WO2009131074A1 - 加工用素材及びそれを用いる成型部材 - Google Patents

加工用素材及びそれを用いる成型部材 Download PDF

Info

Publication number
WO2009131074A1
WO2009131074A1 PCT/JP2009/057786 JP2009057786W WO2009131074A1 WO 2009131074 A1 WO2009131074 A1 WO 2009131074A1 JP 2009057786 W JP2009057786 W JP 2009057786W WO 2009131074 A1 WO2009131074 A1 WO 2009131074A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
processing
metal cover
present
hole
Prior art date
Application number
PCT/JP2009/057786
Other languages
English (en)
French (fr)
Inventor
秋本 一世
義則 堂本
伊知郎 山極
Original Assignee
三和パッキング工業株式会社
株式会社神戸製鋼所
増田 京子
日野 光雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三和パッキング工業株式会社, 株式会社神戸製鋼所, 増田 京子, 日野 光雄 filed Critical 三和パッキング工業株式会社
Priority to CN2009801137812A priority Critical patent/CN102007281B/zh
Priority to EP09736005.1A priority patent/EP2302185B1/en
Priority to KR1020107025701A priority patent/KR101057422B1/ko
Publication of WO2009131074A1 publication Critical patent/WO2009131074A1/ja
Priority to US12/909,363 priority patent/US8042648B2/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0876Insulating elements, e.g. for sound insulation for mounting around heat sources, e.g. exhaust pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/102Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • F02B77/13Acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • F01N13/1855Mechanical joints the connection being realised by using bolts, screws, rivets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/20Exhaust treating devices having provisions not otherwise provided for for heat or sound protection, e.g. using a shield or specially shaped outer surface of exhaust device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture

Definitions

  • the present invention is used for an object that generates vibration and noise as an example, and a processing material made of a single thin plate material that realizes a vibration damping action and a sound absorbing action on the object, and a molded member using the same It is about.
  • An example of an object that generates such vibration is an internal combustion engine.
  • Heat, noise, vibration, and the like are dissipated to the outside from an exhaust system such as an internal combustion engine body and an exhaust manifold (hereinafter referred to as “exhaust manifold”) connected to the internal combustion engine.
  • exhaust manifold an exhaust manifold
  • various covers such as an insulator are used for the vibration source in order to prevent a situation in which the vibration is radiated from the vibration source such as the internal combustion engine body or the exhaust system.
  • FIG. 18 is a perspective view of a typical prior art exhaust manifold insulator (hereinafter referred to as “insulator”) 1 described in Patent Document 1 below.
  • insulator a typical prior art exhaust manifold insulator 1 described in Patent Document 1 below.
  • the insulator 1 will be described with reference to FIG.
  • the insulator 1 is attached to the exhaust manifold of the internal combustion engine and covers the exhaust manifold.
  • the insulator 1 has a substantially flat front surface portion 1a and a side wall portion 1b that is bent from the front surface portion 1a and extends toward the cylinder head of the internal combustion engine.
  • the insulator 1 is formed by overlapping two steel plates 1A and 1B, and at one appropriate position of the edge of the slit 2, one of the two steel plates is folded at the folded portion with respect to the other steel plate. . By this folding, the bonding of the two steel plates 1A and 1B is strengthened.
  • This prior art insulator 1 has a structure in which two steel plates 1A and 1B are overlapped, and the vibration of the frequency generated from the exhaust manifold through which high-temperature exhaust gas pulsating at a frequency of several thousand times per minute passes. , It acts so as not to be dissipated in the dark.
  • JP-A-10-266850 (8th to 11th paragraphs and FIG. 1)
  • Such a conventional insulator has a configuration in which the two steel plates 1A and 1B are overlapped as described above, and has a problem that it is relatively heavy.
  • the insulator 1 when the insulator 1 generates surface vibration due to vibration propagated from the exhaust manifold and the vibration frequency matches the resonance frequency of the insulator 1, the insulator 1 itself becomes a noise source.
  • the insulator is also required to be lighter and further improved in damping performance.
  • the present invention has been made in order to solve the above-mentioned problems, and its purpose is to significantly improve the vibration damping performance, the sound insulation performance and the sound absorption performance, and to improve the weight reduction and the mechanical strength of the product.
  • a processing material that can be processed and a molded member using the processing material are provided.
  • the processing material according to the first aspect of the present invention is formed in a thin plate material that can be elastically deformed, in which a first corrugated shape in which trough portions and raised portions are alternately repeated is formed along the first direction, and the first direction.
  • a second corrugated shape in which valleys and ridges are alternately repeated is formed in a row along a second direction intersecting with the first corrugated shape, and in the first corrugated shape, the ridges are a pair of side parts rising from the troughs, And the apex length along the first direction of the top part is defined longer than the opening length along the first direction of the base end part of the pair of side parts. .
  • the processing material according to a second aspect of the present invention is the processing material according to the first aspect, wherein the thin plate material has a through hole.
  • the processing material according to a third aspect of the present invention is the processing material according to the second aspect, wherein the through hole is provided at least at the top.
  • a processing material according to a fourth aspect of the present invention is a molded member that uses a processing material obtained by processing a single thin plate material that can be elastically deformed into a three-dimensional shape, and includes a valley portion and a raised portion on the thin plate material. Are formed along the first direction, and valleys and ridges are alternately connected along the second direction intersecting the first direction.
  • a repeated second corrugated shape is formed, and in the first corrugated shape, the raised portion includes a pair of side portions that rise from the valley portion and a top portion that is continuous between the side portions, and the first of the proximal end portions of the pair of side portions.
  • the top length along the first direction of the top is determined to be longer than the length of the opening along the direction, and the processing material is configured, and either the first direction or the second direction of the processing material has a three-dimensional shape. It is characterized in that it is determined in a direction intersecting with.
  • a molding member according to the fourth aspect wherein the molding member is preliminarily determined on the vibration generating member side with respect to the molding member main body to be attached to the vibration generating member. And a partition member provided at a distance, and the thin plate member constituting the molded member main body has a through hole.
  • the molded member according to the fifth aspect wherein the through hole is provided at least at the top.
  • the first corrugated shape and the second corrugated shape are formed along the first direction and the second direction, respectively, and in the first corrugated shape, the raised portion rises from the valley portion.
  • the apex length along the first direction of the apex portion is determined to be longer than the opening length along the first direction of the base end portion of the pair of side portions including the side portion and the apex portion connected between the side portions. .
  • the present invention when processing such a raw material for processing into a desired product shape, for example, by processing the thin plate material in which the corrugated shape is formed by expanding and contracting the corrugated shape.
  • the margin of extension along the first direction is significantly larger than that of a flat plate-shaped thin plate material. This is ensured by the fact that the apex length along the first direction of the apex portion is longer than the opening length along the first direction of the base end portions of the pair of side portions in the first corrugated shape. .
  • this top length is not longer than the opening length, it will not be possible to secure a sufficient amount of extension when pressing the processing material, resulting in reduced workability of the product and generation of cracks and product shape during processing. May not be fully realized. According to the present invention, the possibility of such a problem can be prevented and the workability of the processing material can be significantly improved.
  • the degree of workability along the second direction is sufficiently improved. This is ensured by the fact that the second corrugated shape is formed in the thin plate material along the second direction.
  • the first waveform shape and the second waveform shape are formed by alternately repeating the valley portions and the raised portions. That is, in the first waveform shape and the second waveform shape, the presence of a flat plate portion is excluded between the shapes of each period composed of the valley portion and the raised portion. Assuming the existence of the flat plate portion, it is assumed that the flat plate portion generates a large-amplitude surface vibration or that the mechanical strength is weak due to the flat plate portion.
  • the present invention prevents the occurrence of such problems, the quality of products manufactured using processing materials can be significantly improved.
  • the workability of the processing material of the present invention is remarkably improved as compared with a flat plate-shaped thin plate material.
  • the present invention does not limit the material of the thin plate material at all, but the characteristic action and effect of the present invention is as a thin plate material, for example, a material having relatively large ductility and malleability such as iron and stainless steel. It is obvious that this can be realized remarkably when an aluminum alloy having relatively low ductility and malleability is used.
  • the working material of the present invention can realize these functions and effects with a configuration made of a single thin plate material, the configuration can be simplified and reduced in weight, and the cost can be greatly reduced. it can.
  • the thin plate material constituting the processing material has a through hole.
  • the processing material of the present invention has a through hole in itself.
  • the processing material vibrates, when air passes through the through hole, energy is attenuated due to friction between the end surface constituting the through hole of the processing material and the air. For this reason, the energy of the sound wave which is vibration of air is converted into thermal energy, and the sound absorbing performance is exhibited.
  • the frequency band in which the sound absorbing performance is exhibited is determined based on the dimensional shape such as the equivalent hole diameter, aperture ratio, and plate thickness of the through hole.
  • the thin plate material is easy to move in the same phase because of the rib reinforcing effect by the raised portion and the valley portion.
  • the acoustic radiation efficiency which is the energy conversion efficiency from vibration to sound of the processing material, is reduced by providing the through-hole in the thin plate material compared to the case without the through-hole. ing.
  • the processing material of the present invention vibrates, it is possible to realize a sound absorbing effect on the sound radiated from the processing material.
  • the processing material of the present invention since the through hole is provided at least at the top portion, the processing material of the present invention has the above-described effect described in relation to claim 1. In addition, the following sound absorbing action and vibration radiation sound reducing action are realized.
  • the acoustic resonance mechanism is configured with an air layer having a thickness determined by the distance between the upper surface of the raised portion and the bottom surface of the valley, Sound absorption performance is realized. Moreover, the sound absorption performance by the energy attenuation by the friction mentioned above regarding the air which passes through the through-hole provided in the top part of the protruding part is also implement
  • Such a synergistic sound absorbing effect can reduce the vibration and noise generated by the processing material itself by absorbing the sound after the generation.
  • the molded member when the molded member is vibrated by vibration from the outside with respect to the molded member formed from the processing material, such vibration is caused by valleys and raised portions in the corrugated shape. Is converted into elastic deformation of the thin plate material. Thereby, a considerable part of the vibration applied from the outside is converted into thermal energy by elastic deformation of the thin plate material itself. Thereby, the vibration of the molding member due to the vibration received by the processing material is suppressed.
  • the processing material when used for the vibration source and used as a molding member that should realize noise suppression, the molding member using the processing material is transmitted by vibration from the vibration source. Vibrate.
  • the molded member vibrates, it is assumed that the product part vibrates so that the product parts on both sides of the ridge part which is a bent part of the product shape flutter. When such vibration is generated, a portion near the ridge portion of the product is likely to be cracked due to metal fatigue due to repeated bending.
  • the processing material to be processed into a product is formed with corrugated shapes along the first direction and the second direction, respectively.
  • the first direction corresponds to the ridge portion of the product. Therefore, the corrugated shape realizes the action of the rib against the vibration centered on the ridge. Thereby, the vibration of the product can be suppressed, the occurrence of cracks in the product can be prevented, and the quality of the product can be significantly improved.
  • the working material of the present invention can achieve these functions and effects with a single thin plate material, the structure of the molded member can be simplified and lightened, and the cost can be greatly reduced. Can be planned.
  • the molded member of the present invention is formed by processing a corrugated shape on a thin plate material, when the molded member has a bent shape, when one surface of the molded member is convex, the other surface is concave. At this time, the interval between the corrugated ridges widens on the convex shape side, and the interval between the corrugated ridges narrows on the other surface side.
  • a member having fine irregularities or a member having a relatively soft surface property (hereinafter referred to as a base material) is brought into contact with one surface of the processing material of the present invention and the processing material is bent together with the base material.
  • the processing material and the substrate mesh with each other and are fixed to each other. Will be. Therefore, mounting of the processing material to the base material can be realized without taking special measures such as an adhesive.
  • the configuration of the molded part of the present invention can be simplified and downsized.
  • the shape and structure of the molded member are determined by the shape when the processing material is processed into the molded member. Therefore, in the present invention, the shape and structure of the processing material in the stage before being processed into the molded member are arbitrary in the present invention. Thus, the present invention is applicable to a wide variety of processing materials as long as the shape and structure of the thin plate material when processed into a molded member satisfy the third aspect.
  • the molding member includes a molding member main body mounted on the vibration generating member, and a partition member provided at a predetermined distance on the vibration generating member side with respect to the molding member main body.
  • the thin plate material constituting the molded member has a through hole.
  • the first sound absorbing structure is formed by the air layer formed between the molded member main body in which the through hole is formed and the partition member, and exhibits a sound absorbing action.
  • An acoustic resonance mechanism is formed by a large number of through holes formed in the molded member main body and a back air layer between the molded member main body and the partition wall member, and the first sound absorbing structure is configured.
  • the first sound absorption frequency band in which such a sound absorbing effect is exhibited is the back air determined by the dimension shape such as the equivalent hole diameter, aperture ratio, plate thickness and the like of the through hole and the distance between the molded member body and the partition member. Determined by factors such as layer thickness.
  • the noise generated by the molded member itself when the molded member is attached to the vibration source can be reduced by absorbing the noise by the molded member itself after generation.
  • the thin plate material is easy to move in the same phase because of the rib reinforcing effect by the raised portion and the valley portion.
  • the acoustic radiation efficiency which is the energy conversion efficiency from vibration to sound of the processing material, can be reduced compared to the case where there is no gas flow part. confirmed. Thereby, even when the processing material of the present invention vibrates, the amplitude of the sound radiated from the processing material can be reduced.
  • the vibration radiation noise reduction effect by providing the gas flow part in the thin plate material, if the surface vibration of the thin plate material partially differs in amplitude or / and phase, that is, if vibration distribution occurs on the surface of the processing material, vibration It is known that the effect of the radiation noise reduction action is reduced.
  • the vibration distribution can be reduced and the effect of reducing vibration radiation sound is remarkable. can do. Therefore, the noise generated by the processing material itself can be reduced by the vibration radiation noise reduction effect.
  • the molded member of the present invention has the above-described effects described in relation to claims 4 and 5.
  • the following sound absorbing action and vibration radiation sound reducing action are realized.
  • the ridges A second sound absorbing structure is formed, which is determined by the air layer thickness determined by the distance between the top surface of the part and the bottom of the valley part, and the dimensional shape such as the equivalent pore diameter, aperture ratio, and plate thickness of the gas flow part on the surface of the raised part.
  • the sound absorbing action is exhibited in the vicinity of the acoustic resonance frequency band, which is the second sound absorbing frequency band determined by the above dimensions and the like.
  • the first sound absorption frequency band and the second sound absorption frequency band are different from each other in size, shape, and the like described above that define these frequency bands.
  • a conventional combination structure of a flat plate and an air layer, or a gentle concavo-convex shape that is, a concavo-convex structure in which the top length of the convex portion is shorter than the opening length of the concave portion, only sound absorption characteristics around a single frequency band are exhibited. Is done.
  • the present invention as described above, even with a single molded member main body, the sound absorbing action is exhibited before and after different frequency bands, so that an extremely broad sound absorbing characteristic can be obtained with a simple configuration. Can be realized.
  • the noise generated by the molded member itself when the molded member is attached to the vibration source can be reduced by absorbing the noise by the molded member itself after generation.
  • vibration and noise generated by the processing material itself can be reduced by absorbing the sound after the generation.
  • FIG. 2 is a cross-sectional view taken along section line X2-X2 in FIG. 1 is an enlarged front view of a metal cover 1.
  • FIG. 4 is a cross-sectional view taken along section line X4-X4 in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along section line X5-X5 in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along section line X6-X6 in FIG.
  • FIG. 2 is a simplified cross-sectional view seen from a section line X7-X7 in FIG. It is a perspective view explaining the characteristic of a present Example.
  • FIG. 3 is a cross-sectional view for explaining the expansion and contraction action of the metal cover 1.
  • FIG. 4 is a graph for explaining a vibration damping action of the metal cover 1.
  • 4 is a graph showing a loss factor of the metal cover 1.
  • 4 is a graph showing a temperature change of a loss coefficient of the metal cover 1.
  • It is a perspective view of the metal plate 6 of Example 2 of this invention. 6 is a simplified cross-sectional view of a cover 1a of Example 2.
  • FIG. 6 is a graph illustrating sound absorption characteristics of Example 2. It is a conceptual diagram which shows the structure of the investigation apparatus 21 based on Example 2.
  • FIG. It is a graph explaining the investigation result by the investigation apparatus 21 regarding a sound absorption characteristic. It is a perspective view of a prior art.
  • the present invention is implemented as an exhaust manifold cover or the like that is mounted in an exhaust manifold (hereinafter referred to as “exhaust manifold”) of an internal combustion engine so that vibrations and noises are not radiated from the exhaust manifold. be able to.
  • exhaust manifold an exhaust manifold of an internal combustion engine
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a front view showing a state in which the metal cover 1 of the present embodiment is mounted on the exhaust manifold 3
  • FIG. 2 is a cross-sectional view taken along the section line X2-X2 of FIG. 1
  • FIG. 4 is an enlarged front view of FIG. 1
  • FIG. 4 is a cross-sectional view taken along section line X4-X4 of FIG. 3
  • FIG. 5 is a cross-sectional view taken along section line X5-X5 of FIG.
  • FIG. 7 is a cross-sectional view taken along the cutting plane line X6-X6 of FIG. 3
  • FIG. 7 is a simplified cross-sectional view taken along the cutting plane line X7-X7 of FIG. 1, and FIG. FIG.
  • FIG. 9 is a sectional view for explaining the operation of the present embodiment
  • FIG. 10 is a graph for explaining the vibration damping performance of the present embodiment
  • FIG. 11 is a graph of the present embodiment and the existing technology.
  • FIG. 12 is a graph showing the damping performance
  • FIG. 12 is a graph showing the temperature change of the loss coefficient.
  • the exhaust manifold 3 of an internal combustion engine such as an automobile engine 2 passes through the combustion chamber of the internal combustion engine, for example, combustion exhaust gas pulsating at a frequency of several thousand cycles per minute at a high temperature of 600 to 700 ° C.
  • a certain exhaust manifold 3 itself becomes a heat source that generates high-temperature heat radiation, and a vibration source that dissipates noise caused by the explosion of fuel in the engine 2 and the movement of combustion exhaust gas in the exhaust manifold 3 to the outside. It becomes.
  • a metal cover 1 that is a molding member having a configuration described later is installed in a manner covering the exhaust manifold 3.
  • the metal cover 1 of the present embodiment is composed of a metal plate 4 made of an aluminum alloy having a specific gravity of about 2.7, which is a thin plate material having a plate thickness of 0.3 mm. 2 and FIG. 7, it is formed in a three-dimensional shape along the appearance shape of the exhaust manifold 3.
  • the metal cover 1 includes a side wall T1 and a top T2 that connects the entire periphery of the end of the side wall T1.
  • the side wall T1 and the top part T2 are connected at an obtuse angle ⁇ .
  • the metal plate 4 is not limited in its kind as long as it is a material that can be elastically deformed.
  • Aluminum foil or aluminum alloy foil, aluminum or its alloy, stainless steel, engineering A thin plate material made of synthetic resin such as plastic is included as a modified example.
  • a thin plate material made of synthetic resin such as aluminum, an alloy thereof, or engineering plastic is preferable.
  • the metal plate 4 used in the cover 1 of the present embodiment is formed from a single aluminum alloy thin plate.
  • the metal plate 4 has a plurality of first corrugated shapes in which the raised portions 7 and the valley portions 8 are alternately connected to each other along the first direction A1.
  • the ridge 7a and the valley 8a are connected to each other along the second direction A2 that is the direction intersecting the first direction A1, and preferably the direction orthogonal to the first direction A1, and the second waveform is the same.
  • a corrugated shape 9a is formed.
  • the raised portions 7 are alternately arranged with the first raised portions 10 and the second raised portions 11 rising from the valley portions 8 along the longitudinal direction thereof.
  • the valley 8 has flat portions 12 and recesses 13 arranged alternately.
  • the first upright portion 10 includes a pair of side walls 14 and 15 that rise from the valley portion 8 in a substantially trapezoidal shape, and a relatively flat top portion 18 that is formed by connecting the tips of the side walls 14 and 15 to each other. A one-cycle shape is formed.
  • the first upright portion 10 is bent inwardly, and the apex length L2 along the first direction A1 of the apex portion 18 is longer than the opening length L10 along the first direction A1 of the base end portion of the first upright portion 10. It is determined to be.
  • the second upright portion 11 is formed by crushing the first upright portion 10 to a predetermined extent in the width direction, and a pair of side walls 19, 20 rising from the flat portion 12, and the side walls 19, 20. The distal ends are connected to each other, and a concave recess 23 is formed on the lower side of FIG.
  • Each of the second upright portions 11 and the concave portions 13 is intermittently connected along a second direction A2 that is a direction substantially orthogonal to the first direction A1 that is a direction in which the plurality of waveform shapes 9 extend. Formed as follows.
  • the 2nd standing part 11 is curving inside, and the top part length L11 along the 1st direction A1 of the recessed part 13 rather than the opening part length L11 along the 1st direction A1 of the base end part of the 2nd standing part 11 is. Is determined to be long.
  • the side walls 14 and 15 and the side walls 19 and 20 have a corrugated shape 9 along at least one of the first direction A1 and the second direction A2, and the metal plate 4 is folded over the metal plate 4 itself. A folded stack 45 is formed.
  • the length L1 of one cycle of the waveform shape 9 along the first direction A1 the first upright part 10
  • the length L2 of the top portion 18 and the length L3 of the concave portion 23 of the second upright portion 11 are selected to be 11 mm, 7 mm, and 5 mm, respectively. Accordingly, the opening length L10 is selected to be smaller than 7 mm, and the opening length L11 is selected to be smaller than 5 mm.
  • the metal cover 1 has such a shape, and is formed by pressing the metal plate 4 into a three-dimensional shape along the outer shape of the exhaust manifold 3.
  • the metal cover 1 of the present embodiment Since the metal cover 1 of the present embodiment is formed in a three-dimensional shape that conforms to the three-dimensional appearance of the exhaust manifold 3 as described above, the metal cover 1 has a bent metal plate 4 as shown in FIG. One or a plurality of ridge line equivalent parts 30 that are parts and ridges are formed.
  • the metal plate 4 is arranged such that the first direction A1 which is the longitudinal direction of the corrugated shape 9 is a direction intersecting a main ridge line equivalent portion 30 described later among the plurality of ridge line equivalent portions 30. 5 is pressed into a three-dimensional shape.
  • the main ridge line equivalent portion 30 is a bent portion where a relatively large curvature characterizing the overall shape of the metal cover 1 continues. That is, among the various large and small bent portions formed on the metal cover 1, the bent portion extending over a relatively long length that substantially determines the external shape of the metal cover 1 is indicated.
  • the metal cover 1 When the metal cover 1 is attached to the exhaust manifold 3, the metal cover 1 is also vibrated by transmission of vibration from the exhaust manifold 3. When the metal cover 1 vibrates due to this vibration, the metal cover 1 vibrates so that the portions of the metal cover 1 on both sides of the main ridge line corresponding portion 30 flutter. If such vibration is left unattended, a portion near the ridge line corresponding portion 30 of the metal cover 1 is subject to metal fatigue due to repeated bending, and cracks are likely to occur.
  • the second upright portion 11 is also capable of realizing a rib function and suppressing vibration.
  • the flange 28 is formed on at least a part of the outer peripheral portion of the metal cover 1.
  • the metal cover 1 is formed by forming the metal plate 4 in a three-dimensional shape, and the plurality of corrugated shapes 9 formed on the metal plate 4 are raised.
  • a portion 7 and a valley portion 8 are formed continuously along the first direction A1, and the height of each raised portion 7 is periodically changed along the longitudinal direction, that is, the first direction A1.
  • the first direction A1 is set in a direction orthogonal to the main ridge line corresponding portion 30 of the metal cover 1 constituting a three-dimensional shape.
  • the corrugated shape 9 realizes the action of the rib against the vibrations on both sides of the main ridge line equivalent part 30.
  • the vibration from the exhaust manifold 3 prevents the metal cover 1 from vibrating such that the portions of the metal cover 1 on both sides of the main ridge line corresponding portion 30 flutter, and the metal cover 1 This prevents a situation in which the portion near the ridge line corresponding portion 30 is prone to metal fatigue due to repeated bending and is likely to generate cracks.
  • the vibration of the metal cover 1 of this embodiment can be suppressed, the occurrence of cracks in the metal cover 1 can be prevented, and the quality of the metal cover 1 can be significantly improved.
  • the metal cover 1 is a direction in which the first direction A1 having a plurality of corrugated shapes formed on the metal cover 1 intersects the bent portion 30 of the product shape of the metal cover 1, preferably, Since it is determined in the orthogonal direction, the wave shape realizes the action of the rib against the vibration centered on the bent portion 30. Thereby, the vibration of the metal cover 1 can be suppressed, the occurrence of cracks in the metal cover 1 can be prevented, and the quality of the metal cover 1 can be significantly improved.
  • FIG. 9 is a simplified cross-sectional view showing the operation of the metal cover 1 of the present embodiment.
  • the laminated portion 45 is formed on the metal plate 4 that is an elastically deformable material having the corrugated shape 9 formed on substantially the entire surface.
  • the width of the recess 46 at the extension portion becomes a width L5 at the time of extension larger than the width L4, and the width of the recess 46 at the compression portion. Stretching deformation is generated in each part over the entire surface of the metal cover 1 so that the width becomes a compression width L6 smaller than the width L4.
  • the vibration applied from the outside due to the expansion / contraction deformation of each part of the corrugated shape 9 is converted into thermal energy by the elastic deformation of the metal plate 4 itself. Thereby, the vibration of the metal cover 1 can be suppressed.
  • the width of the recess 46 in the extended portion 7 is a width L5 when extended, which is larger than the width L4, compared to the width L4 of the recess 46 of the standard raised portion 7 where the raised portion 7 is not deformed.
  • the width of the recess 46 is a compression width L6 smaller than the width L4.
  • the inventors of the present invention follow the bending of the waveform shape 9.
  • the length of one cycle (hereinafter referred to as the perimeter) was measured.
  • the peripheral length L0 is about 17 mm, and an extension allowance of about 55% can be realized with respect to the length L1 of one cycle of the waveform shape 9 (11 mm in this example).
  • an aluminum material is used as the metal plate 4, but the aluminum material has lower ductility and malleability compared to iron materials and stainless steel, and cracks etc. when performing press working, particularly deep drawing. The problem may occur.
  • the metal plate 4 is equivalent to having about 55% ductility and malleability, press working including deep drawing is remarkably facilitated. Thereby, light metals, such as aluminum, can be used as a material of the metal cover 1, and weight reduction of the metal cover 1 can be achieved. Moreover, workability is also greatly improved.
  • the laminated portion 45 is expanded and contracted as shown in FIG.
  • the extension allowance in the processing of the plate 4 is significantly larger than that of a flat metal plate. Thereby, processing becomes much easier as compared with a flat metal plate. This effect is remarkably realized when an aluminum alloy having relatively low ductility is used as the metal plate, for example, iron or stainless steel.
  • the plate of the metal plate 4 constituting the metal cover 1 is achieved in order to achieve this.
  • the necessity of increasing the rigidity of the metal cover 1 or increasing the support location for the exhaust manifold 2 of the metal cover 1 by increasing the thickness or adding a reinforcing member is eliminated. This increases the possibility of cracking in the vicinity of the support location due to the increase in the weight of the metal cover 1 assumed when the rigidity of the metal cover 1 is increased, and increases the support location of the metal cover 1. It is possible to prevent the occurrence of cracks due to thermal strain assumed when In these respects, the reliability of the metal cover 1 is significantly improved.
  • FIG. 10 is a graph for explaining the vibration control action of the metal cover 1.
  • the vibration damping action of the metal cover 1 will be described with reference to FIG.
  • the present inventor applied vibration to the steel plate, stainless steel plate, FRP plate, sandwich steel plate, and the metal cover 1 of the present embodiment. The damping coefficient of vibration was measured. The result is shown in the graph of FIG.
  • the vibration attenuation coefficient of the metal cover 1 of the present embodiment shown by the region P in FIG. 10 is larger than that of the steel plate and the stainless steel plate, and smaller than that of the FRP (fiber reinforced plastic) plate and the sandwich steel plate. Confirmed to belong to. Therefore, although the damping coefficient is smaller than that of a sandwich steel plate having a laminated structure of different materials or FRP containing inorganic fibers therein, it is larger than a steel plate or stainless steel plate that is often used as a material for covers of internal combustion engines. It has a vibration damping coefficient, and it has been confirmed that the vibration control performance is significantly improved over the prior art.
  • FIG. 11 shows a sandwich steel plate using a single-layer aluminum-plated steel plate having a thickness of 0.5 mm, a single-layer aluminum plate having a thickness of 0.5 mm, and a metal, in order to confirm the vibration damping performance of the metal cover 1 of this embodiment. It is a graph which shows the result of having measured each loss factor (eta) of the laminated aluminum board of the sheet-made cover 1 and the plate
  • the vibration control performance of the metal cover 1 of the present embodiment is lower than the sandwich steel plate and 0.5 mm thick aluminum plate, but higher than the laminated aluminum plate.
  • FIG. 12 is a graph showing the results of measuring the temperature change of the loss coefficient ⁇ related to the vibration of various materials in relation to the metal cover 1 of this example.
  • the measurement temperature range is between room temperature and about 250 ° C.
  • the measurement result of the metal cover 1 is indicated by a curve g1
  • the measurement result of an aluminum-plated steel plate having a thickness of 0.5 mm is indicated by a curve g2.
  • the loss factor of the metal cover 1 of this embodiment is lower than the loss factor of the aluminum-plated steel sheet in the temperature range below about 100 ° C., but in the temperature range exceeding about 100 ° C. It was confirmed that the loss coefficient of the aluminum-plated steel sheet was significantly improved.
  • the metal cover 1 when used for a vibration source that generates heat, such as an automobile engine, for example, it has been confirmed that it exhibits good vibration damping properties when the engine is in operation.
  • the corrugated shape 9 formed on the metal plates 4 and 5 is not limited to the shape of the above embodiment, and even when an arbitrary corrugated shape is formed, It is clear that the waveform-shaped expansion / contraction operation accompanying the vibration can be realized, and the vibration control action by this expansion / contraction operation can be realized.
  • the waveform shapes 9, 9a are formed continuously along the first direction A1 and the second direction A2, respectively. Therefore, regarding the metal cover 1 formed from the metal plates 4 and 5, when the cover 1 generates vibration due to external vibration, such vibration is caused by the valley portions 8 and 8a in the waveform shapes 9 and 9a and It is converted into elastic deformation of the metal plate 4 in the raised portions 7 and 7a. Thereby, a considerable part of the vibration applied from the outside is converted into thermal energy by the elastic deformation of the metal plate 4 itself. Thereby, the vibration of the cover 1 by the vibration which the metal plate 4 receives can be suppressed.
  • the product formed from the processing material vibrates by transmission of vibration from the vibration source.
  • the product vibrates, it vibrates so that the product parts on both sides of the product shape flutter around the bent part of the product shape.
  • vibration is generated, a portion near the bent portion of the product is subject to metal fatigue due to repeated bending, and cracks are likely to occur.
  • the processing material to be processed into a product is formed with corrugated shapes along the first direction and the second direction, respectively.
  • the first direction corresponds to the bent portion of the product.
  • the corrugated shapes 9 and 9a are expanded and contracted to expand and contract the corrugated shapes 9 and 9a.
  • the extension allowance in processing of the metal plate 4 on which the metal plate 4 is formed becomes significantly larger than that of the flat plate-shaped metal plate 4.
  • workability is remarkably improved compared with a flat metal plate.
  • This function and effect is remarkably realized when, for example, an aluminum alloy having relatively low ductility and malleability is used as the metal plate 4 rather than a material having relatively high ductility and malleability such as iron and stainless steel.
  • the cover 1 is formed by processing the corrugated shapes 9 and 9a on the metal plate 4, so that when the cover 1 has a bent shape, one surface of the cover 1 has a convex shape.
  • the other surface has a concave shape.
  • the interval between the raised portions 7 and 7a of the waveform shapes 9 and 9a is widened on the convex shape side, and the interval between the raised portions 7 and 7a of the waveform shapes 9 and 9a is narrowed on the other surface side.
  • a base material a member having a relatively soft surface property
  • the mounting of the metal plate 4 on the base material can be realized without taking special measures such as an adhesive. Also in this respect, the structure of the cover 1 of the present embodiment can be simplified and downsized.
  • the shape and structure of the cover 1 are determined by the shape when the metal plate 4 is processed into the cover 1. Therefore, in this embodiment, the shape and structure of the metal plate 4 at the stage before being processed into the cover 1 are arbitrary. As a result, this embodiment is applicable to a wide variety of processing materials as long as the shape and structure of the metal plate 4 when processed into the cover 1 satisfy the conditions defined in this embodiment. is there.
  • FIG. 13 is a perspective view of the metal plate 6 that is the material of the metal cover 1a of this embodiment
  • FIG. 14 is a simplified cross-sectional view of the metal cover 1a that is a molding member of this embodiment
  • FIG. FIG. 16 is a conceptual diagram illustrating the configuration of the investigation device 21 based on the present embodiment
  • FIG. 17 is a graph illustrating the investigation result by the investigation device 21 regarding the sound absorption characteristics. is there.
  • the metal cover 1a of the present embodiment is similar to that of the first embodiment, and corresponding parts are denoted by the same reference numerals.
  • One of the features of the present embodiment is that a large number of through holes 22 are formed in the metal plate 6 that is a thin plate material made of a flat plate aluminum plate having a plate thickness t0 constituting the cover 1a.
  • the through hole 22 is formed so that air can move in the thickness direction (vertical direction in FIG. 13) of the metal plate 6.
  • the through-hole 22 has a cylindrical cross-sectional shape shown in FIG. 13 as an example, but is not limited thereto, and may have a rectangular slit shape or other irregular shapes.
  • the plate thickness t0 is selected to be 0.15 mm
  • the opening diameter D1 of the through-hole 22 is such that the sound input to the metal cover 1a passes through the through-hole 22 as an air dense wave, and the peripheral portion of the through-hole 22 It has a great influence on the conversion action of the vibration energy of the air due to the friction between the air and the heat into the heat energy and the attenuation action of the energy due to the pressure loss of the air flow.
  • the opening diameter D1 capable of realizing the energy attenuating action due to the pressure loss in the air passing through the through hole 22 is preferably 3 mm or less. This is because, when the opening diameter D1 is larger than 3 mm, the pressure loss during the passage of air is greatly reduced, and it is confirmed that the threshold value regarding the normal incident sound absorption coefficient with respect to the metal plate 6 is significantly lower than 0.3. . Further, it has been confirmed that if the opening diameter D1 of the through hole 22 is 1 mm or less, a viscous action can be reliably generated in the air flow passing through the through hole 22.
  • the metal plate 6 having a large number of such through holes 22 is described above along the first direction A1 and the second direction A2.
  • Each of these corrugations is applied.
  • the processing material 24 shown in FIG. 14 obtained by performing such corrugation processing, and a back plate 25 which is a partition member provided by separating the air layer 26 at a predetermined distance L21 from the processing material 24 are included.
  • the metal cover 1a which is a molding member of the present embodiment is configured.
  • FIG. 15 is a graph showing the frequency vs. normal incidence sound absorption coefficient of the measurement result.
  • Curves g10, g11, g12, and g13 show changes in the normal incident sound absorption coefficient when the distance L21 is 0 mm, 2 mm, 4 mm, and 8 mm, respectively.
  • the normal incidence sound absorption coefficient of the present embodiment has two peak frequency bands, a first frequency band f1 (1 to 2 kHz) and a second frequency band f2 (3 to 4 kHz).
  • the first frequency band f1 which is the lower peak frequency band is resonance by the air layer determined by the distance L22 between the raised portion 7 and the back plate 25 and the through hole 22 formed in the raised portion 7 portion.
  • the second frequency band which is the higher peak frequency band, is a frequency band resulting from the resonance frequency of the air layer determined by the distance L23 between the raised portion 7 and the valley portion 8 and the through hole 22 formed in the raised portion 7. It is.
  • the inventor of the present invention investigated the metal plate 6 having the configuration shown in FIG. 13 with the investigation device 21 shown in FIG. 16 with respect to the metal cover 1a of this example.
  • the investigation device 21 includes a vibration exciter 33 and a mounting jig 34.
  • the metal plate 6 is attached to the vibrator 33 with the mounting jig 34, and the metal cover is covered with the sound pressure detecting means 35 such as a microphone installed in the vicinity of the metal plate 6 on the opposite side of the vibrator 33.
  • the sound pressure level of the sound from 1a was measured.
  • the measurement results are shown in the graph of FIG.
  • a curve g15 is a case of the metal cover 1a of the present embodiment having a large number of through holes 22, and a curve g16 is a case of the metal cover 1 in which the through holes 22 are not formed.
  • the metal cover 1a of the present example having the through hole 22 is at a level reduced from the curve g16 in each of the frequency bands around 630 Hz, around 1250 Hz, and 2500 Hz. It was confirmed that the noise reduction effect by the through-hole 22 was seen.
  • Such a metal cover 1a of the present embodiment can realize the following sound absorbing action and vibration radiation sound reducing action.
  • the metal cover 1a of the present embodiment is provided with a through hole 22 in itself. Therefore, when the metal cover 1a vibrates, when the air passes through the through hole 22 in the direction of the arrow e1, energy of friction is generated between the end surface 32 constituting the through hole 22 of the processing material 24 and the air. Attenuation occurs.
  • the sound absorbing performance due to such energy attenuation is exhibited by converting sound wave energy, which is vibration of air, into thermal energy.
  • the sound absorption performance in the lower peak frequency band f1 is determined by the air layer determined by the distance L22 between the raised portion 7 and the back plate 25 and the air determined by the distance L21 between the valley portion 8 and the back plate 25. Due to resonance by layers.
  • the resonance is caused by an air layer having a thickness L23 between the upper surface of the raised portions 7 and the bottom surface of the valley 8. Sound absorption performance in the vicinity of the acoustic resonance frequency band.
  • vibration and noise generated by the processing material 24 itself can be reduced by absorbing the sound after the generation.
  • the metal plate 6 is easy to move in the same phase due to the rib reinforcing effect by the raised portion 7 and the valley portion 8.
  • the acoustic radiation efficiency which is the energy conversion efficiency from vibration to sound of the processing material 24
  • the amplitude of sound radiated from the processing material 24 can be reduced.
  • the vibration radiation noise reduction effect by providing the through hole 22 in the metal plate 6, when the surface vibration of the metal plate 6 is partially different in amplitude or / and phase, that is, vibration distribution is generated on the surface of the processing material 24.
  • the effect of the vibration radiation sound reducing action is reduced.
  • the vibration distribution can be reduced and the vibration radiated sound can be reduced. The effect can be made remarkable. Therefore, the noise generated by the processing material 24 itself can be reduced by this vibration radiation sound reduction effect.
  • the cover 1a when the cover 1a generates vibration due to external vibration with respect to the metal cover 1a formed from the processing material 24, such vibration is caused by the trough 8 in the waveform shape 9 and It is converted into elastic deformation of the metal plate 6 in the raised portion 7. Thereby, a considerable part of the vibration applied from the outside is converted into thermal energy by the elastic deformation of the metal plate 6 itself. Thereby, the vibration of the cover 1a by the vibration which the raw material 24 for processing receives can be suppressed.
  • the aperture diameter D1, the aperture ratio, the plate thickness t0, and the distance between the raised portion 7 and the back plate 25 or the valley portion 8 are appropriately adjusted to match the frequency band to be reduced. It is possible to adjust so as to obtain an effect of reducing vibration radiation sound.
  • the material of the metal plate 6 constituting the metal cover 1a of the present embodiment and the hole shape of the through hole 22 are not limited to the above embodiments, and the present invention can be used when other materials are used. include.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Exhaust Silencers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

【課題】制振性能、遮音性能及び吸音性能が格段に向上され、軽量化と製品の機械的強度を向上することができる加工用素材及び該加工用素材を用いてなる成型部材を提供するものである。 【解決手段】金属製カバー1aによれば、加工用素材24を構成する薄板材6には、貫通孔22が多数設けられる。これにより、加工用素材24は、それ自身に貫通孔22を設けている。加工用素材22が振動した場合、貫通孔22を空気が通過する際に、加工用素材24の貫通孔22を構成する端面32と空気との間で摩擦によるエネルギーの減衰が発生する。このため空気の振動である音波のエネルギーが熱エネルギーに変換され吸音性能が発揮される。吸音性能が発揮される周波数帯域は、貫通孔22の等価孔径D1、開口率、板厚等の寸法形状を一因として決定される。

Description

加工用素材及びそれを用いる成型部材
 本発明は、一例として振動、騒音を発生する対象物に対して用いられ、対象物に対して制振作用、吸音作用を実現する単一の薄板材からなる加工用素材及びそれを用いる成型部材に関するものである。
 このような振動を発生する対象物の一例として内燃機関が挙げられる。内燃機関本体や、内燃機関に接続されたエキゾーストマニホールド(以下、「エキマニ」という)などの排気系からは、熱や騒音、振動などが外部に放散されている。このような内燃機関本体や排気系などの振動源から振動が外部に無闇に放散される事態を防止するために、従来から、上記振動源に対してインシュレータなど各種のカバーが用いられている。
 図18は下記特許文献1に記載されている典型的な従来技術のエキゾーストマニホールドインシュレータ(以下、「インシュレータ」という)1の斜視図である。以下、図18を参照して、インシュレータ1について説明する。
 インシュレータ1は、内燃機関のエキマニに取り付けられて、エキマニを覆っている。インシュレータ1は、ほぼ平坦な前面部1aとそれから折れ曲がって、内燃機関のシリンダヘッド側に延びる側壁部1bとを有する。インシュレータ1は、2枚の鋼板1A、1Bの重ね合わせからなり、スリット2の縁の少なくとも1つの適宜の位置で、2枚の鋼板の一方が他方の鋼板に対して折り返し部で折り返されている。この折り返しによって2枚の鋼板1A、1Bの結合の強化がはかられる。
 この従来技術のインシュレータ1は、2枚の鋼板1A、1Bを重ね合わせた構成により、内部を毎分数千回の周波数で脈動する高温の排気ガスが通過するエキマニから発生する前記周波数の振動が、周囲に無闇に放散されないように作用している。
特開平10-266850号公報(第8段落~第11段落、及び図1)
 このような従来技術のインシュレータは、前述したように2枚の鋼板1A、1Bが重ね合わされた構成であり、比較的重量が重いという問題点がある。また、エキマニから伝播される振動によってインシュレータ1が面振動を生じ、振動周波数がインシュレータ1の共振周波数と一致する場合は、インシュレータ1自身が騒音源になってしまうという問題点がある。
 また、近年の内燃機関やエキマニは、軽量化の点から軽合金化、薄肉化が図られている。したがって、インシュレータに関しても、軽量化が求められていると共に、一層の制振性能の向上も求められている。
 これらの点に鑑み、本件発明者は、前記インシュレータにおける制振作用、遮音作用及び吸音作用を実現するメカニズムを研究した結果、後述する本件発明に到達したものである。
 本発明は、上記問題点を解決しようとして成されたものであり、その目的は、制振性能、遮音性能及び吸音性能が格段に向上され、軽量化と製品の機械的強度を向上することができる加工用素材及び該加工用素材を用いてなる成型部材を提供するものである。
 請求項1記載の発明の加工用素材は、弾性変形可能な薄板材に、谷部と隆起部とが交互に繰り返される第1波形形状が第1方向に沿って連なって形成され、第1方向と交差する第2方向に沿って、谷部と隆起部とが交互に繰り返される第2波形形状が連なって形成され、第1波形形状において、隆起部は谷部から立ち上がる一対の側部と、側部間に連なる頂部とを含み、一対の側部の基端部の第1方向に沿う開口部長さよりも、頂部の第1方向に沿う頂部長さが長く定められていることを特徴とする。
 請求項2記載の発明の加工用素材は、請求項1の発明において、前記薄板材は、貫通孔を有することを特徴とするものである。
 請求項3記載の発明の加工用素材は、請求項2の発明において、前記貫通孔は、少なくとも前記頂部に設けられていることを特徴とするものである。
 請求項4記載の発明の加工用素材は、弾性変形可能な単一の薄板材を立体形状に加工して得られる加工用素材を用いる成型部材であって、薄板材に、谷部と隆起部とが相互に連なって交互に繰り返される第1波形形状が第1方向に沿って形成され、第1方向と交差する第2方向に沿って、谷部と隆起部とが相互に連なって交互に繰り返される第2波形形状が形成され、第1波形形状において、隆起部は谷部から立ち上がる一対の側部と、側部間に連なる頂部とを含み、一対の側部の基端部の第1方向に沿う開口部長さよりも、頂部の第1方向に沿う頂部長さが長く定められて加工用素材が構成され、加工用素材の第1方向又は第2方向のいずれかが立体形状の稜部と交差する方向に定められていることを特徴とするものである。
 請求項5記載の発明の成型部材は、請求項4の発明において、前記成型部材は、振動発生部材に対して装着される成型部材本体と、該成型部材本体よりも振動発生部材側に予め定める距離を隔てて設けられる隔壁部材とを含み、該成型部材本体を構成する前記薄板材は貫通孔を有することを特徴とするものである。
 請求項6記載の発明の成型部材は、請求項5の発明において、前記貫通孔が、少なくとも前記頂部に設けられていることを特徴とするものである。
 請求項1記載の発明によれば、第1方向及び第2方向に沿って、第1波形形状及び第2波形形状がそれぞれ形成され、第1波形形状において、隆起部は谷部から立ち上がる一対の側部と、これら側部間に連なる頂部とを含み、一対の側部の基端部の第1方向に沿う開口部長さよりも、頂部の第1方向に沿う頂部長さが長く定められている。
 したがって、本発明によれば、このような加工用素材をプレス加工するなどして、所望の製品形状に加工する場合、前記波形形状が伸縮することにより、波形形状が形成された薄板材の加工における前記第1方向に沿う延び代が、平板形状の薄板材と比較して格段に大きくなる。これは、第1波形形状において、一対の側部の基端部の第1方向に沿う開口部長さよりも、頂部の第1方向に沿う頂部長さが長く定められていることにより保証されている。
 この頂部長さが開口部長さよりも長くない場合には、加工用素材をプレス加工する際の延び代が充分に確保できず、製品の加工性が低下して加工時のクラックの発生や製品形状が充分に実現できない場合がある。本発明によれば、このような不具合の可能性を防止して、加工用素材の加工性を格段に向上することができる。
 さらに、本発明の加工用素材において、前記第2方向に沿う加工性に関しても、その程度が充分に向上されている。これは、薄板材に、第2方向に沿って第2波形形状が形成されていることにより保証されている。
 また、本発明の加工用素材は、谷部と隆起部とが相互に連なって交互に繰り返されて第1波形形状及び第2波形形状が形成されている。即ち、第1波形形状及び第2波形形状において、谷部及び隆起部からなる各1周期の形状間に平板部分の存在が除外されている。この平板部分の存在を仮定すると、平板部分が大きな振幅の面振動を発生したり、平板部分であることを原因とする機械的強度が弱い部位となったりする不具合の発生が想定される。
 本発明は、このような不具合の発生を防止しているので、加工用素材を用いて製造される製品の品質を格段に向上することができる。
 以上のように本発明の加工用素材は、平板形状の薄板材と比較して加工性が格段に向上される。
 本発明は、薄板材の材料を何ら限定するものではないが、本発明の特徴的な作用効果は、薄板材として、例として鉄やステンレス鋼などの延性、展性が比較的大きい材料よりも、比較的延性、展性が小さいアルミニウム合金を用いる場合などに顕著に実現されることは明らかである。
 さらに、本発明の加工用素材は、これらの作用効果を単一の薄板材からなる構成で実現することができるので、構成の簡略化と軽量化、及びこれらによる大幅なコストダウンを図ることができる。
 請求項2記載の発明によれば、請求項1の発明において、加工用素材を構成する前記薄板材は貫通孔を有する。これにより、本発明の加工用素材は、請求項1に関して説明された上記作用効果に加え、以下の吸音作用と振動放射音低減作用とを実現するものである。
 本発明の加工用素材は、それ自身に貫通孔を設けている。加工用素材が振動した場合、貫通孔を空気が通過する際に、加工用素材の貫通孔を構成する端面と空気との間で摩擦によるエネルギーの減衰が発生する。このため空気の振動である音波のエネルギーが熱エネルギーに変換され吸音性能が発揮される。吸音性能が発揮される周波数帯域は、貫通孔の等価孔径、開口率、板厚等の寸法形状を一因として決定される。
 また、本発明は、前記隆起部及び谷部によるリブ補強効果により、薄板材が全面同位相で動きやすい。このとき薄板材に貫通孔が設けられていることによって、加工用素材の振動から音へのエネルギー変換効率である音響放射効率が、貫通孔がない場合と比較して、低減することが確認されている。これにより、本発明の加工用素材が振動している場合でも、加工用素材から放射される音に対して吸音作用を実現できる。
 薄板材に貫通孔を設けることによる振動放射音低減効果について、薄板材の面振動が部分的に振幅又は/及び位相が異なる場合、すなわち加工用素材の表面に振動分布が発生する場合、振動放射音低減作用の効果が小さくなることが知られている。しかし、本発明のように、加工用素材表面に前記隆起部及び谷部からなる凹凸が存在し、前述したリブ補強効果がある場合、振動分布を小さくでき、振動放射音の低減効果を顕著にすることができる。したがって、この振動放射音低減効果により、加工用素材自身が発生する騒音を低減することができる。
 請求項3記載の発明によれば、請求項2の発明において、前記貫通孔は少なくとも前記頂部に設けられているので、本発明の加工用素材は、請求項1に関して説明された上記作用効果に加え、以下の吸音作用と振動放射音低減作用とを実現する。
 本発明の場合、面方向に前記谷部と隆起部とによる凹凸が存在するため、隆起部上面と谷部底面との間の距離で定められる厚さの空気層で音響共鳴機構が構成され、吸音性能が実現される。また、隆起部の頂部に設けられた貫通孔を通過する空気に関する前述した摩擦によるエネルギー減衰による吸音性能も実現される。この貫通孔による吸音性能は、貫通孔の等価孔径、開口率、板厚などの寸法、形状を一因として定められる音響共鳴周波数帯域付近で発揮される。
 このような相乗的な吸音効果により、加工用素材自身が発生する振動、騒音を、発生後に吸音することにより低減することが出来る。
 請求項4記載の発明によれば、加工用素材から形成される成型部材に関して、外部からの振動によって成型部材が振動を発生する場合、このような振動は、前記波形形状における谷部及び隆起部における薄板材の弾性的な変形に転換される。これにより、外部から加えられる振動は、薄板材自身の弾性変形によって相当部分が熱エネルギーに変換される。これにより、加工用素材が受ける振動による成型部材の振動が抑制される。
 また、本発明において、加工用素材が振動源に対して用いられ、騒音の抑制を実現すべき成型部材として用いられた場合、加工用素材を用いる成型部材は、振動源からの振動の伝達により振動する。成型部材の振動に際して、製品形状の屈曲部位である稜部を中心にして、その両側の製品の部位がばたつくように振動する事態が想定される。このような振動が発生すると、製品の前記稜部付近の部位が繰り返しの屈曲により金属疲労を生じクラックを発生しやすくなる。
 本発明では、製品に加工される加工用素材には、前記第1方向及び第2方向に沿って波形形状がそれぞれ形成されており、一例としてその第1方向が、製品の前記稜部に対して交差する方向に定められているので、波形形状が前記稜部を中心とする振動に対してリブの作用を実現する。これにより、製品の振動を抑制することができ、製品のクラックの発生を防止することができ、製品の品質を格段に向上することができる。
 さらに、本発明の加工用素材は、これらの作用効果を単一の薄板材からなる構成で実現することができるので、成型部材の構成の簡略化と軽量化、及びこれらによる大幅なコストダウンを図ることができる。
 本発明の成型部材は、薄板材に波形形状を加工して形成されるので、成型部材が屈曲形状を有する場合、成型部材の一方表面が凸形状の場合、他方表面は凹形状になる。このとき、凸形状側では波形形状の隆起部同士の間隔が広がり、他方表面側では、波形形状の隆起部同士の間隔が狭まる。
 したがって、本発明の加工用素材の一方表面に細かい凹凸を有する部材、或いは比較的柔軟な表面性状の部材(以下、基材と総称する)を当接し、加工用素材を基材と共に屈曲させると、基材側で波形形状の隆起部同士の間隔が狭まる部位において、加工用素材の基材側の隆起部間の間隔が狭まり、加工用素材と基材とが相互に噛み合って相互に固定されることになる。したがって、加工用素材の基材への装着を、接着剤などの特段の手段を講じる事無く実現することができる。この点に於いても、本発明の成型部品の構成の簡略化と小型化とを図ることができる。
 また、本発明において、成型部材の形状及び構造は、加工用素材が成型部材に加工された際の形状よって定められている。したがって、本発明において、成型部材に加工される前段階での加工用素材の形状及び構造は、本発明において任意である。これにより、本発明は、成型部材に加工された際の薄板材の形状及び構造が、請求項3を満たす限り、広範な種類の加工用素材に関して適用されるものである。
 請求項5記載の発明によれば、前記成型部材は、振動発生部材に対して装着される成型部材本体と、該成型部材本体よりも振動発生部材側に予め定める距離を隔てて設けられる隔壁部材とを含み、該成型部材を構成する前記薄板材は貫通孔を有している。これにより、本発明の成型部材は、前記請求項4に関して説明した上記作用効果に加え、以下の効果を含む特有の効果も併せて奏するものである。
 本発明によれば、貫通孔が形成された成型部材本体と隔壁部材との間に形成される空気層で第1吸音構造が形成され、吸音作用を発揮する。成型部材本体に形成された多数の貫通孔と、成型部材本体と隔壁部材との間の背後空気層とで音響共鳴機構が形成され、前記第1吸音構造が構成される。
 このような吸音作用が発揮される第1吸音周波数帯域は、貫通孔の等価孔径、開口率、板厚等の寸法形状と、成型部材本体と隔壁部材との間の距離で定められる前記背後空気層の厚さなどの要因によって決定される。
 このような吸音作用により、成型部材が振動源に対して、装着された際に想定される成型部材自身が発生する騒音を、発生後に成型部材自身で吸音することにより低減することが出来る。
 また、本発明は、前記隆起部及び谷部によるリブ補強効果により、薄板材が全面同位相で動きやすい。このとき薄板材に気体流通部が設けられていることによって、加工用素材の振動から音へのエネルギー変換効率である音響放射効率が、気体流通部がない場合と比較して、低減することが確認された。これにより、本発明の加工用素材が振動している場合でも、加工用素材から放射される音の振幅を低減できる。
 薄板材に気体流通部を設けることによる振動放射音低減効果について、薄板材の面振動が部分的に振幅又は/及び位相が異なる場合、すなわち加工用素材の表面に振動分布が発生する場合、振動放射音低減作用の効果が小さくなることが知られている。しかし、本発明のように、加工用素材表面に前記隆起部及び谷部からなる凹凸が存在し、前述したリブ補強効果がある場合、振動分布を小さくでき、振動放射音の低減効果を顕著にすることができる。したがって、この振動放射音低減効果により、加工用素材自身が発生する騒音を低減することができる。
 請求項6記載の発明によれば、請求項5の発明において、前記貫通孔は少なくとも前記頂部に設けられているので、本発明の成型部材は、請求項4、5に関して説明された上記作用効果に加え、以下の吸音作用と振動放射音低減作用とを実現するものである。
 本発明の成型部材の場合、面方向に、請求項4に定められる隆起部及び谷部による凹凸が存在するため、前述した第1吸音構造による第1吸音周波数帯域での吸音作用に加え、隆起部上面と谷部底面との間の距離で定められる空気層厚さと、隆起部表面の気体流通部の等価孔径、開口率、板厚などの寸法形状とで決定される第2吸音構造が形成され、上記各寸法形状などによって定められる第2吸音周波数帯域である音響共鳴周波数帯域付近で吸音作用が発揮される。
 そして、上記第1吸音周波数帯域と第2吸音周波数帯域とは、これら周波数帯域を定める前述した各部寸法や形状などが相互に異なるため、周波数帯域が相互に異なる。従来の平板と空気層との組み合わせ構造や、緩やかな凹凸形状、すなわち凸部の頂部長さが凹部の開口部長さよりも短い凹凸構造の場合では、単一の周波数帯域前後の吸音特性のみが発揮される。これに対し、本発明の場合、前述したように、単一の成型部材本体であっても、相互に異なる周波数帯域前後で吸音作用が発揮されるため、極めて広帯域な吸音特性を簡便な構成により実現することができる。
 このような吸音作用により、成型部材が振動源に対して、装着された際に想定される成型部材自身が発生する騒音を、発生後に成型部材自身で吸音することにより低減することが出来る。このような相乗的な吸音効果により、加工用素材自身が発生する振動、騒音を、発生後に吸音することにより低減することが出来る。
本発明の実施例1の金属製カバー1をエキマニ3に装着した状態の正面図である。 図1の切断面線X2-X2から見た断面図である。 金属製カバー1の拡大正面図である。 図3の切断面線X4-X4から見た断面図である。 図3の切断面線X5-X5から見た断面図である。 図3の切断面線X6-X6から見た断面図である。 図1の切断面線X7-X7から見た簡略化した断面図である。 本実施例の特徴を説明する斜視図である。 金属製カバー1の伸縮作用を説明する断面図である。 金属製カバー1の制振作用を説明するグラフである。 金属製カバー1の損失係数を示すグラフである。 金属製カバー1の損失係数の温度変化を示すグラフである。 本発明の実施例2の金属板6の斜視図である。 実施例2のカバー1aの簡略化した断面図である。 実施例2の吸音特性を説明するグラフである。 実施例2に基づく調査装置21の構成を示す概念図である。 吸音特性に関する調査装置21による調査結果を説明するグラフである。 従来技術の斜視図である。
1、1a 金属製カバー
3 エキマニ
4、5、6 金属板
7、7a 隆起部
8、8a 谷部
9、9a、9b 波形形状
12 平坦部
13 凹部
18 頂部
21 調査装置
22 貫通孔
23 凹部
24 加工用素材
26 空気層
32 端面
45 積層部
46 凹所
A1 第1方向
A2 第2方向
D1 開口径
 本発明は、一例として、内燃機関のエキゾーストマニホールド(以下、「エキマニ」という)などにおいて、エキゾーストマニホールドから振動や騒音などを無闇に外方に放散しないように装着されるエキゾーストマニホールドカバーなどとして実施することができる。
 本発明の実施例1について図1~図12に基づいて説明する。
 図1は本実施例の金属製カバー1をエキマニ3に装着した状態の正面図であり、図2は図1の切断面線X2-X2から見た断面図であり、図3は金属製カバー1の拡大正面図であり、図4は図3の切断面線X4-X4から見た断面図であり、図5は図3の切断面線X5-X5から見た断面図であり、図6は図3の切断面線X6-X6から見た断面図であり、図7は図1の切断面線X7-X7から見た簡略化した断面図であり、図8は本実施例の特徴を説明する図であり、図9は本実施例の作用を説明する断面図であり、図10は本実施例の制振性能を説明するグラフであり、図11は本実施例の及び既存技術の制振性能を示すグラフであり、図12は損失係数の温度変化を示すグラフである。
 以下、図1及び図2を参照して成型部材である金属製カバー1の概略について説明する。自動車のエンジン2などの内燃機関のエキマニ3には、内燃機関の燃焼室から例として600~700℃の高温で毎分数千サイクルの周波数で脈動する燃焼排ガスが通過するため、他の部材であるエキマニ3自身も高温になり高温の熱輻射を発生する熱源となり、また、エンジン2内での燃料の爆発音、燃焼排ガスのエキマニ3内の移動などに起因する騒音を外部に放散する振動源となる。
 本実施例では、エキマニ3からのこのような振動を可及的に抑制するために、後述される構成を有する成型部材である金属製カバー1がエキマニ3を覆う態様に設置されている。本実施例の金属製カバー1は、図2に示されるように、板厚0.3mmの薄板材である比重が2.7程度のアルミニウム合金からなる金属板4から構成され、図1、図2及び図7に示されるように、エキマニ3の外観形状に沿って、立体形状に形成される。金属製カバー1は、側壁T1と、この側壁T1の端部全周を連結する頂部T2とを備えている。側壁T1と頂部T2とは鈍角θをなして連なっている。
 本実施例において、上記金属板4は、弾性変形が可能な材料ならば、その種類を限定されるものではなく、アルミニウム箔或いはアルミニウム合金箔、さらにはアルミニウムやその合金、さらにはステンレス鋼、エンジニアリングプラスチックなどの合成樹脂類からなる薄板材を変更例として含むものである。但し、後述するような金属製カバー1の軽量化の点を考慮すると、アルミニウムやその合金、或いはエンジニアリングプラスチックなどの合成樹脂類からなる薄板材が好適である。
 本実施例のカバー1に用いられる前記金属板4は、一例として、1枚のアルミニウム合金薄板から形成される。金属板4には、図1~図6に示されるように、第1方向A1に沿って、隆起部7と谷部8とが相互に連なって交互に繰り返された第1波形形状である複数の波形形状9と、第1方向A1と交差する方向、好適には直交する方向である第2方向A2に沿って隆起部7aと谷部8aとが相互に連なり、第2波形形状である同様な波形形状9aとが形成される。隆起部7は、その長手方向に沿って、図3~図5に示されるように、第1起立部10と第2起立部11とが谷部8から立上って交互に配列されている。また、前記谷部8は、図3~図5に示されるように平坦部12と凹部13とが交互に配列されている。
 前記第1起立部10は、谷部8から略台形状に立上る一対の側壁14、15と、側壁14、15の先端が相互に連結されて形成される比較的平坦な頂部18とを含んで1周期形状が構成されている。第1起立部10は内曲しており、第1起立部10の基端部の第1方向A1に沿う開口部長さL10よりも、頂部18の第1方向A1に沿う頂部長さL2が長くなるように定められる。
 一方、前記第2起立部11は、第1起立部10が概略幅方向に所定の程度押し潰されて形成され、平坦部12からそれぞれ立上る一対の側壁19、20と、側壁19、20の先端を相互に連結し、図5の下方側に凹状の凹部23とを含んで構成されている。このような各第2起立部11及び凹部13は、複数の波形形状9の延びる方向である前記第1方向A1と実質的に直交する方向である第2方向A2に沿ってそれぞれ断続的に連なるように形成される。
 また、第2起立部11は内曲しており、第2起立部11の基端部の第1方向A1に沿う開口部長さL11よりも、凹部13の第1方向A1に沿う頂部長さL11が長くなるように定められる。また、前記側壁14、15及び側壁19、20付近は、第1方向A1及び第2方向A2の少なくとも一方の方向に沿う波形形状9において、金属板4が折り返されて金属板4自身の上に折り重ねられた積層部45を構成している。
 本実施例の金属製カバー1において、各部寸法の一例として、図4及び図5に示されるように、第1方向A1に沿う波形形状9の1周期の長さL1、前記第1起立部10の頂部18の長さL2、第2起立部11の凹部23の長さL3が、11mm、7mm、5mmにそれぞれ選ばれる。したがって、前記開口部長さL10は長さ7mmよりも小さく、開口部長さL11は長さ5mmよりも小さく選ばれる。
 勿論、本発明はこのような寸法例にその技術的範囲を限定されるものではなく、発明が実施される金属製カバー1の要求される仕様に対応して、その寸法などが適宜選択される。金属製カバー1は、このような形状を有し、金属板4をエキマニ3の外形形状に沿った立体形状にプレス加工することにより形成される。
 以下、図8を参照して、本実施例の金属製カバー1の特徴の一つについて説明する。本実施例の金属製カバー1は前述したようにエキマニ3の立体的な外観形状に沿った立体形状に形成されるので、金属製カバー1には図1に示されるように金属板4の屈曲部であり稜部である一つ或いは複数の稜線相当部位30が形成される。本実施例では、波形形状9の長手方向である前記第1方向A1が、これら複数の稜線相当部位30のうちの後述する主要な稜線相当部位30に交差する方向となるように、金属板4、5に対して立体形状へのプレス加工を施す。
 ここで、前記主要な稜線相当部位30とは、金属製カバー1の全体的な形状を特徴付ける比較的大きな曲率が連続する折り曲げ部位である。即ち、金属製カバー1に形成される大小種々の折り曲げ部位のうち、金属製カバー1の外観形状を実質的に決定付ける比較的長寸に亘って延びる折り曲げ部位を指す。
 金属製カバー1がエキマニ3に対して装着されるとき、エキマニ3からの振動の伝達により金属製カバー1も振動する。この振動により金属製カバー1が振動するとき、前記主要な稜線相当部位30を中心にしてその両側の金属製カバー1の部位がばたつくように振動する。このような振動を放置すると、金属製カバー1の稜線相当部位30付近の部位が繰り返しの屈曲により金属疲労を生じクラックを発生しやすくなる。
 これに対して、本実施例では、金属製カバー1に形成されている複数の波形形状9の第1方向A1が前記主要な稜線相当部位30に対して交差する方向、好適には直交する方向となるように定めるので、波形形状9が前記稜線相当部位30を中心とする振動に対してリブの作用を実現する。これにより、金属製カバー1の振動を抑制することができ、金属製カバー1のクラックの発生を防止することができ、金属製カバー1の品質を格段に向上することができる。
 さらに、前述した稜線相当部位30の延びる方向に沿って発生する振動に対しては、前記第2方向A2に沿って断続的に延び、第1方向A1に沿って連なる図4~図6に示される前記第2起立部11が、やはりリブの機能を実現して振動を抑制する。
 また、本実施例において、図7に示されるように、金属製カバー1の外周部の少なくとも一部分にフランジ28が形成される。これにより、金属製カバー1が振動する際にこのフランジ28がリブの機能を実現し、金属製カバー1の振動の振幅を減少することができ、金属製カバーに1おけるクラックの発生を抑制することができる。
 以上のように、本実施例によれば、金属製カバー1は金属板4を立体形状をなすように形成して構成され、この金属板4に形成されている複数の波形形状9は、隆起部7と谷部8とが第1方向A1に沿って連なって形成され、各隆起部7はその長手方向即ち第1方向A1に沿って周期的に高さが変化されている。さらに、第1方向A1が立体形状を構成する金属製カバー1の主要な稜線相当部位30に対して直交する方向に定められている。
 したがって、波形形状9が前記主要な稜線相当部位30の両側部位の振動に対してリブの作用を実現する。これにより、エキマニ3からの振動により、金属製カバー1が前記主要な稜線相当部位30を中心にしてその両側の金属製カバー1の部がばたつくように振動する事態が抑制され、金属製カバー1の稜線相当部位30付近の部が繰り返しの屈曲により金属疲労を生じクラックを発生しやすくなる事態が防止される。
 これにより、本実施例の金属製カバー1の振動を抑制することができ、金属製カバー1のクラックの発生を防止することができ、金属製カバー1の品質を格段に向上することができる。
 また、金属製カバー1は、金属製カバー1に形成されている複数の波形形状の前記第1方向A1が、金属製カバー1の製品形状の屈曲部位30に対して交差する方向、好適には直交する方向に定められているので、波形形状が前記屈曲部位30を中心とする振動に対してリブの作用を実現する。これにより、金属製カバー1の振動を抑制することができ、金属製カバー1のクラックの発生を防止することができ、金属製カバー1の品質を格段に向上することができる。
 図9は本実施例の金属製カバー1の作用を示す簡略化した断面図である。以下、図9を併せて参照して金属製カバー1の作用について説明する。本実施例の金属製カバー1には、前述したように、波形形状9が実質的に全面に形成された弾性変形可能な材料である金属板4に前記積層部45が構成されている。
 したがって、金属製カバー1が受けた振動によって、金属製カバー1が面振動して振動を発生する場合、このような振動は、図9において、動作の一例が示されているように、隆起部7が変形していない標準時の隆起部7の凹所46の幅L4に対し、伸長部位では凹所46の幅は、前記幅L4より大きな伸長時幅L5になり、圧縮部位では凹所46の幅は、前記幅L4より小さな圧縮時幅L6になるような伸縮変形が、金属製カバー1の全面に亘って各部位において発生する。
 金属製カバー1において、このように、波形形状9の各部位の伸縮変形により、外部から加えられる振動は、金属板4自身の弾性変形によって相当部分が熱エネルギーに変換される。これにより、金属製カバー1の振動が抑制されることができる。
 また、金属製カバー1が受けた振動の比較的低周波帯域成分によって、金属製カバー1が全体としてばたつくような振動を発生する場合、このような振動は、図9において、動作の一例が示されているように、隆起部7が変形していない標準時の隆起部7の凹所46の幅L4に対し、伸長部位では凹所46の幅は、前記幅L4より大きな伸長時幅L5になり、圧縮部位では凹所46の幅は、前記幅L4より小さな圧縮時幅L6になる。
 また、金属製カバー1には前記積層部45が構成されているので、前記各部長さL1、L2、L3の寸法例の場合、本件発明者らは、波形形状9の屈曲にしたがって波形形状9の一周期の長さ(以下、周長という)を計測した。その結果、周長L0は約17mmになり、前記波形形状9の1周期の長さL1(本例では、11mm)に対して、約55%の伸び代を実現できることになる。
 本実施例で金属板4としてアルミニウム材を使用しているが、アルミニウム材は、鉄材やステンレス材と比較して、延性、展性が低く、プレス加工、特に深絞りなどを行う場合にクラックなどの問題点が発生することがある。これに対し、本実施例では、金属板4が約55%の延性、展性を有しているに等しいので、深絞り加工を含むプレス加工が格段に容易になる。これにより、金属製カバー1の材料として、アルミニウムなどの軽金属を用いることができ、金属製カバー1の軽量化を図ることができる。また、加工性も格段に向上される。
 このような金属板4をプレス加工するなどして、金属製カバー1の製品形状に加工する場合、積層部45が図9に示されるように伸縮することにより、波形形状9が形成された金属板4の加工における延び代が、平板形状の金属板と比較して格段に大きくなる。これにより、加工が平板形状の金属板と比較して格段に容易になる。この作用効果は、金属板として、例として鉄やステンレス鋼などよりも、比較的延性が小さいアルミニウム合金を用いる場合に顕著に実現される。
 さらに、本実施例において、前述したように、金属製カバー1の不所望な変形や割れの発生が防止されるので、これを達成するために、金属製カバー1を構成する金属板4の板厚を大きくしたり補強部材を追加したりして、金属製カバー1の剛性を増大させたり、金属製カバー1のエキマニ2に対する支持個所を増大させたりする必用が解消される。これにより、金属製カバー1の剛性を増大させたときに想定される金属製カバー1の重量の増大による支持個所付近での割れの可能性の増大や、金属製カバー1の支持個所を増大させた際に想定される熱歪による割れの発生を防止することができる。これらの点でも金属製カバー1の信頼性が格段に向上される。
 図10は金属製カバー1の制振作用を説明するグラフである。以下、図10を併せて参照して、金属製カバー1の制振作用について説明する。本件発明者は、本実施例の金属製カバー1の制振作用を確認するために、鋼板、ステンレス鋼板、FRP板、サンドイッチ鋼板、及び本実施例の金属製カバー1について、振動を加えた場合の振動の減衰係数の計測を行った。その結果が図10のグラフに示されている。
 この計測によれば、図10において領域Pで示される本実施例の金属製カバー1の振動減衰係数は、鋼板、ステンレス鋼板よりも大きく、FRP(繊維強化プラスチック)板、サンドイッチ鋼板よりも小さい範囲に属することが確認された。したがって、異種材料の積層構造を有するサンドイッチ鋼板や、内部に無機繊維を含有するFRPなどよりは減衰係数が小さいものの、内燃機関のカバー類の材料として多く用いられている鋼板、ステンレス鋼板よりは大きな振動減衰係数を有しており、制振性能に関して従来技術よりも格段に向上されていることが確認された。
 図11は本実施例の金属製カバー1の制振性を確認するために、板厚0.5mmの単層アルミメッキ鋼板を用いたサンドイッチ鋼板、板厚0.5mmの単層アルミ板、金属製カバー1、板厚0.3mmと0.125mmの平板アルミ板の積層アルミ板の各損失係数ηを室温で計測した結果を示すグラフである。各材料毎の損失係数を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1及び図11から、室温において、本実施例の金属製カバー1の制振性能は、前記サンドイッチ鋼
板や板厚0.5mmのアルミ板よりも低いものの、前記積層アルミ板よりも高いことが確認された。
 図12は本実施例の金属製カバー1に関連して、各種材料の振動に関する損失係数ηの温度変化を計測した結果を示すグラフである。計測温度範囲は室温と約250℃の間であり、金属製カバー1の計測結果を曲線g1で示し、板厚0.5mmのアルミメッキ鋼板の計測結果を曲線g2で示す。
 この計測結果によれば、本実施例の金属製カバー1の損失係数は、約100℃付近より下方の温度範囲ではアルミメッキ鋼板の損失係数よりも低いが、約100℃付近を超える温度範囲では、アルミメッキ鋼板の損失係数よりも格段に向上することが確認された。
 したがって、金属製カバー1を、例として自動車のエンジンなどのような熱を発生する振動源に対して用いる場合、エンジンの稼動下では良好な制振性を示すことが確認された。
 本発明は、上記各実施例に権利範囲を限定されるものではなく、本発明の精神逸脱しない範囲で広範な変更例を含むものである。
 特に、上記実施例の金属製カバー1において、金属板4、5に形成される波形形状9は、前記実施例の形状に限定されるものではなく、任意の波形形状が形成される場合でも、振動に伴う波形形状の伸縮動作が実現され得ることは明らかであり、この伸縮動作による制振作用を実現することができる。
 以上のように本実施例によれば、下記の効果を奏することができる。本実施例によれば、第1方向A1及び第2方向A2にそれぞれ沿って波形形状9、9aが連なって形成されている。したがって、金属板4、5から形成される金属製カバー1に関して、外部からの振動によってカバー1が振動を発生する場合、このような振動は、前記波形形状9、9aにおける谷部8、8a及び隆起部7、7aにおける金属板4の弾性的な変形に転換される。これにより、外部から加えられる振動は、金属板4自身の弾性変形によって相当部分が熱エネルギーに変換される。これにより、金属板4が受ける振動によるカバー1の振動が抑制されることができる。
 また、本発明において、加工用素材が振動源に対して用いられた場合、加工用素材から形成された製品は、振動源からの振動の伝達により振動する。この製品の振動に際して、製品形状の屈曲部位を中心にして、その両側の製品の部位がばたつくように振動する。このような振動が発生すると、製品の前記屈曲部位付近の部位が繰り返しの屈曲により金属疲労を生じクラックを発生しやすくなる。
 本発明では、製品に加工される加工用素材には、前記第1方向及び第2方向に沿って波形形状がそれぞれ形成されており、一例としてその第1方向が、製品の前記屈曲部位に対して交差する方向、好適には直交する方向に定められている場合、波形形状が前記屈曲部位を中心とする振動に対してリブの作用を実現する。これにより、製品の振動を抑制することができ、製品のクラックの発生を防止することができ、製品の品質を格段に向上することができる。
 また、本実施例によれば、このような金属板4をプレス加工するなどして、所望のカバー1形状に加工する場合、前記波形形状9、9aが伸縮することにより、波形形状9、9aが形成された金属板4の加工における延び代が、平板形状の金属板4と比較して格段に大きくなる。これにより、加工性が平板形状の金属板と比較して格段に向上される。この作用効果は、金属板4として、例として鉄やステンレス鋼などの延性、展性が比較的大きい材料よりも、比較的延性、展性が小さいアルミニウム合金を用いる場合など顕著に実現される。
 また、本実施例によれば、カバー1は、金属板4に波形形状9、9aを加工して形成されるので、カバー1が屈曲形状を有する場合、カバー1の一方表面が凸形状の場合、他方表面は凹形状になる。このとき、凸形状側では波形形状9、9aの隆起部7、7a同士の間隔が広がり、他方表面側では、波形形状9、9aの隆起部7、7a同士の間隔が狭まることになる。
 したがって、本実施例の金属板4の一方表面(例として、図4及び図5の下方側表面)に細かい凹凸を有する部材、或いは比較的柔軟な表面性状の部材(以下、基材と総称する、図示せず)を当接し、金属板4を基材と共に屈曲させると、基材側で波形形状9、9aの隆起部7、7a同士の間隔が狭まる部位において、金属板4の基材側の隆起部7、7a間の間隔が狭まり、金属板4と基材とが相互に噛み合って相互に固定されることになる。
 したがって、金属板4の基材への装着を、接着剤などの特段の手段を講じる事無く実現することができる。この点に於いても、本実施例のカバー1の構成の簡略化と小型化とを図ることができる。
 また、本実施例において、カバー1の形状及び構造は、金属板4がカバー1に加工された際の形状よって定められている。したがって、本実施例において、カバー1に加工される前段階での金属板4の形状及び構造は任意である。これにより、本実施例は、カバー1に加工された際の金属板4の形状及び構造が、本実施例に規定する条件を満足する限り、広範な種類の加工用素材に関して適用されるものである。
 以下に、図13~図17を併せて参照して、本発明の実施例2について説明する。図13は本実施例の金属製カバー1aの素材の金属板6の斜視図であり、図14は本実施例の成型部材である金属製カバー1aの簡略化した断面図であり、図15は本実施例の吸音特性を説明するグラフであり、図16は本実施例に基づく調査装置21の構成を示す概念図であり、図17は吸音特性に関する調査装置21による調査結果を説明するグラフである。
 本実施例の金属製カバー1aは、前記第1実施例と類似し、対応する部分には同一の参照符号を付す。本実施例の特徴の一つは、カバー1aを構成する板厚t0の平板状のアルミニウム板からなる薄板材である金属板6に対して、多数の貫通孔22を形成した点である。この貫通孔22は、金属板6を板厚方向(図13上下方向)に空気が移動可能に形成される。貫通孔22は、一例として図13に示される円筒状の断面形状を有するが、これに限定されるものではなく、矩形のスリット状や、その他の異形の形状でもよい。本実施例では、一例として、板厚t0は0.15mmに選ばれ、貫通孔22に関して、開口径D1=0.5mm、開口率0.1%に選ばれる。
 本件発明者の調査及び実験によれば、貫通孔22の開口径D1は、金属製カバー1aへ入力される音が空気の粗密波として貫通孔22を通過する際に、貫通孔22の周縁部と空気との摩擦による空気の振動エネルギーの熱エネルギーへの変換作用と、空気流の圧力損失によるエネルギーの減衰作用とに多大な影響を及ぼすものである。
 本件発明者の調査及び実験によれば、貫通穴22を通過する空気に、前記圧力損失によるエネルギー減衰作用を実現することが出来る開口径D1は、3mm以下が望ましいことが判明した。開口径D1が、3mmよりも大きくなれば、前記空気通過時の圧力損失が大きく低下し、金属板6に対する垂直入射吸音率に関するしきい値=0.3を大きく下回ることが確認されたからである。また、貫通孔22の開口径D1が1mm以下であれば、貫通孔22を通過する空気流に、粘性作用を確実に発生させることができることが確認されている。
 本実施例ではこのような貫通孔22が多数形成された金属板6に対し、図3~図6を参照して説明したように、第1方向A1及び第2方向A2に沿って、前述したようなコルゲート加工をそれぞれ施す。このようなコルゲート加工を施して得られた図14に示される加工用素材24と、加工用素材24から予め定める距離L21の空気層26を隔てて設けられる隔壁部材である背面板25とを含んで、本実施例の成型部材である金属製カバー1aが構成される。
 本件発明者は、本実施例の金属製カバー1aに関して、前記距離L21を変化させた場合の垂直入射吸音率の変動を測定した。図15に測定結果の周波数-垂直入射吸音率のグラフを示す。曲線g10、g11、g12、g13は、距離L21を0mm、2mm、4mm、8mmとした場合の垂直入射吸音率の変化をそれぞれ示す。
 このグラフから分かるように、本実施例の垂直入射吸音率は、第1周波数帯域f1(1~2kHz)、及び第2周波数帯域f2(3~4kHz)の2つのピーク周波数帯域を有している。図15において、低い方のピーク周波数帯域である第1周波数帯域f1は、隆起部7と背面板25との距離L22により定まる空気層と、隆起部7部分に形成された前記貫通孔22による共鳴、ならびに、谷部8と背面板25との距離L21により定まる空気層と、谷部8部分に形成された前記貫通孔22による共鳴に起因する周波数帯域である。高い方のピーク周波数帯域である前記第2周波数帯域は、隆起部7と谷部8との距離L23により定まる空気層と、隆起部7に形成された貫通孔22による共鳴周波数に起因する周波数帯域である。
 また、本件発明者は、本実施例の金属製カバー1aに関して、前記図13に示した構成の金属板6を、図16に示す調査装置21で調査した。調査装置21は、加振機33と取付治具34を備える。調査を行うに際して、金属板6を加振機33に取付治具34で取り付け、金属板6に関して加振機33と反対側の近傍に設置されたマイクロフォンなどの音圧検知手段35で金属製カバー1aからの音の音圧レベルを測定した。測定結果は、図17のグラフに示されている。曲線g15は、多数の貫通孔22を有する本実施例の金属製カバー1aの場合であり、曲線g16は、貫通孔22が形成されていない金属製カバー1の場合である。
 図17のグラフから分かるように、 貫通孔22を有する本実施例の金属製カバー1aが、周波数帯域630Hz前後、1250Hz前後、2500Hz以上の各帯域において、曲線g16よりも低減されたレベルにあり、貫通孔22による騒音低減効果が見られることが確認された。
 このような本実施例の金属製カバー1aは、以下の吸音作用と振動放射音低減作用とを実現することができる。
 以下、本実施例の金属製カバー1aの作用について説明する。本実施例の金属製カバー1aは、それ自身に貫通孔22を設けている。したがって、金属製カバー1aが振動した場合、貫通孔22を空気が矢符e1方向に通過する際に、加工用素材24の貫通孔22を構成する端面32と空気との間で摩擦によるエネルギーの減衰が発生する。
 このようなエネルギーの減衰による吸音性能は、空気の振動である音波のエネルギーが熱エネルギーに変換されることにより発揮される。このような吸音性能に関して、前記低い方のピーク周波数帯域f1における吸音性能は、隆起部7と背面板25との距離L22により定まる空気層及び谷部8と背面板25との距離L21により定まる空気層による共鳴に起因する。
 さらに、本実施例の場合、面方向に前記谷部8と隆起部7とによる凹凸が存在するため、隆起部7上面と谷部8底面との間の厚さL23の空気層による共鳴に起因する音響共鳴周波数帯域付近での吸音性能も発揮する。
 このような相乗的な吸音効果により、加工用素材24自身が発生する振動、騒音を、発生後に吸音することにより低減することが出来る。
 また、本実施例は、前記隆起部7及び谷部8によるリブ補強効果により、金属板6が全面同位相で動きやすい。このとき金属板6に貫通孔22が設けられていることによって、加工用素材24の振動から音へのエネルギー変換効率である音響放射効率が、貫通孔22がない場合と比較して、低減することが確認された。これにより、本実施例の加工用素材24が振動している場合でも、加工用素材24から放射される音の振幅を低減できる。
 金属板6に貫通孔22を設けることによる振動放射音低減効果について、金属板6の面振動が部分的に振幅又は/及び位相が異なる場合、すなわち加工用素材24の表面に振動分布が発生する場合、振動放射音低減作用の効果が小さくなることが知られている。しかし、本実施例のように、加工用素材24表面に前記隆起部7及び谷部8からなる凹凸が存在し、前述したリブ補強効果がある場合、振動分布を小さくでき、振動放射音の低減効果を顕著にすることができる。したがって、この振動放射音低減効果により、加工用素材24自身が発生する騒音を低減することができる。
 また、本実施例において、加工用素材24から形成される金属製カバー1aに関して、外部からの振動によってカバー1aが振動を発生する場合、このような振動は、前記波形形状9における谷部8及び隆起部7における金属板6の弾性的な変形に転換される。これにより、外部から加えられる振動は、金属板6自身の弾性変形によって相当部分が熱エネルギーに変換される。これにより、加工用素材24が受ける振動によるカバー1aの振動が抑制されることができる。
 本実施例は、貫通孔22の開口径D1、開口率、板厚t0、隆起部7と背後板25又は谷部8との距離を適切に調整することにより、低減すべき周波数帯域に合わせた振動放射音低減効果を得るよう調整することが可能である。
 また、本実施例の金属製カバー1aを構成する金属板6の材質や、貫通孔22の孔形状については、上記各実施例に限定されるものではなく、他の材料を用いる場合も本発明に含まれる。

Claims (6)

  1.  弾性変形可能な単一の薄板材に、谷部と隆起部とが相互に連なって交互に繰り返される第1波形形状が第1方向に沿って形成され、該第1方向と交差する第2方向に沿って、谷部と隆起部とが相互に連なって交互に繰り返される第2波形形状が形成され、
     該第1波形形状において、該隆起部は該谷部から立ち上がる一対の側部と、該側部間に連なる頂部とを含み、一対の側部の基端部の第1方向に沿う開口部長さよりも、頂部の第1方向に沿う頂部長さが長く定められている、
     ことを特徴とする加工用素材。
  2.  前記薄板材は、貫通孔を有する、
     ことを特徴とする請求項1記載の加工用素材。
  3.  前記貫通孔は、少なくとも前記頂部に設けられている
     ことを特徴とする請求項2記載の加工用素材。
  4.  弾性変形可能な単一の薄板材を立体形状に加工して得られる加工用素材を用いる成型部材であって、
     該薄板材に、谷部と隆起部とが相互に連なって交互に繰り返される第1波形形状が第1方向に沿って形成され、該第1方向と交差する第2方向に沿って、谷部と隆起部とが相互に連なって交互に繰り返される第2波形形状が形成され、
     該第1波形形状において、該隆起部は該谷部から立ち上がる一対の側部と、該側部間に連なる頂部とを含み、一対の側部の基端部の第1方向に沿う開口部長さよりも、頂部の第1方向に沿う頂部長さが長く定められて加工用素材が構成され、
     該加工用素材の第1方向及び第2方向のいずれかが該立体形状の稜部と交差する方向に定められている、
     ことを特徴とする成型部材。
  5.  前記成型部材は、振動発生部材に対して装着される成型部材本体と、該成型部材本体よりも振動発生部材側に予め定める距離を隔てて設けられる隔壁部材とを含み、
     該成型部材本体を構成する前記薄板材は貫通孔を有する、
     ことを特徴とする請求項4記載の成型部材。
  6.  前記貫通孔は、少なくとも前記頂部に設けられている
     ことを特徴とする請求項5記載の成型部材。
PCT/JP2009/057786 2008-04-21 2009-04-17 加工用素材及びそれを用いる成型部材 WO2009131074A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801137812A CN102007281B (zh) 2008-04-21 2009-04-17 用于加工的材料和使用该材料的模制构件
EP09736005.1A EP2302185B1 (en) 2008-04-21 2009-04-17 Material for processing and molding member using material for processing
KR1020107025701A KR101057422B1 (ko) 2008-04-21 2009-04-17 가공용 소재 및 그것을 이용한 성형 부재
US12/909,363 US8042648B2 (en) 2008-04-21 2010-10-21 Material for processing and molded member using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-134794 2008-04-21
JP2008134794 2008-04-21
JP2009-029654 2009-02-12
JP2009029654A JP4601707B2 (ja) 2008-04-21 2009-02-12 加工用素材及びそれを用いる成型部材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/909,363 Continuation US8042648B2 (en) 2008-04-21 2010-10-21 Material for processing and molded member using the same

Publications (1)

Publication Number Publication Date
WO2009131074A1 true WO2009131074A1 (ja) 2009-10-29

Family

ID=41216810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057786 WO2009131074A1 (ja) 2008-04-21 2009-04-17 加工用素材及びそれを用いる成型部材

Country Status (7)

Country Link
US (1) US8042648B2 (ja)
EP (1) EP2302185B1 (ja)
JP (1) JP4601707B2 (ja)
KR (1) KR101057422B1 (ja)
CN (1) CN102007281B (ja)
MY (1) MY177430A (ja)
WO (1) WO2009131074A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996248A (zh) * 2011-09-07 2013-03-27 株式会社神户制钢所 隔音罩
JP2019136719A (ja) * 2018-02-07 2019-08-22 三和パッキング工業株式会社 成形材及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011082132A1 (de) * 2011-09-05 2013-03-07 Federal-Mogul Sealing Systems Gmbh Wärmeabschirmkörper mit temperaturfesten Befestigungsstellen und Verfahren zu dessen Herstellung
AT13507U1 (de) * 2012-06-25 2014-02-15 Avl List Gmbh Hitzeschutzeinrichtung
US9908577B2 (en) * 2012-11-12 2018-03-06 Indian Motorcycle International, LLC Two-wheeled vehicle
CN103592020A (zh) * 2013-11-09 2014-02-19 严志杰 振动信号无线收集装置
US10113471B2 (en) 2013-12-31 2018-10-30 Hyundai Motor Company Multilayer composite panel
KR101461919B1 (ko) * 2013-12-31 2014-11-19 현대자동차 주식회사 다층 복합 판재
JP2016061182A (ja) * 2014-09-16 2016-04-25 株式会社Roki エンジンカバー
CN105545484A (zh) * 2016-02-04 2016-05-04 广西玉柴机器股份有限公司 一种发动机隔音板
WO2017204279A1 (ja) * 2016-05-25 2017-11-30 本田技研工業株式会社 熱源カバー
CN107399283A (zh) * 2017-08-01 2017-11-28 湖北天运消音防振新材料有限公司 一种新型吸音棉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021462Y2 (ja) * 1982-02-27 1990-01-16
JPH10266850A (ja) 1997-03-27 1998-10-06 Toyota Motor Corp エキゾーストマニホールドインシュレータ
JP2002113525A (ja) * 2000-10-04 2002-04-16 Sanwa Packing Kogyo Co Ltd 金属製カバー、その製造方法及びそれに用いるプレス用金型

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036947A (en) * 1990-05-21 1991-08-06 Metzger Jeffrey S Exhaust pipe shield
DE19939482B4 (de) * 1999-08-20 2007-09-13 Helmut W. Diedrichs Anordnung zur Abschirmung von abgasführenden Teilen von Kraftfahrzeugen
JP2001347323A (ja) * 2000-06-07 2001-12-18 Sanwa Packing Kogyo Co Ltd 金属製カバー、その製造方法及びそれに用いるプレス用金型
JP2003311111A (ja) 2002-04-23 2003-11-05 Mitsubishi Paper Mills Ltd 装着性空気清浄部材
JP4446686B2 (ja) * 2003-06-02 2010-04-07 三和パッキング工業株式会社 緩衝装置及び金属製カバー
JP4472325B2 (ja) * 2003-12-25 2010-06-02 三和パッキング工業株式会社 緩衝装置
US7434659B2 (en) * 2005-04-04 2008-10-14 Hexcel Corporation Acoustic septum cap honeycomb
CN2890357Y (zh) * 2006-03-07 2007-04-18 金龙联合汽车工业(苏州)有限公司 可拆卸式客车发动机油底壳隔声罩

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021462Y2 (ja) * 1982-02-27 1990-01-16
JPH10266850A (ja) 1997-03-27 1998-10-06 Toyota Motor Corp エキゾーストマニホールドインシュレータ
JP2002113525A (ja) * 2000-10-04 2002-04-16 Sanwa Packing Kogyo Co Ltd 金属製カバー、その製造方法及びそれに用いるプレス用金型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302185A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996248A (zh) * 2011-09-07 2013-03-27 株式会社神户制钢所 隔音罩
JP2013057709A (ja) * 2011-09-07 2013-03-28 Kobe Steel Ltd 遮音カバー
JP2019136719A (ja) * 2018-02-07 2019-08-22 三和パッキング工業株式会社 成形材及びその製造方法

Also Published As

Publication number Publication date
JP4601707B2 (ja) 2010-12-22
EP2302185A4 (en) 2014-07-09
CN102007281A (zh) 2011-04-06
MY177430A (en) 2020-09-15
CN102007281B (zh) 2012-10-10
KR101057422B1 (ko) 2011-08-19
EP2302185B1 (en) 2016-07-20
EP2302185A1 (en) 2011-03-30
US20110094824A1 (en) 2011-04-28
KR20100133017A (ko) 2010-12-20
US8042648B2 (en) 2011-10-25
JP2009281379A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4601707B2 (ja) 加工用素材及びそれを用いる成型部材
JP2009281379A5 (ja)
US4226299A (en) Acoustical panel
JP4762778B2 (ja) 金属製積層型カバー
WO2008141380A1 (en) A sheet material for use in a multilayered acoustic shield
CN107208733B (zh) 连结件和屏蔽体
JP4747631B2 (ja) 吸音装置
JP5590752B2 (ja) 遮音構造および遮音カバー
JPWO2019069903A1 (ja) 防音構造体
RU2392454C1 (ru) Пластинчатый глушитель шума кочетова с унифицированными пластинами
JP2004092543A (ja) カバー装置
RU73004U1 (ru) Звукопоглощающая панель
CN102996248B (zh) 隔音罩
JP2001347323A (ja) 金属製カバー、その製造方法及びそれに用いるプレス用金型
JP5219976B2 (ja) 騒音低減構造体
JP2010179320A (ja) 加工用素材及びその製造装置
JP2016121639A (ja) カバー部材
JP2010014278A5 (ja)
KR100920715B1 (ko) 레질리언트 채널이 형성된 스터드
JP2009037068A (ja) 吸音構造体および吸音装置
JP2017141733A (ja) エンジン用マフラ
RU2268966C1 (ru) Акустическая плита
JP3051333U (ja) 吸音遮熱部材
JP2007278393A (ja) 制振パネルの製造方法
JP2015094397A (ja) 制振構造及びその構造を備えた画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113781.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09736005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4266/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107025701

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009736005

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009736005

Country of ref document: EP