment.
  • the composition is, for example, R: 24 mass% or more and 34 mass% or less (R is at least one kind of rare earth element including Y, and Rd is at least one of Nd and Pr, where the sum of the main components R, Fe, and B is 100 mass%. Seeds must be included), B: 0.6 mass% or more and 1.8 mass% or less, Fe: remaining composition. Fe may be partially substituted with Co, and may contain additive elements such as Al, Si, Cu, Ga, Nb, Mo, and W of about 3 mass% or less.
  • the pulverization is divided into coarse pulverization and fine pulverization, and the coarse pulverization is preferably performed by a stamp mill, a jaw crusher, a brown mill, a disk mill or the like or a hydrogen storage method.
  • the fine pulverization is preferably performed by a jet mill, a vibration mill, a ball mill or the like.
  • the pulverized particle size is preferably 2 to 8 ⁇ m (FSSS). If it is less than 2 ⁇ m, the activity of the magnetic powder is high, so that it is easily oxidized. Deformation during sintering is large and magnetic properties are also deteriorated. If it exceeds 8 ⁇ m, the crystal grain size obtained after sintering becomes large and magnetization reversal occurs easily, leading to a decrease in coercive force.
  • the magnetic field strength is preferably 159 kA / m or more, and more preferably 239 kA / m or more. If it is less than 159 kA / m, the orientation of the magnetic powder is insufficient, and the necessary magnetic properties cannot be obtained.
  • the molding pressure is desirably 0.5 to 2 ton / cm 2 . If it is less than 0.5 ton / cm 2 , the strength of the compact is weak and easily broken. On the other hand, if it exceeds 2 ton / cm 2 , the orientation of the magnetic powder is disturbed and the magnetic properties are deteriorated.
  • Sintering is preferably performed at 1000 to 1150 ° C. in a vacuum or argon atmosphere.
  • Example 1 An Nd—Dy—Fe—Al—B based sintered magnet body having a (Nd, Dy) 2 (Fe) 14 B type intermetallic compound as a main phase was prepared by a known method.
  • the sintered magnet body was processed into a rectangular parallelepiped shape of 30 mm ⁇ 15 mm ⁇ 3 mm and then subjected to barrel polishing.
  • the polished sintered magnet body was dipped in a water-soluble rust preventive, heated to about 60 ° C. and dried.
  • the sample thus obtained was subjected to a first pretreatment with nitric acid of 5 vol% as a pretreatment for plating, followed by a second pretreatment with a mixed acid of 10 vol% hydrogen peroxide and 25 vol% acetic acid, and then Ni—Cu in the following order.
  • -A Ni 3 layer plating film was formed.
  • Plating bath Watt bath (Ni sulfate 300g / L, Ni chloride 50g / L, Boric acid 50g / L) Bath temperature: 50 ° C Current density: 1 A / dm 2 Film thickness: 3 ⁇ m Rinsing after film formation [2nd layer Cu plating film]
  • Plating bath Cu pyrophosphate (Cu pyrophosphate Cu 80 g / L, metal Cu 30 g / L, potassium pyrophosphate 300 g / L, ammonia 2 ml / L, brightener (Okuno Pharmaceutical Pyrotop PC) 1 ml / L) Bath temperature: 55 ° C Current density: 1 A / dm 2 Film thickness: 7 ⁇ m Rinsing after film formation [3rd layer Ni plating film]
  • Plating bath Watt bath (Ni sulfate 300g / L, Ni chloride 50g / L, Boric acid 50g / L, Brightener (saccharin
  • Plating bath stannous pyrophosphate 20 g / L, Cu pyrophosphate 10 g / L, potassium pyrophosphate 180 g / L, brightener, cationic surfactant, surface tension regulator, bath stabilizer, etc.
  • Bath temperature 20 ° C.
  • Current density 1 A / dm 2 Film thickness 1 ⁇ m Washing and drying after film formation
  • Example 2 A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the film thickness of the SnCu alloy plating film was 0.1 ⁇ m.
  • Example 3 A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the film thickness of the SnCu alloy plating film was 0.2 ⁇ m.
  • Example 4 A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the film thickness of the SnCu alloy plating film was 2 ⁇ m.
  • Example 5 The same method as in Example 1 except that the thickness of the Ni—Cu—Ni three-layer plating film is 5 ⁇ m, the Cu film is 12 ⁇ m, the Ni film is 8 ⁇ m, and the SnCu alloy plating film is 0.1 ⁇ m. A rare earth permanent magnet having a multilayer plating film was prepared.
  • Example 6 The same method as in Example 1 except that the thickness of the Ni—Cu—Ni three-layer plating film is 5 ⁇ m, the Cu film is 12 ⁇ m, the Ni film is 8 ⁇ m, and the SnCu alloy plating film is 0.2 ⁇ m. A rare earth permanent magnet having a multilayer plating film was prepared.
  • Example 7 Multi-layer plating in the same manner as in Example 1 except that the Ni-Cu-Ni three-layer plating film thickness is 1 ⁇ m, the Cu film thickness is 3 ⁇ m, the Ni film thickness is 2 ⁇ m, and the SnCu alloy plating film thickness is 2 ⁇ m.
  • a rare earth permanent magnet having a film was prepared.
  • Example 8 After producing a rare earth-based permanent magnet having a multilayer plating film by the same method as in Example 1, it was immersed in a solution of 10 g / L of sodium tertiary phosphate for 3 minutes, washed with water and dried to perform chemical conversion treatment.
  • Example 14 A Ni—Cu—Ni three-layer plating film was formed in the same manner as in Example 1, and then immersed in 10 vol% sulfuric acid and washed with water. An SnCu alloy plating film was formed on the surface of the sintered magnet body having the Ni—Cu—Ni three-layer plating film formed as described above under the same conditions as in Example 1 to obtain the rare earth permanent magnet of the present invention. It was.
  • Example 15 A Ni—Cu—Ni trilayer plating film was formed in the same manner as in Example 1, and then immersed in 10 vol% hydrochloric acid and washed with water. An SnCu alloy plating film was formed on the surface of the sintered magnet body having the Ni—Cu—Ni three-layer plating film formed as described above under the same conditions as in Example 1 to obtain the rare earth permanent magnet of the present invention. It was.
  • Example 16 In the same manner as in Example 1, a Ni—Cu—Ni three-layer plating film was formed, then diluted with water and immersed in polyphosphoric acid adjusted to pH 1.3. Thereafter, a SnCu alloy plating film was formed under the same conditions as in Example 1 except that the SnCu alloy plating was performed without washing with water to obtain the rare earth permanent magnet of the present invention.
  • Example 17 A Cu plating film having a thickness of 17 ⁇ m was formed on the surface of the sintered magnet body prepared in Example 1 by the method described in Japanese Patent No. 4033241, and a Ni plating film was further formed on the surface of the Cu plating film under the following conditions. Was deposited.
  • Plating bath Watt bath (Ni sulfate 300g / L, Ni chloride 50g / L, Boric acid 50g / L, Brightener (saccharin) 10mL / L) Bath temperature: 50 ° C Current density: 1 A / dm 2 Film thickness 5 ⁇ m After film formation, washing with water The SnCu alloy plating film was formed on the surface of the sintered magnet body having the Cu—Ni two-layer plating film formed as described above under the following conditions to obtain the rare earth permanent magnet of the present invention. .
  • Plating bath stannous pyrophosphate 20 g / L, Cu pyrophosphate 10 g / L, potassium pyrophosphate 180 g / L, brightener, cationic surfactant, surface tension regulator, bath stabilizer, etc.
  • Bath temperature 20 ° C.
  • Current density 1 A / dm 2 Film thickness 1 ⁇ m Washing and drying after film formation
  • Example 2 The same sintered magnet body as used in Example 1 is pretreated by the same method as in Example 1, and the first Ni plating film is formed by the same method as in Example 1, and then the film thickness is increased.
  • a rare earth-based permanent magnet having a Ni—Cu bilayer plating film was produced by forming a second Cu plating film by the same method as in Example 1 except that the thickness was 12 ⁇ m.
  • An SnCu alloy plating film is formed on the surface of the sintered magnet body having the Ni—Cu bilayer plating film formed as described above under the same conditions as in Example 1 to obtain a rare earth permanent magnet having a multilayer plating film. It was.
  • Example 1 A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the film thickness of the SnCu alloy plating film was 4 ⁇ m.
  • Example 2 A rare earth permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the film thickness of the SnCu alloy plating film was 3.5 ⁇ m.
  • Example 3 A rare earth-based permanent magnet having a multilayer plating film was produced in the same manner as in Example 1 except that the thickness of the SnCu alloy plating film was 0.05 ⁇ m.
  • Example 9 A rare earth permanent magnet having a Ni—Cu—Ni three-layer plating film was prepared in the same manner as in Example 1, washed with 10 vol% sulfuric acid, washed with water, further washed with 10 mass% caustic soda, washed with water, and then dried.
  • Example 10 A Ni—Cu—Ni three-layer plating film was formed in the same manner as in Example 1, and then immersed in a 3 g / L oxalic acid solution (20 ° C.) for 3 minutes, washed with water and dried.
  • Example 11 The same sintered magnet body as used in Example 1 was pretreated by the same method as in Example 1, and the first Ni plating film was formed in the same manner as in Example 1, and the film thickness was increased.
  • a rare earth-based permanent magnet having a Ni—Cu bilayer plating film was produced by forming a second Cu plating film by the same method as in Example 1 except that the thickness was 12 ⁇ m. Thereafter, it was washed with 10 vol% sulfuric acid, washed with water, and then subjected to rust prevention treatment with benzotriazole.
  • Example 12 A Ni—Cu—Ni three-layer plating film was formed in the same manner as in Example 1. Thereafter, a Cu—Ni alloy plating film having a thickness of 2 ⁇ m was formed with a plating solution to which additives such as nickel sulfate, copper sulfate, pH adjuster and brightener were added. The composition of the film was Ni, 28 mass% (remainder Cu).
  • Example 13 A Ni—Cu—Ni three-layer plating film was formed in the same manner as in Example 1. Thereafter, cuprous cyanide, ferric ferrocyanide, and Rossell salt were added, and a Cu—Fe alloy plating film having a thickness of 2 ⁇ m was formed with a plating solution whose pH was adjusted. The composition of the film was Fe, 13 mass% (remainder Cu).
  • Magnets produced in Examples 1 to 17 and Reference Examples and Comparative Examples 1 to 13 were made of SUS304 using a silicone adhesive (SE1750 manufactured by Toray Dow Corning: an addition reaction type silicone adhesive).
  • a bonded structure was prepared by bonding to the yoke. Curing conditions were 150 ° C. ⁇ 90 minutes (the temperature was measured with a contact-type thermometer), and 10 bonded structures were produced for each condition. Of these, 5 were measured for compressive shear strength immediately after bonding, and the remaining 5 were measured for compressive shear strength after a high temperature and high humidity 80 ° C. ⁇ 90% ⁇ 24 hour humidity resistance test (both bonded structures at room temperature). The compression shear strength was measured in the returned state).
  • the compressive shear strength was measured using TOYO BALDWIN (TENSILON UTM-I-5000C). The compression speed was 1.5 mm / min. Further, the state of the adhesive on the peeled surface after the test and the presence / absence of handling scratches accompanying the test were visually observed. The test results are shown in Tables 1 and 2. In addition, the adhesive strength (compression shear strength) in a table
  • rare earth permanent magnets showed little decrease in adhesive strength even when a moisture resistance test was conducted after bonding with another member using an adhesive. In addition, after the test, no scratch was generated in other parts (excluding the adhesive surface) subjected to the test.
  • the film was highly brittle, and the SnCu alloy plating film was broken after adhesion and after the moisture resistance test, and partial peeling of the SnCu alloy plating film was observed.
  • the adhesive strength immediately after bonding was high, and the peeling mode of the adhesive was also a cohesive failure on the entire surface, but after the moisture resistance test, it was peeled at the interface on the magnet side and the bonding strength was lowered.
  • Example 18 A ring-type sintered magnet body having a radial orientation of Nd—Dy—Fe—Al—B system having (Nd, Dy) 2 (Fe) 14 B type intermetallic compound as a main phase was prepared by a known method.
  • the ring-type sintered magnet body was processed to obtain a magnet material having an outer diameter of 40 mm, an inner diameter of 33 mm, and a height of 13.5 mm.
  • Example 2 After dipping in a rust inhibitor and drying, plating is performed under the same conditions as in Example 1, and a 1 ⁇ m thick SnCu alloy plating layer is formed on the Ni—Cu—Ni three-layer plating film (the thickness of each layer is the same as in Example 1)
  • a ring-type sintered magnet body of the present invention having a film was obtained. About the film thickness of the SnCu alloy plating film, the inner diameter part of the magnet was measured.
  • An adhesive strength measuring yoke made of SUS304 having a diameter of 32.9 mm is bonded to the inner diameter portion of the ring-type sintered magnet body of the present invention having the SnCu alloy plating film on the outermost layer as described above. The body was made.
  • the adhesive was heat-cured at 150 ° C. for 90 minutes using a silicone-based adhesive (SE1750 manufactured by Toray Dow Corning).
  • Example 14 The same bonded structure as in Example 18 was produced except that a heat-curable epoxy adhesive was used as the adhesive and heat-cured at 150 ° C. for 90 minutes.
  • a bonding structure composed of the ring-type sintered magnet body 2 and the adhesive strength measuring yoke 1 is mounted on an adhesive strength measuring jig 3 shown in FIG. 1 for fixing only the ring-type sintered magnet body.
  • a predetermined pressure was applied in the direction of the white arrow.
  • surface shows the average value of the measured value of 5 each.
  • Example 18 Five additional bonded structures identical to those in Example 18 were prepared and subjected to a moisture resistance test of 80 ° C. ⁇ 90% ⁇ 1000 hours, and then the same compressive shear strength as above was measured.
  • the joint structure subjected to the moisture resistance test had an adhesive strength (average value of 5 measured values of compression shear strength) of 4.3 MPa, and the moisture resistance test performed in Example 18 (80 ° C. ⁇ 90% ⁇ 24). Even when compared with the adhesive strength of 4.8 MPa after (time), the decrease in the adhesive strength was slight.
  • the peeling mode of the adhesive on the peeled surface was confirmed, it was cohesive failure of the adhesive for all samples.
  • the rare earth permanent magnet after the moisture resistance test showed good corrosion resistance without observing peeling of the plating film or blistering of the plating film.
  • Example 19 The ring-type sintered magnet body of the present invention having the SnCu alloy plating film on the outermost layer produced in Example 18 was subjected to a moisture resistance test of 30 ° C. ⁇ 70% ⁇ 500 hours, and then the inner diameter portion thereof had a diameter of 32.
  • a 9 mm SUS304 adhesive strength measuring yoke was bonded to prepare 10 bonded structures of the present invention. The adhesive was heat-cured at 150 ° C. for 90 minutes using a silicone-based adhesive (SE1750 manufactured by Toray Dow Corning).
  • the conditions of 30 ° C x 70% used in the moisture resistance test were the average temperature and humidity from June to August (25.4 ° C, 70.6%) from 2004 to 2006 in Kumagaya City, Saitama Prefecture, Japan. )
  • XPS XPS
  • FIG. 3 the surface oxidation did not proceed from 0 hour to 500 hours.
  • the compression shear strength was measured after 5 pieces and after the moisture resistance test of 80 ° C. ⁇ 90% ⁇ 24 hours.
  • the measurement result of the shear strength was an average of 5 pieces. As a result, the shear strength after bonding was 4.9 MPa. The shear strength after the moisture resistance test was 4.8 MPa, and there was almost no decrease in the shear strength. As a result of visual confirmation, the peeled surface was a cohesive failure of the entire surface of the adhesive both after adhesion and after the moisture resistance test. The above results are considered to be because the stable oxidation resistance of the ring-type sintered magnet body of the present invention having the SnCu alloy plating film on the outermost layer prevented the decrease in adhesive strength when exposed to a corrosive environment. It is done.
  • Example 20 The ring-type sintered magnet body of the present invention having an SnCu alloy plating film on the outermost layer produced in Example 18 was subjected to a moisture resistance test of 80 ° C. ⁇ 90% ⁇ 24 hours, and then the inner diameter portion thereof was provided with a diameter of 32.
  • a 9 mm SUS304 adhesive strength measuring yoke was bonded to prepare 10 bonded structures of the present invention.
  • the adhesive was heat-cured at 150 ° C. for 90 minutes using a silicone-based adhesive (SE1750 manufactured by Toray Dow Corning). After the adhesion, the compression shear strength was measured after 5 pieces and after the moisture resistance test at 80 ° C. ⁇ 90% ⁇ 24 hours. The measurement result of the shear strength was an average of 5 pieces.
  • the shear strength after bonding was 5.0 MPa.
  • the shear strength after the moisture resistance test was 4.9 MPa, and there was almost no decrease in the shear strength.
  • the peeled surface was a cohesive failure of the entire surface of the adhesive both after adhesion and after the moisture resistance test.
  • Example 21 A ring-type sintered magnet body having a radial orientation of Nd—Dy—Fe—Al—B system having (Nd, Dy) 2 (Fe) 14 B type intermetallic compound as a main phase was prepared by a known method.
  • the ring-type sintered magnet body was processed to obtain a magnet material having an outer diameter of 40 mm, an inner diameter of 33 mm, and a height of 13.5 mm.
  • Example 21 After dipping in a rust inhibitor and drying, plating was performed.
  • the rare earth permanent magnet to be plated has a ring shape, current tends to concentrate on the outer diameter portion of the ring. This tendency becomes more prominent as the length in the axial direction with respect to the diameter of the ring magnet becomes longer, and the film thickness of the plating film formed on the inner diameter portion tends to be thinner.
  • plating was performed sequentially using the apparatus disclosed in JP-A-2001-73198 under the same conditions as in Example 1. A plurality of apparatuses were prepared and each plating solution was prepared. The magnet body to be plated moved between the devices in a wet state.
  • the film thickness of the SnCu alloy plating film was 1 ⁇ m when measured at the inner diameter part.
  • a SUS304-made adhesive strength measuring yoke made of SUS304 having a diameter of 32.9 mm was bonded to the inner diameter portion of the ring-type sintered magnet body, thereby producing ten bonded structures of the present invention.
  • the adhesive was heat-cured at 150 ° C. for 90 minutes using a silicone-based adhesive (SE1750 manufactured by Toray Dow Corning). When the bonded structure after curing was visually confirmed, no cracks occurred in the ring-type sintered magnet body. Of the produced bonded structures, 5 samples were measured for compressive shear strength immediately after bonding.
  • the remaining five samples were measured for compressive shear strength after a high temperature and high humidity 80 ° C. ⁇ 90% ⁇ 24 hour humidity resistance test.
  • the compressive shear strength was measured using TOYO BALDWIN (TENSILON UTM-I-5000C).
  • the compression speed was 1.5 mm / min.
  • a bonding structure composed of the ring-type sintered magnet body 2 and the adhesive strength measuring yoke 1 is mounted on an adhesive strength measuring jig 3 shown in FIG. 1 for fixing only the ring-type sintered magnet body. As shown in FIG. 2, a predetermined pressure was applied in the direction of the white arrow.
  • adhesive strength shows the average of the measured value of 5 pieces each.
  • a ring magnet having a large axial length with respect to the diameter by positively controlling the plating film thickness ratio between the inner diameter side and the outer diameter side by disposing an anode also on the inner diameter portion of the ring magnet. The adhesiveness can be secured in combination with the method of the present invention.
  • the present invention can provide a rare earth-based permanent magnet having a plating film with little decrease in adhesive strength even when a moisture resistance test is performed after bonding to another member using an adhesive. Even when the member and the silicone-based adhesive are bonded, industrial applicability is great in that a bonded structure having a long-term reliable adhesion improving effect can be provided without cracking during bonding.

Abstract

 本発明の課題は、接着性を改善した希土類系永久磁石を提供することである。その解決手段としての本発明の希土類系永久磁石は、積層めっき皮膜を有する希土類系永久磁石であって、めっき皮膜の最表層が膜厚0.1μm以上2μm以下のSnCu合金めっき皮膜であり、前記SnCu合金めっき皮膜の組成は、Snが35mass%以上55mass%未満で残部がCuであり、前記SnCu合金めっき皮膜の下層にNiめっき皮膜およびCuめっき皮膜を少なくとも含む2層以上の下地めっき皮膜を有し、前記下地めっき皮膜のうちSnCu合金めっき皮膜の直下はNiめっき皮膜であることを特徴とする。本発明の希土類系永久磁石を用いて作製した接合構造体は、シリコーン系接着剤との組み合わせにおいて、良好な初期接着強度を持ち、耐湿性試験後においても接着強度の低下が少ない。

Description

希土類系永久磁石
 本発明は、めっき皮膜を有する希土類系永久磁石に関する。特に、接着性を改善しためっき皮膜を有する希土類系永久磁石に関する。
 R-Fe-B系永久磁石(R:Yを含む希土類元素)などの希土類系永久磁石は、高い磁気特性を有していることから、今日様々な分野で用いられ、近年その需要が増加している。
 しかしながらR-Fe-B系永久磁石は反応性の高い希土類元素:Rを含むため、大気中で酸化、腐食されやすく、何の表面処理をも行わずに使用した場合には、わずかな酸やアルカリや水分などの存在によって表面から腐食が進行して錆が発生し、それにともなって磁石特性の劣化やばらつきを招く。さらに錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。上記の点に鑑み、希土類系永久磁石の表面処理としてNiめっき皮膜、Cuめっき皮膜あるいはその組み合わせによる防錆処理が特許文献1などに開示され、広く採用されている。
 ところで、最表面にNiめっき皮膜を有する希土類系永久磁石と他部材を接着剤によって接合した接合構造体を各種装置に組み込む際には、Niめっき皮膜と前記他部材とは接着剤を介して強い接着性が要求される。しかしながらNiめっき皮膜は表面に生成する不動態皮膜の影響で、使用状況によっては樹脂皮膜やアルミニウム皮膜に比べて接着性が劣り、接着不良が問題になる事態が発生する。
 この問題を解決するために、Niめっき皮膜の表面を有機カルボン酸で酸洗する技術が特許文献2に提案されている。この技術はNiめっき皮膜の接着性を回復させる方法としてすぐれている。
 しかし、特許文献2に提案されている方法で接着した接合構造体を耐湿性試験下に放置すると、接着強度が低下してしまう。特に接着剤としてシリコーン系接着剤を用いると、その低下は顕著となる。
 特許文献3及び特許文献4には希土類元素を含む磁石の表面に単層のCuめっきまたは単層のNiめっきを施した後、Cu合金めっきを行い、高い磁気特性を得ると共に耐食性に優れる希土類磁石を得る技術が開示されている。
 しかし該特許文献は接着性改善を考慮しておらず、接着性を高める下地めっき皮膜の構成やCu合金皮膜の組成について開示していない。
特開平1-321610号公報 特開2003-193273号公報 特開2007-273503号公報 特開2007-273556号公報
 近年の電気機器、自動車用電装部品においては、磁石と他部材を接着剤によって接合した接合構造体が多く用いられている。このため、このような接合構造体において、接着強度の長期信頼性を保証することが必要となっている。このため、磁石と他部材との接着直後における接着強度のみならず、接着後の接合構造体を船便輸送等の比較的高温高湿環境の状態で輸送した後に使用する場合を想定した接着強度等についても保証することが要求されている。例えば、電気機器、電装部品等で用いられる耐湿性試験(80℃×90%RH)に供した後の接着強度について、規格を定めるよう求められる場合が増加している。
 そこで本発明は、耐食性に優れ、耐湿性試験等の加速試験後においても接着強度の低下しない接着が可能となる皮膜を有する希土類系永久磁石を提供することを目的とする。
 上記の点に鑑み、耐湿性試験等の加速試験を行っても接着強度の低下しない接着が可能な皮膜に関する検討を行った。
 その結果、本発明者は、最表層に特定組成および薄い特定膜厚のSnCu合金めっき皮膜を有する磁石は耐湿試験に供した後も接着強度が低下しないことを見出した。
 しかしながら上記SnCu合金めっき皮膜は薄いため、下地皮膜の影響を受けやすく、下地皮膜の表面粗度が大きいと磁石表面の凹凸によっては目的とする接着強度が得られない恐れがあることも判明した。
 そこで本発明者は下地皮膜を平滑性に優れたCuめっき皮膜を含み、さらに上記SnCu合金めっき皮膜の直下はNiめっき皮膜である多層めっき皮膜とすることで、上記問題を解決することができることを知見し本発明に至った。
 上記の知見に基づいてなされた本発明の希土類系永久磁石は、積層めっき皮膜を有する希土類系永久磁石であって、めっき皮膜の最表層が膜厚0.1μm以上2μm以下のSnCu合金めっき皮膜であり、前記SnCu合金めっき皮膜の組成は、Snが35mass%以上55mass%未満で残部がCuであり、前記SnCu合金めっき皮膜の下層に2層以上の下地めっき皮膜を有し、前記下地めっき皮膜はNiめっき皮膜及びCuめっき皮膜を少なくとも含む構成であり、前記下地めっき皮膜のうちSnCu合金めっき皮膜の直下はNiめっき皮膜であることを特徴とする、希土類系永久磁石である。
 さらに好ましい態様として以下の構成を提案する。
 前記下地めっき皮膜のうちCuめっき皮膜の膜厚は3μm以上17μm以下である希土類系永久磁石である。
 前記下地めっき皮膜のうちNiめっき皮膜の膜厚は2μm以上8μm以下である希土類系永久磁石である。
 また、本発明の希土類系永久磁石は、前記希土類系永久磁石において、前記SnCu合金めっき皮膜の上にさらに化成処理皮膜を有することを特徴とする。
 また、本発明の希土類系永久磁石は形状がリング形状であることを特徴とする。
 また、本発明の接合構造体は、前記希土類系永久磁石にシリコーン系接着剤を介して他部材を接合した接合構造体である。
 本発明によれば、希土類系永久磁石体の表面に成膜されたNiめっき皮膜およびCuめっき皮膜を少なくとも含む2層以上の積層めっき皮膜の上にSnCu合金めっき皮膜を有する希土類系永久磁石が提供され、前記希土類系永久磁石と他部材を接着剤を用いて接着した接合構造体は、耐湿性試験後も高い接着強度を維持できる。
接着強度測定治具を示す上面図及び側面図である。 圧縮せん断強度測定時の様子を示す斜視説明図である。 実施例19におけるSnCu合金めっき皮膜の表面酸化の変化を示すグラフである。
符号の説明
  1 接着強度測定用ヨーク
  2 リング型焼結磁石体
  3 接着強度測定治具
 本発明の希土類系永久磁石は、Niめっき皮膜及びCuめっき皮膜を少なくとも含む2層以上の積層下地めっき皮膜の上にSnCu合金めっき皮膜を有する希土類系永久磁石であって、めっき皮膜の最表層がSnCu合金めっき皮膜であることを特徴とする。
 SnCu合金めっき皮膜の下地は、少なくとも2層以上めっき皮膜が必要である。本発明では、皮膜の耐食性と平滑性を高めるために、Niめっき皮膜とCuめっき皮膜を含む組み合わせが採用される。
 平滑性の高いCuめっきを行い、その上に耐酸化性の高いNiめっきを行うことで、SnCu合金めっきの下地皮膜として、平滑で耐酸化性の高い積層皮膜を得ることが出来る。平滑で耐酸化性の高い皮膜の上に成膜されたSnCu合金めっき皮膜の膜厚をごく薄い範囲に制御することで、突起の発生の少ないSnCu合金めっき皮膜を得ることが出来る。このような皮膜を持つ磁石体を他部材に接着剤を用いて接着しても、突起が原因の皮膜の剥離が無く高い接着強度を持つことが出来る。
 接着性を高めた皮膜を表面に持つ本発明の希土類系永久磁石の効果は、下地として積層されたそれぞれの皮膜の特性を生かしており、前記組み合わせにおいて初めて得られる。
 以下、本発明の詳細について説明する。
 SnCu合金めっき皮膜の組成はSnが35mass%(22.3原子%)以上55mass%(39.5原子%)未満であり、40mass%以上50mass%以下が望ましい。Snが35mass%未満になると、Cu比率の増加により酸化や腐食しやすくなる。またSnが55mass%以上ではSn比率の増加に伴い、皮膜自体の硬度が急激に低下し、皮膜に傷がつきやすくなる。
 前記組成のSnCu合金めっき皮膜は脆性が大きく、膜厚の増加に伴い、皮膜の内部で剥離したり、皮膜の表面に突起が発生し、この突起が取り扱い時に剥離したり、さらには突起が起点となり大きな皮膜の剥離になるという問題が生じやすい。皮膜の剥離や突起の発生は膜厚が2μmを超えると懸念される。このためSnCu合金めっき皮膜の膜厚は2μm以下とする。また、SnCu合金は非磁性であることから、希土類系永久磁石本来の磁気特性を有効に利用するためにはSnCu合金めっき皮膜の膜厚は出来る限り薄い方が好ましい。SnCu合金めっき皮膜の接着性改善は膜厚が0.1μm以上あれば効果を得ることができ、0.2μm以上とするのがさらに望ましい。
 本発明のSnCu合金めっき皮膜は薄いため、得られるSnCu合金めっき皮膜の表面粗さは下地の積層めっき皮膜の表面粗さに倣い、下地めっき皮膜の表面粗さが粗い場合には粗くなり、突起がSnCu合金めっき皮膜に生成されやすくなる。このため下地めっき皮膜は平滑であることが望ましい。下地めっき皮膜の平滑性は、表面粗さRmaxが0.5~15μmであることが望ましく、0.5~10μmがより望ましく、0.5~5μmが更に望ましい。
 SnCu合金めっき皮膜の下地めっき皮膜は、平滑性を維持できる種類や膜厚とするのが望ましい。
 平滑性の高い皮膜であれば任意のめっき皮膜を選択できるが、中でもCuめっきはめっき液の種類も多く、平滑な皮膜を得やすいことからCuめっき皮膜が採用される。
 Cuめっき皮膜は大気中で酸化し変色しやすい。このためCuめっき皮膜の上にNiめっきを行うと、変色や酸化によるCuめっき皮膜の耐食性低下が妨げられ、更にSnCu合金めっき皮膜による耐食性改善が得られ好ましい。このためSnCu合金めっき皮膜の直下はNiめっき皮膜とする。
 Cuめっき皮膜の上に成膜されるNiめっき皮膜の膜厚は下地のCuめっき皮膜の平滑性を維持しつつさらにCuめっき皮膜の酸化を防ぐことができる膜厚が望ましい。
 SnCu合金めっき皮膜の下地めっき皮膜の一例として、Niめっき-Cuめっき-Niめっきの3層膜を成膜する場合の好適な膜厚範囲を示す。
 磁石体の表面側から順に、Ni(磁石体がめっき皮膜で覆われる下限の膜厚と工業生産上不利にならない上限膜厚であればよい)、Cu(膜厚範囲:3~17μm)、Ni(膜厚範囲:2~8μm)とするのが望ましい。
 Cuめっき皮膜の膜厚が3μm未満ではCuめっき皮膜の下層に位置する下地Niめっき皮膜の凹凸構造を十分に平滑化することが出来ず17μmを超えると積層めっき皮膜の総厚が厚くなり工業生産上不利となる。
 下地めっき皮膜の最上層(3層膜最表層)のNiめっき皮膜の膜厚が2μm未満では直下のCuめっき皮膜を腐食や酸化から保護する防錆効果が低く、8μmを超えるとNiめっき皮膜の成長と共に、皮膜の表面の凹凸が大となり表面粗さが大となる。
 次にSnCu合金めっき皮膜の下地皮膜として、Cuめっき-Niめっきの2層膜を成膜する場合の好適な膜厚範囲を示す。
 磁石体の表面側から順に、Cu(膜厚範囲:3~17μm)、Ni(膜厚範囲:2~8μm)とするのが望ましい。
 Cuめっき皮膜の膜厚が3μm未満ではめっき前処理により粗化された磁石体の表面の構造をCuめっきにより平滑化することが出来ず17μmを超えると積層めっき皮膜の総厚が厚くなり工業生産上不利となる。
 下地めっき皮膜の最上層(2層膜最表層)のNiめっき皮膜の膜厚が2μm未満では直下のCuめっき皮膜を腐食や酸化から保護する防錆効果が低く、8μmを超えるとNiめっき皮膜本来の構造のため表面粗さが大きくなる。
 なお、本発明においてめっき皮膜の膜厚は接着面にて測定すればよい。
 SnCu合金めっき皮膜とCuめっき皮膜の膜厚比率(SnCu合金めっき皮膜膜厚/Cuめっき皮膜膜厚)は0.006~0.67が望ましく、更に望ましい比率は0.011~0.67である。0.006未満ではSnCu合金めっき皮膜の膜厚が薄すぎ、接着性改善に寄与しない恐れがある。0.67を超えるとSnCu合金めっき皮膜の膜厚が厚すぎ、磁気特性が低下したりSnCu合金めっき皮膜が剥離しやすくなる恐れがある。また、Niめっき皮膜とCuめっき皮膜の膜厚比率(Niめっき皮膜膜厚/Cuめっき皮膜膜厚)は0.12~2.67が望ましく、更に望ましい比率は0.3~1.0である。0.12未満ではNiめっき皮膜の膜厚が薄すぎ、耐食性を高める効果が薄れる恐れがある。2.67を超えるとNiめっき皮膜の膜厚が厚すぎ、Cuめっき皮膜による平滑化の効果が薄れる恐れがある。
 SnCu合金めっきのめっき浴は請求項1に記載の組成範囲を有する皮膜が形成される液組成のめっき浴であれば公知のものを使用することが出来る。たとえば、ピロリン酸浴、シアン浴、酸性浴などである。なお、猛毒のシアンを使用しないSnCu合金めっきの技術が特開2004-10907号公報に紹介されており、このような浴を使用するのが好ましい。
 SnCu合金めっきの条件についても、請求項1に記載の組成範囲及び膜厚を有する皮膜にコントロールできる任意の条件を用いることができる。
 めっき方法は、バレルめっき、ラックめっきを適宜使用できるが、めっきを行う磁石体がリング形状であって、電気めっきを行う場合においては、ラックめっきが望ましい。ラックめっきはリングの外径と内径に流れる電流値を制御しやすく、外径部と内径部に形成されるめっき皮膜の膜厚を均一にしやすい。SnCu合金めっきを電気めっきにて行う場合、電流密度はめっき液の種類、バレルめっき、ラックめっき等めっきの方式により適宜選択できるが、0.1A/dm以上10A/dm以下が好ましく、0.5A/dm以上5A/dm以下がさらに好ましい。
 前記SnCu合金めっき皮膜に、第三リン酸ソーダ等を用いて化成処理を行っても良い。化成処理条件は、例えば濃度が10g/L以上30g/L以下、液温20℃の第三リン酸ソーダ溶液に、最表層にSnCu合金めっき皮膜を有する希土類系永久磁石を浸漬後、洗浄、乾燥すれば良い。このような化成処理を行うことにより、接着性を低下させることなく、SnCu合金めっき皮膜の変色を抑えることができる。またリン酸を用いて化成処理を行っても良い。リン酸イオン換算で1~80g/Lに希釈した溶液を30~60℃に加温し、最表層にSnCu合金めっき皮膜を有する希土類系永久磁石を30秒から5分程度浸漬し化成皮膜を生成させる。
 SnCu合金めっきを行う前に、下地めっき皮膜に対し酸による活性化処理を行うことで、下地めっき皮膜とSnCu合金めっき皮膜の密着性をさらに向上させ、安定した生産をすることができる。アルカリ処理では脱脂効果はあるが、活性化は十分ではなく、またアルカリは水で洗浄しにくく、表面に残渣として残りやすいため、SnCu合金めっき皮膜と下地めっき皮膜との間で剥離が発生する場合があるので注意を要する。酸としては塩酸または硫酸が好ましい。塩酸の濃度は10vol%以上50vol%以下が好ましい。10vol%未満では十分な活性化ができず、50vol%を超えるとNiめっき皮膜やCuめっき皮膜の変色(表面変質)により密着性が低下する恐れがある。
 硫酸を使用する場合にも塩酸と同等の濃度範囲で使用すればよい。
 また塩酸、硫酸以外の酸としては、有機酸である蓚酸、リン酸等も好適に使用できる。特に、SnCu合金めっきにピロリン酸系のメッキ液を使用する場合には、活性化に用いる酸にリン酸、ポリリン酸等を用いると、酸活性化後に水洗無しでそのままめっき工程に移っても、後工程のSnCu合金めっき液への影響が少なく、下地めっき皮膜との密着性が良好なSnCu合金めっき皮膜を形成することができる。
 以下に、SnCu合金めっき皮膜の下地めっき皮膜の望ましい形態を示す。
 下地めっき皮膜としてのCuめっき皮膜の形成に際しては、ピロリン酸浴、硫酸浴、シアン浴、無電解浴、また特許第3972111号公報や特許第4033241号公報に記載のFeイオンのキレート剤を含むめっき浴が選択できる。ピロリン酸浴による電気Cuめっきは、電気伝導性及び柔軟性、展延性に優れており、膜の付き周り性が良好である。このため、ピロリン酸浴による電気めっきはリング形状物のめっきに好適に使用できる。ここでいう膜の付き周り性とは、めっきが素材を被覆できる能力、例えば、被めっき物の凹部やリング磁石の内径部などの電流密度が低くなってしまう部分までめっきが付着する能力を示す。
 またピロリン酸浴による電気めっきはセル構造がなく平滑性に優れており、この上にめっきするSnCu合金めっきの平滑性を保つことができる。
 特許第3972111号公報および特許4033241号公報に記載の電気Cuめっきは光沢があり、非常に緻密な膜をR-Fe-B系希土類磁石上に直接形成できる。 
 ピロリン酸Cu浴を用いた電気めっきを行う場合には、さらにその下地として導電性保護層を含むことが好ましい。ピロリン酸Cu浴は浴中に遊離Cuイオンを多く含むため、R-Fe-B系磁石をピロリン酸浴に直接浸漬すると、磁石の表面を構成するFeなどの電気的に卑な金属と電気的に貴なCuとの間の置換めっき反応により、磁石の表面に密着性の悪いCu皮膜が形成される恐れがある。このためピロリン酸Cu浴によるめっき皮膜の下地としては、R-Fe-B系磁石体表面に直接密着性に優れためっき皮膜を形成できる、電気Niめっき皮膜が望ましい。電気Niめっきはめっき液の組成管理が簡便であり皮膜の膜厚を制御しやすい。シアン浴による電気Cuめっきも使用できるが安全性に留意する必要がある。
 特許第3972111号公報および特許4033241号公報に記載の方法を採用する場合、下地のめっきは必ずしも必要では無い。めっき液によるFeイオンとのキレート安定度定数が高いキレート剤を配合することで、希土類磁石表面に密着性に優れた銅めっき皮膜を形成することが出来る。
 特にリング磁石に電気めっきを採用する場合、リング磁石の内径部へ電流が流れにくく、内径部に形成されるめっき皮膜が薄くなる傾向があり、めっき液による腐食で皮膜の密着性が悪くなる場合があるが、本めっき液を使用するとめっき液による磁石体の腐食が無いため、磁石体とめっき皮膜の剥離が原因の接着強度の低下を抑えることができ好適である。
 Niめっきは、電気めっきであればワット浴、スルファミン酸浴、中性浴などのめっき浴を用いることが出来る。また膜厚均一性の高い無電解めっきを行う事も出来る。
 Niめっき、Cuめっきのめっき方法はバレルめっき、ラックめっき等、めっきするものの形状、重量、大きさによって選択すればよい。
 ただし希土類系永久磁石がリング形状であり電気めっきを行う場合にはラックめっきが好ましい。ラックめっきはリングの外径部と内径部に流れる電流を制御しやすく、外径部と内径部に形成されるめっき皮膜の膜厚を均一にしやすい。電気めっきを選択する場合にはその電流密度はめっき液の種類、めっき方法によって決めればよく、0.1A/dm以上10A/dm以下が好ましく、0.5A/dm以上5A/dm以下が更に好ましい。
 磁石のめっき前処理としては任意の方法を用いることができ、硝酸と他の酸の混酸、硫酸、塩酸、有機酸等、また電解エッチングも選択できる。
 本発明は、めっきが可能な磁石であれば公知の希土類系永久磁石全てに適用できる。
 希土類系永久磁石はその線膨張係数が、例えばR-Fe-B系永久磁石の場合、C//方向で5×10-6/℃、C⊥方向で-1.5×10-6/℃と非常に小さい為、線膨張係数の大きい鉄系素材(例えば鉄の線膨張係数は12×10-6/℃)などの他部材と、エポキシ系接着剤などの硬度の高い接着剤を用いて接着して接合構造体を作製した場合、加熱硬化の際に線膨張係数の差から発生する応力により、磁石に割れが発生することがある。この現象はR-Fe-B系リング磁石の内径に鉄系素材のヨークを挿入し接着剤を塗布しモーター用ロータとした場合に顕著で、接着剤の加熱硬化時に線膨張係数の大きな鉄系素材が膨張し磁石割れを起こす。この対策として、接着剤として硬度の低いシリコーン系接着剤が広く採用されている。
 工業的には比較的短時間で加熱により硬化する付加反応形のシリコーン系接着剤が使用される場合が多い。シリコーン系接着剤はこのような応力を吸収し、磁石に割れが発生しにくい。しかしながら、シリコーン系接着剤を用いて作製した接合構造体は、高温高湿環境により急激に接着強度が低下し、特に磁石体の最表層にNiめっき皮膜を有する希土類系永久磁石の場合はその低下が顕著である。本発明のSnCu合金めっき皮膜を最表層に有する希土類系永久磁石を、シリコーン系接着剤を用いて他部材と接着した接合構造体は、この問題を解決し、耐湿性試験後も接着強度の低下が少なく、長期にわたり、安定した接着強度を保証することができる。
 また、接合構造体として接着する前に、耐湿試験に供した後に接着して、接着強度を測定しても、耐湿試験に供しないものと比較して強度が低下しない。
 接着性の良さを知る指標の一つとして濡れ性の評価が用いられている。この評価方法は、濡れ張力試験液を用いて試験体表面の濡れ性を調べる方法であり、この指数が高いほど一般的に接着性は良くなるといわれている。本発明の希土類系永久磁石は、接着剤にて他部材と接着後、前記耐湿性試験を施しても接着強度が低下しないだけでなく、他部材と接着する前に表面が酸化した場合でも加熱処理により接着性を容易に回復することができる。本発明の希土類永久磁石に他部材を接着しないで長期間保管し、めっき皮膜表面の濡れ性が低下した状態にて、150℃×90分の加熱処理を施した場合、例えば、和光純薬製の濡れ張力試験液を用いて評価すると、その濡れ性を評価する指数は、加熱処理前40mN/mに対して加熱処理後73mN/mに回復することが確認された。このことから本発明の希土類系永久磁石は、加熱処理によりさらに接着性を保持できる期間を長く出来る。
 本発明の希土類系永久磁石を構成する磁石体(磁石素材)の一例として、R-Fe-B系永久磁石の粉末冶金法での製造方法について述べる。その組成は、例えば、主要成分のRとFeとBの合計を100mass%として、R:24mass%以上34mass%以下(RはYを含む希土類元素の少なくとも1種であり、Nd及びPrの少なくとも1種を必ず含む)、B:0.6mass%以上1.8mass%以下、Fe:残部の組成が挙げられる。Feはその一部がCoで置換されていても良く、また、3mass%以下程度のAl、Si、Cu、Ga、Nb、Mo、Wなどの添加元素を含んでいても良い。
 R:24mass%未満では、磁気特性の内、残留磁束密度B、保磁力HcJが低下する。また34mass%を超えると焼結体内部の希土類に富む相の量が多くなり、且つ形態も粗大化して耐食性が低下する。B:0.6mass%未満の場合、主相であるRFe14B相の形成に必要なB量が不足し、軟磁性的な性質を有するRFe14相が生成し保磁力が低下する。一方B量が1.8mass%を超えると非磁性相であるBに富む相が増加して残留磁束密度Bが低下する。
 粉砕は粗粉砕と微粉砕に分かれ、粗粉砕はスタンプミル、ジョークラッシャー、ブラウンミル、ディスクミル等または水素吸蔵法で行うのが好ましい。微粉砕はジェットミル、振動ミル、ボールミル等で行うのが好ましい。いずれも酸化を防ぐために、有機溶媒や不活性ガスを用いて非酸化雰囲気中で行うのが好ましい。粉砕粒度は2~8μm(F.S.S.S.)が好ましい。2μm未満では磁粉の活性度が高いため、容易に酸化しやすい。焼結時の変形が大であり磁気特性も悪化する。8μmを超えると焼結後に得られる結晶粒径が大きくなり容易に磁化反転が起こり、保磁力の低下を招く。
 成形は磁場中で行う。磁場強度は159kA/m以上が好ましく、239kA/m以上がより好ましい。159kA/m未満では磁粉の配向が不十分であり、必要な磁気特性が得られない。成形圧は0.5~2ton/cmが望ましい。0.5ton/cm未満では成形体の強度が弱く、こわれやすい。また2ton/cmを超えると磁粉の配向が乱れ、磁気特性が低下する。焼結は、真空又はアルゴン雰囲気中で1000~1150℃で行うのが好ましい。1000℃未満では焼結不足により、必要とされる密度が得られず磁気特性が低下する。1150℃を超えると過焼結により、変形や磁気特性の低下が発生する。
 焼結の後、熱処理及び加工を行う。なお加工は熱処理の前に行うこともできる。
 以下、本発明を実施例によってさらに詳細に説明する。なお、本発明はこれに限定して解釈されるものではない
〈磁石の作製〉
(実施例1)
 公知の方法により、(Nd,Dy)(Fe)14B型金属間化合物を主相とするNd-Dy-Fe-Al-B系焼結磁石体を作製した。この焼結磁石体の室温における磁気特性はB=1.2T(12kG)、HcJ=1989kA/m(25kOe)、(BH)max=280kJ/m(35MGOe)であった。次に、前記焼結磁石体を30mm×15mm×3mmの直方体形状に加工後、バレル研磨を施した。
 前記研磨後の焼結磁石体を水溶性防錆剤に浸漬後、約60℃に加温して乾燥した。こうして得られた試料についてめっき前処理として5vol%の硝酸による第1前処理、その後、過酸化水素10vol%、酢酸25vol%の混酸による第2前処理を行い、その後、以下の順でNi-Cu-Ni3層めっき皮膜を成膜した。
[1層目Niめっき皮膜]
めっき浴:ワット浴(硫酸Ni300g/L、塩化Ni50g/L、ホウ酸50g/L)
浴温:50℃
電流密度:1A/dm
膜厚:3μm
成膜後水洗
[2層目Cuめっき皮膜]
めっき浴:ピロリン酸Cu浴(ピロリン酸Cu80g/L、金属Cu30g/L、ピロリン酸カリウム300g/L、アンモニア2ml/L、光沢剤(奥野製薬ピロトップPC)1ml/L)
浴温:55℃
電流密度:1A/dm
膜厚:7μm
成膜後水洗
[3層目Niめっき皮膜]
めっき浴:ワット浴(硫酸Ni300g/L、塩化Ni50g/L、ホウ酸50g/L、光沢剤(サッカリン系)10mL/L)
浴温:50℃
電流密度:1A/dm
膜厚5μm
成膜後水洗
 以上のようにして成膜したNi-Cu-Ni3層めっき皮膜を有する焼結磁石体表面に、以下の条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
[SnCu合金めっき皮膜]
めっき浴:ピロリン酸第一スズ20g/L、ピロリン酸Cu10g/L、ピロリン酸カリウム180g/L、光沢剤、カチオン界面活性剤、表面張力調整剤、浴安定剤等添加
浴温:20℃
電流密度:1A/dm
膜厚1μm
成膜後水洗乾燥
 SnCu合金めっき皮膜の組成はCu:Sn=55:45mass%であった。
(実施例2)
 SnCu合金めっき皮膜の膜厚を0.1μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例3)
 SnCu合金めっき皮膜の膜厚を0.2μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例4)
 SnCu合金めっき皮膜の膜厚を2μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例5)
 Ni-Cu-Ni3層めっき皮膜の膜厚構成においてNi膜厚5μm、Cu膜厚12μm、Ni膜厚8μmとしSnCu合金めっき皮膜の膜厚を0.1μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類永久磁石を作製した。
(実施例6)
 Ni-Cu-Ni3層めっき皮膜の膜厚構成においてNi膜厚5μm、Cu膜厚12μm、Ni膜厚8μmとしSnCu合金めっき皮膜の膜厚を0.2μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類永久磁石を作製した。
(実施例7)
 Ni-Cu-Ni3層めっき皮膜の膜厚構成においてNi膜厚1μm、Cu膜厚3μm、Ni膜厚2μmとしSnCu合金めっき皮膜の膜厚を2μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類永久磁石を作製した。
(実施例8)
 実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した後、第三リン酸ソーダ10g/L溶液に3分間浸漬し、水洗、乾燥して化成処理を行った。
(実施例9)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=65:35mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例10)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=60:40mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例11)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=50:50mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例12)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=47:53mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例13)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=46:54mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(実施例14)
 実施例1と同じ方法で、Ni-Cu-Ni3層めっき皮膜を成膜し、その後、10vol%硫酸に浸漬、水洗した。
 以上のようにして成膜したNi-Cu-Ni3層めっき皮膜を有する焼結磁石体表面に、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
(実施例15)
 実施例1と同じ方法で、Ni-Cu-Ni3層めっき皮膜を成膜し、その後、10vol%塩酸に浸漬、水洗した。
 以上のようにして成膜したNi-Cu-Ni3層めっき皮膜を有する焼結磁石体表面に、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
(実施例16)
 実施例1と同じ方法で、Ni-Cu-Ni3層めっき皮膜を成膜し、その後、水で希釈し、pHを1.3に調整したポリリン酸に浸漬した。その後水洗しないでSnCu合金めっきを行った以外は、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
(実施例17)
 実施例1で準備した焼結磁石体の表面に特許第4033241号公報に記載の方法で膜厚が17μmのCuめっき皮膜を成膜し、さらにCuめっき皮膜の表面に以下の条件でNiめっき皮膜を成膜した。
[2層目Niめっき皮膜]
めっき浴:ワット浴(硫酸Ni300g/L、塩化Ni50g/L、ホウ酸50g/L、光沢剤(サッカリン系)10mL/L)
浴温:50℃
電流密度:1A/dm
膜厚5μm
成膜後水洗
 以上のようにして成膜したCu-Ni2層めっき皮膜を有する焼結磁石体表面に、以下の条件でSnCu合金めっき皮膜を成膜し、本発明の希土類系永久磁石を得た。
[SnCu合金めっき皮膜]
めっき浴:ピロリン酸第一スズ20g/L、ピロリン酸Cu10g/L、ピロリン酸カリウム180g/L、光沢剤、カチオン界面活性剤、表面張力調整剤、浴安定剤等添加
浴温:20℃
電流密度:1A/dm
膜厚1μm
成膜後水洗乾燥
 SnCu合金めっき皮膜の組成はCu:Sn=55:45mass%であった。
(参考例)
 実施例1で使用したものと同じ焼結磁石体に対し、実施例1と同じ方法で前処理を施し、実施例1と同じ方法で1層目のNiめっき皮膜を成膜し、その後膜厚を12μmとしたこと以外は実施例1と同じ方法で2層目のCuめっき皮膜を成膜してNi-Cu2層めっき皮膜を有する希土類系永久磁石を作製した。
 以上のようにして成膜したNi-Cu2層めっき皮膜を有する焼結磁石体表面に、実施例1と同じ条件でSnCu合金めっき皮膜を成膜し、多層めっき皮膜を有する希土類系永久磁石を得た。
(比較例1)
 SnCu合金めっき皮膜の膜厚を4μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(比較例2)
 SnCu合金めっき皮膜の膜厚を3.5μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(比較例3)
 SnCu合金めっき皮膜の膜厚を0.05μmとした以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(比較例4)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=80:20mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。Cuの比率が高いので変色を防止するため、ベンゾトリアゾールで防錆処理を行った。
(比較例5)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=67:33mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。出来上がった膜は銅の成分が多く、色調が黄銅色であったため、10vol%の硫酸で洗浄、水洗後、ベンゾトリアゾールにて防錆処理を行った。
(比較例6)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=40:60mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(比較例7)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=30:70mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。
(比較例8)
 SnCu合金めっきの液組成を調整し皮膜の組成をCu:Sn=10:90mass%としたこと以外は実施例1と同じ方法で多層めっき皮膜を有する希土類系永久磁石を作製した。 
(比較例9)
 実施例1と同じ方法でNi-Cu-Ni3層めっき皮膜を有する希土類系永久磁石を作製し、10vol%の硫酸で洗浄、水洗し、さらに10mass%の苛性ソーダで洗浄、水洗、その後乾燥した。
(比較例10)
 実施例1と同じ方法でNi-Cu-Ni3層めっき皮膜を成膜し、その後、3g/Lの蓚酸溶液(20℃)に3分間浸漬し、水洗後乾燥した。
(比較例11)
 実施例1で使用したものと同じ焼結磁石体に対し、実施例1と同じ方法で前処理を施し、実施例1と同じ方法で1層目のNiめっき皮膜を成膜し、膜厚を12μmとしたこと以外は実施例1と同じ方法で2層目のCuめっき皮膜を成膜して、Ni-Cu2層めっき皮膜を有する希土類系永久磁石を作製した。
 その後、10vol%の硫酸で洗浄、水洗後、ベンゾトリアゾールにて防錆処理を行った。
(比較例12)
 実施例1と同じ方法で、Ni-Cu-Ni3層メッキ皮膜を成膜した。
 その後、硫酸ニッケル、硫酸銅、pH調整剤及び光沢剤等の添加剤を添加しためっき液で膜厚2μmのCu-Ni合金めっき皮膜を成膜した。皮膜の組成はNi、28mass%(残部Cu)であった。
(比較例13)
 実施例1と同じ方法で、Ni-Cu-Ni3層めっき皮膜を成膜した。
 その後、シアン化第一銅、フェロシアン化鉄、ロッセル塩を添加し、更にpHを調整しためっき液で膜厚2μmのCu-Fe合金めっき皮膜を成膜した。皮膜の組成はFe、13mass%(残部Cu)であった。
〈接着性試験〉
 実施例1~実施例17、参考例、比較例1~比較例13で作製した磁石を、シリコーン系接着剤(東レ・ダウコーニング製SE1750:付加反応型のシリコーン系接着剤)を用いてSUS304製のヨークに接着して接合構造体を作製した。硬化条件は、150℃×90分(温度は接触型温度計で磁石温度を測定)で、1条件につき各10ケの接合構造体を作製した。そのうち、5ケは接着直後に圧縮せん断強度を測定し、残りの5ケは高温高湿80℃×90%×24時間の耐湿性試験後に圧縮せん断強度を測定(いずれの接合構造体も室温に戻った状態にて圧縮せん断強度を測定)した。圧縮せん断強度はTOYO BALDWIN(TENSILON UTM-I-5000C)を用いて測定した。圧縮速度は1.5mm/minとした。また試験後の剥離面の接着剤の状態、および、試験に伴う取扱傷の発生有無について目視観察した。試験結果を表1および表2に示した。なお、表中の接着強度(圧縮せん断強度)は各5ケの測定値の平均値を示す。
 実施例1~実施例17および参考例の磁石については、接着直後も耐湿性試験後も良好な接着強度を示し、また、接着剤の剥離モードも全面凝集破壊となったことから、本発明の希土類系永久磁石は、接着剤を用いて他部材と接着後に耐湿性試験を行っても、接着強度の低下が少ないことがわかった。また、試験後に、試験に供したほかの部分(接着面以外)に傷は発生していなかった。
 比較例1、2の磁石については、皮膜の脆性が高く、接着後も耐湿試験後もSnCu合金めっき皮膜が破壊されSnCu合金めっき膜の部分的剥離が見られた。
 比較例3の磁石については、接着直後の接着強度は高く、接着剤の剥離モードも全面凝集破壊となったが耐湿試験後は磁石側の界面剥離となり接着強度は低下した。従って、SnCu合金めっき皮膜の膜厚が0.05μmでは接着性向上の効果は認められないことがわかった。
 比較例4、5の磁石については、接着直後の接着強度は高く、接着剤の剥離モードも全面凝集破壊となったが、耐湿試験後は接着強度が急激に低下し、接着剤が磁石表面に残っていない界面剥離となった。
 比較例6、7、8の磁石については、接着性については問題が無かったが、接着等のハンドリングによる傷が発生した。このような傷はめっき皮膜の破損や寸法精度の低下を招く等、希土類系永久磁石の製品価値を落とすこととなり、量産上の取扱いを煩雑とする要因となる。
 比較例9、10、11の磁石については、接着直後の接着強度は高く、接着剤の剥離モードも全面凝集破壊となったが、耐湿性試験後は接着強度が低下し、接着剤が磁石側に残っていない界面剥離となった。
 比較例12、13の磁石については、接着直後の接着強度は比較的高く、接着剤の剥離モードも全面凝集破壊となったが、耐湿試験後は磁石側の接着剤界面剥離となり接着強度は低下した。
 以上の結果から、特定のSnCu合金めっき皮膜と下地皮膜の組み合わせでのみ耐湿試験後の接着性が低下しないことがわかった。
Figure JPOXMLDOC01-appb-T000002
(実施例18)
 公知の方法で、(Nd,Dy)(Fe)14B型金属間化合物を主相とするNd-Dy-Fe-Al-B系のラジアル配向を持つリング型焼結磁石体を作製した。この永久磁石体の室温における磁気特性はB=1.2T(12kG),HcJ=1989kA/m(25kOe),(BH)max=280kJ/m(35MGOe)であった。前記リング型焼結磁石体に加工を施し外径40mm×内径33mm×高さ13.5mmの磁石素材を得た。防錆剤に浸漬し乾燥後、実施例1と同じ条件でめっきを施し、Ni-Cu-Ni3層めっき皮膜(各層の膜厚は実施例1と同じ)の上層に膜厚1μmのSnCu合金めっき皮膜を有する本発明のリング型焼結磁石体を得た。SnCu合金めっき皮膜の膜厚については、磁石の内径部分を測定した。
 上記の最表層にSnCu合金めっき皮膜を有する本発明のリング型焼結磁石体の内径部分に、直径32.9mmのSUS304製の接着強度測定用ヨークを接着し、10ヶの本発明の接合構造体を作製した。なお、接着剤はシリコーン系接着剤(東レ・ダウコーニング製 SE1750)を用い150℃×90分加熱硬化した。
(比較例14)
 接着剤として加熱硬化型のエポキシ系接着剤を用い150℃×90分加熱硬化を行った以外は実施例18と同じ接合構造体を作製した。
〈評価試験〉
 硬化後それぞれの接合構造体を目視確認したところ、実施例18についてはリング型焼結磁石体に割れは発生していなかったが、比較例14については線膨張係数の差から割れが発生していた。目視結果を表3に示した。
 実施例18の接合構造体のうち、5ケは接着直後に圧縮せん断強度を測定した。残りの5ケは高温高湿80℃×90%×24時間の耐湿性試験後に圧縮せん断強度を測定した。なお、圧縮せん断強度はTOYO BALDWIN(TENSILON UTM-I-5000C)を用いて測定した。圧縮速度は1.5mm/minとした。また、試験後の剥離面の接着剤の状態について観察した。
 圧縮せん断強度の測定はリング型焼結磁石体のみを固定する図1に示す接着強度測定治具3に前記リング型焼結磁石体2と接着強度測定用ヨーク1とからなる接合構造体を載置し図2の様に白抜き矢印方向に所定圧力を加えて行った。その結果、上記耐湿性試験後にも接着強度の低下は少なく、剥離面は接着剤の凝集破壊面となっていた。なお、表中の接着強度(圧縮せん断強度)は各5ケの測定値の平均値を示す。
Figure JPOXMLDOC01-appb-T000003
 また、実施例18と同じ接合構造体を更に5ケ作製し、80℃×90%×1000時間の耐湿性試験に供した後、上記と同じ圧縮せん断強度を測定した。
 上記耐湿性試験に供した接合構造体の接着強度(5ケの圧縮せん断強度測定値の平均値)は4.3MPaであり、実施例18において行った耐湿性試験(80℃×90%×24時間)後の接着強度4.8MPaと比較してもその接着強度の低下は軽微であった。また、剥離した面の接着剤の剥離モードを確認したが、全てのサンプルについて、接着剤の凝集破壊であった。
 また、上記耐湿試験後の希土類系永久磁石は、めっき皮膜の剥離、めっき皮膜のふくれ等が観察されず良好な耐食性を示した。
(実施例19)
 実施例18で作製した最表層にSnCu合金めっき皮膜を有する本発明のリング型焼結磁石体を30℃×70%×500時間の耐湿性試験に供した後、その内径部分に、直径32.9mmのSUS304製の接着強度測定用ヨークを接着し、10ヶの本発明の接合構造体を作製した。なお、接着剤はシリコーン系接着剤(東レ・ダウコーニング製 SE1750)を用い150℃×90分加熱硬化した。
 耐湿性試験において採用した30℃×70%の条件は日本国埼玉県熊谷市における2004年~2006年までの6月から8月までの平均気温と平均湿度(25.4℃、70.6%)から決定した。
 0時間から500時間経過までのSnCu合金めっきの表面酸化の変化を、0時間、24時間、250時間、500時間経過後の表面分析をXPS(島津製作所製 ESCA-850)にて分析することにより調べた。結果を図3に示す。図3から明らかなように、0時間から500時間まで、表面酸化が進むことはなかった。
 また、接着後について5ヶ、80℃×90%×24時間の耐湿試験後に5ヶそれぞれ圧縮せん断強度を測定した。
 せん断強度の測定結果は5ヶの平均とした。
 その結果、接着後のせん断強度は4.9MPaであった。耐湿試験後のせん断強度は4.8MPaであり、せん断強度の低下はほとんど無かった。目視確認の結果、剥離面は接着後についても、耐湿試験後についても接着剤の全面凝集破壊となった。
 以上の結果は、最表層にSnCu合金めっき皮膜を有する本発明のリング型焼結磁石体の安定した耐酸化性が、腐食環境に暴露した場合における接着強度の低下を阻止したからであると考えられる。
(実施例20)
 実施例18で作製した最表層にSnCu合金めっき皮膜を有する本発明のリング型焼結磁石体を80℃×90%×24時間の耐湿性試験に供した後、その内径部分に、直径32.9mmのSUS304製の接着強度測定用ヨークを接着し、10ヶの本発明の接合構造体を作製した。なお、接着剤はシリコーン系接着剤(東レ・ダウコーニング製 SE1750)を用い150℃×90分加熱硬化した。
 接着後について5ヶ、80℃×90%×24時間の耐湿試験後に5ヶそれぞれ圧縮せん断強度を測定した。
 せん断強度の測定結果は5ヶの平均とした。
 その結果、接着後のせん断強度は5.0MPaであった。耐湿試験後のせん断強度は4.9MPaであり、せん断強度の低下はほとんど無かった。目視確認の結果、剥離面は接着後についても、耐湿試験後についても接着剤の全面凝集破壊となった。
(実施例21)
 公知の方法で、(Nd,Dy)(Fe)14B型金属間化合物を主相とするNd-Dy-Fe-Al-B系のラジアル配向を持つリング型焼結磁石体を作製した。この永久磁石体の室温における磁気特性はB=1.2T(12kG),HcJ=1989kA/m(25kOe),(BH)max=280kJ/m(35MGOe)であった。前記リング型焼結磁石体に加工を施し外径40mm×内径33mm×高さ13.5mmの磁石素材を得た。防錆剤に浸漬し乾燥後、めっきを行った。
 めっきを行う希土類永久磁石がリング形状の場合には、リングの外径部に電流が集中しやすい。この傾向はリング磁石の直径に対する軸方向の長さが長くなるほど顕著になり、内径部に形成されるめっき皮膜の膜厚が薄くなる傾向にある。
 実施例21においては、前記リング型焼結磁石の内径部における膜厚確保のため、特開2001-73198に開示された装置を用い順次、実施例1と同じ条件にてめっきを行った。装置は複数台用意しそれぞれのめっき液を準備した。装置間はめっきを行う磁石素体は濡れた状態で移動した。SnCu合金めっき皮膜の膜厚は内径部にて測定したところ1μmであった。その組成はCu:Sn=55:45mass%であった。
 上記リング型焼結磁石体の内径部に、直径32.9mmのSUS304製の接着強度測定用ヨークを接着し、10ヶの本発明の接合構造体を作製した。なお、接着剤はシリコーン系接着剤(東レ・ダウコーニング製 SE1750)を用い150℃×90分加熱硬化した。
 硬化後の接合構造体を目視確認したところ、リング型焼結磁石体に割れは発生していなかった。
 作製した接合構造体のうち、5ケは接着直後に圧縮せん断強度を測定した。残りの5ケは高温高湿80℃×90%×24時間の耐湿性試験後に圧縮せん断強度を測定した。なお、圧縮せん断強度はTOYO BALDWIN(TENSILON UTM-I-5000C)を用いて測定した。圧縮速度は1.5mm/minとした。また、試験後の剥離面の接着剤の状態について観察した。
 圧縮せん断強度の測定はリング型焼結磁石体のみを固定する図1に示す接着強度測定治具3に前記リング型焼結磁石体2と接着強度測定用ヨーク1とからなる接合構造体を載置し図2の様に白抜き矢印方向に所定圧力を加えて行った。その結果、耐湿試験前の接着強度は5.2MPaであり、耐湿試験後の接着強度は5.0MPaであった。上記耐湿性試験後にも接着強度の低下は少なく、剥離面は接着剤の凝集破壊面となっていた。なお、接着強度(圧縮せん断強度)は各5ケの測定値の平均を示す。
 特開2001-73198に記載の方法は、リング磁石内径部にも陽極を配置することで、内径側と外形側のめっき膜厚比率を積極的に制御し直径に対する軸方向長さの大きいリング磁石にも適用でき、本願発明の方法と組み合わせて接着性を確保できる。
 本発明は、接着剤を用いて他部材と接着後、耐湿性試験を行っても、接着強度の低下が少ないめっき皮膜を有する希土類系永久磁石を提供できる点、特に、リング形状の磁石を他部材とシリコーン系接着剤を用いて接着した場合においても、接着時の割れも無く、長期に信頼できる接着改善効果を有する接合構造体を提供できる点において産業上の利用可能性が大である。
 
 
 

Claims (6)

  1.  積層めっき皮膜を有する希土類系永久磁石であって、めっき皮膜の最表層が膜厚0.1μm以上2μm以下のSnCu合金めっき皮膜であり、前記SnCu合金めっき皮膜の組成は、Snが35mass%以上55mass%未満で残部がCuであり、前記SnCu合金めっき皮膜の下層にNiめっき皮膜およびCuめっき皮膜を少なくとも含む2層以上の下地めっき皮膜を有し、前記下地めっき皮膜のうちSnCu合金めっき皮膜の直下はNiめっき皮膜であることを特徴とする、希土類系永久磁石。
  2.  前記下地めっき皮膜のうちCuめっき皮膜の膜厚は3μm以上17μm以下である請求項1に記載の希土類系永久磁石。
  3.  前記下地めっき皮膜のうちNiめっき皮膜の膜厚は2μm以上8μm以下である請求項1に記載の希土類系永久磁石。
  4.  前記SnCu合金めっき皮膜の上にさらに化成処理皮膜を有することを特徴とする、請求項1に記載の希土類系永久磁石。
  5.  前記希土類系永久磁石の形状がリング形状であることを特徴とする、請求項1に記載の希土類系永久磁石。
  6.  請求項1に記載の希土類系永久磁石にシリコーン系接着剤を介して他部材を接合した接合構造体。
     
     
     
PCT/JP2008/058873 2008-05-14 2008-05-14 希土類系永久磁石 WO2009139055A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008548380A JP4241906B1 (ja) 2008-05-14 2008-05-14 希土類系永久磁石
PCT/JP2008/058873 WO2009139055A1 (ja) 2008-05-14 2008-05-14 希土類系永久磁石
CN2008801291810A CN102027552B (zh) 2008-05-14 2008-05-14 稀土类永久磁铁
US12/990,341 US9287027B2 (en) 2008-05-14 2008-05-14 Rare earth metal-based permanent magnet
KR1020107028129A KR101555730B1 (ko) 2008-05-14 2008-05-14 희토류계 영구자석

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058873 WO2009139055A1 (ja) 2008-05-14 2008-05-14 希土類系永久磁石

Publications (1)

Publication Number Publication Date
WO2009139055A1 true WO2009139055A1 (ja) 2009-11-19

Family

ID=40559919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058873 WO2009139055A1 (ja) 2008-05-14 2008-05-14 希土類系永久磁石

Country Status (5)

Country Link
US (1) US9287027B2 (ja)
JP (1) JP4241906B1 (ja)
KR (1) KR101555730B1 (ja)
CN (1) CN102027552B (ja)
WO (1) WO2009139055A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150293372A1 (en) * 2012-11-29 2015-10-15 Nidec Sankyo Corporation Photographing Optical Device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183148A1 (en) * 2012-12-28 2014-07-03 Allure Home Creation Co., Inc. Magnetic Cookware Stands
US9905345B2 (en) 2015-09-21 2018-02-27 Apple Inc. Magnet electroplating
JP6488976B2 (ja) * 2015-10-07 2019-03-27 Tdk株式会社 R−t−b系焼結磁石
CN105405562A (zh) * 2015-12-01 2016-03-16 中磁科技股份有限公司 钕铁硼磁体
US10553352B2 (en) * 2016-03-18 2020-02-04 Apple Inc. Corrosion resistant magnet assembly
JP7020051B2 (ja) * 2017-10-18 2022-02-16 Tdk株式会社 磁石接合体
CN112725751B (zh) * 2020-12-16 2022-03-25 太原理工大学 一种超薄钕铁硼永磁体表面防护涂层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08154351A (ja) * 1994-11-29 1996-06-11 Daido Steel Co Ltd マグネットロータ
JP2002329627A (ja) * 2001-04-27 2002-11-15 Sumitomo Special Metals Co Ltd 希土類系永久磁石およびその製造方法
JP2003257721A (ja) * 2001-12-28 2003-09-12 Shin Etsu Chem Co Ltd 希土類焼結磁石
JP2006179801A (ja) * 2004-12-24 2006-07-06 Tdk Corp R−t−b系永久磁石及びめっき膜
JP2007273503A (ja) * 2006-03-30 2007-10-18 Tdk Corp 磁石およびその製造方法
JP2008147642A (ja) * 2006-11-15 2008-06-26 Hitachi Metals Ltd 希土類系永久磁石

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686537B2 (ja) 1988-06-22 1997-12-08 ティーディーケイ株式会社 永久磁石およびその製造方法
JP4336446B2 (ja) * 1999-06-30 2009-09-30 信越化学工業株式会社 希土類焼結永久磁石焼結体と永久磁石型同期モータ
EP1065777B1 (en) * 1999-06-30 2004-10-13 Shin-Etsu Chemical Co., Ltd. Rare earth-based sintered magnet and permanent magnet synchronous motor therewith
JP2002006562A (ja) * 2000-06-27 2002-01-09 Konica Corp 画像形成装置
WO2002004714A1 (en) * 2000-07-07 2002-01-17 Hitachi Metals, Ltd. Electrolytic copper-plated r-t-b magnet and plating method thereof
JP4595237B2 (ja) * 2001-04-27 2010-12-08 日立金属株式会社 銅めっき液および銅めっき方法
JP2003193273A (ja) 2001-12-21 2003-07-09 Sumitomo Special Metals Co Ltd ニッケルめっき被膜の表面処理方法
CN1934660A (zh) * 2004-06-30 2007-03-21 信越化学工业株式会社 耐腐蚀的稀土磁体及其制造方法
CN100588752C (zh) * 2004-08-10 2010-02-10 日立金属株式会社 在其表面上具有镀铜膜的稀土金属基永磁体的生产方法
US20090035603A1 (en) * 2006-02-07 2009-02-05 Hitachi Metals, Ltd., Method for producing rare earth metal-based permanent magnet having copper plating film on surface thereof
JP4770556B2 (ja) 2006-03-30 2011-09-14 Tdk株式会社 磁石

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08154351A (ja) * 1994-11-29 1996-06-11 Daido Steel Co Ltd マグネットロータ
JP2002329627A (ja) * 2001-04-27 2002-11-15 Sumitomo Special Metals Co Ltd 希土類系永久磁石およびその製造方法
JP2003257721A (ja) * 2001-12-28 2003-09-12 Shin Etsu Chem Co Ltd 希土類焼結磁石
JP2006179801A (ja) * 2004-12-24 2006-07-06 Tdk Corp R−t−b系永久磁石及びめっき膜
JP2007273503A (ja) * 2006-03-30 2007-10-18 Tdk Corp 磁石およびその製造方法
JP2008147642A (ja) * 2006-11-15 2008-06-26 Hitachi Metals Ltd 希土類系永久磁石

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150293372A1 (en) * 2012-11-29 2015-10-15 Nidec Sankyo Corporation Photographing Optical Device
US10423003B2 (en) * 2012-11-29 2019-09-24 Nidec Sankyo Corporation Photographing optical device

Also Published As

Publication number Publication date
JPWO2009139055A1 (ja) 2011-09-15
US20110037549A1 (en) 2011-02-17
JP4241906B1 (ja) 2009-03-18
CN102027552B (zh) 2013-01-09
CN102027552A (zh) 2011-04-20
KR101555730B1 (ko) 2015-09-25
US9287027B2 (en) 2016-03-15
KR20110021890A (ko) 2011-03-04

Similar Documents

Publication Publication Date Title
JP4241906B1 (ja) 希土類系永久磁石
US5275891A (en) R-TM-B permanent magnet member having improved corrosion resistance and method of producing same
JP4363480B2 (ja) 希土類系永久磁石
WO2006016570A1 (ja) 銅めっき被膜を表面に有する希土類系永久磁石の製造方法
JP2016517808A (ja) 研削鋸引きワイヤとその製造方法および利用
JP4770553B2 (ja) 磁石およびその製造方法
JP2004039917A (ja) 永久磁石の製造方法及び永久磁石
JP4045530B2 (ja) R−t−b系磁石の電解銅めっき方法
JP2007039784A (ja) 銅めっき被膜を表面に有する希土類系永久磁石
TW201531174A (zh) 複合金屬箔、具有載體之複合金屬箔、及使用此等所得之貼金屬積層板及印刷配線板
JP4586937B2 (ja) 耐食性磁石およびその製造方法
JP4538959B2 (ja) 希土類系永久磁石の電気Niめっき方法
JP2908637B2 (ja) Fe−B−R系焼結磁石の表面処理法
JP3935092B2 (ja) R−tm−b系永久磁石
JPH09270310A (ja) 希土類永久磁石
JPH01268004A (ja) 耐食性を改善したr−tm−b系永久磁石及び製造方法
JP4770556B2 (ja) 磁石
JP3796567B2 (ja) R−Fe−B系永久磁石及びその製造方法
JP3650141B2 (ja) 永久磁石
JP5708123B2 (ja) 磁石部材
JP2008251648A (ja) R−Fe−B系永久磁石の製造方法
JP2606904B2 (ja) 耐触性が良好な永久磁石及びその製造方法
JPH05198414A (ja) 接着性を改善したr−tm−b系永久磁石およびその製造方法
JP2005210135A (ja) 接合構造物及びその製造方法
JP2004327966A (ja) リン酸鉄系皮膜被覆r−t−b系磁石及びその化成処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129181.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008548380

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12990341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107028129

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08752744

Country of ref document: EP

Kind code of ref document: A1