WO2009133882A1 - 細菌毒素ワクチン - Google Patents

細菌毒素ワクチン Download PDF

Info

Publication number
WO2009133882A1
WO2009133882A1 PCT/JP2009/058345 JP2009058345W WO2009133882A1 WO 2009133882 A1 WO2009133882 A1 WO 2009133882A1 JP 2009058345 W JP2009058345 W JP 2009058345W WO 2009133882 A1 WO2009133882 A1 WO 2009133882A1
Authority
WO
WIPO (PCT)
Prior art keywords
stx2eb
seq
protein
hybrid protein
dna
Prior art date
Application number
PCT/JP2009/058345
Other languages
English (en)
French (fr)
Inventor
和敏 澤田
吉田 和哉
健史 松井
Original Assignee
出光興産株式会社
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 国立大学法人奈良先端科学技術大学院大学 filed Critical 出光興産株式会社
Priority to ES09738819.3T priority Critical patent/ES2686780T3/es
Priority to MX2010011938A priority patent/MX2010011938A/es
Priority to JP2010510133A priority patent/JP5360727B2/ja
Priority to DK09738819.3T priority patent/DK2287300T3/en
Priority to EP09738819.3A priority patent/EP2287300B1/en
Priority to US12/990,597 priority patent/US8846052B2/en
Priority to EP14152631.9A priority patent/EP2728004B1/en
Priority to CN200980116606.9A priority patent/CN102016034B/zh
Publication of WO2009133882A1 publication Critical patent/WO2009133882A1/ja
Priority to US14/480,004 priority patent/US20150133635A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0258Escherichia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/25Shigella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/28Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Vibrionaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/517Plant cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/55Fusion polypeptide containing a fusion with a toxin, e.g. diphteria toxin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a hybrid protein used in a vaccine against diseases caused by bacterial toxins such as Shiga toxin, cholera toxin, and Escherichia coli heat-resistant toxin, and a DNA construct for producing the hybrid protein.
  • Shiga toxin (Stx, verotoxin) is a protein exotoxin produced by enterohemorrhagic Escherichia coli among pathogenic E. coli. Shiga toxin causes hemorrhagic enteritis, hemolytic uremic syndrome, encephalopathy and the like. Shiga toxins are broadly divided into Stx1 and Stx2, and each is further divided into subclasses. Examples of Stx2 include Stx2e that causes porcine edema disease. Porcine edema disease is known to occur highly in piglets 1 to 2 weeks after weaning. The fatality rate due to infection with edema disease bacteria is extremely high at 50 to 90%.
  • CT Cholera toxin
  • LT heat-labile toxin
  • Stx, LT, and CT are composed of a B subunit pentamer involved in adhesion to cells and a toxic A subunit monomer. It is also known that LT and CT are similar in structure and function.
  • Non-patent Document 1 As a method for preventing diseases caused by these bacterial toxins, a method of administering a vaccine by injection or nasal spray or orally is known.
  • a technique is known in which detoxified Stx2e protein is produced using recombinant Escherichia coli and administered to pigs by injection (Non-patent Document 1).
  • the production amount of detoxified Stx2e protein by recombinant E. coli is not sufficient, and administration of vaccines by injection requires human labor.
  • interest is increasing in the livestock field from a viewpoint of labor reduction.
  • Non-patent Document 2 a transgenic plant containing DNA encoding the B subunit (LTB) of LT protein and expressing the DNA has been described (Patent Documents 1 and 2). Moreover, it describes about the transgenic plant which expresses DNA which codes LT protein or CT protein (patent document 3). However, these techniques have a problem that the amount of protein production is not sufficient. In addition, an example of producing LTB in lettuce has been reported (Non-patent Document 2).
  • the present inventors expressed Stx2e protein having a plant-derived secretory signal peptide added to the amino terminus by using a 5′-untranslated region (ADH5′UTR) of a plant-derived alcohol dehydrogenase gene, thereby producing Stx2e protein. It has been found that proteins can be efficiently produced in plants such as lettuce and accumulated at high concentrations in plants, and a patent application has been filed (Patent Document 4).
  • An object of the present invention is to more efficiently produce Stx protein and other bacterial toxin proteins having a higher-order structure similar thereto using plant cells.
  • the present invention was completed by successfully accumulating high concentrations in plant cells. That is, the present invention is as follows.
  • the hybrid protein according to (4) which has an amino acid sequence represented by SEQ ID NO: 10, 12, 14, or 16.
  • the hybrid protein according to (3) which has an amino acid sequence represented by SEQ ID NO: 86, 88, 90, 92, 94, 96, 98, or 100.
  • a DNA construct comprising DNA encoding the hybrid protein according to any one of (1) to (12).
  • the DNA construct according to (16), wherein the 5′-untranslated region of the plant-derived alcohol dehydrogenase gene is derived from tobacco.
  • a recombinant vector comprising the DNA construct according to any one of (13) to (19).
  • (21) A transformant transformed with the recombinant vector according to (20).
  • (22) The transformant according to (21), wherein the transformant is a transformed plant cell or a transformed plant.
  • (23) A seed obtained from the transformant according to (21) or (22).
  • (24) A peptide consisting of the amino acid sequence represented by SEQ ID NO: 2, 82 or 84.
  • represents a translation start point, and ⁇ represents a site to be cut after translation.
  • represents a translation start point, and ⁇ represents a site to be cut after translation.
  • represents a translation start point, and ⁇ represents a site to be cut after translation.
  • represents a translation start point, and ⁇ represents a site to be cut after translation.
  • represents a translation start point, and ⁇ represents a site to be cut after translation.
  • FIG. 3 shows the design of a DNA construct encoding CTB.
  • A shows the design of the endoplasmic reticulum type, B the cytoplasmic type, and C the chloroplast type DNA construct.
  • two or three Shiga toxin (Stx) protein, cholera toxin (CT) protein or E. coli heat-labile toxin (LT) protein have the following characteristics (A) and (B), respectively. It is linked in tandem via the peptide it has. (A) 12-30 amino acids; (B) Proline content is 20 to 35%.
  • Shiga toxin (Stx) is divided into type 1 (Stx1) and type 2 (Stx2). Stx1 is classified into subclasses a to d, and Stx2 is classified into subclasses a to g.
  • Shiga toxin protein consists of one A subunit that is the main body of toxicity and five B subunits that are involved in invasion into the intestinal mucosa.
  • Stx2e is known as a porcine edema disease toxin
  • its A subunit (Stx2eA) is represented by the amino acid sequence of SEQ ID NO: 4
  • B subunit (Stx2eB) is represented by the amino acid sequence of SEQ ID NO: 6. Is done.
  • Stx2eA and Stx2eB can be administered to pigs to cause an immune response
  • one or several amino acids in the amino acid sequence represented by SEQ ID NO: 4 or SEQ ID NO: 6 are substituted, deleted, or inserted, respectively. Or it may be added.
  • the “several” is, for example, preferably 2 to 30, more preferably 2 to 20, more preferably 2 to 10 in Stx2eA, and preferably 2 to 10, more preferably in Stx2eB. Is 2 to 5, more preferably 2 to 3.
  • Stx2eA and Stx2eB each have an identity of preferably 85% or more, more preferably 90% or more, more preferably 95% or more, with the amino acid sequence represented by SEQ ID NO: 4 or SEQ ID NO: 6. It may also be one that can be administered to pigs to cause an immune response.
  • Cholera toxin (CT) protein consists of one A subunit (CTA) which is a toxic body and five B subunits (CTB) involved in invasion into the intestinal mucosa represented by the amino acid sequence of SEQ ID NO: 8. .
  • CTA A subunit
  • CTB B subunits
  • the “several” is preferably 2 to 10, more preferably 2 to 5, more preferably 2 to 3.
  • CTB has 85% or more, more preferably 90% or more, more preferably 95% or more identity with the amino acid sequence represented by SEQ ID NO: 8, and is administered to animals for an immune response. It may be one that can cause
  • the Escherichia coli heat-labile toxin (LT) protein is composed of one A subunit that is the main body of toxicity and five subunits that are involved in invasion of the intestinal mucosa.
  • Shiga toxin, cholera toxin, and E. coli heat-labile toxin are also collectively referred to as “bacterial toxin”.
  • the number of amino acids in the peptide is preferably 12-25, more preferably 12-22.
  • the proline content of the peptide is preferably 20 to 27%, more preferably 20 to 25%.
  • proline is preferably arranged every two or every third. However, even in this case, at the terminal of the peptide, amino acids other than proline may be continuous within 5 or less, preferably 4 or less.
  • the total content of serine, glycine, arginine, lysine, threonine, glutamine, asparagine, histidine and aspartic acid is preferably 70% or more, more preferably 80% or more. More preferably, it is 90% or more.
  • the total content of serine, glycine and asparagine is preferably 70% or more, more preferably 80% or more, more preferably 90% or more.
  • the total content of serine and glycine among amino acids other than proline is preferably 70% or more, more preferably 80% or more, and more preferably 90% or more.
  • the total content of alanine, methionine and glutamic acid is preferably 30% or less, more preferably 20% or less, and more preferably 10% or less. This is because a peptide containing many of these amino acids tends to have a helix structure.
  • the total content of tryptophan, leucine, isoloincin, tyrosine, phenylalanine and valine is preferably 20% or less, more preferably 10% or less, more preferably 5% or less. It is. This is because a peptide containing a large amount of these amino acids tends to take a beta sheet structure and a helix structure.
  • the peptide is preferably a peptide (PG12) consisting of the amino acid sequence represented by SEQ ID NO: 2, a peptide (PG17) consisting of the amino acid sequence represented by SEQ ID NO: 82, or an amino acid sequence represented by SEQ ID NO: 84 Selected from the peptide consisting of (PG22).
  • two or three A subunit and B subunit hybrid proteins may be tandemly linked via the peptide, or two or three A subunits may be The peptide may be linked to tandem, or two or three B subunits may be linked to tandem via the peptide.
  • the hybrid protein of the present invention contains an A subunit, the A subunit is preferably detoxified.
  • two or three B subunits are preferably linked in tandem via the peptide.
  • it is preferable that two B subunits are tandemly linked via PG12.
  • the peptide is added to the C-terminal of the hybrid protein of the present invention.
  • the hybrid protein of the present invention preferably has PG12 added to its C-terminus.
  • the hybrid protein of the present invention has, for example, the amino acid sequence represented by SEQ ID NO: 10, 12, 14, 16, 86, 88, 90, 92, 94, 96, 98 or 100.
  • two Stx2eBs are linked in tandem via PG12.
  • two CTBs are linked in tandem via PG12.
  • two Stx2eBs are tandemly linked via PG12, and PG12 is further linked to the C-terminus thereof.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 16 two CTBs are linked in tandem via PG12, and PG12 is linked to the C-terminus thereof.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 86 three Stx2eBs are linked in tandem via PG12, respectively.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 88 three Stx2eBs are linked in tandem via PG12, and PG12 is linked to the C-terminus thereof.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 90 two Stx2eBs are linked in tandem via PG17, and PG12 is linked to the C-terminus thereof.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 92 two Stx2eBs are tandemly linked via PG22, and PG12 is further linked to the C-terminus thereof.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 94 three CTBs are linked in tandem via PG12, respectively.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 96 three CTBs are linked in tandem via PG12, and PG12 is linked to the C-terminus thereof.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 98 two CTBs are linked in tandem via PG17, and PG12 is linked to the C-terminus thereof.
  • hybrid protein having the amino acid sequence represented by SEQ ID NO: 100 two CTBs are linked in tandem via PG22, and PG12 is linked to the C-terminus thereof.
  • PG12 is linked to the C-terminus thereof.
  • the peptide such as PG12, PG17 or PG22 as a linker for linking the bacterial toxin protein, the accumulation level of the bacterial toxin protein in plant cells is increased.
  • the hybrid protein of the present invention preferably has a plant-derived secretory signal peptide or a chloroplast transit signal peptide added to its amino terminus.
  • additional refers to the case where the secretion signal peptide is directly bonded to the amino terminus of two or three bacterial toxin proteins linked via the peptide, even if other peptide is used. It is a concept that includes cases where they are combined.
  • the secretory signal peptide is preferably a plant belonging to the family Solanaceae, Brassicaceae, Asteraceae, more preferably Nicotiana, Arabidopsis, Lactuca, etc.
  • tobacco Naturala tabacum
  • Arabidopsis thaliana thaliana
  • lettuce Lactuca sativa
  • it is derived from tobacco ⁇ -D-glucan exohydrolase or tobacco 38 kDa peroxidase (GenBank Accession D42064).
  • the secretory signal peptide include a peptide having the amino acid sequence represented by SEQ ID NO: 18, which is derived from tobacco ⁇ -D glucan exohydrolase.
  • chloroplast transit signal peptide examples include lettuce Rbcs (rubis cosmo subunit) (GenBank ACCESSION D14001) -derived chloroplast transit signal peptide (transit peptide, TP, SEQ ID NO: 79).
  • the base sequence of DNA encoding the lettuce Rbcs-derived chloroplast transit signal peptide is represented by SEQ ID NO: 80, for example.
  • a hybrid protein in which a chloroplast translocation signal peptide is added to the amino terminus is also referred to as a chloroplast (Chl) hybrid protein
  • a DNA construct encoding the chloroplast hybrid protein is referred to as a chloroplast. It is also called a somatic DNA construct.
  • a chloroplast-type hybrid protein accumulates efficiently in plants in which chloroplasts such as tobacco are developed.
  • a hybrid protein in which neither a secretory signal peptide nor a chloroplast translocation signal peptide is added to the amino terminus is also called a cytoplasmic (Cyt) hybrid protein, and a DNA construct encoding the cytoplasmic hybrid protein is expressed in the cytoplasm. Also called a type of DNA construct.
  • the B subunits of three bacterial toxins are linked in tandem via the peptide.
  • a signal peptide such as an endoplasmic reticulum residual signal peptide or a vacuolar migration signal peptide may be added to the carboxyl terminus.
  • the “addition” is a concept including a case where the signal peptide is directly bonded to the carboxyl terminus of the hybrid protein and a case where it is bonded via another peptide.
  • a hybrid protein in which a secretory signal peptide is added to the amino terminus and an endoplasmic reticulum residual signal peptide is added to the carboxyl terminus is also referred to as an endoplasmic reticulum type (ER) hybrid protein.
  • ER endoplasmic reticulum type
  • a DNA construct encoding a protein is also referred to as an endoplasmic reticulum type DNA construct.
  • Endoplasmic reticulum-type hybrid proteins accumulate particularly efficiently in lettuce and the like.
  • an endoplasmic reticulum residual signal peptide is preferably added to the carboxyl terminus.
  • Examples of the endoplasmic reticulum residual signal peptide include an endoplasmic reticulum residual signal peptide containing a KDEL sequence (SEQ ID NO: 19), an HDEL sequence (SEQ ID NO: 20), a KDEF sequence (SEQ ID NO: 21), or an HDEF sequence (SEQ ID NO: 22).
  • vacuolar translocation signal peptide preferably a plant belonging to the family Solanaceae, Brassicaceae, Asteraceae, more preferably Nicotiana, Arabidopsis, horseradish genus ( It is derived from plants belonging to Armoracia and the like, more preferably tobacco (Nicotiana tabacum), Arabidopsis thaliana, horseradish (Armoracia rusticana) and the like. Also preferably derived from chitinase.
  • the amino acid sequence of a vacuolar transit signal peptide derived from tobacco chitinase is represented by SEQ ID NO: 76.
  • the base sequence of DNA encoding the vacuolar transit signal peptide derived from tobacco chitinase is represented by SEQ ID NO: 75, for example. Also preferably derived from horseradish peroxidase C1a isozyme.
  • the amino acid sequence of the vacuolar translocation signal peptide derived from horseradish peroxidase C1a isozyme is represented by SEQ ID NO: 78.
  • the base sequence of DNA encoding the vacuolar translocation signal peptide derived from horseradish peroxidase C1a isozyme is represented by SEQ ID NO: 77, for example.
  • a hybrid protein in which a secretory signal peptide is added to the amino terminus and a vacuole translocation signal peptide is added to the carboxyl terminus is also referred to as a vacuole type (Vac) hybrid protein, and the vacuole type hybrid
  • Vac vacuole type hybrid protein
  • a DNA construct encoding a protein is also referred to as a vacuole-type DNA construct.
  • the hybrid protein of the present invention can be synthesized chemically or can be produced by genetic engineering. A method for producing by genetic engineering will be described later.
  • the DNA construct of the present invention is characterized by including DNA encoding the hybrid protein of the present invention. That is, the DNA construct of the present invention includes DNA in which DNAs encoding two or three bacterial toxin proteins are tandemly linked via the DNA encoding the peptide.
  • the DNA encoding the peptide is represented by, for example, SEQ ID NO: 1 (PG12), SEQ ID NO: 81 (PG17), and SEQ ID NO: 83 (PG22).
  • Examples of DNA encoding bacterial toxin protein include DNA encoding Stx2eA (SEQ ID NO: 3), DNA encoding Stx2eB (SEQ ID NO: 5), and DNA encoding CTB (SEQ ID NO: 7).
  • the DNA encoding the peptide and the DNA encoding the bacterial toxin protein are ligated in the same reading frame except for the stop codon.
  • DNA encoding a bacterial toxin protein can be obtained by a general genetic engineering technique based on the nucleotide sequences of SEQ ID NOs: 3, 5, and 7, for example. Specifically, a cDNA library is prepared from bacteria producing each bacterial toxin according to a conventional method, and a desired clone is selected using a probe prepared from the library based on the base sequence. It can also be synthesized by chemical synthesis based on the above base sequence, PCR using 5 'and 3' end base sequences of the above base sequence as primers, and genomic DNA as a template.
  • the DNA encoding the hybrid protein of the present invention is represented, for example, by SEQ ID NO: 9, 11, 13, 15, 85, 87, 89, 91, 93, 95, 97 or 99.
  • the codons indicating the amino acids constituting the hybrid protein are appropriately modified so that the translation amount of the hybrid protein increases according to the host cell that produces the protein.
  • a codon modification method for example, the method of Kang et al. (2004) can be referred to.
  • a method of selecting a codon frequently used in the host cell, selecting a codon having a high GC content, or selecting a codon frequently used in the housekeeping gene of the host cell can be mentioned.
  • the DNA encoding the hybrid protein hybridizes under stringent conditions with the DNA having the base sequence of SEQ ID NO: 9, 11, 13, 15, 85, 87, 89, 91, 93, 95, 97 or 99. It may also be DNA that does.
  • Stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • two DNAs with high identity preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more, hybridize to each other, but the identity is lower than that.
  • a condition in which two DNAs do not hybridize is mentioned.
  • 2 ⁇ SSC 330 mM NaCl, 30 mM citric acid
  • 42 ° C. may be mentioned
  • preferably 0.1 ⁇ SSC 330 mM NaCl, 30 mM citric acid
  • 60 ° C. may be mentioned.
  • the DNA encoding the hybrid protein is operably linked to an enhancer.
  • “expressible” means that when the DNA construct of the present invention is inserted into a vector containing an appropriate promoter and the vector is introduced into an appropriate host cell, the hybrid protein is produced in the host cell. That means.
  • the term “linkage” is a concept that includes a case where two DNAs are directly bonded and a case where they are bonded via another base sequence. Enhancers include the Kozak sequence and the 5′-untranslated region of a plant-derived alcohol dehydrogenase gene.
  • the DNA encoding the hybrid protein is operably linked to the 5′-untranslated region of a plant-derived alcohol dehydrogenase gene.
  • the 5′-untranslated region of the alcohol dehydrogenase gene refers to a region containing a base sequence from the transcription start point of the gene encoding alcohol dehydrogenase to the translation start point (ATG, methionine). This region has a function of increasing the translation amount.
  • the “translation amount increasing function” refers to a function of increasing the amount of protein produced by translation when the information encoded by the structural gene is translated and translated to produce a protein.
  • the region may be derived from a plant, preferably a plant belonging to the family Solanaceae, Brassicaceae, Asteraceae, more preferably Nicotiana, Arabidopsis, It is derived from a plant belonging to the genus Lactuca, more preferably from tobacco (Nicotiana tabacum), Arabidopsis thaliana, lettuce (Lactuca sativa) and the like.
  • the 5′-untranslated region of the alcohol dehydrogenase gene is, for example, the 5′-untranslated region (NtADH5′UTR) of the alcohol dehydrogenase gene derived from tobacco (Nicotiana tabacum), from the nucleotide sequence represented by SEQ ID NO: 23 The region is particularly preferred.
  • the 5'-untranslated region of a plant-derived alcohol dehydrogenase gene can be isolated from, for example, the alcohol dehydrogenase gene of a plant cultured cell that highly expresses alcohol dehydrogenase (see JP-A-2003-79372).
  • genomic DNA is used as a primer for the chemical synthesis or the 5 'and 3' terminal base sequences of the region. It can also be synthesized by PCR or the like using as a template. Further, by using a part of the region whose base sequence is determined as a probe, it is possible to search for and isolate the 5'-untranslated region of the alcohol dehydrogenase gene of another plant.
  • the 5′-untranslated region of the alcohol dehydrogenase gene represented by the nucleotide sequence of SEQ ID NO: 23 is substituted or deleted with one or several bases as long as it retains the function of increasing the translation amount. You may have insertions or additions.
  • the “several” is preferably 2 to 10, more preferably 2 to 5, and particularly preferably 2 to 3.
  • DNA having the identity of preferably 5% or more, particularly preferably 90% or more with the 5′-untranslated region of the alcohol dehydrogenase gene, and having a function of increasing the translation amount may be used. .
  • Whether the region has the desired function of increasing the amount of translation can be determined, for example, by a transient assay using a GUS ( ⁇ -glucuronidase) gene or a luciferase gene as a reporter gene in a cultured tobacco cell, or a transformed cell integrated into a chromosome. This can be confirmed by the assay.
  • GUS ⁇ -glucuronidase
  • the DNA construct of the present invention has a base sequence represented by any of SEQ ID NOs: 24-29 and 101-111, for example.
  • a DNA construct having the base sequence represented by SEQ ID NO: 24 is obtained by tandemly transducing two Stx2eB proteins into the 5′-untranslated region (NtADH5′UTR, SEQ ID NO: 23) of a tobacco-derived alcohol dehydrogenase gene via PG12.
  • a DNA construct in which a DNA (SEQ ID NO: 9) encoding a hybrid protein linked to is linked.
  • DNA construct having the base sequence represented by SEQ ID NO: 25 was obtained by ligating NtADH5′UTR with a DNA encoding a hybrid protein in which two CTB proteins were linked in tandem via PG12 (SEQ ID NO: 11). DNA construct.
  • a DNA construct having the base sequence represented by SEQ ID NO: 26 is obtained by linking two Stx2eB proteins to NtADH5′UTR in tandem via PG12, a secretory signal peptide at the amino terminus, and an endoplasmic reticulum residual signal at the carboxyl terminus. It is a DNA construct in which DNAs encoding hybrid proteins added with peptides are linked.
  • a DNA construct having the nucleotide sequence represented by SEQ ID NO: 27 is obtained by linking two CTB proteins to NtADH5'UTR via PG12 in tandem, a secretory signal peptide at the amino terminus, and an endoplasmic reticulum at the carboxyl terminus. It is a DNA construct in which DNA encoding a hybrid protein to which a residual signal peptide is added is linked.
  • a DNA construct having the nucleotide sequence represented by SEQ ID NO: 29 is obtained by linking two CTB proteins to NtADH5'UTR via PG12 in tandem, adding a secretory signal peptide to the amino terminus, and linking to the carboxyl terminus. It is a DNA construct in which PG12 is linked and DNA encoding a hybrid protein in which an endoplasmic reticulum residual signal peptide is added to the carboxyl terminus is linked.
  • the DNA construct having the base sequence represented by SEQ ID NO: 101 is ligated to NtADH5'UTR with DNA encoding a hybrid protein in which two Stx2eB proteins are linked in tandem via PG12 and PG12 is linked to the carboxyl terminus.
  • DNA construct having the base sequence represented by SEQ ID NO: 101 is ligated to NtADH5'UTR with DNA encoding a hybrid protein in which two Stx2eB proteins are linked in tandem via PG12 and PG12 is linked to the carboxyl terminus.
  • a DNA construct having the base sequence represented by SEQ ID NO: 102 is obtained by linking two Stx2eB proteins to NtADH5′UTR in tandem via PG17, adding a secretory signal peptide at the amino terminus, and PG12 at the carboxyl terminus. It is a DNA construct obtained by ligating DNA encoding a hybrid protein that is further ligated and further added with an endoplasmic reticulum residual signal peptide to the carboxyl terminus.
  • a DNA construct having the base sequence represented by SEQ ID NO: 103 has two Stx2eB proteins linked to NtADH5′UTR in tandem via PG22, added with a secretory signal peptide at the amino terminus, and at the carboxyl terminus. It is a DNA construct in which PG12 is linked and DNA encoding a hybrid protein in which an endoplasmic reticulum residual signal peptide is added to the carboxyl terminus is linked.
  • a DNA construct having the base sequence represented by SEQ ID NO: 104 is obtained by linking two Stx2eB proteins to NtADH5′UTR in tandem via PG12, adding a chloroplast translocation signal peptide to the amino terminus, A DNA construct in which a DNA encoding a hybrid protein in which PG12 is linked to is linked.
  • the DNA construct having the base sequence represented by SEQ ID NO: 105 is a DNA that encodes a hybrid protein in which three Stx2eB proteins are linked to tandem via PG12 and PG12 is linked to the carboxyl terminus of NtADH5'UTR. Is a DNA construct in which
  • a DNA construct having the base sequence represented by SEQ ID NO: 106 is obtained by linking three Stx2eB proteins to NtADH5′UTR in tandem via PG12, adding a secretory signal peptide to the amino terminus, and adding to the carboxyl terminus. It is a DNA construct in which PG12 is linked and DNA encoding a hybrid protein in which an endoplasmic reticulum residual signal peptide is added to the carboxyl terminus is linked.
  • a DNA construct having the base sequence represented by SEQ ID NO: 107 is obtained by linking three Stx2eB proteins to NtADH5′UTR in tandem via PG12, and adding a chloroplast translocation signal peptide to the amino terminus, It is a DNA construct in which a DNA encoding a hybrid protein in which PG12 is linked to the carboxyl terminus is linked.
  • a DNA construct having the base sequence represented by SEQ ID NO: 108 is ligated to NtADH5′UTR by linking DNA encoding a hybrid protein in which two CTB proteins are linked in tandem via PG12 and PG12 is linked to the carboxyl terminus.
  • DNA construct having the base sequence represented by SEQ ID NO: 108 is ligated to NtADH5′UTR by linking DNA encoding a hybrid protein in which two CTB proteins are linked in tandem via PG12 and PG12 is linked to the carboxyl terminus.
  • DNA construct having the base sequence represented by SEQ ID NO: 109 two CTB proteins are linked to NtADH5'UTR in tandem via PG17, a signal peptide is added to the amino terminus, and PG12 is linked to the carboxyl terminus. And a DNA construct in which a DNA encoding a hybrid protein having an endoplasmic reticulum residual signal peptide added to the carboxyl terminus is linked.
  • a DNA construct having the base sequence represented by SEQ ID NO: 110 has two CTB proteins linked to NtADH5′UTR in tandem via PG22, a signal peptide added to the amino terminus, and PG12 to the carboxyl terminus.
  • a DNA construct having the base sequence represented by SEQ ID NO: 111 is obtained by linking two CTB proteins to NtADH5′UTR in tandem via PG12, adding a chloroplast translocation signal peptide to the amino terminus, A DNA construct in which a DNA encoding a hybrid protein in which PG12 is linked to is linked.
  • the DNA construct of the present invention can be prepared by a general genetic engineering technique.
  • the 5′-untranslated region of a plant-derived alcohol dehydrogenase gene, DNA encoding a plant-derived secretory signal peptide, chloroplast transfer Constructed by cleaving DNA encoding signal peptide, DNA encoding bacterial toxin protein, DNA encoding endoplasmic reticulum residual signal peptide, etc. with appropriate restriction enzymes and ligating with appropriate ligase. can do.
  • the recombinant vector of the present invention is characterized by including the DNA construct of the present invention.
  • the recombinant vector of the present invention may be inserted into the vector so that the DNA encoding the hybrid protein of the present invention can be expressed in the host cell into which the vector is introduced.
  • the vector is not particularly limited as long as it can replicate in the host cell, and examples thereof include plasmid DNA and viral DNA.
  • the vector preferably contains a selection marker such as a drug resistance gene.
  • Plasmid DNA can be prepared from Escherichia coli and Agrobacterium by an alkaline extraction method (Birnboim, H. C. & Doly, J. (1979) Nucleic acid Res 7: 1513) or a modified method thereof.
  • pBI221, pBI121, pBI101, pIG121Hm etc. can also be used, for example.
  • pTB2 Donson2J., Kerney CM., Hilf ME., Dawson WO. Systemic expression of a bacterial gene by a tobacco mosaic virus-based can be used as the viral DNA. (See vector. Proc. Natl. Acad. Sci. (1991) 88: 7204-7208)
  • the promoter used in the vector can be appropriately selected according to the host cell into which the vector is introduced.
  • cauliflower mosaic virus 35S promoter (Odell et al. 1985 Nature) 313: 810)
  • rice actin promoter (Zhang et al.1991 Plant Cell 3: 1155)
  • maize ubiquitin promoter (Cornejo et al.1993 Plant Mol. Biol . 23: 567)
  • the terminator used in the vector can be appropriately selected according to the host cell into which the vector is introduced.
  • nopaline synthase gene transcription terminator, cauliflower mosaic virus 35S terminator and the like are preferably used.
  • the recombinant vector of the present invention can be prepared, for example, as follows. First, the DNA construct of the present invention is cleaved with an appropriate restriction enzyme or a restriction enzyme site is added by PCR and inserted into a restriction enzyme site or a multiple cloning site of a vector.
  • the transformant of the present invention is characterized by being transformed with the recombinant vector of the present invention.
  • the host cell used for transformation may be either a eukaryotic cell or a prokaryotic cell.
  • eukaryotic cells plant cells are preferably used, among which cells of plants belonging to the Asteraceae, Solanum, Brassicaceae, and Rubiaceae are preferably used.
  • plant cells belonging to the genus Lactuca, particularly lettuce (Lactuca sativa) cells are preferably used.
  • cauliflower mosaic virus 35S RNA promoter or the like can be used as the vector.
  • prokaryotic cells include Escherichia coli, Agrobacterium tumefaciens, and the like.
  • the transformant of the present invention can be prepared by introducing the vector of the present invention into a host cell using a general genetic engineering technique.
  • a general genetic engineering technique For example, the introduction method using Acrobacterium (Hood, et al., 1993, Transgenic, Res. 2: 218, Hiei, et al., 1994 Plant J. 6: 271), electroporation method (Tada, et al. al., 1990, Theor.Appl.Genet, 80: 475), polyethylene glycol method (Lazzeri, et al., 1991, Theor. Appl. Genet. 81: 437), particle gun method (Sanford, et al., 1987) , J. Part. Sci. Tech.
  • the transformant of the present invention can be selected according to the phenotype of the selection marker.
  • the bacterial toxin protein can be produced by culturing the selected transformant.
  • the medium and conditions used for the culture can be appropriately selected according to the species of the transformant.
  • the host cell is a plant cell
  • the plant body can be regenerated by culturing the selected plant cell according to a conventional method, and the bacterial toxin protein is accumulated in the plant cell or outside the cell membrane of the plant cell. Can be made.
  • the method of Visser et al. (Theor. Appl. Genet 78: 594 (1989)) can be cited for potato, and Nagata and Takebe (Planta 99:12 (1971) for tobacco. ) Method.
  • the seed of the present invention can be obtained by collecting the seed from the plant regenerated as described above. By seeding and cultivating the seed of the present invention by an appropriate method, it can be made into a plant that produces the bacterial toxin protein, and such a plant is also included in the transformant of the present invention.
  • Stx2eB transient expression vector The DNA (SEQ ID NO: 5) encoding the B subunit (Stx2eB) of Stx2e protein is the 5 ′ untranslated region of tobacco alcohol dehydrogenase gene ( A vector containing a DNA construct linked to NtADH5′UTR) was prepared as follows. The vector design is shown in FIG. 1 ⁇ Stx2eB (PG12) indicates a DNA construct containing DNA in which DNA encoding PG12 is linked to DNA encoding Stx2eB.
  • 2 ⁇ Stx2eB indicates a DNA construct comprising DNA obtained by ligating DNA encoding two Stx2eBs using DNA encoding PG12 as a spacer.
  • the prepared DNA construct, 4 ⁇ Stx2eB (PG12) was also produced. The specific method is shown below.
  • PCR is performed using the Kozak-stx2eb-F primer (SEQ ID NO: 30) and the stx2eb-R ⁇ ⁇ primer (SEQ ID NO: 31), and DNA encoding the mature region of Stx2eB (Ala19 to Asn87 excluding the signal peptide secreted into the periplasm)
  • the fragment was amplified.
  • the resulting DNA fragment was cloned into the EcoRV gap of pBluescript II II SK.
  • the obtained plasmid was cleaved with HindIII, treated with T4 DNA polymerase, and self-ligated to convert the HindIII site into a NheI site (plasmid 1).
  • Stx2eB was inserted into a multicloning site (MCS) of pBI221 (Clontech), a vector for transient expression in plant cells, as follows.
  • MCS multicloning site
  • phosphorylation was performed using T4 polynucleotide kinase (T4 PNK) (TaKaRa) after annealing SalKpnSma-F (SEQ ID NO: 32) and SalKpnSma-R (SEQ ID NO: 33). Oxidized and inserted into the SacI gap of pBI221 (plasmid 2).
  • Stx2eB fragment was excised from plasmid 1 with XbaI and KpnI, inserted into plasmid 2, and placed between cauliflower mosaic virus 35S RNA promoter (35S pro.) And nopaline synthase gene transcription terminator (NOS-T) (plasmid 3). .
  • the 5 'untranslated region of the tobacco alcohol dehydrogenase gene (NtADH 5'UTR, SEQ ID NO: 23), ADH-221 (Sato et. Al., 2004 (see below)) as a template, ADH XbaI-F primer (SEQ ID NO: 34) and ADH NsiI-R primer (SEQ ID NO: 35).
  • Each NtADH 5'UTR and secretory signal peptide DNA fragment was treated with NsiI (TOYOBO), ligated using Ligation High (TOYOBO), and then blunted to obtain pBluescript II SK (Stratagene). In the EcoRV gap (plasmid 4). Satoh et al., The 5'-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant.J. Biosci. Bioeng. (2004) 98,1-8
  • Plasmid 4 was treated with NsiI, blunted with T4 DNA polymerase (manufactured by TOYOBO), self-ligated, and ligated so that the start codon (atg) of NtADH and the start codon of the secretory signal peptide coincided ( plasmid 5).
  • the ligated DNA of NtADH-5'UTR fragment and secretory signal peptide was amplified using plasmid 5 as a template and ADH XbaI-F primer (SEQ ID NO: 34) and ⁇ D BamHI-R primer (SEQ ID NO: 35).
  • the obtained DNA fragment was treated with XbaI and BamHI and inserted into the XbaI-BamHI gap of plasmid 3 (plasmid 6).
  • the HDEL-F primer (SEQ ID NO: 39) and the HDEL-R primer (SEQ ID NO: 40) were annealed and phosphorylated with T4 PNK, and alkaline phosphatase (AP) ( TaKaRa) was inserted into the BglII gap of plasmid 6 that was dephosphorylated (plasmid 7).
  • AP alkaline phosphatase
  • HA tag was added as a peptide tag for detecting Stx2eB.
  • the HA-F primer SEQ ID NO: 41
  • the HA-R primer SEQ ID NO: 42
  • T4 PNK T4 PNK
  • PG12 spacer (SEQ ID NO: 2) was inserted between Stx2eB and HA tag.
  • the obtained phosphorylated DNA fragment was inserted into the BglII gap of plasmid 8 (1 ⁇ Stx2eB (PG12)).
  • the 2eB-PG12 fragment was cut out from 1 ⁇ Stx2eB (PG12) using BamHI and BglII and inserted into the BamHI gap of 1 ⁇ Stx2eB (PG12) (2 ⁇ Stx2eB (PG12)).
  • the Stx2eB-PG12 fragment was cut out from 1 ⁇ Stx2eB (PG12) using BamHI and BglII and inserted into the BamHI gap of 2 ⁇ Stx2eB (PG12) (3 ⁇ Stx2eB (PG12)).
  • a 2 ⁇ (Stx2eB-PG12) fragment was cut out from 2 ⁇ Stx2eB (PG12) using BamHI and BglII and inserted into the BamHI gap of 2 ⁇ Stx2eB (PG12) (4 ⁇ Stx2eB (PG12)).
  • CTB transient expression vector DNA construct in which DNA encoding CT protein B subunit (CTB) is linked to the 5 ′ untranslated region of tobacco alcohol dehydrogenase gene (2 ⁇ CTB (PG12))
  • CTB CT protein B subunit
  • PG12 tobacco alcohol dehydrogenase gene
  • a DNA (SEQ ID NO: 7) encoding the mature region of CTB (Thr22 to Asn124 excluding the secretion signal to the periplasm) (SEQ ID NO: 8) was prepared.
  • CTB1 SEQ ID NO: 45
  • CTB2 SEQ ID NO: 46
  • CTB3 SEQ ID NO: 47
  • CTB4 SEQ ID NO: 48
  • CTB5 SEQ ID NO: 49
  • CTB6 SEQ ID NO: 50
  • CTB7 SEQ ID NO: 51
  • CTB9 SEQ ID NO: 53
  • CTB10 SEQ ID NO: 54
  • PCR was performed using the primers synthesized above under the conditions described in Kang et al. (2004). Specifically, CTB1 and CTB2, CTB3 and CTB 4, CTB5 and CTB 6, CTB7 and CTB CT8, CTB9 and CTB ⁇ ⁇ ⁇ ⁇ 10 were used for PCR, and 72bp (1 + 2), 74bp (3 + 4), 67bp (5 + 6), 82bp ( 7 + 8) and 68 bp (9 + 10) DNA fragments were synthesized. Next, 2nd PCR was performed using a combination of CTB1 + 2 and CTB3 + 4, CTB3 + 4 and CTB5 + 6, CTB5 + 6 and CTB7 + 8, CTB7 + 8 and CTB9 + 10. .
  • PCR was performed using a combination of CTB1 + 2 + 3 + 4 and CTB3 + 4 + 5 + 6, and CTB5 + 6 + 7 + 8 and CTB7 + 8 + 9 + 10 to synthesize DNA fragments of 194 bp (1 + 2 + 3 + 4 + 5 + 6) and 198 bp (5 + 6 + 7 + 8 + 9 + 10).
  • PCR was performed using a combination of CTB1 + 2 + 3 + 4 + 5 + 6 and CTB5 + 6 + 7 + 8 + 9 + 10 to synthesize a DNA fragment in which a BamHI site and a BglII site were added to the 315 bp CTB coding region.
  • Plasmid 8 Plasmid 8
  • PG12 spacer (SEQ ID NO: 2) was inserted between CTB and HA tag.
  • PG12-F primer (SEQ ID NO: 43)
  • PG12-R primer (SEQ ID NO: 44) 44 were annealed and phosphorylated with T4 PNK.
  • the obtained phosphorylated DNA fragment was inserted into the BglII gap of plasmid 9 (1 ⁇ CTB (PG12)).
  • the CTB-PG12 fragment was excised from 1 ⁇ CTB (PG12) using BamHI and BglII and inserted into the BamHI gap of 1 ⁇ CTB (PG12) (2 ⁇ CTB (PG12)).
  • a leaf disk was prepared by chopping approximately 1 g of potted lettuce (Lactuca sativa) (green wave) leaves to about 0.5 cm square with a scalpel. The leaf disc was immersed in 500 mM mannitol and shaken for 1 hour. The leaf disks 50ml of protoplast enzyme solution was immersed in (1.0% cellulose RS (Yakult Honsha), 0.25% macerozyme R-10 ( Yakult Honsha), 400 mM mannitol, 8mM CaCl 2, and 5mM Mes -KOH, pH 5.6), Shake for 2 hours at room temperature. The protoplast suspension was passed through 100 ⁇ m and 40 ⁇ m meshes to remove the leaf disk.
  • the protoplast suspension was centrifuged at 60 g for 5 minutes to precipitate the protoplast.
  • Protoplasts were resuspended in an aqueous solution containing 167 mM mannitol and 133 mM CaCl 2 and centrifuged at 40 g for 5 minutes.
  • Protoplasts were resuspended in an aqueous solution containing 333 mM mannitol and 66.7 mM CaCl 2 and centrifuged at 40 g for 5 minutes.
  • Protoplasts were suspended in W5 solution (154 mM NaCl, 125 mM CaCl 2 , 5 mM KCl, 2 mM Mes-KOH, pH 5.6) and left on ice for 1 hour.
  • the protoplast suspension was centrifuged at 40 g for 5 minutes and suspended in MaMg solution (400 mM mannitol, 15 mM MgCl 2 , and 4 mM Mes-KOH, pH 5.6) so that the protoplast concentration was 2 ⁇ 10 6 cells / ml. .
  • MaMg solution 400 mM mannitol, 15 mM MgCl 2 , and 4 mM Mes-KOH, pH 5.6
  • Each Stx2eB transient expression vector and CTB transient expression vector prepared above were mixed with 120 ⁇ l of protoplast suspension, and then 140 ⁇ l of PEG solution (400 mM mannitol, 100 mM Ca (NO 3 ) 2 , and 40 % PEG) and gently mixed and incubated for 7 minutes. Over about 20 minutes, 1 ml of W5 solution was added to the protoplast suspension. To the protoplasts precipitated by centrifugation, 1 ml of a solution prepared by mixing 400 mM mannitol and W5 solution in a ratio of 4: 1 was added.
  • Stx2eB protein-encoding DNAs were linked via DNA encoding PG12, the Stx2eB protein could be produced very efficiently.
  • DNA encoding three Stx2eB proteins and DNA encoding four Stx2eB proteins are linked via DNA encoding PG12, the production of Stx2eB protein is equal to or less than that of one Stx2eB protein. I understood that.
  • the Stx2eB protein (1 ⁇ Stx2eB (PG12)) prepared in this experiment with PG12 added to the carboxyl terminus tends to have a higher protein accumulation level than the Stx2eB protein to which this is not added. ing. From this, it is surmised that the hybrid protein of the present invention is a preferred form in which PG12 is added to the carboxyl terminus.
  • each of the DNA constructs described above contains one molecule of HA tag, so when 2 ⁇ CTB (PG12) is expressed, it corresponds to a CTB protein that is twice as large as when 1 ⁇ CTB (PG12) is expressed. It is thought that the protein to be accumulated. That is, it was found that when DNAs encoding two CTB proteins are linked via DNA encoding PG12, CTB proteins can be produced very efficiently.
  • a transient expression vector of a hybrid protein of Stx2eB and yellow fluorescent protein YFP was prepared.
  • the vector design is shown in FIG. 1 ⁇ Stx2eB (PG12) -YFP indicates a DNA construct in which a DNA encoding one Stx2eB protein and a DNA encoding YFP are linked.
  • 2 ⁇ Stx2eB (PG12) -YFP indicates a DNA construct in which a DNA encoding a hybrid protein in which two Stx2eB proteins are linked via PG12 and a DNA encoding YFP are linked.
  • 2 ⁇ Stx2eB (RS) -YFP using RS (Arg Ser) instead of PG12 as a spacer was also produced. The specific method is shown below.
  • a DNA fragment of YFP was amplified by PCR using pEYFP (Clontech) as a template and using a YFP-F primer (SEQ ID NO: 55) and a YFP-R primer (SEQ ID NO: 56).
  • the obtained DNA fragment was treated with BamHI and BglII and inserted into the BamHI-BglII gap of Plasmid 8 (ER-YFP).
  • a Stx2eB fragment was excised from plasmid 1 using BamHI and BglII and inserted into the BamHI gap of 1 ⁇ Stx2eB (PG12) (2 ⁇ Stx2eB (RS)). From 1 ⁇ Stx2eB (PG12), 2 ⁇ Stx2eB (RS) and 2 ⁇ Stx2eB (PG12), using BamHI-BglII, Stx2eB-PG12 fragment, 2 ⁇ (Stx2eB-RS) fragment and 2 ⁇ (Stx2eB- (PG12) fragment was excised and inserted into the BamHI gap of ER-YFP (1 ⁇ Stx2eB (PG12) -YFP, 2 ⁇ Stx2eB (RS) -YFP and 2 ⁇ Stx2eB (PG12) -YFP).
  • an expression vector of endoplasmic reticulum localization type red fluorescent protein (mRFP, Campbell RE et al. (2002) (see below) was prepared. PCR was performed using mRFP-F primer (SEQ ID NO: 57) and mRFP-R primer (SEQ ID NO: 58). The obtained DNA fragment was treated with BamHI and BglII and inserted into the BamHI-BglII gap of Plasmid 8 (ER-mRFP). Campbell RE et al., A monomeric red fluorescent protein (2002) Proc. Nat. Acad. Sci. 99: 7877-7882
  • the Stx2eB expression vector and mRFP expression vector were introduced into protoplasts of tobacco cultured cells (BY2) in the same manner as described above, and observed using confocal microscopy (LSM510, Zeiss). The results are shown in FIGS.
  • FIG. 5 shows the localization of Stx2eB-YFP hybrid protein. When 2 ⁇ Stx2eB (PG12) -YFP was expressed, it was observed that about 100 Stx2eB-YFP hybrid proteins were localized in a granular form. No granules were observed when 1 ⁇ Stx2eB (PG12) -YFP and 2 ⁇ Stx2eB (RS) -YFP were expressed.
  • FIG. 5 shows the localization of Stx2eB-YFP hybrid protein.
  • an image A in the leftmost column shows the localization of mRFP in a certain protoplast.
  • the localization of mRFP reflects the position of the endoplasmic reticulum.
  • Image B in the middle row shows the localization of Stx2eB-YFP hybrid protein in the same protoplast.
  • the image in the rightmost column is a composite image of images A and B. From the synthesized image, it can be seen that the Stx2eB-YFP hybrid protein is localized in the endoplasmic reticulum in a granular form.
  • vacuolar GFP expression vector preparation of a vacuolar GFP expression vector can be performed with reference to the following literature. Di Sansebastiano et.al., Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway.Plant J. (1998) 15, 449-457
  • expression vectors of Arabidopsis ARF1 (GenBank Accession No. M95166) and its dominant negative mutant ARF1 (Q71L) (Masaki Takeuchi et al., 2002 (see below)) were constructed. PCR was performed using ARF1-F primer (SEQ ID NO: 59) and ARF1-R primer (SEQ ID NO: 60), using cDNA prepared from Arabidopsis seedlings as a template. The obtained DNA fragment was subcloned into the EcoRV gap of pBluescript® (Stratagene).
  • ARFQL-F primer SEQ ID NO: 61
  • ARFQL-R primer SEQ ID NO: 62
  • a PG7 spacer (SEQ ID NO: 63) was inserted between Stx2eB of the plasmid 8 and the HA tag.
  • PG7-F primer (SEQ ID NO: 65)
  • PG7-R primer (SEQ ID NO: 66) were annealed and phosphorylated with T4 PNK.
  • the obtained phosphorylated DNA fragment was inserted into the BglII gap of plasmid 8 (plasmid 10).
  • an SG12 spacer (SEQ ID NO: 64) was inserted between Stx2eB and the HA tag.
  • SG12-F primer SEQ ID NO: 67
  • SG12-R primer SEQ ID NO: 68
  • the Stx2eB fragment was excised from Plasmid-1 using BamHI and BglII and inserted into the BamHI gap of 1 ⁇ Stx2eB (PG12) (2 ⁇ Stx2eB (RS)).
  • a Stx2eB-PG7 fragment was excised from Plasmid IV10 using BamHI and BglII and inserted into the BamHI gap of 1 ⁇ Stx2eB (PG12) (2 ⁇ Stx2eB (PG7)).
  • the Stx2eB-SG12 fragment was excised from Plasmid 11 using BamHI and BglII and inserted into the BamHI gap of 1 ⁇ Stx2eB (PG12) (2 ⁇ Stx2eB (SG12)).
  • each Stx2eB was subcloned into a transformation vector (see FIG. 1 for the design of the vector).
  • XbaI And SacI were inserted into pBI121 (Clontech®) and placed between the cauliflower mosaic virus 35S RNA promoter (35S pro.) And the nopaline synthase gene transcription terminator (NOS-T).
  • Transformation of cultured tobacco cells The produced transformation vector was introduced into Agrobacterium (Agrobacterium tumefacience EHA105) using electroporation. Suspension of tobacco culture cells (Nicotiana tabacum, cv BY2) on the 4th day of culture with 100 ⁇ l of agrobacterium cultured in 5 ml LB medium containing 100 mg / l of kanamycin at 28 ° C for 2 nights 10 ml was mixed in a petri dish and allowed to stand at 25 ° C for 2 nights in the dark and co-cultured.
  • Agrobacterium Agrobacterium tumefacience EHA105
  • Suspension of tobacco culture cells (Nicotiana tabacum, cv BY2) on the 4th day of culture with 100 ⁇ l of agrobacterium cultured in 5 ml LB medium containing 100 mg / l of kanamycin at 28 ° C for 2 nights 10 ml was mixed in a petri dish and allowed to stand
  • the culture solution in the petri dish was transferred to a 15 ml centrifuge tube and centrifuged (1000 rpm, 5 minutes, 4 ° C.), and the supernatant was removed.
  • the modified LS medium was added and centrifuged (1000 rpm, 5 minutes, 4 ° C.) to wash the cells. This washing operation was repeated 4 times to remove Agrobacterium.
  • the remaining BY2 cells were placed on a modified LS agar medium containing kanamycin (100 mg / l), and cultured at 25 ° C. in the dark. About 2-3 weeks later, the callus cells were transplanted to a new plate, and clones that proliferated were selected.
  • a dilution series of HAx-tagged Stx2eB with a known concentration was prepared and loaded onto a gel, a calibration curve was prepared based on the signal intensity, and the amount of Stx2eB protein in each sample was calculated. The results are shown below.
  • the expression level of BY2 ubiquitin gene was quantified using UBQ-F primer (SEQ ID NO: 71) and UBQ-R primer (SEQ ID NO: 72), and the mRNA level of stx2eB gene was corrected.
  • the 1 ⁇ Stx2eB (PG12) mRNA level was calculated by halving the quantitative value. The results are shown in FIG.
  • the accumulation level of Stx2e protein per mRNA tended to be higher in cells expressing 2xStx2eB (PG12) than cells expressing 2xStx2eB (RS) or 1xStx2eB (PG12) .
  • the spacer difference does not affect the transcription level, but affects the translation level or the stability of the protein after translation. Moreover, considering the result that the 2 ⁇ Stx2eB protein was localized in a granular form, it is considered that the spacer affects the stability of the protein after translation.
  • a transient expression vector (FIG. 13-B) containing a cytoplasmic (Cyt) DNA construct and an expression vector (FIG. 13-C) containing a chloroplast (Chl) DNA construct were constructed by the following methods. did. These DNA constructs were designed to include DNA encoding an endoplasmic reticulum residual signal peptide for the purpose of expressing a hybrid protein having a structure as close as possible to the endoplasmic reticulum type hybrid protein. However, since the DNA construct does not contain DNA encoding a secretory signal peptide, the endoplasmic reticulum residual signal peptide does not exhibit its function (residual protein in the endoplasmic reticulum) in the produced hybrid protein.
  • the NtADH-5'UTR fragment was amplified by PCR using an ADH XbaI-F primer (SEQ ID NO: 34) and an ADH BamHI-R primer (SEQ ID NO: 112), and the resulting DNA fragment was treated with XbaI and BamHI.
  • NtADH-5'-UTR XbaI-BamHI fragment is ER-1 x Stx2eB (PG12), ER-2 x Stx2eB (PG12), ER-3 x Stx2eB (PG12) and ER-4 x Stx2eB (PG12) Insert into XbaI-BamHI gap and insert Cyt-1 ⁇ Stx2eB (PG12), Cyt-2 ⁇ Stx2eB (PG12), Cyt-3 ⁇ Stx2eB (PG12) and Cyt-4 ⁇ Stx2eB (PG12) Produced.
  • the NtADH-5'-UTR fragment was amplified by PCR using an ADH-XbaI-F primer (SEQ ID NO: 34) and an ADH-NsiI-R primer (SEQ ID NO: 35).
  • a DNA fragment (SEQ ID NO: 80) encoding a chloroplast transition signal peptide (transit peptide, TP) derived from lettuce Rbcs (Lubis Cosmol subunit) (GenBank ACCESSION D14001), TP NsiI-F primer using lettuce leaf cDNA ⁇ ⁇ as a template (SEQ ID NO: 113) and TP BamHI-R primer (SEQ ID NO: 114) were used for amplification by PCR.
  • NsiI manufactured by TOYOBO
  • TOYOBO Ligation High ⁇
  • Plasmid 12 was treated with NsiI, blunted with T4 DNA polymerase (manufactured by TOYOBO), self-ligated, and fused so that the NtADH start codon and Rbcs start codon matched (plasmid 13).
  • a transient expression vector (FIG. 14-B) containing a cytoplasmic (Cyt) DNA construct and an expression vector (FIG. 14-C) containing a chloroplast (Chl) DNA construct were constructed by the following methods. did. CTB-PG12 fragment was excised from ER-1 ⁇ CTB (PG12) using BamHI and BglII, and BamHI-BglII gap and Chl-1 ⁇ of Cyt-1 ⁇ Stx2eB (PG12) prepared in ⁇ 3> (1) above.
  • Cytoplasmic and chloroplast type 1 ⁇ CTB was prepared by inserting into the BamHI-BglII gap of Stx2eB (PG12) (Cyt-1 ⁇ CTB (PG12), Chl-1 ⁇ CTB (PG12)).
  • CTB-PG12 2 ⁇ (CTB-PG12) fragment was excised from ER-2 ⁇ CTB (PG12) using BamHI and BglII, and the BamHI-BglII gap of Cyt-1 ⁇ Stx2eB (PG12) and Chl-1 ⁇ Stx2eB (PG12 2 ⁇ CTB (PG12) of cytoplasmic type and chloroplast type were prepared (Cyt-2 ⁇ CTB (PG12), Chl-2 ⁇ CTB (PG12)).
  • Chl-1 ⁇ Stx2eB PG12
  • Chl-2 ⁇ Stx2eB PG12
  • a signal similar to that when ER-3 ⁇ Stx2eB (PG12) was expressed was detected at a position of about 22 kDa.
  • Chl-3 ⁇ Stx2eB PG12
  • a signal comparable to that when Chl-2 ⁇ Stx2eB (PG12) was expressed was detected at a position of about 30 kDa.
  • each of the DNA constructs includes one molecule of HA tag (see FIG. 13), when expressing DNA encoding two Stx2eB, when expressing DNA encoding three Stx2eB, one Stx2eB It is considered that about 2 times and about 3 times as many proteins corresponding to Stx2eB protein are accumulated as the DNA encoding the DNA. Therefore, in the case where any endoplasmic reticulum type (ER), cytoplasmic type (Cyt), or chloroplast type (Chl) DNA construct is expressed, two or three more than the case where one Stx2eB protein is expressed. It was found that Stx2eB can be efficiently accumulated when a protein in which Stx2eB is linked in tandem via a spacer is expressed.
  • ER endoplasmic reticulum type
  • Cyt cytoplasmic type
  • Chl chloroplast type
  • Transformation experiment using tobacco plant (1) Construction of transformation vector ER-2 x Stx2eB (PG12), Chl-1 x Stx2eB (PG12), Chl-2 x Stx2eB (PG12) produced above ), Chl-3 ⁇ Stx2eB (PG12) was used for transformation experiments.
  • the transformation vector was produced in the same manner as in the above ⁇ 2> (1).
  • Tobacco plant (Nicotiana tabacum L. cv. Petit habana SR1) seeds were sterilized and sown in MS medium. Cut the leaves of sterile tobacco into 1 x 1 cm so that they do not contain veins, and place them in a petri dish containing sterile water so that the back of the leaves faces up. The obtained Agrobacterium suspension cultured overnight in LB medium containing 100 mg / l kanamycin was poured into a petri dish and immersed for 3 to 5 minutes. The leaf pieces were taken out, the excess bacterial solution was wiped off with a sterile Kim towel, placed on a callus formation medium and cultured at 25 ° C.
  • the leaf pieces After 2-3 days, when Agrobacterium can be seen on the medium, the leaf pieces are transferred to a 50 ml tube, washed 5 times with sterile water, and then callus formation medium (100 mg / l kanamycin, carbenicillin 250). (including mg / l) and cultured at 25 ° C. for 1 to 2 weeks.
  • callus formation medium 100 mg / l kanamycin, carbenicillin 250. (including mg / l) and cultured at 25 ° C. for 1 to 2 weeks.
  • the leaf pieces were rounded compared to the first, and irregularities were formed on the surface, they were transferred to a shoot formation medium (containing 100 mg / l kanamycin and 250 mg / l carbenicillin).
  • FIGS. Accumulate Stx2eB in plants transformed with ER-2 x Stx2eB (PG12), Chl-1 x Stx2eB (PG12), Chl-2 x Stx2eB (PG12), Chl-3 x Stx2eB (PG12) with high efficiency A clone was obtained.
  • Stx2eB is more efficient when two or three Stx2eB proteins are tandemly linked via a spacer than when one Stx2eB protein is expressed. It was found that clones that accumulate well can be obtained with high probability.
  • Signals when ER-2 ⁇ Stx2eB (PG12) was expressed were detected at positions of about 15 kDa, about 19 kDa, and about 22 kDa.
  • the signal when Chl-1 ⁇ Stx2eB (PG12) was expressed was detected at a position of about 12 kDa.
  • a signal when Chl-2 ⁇ Stx2eB (PG12) was expressed was detected at a position of about 19 kDa.
  • a signal when Chl-3 ⁇ Stx2eB (PG12) was expressed was detected at a position of about 27 kDa.
  • ER-2 ⁇ Stx2eB (PG12) was produced by the method ⁇ 1> (1) above.
  • the design of the DNA construct is shown in FIG. PG7-F primer (SEQ ID NO: 65) and PG7-R primer (SEQ ID NO: 66) were annealed and phosphorylated with T4 PNK.
  • the obtained phosphorylated DNA fragment was inserted into the BglII gap of ER-1 ⁇ Stx2eB (PG12) obtained in ⁇ 1> (1) (plasmid 14).
  • PG12-F primer SEQ ID NO: 43
  • PG12-R primer SEQ ID NO: 44
  • T4 PNK T4 PNK
  • the Stx2eB-PG17 fragment was excised from Plasmid 14 using BamHI and BglII and inserted into the BamHI gap of ER-1 ⁇ Stx2eB (PG12) (2 ⁇ Stx2eB (PG17)).
  • a Stx2eB-PG22 fragment was excised from Plasmid 15 using BamHI and BglII and inserted into the BamHI gap of ER-1 ⁇ Stx2eB (PG12) (ER-2 ⁇ Stx2eB (PG22)).
  • each Stx2eBe was subcloned into a transformation vector. That is, ER-2 ⁇ Stx2eB (PG12), ER-2 ⁇ Stx2eB (PG17), ER-2 ⁇ Stx2eB (PG22) was inserted into pBI121 (Clontech®) using XbaI and SacI, and cauliflower mosaic virus 35S RNA-promoter (35S pro.) And nopaline synthase gene transcription terminator (NOS-T).
  • ER-2 ⁇ CTB (PG12) was produced by the method ⁇ 1> (2) above.
  • ER-2 ⁇ CTB (PG17) and ER-2 ⁇ CTB (PG22) were prepared by the following method.
  • the design of each DNA construct is shown in FIG.
  • PG7-F primer (SEQ ID NO: 65) and PG7-R primer (SEQ ID NO: 66) were annealed and phosphorylated with T4 PNK.
  • the obtained phosphorylated DNA fragment was inserted into the BglII gap of ER-1 ⁇ CTB (PG12) obtained in ⁇ 1> (2) (plasmid 16).
  • PG12-F primer (SEQ ID NO: 43) and PG12-R primer (SEQ ID NO: 44) were annealed and phosphorylated with T4 PNK.
  • the obtained phosphorylated DNA fragment was inserted into the BglII gap of ER-1 ⁇ CTB (PG12) (plasmid 17).
  • a CTB-PG17 fragment was excised from Plasmid 16 using BamHI and BglII and inserted into the BamHI gap of ER-1 ⁇ CTB (PG12) (ER-2 ⁇ CTB (PG17)).
  • a CTB-PG22 fragment was excised from Plasmid 17 using BamHI and BglII and inserted into the BamHI gap of ER-1 ⁇ CTB (PG12) (ER-2 ⁇ CTB (PG22)).
  • ER-2 ⁇ CTB PG12
  • ER-2 ⁇ CTB PG17
  • ER-2 ⁇ CTB PG22
  • pBI121 Clontech
  • XbaI and SacI cauliflower mosaic virus 35S RNA promoter
  • NOS-T nopaline synthase gene transcription terminator
  • Transformation experiment and Western analysis Transformation experiment and Western analysis were performed by the methods of ⁇ 2> (2) and (3) above.
  • the hybrid protein of the present invention is highly stable and accumulates in plant cells at a high level.
  • an efficient oral vaccine of Shiga toxin, cholera toxin, and Escherichia coli heat-labile toxin can be produced.
  • the present invention allows plants to express sufficient levels of bacterial antigens to induce immunity.
  • the present invention enables animals to be immunized against bacterial antigens at a low cost by feeding them with transgenic plants. For example, it is useful for the development of porcine edema disease vaccine and cholera vaccine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 志賀毒素タンパク質等の細菌毒素タンパク質を、植物細胞を用いて効率よく生産する。志賀毒素タンパク質等の細菌毒素タンパク質が、下記の特徴(A)及び(B)を有するペプチドを介してタンデムに連結されたハイブリッドタンパク質をコードするDNAを含むDNA構築物を用いて植物細胞を形質転換し、植物細胞に前記細菌毒素タンパク質を生産させる。(A)アミノ酸の個数が12~30個;(B)プロリンの含有率が20~35%。

Description

細菌毒素ワクチン
 本発明は、志賀毒素、コレラ毒素、大腸菌易熱性毒素などの細菌毒素により引き起こされる疾患に対するワクチンに用いるハイブリッドタンパク質、及び該ハイブリッドタンパク質を生産するためのDNA構築物に関する。
 志賀毒素(Stx、ベロ毒素)は、病原性大腸菌のうち腸管出血性大腸菌(enterohemorrhagic Escherichia coli)が産生するタンパク質性外毒素である。志賀毒素は、出血性腸炎、溶血性尿毒症症候群、脳症などを引き起こす。
 志賀毒素は、大きくStx1とStx2に分けられ、更にそれぞれがサブクラスに分けられる。Stx2としては、例えばブタ浮腫病を引き起こすStx2eが挙げられる。ブタ浮腫病は、離乳後1~2週の子豚に高発生することが知られている。浮腫病菌の感染による致死率は、50~90%と極めて高い。
 また、コレラ毒素(CT)は、Vibrio choleraeが産生するタンパク質性外毒素である。CTは、激しい下痢や嘔吐を引き起こすことが知られている。
 また、大腸菌易熱性毒素(LT)は、毒素原性大腸菌(enterotoxigenic Escherichia coli)が産生するタンパク質性内毒素である。LTは、下痢や嘔吐を引き起こすことが知られている。
 Stx、LT、CTのいずれの細菌毒素も、細胞への付着に関与するBサブユニット5量体と毒性を持つAサブユニット1量体からなることが知られている。また、LTとCTは、構造的にも機能的にも類似していることが知られている。
 これらの細菌毒素による疾患を予防する方法としては、ワクチンを、注射もしくは経鼻スプレーにより投与したり、経口的に投与したりする方法が知られている。
 例えば、無毒化したStx2eタンパク質を組換え大腸菌を用いて生産させ、注射によりブタに投与する技術が知られている(非特許文献1)。しかしながら、組換え大腸菌による、無毒化したStx2eタンパク質の生産量は十分ではないという問題や注射によるワクチンの投与は、人間の労力がかかるなどの問題があった。
 また、ワクチンを経口的に投与する方法については、労力軽減の観点から畜産分野で関心が高まっている。このような背景において、細菌毒素タンパク質を、トランスジェニック技術を用いて植物に生産させる技術の開発が行われている。例えば、LTタンパク質のBサブユニット(LTB)をコードするDNAを含み、該DNAを発現するトランスジェニック植物について記載されている(特許文献1、特許文献2)。また、LTタンパク質又はCTタンパク質をコードするDNAを発現するトランスジェニック植物について記載されている(特許文献3)。しかしながら、これらの技術では、タンパク質の生産量が十分でないという問題があった。また、LTBをレタスに生産させた例が報告されている(非特許文献2)。この研究では、コドンを改変したLTタンパク質のBサブユニットの遺伝子を、植物高発現プロモーターであるカリフラワーモザイクウイルス35S RNAプロモーター(CaMV35S)と、エンハンサーであるKozak配列を用いて、レタス内で発現させている。その結果、LTタンパク質のBサブユニットがレタスの総可溶性タンパク質の約2.0質量%蓄積したことが報告されている。しかしながら、この程度のタンパク質の蓄積量では、トランスジェニック植物を利用して細菌病の防除を効率的に行うには不十分であると考えられる。すなわち、目的の細菌毒素タンパク質を植物細胞内で効率良く生産、蓄積させる必要がある。
 本発明者らは、植物由来の分泌シグナルペプチドがアミノ末端に付加されたStx2eタンパク質を、植物由来のアルコールデヒドロゲナーゼ遺伝子の5'-非翻訳領域(ADH5’UTR)を用いて発現させることにより、Stx2eタンパク質をレタス等の植物に効率良く生産させ、植物体に高濃度で蓄積させることができることを見い出し、特許出願を行っている(特許文献4)。
特表平10-507916号公報 特開2000-166411号公報 特表2002-533068号公報 国際公開第2009/004842号パンフレット Makino et al., Microbial Pathogenesis, Volume 31,Number 1, July 2001, pp. 1-8(08) Kim et al., Protein Expression and Purification, Volume 51, Number 1, Jan 2006, pp. 22-27(06)
 本発明は、Stxタンパク質、及びこれに類似の高次構造を有する他の細菌毒素タンパク質を、植物細胞を用いて、より効率よく生産することを課題とする。
 本発明者らは、Stx2e、CT等の細菌毒素のタンパク質を特定の配列のペプチドを介して2つ又は3つタンデムに連結したハイブリッドタンパク質を、植物細胞に生産させた結果、細菌毒素のタンパク質を植物細胞内に高濃度に蓄積させることに成功し、本発明を完成させた。
 すなわち、本発明は以下のとおりである。
(1)2つ又は3つの、志賀毒素タンパク質、コレラ毒素タンパク質又は大腸菌易熱性毒素タンパク質が、それぞれ、下記の特徴(A)及び(B)を有するペプチドを介してタンデムに連結された、ハイブリッドタンパク質、
 (A)アミノ酸の個数が12~30個;
 (B)プロリンの含有率が20~35%。
(2)前記ペプチドが、さらに下記の特徴(C)を有する、(1)に記載のハイブリッドタンパク質、
 (C)プロリンが、2アミノ酸置き、又は3アミノ酸置きに配置される。
(3)前記ペプチドが、配列番号2、82又は84で表されるアミノ酸配列からなる、(2)に記載のハイブリッドタンパク質。
(4)2つの、志賀毒素タンパク質、コレラ毒素タンパク質又は大腸菌易熱性毒素タンパク質が、配列番号2で表されるアミノ酸配列からなるペプチドを介してタンデムに連結された、(3)に記載のハイブリッドタンパク質。
(5)志賀毒素タンパク質が、志賀毒素タンパク質のBサブユニットである、(1)~(4)の何れかに記載のハイブリッドタンパク質。
(6)志賀毒素タンパク質が、Stx2eタンパク質である、(1)~(5)の何れかに記載のハイブリッドタンパク質。
(7)コレラ毒素タンパク質が、コレラ毒素タンパク質のBサブユニットである、(1)~(4)の何れかに記載のハイブリッドタンパク質。
(8)配列番号10、12、14又は16で表されるアミノ酸配列を有する、(4)に記載のハイブリッドタンパク質。
(9)配列番号86、88、90、92、94、96、98又は100で表されるアミノ酸配列を有する、(3)に記載のハイブリッドタンパク質。
(10)アミノ末端に植物由来の分泌シグナルペプチドが付加された、(1)~(9)の何れかに記載のハイブリッドタンパク質。
(11)カルボキシル末端に小胞体残留シグナルペプチドが付加された、(10)に記載のハイブリッドタンパク質。
(12)アミノ末端に葉緑体移行シグナルペプチドが付加された、(1)~(9)の何れかに記載のハイブリッドタンパク質。
(13)(1)~(12)の何れかに記載のハイブリッドタンパク質をコードするDNAを含むDNA構築物。
(14)配列番号9、11、13又は15で表される塩基配列を有するDNAを含む(13)に記載のDNA構築物。
(15)配列番号85、87、89、91、93、95、97又は99で表される塩基配列を有するDNAを含む(13)に記載のDNA構築物。
(16)ハイブリッドタンパク質をコードするDNAが、植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域に発現可能に連結されている、(13)~(15)の何れかに記載のDNA構築物。
(17)前記植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域がタバコ由来である、(16)に記載のDNA構築物。
(18)配列番号24~29の何れかで表される塩基配列を有する(17)に記載のDNA構築物。
(19)配列番号101~111の何れかで表される塩基配列を有する(17)に記載のDNA構築物。
(20)(13)~(19)の何れかに記載のDNA構築物を含む組み換えベクター。
(21)(20)に記載の組み換えベクターで形質転換された形質転換体。
(22)形質転換体が形質転換植物細胞又は形質転換植物である、(21)に記載の形質転換体。
(23)(21)又は(22)に記載の形質転換体から得られる種子。
(24)配列番号2、82又は84で表されるアミノ酸配列からなるペプチド。
Stx2eB発現ベクターのデザインを示す図である。図において、→は翻訳開始点を表し、▽は翻訳後に切断される部位を表す。 レタスプロトプラストを用いた一過性発現実験で得られた、Stx2eBの蓄積レベルを示す写真である。 レタスプロトプラストを用いた一過性発現実験で得られた、CTBの蓄積レベルを示す写真である。 Stx2eB-YFPの融合タンパク質をコードするDNA構築物のデザインを示す図である。図において、→は翻訳開始点を表し、▽は翻訳後に切断される部位を表す。 タバコ培養細胞プロトプラストを用いた一過性発現実験で得られた、Stx2eB-YFPの融合タンパク質の局在を示す写真である。 タバコ培養細胞プロトプラストを用いた一過性発現実験で得られた、Stx2eB-YFPの融合タンパク質の局在を示す写真である。 タバコ培養細胞プロトプラストを用いた一過性発現実験で得られた、ARF1pWTとARF1pDNの共発現における、液胞型GFP、およびStx2eB-YFPの融合タンパク質の局在を示す写真である。 タバコ培養細胞(BY2)を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示す写真である。各レーンの数字は、クローン番号を示す。 タバコ培養細胞(BY2)を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示す写真である。各レーンの数字は、クローン番号を示す。 タバコ培養細胞(BY2)を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示す写真である。各レーンの数字は、クローン番号を示す。 タバコ培養細胞(BY2)を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示すグラフである。各数字は、クローン番号を示す。 Stx2eBのmRNAレベルとStx2eBの蓄積レベルの関係を示すグラフである。 Stx2eBをコードするDNA構築物のデザインを示す図である。Aは小胞体型、Bは細胞質型、Cは葉緑体型のDNA構築物のデザインを示す。 CTBをコードするDNA構築物のデザインを示す図である。Aは小胞体型、Bは細胞質型、Cは葉緑体型のDNA構築物のデザインを示す。 レタスプロトプラストを用いた一過性発現実験で得られた、Stx2eBの蓄積レベルを示す写真である。 レタスプロトプラストを用いた一過性発現実験で得られた、CTBの蓄積レベルを示す写真である。 タバコ培養細胞(BY2)を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示す写真である。各レーンの数字は、クローン番号を示す。 タバコ植物体を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示す写真である。各レーンの数字は、クローン番号を示す。 タバコ植物体を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示す写真である。各レーンの数字は、クローン番号を示す。 Stx2eBをコードするDNA構築物のデザインを示す図である。 CTBをコードするDNA構築物のデザインを示す図である。 タバコ培養細胞(BY2)を用いた形質転換実験で得られた、Stx2eBの蓄積レベルを示す写真である。 タバコ培養細胞(BY2)を用いた形質転換実験で得られた、CTBの蓄積レベルを示す写真である。
 本発明のハイブリッドタンパク質は、2つ又は3つの、志賀毒素(Stx)タンパク質、コレラ毒素(CT)タンパク質又は大腸菌易熱性毒素(LT)タンパク質が、それぞれ、下記の特徴(A)及び(B)を有するペプチドを介してタンデムに連結されている。
 (A)アミノ酸の個数が12~30個;
 (B)プロリンの含有率が20~35%。
 志賀毒素(Stx)は、1型(Stx1)及び2型(Stx2)に分けられる。Stx1は、a~dのサブクラスに、Stx2はa~gのサブクラスにそれぞれ分類される。志賀毒素タンパク質は、毒性本体である1つのAサブユニットと腸管粘膜への侵入へ関与する5つのBサブユニットからなる。
 このうち、例えば、Stx2eはブタ浮腫病毒素として知られており、そのAサブユニット(Stx2eA)は配列番号4のアミノ酸配列で表され、Bサブユニット(Stx2eB)は配列番号6のアミノ酸配列で表される。
 Stx2eA及びStx2eBは、ブタに投与して免疫応答を引き起こすことができる限り、それぞれ、配列番号4又は配列番号6で表されるアミノ酸配列における1個又は数個のアミノ酸が、置換、欠失、挿入又は付加されていてもよい。前記「数個」としては、例えば、Stx2eAにおいて、好ましくは2~30個、さらに好ましくは2~20個、より好ましくは2~10個であり、Stx2eBにおいて、好ましくは2~10個、さらに好ましくは2~5個、より好ましくは2~3個である。
 また、Stx2eA及びStx2eBは、それぞれ、配列番号4又は配列番号6で表されるアミノ酸配列と、好ましくは85%以上、さらに好ましくは90%以上、より好ましくは95%以上の同一性を有し、かつブタに投与して免疫応答を引き起こすことができるものであってもよい。
 コレラ毒素(CT)タンパク質は、毒性本体である1つのAサブユニット(CTA)と、配列番号8のアミノ酸配列で表される腸管粘膜への侵入へ関与する5つのBサブユニット(CTB)からなる。
 CTBは、動物に投与して免疫応答を引き起こすことができる限り、配列番号8で表されるアミノ酸配列における1個又は数個のアミノ酸が、置換、欠失、挿入又は付加されていてもよい。前記「数個」としては、好ましくは2~10個、さらに好ましくは2~5個、より好ましくは2~3個である。
 また、CTBは、配列番号8で表されるアミノ酸配列と、好ましくは85%以上、さらに好ましくは90%以上、より好ましくは95%以上の同一性を有し、かつ動物に投与して免疫応答を引き起こすことができるものであってもよい。
 大腸菌易熱性毒素(LT)タンパク質は、毒性本体である1つのAサブユニットと腸管粘膜への侵入へ関与する5つのサブユニットからなる。
 本明細書では、志賀毒素、コレラ毒素、大腸菌易熱性毒素を、まとめて「細菌毒素」ともいう。
 前記ペプチドのアミノ酸の個数は、好ましくは12~25個、さらに好ましくは12~22個である。また、前記ペプチドのプロリンの含有率は、好ましくは、20~27%、さらに好ましくは、20~25%である。
 また、前記ペプチドにおいて、プロリンは、好ましくは2つ置き、又は3つ置きに配置される。但し、この場合でも、ペプチドの末端においては、プロリン以外のアミノ酸が、5つ以内、好ましくは4つ以内の範囲で連続していてもよい。
 また、前記ペプチドにおいては、プロリン以外のアミノ酸のうち、セリン、グリシン、アルギニン、リジン、スレオニン、グルタミン、アスパラギン、ヒスチジン及びアスパラギン酸の合計含有率は、好ましくは70%以上、さらに好ましくは80%以上、より好ましくは90%以上である。また、前記ペプチドにおいては、プロリン以外のアミノ酸のうち、セリン、グリシン及びアスパラギンの合計含有率は、好ましくは70%以上、さらに好ましくは80%以上、より好ましくは90%以上である。また、前記ペプチドにおいては、プロリン以外のアミノ酸のうち、セリン及びグリシンの合計含有率は、好ましくは70%以上、さらに好ましくは80%以上、より好ましくは90%以上である。これは、これらのアミノ酸を多く含むペプチドは、二次構造(ベータシート構造やヘリックス構造)をとりにくいためである。
 一方、前記ペプチドにおいては、プロリン以外のアミノ酸のうち、アラニン、メチオニン及びグルタミン酸の合計含有率は、好ましくは30%以下、さらに好ましくは20%以下、より好ましくは10%以下である。これは、これらのアミノ酸を多く含むペプチドは、ヘリックス構造をとりやすいためである。また、前記ペプチドにおいては、プロリン以外のアミノ酸のうち、トリプトファン、ロイシン、イソロインシン、チロシン、フェニルアラニン及びバリンの合計含有率は、好ましくは20%以下、さらに好ましくは10%以下、より好ましくは5%以下である。これは、これらのアミノ酸を多く含むペプチドは、ベータシート構造及びヘリックス構造をとりやすいためである。
 前記ペプチドは、好ましくは、配列番号2で表されるアミノ酸配列からなるペプチド(PG12)、配列番号82で表されるアミノ酸配列からなるペプチド(PG17)、又は、配列番号84で表されるアミノ酸配列からなるペプチド(PG22)から選ばれる。
 本発明のハイブリッドタンパク質は、2つ又は3つの、AサブユニットとBサブユニットのハイブリッドタンパク質が、前記ペプチドを介してタンデムに連結されていてもよいし、2つ又は3つのAサブユニットが、前記ペプチドを介してタンデムに連結されていてもよいし、2つ又は3つのBサブユニットが、前記ペプチドを介してタンデムに連結されていてもよい。ただし、本発明のハイブリッドタンパク質が、Aサブユニットを含む場合には、Aサブユニットは無毒化されていることが好ましい。本発明のハイブリッドタンパク質は、2つ又は3つのBサブユニットが、前記ペプチドを介してタンデムに連結されていることが好ましい。また、本発明のハイブリッドタンパク質は、2つのBサブユニットが、PG12を介してタンデムに連結されていることが好ましい。
 また、本発明のハイブリッドタンパク質は、さらにそのC末端に前記ペプチドが付加されていることが好ましい。特に、本発明のハイブリッドタンパク質は、そのC末端にPG12が付加されていることが好ましい。
 本発明のハイブリッドタンパク質は、例えば、配列番号10、12、14、16、86、88、90、92、94、96、98又は100で表されるアミノ酸配列を有する。配列番号10で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのStx2eBが、PG12を介してタンデムに連結されている。配列番号12で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのCTBが、PG12を介してタンデムに連結されている。配列番号14で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのStx2eBが、PG12を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。配列番号16で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのCTBが、PG12を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。配列番号86で表されるアミノ酸配列を有するハイブリッドタンパク質は、3つのStx2eBが、それぞれ、PG12を介してタンデムに連結されている。配列番号88で表されるアミノ酸配列を有するハイブリッドタンパク質は、3つのStx2eBが、それぞれ、PG12を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。配列番号90で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのStx2eBが、PG17を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。配列番号92で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのStx2eBが、PG22を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。配列番号94で表されるアミノ酸配列を有するハイブリッドタンパク質は、3つのCTBが、それぞれ、PG12を介してタンデムに連結されている。配列番号96で表されるアミノ酸配列を有するハイブリッドタンパク質は、3つのCTBが、それぞれ、PG12を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。配列番号98で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのCTBが、PG17を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。配列番号100で表されるアミノ酸配列を有するハイブリッドタンパク質は、2つのCTBが、PG22を介してタンデムに連結され、さらにそのC末端にPG12が連結されている。
 前記PG12、PG17又はPG22などのペプチドを、前記細菌毒素タンパク質を連結するためのリンカーとして使用することにより、該細菌毒素タンパク質の植物細胞への蓄積レベルが増大する。
 本発明のハイブリッドタンパク質は、好ましくは、そのアミノ末端に植物由来の分泌シグナルペプチド、又は葉緑体移行シグナルペプチドが付加されている。ここで、「付加」とは、前記分泌シグナルペプチドが、前記ペプチドを介して連結した2つ又は3つの前記細菌毒素タンパク質のアミノ末端に、直接結合している場合も、他のペプチドを介して結合している場合も含む概念である。
 分泌シグナルペプチドは、好ましくはナス科(Solanaceae)、アブラナ科(Brassicaceae)、キク科(Asteraceae)に属する植物、さらに好ましくはタバコ属(Nicotiana)、シロイヌナズナ属(Arabidopsis)、アキノノゲシ属(Lactuca)等に属する植物、より好ましくはタバコ(Nicotiana tabacum)、シロイヌナズナ(Arabidopsis thaliana)、レタス(Lactuca sativa)等に由来する。
 また、好ましくはタバコのβ-Dグルカンエキソヒドロラーゼ(β-D-glucan exohydrolase)、タバコの38kDa ペルオキシダーゼ(GenBank Accession D42064)に由来する。
 前記分泌シグナルペプチドとしては、例えば、タバコのβ-Dグルカンエキソヒドロラーゼに由来する、配列番号18で表されるアミノ酸配列を有しているペプチドが挙げられる。
 葉緑体移行シグナルペプチドとしては、例えば、レタスRbcs(ルビスコスモールサブユニット)(GenBank ACCESSION D14001)由来葉緑体移行シグナルペプチド(トランジットペプチド、T.P.、配列番号79)が挙げられる。また、レタスRbcs由来葉緑体移行シグナルペプチドをコードするDNAの塩基配列は、例えば配列番号80で表される。本明細書において、アミノ末端に葉緑体移行シグナルペプチドが付加されたハイブリッドタンパク質を、葉緑体型(Chl)のハイブリッドタンパク質ともいい、該葉緑体型のハイブリッドタンパク質をコードするDNA構築物を、葉緑体型のDNA構築物ともいう。葉緑体型のハイブリッドタンパク質は、特にタバコなどの葉緑体が発達している植物に効率良く蓄積する。
 また、アミノ末端に、分泌シグナルペプチドも葉緑体移行シグナルペプチドも付加されていないハイブリッドタンパク質を、細胞質型(Cyt)のハイブリッドタンパク質ともいい、該細胞質型のハイブリッドタンパク質をコードするDNA構築物を、細胞質型のDNA構築物ともいう。細胞質型のハイブリッドタンパク質においては、特に、3つの細菌毒素のBサブユニットが、前記ペプチドを介してタンデムに連結されていることが好ましい。
 さらに、本発明のハイブリッドタンパク質は、そのカルボキシル末端に、小胞体残留シグナルペプチド、液胞移行シグナルペプチド等のシグナルペプチドが付加されていてもよい。ここで、「付加」とは、シグナルペプチドが、前記ハイブリッドタンパク質のカルボキシル末端に、直接結合している場合も、他のペプチドを介して結合している場合も含む概念である。本明細書において、アミノ末端に分泌シグナルペプチドが付加され、かつカルボキシル末端に小胞体残留シグナルペプチドが付加されたハイブリッドタンパク質を、小胞体型(ER)のハイブリッドタンパク質ともいい、該小胞体型のハイブリッドタンパク質をコードするDNA構築物を、小胞体型のDNA構築物ともいう。小胞体型のハイブリッドタンパク質は、特にレタスなどに効率良く蓄積する。
 本発明のハイブリッドタンパク質は、そのカルボキシル末端に、好ましくは、小胞体残留シグナルペプチドが付加されている。小胞体残留シグナルペプチドとしてはKDEL配列(配列番号19)、HDEL配列(配列番号20)、KDEF配列(配列番号21)又はHDEF配列(配列番号22)を含む小胞体残留シグナルペプチドが挙げられる。
 液胞移行シグナルペプチドとしては、好ましくはナス科(Solanaceae)、アブラナ科(Brassicaceae)、キク科(Asteraceae)に属する植物、さらに好ましくはタバコ属(Nicotiana)、シロイヌナズナ属(Arabidopsis)、セイヨウワサビ属(Armoracia)等に属する植物、より好ましくはタバコ(Nicotiana tabacum)、シロイヌナズナ(Arabidopsis thaliana)、セイヨウワサビ(Armoracia rusticana)等に由来する。また、好ましくは、キチナーゼに由来する。タバコキチナーゼ由来の液胞移行シグナルペプチドのアミノ酸配列は、配列番号76で表される。また、タバコキチナーゼ由来の液胞移行シグナルペプチドをコードするDNAの塩基配列は、例えば配列番号75で表される。
 また、好ましくは、セイヨウワサビペルオキシダーゼC1a アイソザイムに由来する。セイヨウワサビペルオキシダーゼC1a アイソザイム由来の液胞移行シグナルペプチドのアミノ酸配列は、配列番号78で表される。また、セイヨウワサビペルオキシダーゼC1a アイソザイム由来の液胞移行シグナルペプチドをコードするDNAの塩基配列は、例えば配列番号77で表される。本明細書において、アミノ末端に分泌シグナルペプチドが付加され、かつカルボキシル末端に液胞移行シグナルペプチドが付加されたハイブリッドタンパク質を、液胞型(Vac)のハイブリッドタンパク質ともいい、該液胞型のハイブリッドタンパク質をコードするDNA構築物を、液胞型のDNA構築物ともいう。
 本発明のハイブリッドタンパク質は、化学的に合成することもできるし、遺伝子工学的に生産することもできる。遺伝子工学的に生産する方法については、後述する。
 本発明のDNA構築物は、本発明のハイブリッドタンパク質をコードするDNAを含むことを特徴とする。
 すなわち、本発明のDNA構築物は、2つ又は3つの細菌毒素タンパク質をコードするDNAが、前記ペプチドをコードするDNAを介してタンデムに連結されているDNAを含む。前記ペプチドをコードするDNAは、例えば配列番号1(PG12)、配列番号81(PG17)、配列番号83(PG22)で表される。細菌毒素タンパク質をコードするDNAとして、例えばStx2eAをコードするDNA(配列番号3)、Stx2eBをコードするDNA(配列番号5)やCTBをコードするDNA(配列番号7)が挙げられる。前記ペプチドをコードするDNAと細菌毒素タンパク質をコードするDNAは、終止コドンを除いて読み枠を合わせて連結される。
 細菌毒素タンパク質をコードするDNAは、例えば、配列番号3、5、7の塩基配列に基づいて、一般的な遺伝子工学的な手法により得ることができる。具体的には、各細菌毒素を生産する細菌より、常法に従ってcDNAライブラリーを調製し、該ライブラリーから上記塩基配列に基づいて作製したプローブを用いて所望のクローンを選択する。また、上記塩基配列を基にした化学合成、上記塩基配列の5’及び3’末端の塩基配列をプライマーとし、ゲノムDNAを鋳型としたPCRなどにより合成することもできる。
 本発明のハイブリッドタンパク質をコードするDNAは、例えば、配列番号9、11、13、15、85、87、89、91、93、95、97又は99で表される。
 ハイブリッドタンパク質をコードするDNAは、該タンパク質を生産させる宿主細胞に応じて、ハイブリッドタンパク質の翻訳量が増大するように、ハイブリッドタンパク質を構成するアミノ酸を示すコドンが適宜改変されていることも好ましい。
 コドン改変の方法としては、例えばKang et al. (2004)の方法を参考にすることができる。また、宿主細胞において使用頻度の高いコドンを選択したり、GC含量が高いコドンを選択したり、宿主細胞のハウスキーピング遺伝子において使用頻度の高いコドンを選択したりする方法が挙げられる。
 また、ハイブリッドタンパク質をコードするDNAは、配列番号9、11、13、15、85、87、89、91、93、95、97又は99の塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、同一性が高い二つのDNAどうし、好ましくは80%以上、より好ましくは90%以上、特に好ましくは95%以上の同一性を有する2つのDNAがハイブリダイズするが、それより同一性の低い2つのDNAがハイブリダイズしない条件が挙げられる。例えば2×SSC(330mM NaCl、30mM クエン酸)、42℃が挙げられ、好ましくは0.1×SSC(330mM NaCl、30mM クエン酸)、60℃が挙げられる。
 本発明のDNA構築物において、好ましくは、前記ハイブリッドタンパク質をコードするDNAが、エンハンサーに発現可能に連結されている。ここで、「発現可能」とは、本発明のDNA構築物が適切なプロモーターを含むベクターに挿入され、該ベクターが適切な宿主細胞に導入された場合に、宿主細胞内で前記ハイブリッドタンパク質が生産されることをいう。また、「連結」とは、2つのDNAが直接結合している場合も、他の塩基配列を介して結合している場合も含む概念である。
 エンハンサーとしては、Kozak配列や植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域が挙げられる。特に好ましくは、前記ハイブリッドタンパク質をコードするDNAが、植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域に発現可能に連結されている。
 アルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域とは、アルコールデヒドロゲナーゼをコードする遺伝子の転写開始点から、翻訳開始点(ATG、メチオニン)の前までの塩基配列を含む領域をいう。該領域は、翻訳量増大機能を有している。「翻訳量増大機能」とは、構造遺伝子にコードされた情報が、転写後、翻訳されてタンパク質が産生される際に、翻訳により産生されるタンパク質量を増大させる機能をいう。前記領域は、植物に由来すればよいが、好ましくはナス科(Solanaceae)、アブラナ科(Brassicaceae)、キク科(Asteraceae)に属する植物、さらに好ましくはタバコ属(Nicotiana)、シロイヌナズナ属(Arabidopsis)、アキノノゲシ属(Lactuca)等に属する植物、より好ましくはタバコ(Nicotiana tabacum)、シロイヌナズナ(Arabidopsis thaliana)、レタス(Lactuca sativa)等に由来する。
 前記アルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域としては、例えばタバコ(Nicotiana tabacum)由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域(NtADH5'UTR)である、配列番号23で表される塩基配列からなる領域が特に好ましい。
 植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域は、例えば、アルコールデヒドロゲナーゼを高発現している植物培養細胞のアルコールデヒドロゲナーゼ遺伝子から単離することができる(特開2003-79372号公報参照)。また、タバコのアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域等、その塩基配列が確定しているものについては、化学合成、又は該領域の5’及び3’末端の塩基配列をプライマーとし、ゲノムDNAを鋳型としたPCRなどにより合成することもできる。また、塩基配列が確定している前記領域の一部をプローブとして用いることにより、他の植物のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域を探索し、これを単離することもできる。
 また、配列番号23の塩基配列で表されるような前記アルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域は、翻訳量増大機能を保持している限り、1又は数個の塩基の置換、欠失、挿入又は付加を有していてもよい。前記「数個」としては、好ましくは2~10個、さらに好ましくは2~5個、特に好ましくは2~3個である。
 また、前記アルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域と好ましくは85%以上、特に好ましくは90%以上の同一性を有し、かつ翻訳量増大機能を保持しているDNAを使用してもよい。
 前記領域が目的とする翻訳量増大機能を有するか否かについては、例えばタバコ培養細胞においてGUS(β-グルクロニダーゼ)遺伝子又はルシフェラーゼ遺伝子をレポーター遺伝子としたトランジェントアッセイ、染色体に組み込ませた形質転換細胞でのアッセイ等により確認することができる。
 本発明のDNA構築物は、例えば、配列番号24~29、配列番号101~111の何れかで表される塩基配列を有する。
 配列番号24で表される塩基配列を有するDNA構築物は、タバコ由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域(NtADH5'UTR、配列番号23)に、2つのStx2eBタンパク質を、PG12を介してタンデムに連結したハイブリッドタンパク質をコードするDNA(配列番号9)を連結したDNA構築物である。また、配列番号25で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのCTBタンパク質を、PG12を介してタンデムに連結したハイブリッドタンパク質をコードするDNA(配列番号11)を連結したDNA構築物である。
 配列番号26で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのStx2eBタンパク質を、PG12を介してタンデムに連結し、アミノ末端に分泌シグナルペプチドを、カルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。また、配列番号27で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのCTBタンパク質を、PG12を介してタンデムに連結し、アミノ末端に分泌シグナルペプチドを、カルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号28で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのStx2eBタンパク質を、PG12を介してタンデムに連結し、アミノ末端に分泌シグナルペプチドを付加し、カルボキシル末端にPG12を連結し、さらにそのカルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。また、配列番号29で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのCTBタンパク質を、PG12を介してタンデムに連結し、アミノ末端に分泌シグナルペプチドを付加し、カルボキシル末端にPG12を連結し、さらにそのカルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号101で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのStx2eBタンパク質を、PG12を介してタンデムに連結し、カルボキシル末端にPG12を連結したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号102で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのStx2eBタンパク質を、PG17を介してタンデムに連結し、アミノ末端に分泌シグナルペプチドを付加し、カルボキシル末端にPG12を連結し、さらにそのカルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。また、配列番号103で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのStx2eBタンパク質を、PG22を介してタンデムに連結し、アミノ末端に分泌シグナルペプチドを付加し、カルボキシル末端にPG12を連結し、さらにそのカルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号104で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのStx2eBタンパク質を、PG12を介してタンデムに連結し、アミノ末端に葉緑体移行シグナルペプチドを付加し、カルボキシル末端にPG12を連結したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号105で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、3つのStx2eBタンパク質を、それぞれ、PG12を介してタンデムに連結し、カルボキシル末端にPG12を連結したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号106で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、3つのStx2eBタンパク質を、それぞれ、PG12を介してタンデムに連結し、アミノ末端に分泌シグナルペプチドを付加し、カルボキシル末端にPG12を連結し、さらにそのカルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号107で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、3つのStx2eBタンパク質を、それぞれ、PG12を介してタンデムに連結し、アミノ末端に葉緑体移行シグナルペプチドを付加し、カルボキシル末端にPG12を連結したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号108で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのCTBタンパク質を、PG12を介してタンデムに連結し、カルボキシル末端にPG12を連結したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号109で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのCTBタンパク質を、PG17を介してタンデムに連結し、アミノ末端にシグナルペプチドを付加し、カルボキシル末端にPG12を連結し、さらにそのカルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。また、配列番号110で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのCTBタンパク質を、PG22を介してタンデムに連結し、アミノ末端にシグナルペプチドを付加し、カルボキシル末端にPG12を連結し、さらにそのカルボキシル末端に小胞体残留シグナルペプチドを付加したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 配列番号111で表される塩基配列を有するDNA構築物は、NtADH5'UTRに、2つのCTBタンパク質を、PG12を介してタンデムに連結し、アミノ末端に葉緑体移行シグナルペプチドを付加し、カルボキシル末端にPG12を連結したハイブリッドタンパク質をコードするDNAを連結したDNA構築物である。
 本発明のDNA構築物は、一般的な遺伝子工学的手法により作製することができ、植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域、植物由来の分泌シグナルペプチドをコードするDNA、葉緑体移行シグナルペプチドをコードするDNA、及び細菌毒素タンパク質をコードするDNA、小胞体残留シグナルペプチドをコードするDNAなどの各DNAを、それぞれ、適当な制限酵素により切断し、適当なリガーゼで連結することで構築することができる。
 本発明の組換えベクターは、本発明のDNA構築物を含むことを特徴とする。本発明の組換えベクターは、本発明のハイブリッドタンパク質をコードするDNAが、ベクターが導入される宿主細胞において発現可能なように、ベクター内に挿入されていればよい。ベクターは、宿主細胞において複製可能なものであれば特に制限されず、例えば、プラスミドDNA、ウィルスDNA等が挙げられる。また、ベクターは薬剤耐性遺伝子等の選択マーカーを含むことが好ましい。プラスミドDNAは、大腸菌やアグロバクテリウムからアルカリ抽出法(Birnboim, H. C. & Doly, J. (1979) Nucleic acid Res 7: 1513)又はその変法等により調製することができる。また、市販のプラスミドとして、例えばpBI221、pBI121、pBI101、pIG121Hm等を用いることもできる。ウィルスDNAとしては、例えばpTB2(Donson et al., 1991)等を用いることができる(Donson J., Kerney CM., Hilf ME., Dawson WO. Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc. Natl. Acad. Sci.(1991) 88: 7204-7208を参照。)
 ベクター内で用いられるプロモーターは、ベクターが導入される宿主細胞に応じて適宜選択することができる。例えば、カリフラワーモザイクウイルス35Sプロモーター(Odell et al.1985 Nature 313:810)、イネのアクチンプロモーター(Zhang et al.1991 Plant Cell 3:1155)、トウモロコシのユビキチンプロモーター(Cornejo et al.1993 Plant Mol.Biol.23:567)等が好ましく用いられる。また、ベクター内で用いられるターミネーターも、同様にベクターが導入される宿主細胞に応じて適宜選択することができる。例えば、ノパリン合成酵素遺伝子転写ターミネーター、カリフラワーモザイクウイルス35Sターミネーター等が好ましく用いられる。
 本発明の組換えベクターは、例えば以下のようにして作製することができる。
 まず、本発明のDNA構築物を適当な制限酵素で切断又はPCRによって制限酵素部位を付加し、ベクターの制限酵素部位又はマルチクローニングサイトに挿入する。
 本発明の形質転換体は、本発明の組換えベクターで形質転換されていることを特徴とする。形質転換に用いられる宿主細胞は真核細胞及び原核細胞の何れでもよい。
 真核細胞としては、植物細胞が好ましく用いられ、中でもキク科(Asteraceae)、ナス科、アブラナ科、アカザ科に属する植物の細胞が好ましく用いられる。さらに、アキノノゲシ属(Lactuca)に属する植物の細胞、中でもレタス(Lactuca sativa)細胞が好ましく用いられる。宿主細胞としてレタス細胞を用いる場合は、ベクターは、カリフラワーモザイクウイルス35S RNAプロモーター等を用いることができる。
 原核細胞としては、大腸菌(Escherichia coli)、アグロバクテリウム(Agrobacterium tumefaciens)等が用いられる。
 本発明の形質転換体は、一般的な遺伝子工学的手法を用いて、本発明のベクターを宿主細胞に導入することにより作製することができる。例えば、アクロバクテリウムを利用した導入方法(Hood, et al., 1993, Transgenic, Res. 2:218,Hiei, et al.,1994 Plant J. 6:271)、エレクトロポレーション法(Tada, et al., 1990, Theor.Appl.Genet, 80:475)、ポリエチレングリコール法(Lazzeri, et al., 1991, Theor. Appl. Genet. 81:437)、パーティクルガン法(Sanford, et al., 1987, J. Part. Sci. tech. 5:27)、ポリカチオン法(Ohtsuki)などの方法を用いることが可能である。
 本発明のベクターを宿主細胞に導入した後、選択マーカーの表現型によって本発明の形質転換体を選抜することができる。また、選抜した形質転換体を培養することにより、前記細菌毒素タンパク質を生産することができる。培養に用いる培地及び条件は、形質転換体の種に応じて適宜選択することができる。
 また、宿主細胞が植物細胞の場合には、選抜した植物細胞を常法に従って培養することにより、植物体を再生することができ、植物細胞内又は植物細胞の細胞膜外に前記細菌毒素タンパク質を蓄積させることができる。例えば、植物細胞の種類により異なるが、ジャガイモであればVisserら(Theor.Appl.Genet 78:594(1989))の方法が挙げられ、タバコであればNagataとTakebe(Planta 99:12(1971))の方法が挙げられる。
 レタスの場合は0.1 mg /lのNAA(ナフタレン酢酸)、0.05 mg/lのBA(ベンジルアデニン)および0.5 g/lのpolyvinylpyrrolidoneを含むMS培地でシュートの再生が可能であり、再生したシュートを0.5 g/lのpolyvinylpyrrolidoneを含む1/2 MS培地で培養することで発根が可能である。
 また、本発明の種子は、上記のようにして再生した植物体から種子を採取することにより得ることができる。本発明の種子は適当な方法で播種し栽培することにより、前記細菌毒素タンパク質を生産する植物体とすることができ、このような植物体も、本発明の形質転換体に含まれる。
<1>一過性発現実験
(1)Stx2eB一過性発現ベクターの構築
 Stx2eタンパク質のBサブユニット(Stx2eB)をコードするDNA(配列番号5)が、タバコアルコールデヒドロゲナーゼ遺伝子の5'非翻訳領域(NtADH5'UTR)に連結されたDNA構築物を含むベクターを以下のようにして作製した。
 ベクターのデザインを図1に示す。
 1×Stx2eB(PG12)は、Stx2eBをコードするDNAにPG12をコードするDNAを連結したDNAを含むDNA構築物を示す。2×Stx2eB(PG12)は、2つのStx2eBをコードするDNAを、PG12をコードするDNAをスペーサーとして連結したDNAを含むDNA構築物を示す。
 また、3つのStx2eBをコードするDNAを、PG12をコードするDNAをスペーサーとして連結したDNA構築物、3×Stx2eB(PG12)、及び4つのStx2eBをコードするDNAを、PG12をコードするDNAをスペーサーとして連結したDNA構築物、4×Stx2eB(PG12)も作製した。
 具体的手法を以下に示す。
 Kozak-stx2eb-Fプライマー(配列番号30)とstx2eb-R プライマー(配列番号31)を用いてPCRを行い、Stx2eBの成熟領域(ペリプラズムへの分泌シグナルペプチドを除く、Ala19~Asn87)をコードするDNA断片を増幅した。得られたDNA断片をpBluescript II SKのEcoRV ギャップにクローニングした。得られたプラスミドをHindIII で切断し、T4 DNA polymerase で処理した後セルフライゲーションを行い、HindIII サイトをNheI サイトに変換した(plasmid 1)。
 Stx2eBを、以下のようにして植物細胞における一過性発現用ベクター、pBI221(Clontech 社)のマルチクローニングサイト(MCS)に挿入した。
 MCSにSalI、KpnI及びSmaIサイトを導入するために、SalKpnSma-F(配列番号32)とSalKpnSma-R (配列番号33)をアニーリング後、T4 polynucleotide kinase (T4 PNK)(TaKaRa 社)を用いてリン酸化し、pBI221 のSacI ギャップに挿入した(plasmid 2)。Plasmid 1 からXbaI とKpnI でStx2eB 断片を切り出し、plasmid 2に挿入し、カリフラワーモザイクウイルス35S RNA プロモーター(35S pro.)とノパリン合成酵素遺伝子転写ターミネーター(NOS-T)の間に配置した(plasmid 3)。
 タバコアルコールデヒドロゲナーゼ遺伝子の5'非翻訳領域(NtADH 5’UTR、配列番号23)を、ADH-221(Sato et. al., 2004(下記参照)) を鋳型として、ADH XbaI-F プライマー(配列番号34)及びADH NsiI-R プライマー(配列番号35)を用いたPCR により増幅した。β-D glucan exohydrolase(GenBank ACCESSION AB017502)の分泌シグナルペプチド(配列番号18)をコードするDNA領域(配列番号17)を、タバコゲノムDNAを鋳型にして、βD NsiI-F プライマー(配列番号36)およびβD BamHI-R プライマー(配列番号37)を用いて増幅した。得られたNtADH 5'UTR および分泌シグナルペプチドの各DNA断片をNsiI (TOYOBO社製)で処理し、Ligation High (TOYOBO社)を用いてライゲーションした後、末端を平滑化してpBluescript II SK (Stratagene社製)のEcoRV ギャップにクローニングした(plasmid 4)。
 Satoh et al., The 5'-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant. J. Biosci. Bioeng. (2004) 98,1-8
 Plasmid 4をNsiI で処理し、T4 DNA polymerase (TOYOBO社製)で末端を平滑化した後セルフライゲーションして、NtADH の開始コドン(atg)と分泌シグナルペプチドの開始コドンが一致するように連結した(plasmid 5)。
 NtADH 5'UTR 断片および分泌シグナルペプチドの連結DNAを、plasmid 5 を鋳型として用い、ADH XbaI-F プライマー(配列番号34)とβD BamHI-R プライマー(配列番号35)を用いて増幅した。得られたDNA 断片を、XbaI とBamHI で処理し、plasmid 3のXbaI-BamHI ギャップに挿入した(plasmid 6)。
 小胞体残留シグナル(配列番号38)付加のために、HDEL-Fプライマー(配列番号39)とHDEL-Rプライマー(配列番号40)をアニーリングしてT4 PNK でリン酸化し、アルカリフォスファターゼ(AP)(TaKaRa社)で脱リン酸化処理したplasmid 6のBglIIギャップに挿入した(plasmid 7)。
 Stx2eB検出用のペプチドタグとして、HAタグを付加した。HA タグの付加のために、HA-F プライマー(配列番号41)とHA-R プライマー(配列番号42) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化HA断片を、plasmid 7のBglIIギャップに挿入した(plasmid 8)。
 Stx2eBとHAタグの間にPG12スペーサー(配列番号2)を挿入した。PG12-F プライマー(配列番号43)とPG12-R プライマー(配列番号44) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、plasmid 8のBglIIギャップに挿入した(1×Stx2eB(PG12))。
 1×Stx2eB(PG12) からBamHIおよびBglIIを用いて2eB-PG12断片を切り出し、1×Stx2eB(PG12)のBamHIギャップに挿入した(2×Stx2eB(PG12))。また、1×Stx2eB(PG12) からBamHIおよびBglIIを用いてStx2eB-PG12断片を切り出し、2×Stx2eB(PG12)のBamHIギャップに挿入した(3×Stx2eB(PG12))。また、2×Stx2eB(PG12) からBamHIおよびBglIIを用いて2×(Stx2eB-PG12)断片を切り出し、2×Stx2eB(PG12)のBamHIギャップに挿入した(4×Stx2eB(PG12))。
(2)CTB一過性発現ベクターの構築
 CTタンパク質のBサブユニット(CTB)をコードするDNAが、タバコアルコールデヒドロゲナーゼ遺伝子の5'非翻訳領域に連結されたDNA構築物(2×CTB(PG12))を含むベクターを以下のようにして作製した。
 CTBの成熟領域(ペリプラズムへの分泌シグナルを除く、Thr22~Asn124) (配列番号8)をコードするDNA(配列番号7)を作製した。まず、以下の10種類のプライマーを作製した。
  CTB1:配列番号45
  CTB2:配列番号46
  CTB3:配列番号47
  CTB4:配列番号48
  CTB5:配列番号49
  CTB6:配列番号50
  CTB7:配列番号51
  CTB8:配列番号52
  CTB9:配列番号53
  CTB10:配列番号54
 上記で合成したプライマーを使用し、Kang et al.(2004)に記載の条件で、PCRを行った。すなわち、CTB1とCTB2、CTB3とCTB 4、CTB5とCTB 6、CTB7とCTB 8、CTB9とCTB 10の組み合わせでPCRを行い、それぞれ72bp(1+2)、74bp(3+4)、67bp(5+6)、82bp(7+8)、68bp(9+10)のDNA断片を合成した。次にCTB1+2とCTB3+4、CTB3+4とCTB5+6、CTB5+6とCTB7+8、CTB7+8とCTB9+10の組み合わせで2nd PCRを行い、135bp(1+2+3+4)、132bp(3+4+5+6)、138bp(5+6+7+8)および141bp(7+8+9+10)のDNA断片を合成した。次にCTB1+2+3+4とCTB3+4+5+6、およびCTB5+6+7+8とCTB7+8+9+10の組み合わせで3rd PCRを行い、194bp(1+2+3+4+5+6)および198bp(5+6+7+8+9+10)のDNA断片を合成した。最後にCTB1+2+3+4+5+6とCTB5+6+7+8+9+10の組み合わせでPCRを行い、315bpのCTBコード領域にBamHIサイトとBglIIサイトが付加されたDNA断片を合成した。
 上記で作製したDNA断片をBamHIおよびBglIIで処理し、Plasmid 8のBamHI-BglIIギャップに挿入した(plasmid 9)。
 CTBとHAタグの間にPG12スペーサー(配列番号2)を挿入した。PG12-F プライマー(配列番号43)とPG12-R プライマー(配列番号44) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、plasmid 9のBglIIギャップに挿入した(1×CTB(PG12))。
 1×CTB(PG12) からBamHIおよびBglIIを用いてCTB-PG12断片を切り出し、1×CTB(PG12)のBamHIギャップに挿入した(2×CTB(PG12))。
(3)レタスプロトプラストを用いた一過性発現実験
 鉢植えしたレタス(Lactuca sativa)(グリーンウェーブ)の葉、約1gをメスで0.5cm四方程度に切り刻んでリーフディスクを作製した。リーフディスクを500mMマンニトールに浸漬し、1時間振盪した。リーフディスクを50mlのプロトプラスト化酵素溶液 (1.0% cellulose RS (ヤクルト本社), 0.25% macerozyme R-10 (ヤクルト本社), 400mM マンニトール, 8mM CaCl2, and 5mM Mes-KOH, pH 5.6)に浸漬し、室温で2時間振盪した。プロトプラスト懸濁液を、100μmおよび40μmのメッシュに通してリーフディスクを取り除いた。プロトプラスト懸濁液を60gで5分間遠心し、プロトプラストを沈殿させた。プロトプラストを167mMマンニトールおよび133mM CaCl2を含む水溶液に再懸濁し、40gで5分間遠心した。プロトプラストを333mMマンニトールおよび66.7mM CaCl2を含む水溶液に再懸濁し、40gで5分間遠心した。プロトプラストをW5 solution (154mM NaCl, 125mM CaCl2, 5mM KCl, 2mM Mes-KOH, pH 5.6)に懸濁し、氷上に1時間静置した。プロトプラスト懸濁液を40gで5分間遠心し、プロトプラスト濃度が2×106個/mlになるように、MaMg solution (400mM マンニトール, 15mM MgCl2, and 4mM Mes-KOH, pH 5.6)に懸濁した。
 上記で作製した各Stx2eB一過性発現ベクター、CTB一過性発現ベクターを、それぞれ120μlのプロトプラスト懸濁液と混合した後、140μlのPEG solution (400mM マンニトール, 100mM Ca(NO3)2, and 40% PEG)を加えて穏やかに混和し、7分間インキュベートした。約20分間かけて1mlのW5 solutionをプロトプラスト懸濁液に添加した。遠心により沈殿させたプロトプラストに、400mM マンニトールとW5 solutionを4:1の割合で混ぜた溶液を1ml添加した。遠心により沈殿させたプロトプラストに、1%スクロース、400mM マンニトールおよび0.3mMカルベニシリンを含むLS培地を1ml添加し、暗所25℃で24時間培養した。
(4)ウェスタン解析
 遠心により回収したプロトプラストに30μlのSDS-sample buffer(4% (w/v) SDS, 20% (w/v) glycerol, 0.05%(w/v) ブロモフェノールブルー, 300mM β-メルカプトエタノール, 125mM Tris-HCl, pH 6.8)を加え、95℃で2分間熱変性させ、試料とした。15%アクリルアミドゲルを用いてタンパク質を分離後、エレクトロトランスファー装置を用いてPVDFメンブレン(Hybond-P; Amersham 社)上にタンパク質をブロットした。抗HA抗体(No. 11 867 423 001, Roche)を用いて、Stx2eB及びCTBを検出した。
(a)Stx2eBの連結数の影響
 結果を図2に示す。
 1×Stx2eB(PG12)を発現させた場合には、約8.5kDaの位置にシグナルが検出された。2×Stx2eB(PG12)を発現させた場合は、約17kDaの位置に、1×Stx2eB(PG12)を発現させた場合と同程度のシグナルが検出された。3×Stx2eB(PG12)を発現させた場合は、約26kDaの位置に、1×Stx2eB(PG12)を発現させた場合より小さいシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。また、4×Stx2eB(PG12)を発現させた場合は、特異的シグナルは検出限界以下だった。
 以上の結果から、2×Stx2eB(PG12)及び3×Stx2eB(PG12)を発現させると、複数のStx2eBタンパク質が連結したハイブリッドタンパク質が生産できることが明らかとなった。
 また、上記各DNA構築物は、HAタグを1分子ずつ含むため(図1参照)、2×Stx2eB(PG12)を発現させた場合は、1×Stx2eB(PG12)を発現させた場合の約2倍のStx2eBタンパク質に相当するタンパク質を蓄積していると考えられる。すなわち、2つのStx2eBタンパク質をコードするDNAを、PG12をコードするDNAを介して連結した場合には、極めて効率よくStx2eBタンパク質を生産できることが分かった。
 一方、3つのStx2eBタンパク質をコードするDNA、4つのStx2eBタンパク質をコードするDNAを、PG12をコードするDNAを介して連結した場合には、Stx2eBタンパク質の生産は、1つのStx2eBタンパク質の同等以下であることが分かった。
 なお、本実験で作製した、カルボキシル末端にPG12が付加されたStx2eBタンパク質(1×Stx2eB(PG12))は、これが付加されないStx2eBタンパク質に比して、タンパク質の蓄積レベルが高い傾向にあることが判っている。これより、本発明のハイブリッドタンパク質は、カルボキシル末端にPG12が付加されることが好ましい形態であると推察される。
(b)CTBの連結数の影響
 結果を図3に示す。
 1×CTB(PG12)を発現させた場合には、約20kDaの位置にシグナルが検出された。2×CTB(PG12)を発現させた場合は、約33kDa及び約35kDaの位置に、1×CTB(PG12)を発現させた場合よりも大きいシグナルが検出された。
 以上の結果から、2×CTB(PG12)を発現させると、2つのCTBタンパク質が連結したハイブリッドタンパク質が生産できることが明らかとなった。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。
 また、上記各DNA構築物は、HAタグを1分子ずつ含むため、2×CTB(PG12)を発現させた場合は、1×CTB(PG12)を発現させた場合の2倍より大きいCTBタンパク質に相当するタンパク質が蓄積していると考えられる。すなわち、2つのCTBタンパク質をコードするDNAを、PG12をコードするDNAを介して連結した場合には、極めて効率よくCTBタンパク質を生産できることが分かった。
(5)Stx2eBの局在解析
 細胞におけるStx2eBの局在を解析するために、Stx2eBと黄色蛍光タンパク質YFPのハイブリッドタンパク質の一過性発現ベクターを作製した。ベクターのデザインを図4に示す。1×Stx2eB(PG12)-YFPは、1つのStx2eBタンパク質をコードするDNAとYFPをコードするDNAが連結したDNA構築物を示す。2×Stx2eB(PG12)-YFPは、2つのStx2eBタンパク質がPG12を介して連結したハイブリッドタンパク質をコードするDNAとYFPをコードするDNAが連結したDNA構築物を示す。また、スペーサーとしてPG12の代わりにRS(Arg Ser)を用いた2×Stx2eB(RS)-YFPも作製した。
 以下に、具体的な手法を示す。
 まず、YFPのDNA断片を、pEYFP(Clontech)を鋳型とし、YFP-Fプライマー(配列番号55)およびYFP-Rプライマー(配列番号56)を用いてPCRにより増幅した。得られたDNA断片をBamHIおよびBglIIで処理し、Plasmid 8のBamHI-BglIIギャップに挿入した(ER-YFP)。
 plasmid 1からBamHIおよびBglIIを用いてStx2eB断片を切り出し、前記1×Stx2eB(PG12)のBamHIギャップに挿入した(2×Stx2eB(RS))。
 1×Stx2eB(PG12)、2×Stx2eB(RS)および2×Stx2eB(PG12)から、BamHI-BglIIを用いて、それぞれ、Stx2eB-PG12断片、2×(Stx2eB-RS)断片および2×(Stx2eB-PG12)断片を切り出し、ER-YFPのBamHIギャップに挿入した(1×Stx2eB(PG12)-YFP、2×Stx2eB(RS)-YFPおよび2×Stx2eB(PG12)-YFP)。
 一方、小胞体を可視化するためのベクターとして、小胞体局在型の赤色蛍光タンパク質(mRFP、Campbell R.E. et al. (2002)(下記参照))の発現ベクターを作製した。mRFP-Fプライマー(配列番号57)とmRFP-R プライマー(配列番号58)を用いてPCR を行った。得られたDNA断片をBamHIおよびBglIIで処理し、Plasmid 8のBamHI-BglIIギャップに挿入した(ER-mRFP)。
Campbell R.E. et al., A monomeric red fluorescent protein (2002) Proc. Nat. Acad. Sci. 99: 7877-7882
 前記Stx2eBの発現ベクターとmRFP発現ベクターを上記の方法と同様にして、タバコ培養細胞(BY2)のプロトプラストに導入し、共焦点顕微鏡観察(LSM510, Zeiss)を用いて観察した。
 結果を図5及び6に示す。
 図5は、Stx2eB-YFPハイブリッドタンパク質の局在を示す。2×Stx2eB(PG12)-YFPを発現させた場合は、Stx2eB-YFPハイブリッドタンパク質が100個/細胞程度、顆粒状に局在しているのが観察された。1×Stx2eB(PG12)-YFP及び2×Stx2eB(RS)-YFPを発現させた場合には、顆粒は観察されなかった。
 図6中、最左列の画像Aは、あるプロトプラストにおけるmRFPの局在を示す。mRFPの局在は、小胞体の位置を反映する。中列の画像Bは、同一のプロトプラストにおけるStx2eB-YFPハイブリッドタンパク質の局在を示す。最右列の画像は、画像A及びBの合成画像である。合成画像から、Stx2eB-YFPハイブリッドタンパク質は、小胞体に、顆粒状に局在していることが判る。
(6)小胞輸送機能の影響
 2×Stx2eB(PG12)の蓄積及び凝集が、タンパク質翻訳後のどの過程で起こるのか調べた。
 2×Stx2eB(PG12)-YFPを、シロイヌナズナの小胞輸送調節タンパク質ARF1、又はそのドミナントネガティブ変異体ARF1(Q71L)(ARF1DN)と共発現させた。また、ARF1DNの共発現により、ゴルジ体へのタンパク質の輸送が阻害されるレポーターとして、液胞型GFP(vacuole-GFP)と各ARF1の共発現を行った。各ARF1の発現ベクターの構築は以下のように行った。なお、液胞型GFP発現ベクターの作製は、下記文献を参照して行うことができる。
 Di Sansebastiano et. al., Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. (1998) 15, 449-457
 小胞輸送調節タンパク質として、シロイヌナズナARF1(GenBank Accession No. M95166)およびそのドミナントネガティブ変異体ARF1(Q71L) (Masaki Takeuchi et al., 2002(下記参照))の発現ベクターを構築した。シロイヌナズナ幼植物体から調製したcDNAを鋳型として、ARF1-Fプライマー(配列番号59)およびARF1-Rプライマー(配列番号60)を用いてPCRを行った。得られたDNA断片をpBluescript (Stratagene)のEcoRVギャップにサブクローニングした。また、ARFQL-Fプライマー(配列番号61)およびARFQL-Rプライマー(配列番号62)を用いてPCRを行い、71番目のグルタミン残基をロイシン残基に置換した。得られた各ARF1断片を、一過性発現用ベクターpBI221にサブクローニングした。
 作製したそれぞれのベクターを、上記と同様の方法でタバコ培養細胞のプロトプラストに導入し、各タンパク質を共発現させ、2×Stx2eB(PG12)の局在を調べた。
 結果を図7に示す。
 2×Stx2eB(PG12)-YFPを、ARF1と共発現させた場合も、ARF1(Q71L)と共発現させた場合も、2×Stx2eB(PG12)-YFPを単独で発現させた場合と同様に顆粒が観察された。一方、ARF(Q711)との共発現は、小胞体からの液胞型GFPの移出を阻害した。これより、顆粒の形成は、小胞体からゴルジ体への小胞輸送過程に依存しないと推測された。
<2>タバコ培養細胞を用いた形質転換実験
(1)形質転換用ベクターの構築
 上記と同様にして、1×Stx2eB(PG12)、2×Stx2eB(PG12)、3×Stx2eB(PG12)、4×Stx2eB(PG12)を作製した。
 さらに、PG12に代えて、RS(Arg Ser)、PG7(配列番号63)又はSG12(配列番号64)をスペーサーに用いたDNA構築物、2×Stx2eB(RS)、2×Stx2eB(PG7)、2×Stx2eB(SG12)を以下の方法で作製した。
 前記plasmid 8のStx2eBとHAタグの間にPG7スペーサー(配列番号63)を挿入した。PG7-F プライマー(配列番号65)とPG7-R プライマー(配列番号66) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、plasmid 8のBglIIギャップに挿入した(plasmid 10)。
 また、Stx2eBとHAタグの間にSG12スペーサー(配列番号64)を挿入した。SG12-F プライマー(配列番号67)とSG12-R プライマー(配列番号68) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、plasmid 8のBglIIギャップに挿入した(plasmid 11)。
 Plasmid 1からBamHIおよびBglIIを用いてStx2eB断片を切り出し、1×Stx2eB(PG12)のBamHIギャップに挿入した(2×Stx2eB(RS))。Plasmid 10からBamHIおよびBglIIを用いてStx2eB-PG7断片を切り出し、1×Stx2eB(PG12)のBamHIギャップに挿入した(2×Stx2eB(PG7))。Plasmid 11からBamHIおよびBglIIを用いてStx2eB-SG12断片を切り出し、1×Stx2eB(PG12)のBamHIギャップに挿入した(2×Stx2eB(SG12))。
 植物の安定形質転換体を用いて、Stx2eBの生産を行うために、前記各Stx2eB のDNA構築物を形質転換用ベクターにサブクローニングした(ベクターのデザインは、図1を参照)。1×Stx2eB(PG12)、2×Stx2eB(PG12)、3×Stx2eB(PG12)、4×Stx2eB(PG12)、2×Stx2eB(RS)、2×Stx2eB(PG7)および2×Stx2eB(SG12)をXbaIおよびSacIを用いてpBI121(Clontech 社)に挿入し、カリフラワーモザイクウイルス35S RNA プロモーター(35S pro.)とノパリン合成酵素遺伝子転写ターミネーター(NOS-T)の間に配置した。
(2)タバコ培養細胞の形質転換
 作製した形質転換用ベクターを、エレクトロポレーション法を用いて、アグロバクテリウム(Agrobacterium tumefacience EHA105)に導入した。カナマイシン100 mg/l を含む5 mlのLB培地で28℃、2晩培養したアグロバテリウム培養液100 μlと、培養4日目のタバコ培養細胞(Nicotiana tabacum, cv BY2)の懸濁液 5~10 mlをシャーレに入れて混合し、25℃で2 晩、暗所下で静置して共存培養した。アグロバクテリウムを除くため、シャーレの中の培養液を 15 mlの遠心管に移して遠心(1000 rpm, 5分間, 4℃)し、上清を取り除いた。改変LS培地を入れて遠心分離 (1000 rpm, 5分間, 4℃)し、細胞を洗浄した。この洗浄操作を4回繰り返し、アグロバクテリウムを除いた。残ったBY2細胞をカナマイシン(100 mg/l)の入った改変 LS寒天培地に置き、25℃で暗黒下に静置して培養した。約2-3週間後にカルス化した細胞を新しいプレートに移植し、増殖するクローンを選択した。
(3)ウェスタン解析を用いたStx2eBタンパク質の半定量
 平板培地にて培養したタバコ培養細胞を遠心チューブに回収し、細胞の重量1mg あたり1 μl のSDS-sample buffer を添加した。95℃で2分間熱変性させ、電気泳動用の試料とした。15% アクリルアミドゲルを用いてタンパク質を分離後、エレクトロトランスファー装置を用いてPVDFメンブレン(Hybond-P; Amersham )上にタンパク質をブロットした。抗HA 抗体(No. 11 867 423 001, Roche)を用いて、Stx2eB タンパク質を検出した。濃度既知のHAタグ付きStx2eBの希釈系列を作製してゲルにロードし、シグナル強度を元に検量線を作成して、各サンプル中のStx2eBタンパク質量を算出した。
 以下に、結果を示す。
(a)Stx2eBの連結数の影響
 結果を図8及び9に示す。
 1×Stx2eB(PG12)を発現させた場合には、約10kDa及び約17kDaの位置にシグナルが検出された。それぞれ、シグナルペプチドが切断されたStx2eB、及びシグナルペプチドが切断されていないStx2eBであると推定される。2×Stx2eB(PG12)を発現させた場合は、約19kDaの位置に、1×Stx2eB(PG12)を発現させた場合と同程度のシグナルが検出された。3×Stx2eB(PG12)を発現させた場合は、約26kDaの位置に、1×Stx2eB(PG12)を発現させた場合より小さいシグナルが検出された。何れも、DNA構築物のデザインから推定した分子量と一致していた。また、4×Stx2eB(PG12)を発現させた場合は、特異的シグナルは検出限界以下だった(データ非掲載)。
 これより、1×Stx2eB(PG12)や3×Stx2eB(PG12)よりも、2×Stx2eB(PG12)の方がStx2eBが高蓄積することがわかった。
(b)スペーサーの影響
 結果を図10及び図11に示す。
 Stx2eBに相当するシグナルの強度から、Stx2eBの蓄積レベルは、スペーサーとしてPG12を用いた場合が最も多かった。次いでPG7とSG12を用いた場合が同程度で多かった。また、RSを用いた場合が最も少なかった。このことから、2つのStx2eB 間のスペーサーの長さ及びアミノ酸配列が、2×Stx2eBタンパク質の蓄積レベルに影響を与えることがわかった。
(4)リアルタイムPCR によるmRNA の定量
 タンパク質の蓄積レベルが転写レベルに影響を受けるのかを調べた。
 上記で得られた各形質転換BY2細胞から、RNeasy Mini Kit (Qiagen)を用いてRNA を調製した。DNase 処理を行った後、Transcriptor Reverse Transcriptase (Roche)を用いて逆転写を行った。SYBR Green PCR Master Mix (Applied Biosystems)を用いて、リアルタイムPCR を行った。Stx2eB mRNA の定量には、各コンストラクト間で共通の配列である、NtADH 5'UTR とシグナルペプチドを含む領域を増幅するプライマーセット(配列番号69および配列番号70)を用いた。UBQ-Fプライマー(配列番号71)およびUBQ-Rプライマー(配列番号72)を用いてBY2ユビキチン遺伝子の発現量を定量し、stx2eB 遺伝子のmRNA レベルを補正した。なお1×Stx2eB(PG12) mRNAレベルは、定量値を1/2にして算出した。
 結果を図12に示す。
 mRNAあたりのStx2eタンパク質の蓄積レベルは、2×Stx2eB (PG12)を発現させた細胞の方が、2×Stx2eB (RS)又は1×Stx2eB (PG12)を発現させた細胞よりも大きい傾向にあった。これより、スペーサーの相違は、転写レベルに影響を与えるのではなく、翻訳レベル或いは翻訳後のタンパク質の安定性に影響を与えることがわかった。また、2×Stx2eBタンパク質が顆粒状に局在していたという結果を併せて考察すると、スペーサーは、翻訳後のタンパク質の安定性に影響を与えているものと考えられる。
<3>一過性発現実験
 (1)Stx2eB一過性発現ベクターの構築
 上記<1>(1)の方法で、1×Stx2eB(PG12)、2×Stx2eB(PG12)、3×Stx2eB(PG12)、4×Stx2eB(PG12)の一過性発現ベクターを構築した(図13-A)。以下、これらのベクターをそれぞれ、ER-1×Stx2eB(PG12)、ER-2×Stx2eB(PG12)、ER-3×Stx2eB(PG12)、ER-4×Stx2eB(PG12)という。なお、「ER」は小胞体型を意味する。
 また、以下の方法で細胞質型(Cyt)のDNA構築物を含む一過性発現ベクター(図13-B)、及び葉緑体型(Chl)のDNA構築物を含む発現ベクター(図13-C)を構築した。なお、これらのDNA構築物は、小胞体型のハイブリッドタンパク質とできるだけ近い構造のハイブリッドタンパク質を発現させる目的で、小胞体残留シグナルペプチドをコードするDNAを含むようにデザインされた。但し、当該DNA構築物は、分泌シグナルペプチドをコードするDNAを含まないので、生産されたハイブリッドタンパク質において、小胞体残留シグナルペプチドは、その機能(タンパク質の小胞体への残留)を発揮しない。
 NtADH 5'UTR 断片を、ADH XbaI-Fプライマー(配列番号34)とADH BamHI-Rプライマー(配列番号112)を用いたPCRにより増幅し、得られたDNA 断片をXbaI とBamHI で処理した。NtADH 5'-UTR のXbaI-BamHI 断片を、ER-1×Stx2eB(PG12)、ER-2×Stx2eB(PG12)、ER-3×Stx2eB(PG12)およびER-4×Stx2eB(PG12)のそれぞれのXbaI-BamHI ギャップに挿入し、細胞質型Stx2eBベクターであるCyt-1×Stx2eB(PG12)、Cyt-2×Stx2eB(PG12)、Cyt-3×Stx2eB(PG12)およびCyt-4×Stx2eB(PG12)を作製した。
 NtADH 5’-UTR断片を、ADH XbaI-F プライマー(配列番号34)及びADH NsiI-R プライマー(配列番号35)を用いたPCR により増幅した。レタスRbcs(ルビスコスモールサブユニット)(GenBank ACCESSION D14001)由来葉緑体移行シグナルペプチド(トランジットペプチド、T.P.)をコードするDNA 断片(配列番号80)を、レタス葉cDNA を鋳型として、TP NsiI-F プライマー(配列番号113)およびTP BamHI-R プライマー (配列番号114)を用いてPCRにより増幅した。得られたNtADH 5'-UTR および分泌シグナルペプチドの各DNA断片をNsiI (TOYOBO社製)で処理し、Ligation High (TOYOBO社)を用いてライゲーションした後、末端を平滑化してpBluescript II SK (Stratagene社製)のEcoRV ギャップにクローニングした(plasmid 12)。Plasmid 12をNsiI で処理し、T4 DNA polymerase (TOYOBO社製)で末端を平滑化した後セルフライゲーションして、NtADHの開始コドンとRbcsの開始コドンが一致するように融合した(plasmid 13)。Plasmid 13からXbaIとBamHIを用いてNtADH 5'-UTR-T.P.融合断片を切り出し、ER-1×Stx2eB(PG12)、ER-2×Stx2eB(PG12)、ER-3×Stx2eB(PG12)およびER-4×Stx2eB(PG12)のそれぞれのXbaI-BamHI ギャップに挿入し、葉緑体型Stx2eBベクターであるChl-1×Stx2eB(PG12)、Chl-2×Stx2eB(PG12)、Chl-3×Stx2eB(PG12) およびChl-4×Stx2eB(PG12)を作製した。
 (2)CTB一過性発現ベクターの作製
 上記<1>(2)の方法で、1×CTB(PG12)、2×CTB(PG12)の一過性発現ベクターを構築した(図14-A)。以下、これらのベクターをそれぞれ、ER-1×CTB(PG12)、ER-2×CTB(PG12)という。
 また、以下の方法で細胞質型(Cyt)のDNA構築物を含む一過性発現ベクター(図14-B)、及び葉緑体型(Chl)のDNA構築物を含む発現ベクター(図14-C)を構築した。
 ER-1×CTB(PG12) からBamHIおよびBglIIを用いてCTB-PG12断片を切り出し、上記<3>(1)で作製したCyt-1×Stx2eB(PG12)のBamHI-BglIIギャップおよびChl-1×Stx2eB(PG12)のBamHI-BglIIギャップに挿入して細胞質型及び葉緑体型の1×CTB(PG12)を作製した(Cyt-1×CTB(PG12)、Chl-1×CTB(PG12))。
 続いて、ER-2×CTB(PG12) からBamHIおよびBglIIを用いて2×(CTB-PG12)断片を切り出し、Cyt-1×Stx2eB(PG12)のBamHI-BglIIギャップおよびChl-1×Stx2eB(PG12)のBamHI-BglIIギャップに挿入して細胞質型および葉緑体型の2×CTB(PG12)を作製した(Cyt-2×CTB(PG12)、Chl-2×CTB(PG12))。
 (3)一過性発現実験及びウェスタン解析
 上記<1>(3)と同様にしてレタスのプロトプラストを用いて一過性発現実験を行った。続いて、<1>(4)と同様にしてStx2eB、CTBを検出した。
 (a)Stx2eBの連結数の影響
 結果を図15に示す。
 ER-1×Stx2eB(PG12)を発現させた場合には、約10 kDaの位置にシグナルが検出された。ER-2×Stx2eB(PG12)を発現させた場合は、約19 kDaの位置に、ER-1×Stx2eB(PG12)を発現させた場合より大きいシグナルが検出された。ER-3×Stx2eB(PG12)を発現させた場合は、約27 kDaの位置に、ER-1×Stx2eB(PG12)を発現させた場合より大きいシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。また、ER-4×Stx2eB(PG12)を発現させた場合は、特異的シグナルは検出限界以下だった。
 Cyt-1×Stx2eB(PG12)を発現させた場合には、特異的シグナルは検出限界以下だった。Cyt-2×Stx2eB(PG12)を発現させた場合は、約20 kDaの位置に、シグナルが検出された。Cyt-3×Stx2eB(PG12)を発現させた場合は、約30 kDaの位置に、シグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。また、Cyt-4×Stx2eB(PG12)を発現させた場合は、特異的シグナルは検出限界以下だった。
 Chl-1×Stx2eB(PG12)を発現させた場合には、約14 kDaの位置にわずかにシグナルが検出された。Chl-2×Stx2eB(PG12)を発現させた場合は、約22 kDaの位置に、ER-3×Stx2eB(PG12)を発現させた場合と同程度のシグナルが検出された。Chl-3×Stx2eB(PG12)を発現させた場合は、約30 kDaの位置に、Chl-2×Stx2eB(PG12)を発現させた場合と同程度のシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。また、Chl-4×Stx2eB(PG12)を発現させた場合は、約34 kDaの位置に、わずかにシグナルが検出された。
 上記各DNA構築物は、HAタグを1分子ずつ含むため(図13参照)、2つのStx2eBをコードするDNAを発現させた場合、3つのStx2eBをコードするDNAを発現させた場合は、1つのStx2eBをコードするDNAを発現させた場合のそれぞれ約2倍、約3倍のStx2eBタンパク質に相当するタンパク質を蓄積していると考えられる。
 従って、小胞体型(ER)、細胞質型(Cyt)、葉緑体型(Chl)の何れのDNA構築物を発現させた場合においても、1つのStx2eBタンパク質を発現させた場合より、2つ又は3つのStx2eBをスペーサーを介してタンデムに連結したタンパク質を発現させた場合の方が、Stx2eBを効率よく蓄積させることができることが判った。
 (b)CTBの連結数の影響
 結果を図16に示す。
 ER-1×CTB(PG12)を発現させた場合には、約17 kDaの位置にシグナルが検出された。ER-2×CTB(PG12)を発現させた場合は、約28 kDa及び30 kDaの位置に、ER-1×Stx2eB(PG12)を発現させた場合より大きいシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。
 Cyt-1×CTB(PG12)を発現させた場合には、約14 kDaの位置にわずかにシグナルが検出された。Cyt-2×CTB(PG12)を発現させた場合は、約26 kDaの位置に、ER-2×CTB(PG12)を発現させた場合と同程度のシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。
 Chl-1×CTB(PG12)を発現させた場合には、約14 kDaの位置にシグナルが検出された。Chl-2×CTB(PG12)を発現させた場合は、約26 kDaの位置に、ER-2×CTB(PG12)を発現させた場合と同程度のシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。
 以上より、小胞体型(ER)、細胞質型(Cyt)、葉緑体型(Chl)の何れのDNA構築物を発現させた場合においても、1つのCTBタンパク質を発現させた場合より、2つのCTBをスペーサーを介してタンデムに連結したタンパク質を発現させた場合の方が、CTBを効率よく蓄積させることができることが判った。
<4>タバコ培養細胞を用いた形質転換実験
 (1)形質転換用ベクターの構築
 上記で作製したER-2×Stx2eB(PG12)、Cyt-1×Stx2eB(PG12)、Cyt-2×Stx2eB(PG12)、Cyt-3×Stx2eB(PG12)を用いて、形質転換実験を行った。
 形質転換用ベクターの作製は、上記<2>(1)の方法と同様に行った。
 (2)タバコ培養細胞の形質転換及びウェスタン解析
 形質転換実験及びウェスタン解析は、上記<2>(2)、(3)の方法と同様に行った。
 結果を図17に示す。
 ER-2×Stx2eB(PG12)を発現させた場合には、約19 kDa、21kDaおよび23 kDaの位置にシグナルが検出された。Cyt-1×Stx2eB(PG12)を発現させた場合には、特異的シグナルは検出限界以下だった。Cyt-2×Stx2eB(PG12)を発現させた場合には、約19 kDaの位置にシグナルが検出された。Cyt-3×Stx2eB(PG12)を発現させた場合には、約27 kDaの位置に、Cyt-2×Stx2eB(PG12)を発現させた場合より大きいシグナルが検出された。
 以上より、タバコ培養細胞の形質転換体においても、1つのStx2eBタンパク質を発現させた場合より、2つ又は3つのStx2eBをスペーサーを介してタンデムに連結したタンパク質を発現させた場合の方が、Stx2eBを効率よく蓄積させることができることが判った。また、タバコ培養細胞の形質転換体において、細胞質型のDNA構築物を発現させた場合には、特に、3つのStx2eBをスペーサーを介してタンデムに連結したタンパク質を発現させた場合に、Stx2eBを効率よく蓄積させることができることが判った。
 また、タバコ培養細胞の形質転換体においては、細胞質型のDNA構築物を発現させた場合より、小胞体型のDNA構築物を発現させた場合の方が、Stx2eBを効率よく蓄積させることができることが判った。
<5>タバコ植物体を用いた形質転換実験
 (1)形質転換用ベクターの構築
 上記で作製したER-2×Stx2eB(PG12)、Chl-1×Stx2eB(PG12)、Chl-2×Stx2eB(PG12)、Chl-3×Stx2eB(PG12)を用いて、形質転換実験を行った。
 形質転換用ベクターの作製は、上記<2>(1)の方法と同様に行った。
 (2)タバコ植物体の形質転換
 上記で作製したベクターを用いて、以下の方法により、タバコ植物体の形質転換を行った。
 タバコ植物体(Nicotiana tabacum L. cv. Petit habana SR1)の種子を殺菌し、MS培地に播種した。無菌タバコの葉部を、葉脈を含まないように1×1 cm 程度の大きさに切り取り、滅菌水が入ったシャーレに葉の裏面が上になるように置き、上記<2>(2)で得られた100 mg/lのカナマイシンを含むLB培地で2晩培養したアグロバクテリウム懸濁液をシャーレに注いで3~5分間浸した。葉片を取り出し、余分な菌液を滅菌キムタオルで拭き取り、カルス形成培地に置床して25℃で培養した。2~3日後、アグロバクテリウムが培地上で見ることができるようになったら、葉片を50 mlチューブに移し、滅菌水で5回洗浄した後、カルス形成培地 (カナマイシン100 mg/l 、カルベニシリン250 mg/lを含む)に置床し、1~2週間25℃で培養した。葉片が最初に比べて丸まり、表面に凹凸が生じたら、シュート形成培地 (カナマイシン100 mg/l、カルベニシリン250 mg/lを含む)に移した。さらに4~6週間後、茎葉部の発達したシュートを切り取ってルート形成培地 (カナマイシン100 mg/l、カルベニシリン250 mg/lを含む)に移し、発根が見られるまで25℃で培養した。植物体がある程度の大きさに成長したものを鉢植えにした。
 (3)ウェスタン解析
  上記で作製した遺伝子組換えタバコ植物体の葉をサンプリングし、質量1mg あたり1 μl のSDS-sample buffer を添加した。95℃で2分間熱変性させ、電気泳動用の試料とした。15% アクリルアミドゲルを用いてタンパク質を分離後、エレクトロトランスファー装置を用いてPVDFメンブレン(Hybond-P; Amersham )上にタンパク質をブロットした。抗HA 抗体(No. 11 867 423 001, Roche)を用いて、Stx2eB タンパク質を検出した。
 結果を図18及び19に示す。
 ER-2×Stx2eB(PG12)、Chl-1×Stx2eB(PG12)、Chl-2×Stx2eB(PG12)、Chl-3×Stx2eB(PG12)で形質転換した植物体において、Stx2eBを高効率で蓄積するクローンが得られた。また、葉緑体型のDNA構築物についても、1つのStx2eBタンパク質を発現させた場合より、2つ又は3つのStx2eBをスペーサーを介してタンデムに連結したタンパク質を発現させた場合の方が、Stx2eBを効率よく蓄積するクローンを高い確率で得られることが判った。
 なお、ER-2×Stx2eB(PG12)を発現させた場合のシグナルは、約15 kDa、約19 kDaおよび約22 kDaの位置に検出された。Chl-1×Stx2eB(PG12)を発現させた場合のシグナルは、約12 kDaの位置に検出された。Chl-2×Stx2eB(PG12)を発現させた場合のシグナルは、約19 kDaの位置に検出された。Chl-3×Stx2eB(PG12)を発現させた場合のシグナルは、約27 kDaの位置に検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。
 <6>タバコ培養細胞を用いた形質転換実験
 (1)Stx2eB形質転換用ベクターの構築
 上記<1>(1)の方法で、ER-2×Stx2eB(PG12)を作製した。ER-2×Stx2eB(PG17)、ER-2×Stx2eB(PG22)は以下の方法により作製した。DNA構築物のデザインを図20に示す。
 PG7-F プライマー(配列番号65)とPG7-R プライマー(配列番号66) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、<1>(1)で得たER-1×Stx2eB(PG12)のBglIIギャップに挿入した(plasmid 14)。
 また、PG12-F プライマー(配列番号43)とPG12-R プライマー(配列番号44) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、ER-1×Stx2eB(PG12)のBglIIギャップに挿入した(plasmid 15)。
 Plasmid 14からBamHIおよびBglIIを用いてStx2eB-PG17断片を切り出し、ER-1×Stx2eB(PG12)のBamHIギャップに挿入した(2×Stx2eB(PG17))。Plasmid 15からBamHIおよびBglIIを用いてStx2eB-PG22断片を切り出し、ER-1×Stx2eB(PG12)のBamHIギャップに挿入した(ER-2×Stx2eB(PG22))。
 植物の安定形質転換体を用いて、Stx2eBの生産を行うために、前記各Stx2eB のDNA構築物を形質転換用ベクターにサブクローニングした。すなわち、ER-2×Stx2eB(PG12)、ER-2×Stx2eB(PG17)、ER-2×Stx2eB(PG22)をXbaIおよびSacIを用いてpBI121(Clontech 社)に挿入し、カリフラワーモザイクウイルス35S RNA プロモーター(35S pro.)とノパリン合成酵素遺伝子転写ターミネーター(NOS-T)の間に配置した。
 (2)CTB形質転換用ベクターの構築
 上記<1>(2)の方法で、ER-2×CTB(PG12)を作製した。ER-2×CTB(PG17)、ER-2×CTB(PG22)は以下の方法により作製した。各DNA構築物のデザインを図21に示す。
 PG7-F プライマー(配列番号65)とPG7-R プライマー(配列番号66) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、<1>(2)で得たER-1×CTB(PG12)のBglIIギャップに挿入した(plasmid 16)。PG12-F プライマー(配列番号43)とPG12-R プライマー(配列番号44) をアニーリングしてT4 PNK でリン酸化した。得られたリン酸化DNA断片を、ER-1×CTB(PG12)のBglIIギャップに挿入した(plasmid 17)。
 Plasmid 16からBamHIおよびBglIIを用いてCTB-PG17断片を切り出し、ER-1×CTB(PG12)のBamHIギャップに挿入した(ER-2×CTB(PG17))。Plasmid 17からBamHIおよびBglIIを用いてCTB-PG22断片を切り出し、ER-1×CTB(PG12)のBamHIギャップに挿入した(ER-2×CTB(PG22))。
 植物の安定形質転換体を用いて、CTBの生産を行うために、前記各CTB のDNA構築物を形質転換用ベクターにサブクローニングした。すなわち、ER-2×CTB(PG12)、ER-2×CTB(PG17)、ER-2×CTB(PG22)をXbaIおよびSacIを用いてpBI121(Clontech 社)に挿入し、カリフラワーモザイクウイルス35S RNA プロモーター(35S pro.)とノパリン合成酵素遺伝子転写ターミネーター(NOS-T)の間に配置した。
 (3)形質転換実験及びウェスタン解析
 形質転換実験及びウェスタン解析は、上記<2>(2)、(3)の方法で行った。
 (a)Stx2eBタンデム連結におけるスペーサーの長さの影響
 結果を図22に示す。
 ER-2×Stx2eB(PG17)、ER-2×Stx2eB(PG22)を発現させた場合は、ER-2×Stx2eB(PG12)を発現させた場合と同程度のシグナルが、検出された。これより、PG17、PG22の何れも、PG12と同じ効果を示すことが判った。
 なお、ER-2×Stx2eB(PG12)を発現させた場合には、約19 kDaおよび約22 kDaの位置にシグナルが検出され、ER-2×Stx2eB(PG17)を発現させた場合には、約19 kDaおよび約22 kDaの位置にシグナルが検出され、ER-2×Stx2eB(PG22)を発現させた場合は、約20 kDaおよび約23 kDaの位置にシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。
 (b)CTBタンデム連結におけるスペーサーの長さの影響
 結果を図23に示す。
 ER-2×CTB(PG17)、ER-2×CTB(PG22)を発現させた場合は、ER-2×CTB(PG12)を発現させた場合と同程度のシグナルが、検出された。これより、PG17、PG22の何れも、PG12と同じ効果を示すことが判った。
 なお、ER-2×CTB(PG12)を発現させた場合には、約32 kDa、34 kDaおよび36 kDaの位置にシグナルが検出され、ER-2×CTB(PG17)を発現させた場合には、約32 kDa、34 kDaおよび36 kDaの位置にシグナルが検出され、ER-2×CTB(PG22)を発現させた場合は、約32 kDa、34 kDaおよび36 kDaの位置にシグナルが検出された。これらは、何れもDNA構築物のデザインから推定した分子量と一致していた。
 本発明のハイブリッドタンパク質は、安定性が高く、高レベルで植物細胞内に蓄積する。また、本発明のDNA構築物を用いて植物に本発明のハイブリッドタンパク質を生産させることで、効率よい、志賀毒素、コレラ毒素、大腸菌易熱性毒素の経口ワクチンの生産が可能になる。
 本発明は、免疫性を誘導するのに十分なレベルの細菌抗原を植物に発現させることを可能にする。本発明は、動物にトランスジェニック植物を食餌することで、動物に細菌抗原に対する免疫を低コストで付与することを可能にする。たとえば、ブタ浮腫病ワクチン、コレラワクチンの開発に有用である。

Claims (24)

  1.  2つ又は3つの、志賀毒素タンパク質、コレラ毒素タンパク質又は大腸菌易熱性毒素タンパク質が、それぞれ、下記の特徴(A)及び(B)を有するペプチドを介してタンデムに連結された、ハイブリッドタンパク質、
     (A)アミノ酸の個数が12~30個;
     (B)プロリンの含有率が20~35%。
  2.  前記ペプチドが、さらに下記の特徴(C)を有する、請求項1に記載のハイブリッドタンパク質、
     (C)プロリンが、2アミノ酸置き、又は3アミノ酸置きに配置される。
  3.  前記ペプチドが、配列番号2、82又は84で表されるアミノ酸配列からなる、請求項2に記載のハイブリッドタンパク質。
  4.  2つの、志賀毒素タンパク質、コレラ毒素タンパク質又は大腸菌易熱性毒素タンパク質が、配列番号2で表されるアミノ酸配列からなるペプチドを介してタンデムに連結された、請求項3に記載のハイブリッドタンパク質。
  5.  志賀毒素タンパク質が、志賀毒素タンパク質のBサブユニットである、請求項1~4の何れか一項に記載のハイブリッドタンパク質。
  6.  志賀毒素タンパク質が、Stx2eタンパク質である、請求項1~5の何れか一項に記載のハイブリッドタンパク質。
  7.  コレラ毒素タンパク質が、コレラ毒素タンパク質のBサブユニットである、請求項1~4の何れか一項に記載のハイブリッドタンパク質。
  8.  配列番号10、12、14又は16で表されるアミノ酸配列を有する、請求項4に記載のハイブリッドタンパク質。
  9.  配列番号86、88、90、92、94、96、98又は100で表されるアミノ酸配列を有する、請求項3に記載のハイブリッドタンパク質。
  10.  アミノ末端に植物由来の分泌シグナルペプチドが付加された、請求項1~9の何れか一項に記載のハイブリッドタンパク質。
  11.  カルボキシル末端に小胞体残留シグナルペプチドが付加された、請求項10に記載のハイブリッドタンパク質。
  12.  アミノ末端に葉緑体移行シグナルペプチドが付加された、請求項1~9の何れか一項に記載のハイブリッドタンパク質。
  13.  請求項1~12の何れか一項に記載のハイブリッドタンパク質をコードするDNAを含むDNA構築物。
  14.  配列番号9、11、13又は15で表される塩基配列を有するDNAを含む請求項13に記載のDNA構築物。
  15.  配列番号85、87、89、91、93、95、97又は99で表される塩基配列を有するDNAを含む請求項13に記載のDNA構築物。
  16.  ハイブリッドタンパク質をコードするDNAが、植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域に発現可能に連結されている、請求項13~15の何れか一項に記載のDNA構築物。
  17.  前記植物由来のアルコールデヒドロゲナーゼ遺伝子の5’-非翻訳領域がタバコ由来である、請求項16に記載のDNA構築物。
  18.  配列番号24~29の何れかで表される塩基配列を有する請求項17に記載のDNA構築物。
  19.  配列番号101~111の何れかで表される塩基配列を有する請求項17に記載のDNA構築物。
  20.  請求項13~19の何れか一項に記載のDNA構築物を含む組み換えベクター。
  21.  請求項20に記載の組み換えベクターで形質転換された形質転換体。
  22.  形質転換体が形質転換植物細胞又は形質転換植物である、請求項21に記載の形質転換体。
  23.  請求項21又は22に記載の形質転換体から得られる種子。
  24.  配列番号2、82又は84で表されるアミノ酸配列からなるペプチド。
PCT/JP2009/058345 2008-05-02 2009-04-28 細菌毒素ワクチン WO2009133882A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES09738819.3T ES2686780T3 (es) 2008-05-02 2009-04-28 Vacuna de toxinas bacterianas
MX2010011938A MX2010011938A (es) 2008-05-02 2009-04-28 Vacuna para toxina bacteriana.
JP2010510133A JP5360727B2 (ja) 2008-05-02 2009-04-28 細菌毒素ワクチン
DK09738819.3T DK2287300T3 (en) 2008-05-02 2009-04-28 Bacterial toxin vaccine
EP09738819.3A EP2287300B1 (en) 2008-05-02 2009-04-28 Bacterial toxin vaccine
US12/990,597 US8846052B2 (en) 2008-05-02 2009-04-28 Bacterial toxin vaccine
EP14152631.9A EP2728004B1 (en) 2008-05-02 2009-04-28 Bacterial toxin vaccine
CN200980116606.9A CN102016034B (zh) 2008-05-02 2009-04-28 细菌毒素疫苗
US14/480,004 US20150133635A1 (en) 2008-05-02 2014-09-08 Bacterial toxin vaccine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008120573 2008-05-02
JP2008-120573 2008-05-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/990,597 A-371-Of-International US8846052B2 (en) 2008-05-02 2009-04-28 Bacterial toxin vaccine
US14/480,004 Continuation US20150133635A1 (en) 2008-05-02 2014-09-08 Bacterial toxin vaccine

Publications (1)

Publication Number Publication Date
WO2009133882A1 true WO2009133882A1 (ja) 2009-11-05

Family

ID=41255098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058345 WO2009133882A1 (ja) 2008-05-02 2009-04-28 細菌毒素ワクチン

Country Status (11)

Country Link
US (2) US8846052B2 (ja)
EP (2) EP2287300B1 (ja)
JP (1) JP5360727B2 (ja)
KR (1) KR101540496B1 (ja)
CN (2) CN103626876B (ja)
AR (1) AR071232A1 (ja)
DK (2) DK2287300T3 (ja)
ES (2) ES2686780T3 (ja)
MX (1) MX2010011938A (ja)
TW (1) TWI460270B (ja)
WO (1) WO2009133882A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019719A (ja) * 2010-07-13 2012-02-02 Idemitsu Kosan Co Ltd 糖鎖修飾が抑制された改変Stx2eタンパク質
JPWO2012133572A1 (ja) * 2011-03-30 2014-07-28 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
WO2015080099A1 (ja) 2013-11-26 2015-06-04 出光興産株式会社 大腸菌性下痢症の予防
WO2015080100A1 (ja) 2013-11-26 2015-06-04 出光興産株式会社 大腸菌症用ワクチン
WO2016021276A1 (ja) * 2014-08-08 2016-02-11 出光興産株式会社 豚繁殖・呼吸障害症候群防除剤
JPWO2014065210A1 (ja) * 2012-10-22 2016-09-08 一般財団法人化学及血清療法研究所 豚の浮腫病を予防するワクチン
US9625464B2 (en) 2010-03-25 2017-04-18 National University Corporation University Of Toyama Fluorescent probe for plasma cell identification and isolation, and plasma cell identification or isolation method using the probe
WO2017115853A1 (ja) * 2015-12-28 2017-07-06 出光興産株式会社 ペプチドタグおよびそれを含むタグ付加タンパク質
WO2017217460A1 (ja) * 2016-06-15 2017-12-21 出光興産株式会社 ペプチドリンカーで連結された2以上のタンパク質を含む融合タンパク質
WO2020045530A1 (ja) * 2018-08-31 2020-03-05 出光興産株式会社 ペプチドタグを利用したタンパク質の可溶性発現

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2287300T3 (en) * 2008-05-02 2018-09-17 Idemitsu Kosan Co Bacterial toxin vaccine
EP3385286A4 (en) * 2015-11-30 2019-05-01 Idemitsu Kosan Co., Ltd. ANTIGEN VACCINE WITH INCREASED IMMUNOGENICITY
WO2018225662A1 (ja) * 2017-06-07 2018-12-13 出光興産株式会社 自然免疫増強剤

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507916A (ja) 1994-10-24 1998-08-04 ザ テキサス エーアンドエム ユニバーシティ システム トランスジェニック植物による経口免疫
JP2000166411A (ja) 1988-09-06 2000-06-20 Washington Univ トランスジェニック植物による経口的免疫化
JP2002533068A (ja) 1998-12-22 2002-10-08 ボイス トンプソン インスティテュート フォア プラント リサーチ トランスジェニック植物に発現される経口で免疫原性の細菌エンテロトキシン
JP2003079372A (ja) 2000-12-28 2003-03-18 Nara Institute Of Science & Technology 植物細胞において遺伝子の高発現能を有する5’−非翻訳領域配列
WO2009004842A1 (ja) 2007-07-03 2009-01-08 Idemitsu Kosan Co., Ltd. ブタ浮腫病ワクチン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525491A (en) * 1991-02-27 1996-06-11 Creative Biomolecules, Inc. Serine-rich peptide linkers
ES2127829T3 (es) * 1992-07-31 1999-05-01 Medeva Holdings Bv Expresion de proteinas recombinantes fusionadas en bacterias atenuadas.
JP2000510332A (ja) 1996-04-19 2000-08-15 ヘンリー エム.ジャクソン ファンデーション フォー ザ アドバンスメント オブ ミリタリー メディシン インチミンを単独で、または1以上の他の抗原との融合タンパク質として発現する宿主生物の投与による、免疫応答を刺激する方法
US7063852B2 (en) 2000-05-19 2006-06-20 The Administrators Of The Tulane Educational Fund Hybrid LT-A/CT-B holotoxin for use as an adjuvant
US7807184B2 (en) * 2003-07-21 2010-10-05 Interuet International B.V. Hybrid Shiga-like toxin
CN101016332B (zh) * 2007-03-07 2010-12-01 中国人民解放军军事医学科学院微生物流行病研究所 一种抑制志贺毒素的短肽及其用途
DK2287300T3 (en) * 2008-05-02 2018-09-17 Idemitsu Kosan Co Bacterial toxin vaccine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166411A (ja) 1988-09-06 2000-06-20 Washington Univ トランスジェニック植物による経口的免疫化
JPH10507916A (ja) 1994-10-24 1998-08-04 ザ テキサス エーアンドエム ユニバーシティ システム トランスジェニック植物による経口免疫
JP2002533068A (ja) 1998-12-22 2002-10-08 ボイス トンプソン インスティテュート フォア プラント リサーチ トランスジェニック植物に発現される経口で免疫原性の細菌エンテロトキシン
JP2003079372A (ja) 2000-12-28 2003-03-18 Nara Institute Of Science & Technology 植物細胞において遺伝子の高発現能を有する5’−非翻訳領域配列
WO2009004842A1 (ja) 2007-07-03 2009-01-08 Idemitsu Kosan Co., Ltd. ブタ浮腫病ワクチン

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
BIRNBOIM, H. C.; DOLY, J., NUCLEIC ACID RES, vol. 7, 1979, pages 1513
CAMPBELL R. E. ET AL.: "A monomeric red fluorescent protein", PROC. NAT. ACAD. SCI., vol. 99, 2002, pages 7877 - 7882, XP002967837, DOI: doi:10.1073/pnas.082243699
CORNEJO ET AL., PLANT MOL. BIOL., vol. 23, 1993, pages 567
DONSON J.; KERNEY CM.; HILF ME.; DAWSON WO: "Systemic expression of a bacterial gene by a tabacco mosaic virus-based vector", PROC. NATL. ACAD. SCI., vol. 88, 1991, pages 7204 - 7208, XP002923005, DOI: doi:10.1073/pnas.88.16.7204
HIEI ET AL., PLANT J., vol. 6, 1994, pages 271
HOOD ET AL., TRANSGENIC, RES., vol. 2, 1993, pages 218
KAZUTOSHI SAWADA ET AL.: "Kumikae Lettuce ni yoru Kachikuyo Keiko Vaccine Tanpakushitsu Seisan no Kenkyu Kaihatsu", BIOTECHNOLOGY SYMPOSIUM, 6 November 2007 (2007-11-06), pages 28 - 31, XP008128434 *
KAZUTOSHI SAWADA ET AL.: "Lettuce ni yoru Vaccine Seibun Seisan Gijutsu Kaihatsu (Sono 1) Kumikae Lettuce ni yoru Kachikuyo Keiko Vaccine Tanpakushitsu Seisan no Kenkyu Kaihatsu", PREPRINTS OF BIOTECHNOLOGY SYMPOSIUM, 6 November 2007 (2007-11-06), pages 107 - 108, XP008128433 *
KIM ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 51, no. 1, January 2006 (2006-01-01), pages 22 - 27
LAZZERI ET AL., THEOR. APPL. GENET., vol. 81, 1991, pages 437
MAKINO ET AL., MICROBIAL PATHOGENESIS, vol. 31, no. 1, July 2001 (2001-07-01), pages 1 - 8
NAGATA; TAKEBE, PLANTA, vol. 99, 1971, pages 12
ODELL ET AL., NATURE, vol. 313, 1985, pages 810
PLANT J., vol. 15, 1998, pages 449 - 457
SANFORD ET AL., J. PART. SCI. TECH., vol. 5, 1987, pages 27
SATOH ET AL.: "The 5' - untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant", J. BIOSCI. BIOENG., vol. 98, 2004, pages 1 - 8
See also references of EP2287300A4
TADA ET AL., THEOR.APPL.GENET, vol. 80, 1990, pages 475
TAKESHI MATSUI ET AL.: "Buta Fushu Vaccine Tanpakushitsu Seisan no Tameno Lettuce Shoho Yuso Kogaku", ABSTRACT OF THE 25TH MEETING AND SYMPOSIUM IN CHIBA OF THE JAPANESE ASSOCIATION FOR PLANT TISSUE CULTURE, 8 August 2007 (2007-08-08), pages 180, XP008144517 *
VISSER ET AL., THEOR.APPL.GENET, vol. 78, 1989, pages 594
YASUDA, HIROSHI. ET AL.: "The Correlation between Expression and Localization of a Foreign Gene Product in Rice Endosperm", PLANT AND CELL PHYSIOLOGY, vol. 47, no. 6, 13 April 2006 (2006-04-13), pages 756 - 763, XP008112037 *
ZHANG ET AL., PLANT CELL, vol. 3, 1991, pages 1155

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625464B2 (en) 2010-03-25 2017-04-18 National University Corporation University Of Toyama Fluorescent probe for plasma cell identification and isolation, and plasma cell identification or isolation method using the probe
JP2012019719A (ja) * 2010-07-13 2012-02-02 Idemitsu Kosan Co Ltd 糖鎖修飾が抑制された改変Stx2eタンパク質
JP5963746B2 (ja) * 2011-03-30 2016-08-03 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
JPWO2012133572A1 (ja) * 2011-03-30 2014-07-28 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
US9487583B2 (en) 2011-03-30 2016-11-08 National University Corporation University Of Toyama Method for selecting plasma cells or plasmablasts, method for producing target antigen specific antibodies, and novel monoclonal antibodies
JPWO2014065210A1 (ja) * 2012-10-22 2016-09-08 一般財団法人化学及血清療法研究所 豚の浮腫病を予防するワクチン
JPWO2015080100A1 (ja) * 2013-11-26 2017-03-16 出光興産株式会社 大腸菌症用ワクチン
US9981027B2 (en) 2013-11-26 2018-05-29 Idemitsu Kosan Co., Ltd. Vaccine against colibacillosis
KR20160089412A (ko) 2013-11-26 2016-07-27 이데미쓰 고산 가부시키가이샤 대장균성 설사증의 예방
KR20160089466A (ko) 2013-11-26 2016-07-27 이데미쓰 고산 가부시키가이샤 대장균증용 백신
WO2015080100A1 (ja) 2013-11-26 2015-06-04 出光興産株式会社 大腸菌症用ワクチン
JPWO2015080099A1 (ja) * 2013-11-26 2017-03-16 出光興産株式会社 大腸菌性下痢症の予防
WO2015080099A1 (ja) 2013-11-26 2015-06-04 出光興産株式会社 大腸菌性下痢症の予防
US9937271B2 (en) 2013-11-26 2018-04-10 Idemitsu Kosan Co., Ltd. Prevention of Escherichia coli diarrhea
WO2016021276A1 (ja) * 2014-08-08 2016-02-11 出光興産株式会社 豚繁殖・呼吸障害症候群防除剤
WO2017115853A1 (ja) * 2015-12-28 2017-07-06 出光興産株式会社 ペプチドタグおよびそれを含むタグ付加タンパク質
JPWO2017115853A1 (ja) * 2015-12-28 2018-10-18 出光興産株式会社 ペプチドタグおよびそれを含むタグ付加タンパク質
US10808253B2 (en) 2015-12-28 2020-10-20 Idemitsu Kosan Co., Ltd. Peptide tag and tagged protein including same
JP7027168B2 (ja) 2015-12-28 2022-03-01 出光興産株式会社 ペプチドタグおよびそれを含むタグ付加タンパク質
JP2022044600A (ja) * 2015-12-28 2022-03-17 出光興産株式会社 ペプチドタグおよびそれを含むタグ付加タンパク質
WO2017217460A1 (ja) * 2016-06-15 2017-12-21 出光興産株式会社 ペプチドリンカーで連結された2以上のタンパク質を含む融合タンパク質
WO2020045530A1 (ja) * 2018-08-31 2020-03-05 出光興産株式会社 ペプチドタグを利用したタンパク質の可溶性発現

Also Published As

Publication number Publication date
KR20110009197A (ko) 2011-01-27
TW201005093A (en) 2010-02-01
MX2010011938A (es) 2010-12-01
DK2728004T3 (en) 2018-11-05
EP2287300B1 (en) 2018-06-27
EP2728004A3 (en) 2014-07-23
US20110231960A1 (en) 2011-09-22
CN103626876A (zh) 2014-03-12
EP2728004B1 (en) 2018-08-08
EP2287300A4 (en) 2011-06-22
CN102016034B (zh) 2014-11-05
EP2287300A1 (en) 2011-02-23
US20150133635A1 (en) 2015-05-14
JP5360727B2 (ja) 2013-12-04
US8846052B2 (en) 2014-09-30
AR071232A1 (es) 2010-06-02
KR101540496B1 (ko) 2015-08-25
ES2691985T3 (es) 2018-11-29
DK2287300T3 (en) 2018-09-17
CN102016034A (zh) 2011-04-13
ES2686780T3 (es) 2018-10-19
EP2728004A2 (en) 2014-05-07
CN103626876B (zh) 2016-09-14
TWI460270B (zh) 2014-11-11
JPWO2009133882A1 (ja) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5360727B2 (ja) 細菌毒素ワクチン
JP5279089B2 (ja) ブタ浮腫病ワクチン
JP5519192B2 (ja) 種子のタンパク質含量を増産させる遺伝子及びその利用方法
WO2016021276A1 (ja) 豚繁殖・呼吸障害症候群防除剤
JP5641205B2 (ja) 糖鎖修飾が抑制された改変Stx2eタンパク質
US10526611B2 (en) Gene targeting using mutant Agrobacterium strains
JP2003116385A (ja) 日本脳炎ワクチンをコードする遺伝子を含むトランスジェニック植物
JP5850079B2 (ja) 種子のタンパク質含量を減少させる遺伝子及びその利用方法
JP5850078B2 (ja) 種子のタンパク質含量を減少させる遺伝子及びその利用方法
JP5845306B2 (ja) 種子のタンパク質含量を増産させる遺伝子及びその利用方法
JP2020000120A (ja) レタスユビキチンプロモーターを含む組換えタンパク質発現用遺伝子構築物
JP2004008095A (ja) ヒトインターフェロンβ遺伝子導入植物。

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116606.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/011938

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010510133

Country of ref document: JP

Ref document number: 12990597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7641/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107026745

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009738819

Country of ref document: EP