WO2009130883A1 - アクリル系熱可塑性樹脂組成物 - Google Patents

アクリル系熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2009130883A1
WO2009130883A1 PCT/JP2009/001808 JP2009001808W WO2009130883A1 WO 2009130883 A1 WO2009130883 A1 WO 2009130883A1 JP 2009001808 W JP2009001808 W JP 2009001808W WO 2009130883 A1 WO2009130883 A1 WO 2009130883A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
aldehyde
polyvinyl acetal
carbon atoms
Prior art date
Application number
PCT/JP2009/001808
Other languages
English (en)
French (fr)
Inventor
徳地一記
辻和尊
森口信弘
東田昇
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP20090734619 priority Critical patent/EP2284221B1/en
Priority to US12/989,193 priority patent/US8969474B2/en
Priority to JP2009519742A priority patent/JP5568301B2/ja
Priority to CN2009801139184A priority patent/CN102015881B/zh
Publication of WO2009130883A1 publication Critical patent/WO2009130883A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to an acrylic thermoplastic resin composition capable of obtaining a transparent molded article having improved toughness, and in particular, an acrylic thermal composition capable of obtaining a molded article that does not whiten when stretched, bent or subjected to an impact.
  • the present invention relates to a plastic resin composition.
  • the present invention also relates to an acrylic thermoplastic resin composition from which a transparent molded article having an excellent balance between toughness and impact resistance or rigidity can be obtained.
  • Thermoplastic polymer (methacrylic resin) mainly composed of poly (methyl methacrylate) has excellent properties in transparency (high total light transmittance in the visible light region) and surface hardness. in use.
  • this methacrylic resin may lack mechanical properties, particularly impact resistance and toughness, depending on the application, and improvements are required.
  • core-shell type particles composed of a rubber layer and a methacrylic resin layer synthesized by emulsion polymerization are converted into a thermoplastic polymer (methacrylic resin) mainly composed of polymethyl methacrylate.
  • a blending method is generally used.
  • the molded body made of the composition obtained by this method has improved impact resistance but insufficient improvement in toughness.
  • surface hardness and rigidity are reduced. And it causes a decrease in heat resistance.
  • the stress concentration portion may be whitened.
  • it may be whitened when subjected to an impact or when left under a wet and heat condition for a long time. By the whitening, the transparency is lost, and the design and high-quality feeling of the molded product are easily impaired.
  • a methacrylic resin composition obtained by blending another polymer with a methacrylic resin has been proposed.
  • other polymers blended with the methacrylic resin for example, polymers such as styrene-acrylonitrile copolymer, polyvinyl chloride, polyvinylidene fluoride having a specific composition have been proposed.
  • toughness cannot be sufficiently improved by blends of these polymers.
  • polyethylene oxide As a polymer for blending.
  • This polyethylene oxide is excellent in miscibility with polymethyl methacrylate and can be expected to improve toughness.
  • the glass transition temperature is low, a decrease in rigidity and heat resistance of the blend cannot be avoided.
  • polycarbonate is cited as a polymer that can be expected to improve the balance of toughness, heat resistance, and transparency.
  • the transparent composition of bisphenol A polycarbonate and polymethyl methacrylate is prepared by, for example, dissolving polymethyl methacrylate and polycarbonate in tetrahydrofuran, adding the solution to heptane and precipitating the polymethacrylic acid. It is reported to be obtained by heat treatment above the glass transition temperature of methyl and polycarbonate.
  • a molded body made of the composition has a low surface hardness and uses a solvent for preparing the composition. Therefore, a large amount of energy is required to remove the solvent and productivity is low.
  • Non-patent Document 1 A method of melt-kneading polycarbonate and polymethyl methacrylate has also been reported. However, in the composition obtained by melt-kneading, the polycarbonate and polymethyl methacrylate are phase-separated to become an opaque molded body having pearly luster (Non-patent Document 1).
  • Polyvinyl butyral is an example of a polymer that is compatible with polymethyl methacrylate. Those obtained by mixing a methyl methacrylate resin and polyvinyl butyral usually have a phase-separated two-phase structure because their compatibility is weak, but in the above mixing, a methyl methacrylate resin having a low molecular weight is used.
  • Non-Patent Document 2 states that in such a case, the two may be compatible to form a single phase.
  • FIG. 5 of Non-Patent Document 2 was obtained by dissolving a blend of 50 parts by mass of polyvinyl butyral and 50 parts by mass of a methyl methacrylate resin containing various amounts of vinyl alcohol units in a solvent and cast molding. An optical microscope image of the film is shown. This film had a phase separation structure in which a methyl methacrylate resin became dispersed phases of various sizes.
  • Non-Patent Document 3 describes that polymethyl methacrylate having a weight average molecular weight of 120,000 and polyvinyl butyral were melt-kneaded at various ratios to obtain blends.
  • Non-patent document 3 describes that a blend having a large proportion of polyvinyl butyral has an increased elongation at break in a tensile test, yield behavior is observed, and toughness is improved.
  • the blend with a large proportion of polyvinyl butyral described in Non-Patent Document 3 has insufficient mechanical properties.
  • the blended product in which polyvinyl butyral was mixed at less than 50% by mass showed almost no improvement effect on toughness and insufficient mechanical properties.
  • Patent Document 1 discloses a resin composition comprising a block copolymer containing a methacrylic copolymer block and an acrylic polymer block, and a plasticized polyvinyl acetal resin. This resin composition is used for bonding two glass plates, and is described in Patent Document 1 as being capable of suppressing whitening due to contact with the atmosphere. However, since this resin composition uses a large amount of plasticizer, its surface hardness is very low and its mechanical properties are insufficient.
  • the acrylic thermoplastic resin composition containing a methacrylic resin and a specific polyvinyl acetal resin has transparency inherent in the methacrylic resin, It has been found that while maintaining the features such as high surface hardness, high rigidity, weather resistance and heat resistance, it has good toughness and impact resistance. And it discovered that the molded object obtained from this acrylic thermoplastic resin composition was not whitened even if it extended
  • the present invention is an acrylic thermoplastic resin composition containing a methacrylic resin (A) and a polyvinyl acetal resin (B),
  • the polyvinyl acetal resin (B) is obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 4 or more carbon atoms and an aldehyde having 3 or less carbon atoms,
  • the sum of vinyl alcohol units acetalized with aldehydes having 4 or more carbon atoms and aldehydes having 3 or less carbon atoms is 65 to 85 mol% based on all repeating units, and acetalized with aldehydes having 4 or more carbon atoms.
  • An acrylic thermoplastic resin composition having a molar ratio of vinyl alcohol units / vinyl alcohol units acetalized with an aldehyde having 3 or less carbon atoms of 90/10 to 0/100.
  • the acrylic thermoplastic resin composition of the present invention retains the characteristics inherent in methacrylic resins such as transparency, high surface hardness, high rigidity, weather resistance, and heat resistance, as well as toughness and impact resistance. Is good. A molded body made of this acrylic thermoplastic resin composition does not whiten even when stretched, bent, or given an impact. Furthermore, the molded product of the present invention retains the characteristics such as transparency, high surface hardness, high rigidity, weather resistance, and heat resistance inherent in methacrylic resins, and has good toughness and impact resistance. is there.
  • the acrylic thermoplastic resin composition of the present invention having such features and a molded product thereof can be used for a wider range of applications.
  • the acrylic thermoplastic resin composition of the present invention contains a methacrylic resin (A) and a polyvinyl acetal resin (B).
  • the methacrylic resin (A) used in the present invention is obtained by polymerizing a monomer mixture containing an alkyl methacrylate.
  • alkyl methacrylate methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, myristyl Examples thereof include methacrylate, palmityl methacrylate, stearyl methacrylate, behenyl methacrylate, cyclohexyl methacrylate, and phenyl methacrylate.
  • alkyl metallates can be used alone or in combination of two or more. Of these, alkyl
  • the monomer mixture may contain alkyl acrylate.
  • Alkyl acrylates include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, tert-butyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, myristyl Examples include acrylate, palmityl acrylate, stearyl acrylate, behenyl acrylate, cyclohexyl acrylate, and phenyl acrylate. Of these, alkyl acrylates in which the alkyl group has 1 to 8 carbon atoms are preferred. These alkyl acrylates can be used alone or in combination of two or more.
  • the monomer mixture may contain other ethylenically unsaturated monomers copolymerizable with alkyl methacrylate and alkyl acrylate.
  • ethylenically unsaturated monomers copolymerizable with alkyl methacrylate and alkyl acrylate include diene compounds such as 1,3-butadiene and isoprene; styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, Styrene substituted by halogen, 1-vinylnaphthalene, 4-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, etc.
  • Vinyl aromatic compounds such as acrylonitrile and methacrylonitrile; acrylic acid, methacrylic acid, acrylamide, methacrylamide, maleic anhydride, maleic imide, monomethyl maleate, dimethyl maleate, etc. It is possible.
  • ethylenically unsaturated monomers can be used singly or in combination of two or more.
  • the proportion of the alkyl methacrylate unit is preferably 50 to 100% by mass, more preferably 80 to 99.9% by mass from the viewpoint of weather resistance.
  • the methacrylic resin (A) preferably contains an alkyl acrylate unit in the range of 0.1 to 20% by mass.
  • the methacrylic resin (A) used in the present invention preferably has a weight average molecular weight (denoted as Mw, the same shall apply hereinafter) in terms of strength characteristics and meltability, preferably 40,000 or more, more preferably 40,000 to 10 , 000,000, particularly preferably 80,000 to 1,000,000.
  • Mw weight average molecular weight
  • the methacrylic resin (A) used in the present invention may have a linear molecular chain, a branched chain, or a cyclic structure. good.
  • the methacrylic resin (A) used in the present invention is not particularly limited as long as it is a method capable of polymerizing an ethylenically unsaturated compound, but is preferably produced by radical polymerization.
  • the polymerization method include bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization.
  • radical polymerization initiator used in the polymerization examples include azo compounds such as azobisisobutyronitrile and azobis ⁇ -dimethylvaleronitrile; benzoyl peroxide, cumyl peroxide, oxyneodecanoate, diisopropyl peroxydicarbonate, t -Peroxides such as butyl cumyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, cyclohexanone peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, lauroyl peroxide.
  • the polymerization initiator is usually used in an amount of 0.05 to 0.5 parts by mass with respect to 100 parts by mass of all monomers.
  • the polymerization is usually carried out at a temperature of 50 to 140 ° C. and usually for 2 to 20 hours.
  • a chain transfer agent In order to control the molecular weight of the methacrylic resin (A), a chain transfer agent can be used.
  • chain transfer agents include methyl mercaptan, ethyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, t-butyl mercaptan, n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, ethylthioglycoate, mercaptoethanol, thio- ⁇ -naphthol, thiophenol and the like can be mentioned.
  • the chain transfer agent can be used generally in the range of 0.005 to 0.5% by mass with respect to the total monomers.
  • the polyvinyl acetal resin (B) used in the present invention is obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 4 or more carbon atoms and an aldehyde having 3 or less carbon atoms.
  • the polyvinyl acetal resin (B) is a resin represented by Chemical Formula 1, for example.
  • R 3 is an alkyl residue or hydrogen atom of an aldehyde having 3 or less carbon atoms used in the acetalization reaction
  • R 4 is an alkyl residue of an aldehyde having 4 or more carbon atoms used in the acetalization reaction (note that alkyl
  • the carbon number of the residues R 3 and R 4 is an integer i obtained by subtracting 1 from the carbon number of the aldehyde used in the acetalization reaction.
  • K 3 Is the molar proportion of vinyl alcohol units acetalized with an aldehyde having 3 or less carbon atoms
  • k 4 is the molar proportion of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms
  • l is a vinyl alcohol unit that is not acetalized.
  • M is the molar ratio of vinyl acetate units. However, m may be zero.
  • the units are not particularly limited by the arrangement order shown in Chemical Formula 1, and may be arranged at random, in a block shape, or in a tapered shape.
  • the polyvinyl alcohol resin used for the production of the polyvinyl acetal resin (B) has a viscosity average polymerization degree of usually 200 to 4,000, preferably 300 to 3,000, more preferably 500 to 2,500.
  • the viscosity average polymerization degree of the polyvinyl alcohol resin is less than 200, the mechanical properties of the obtained polyvinyl acetal resin are insufficient, and the mechanical properties, particularly toughness and impact resistance, of the acrylic thermoplastic resin composition of the present invention are insufficient. Tend.
  • the viscosity average polymerization degree of the polyvinyl alcohol resin exceeds 4,000, the viscosity at the time of producing the acrylic thermoplastic resin composition of the present invention increases, and the production of the acrylic thermoplastic resin composition of the present invention is not possible. Tend to be difficult. In particular, when the acrylic thermoplastic resin composition of the present invention is produced by melt kneading, the tendency becomes remarkable.
  • the polyvinyl alcohol resin is not particularly limited by its production method, and examples thereof include those produced by saponifying polyvinyl acetate or the like with alkali, acid, aqueous ammonia or the like.
  • the polyvinyl alcohol resin may be completely saponified or partially saponified (that is, partially saponified polyvinyl alcohol resin).
  • the saponification degree is preferably 80 mol% or more, and more preferably 97 mol% or more.
  • the acrylic thermoplastic resin composition of the present invention is produced by melt-kneading, it is particularly preferable to use a saponification degree of 99.5 mol% or more.
  • polyvinyl alcohol resin a copolymer of vinyl alcohol and a monomer copolymerizable with vinyl alcohol, such as an ethylene-vinyl alcohol copolymer resin or a partially saponified ethylene-vinyl alcohol copolymer resin, can be used. . Furthermore, a modified polyvinyl alcohol resin into which carboxylic acid or the like is partially introduced can be used. These polyvinyl alcohol resins may be used alone or in combination of two or more.
  • aldehyde having 3 or less carbon atoms used in the production of the polyvinyl acetal resin (B) examples include formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), and propionaldehyde. These aldehydes having 3 or less carbon atoms can be used singly or in combination of two or more. Of these aldehydes having 3 or less carbon atoms, those mainly composed of acetaldehyde and formaldehyde (including paraformaldehyde) are preferable, and acetaldehyde is particularly preferable from the viewpoint of ease of production.
  • aldehyde having 4 or more carbon atoms used in the production of the polyvinyl acetal resin (B) examples include butyraldehyde, isobutyraldehyde, n-octylaldehyde, amylaldehyde, hexylaldehyde, heptylaldehyde, 2-ethylhexylaldehyde, cyclohexylaldehyde, furfural, Examples thereof include glioxal, glutaraldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde and the like.
  • aldehydes having 4 or more carbon atoms can be used singly or in combination of two or more.
  • these aldehydes having 4 or more carbon atoms those mainly composed of butyraldehyde are preferable, and butyraldehyde is particularly preferable from the viewpoint of ease of production.
  • the total of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms and an aldehyde having 3 or less carbon atoms is based on the mechanical properties and is based on all repeating units. 65 to 85 mol%, preferably 70 to 85 mol%, more preferably 80 to 85 mol%.
  • the mechanical properties, particularly toughness and impact resistance, of the acrylic thermoplastic resin composition of the present invention are insufficient.
  • the mol% of the repeating unit refers to a unit consisting of two main chain carbons (for example, a vinyl alcohol unit, a vinyl acetate unit, an ethylene unit, etc.) in the polyvinyl alcohol resin that is a raw material for producing the polyvinyl acetal resin.
  • the mol% (k (AA) ) of vinyl alcohol units acetalized with an aldehyde having 3 or less carbon atoms with respect to all repeating units (k 3 + k 4 + l + m) is represented by the formula:
  • the mole% (k (BA) ) of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms is obtained by the following formula: k 4 / (k 3 + k), calculated by k 3 / (k 3 + k 4 + l + m) ⁇ 100 4 + l + m) ⁇ 100, and the mole percent (k (VA) ) of unacetalized vinyl alcohol units is determined by the formula: l / (k 3 + k 4 + l + m) ⁇ 100 % (K (AV) ) is determined by the formula: m / (k 3 + k 4 + l + m) ⁇ 100
  • the polyvinyl acetal resin (B) used in the present invention is composed of vinyl alcohol units acetalized with aldehydes having 4 or more carbon atoms / vinyl alcohol units acetalized with aldehydes having 3 or less carbon atoms.
  • the ratio is 90/10 to 0/100, preferably 80/20 to 0/100, more preferably 50/50 to 0/100, and particularly preferably 40/60 to 1/99.
  • the polyvinyl acetal resin (B) used in the present invention is used when the total of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms and an aldehyde having 3 or less carbon atoms is 70 to 85 mol%, or carbon
  • the molar ratio of vinyl alcohol units acetalized with aldehydes of 4 or more / vinyl alcohol units acetalized with aldehydes of 3 or less carbon atoms is 40/60 to 0/100, toughness, impact resistance, etc. Will improve.
  • the total of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms and an aldehyde having 3 or less carbon atoms is 70 to 85 mol%, and vinyl alcohol units / carbon acetalized with an aldehyde having 4 or more carbon atoms
  • a molar ratio of vinyl alcohol units acetalized with an aldehyde of several 3 or less is preferably 40/60 to 0/100, since toughness and impact resistance are further improved.
  • the acetalization reaction of the polyvinyl alcohol resin with an aldehyde can be performed by a known method.
  • aqueous solution method in which an aqueous solution of a polyvinyl alcohol resin and an aldehyde are acetalized in the presence of an acid catalyst to precipitate resin particles; a polyvinyl alcohol resin is dispersed in an organic solvent, and the aldehyde and an aldehyde are present in the presence of an acid catalyst.
  • examples thereof include a solvent method in which an acetalization reaction is performed and the reaction solution is precipitated with water or the like which is a poor solvent for the polyvinyl acetal resin.
  • the aqueous medium method is preferred.
  • the aldehydes used for acetalization may be charged all at the same time or may be charged separately one by one.
  • the randomness of the vinyl acetal unit in the polyvinyl acetal resin can be changed.
  • the acid catalyst used for the acetalization is not particularly limited, and examples thereof include organic acids such as acetic acid and p-toluenesulfonic acid; inorganic acids such as nitric acid, sulfuric acid and hydrochloric acid; and gas which shows acidity when an aqueous solution such as carbon dioxide gas is used. And solid acid catalysts such as cation exchangers and metal oxides.
  • the total degree of acetalization of the polyvinyl acetal resin is determined based on the mass ratio (l 0 ) of vinyl alcohol units that are not acetalized and the ratio (m 0 ) of vinyl acetate units in accordance with the method described in JIS K6728 (1977).
  • the molar ratio (m) of the unit is calculated
  • the total degree of acetalization (mol%) k / ⁇ k + l + m ⁇ may be determined by ⁇ 100
  • a polyvinyl acetal resin dissolved in deuterated dimethyl sulfoxide, 1 H- MR or 13 C-NMR may be calculated by measuring the.
  • acetalized vinyl alcohol units for each aldehyde (1), (2),..., And (n) The molar ratio can be calculated.
  • the degree of acetalization (mol%) by aldehyde (n) can be obtained by the formula: k (n) / ⁇ k (1) + k (2) +... + K (n) + l + m ⁇ ⁇ 100 it can.
  • K (1) , k (2) ,..., And k (n) are vinyl alcohol units acetalized with aldehydes (1), (2),. Is the molar ratio.
  • the mole fraction of vinyl alcohol units acetalized with butyraldehyde is specifically called the degree of butyralization.
  • the molar ratio of vinyl alcohol units acetalized with acetaldehyde is particularly called the degree of acetoacetalization.
  • the molar ratio of vinyl alcohol units acetalized with formaldehyde is called the degree of formalization.
  • k (BA) is the molar ratio of vinyl alcohol units acetalized with butyraldehyde
  • vinyl is acetalized with acetaldehyde.
  • the mole fraction of alcohol units is k (AA)
  • the mole fraction of vinyl alcohol units acetalized with formaldehyde is k (FA)
  • the mole fraction of vinyl alcohol units not acetalized is l
  • the mole fraction of vinyl acetate units Is m
  • the degree of butyralization is obtained by the formula: k (BA) / ⁇ k (BA) + k (AA) + k (FA) + l + m ⁇ ⁇ 100.
  • the degree of acetoacetalization is determined by the formula: k (AA) / ⁇ k (BA) + k (AA) + k (FA) + 1 + m ⁇ ⁇ 100.
  • the degree of formalization is determined by the formula: k (FA) / ⁇ k (BA) + k (AA) + k (FA) + l + m ⁇ ⁇ 100
  • the slurry produced in the aqueous medium method and the solvent method is usually acidic due to an acid catalyst.
  • a method for removing the acid catalyst the slurry is repeatedly washed with water, and the pH is usually adjusted to 5 to 9, preferably 6 to 9, more preferably 6 to 8; a neutralizing agent is added to the slurry, Examples thereof include a method of adjusting the pH to usually 5 to 9, preferably 6 to 9, and more preferably 6 to 8; a method of adding alkylene oxides and the like.
  • the compound used for removing the acid catalyst include alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium acetate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, ammonia, and an aqueous ammonia solution.
  • alkylene oxides include ethylene oxide, propylene oxide; glycidyl ethers such as ethylene glycol diglycidyl ether.
  • salts generated by neutralization, aldehyde reaction residues, and the like are removed.
  • the removal method is not particularly limited, and methods such as repeated dehydration and water washing are usually used.
  • the water-containing polyvinyl acetal resin from which residues and the like have been removed is dried as necessary, processed into powder, granules, or pellets as necessary, and used as a molding material.
  • Methacrylic resin used in the present invention (A) and polyvinyl acetal resin (B), methacrylic resin main dispersion peak temperature of the main dispersion peak temperature of (A) (T [alpha A) and the polyvinyl acetal resin (B) (T [alpha B ) between, 90 °C ⁇ T ⁇ B ⁇ T ⁇ is preferably one having a relation of a or 90 °C ⁇ T ⁇ a ⁇ T ⁇ B , 95 °C ⁇ T ⁇ B ⁇ T ⁇ a or 95 °C ⁇ T ⁇ a ⁇ T ⁇ relationship B It is more preferable to have a relationship of 110 ° C. ⁇ T ⁇ B ⁇ T ⁇ A or 110 ° C. ⁇ T ⁇ A ⁇ T ⁇ B. When T ⁇ A or T ⁇ B is less than 90 ° C., the heat resistance of the acrylic thermoplastic resin composition of the present invention tends to decrease.
  • the main dispersion peak temperature of any one of the combinations is T ⁇ A
  • two polyvinyl acetal resins (B) are used.
  • T ⁇ B any one of the combined main dispersion peak temperatures
  • the main dispersion peak temperature (T ⁇ ) is a temperature indicating a main dispersion peak of loss tangent (tan ⁇ ). In a broad sense, it may be called a glass transition temperature (Tg).
  • the mass ratio (A) / (B) of the methacrylic resin (A) to the polyvinyl acetal resin (B) is usually 99/1 to 1/99, preferably Is 99/1 to 51/49, more preferably 95/5 to 60/40, and particularly preferably 90/10 to 60/40.
  • the proportion of the polyvinyl acetal resin (B) is less than 1% by mass, the effect of improving the mechanical properties such as toughness and impact resistance of the acrylic thermoplastic resin composition of the present invention tends to decrease.
  • the proportion of the polyvinyl acetal resin (B) exceeds 99% by mass, the surface hardness (and rigidity) of the acrylic thermoplastic resin composition of the present invention tends to be insufficient.
  • the main dispersion peak temperature of the acrylic thermoplastic resin composition of the present invention includes the main dispersion peak temperature (T ⁇ AP ) attributable to the methacrylic resin (A) in the acrylic thermoplastic resin composition, and the acrylic thermoplasticity. And a main dispersion peak temperature (T ⁇ BP ) due to the polyvinyl acetal resin (B) in the resin composition.
  • the main dispersion peak temperature T ⁇ AP resulting from the methacrylic resin (A) in the acrylic thermoplastic resin composition preferably satisfy the relationship of T ⁇ AP ⁇ T ⁇ A or T ⁇ AP ⁇ T ⁇ B.
  • the main dispersion peak temperature T [alpha AP due to methacrylic resin of the thermoplastic acrylic resin composition (A) is the main dispersion peak of the methacrylic resin (A) It is preferable to show an intermediate value between the temperature (T ⁇ A ) and the main dispersion peak temperature (T ⁇ B ) of the polyvinyl acetal resin (B). That is, it is preferable that the relationship of T ⁇ B ⁇ T ⁇ AP ⁇ T ⁇ A or T ⁇ A ⁇ T ⁇ AP ⁇ T ⁇ B is satisfied. Such satisfy the relationship thermoplastic acrylic resin composition of the present invention with T [alpha AP is ready to methacrylic resin (A) and the polyvinyl acetal resin (B) is partially or completely miscible It is thought that there is.
  • Thermoplastic acrylic resin composition of the present invention are believed to methacrylic resin (A) and the polyvinyl acetal resin (B) is in the fully compatible state with T [alpha AP satisfying such a relationship .
  • the acrylic resin of the present invention The thermoplastic resin composition has substantially the same heat resistance, surface hardness, and rigidity as the methacrylic resin, and is difficult to whiten when stretched, bent, or subjected to an impact. It also has excellent toughness, impact resistance, and handleability.
  • the continuous phase is preferably formed of a methacrylic resin (A).
  • the acrylic thermoplastic resin composition of the present invention preferably has a dyed dispersed phase that is observed with a transmission electron microscope when electron dyed with ruthenium tetroxide.
  • the dispersed phase is preferably small.
  • the average diameter of the dispersed phase is usually 200 nm or less, preferably 100 nm or less, particularly preferably 50 nm or less. In addition, in the case of 50 nm or less, the case where two components are completely compatible with each other and no dispersed particles are observed is included.
  • the dyed dispersed phase is considered to contain the polyvinyl acetal resin (B).
  • the unstained continuous phase is formed by the methacrylic resin (A).
  • the observation of the phase structure of the acrylic thermoplastic resin composition was carried out by first preparing an ultrathin section using an ultramicrotome (Reichart ULTRACUT-S manufactured by RICA), followed by electron staining with ruthenium tetroxide, and Hitachi, Ltd. This is performed using a transmission electron microscope H-800NA manufactured by Seisakusho.
  • a suitable method for obtaining the acrylic thermoplastic resin composition of the present invention is to mix the methacrylic resin (A) and the polyvinyl acetal resin (B), preferably under melting conditions, and then to a resin temperature of 160 ° C. It includes a step of raising the temperature to the above and then cooling to a resin temperature of 120 ° C. or lower.
  • Another suitable production method includes a step of melt-kneading the methacrylic resin (A) and the polyvinyl acetal resin (B) at a resin temperature of 140 ° C. or higher and then cooling to a resin temperature of 120 ° C. or lower.
  • a particularly preferred production method is a step of applying shear at a shear rate of 100 sec ⁇ 1 or more to the step of melt-kneading the methacrylic resin (A) and the polyvinyl acetal resin (B) at a resin temperature of 160 ° C. or higher, And a step of setting the shear rate to 50 sec ⁇ 1 or less at least twice.
  • Melting and kneading of the methacrylic resin (A) and the polyvinyl acetal resin (B) is performed using a known kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a brabender, an open roll, or a kneader. preferable.
  • a known kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a brabender, an open roll, or a kneader.
  • the methacrylic resin (A) is easy to form a continuous phase, and is excellent in productivity, so a twin screw extruder is preferable.
  • the resin temperature during melt kneading is preferably 140 ° C. or higher, more preferably 140 to 270 ° C., and particularly preferably 160 to 250 ° C.
  • Shear applied to the thermoplastic acrylic resin composition during the melt-kneading is preferably a shear rate is 100 sec -1 or more, and more preferably 200 sec -1 or more.
  • the temperature is raised to a resin temperature of 160 ° C. or higher, or melt kneaded at a resin temperature of 140 ° C. or higher, and then cooled to a resin temperature of 120 ° C. or lower. Cooling is preferably performed more rapidly than natural cooling by, for example, immersing the melted strand in a tank in which cold water is stored.
  • the methacrylic resin (A) forms a continuous phase, and the methacrylic resin (A) and the polyvinyl acetal resin (B) are easily partially or completely compatible.
  • the size of the dispersed phase becomes very small.
  • the size of the dispersed phase is usually 200 nm or less, preferably 100 nm or less, particularly preferably 50 nm or less.
  • the acrylic thermoplastic resin composition of the present invention various additives as necessary, for example, antioxidants, stabilizers, lubricants, processing aids, antistatic agents, colorants, impact resistance aids, foaming Agents, fillers, matting agents and the like may be added.
  • an ultraviolet absorber can be added for the purpose of improving the weather resistance.
  • a benzotriazole type, a benzophenone type, or a triazine type is preferable.
  • the addition amount of the ultraviolet absorber is usually 0.1 to 10% by mass, preferably 0.1 to 5% by mass, more preferably 0.1 to 2% by mass with respect to the acrylic thermoplastic resin composition. It is.
  • the said additive added to the acrylic thermoplastic resin composition of this invention may be added to the methacrylic resin (A) or / and polyvinyl acetal resin (B) used as a raw material, or acrylic heat It may be added when the plastic resin composition is produced, or may be added when the acrylic thermoplastic resin composition is molded.
  • the acrylic thermoplastic resin composition of the present invention is used as, for example, a pellet-shaped or powder-shaped molding material. And, using this molding material, various molded products can be manufactured by performing known molding methods such as extrusion molding, injection molding, vacuum molding, pressure molding, blow molding, transfer molding, rotational molding, powder slush, etc. it can.
  • the acrylic thermoplastic resin composition according to a preferred embodiment of the present invention has a haze of 0.3% or less when measured with a test piece having a thickness of 4 mm in accordance with JIS K7136.
  • the melt extrusion molding method and injection molding method that apply high shear force to acrylic thermoplastic resin compositions such as the T-die method, calendar method, and inflation method have excellent transparency, improved toughness, and impact resistance. It is preferable in order to obtain a molded article that is excellent, has excellent handleability, has an excellent balance between toughness and surface hardness or rigidity, and is difficult to be whitened when stretched, bent, or subjected to an impact. In particular, in order to obtain a film-like molded body, the T-die method is preferable from the viewpoint of economy.
  • a preferable resin temperature for melt-molding the acrylic thermoplastic resin composition is 160 to 270 ° C.
  • the film-like molded body immediately after being extruded is brought into contact with a cooling roll and rapidly cooled.
  • the methacrylic resin (A) forms a continuous phase
  • the methacrylic resin (A) and the polyvinyl acetal resin (B) are partially or completely compatible. Can be obtained.
  • the acrylic thermoplastic resin composition of the present invention and a molded body comprising the same can be used as members for various applications.
  • Specific applications include, for example, billboard parts such as advertising towers, stand signboards, sleeve signboards, cross-border signs, rooftop signs, and marking films; display parts such as showcases, dividers, and store displays; fluorescent lamp covers, mood lighting.
  • Lighting parts such as covers, lamp shades, light ceilings, light walls, chandeliers; interior parts such as furniture, pendants, mirrors; doors, domes, safety window glass, partitions, staircases, balconies, roofs of leisure buildings, etc.
  • Building parts aircraft windshield, pilot visor, motorcycle, motorboat windshield, bus shading plate, automotive side visor, rear visor, head wing, headlight cover, automotive interior parts, automotive exterior parts such as bumpers Related parts: Name plate for audio images, stereo cover, TV protection Electronic equipment parts such as desks, vending machines, mobile phones, personal computers; medical equipment parts such as incubators and X-ray parts; equipment-related parts such as machine covers, instrument covers, experimental devices, rulers, dials, observation windows; liquid crystals Optical components such as protective plates, light guide plates, light guide films, Fresnel lenses, lenticular lenses, front plates of various displays, diffusion plates; traffic-related parts such as road signs, guide plates, curved mirrors, sound barriers, etc., greenhouses , Large aquarium, box aquarium, bathroom parts, clock panel, bathtub, sanitary, desk mat, game parts, toys, masks for face protection when welding; surfaces used for personal computers, mobile phones, furniture, vending machines, bathroom parts, etc. Materials and the like.
  • the acrylic thermoplastic resin composition of the present invention When used, it has an excellent balance of toughness, impact resistance, surface hardness and rigidity, is easy to handle, and is stretched, bent and / or impacted. Since it does not sometimes whiten, a molded article excellent in design can be obtained.
  • a film-like or sheet-like molded body made of the acrylic thermoplastic resin composition of the present invention is molded on a base material made of steel, plastic sheet, wood, glass, etc. by lamination, insert molding, in-mold molding, or the like The design properties of these base materials can be improved, and the base materials can be protected.
  • the design property is further improved.
  • the protection can be increased.
  • the acrylic thermoplastic resin composition of the present invention and a base material made of steel, plastic, wood, glass or the like, the design of the base material can be improved.
  • it is suitable for wallpaper; automotive interior member surface; automotive exterior member surface such as bumper; mobile phone surface; furniture surface; personal computer surface; vending machine surface; Can be used.
  • the measurement temperature was 40 ° C., and the flow rate was 1.0 ml / min.
  • the weight average molecular weight (Mw) was calculated as the molecular weight in terms of polymethyl methacrylate based on a calibration curve prepared with standard polymethyl methacrylate manufactured by Polymer Laboratories.
  • toughness refers to physical properties under a relatively slow deformation rate as represented by this example.
  • the whitening state was performed by visually observing the fractured test piece.
  • the composition of the polyvinyl acetal resin was determined by measuring 13 C-NMR, whereby the mol% (k (BA) ) of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms with respect to all repeating units and 3 or less carbon atoms. Mole percent of vinyl alcohol units acetalized with aldehydes relative to all repeating units (k (AA) ), mole percent of vinyl alcohol units not acetalized with respect to all repeating units (k (VA) ), and vinyl acetate units The mol% (k (AV) ) relative to all repeating units was calculated.
  • Example 1 75 parts of methacrylic resin (A-1) and 25 parts of polyvinyl acetal resin (B-1) were kneaded at a cylinder temperature of 230 ° C. and a screw rotational speed of 100 rpm using a LABO PLASTOMILL 2D30W2 twin screw extruder manufactured by Toyo Seiki, An acrylic thermoplastic resin composition was obtained. The resin temperature immediately before finishing the kneading was 260 ° C. Morphological observation of the obtained acrylic thermoplastic resin composition was performed, and these results are shown in Table 3. Furthermore, the thin film sample was produced by extruding the pellet of the obtained acrylic thermoplastic resin composition using Toyo Seiki's LABO PLASTOMILL D2025. The physical property evaluation results are shown in Table 3.
  • Examples 2-5 An acrylic thermoplastic resin composition was obtained in the same manner as in Example 1 except that the polyvinyl acetal resins (B-2) to (B-5) were used in place of the polyvinyl acetal resin (B-1). Evaluation of physical properties and morphology observation of the obtained acrylic thermoplastic resin composition were carried out in the same manner as in Example 1. These results are shown in Table 3.
  • Examples 6-7 A polyvinyl acetal resin (B-2) was used instead of the polyvinyl acetal resin (B-1), and a methacrylic resin (A-2) or (A-3) was used instead of the methacrylic resin (A-1). Except for the above, an acrylic thermoplastic resin composition was obtained in the same manner as in Example 1. Evaluation of physical properties and morphology observation of the obtained acrylic thermoplastic resin composition were carried out in the same manner as in Example 1. These results are shown in Table 3.
  • Examples 8-12 A methacrylic resin (A-4) and a polyvinyl acetal resin (B-2) were used in the proportions shown in Table 4 instead of the methacrylic resin (A-1) and the polyvinyl acetal resin (B-1).
  • An acrylic thermoplastic resin composition was obtained in the same manner as in Example 1. Evaluation of physical properties and morphology observation of the obtained acrylic thermoplastic resin composition were carried out in the same manner as in Example 1. These results are shown in Table 4.
  • Comparative Examples 1 to 4 An acrylic thermoplastic resin composition was obtained in the same manner as in Example 1, except that the polyvinyl acetal resins (B-6) to (B-9) were used in place of the polyvinyl acetal resin (B-1). Evaluation of physical properties and morphology observation of the obtained acrylic thermoplastic resin composition were carried out in the same manner as in Example 1. These results are shown in Table 5.
  • Comparative Examples 5-8 Tested in the same manner as in Example 1 except that instead of the acrylic thermoplastic resin composition obtained in Example 1, resin materials consisting only of methacrylic resins (A-1) to (A-4) were used. A piece was made. The physical properties of the obtained test piece were evaluated and the morphology was observed. These results are shown in Table 5.
  • the total of the vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms and an aldehyde having 3 or less carbon atoms is 65 to 85 mol% with respect to all the repeating units, and an acetal with an aldehyde having 4 or more carbon atoms.
  • a polyvinyl acetal resin (B) having a molar ratio of the converted vinyl alcohol unit / vinyl alcohol unit acetalized with an aldehyde having 3 or less carbon atoms of 90/10 to 0/100 is blended in the methacrylic resin (A).
  • the acrylic thermoplastic resin composition obtained in this way has the characteristics of transparency, high surface hardness, high rigidity, weather resistance, heat resistance, etc., and has improved toughness and impact resistance. Recognize.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを含有し、ポリビニルアセタール樹脂(B)がポリビニルアルコール樹脂を炭素数4以上のアルデヒドと炭素数3以下のアルデヒドとでアセタール化して得られたものであり、炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が全繰返し単位に対して65~85モル%であり、且つ炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が90/10~0/100であるアクリル系熱可塑性樹脂組成物。該アクリル系熱可塑性樹脂組成物からなる成形体。メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)と混合し、樹脂温度160°C以上にまで昇温し、次いで樹脂温度120°C以下に冷却する工程を含む前記のアクリル系熱可塑性樹脂組成物の製法。

Description

アクリル系熱可塑性樹脂組成物
 本発明は、改善された靭性を持つ透明な成形体が得られるアクリル系熱可塑性樹脂組成物に関し、特に延伸した時、折り曲げた時若しくは衝撃を受けた時に白化しない成形体が得られるアクリル系熱可塑性樹脂組成物に関する。また、本発明は、靭性と耐衝撃性若しくは剛性とのバランスに優れた透明な成形体が得られるアクリル系熱可塑性樹脂組成物に関する。
 ポリメタクリル酸メチルを主体とする熱可塑性重合体(メタクリル系樹脂)は透明性(可視光領域における全光線透過率が高いこと)および表面硬度に優れた特性を有しているため様々な分野で使用されている。ところが、このメタクリル系樹脂は用途により機械的特性、特に耐衝撃性や靭性が不足することがあり、その改善が求められている。
 機械的特性を改善する方法として、エマルジョン重合により合成されたゴム層とメタクリル系樹脂層とからなるコア-シェル型粒子を、ポリメタクリル酸メチルを主体とする熱可塑性重合体(メタクリル系樹脂)にブレンドする方法が一般に用いられている。しかし、この方法により得られた組成物からなる成形体は、耐衝撃性の改善がみられるものの靭性の改良は不十分であり、しかも、ゴム成分の配合により、表面硬度の低下、剛性の低下および耐熱性の低下を引き起こす。また、引張り応力や折り曲げ応力等がかかった際に応力集中部が白化することがある。さらに、衝撃が加わったり、長時間湿熱条件下に放置された場合に白化することがある。該白化によって、透明性が失われ、成形体の有する意匠性・高級感が損なわれやすい。
 メタクリル系樹脂の靭性を改善する他の方法として、メタクリル酸メチルにガラス転移温度を低下させる他のモノマーを共重合する方法が提案されている。しかし、この方法では剛性および耐熱性が大幅に低下するという問題がある。
 メタクリル系樹脂に他のポリマーをブレンドすることにより得られるメタクリル系樹脂組成物が提案されている。
 メタクリル系樹脂にブレンドする他のポリマーとして、例えば、特定組成のスチレン-アクリロニトリル共重合体、ポリ塩化ビニル、ポリフッ化ビニリデンなどのポリマーが提案されている。しかし、これらポリマーのブレンドでは靭性を十分に改良することができていない。
 ポリエチレンオキサイドをブレンド用ポリマーとして用いることが提案されている。このポリエチレンオキサイドは、ポリメタクリル酸メチルとの混和性に優れ、靭性の改善が期待できるが、ガラス転移温度が低いため、ブレンド物の剛性・耐熱性の低下が避けられない。
 また、靭性・耐熱性・透明性のバランスを改良することが期待できるポリマーとしてポリカーボネートが挙げられている。ビスフェノールAのポリカーボネートとポリメタクリル酸メチルとの透明な組成物は、例えば、ポリメタクリル酸メチルとポリカーボネートとをテトラヒドロフランに溶解し、その溶液をヘプタンに添加して沈殿させ、該沈殿物をポリメタクリル酸メチルおよびポリカーボネートのガラス転移温度以上で熱処理することによって得られると報告されている。しかし、該組成物からなる成形体は表面硬度が低く、組成物の調製に溶剤を使用するため、溶剤除去に大きなエネルギーを必要とし、生産性が低い。また、ポリカーボネートとポリメタクリル酸メチルとを溶融混練する方法も報告されている。しかし、溶融混練によって得られた組成物は、ポリカーボネートとポリメタクリル酸メチルとが相分離して、真珠光沢を有した不透明成形体になる(非特許文献1)。
 ポリメタクリル酸メチルと相溶する可能性のあるポリマーとしてポリビニルブチラールが挙げられる。
 メタクリル酸メチル樹脂とポリビニルブチラールとを混合して得られるものは、それらの相溶性が弱いために、通常、相分離した2相構造となるが、上記混合において分子量の低いメタクリル酸メチル樹脂を用いた場合には両者は相溶して単一相になる可能性があると、非特許文献2は述べている。非特許文献2の図5にはビニルアルコール単位を様々な量で含有するポリビニルブチラール50質量部とメタクリル酸メチル樹脂50質量部とのブレンド物を溶媒に溶解して、キャスト成形して得られたフィルムの光学顕微鏡観察像が示されている。このフィルムはメタクリル酸メチル樹脂が様々な大きさの分散相となった相分離構造を有しているものであった。
 非特許文献3には、重量平均分子量12万のポリメタクリル酸メチルと、ポリビニルブチラールとを様々な割合で溶融混練してブレンド物を得たことが記載されている。ポリビニルブチラールの割合が多いブレンド物は、引張試験における破断時伸びが大きくなり、降伏挙動が観察され、靭性が改良されると、非特許文献3に記載されている。しかし、非特許文献3に記載のポリビニルブチラールの割合が多いブレンド物は力学物性が不十分であった。一方、ポリビニルブチラールが50質量%未満で混合されたブレンド物は、靭性の改良効果がほとんど見られず、力学物性も不十分であった。
 さらに、特許文献1には、メタクリル系共重合体ブロックとアクリル系重合体ブロックとを含有するブロック共重合体、及び可塑化ポリビニルアセタール樹脂からなる樹脂組成物が開示されている。この樹脂組成物は、二枚のガラス板を接着するために用いられ、大気との接触による白化現象が抑えられているものであると特許文献1に記載されている。しかし、この樹脂組成物は可塑剤を大量に使用しているため表面硬度が非常に低く、力学物性も不十分である。
特開2003-40653号公報
Journal of Polymer Science PART B, Polymer Physics, Vol.25,1459 (1987) Macromolecules, Vol.34, 4277 (2001) J. Ind. Eng. Chem., Vol.8, No.6, 530 (2002)
 本発明の目的は、メタクリル系樹脂が本来有している透明性、高い表面硬度・高剛性・耐候性・耐熱性などの特長を保持しつつ、且つ靭性の改良されたアクリル系熱可塑性樹脂組成物を提供することであり、特に延伸したり、折り曲げたり若しくは衝撃が加わったりした際に白化しないアクリル系熱可塑性樹脂組成物を提供することである。
 また、本発明のもうひとつの目的は、剛性と耐衝撃性若しくは靭性とのバランスに優れた透明な成形体が得られるアクリル系熱可塑性樹脂組成物を提供することである。
 本発明者らは上記目的を達成すべく鋭意検討した結果、メタクリル系樹脂と特定のポリビニルアセタール樹脂とを含有するアクリル系熱可塑性樹脂組成物は、メタクリル系樹脂が本来有している透明性、高い表面硬度・高剛性・耐候性・耐熱性などの特長を保持しつつ、且つ靭性および耐衝撃性が良好であることを見出した。そして、このアクリル系熱可塑性樹脂組成物から得られる成形体は、延伸したり、折り曲げたり若しくは衝撃を与えたりしても、白化しないことを見出した。本発明はこれらの知見に基づいてさらに検討し、完成するに至ったものである。
 すなわち、本発明は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを含有するアクリル系熱可塑性樹脂組成物であって、
 ポリビニルアセタール樹脂(B)がポリビニルアルコール樹脂を炭素数4以上のアルデヒドと炭素数3以下のアルデヒドとでアセタール化して得られたものであり、
 炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が全繰返し単位に対して65~85モル%であり、且つ
 炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が90/10~0/100であるアクリル系熱可塑性樹脂組成物である。
 本発明のアクリル系熱可塑性樹脂組成物は、メタクリル系樹脂が本来有している透明性、高表面硬度、高剛性、耐候性、耐熱性などの特長を保持しつつ、且つ靭性や耐衝撃性が良好である。
 このアクリル系熱可塑性樹脂組成物からなる成形体は、延伸したり、折り曲げたり若しくは衝撃を与えたりしても白化しない。さらに、本発明の成形体は、メタクリル系樹脂が本来有している透明性、高表面硬度、高剛性、耐候性、耐熱性などの特長を保持しつつ、且つ靭性や耐衝撃性が良好である。
 このような特長を有する本発明のアクリル系熱可塑性樹脂組成物およびその成形体は、より広範囲の用途に使用することができる。
 以下、本発明を詳細に説明する。
 本発明のアクリル系熱可塑性樹脂組成物は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを含有するものである。
 本発明に用いられるメタクリル系樹脂(A)は、アルキルメタクリレートを含有する単量体混合物を重合することによって得られる。
 アルキルメタクリレートとしては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、tert-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ドデシルメタクリレート、ミリスチルメタクリレート、パルミチルメタクリレート、ステアリルメタクリレート、ベヘニルメタクリレート、シクロヘキシルメタクリレート、フェニルメタクリレートなどが挙げられる。これらのアルキルメタリレートは1種単独で又は2種以上を組み合わせて用いることができる。これらのうち、アルキル基の炭素数が1~4であるアルキルメタクリレートが好ましく、メチルメタクリレートが特に好ましい。
 単量体混合物にはアルキルメタクリレート以外にアルキルアクリレートが含まれていてもよい。
 アルキルアクリレートとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、sec-ブチルアクリレート、tert-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、ミリスチルアクリレート、パルミチルアクリレート、ステアリルアクリレート、ベヘニルアクリレート、シクロヘキシルアクリレート、フェニルアクリレートなどが挙げられる。これらのうち、アルキル基の炭素数が1~8であるアルキルアクリレートが好ましい。これらのアルキルアクリレートは1種単独で若しくは2種以上を組み合わせて用いることができる。
 また、前記の単量体混合物には、アルキルメタクリレート及びアルキルアクリレートに共重合可能な他のエチレン性不飽和単量体が含まれていてもよい。
 アルキルメタクリレート及びアルキルアクリレートに共重合可能なエチレン性不飽和単量体としては、1,3-ブタジエン、イソプレンなどのジエン系化合物;スチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、ハロゲンで核置換されたスチレン、1-ビニルナフタレン、4-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレンなどのビニル芳香族化合物;アクリロニトリル、メタクリロニトリルなどのエチレン性不飽和ニトリル類;アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、無水マレイン酸、マレイン酸イミド、モノメチルマレエート、ジメチルマレエートなどを挙げることができる。これらのエチレン性不飽和単量体は1種単独で若しくは2種以上を組み合わせて用いることができる。
 本発明に用いられるメタクリル系樹脂(A)は、アルキルメタクリレート単位の割合が、耐候性の観点から、50~100質量%であることが好ましく、80~99.9質量%であることがより好ましい。
 また、耐熱性の観点から、メタクリル系樹脂(A)は0.1~20質量%の範囲でアルキルアクリレート単位を含有することが好ましい。
 本発明に用いられるメタクリル系樹脂(A)は、強度特性および溶融性の点から、重量平均分子量(Mwと表記、以下同じ)が、好ましくは40,000以上、より好ましくは40,000~10,000,000であり、特に好ましくは80,000~1,000,000である。
 本発明に用いられるメタクリル系樹脂(A)は、分子鎖が、線状を成したものであっても良いし、分岐を有するものであっても良いし、環状構造を有するものであっても良い。
 本発明に用いられるメタクリル系樹脂(A)は、エチレン性不飽和化合物を重合させることができる方法であれば特にその製法によって制限されないが、ラジカル重合によって製造されたものが好ましい。重合法としては、塊状重合、懸濁重合、溶液重合、乳化重合などが挙げられる。
 重合時に用いられるラジカル重合開始剤としては、アゾビスイソブチロニトリル、アゾビスγ-ジメチルバレロニトリルなどのアゾ化合物;ベンゾイルパーオキサイド、クミルパーオキサイド、オキシネオデカノエート、ジイソプロピルパーオキシジカーボネート、t-ブチルクミルパーオキサイド、クメンヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、シクロヘキサノンパーオキサイド、メチルエチルケトンパーオキサイド、ジクミルパーオキサイド、ラウロイルパーオキサイドなどの過酸化物が挙げられる。重合開始剤は、全単量体100質量部に対して通常0.05~0.5質量部用いられる。重合は、通常50~140℃の温度で、通常2~20時間で行われる。
 メタクリル系樹脂(A)の分子量を制御するためには、連鎖移動剤を使用することができる。連鎖移動剤としては、メチルメルカプタン、エチルメルカプタン、イソプロピルメルカプタン、n-ブチルメルカプタン、t-ブチルメルカプタン、n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、エチルチオグリコエート、メルカプトエタノール、チオ-β-ナフトール、チオフェノール等が挙げられる。連鎖移動剤は、全単量体に対し通常0.005~0.5質量%の範囲で使用できる。
 本発明に用いられるポリビニルアセタール樹脂(B)は、ポリビニルアルコール樹脂を炭素数4以上のアルデヒドと炭素数3以下のアルデヒドとでアセタール化して得られたものである。
Figure JPOXMLDOC01-appb-C000001
 ポリビニルアセタール樹脂(B)は、例えば、化1で表される樹脂である。
 化1中、R3はアセタール化反応に用いた炭素数3以下のアルデヒドのアルキル残基または水素原子、R4はアセタール化反応に用いた炭素数4以上のアルデヒドのアルキル残基(なお、アルキル残基R3およびR4の炭素数は、アセタール化反応に用いたアルデヒドの炭素数から1を引いた整数iとなる。iがゼロのときはR3は水素原子である。)、k3は炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル割合、k4は炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位のモル割合、lはアセタール化されていないビニルアルコール単位のモル割合、mは酢酸ビニル単位のモル割合である。ただし、mはゼロであってもよい。各単位は、化1に示す配列順序によって特に制限されず、ランダムに配列されていてもよいし、ブロック状に配列されていてもよいし、テーパー状に配列されていてもよい。
 ポリビニルアセタール樹脂(B)の製造に用いられるポリビニルアルコール樹脂は、粘度平均重合度が通常200~4,000、好ましくは300~3,000、より好ましくは500~2,500である。ポリビニルアルコール樹脂の粘度平均重合度が200未満であると、得られるポリビニルアセタール樹脂の力学物性が不足し、本発明のアクリル系熱可塑性樹脂組成物の力学物性、特に靭性や耐衝撃性が不足する傾向がある。一方、ポリビニルアルコール樹脂の粘度平均重合度が4,000を超えると本発明のアクリル系熱可塑性樹脂組成物を作製する際の粘度が高くなり、本発明のアクリル系熱可塑性樹脂組成物の製造が困難になる傾向がある。特に、本発明のアクリル系熱可塑性樹脂組成物を溶融混練で作製する場合にその傾向が顕著となる。
 ポリビニルアルコール樹脂は、その製法によって特に限定されず、例えば、ポリ酢酸ビニル等をアルカリ、酸、アンモニア水等によりけん化することにより製造されたものが挙げられる。ポリビニルアルコール樹脂は、完全けん化されたものであってもよいが、部分的にけん化されたもの(すなわち、部分けん化ポリビニルアルコール樹脂)であってもよい。けん化度は、80モル%以上が好ましく、97モル%以上がさらに好ましい。本発明のアクリル系熱可塑性樹脂組成物を溶融混練で作製する場合には、けん化度99.5モル%以上のものを用いることが特に好ましい。
 また、上記ポリビニルアルコール樹脂として、エチレン-ビニルアルコール共重合体樹脂や部分けん化エチレン-ビニルアルコール共重合体樹脂などのビニルアルコールとビニルアルコールに共重合可能なモノマーとの共重合体を用いることができる。さらに、一部にカルボン酸等が導入された変性ポリビニルアルコール樹脂を用いることができる。これらポリビニルアルコール樹脂は、1種単独で若しくは2種類以上を組み合わせて用いてもよい。
 ポリビニルアセタール樹脂(B)の製造に用いられる炭素数3以下のアルデヒドとしては、例えば、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒドが挙げられる。これら炭素数3以下のアルデヒドは1種単独で若しくは2種以上を組み合わせて用いることができる。これら炭素数3以下のアルデヒドのうち、製造の容易さの観点から、アセトアルデヒドおよびホルムアルデヒド(パラホルムアルデヒドを含む)を主体とするものが好ましく、アセトアルデヒドが特に好ましい。
 ポリビニルアセタール樹脂(B)の製造に用いられる炭素数4以上のアルデヒドとしては、ブチルアルデヒド、イソブチルアルデヒド、n-オクチルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2-エチルヘキシルアルデヒド、シクロヘキシルアルデヒド、フルフラール、グリオキザール、グルタルアルデヒド、ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等が挙げられる。これら炭素数4以上のアルデヒドは1種単独で若しくは2種以上を組み合わせて用いることができる。これら炭素数4以上のアルデヒドのうち、製造の容易さの観点から、ブチルアルデヒドを主体とするものが好ましく、ブチルアルデヒドが特に好ましい。
 本発明に用いられるポリビニルアセタール樹脂(B)は、炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が、力学物性の観点から、全繰返し単位に対して、65~85モル%、好ましくは70~85モル%、より好ましく80~85モル%である。アセタール化されたビニルアルコール単位の合計が全繰返し単位に対して65モル%を下回ると、本発明のアクリル系熱可塑性樹脂組成物の力学物性、特に靭性と耐衝撃性が不足する。一方、85モル%を超えるポリビニルアセタール樹脂を製造する場合には非常に長い時間を要するため、経済的に不利である。なお、繰返し単位のモル%は、ポリビニルアセタール樹脂の製造原料であるポリビニルアルコール樹脂中の主鎖の炭素2個からなる単位(例えば、ビニルアルコール単位、酢酸ビニル単位、エチレン単位など)を一繰返し単位として計算されたものである。例えば、化1に示すポリビニルアセタール樹脂では、全繰返し単位(k3+k4+l+m)に対する、炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル%(k(AA))が、式: k3/(k3+k4+l+m)×100 によって求められ、炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位のモル%(k(BA))が、式: k4/(k3+k4+l+m)×100 によって求められ、アセタール化されていないビニルアルコール単位のモル%(k(VA))が、式: l/(k3+k4+l+m)×100 によって求められ、酢酸ビニル単位のモル%(k(AV))が、式: m/(k3+k4+l+m)×100 によって求められる。
 本発明に用いられるポリビニルアセタール樹脂(B)は、力学物性の観点から、炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が、90/10~0/100、好ましくは80/20~0/100、より好ましくは50/50~0/100、特に好ましくは40/60~1/99である。
 このようなポリビニルアセタール樹脂を用いることで、メタクリル系樹脂が本来有している透明性、高表面硬度、高剛性、耐候性、耐熱性などの特長を保持しつつ、且つ靭性や耐衝撃性が良好なアクリル系熱可塑性樹脂組成物を得ることができる。
 また、本発明に用いられるポリビニルアセタール樹脂(B)は、炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が70~85モル%である場合、または炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が40/60~0/100である場合に、靭性や耐衝撃性などが向上する。
 さらに、炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が70~85モル%で、且つ炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が40/60~0/100である場合には、靭性や耐衝撃性などがさらに向上するので好ましい。
 ポリビニルアルコール樹脂のアルデヒドによるアセタール化反応は、公知の方法で行うことができる。例えば、ポリビニルアルコール樹脂の水溶液とアルデヒドとを酸触媒の存在下でアセタール化反応させて樹脂粒子を析出させる水媒法;ポリビニルアルコール樹脂を有機溶媒中に分散させ、酸触媒の存在下でアルデヒドとアセタール化反応させ、この反応液をポリビニルアセタール樹脂に対して貧溶媒である水等により析出させる溶媒法などが挙げられる。これらのうち水媒法が好ましい。
 アセタール化に用いられるアルデヒドは、すべてを同時に仕込んでも良いし、1種類づつを別々に仕込んでも良い。アルデヒドの添加順序および酸触媒の添加順序を変えることで、ポリビニルアセタール樹脂中のビニルアセタール単位のランダム性を変化させることができる。
 アセタール化に用いられる酸触媒は特に限定されず、例えば、酢酸、p-トルエンスルホン酸等の有機酸類;硝酸、硫酸、塩酸等の無機酸類;炭酸ガス等の水溶液にした際に酸性を示す気体、陽イオン交換体や金属酸化物等の固体酸触媒などが挙げられる。
 ポリビニルアセタール樹脂の総アセタール化度は、JIS K6728(1977年)に記載の方法に則って、アセタール化されていないビニルアルコール単位の質量割合(l0)および酢酸ビニル単位の割合(m0)を滴定によって求め、アセタール化されたビニルアルコール単位の質量割合(k0)をk0=1-l0-m0によって求め、これからアセタール化されていないビニルアルコール単位のモル割合(l)および酢酸ビニル単位のモル割合(m)を計算し、k=1-l-mの計算式によりアセタール化されたビニルアルコール単位のモル割合(k)を計算し、総アセタール化度(mol%)=k/{k+l+m}×100によって求めても良いし、ポリビニルアセタール樹脂を重水素化ジメチルスルフォキサイドに溶解し、1H-MMR、または13C-NMRを測定して算出しても良い。
 また、1H-MMRまたは13C-NMRを測定して算出する方法を用いることにより、それぞれのアルデヒド(1)、(2)、・・・、および(n)に対するアセタール化されたビニルアルコール単位のモル割合を算出できる。そして、例えば、アルデヒド(n)によるアセタール化度(mol%)は、式: k(n)/{k(1)+k(2)+・・・+k(n)+l+m}×100 によって求めることができる。なお、k(1)、k(2)、・・・、およびk(n)は、それぞれ、アルデヒド(1)、(2)、・・・、および(n)でアセタール化されたビニルアルコール単位のモル割合である。
 ブチルアルデヒドでアセタール化されたビニルアルコール単位のモル割合は特にブチラール化度と呼ばれる。また、アセトアルデヒドでアセタール化されたビニルアルコール単位のモル割合は特にアセトアセタール化度と呼ばれる。さらに、ホルムアルデヒドでアセタール化されたビニルアルコール単位のモル割合はホルマール化度と呼ばれる。
 例えば、ポリビニルアルコール樹脂をブチルアルデヒド、アセトアルデヒドおよびホルムアルデヒドでアセタール化して得られたポリビニルアセタール樹脂において、ブチルアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(BA)、アセトアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(AA)、ホルムアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(FA)、アセタール化されていないビニルアルコール単位のモル割合をl、および酢酸ビニル単位のモル割合をmであるとしたとき、ブチラール化度は、式:k(BA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。アセトアセタール化度は、式:k(AA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。ホルマール化度は、式:k(FA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。
 水媒法及び溶媒法等において生成したスラリーは、通常、酸触媒によって酸性を呈している。酸触媒を除去する方法として、該スラリーの水洗を繰り返し、pHを通常5~9、好ましくは6~9、さらに好ましくは6~8に調整する方法;該スラリーに中和剤を添加して、pHを通常5~9、好ましくは6~9、さらに好ましくは6~8に調整する方法;アルキレンオキサイド類等を添加する方法などが挙げられる。
 上記酸触媒除去のために用いる化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属化合物やアンモニア、アンモニア水溶液が挙げられる。また、アルキレンオキサイド類としては、エチレンオキサイド、プロピレンオキサイド;エチレングリコールジグリシジルエーテル等のグリシジルエーテル類が挙げられる。
 次に中和により生成した塩、アルデヒドの反応残渣などを除去する。除去方法は特に制限されず、脱水と水洗を繰り返すなどの方法が通常用いられる。
 残渣等が除去された含水状態のポリビニルアセタール樹脂は、必要に応じて乾燥され、必要に応じてパウダー状、顆粒状あるいはペレット状に加工され、成形材料として供される。パウダー状、顆粒状あるいはペレット状に加工される際に、減圧状態で脱気することによりアルデヒドの反応残渣や水分などを低減しておくことが好ましい。
 本発明に用いられるメタクリル系樹脂(A)およびポリビニルアセタール樹脂(B)は、メタクリル系樹脂(A)の主分散ピーク温度(TαA)とポリビニルアセタール樹脂(B)の主分散ピーク温度(TαB)との間に、90℃≦TαB≦TαAまたは90℃≦TαA≦TαBの関係を持つものが好ましく、95℃≦TαB≦TαAまたは95℃≦TαA≦TαBの関係を持つことがさらに好ましく、110℃≦TαB≦TαAまたは110℃≦TαA≦TαBの関係を持つものが特に好ましい。TαAまたはTαBが90℃を下回ると、本発明のアクリル系熱可塑性樹脂組成物の耐熱性が低下する傾向となる。
 メタクリル系樹脂(A)として二つ以上のメタクリル系樹脂を組み合わせて用いた場合は、その組み合わせたもののうちのいずれか一つの主分散ピーク温度をTαAとし、ポリビニルアセタール樹脂(B)として二つ以上のポリビニルアセタール樹脂を組み合わせて用いた場合は、その組み合わせたもののうちのいずれか一つの主分散ピーク温度をTαBとする。
 なお、主分散ピーク温度(Tα)は、動的粘弾性測定によって求めることができる。例えば、株式会社レオロジー製DVE RHEOSPECTOLER DVE-V4を用いて、長さ20mm×幅3mm×厚さ120~200μmの試験片を正弦波振動10Hz、昇温速度3℃/min.の条件において測定した損失正接(tan δ)から求めることができる。主分散ピーク温度(Tα)は、損失正接(tan δ)の主分散のピークを示す温度である。広義にはガラス転移温度(Tg)と呼ばれることがある。
 本発明のアクリル系熱可塑性樹脂組成物は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)との質量比(A)/(B)が、通常99/1~1/99であり、好ましくは99/1~51/49であり、より好ましくは95/5~60/40であり、特に好ましくは90/10~60/40である。ポリビニルアセタール樹脂(B)の割合が1質量%を下回ると、本発明のアクリル系熱可塑性樹脂組成物の靭性・耐衝撃性などの力学物性の改善効果が低下傾向になる。一方、ポリビニルアセタール樹脂(B)の割合が99質量%を上回ると、本発明のアクリル系熱可塑性樹脂組成物の表面硬度(および剛性)が不足する傾向になる。
 本発明のアクリル系熱可塑性樹脂組成物の主分散ピーク温度には、アクリル系熱可塑性樹脂組成物中のメタクリル系樹脂(A)に起因する主分散ピーク温度(TαAP)と、アクリル系熱可塑性樹脂組成物中のポリビニルアセタール樹脂(B)に起因する主分散ピーク温度(TαBP)とがある。
 本発明のアクリル系熱可塑性樹脂組成物では、アクリル系熱可塑性樹脂組成物中のメタクリル系樹脂(A)に起因する主分散ピーク温度TαAP、メタクリル系樹脂(A)の主分散ピーク温度(TαA)、およびポリビニルアセタール樹脂(B)の主分散ピーク温度(TαB)の間に、TαAP<TαA、又はTαAP<TαBの関係を満たしていることが好ましい。
 さらに、本発明のアクリル系熱可塑性樹脂組成物では、アクリル系熱可塑性樹脂組成物中のメタクリル系樹脂(A)に起因する主分散ピーク温度TαAPが、メタクリル系樹脂(A)の主分散ピーク温度(TαA)とポリビニルアセタール樹脂(B)の主分散ピーク温度(TαB)との中間の値を示すことが好ましい。すなわち、TαB<TαAP<TαA、又はTαA<TαAP<TαBの関係を満たしていることが好ましい。このような関係を満たすTαAPを持つ本発明のアクリル系熱可塑性樹脂組成物は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とが部分的にまたは完全に相溶した状態になっていると考えられる。
 また、本発明のアクリル系熱可塑性樹脂組成物は、TαAP=TαBPであることが好ましい。さらに、TαB<TαAP=TαBP<TαA、又はTαA<TαAP=TαBP<TαBの関係を満たすことが好ましい。このような関係を満たすTαAPを持つ本発明のアクリル系熱可塑性樹脂組成物は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とが完全に相溶した状態になっていると考えられる。
 詳細な理由は明らかではないが、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とが部分的にまたは完全に相溶した状態になっていると考えられる場合には、本発明のアクリル系熱可塑性樹脂組成物は、耐熱性、表面硬度及び剛性がメタクリル系樹脂とほぼ同等であり、且つ延伸した時、折り曲げた時若しくは衝撃を受けた時に白化し難くなっている。また、靭性、耐衝撃性、取扱い性なども優れている。
 なお、TαBP=TαB、TαAP=TαAとなる場合には、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とが完全非相溶になっていると考えられる。このような場合には、強度が低下したり、靭性や耐衝撃性が不足したり、白化したりする傾向になる。
 本発明のアクリル系熱可塑性樹脂組成物は、連続相がメタクリル系樹脂(A)によって形成されていることが好ましい。本発明のアクリル系熱可塑性樹脂組成物は、四酸化ルテニウムで電子染色したときに透過型電子顕微鏡にて観察される、染色された分散相が存在することが好ましい。該分散相は小さい方が好ましい。分散相の平均径は、通常、200nm以下、好ましくは100nm以下、特に好ましくは50nm以下である。なお、50nm以下という場合には、二つの成分が互いに完全相溶して、分散粒子が観察されない場合をも含む。
 染色された分散相は、ポリビニルアセタール樹脂(B)が含まれていると考えられる。一方、染色されていない連続相はメタクリル系樹脂(A)によって形成されていると考えられる。
 なお、アクリル系熱可塑性樹脂組成物の相構造の観察は、先ずウルトラミクロトーム(RICA社製 Reichert ULTRACUT-S)を用いて超薄切片を作製し、次いで四酸化ルテニウムで電子染色し、株式会社日立製作所製透過型電子顕微鏡H-800NAを用いて行う。
 本発明のアクリル系熱可塑性樹脂組成物を得るための好適な製法は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを混合、好ましくは溶融条件下で混合し、次いで樹脂温度160℃以上にまで昇温し、その後、樹脂温度120℃以下に冷却する工程を含むものである。
 別の好適な製法は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを樹脂温度140℃以上で溶融混練し、次いで樹脂温度120℃以下に冷却する工程を含むものである。
 特に好適な製法は、メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを、樹脂温度160℃以上で溶融混練する工程に、せん断速度100sec-1以上のせん断を印加する段階と、該せん断をせん断速度50sec-1以下にする段階とをそれぞれ少なくとも2回経る工程を含むものである。
 メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)との溶融混練は、一軸押出機、二軸押出機、バンバリーミキサー、ブラベンダー、オープンロール、ニーダーなどの公知の混練機を用いて行うのが好ましい。これら混練機のうち、メタクリル系樹脂(A)が連続相を形成しやすく、生産性に優れることから二軸押出機が好ましい。
 溶融混練する際の樹脂温度は、140℃以上が好ましく、140~270℃がより好ましく、160~250℃が特に好ましい。
 溶融混練する際にアクリル系熱可塑性樹脂組成物に与える剪断は、剪断速度が100sec-1以上であることが好ましく、200sec-1以上であることがより好ましい。
 本発明の製法では、樹脂温度160℃以上にまで昇温、あるいは、樹脂温度140℃以上で溶融混練した後、樹脂温度120℃以下の温度に冷却する。冷却は溶融状態のストランドを冷水を溜めた槽に浸すなどの方法で自然放冷に比べて急速に行うことが好ましい。急速冷却することによって、メタクリル系樹脂(A)が連続相を形成し、且つメタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とが部分相溶または完全相溶しやすくなる。さらに、分散相の大きさが非常に小さくなる。分散相の大きさは、通常、200nm以下、好ましくは100nm以下、特に好ましくは50nm以下である。
 本発明のアクリル系熱可塑性樹脂組成物に、必要に応じて各種の添加剤、例えば、酸化防止剤、安定化剤、滑剤、加工助剤、帯電防止剤、着色剤、耐衝撃助剤、発泡剤、充填剤、艶消し剤などを添加してもよい。なお、アクリル系熱可塑性樹脂組成物の力学物性および表面硬度の観点から軟化剤や可塑剤は多量に添加しないことが好ましい。
 さらに、耐候性を向上させる目的で紫外線吸収剤を添加することができる。紫外線吸収剤の種類は特に限定されないが、ベンゾトリアゾール系、ベンゾフェノン系、または、トリアジン系のものが好ましい。紫外線吸収剤の添加量は、アクリル系熱可塑性樹脂組成物に対して、通常0.1~10質量%、好ましくは0.1~5質量%であり、さらに好ましくは0.1~2質量%である。
 なお、本発明のアクリル系熱可塑性樹脂組成物に添加される上記添加剤は、原料となるメタクリル系樹脂(A)または/およびポリビニルアセタール樹脂(B)に添加してもよいし、アクリル系熱可塑性樹脂組成物を製造する際に添加してもよいし、アクリル系熱可塑性樹脂組成物を成形する際に添加してもよい。
 本発明のアクリル系熱可塑性樹脂組成物は、例えば、ペレット形状や粉体形状の成形材料として使用される。そして、この成形材料を用いて、押出成形、射出成形、真空成形、圧空成形、ブロー成形、トランスファー成形、回転成形、パウダースラッシュ等公知の成形方法を行うことによって様々な成形体を製造することができる。
 本発明の好適な態様のアクリル系熱可塑性樹脂組成物は、JIS K7136に準拠して、厚さ4mmの試験片で測定した際のヘイズが0.3%以下である。
 Tダイ法、カレンダー法、インフレーション法等のアクリル系熱可塑性樹脂組成物に高いせん断力の掛かる溶融押出成形法および射出成形法は、透明性に優れ、改善された靭性を持ち、耐衝撃性に優れ、取扱い性に優れ、靭性と表面硬度若しくは剛性とのバランスに優れ、延伸した時、折り曲げた時若しくは衝撃を受けた時に白化しにくい成形体を得るために好ましい。特に、フィルム状成形体を得るためには経済性の観点等からTダイ法が好ましい。
 アクリル系熱可塑性樹脂組成物を溶融成形するにあたっての、好ましい樹脂温度は、160~270℃である。成形後は、成形体を自然放冷に比べて急速に冷却することが好ましい。例えば、押し出された直後のフィルム状成形体を冷却ロールに接触させて急速冷却することが好ましい。このような急速な冷却を行うことによって、メタクリル系樹脂(A)が連続相を形成し、且つメタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とが部分相溶または完全相溶した成形体を得ることができる。
 本発明のアクリル系熱可塑性樹脂組成物およびそれからなる成形体は、各種用途の部材にすることができる。具体的な用途としては、例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板等の看板部品やマーキングフィルム;ショーケース、仕切板、店舗ディスプレイ等のディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリア等の照明部品;家具、ペンダント、ミラー等のインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根等の建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバー、自動車内装部材、バンパーなどの自動車外装部材等の輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機、携帯電話、パソコン等の電子機器部品;保育器、レントゲン部品等の医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓等の機器関係部品;液晶保護板、導光板、導光フィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板等の光学関係部品;道路標識、案内板、カーブミラー、防音壁等の交通関係部品;その他、温室、大型水槽、箱水槽、浴室部材、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスク;パソコン、携帯電話、家具、自動販売機、浴室部材などに用いる表面材料等が挙げられる。
 本発明のアクリル系熱可塑性樹脂組成物を用いると、靭性、耐衝撃性、表面硬度および剛性とのバランスに優れ、取扱いが容易で、しかも延伸した時、折り曲げた時および/または衝撃を受けた時に白化しないので意匠性に優れた成形体を得ることができる。本発明のアクリル系熱可塑性樹脂組成物からなるフィルム状またはシート状成形体を、鋼材、プラスチックシート、木材、ガラス等からなる基材に接着、ラミネート、インサート成形、あるいはインモールド成形などで成形すると、それら基材の意匠性を向上させ、また基材を保護することができる。さらに、基材に複合させた本発明のアクリル系熱可塑性樹脂組成物の上に紫外線(UV)または電子線(EB)の照射によって硬化してなるコーティング層を付与することによって、さらに意匠性と保護性を高めることができる。本発明のアクリル系熱可塑性樹脂組成物と、鋼材、プラスチック、木材、ガラス等からなる基材とを共押し出しすることによって基材の意匠性を向上させることができる。また、優れた意匠性を活かして、壁紙;自動車内装部材表面;バンパーなどの自動車外装部材表面;携帯電話表面;家具表面;パソコン表面;自動販売機表面;浴槽などの浴室部材表面等にも好適に用いることができる。
 次に実施例を示して、本発明をさらに具体的に説明するが、本発明は実施例によってなんら限定されるものではない。なお、実施例中の「部」は、特に断りのない限り「質量部」を表し、「%」は、特に断りのない限り「質量%」を表す。
 アクリル系熱可塑性樹脂組成物等の成形材料の物性評価を以下の方法に従って行った。
(1)重量平均分子量
 テトラヒドロフランを溶媒に用い、昭和電工株式会社製Shodex(商標)GPCSYSTEM11に、ゲルパーミエーションクロマトグラフィー用カラムとしてShodex(商標)KF-806Lを繋ぎ、検出器としてShodex(商標)示差屈折率検出器RI-101を用いて測定した。試料溶液は、重合体を3mg精秤し、これを3mlのテトラヒドロフランに溶解し、0.45μmのメンブランフィルターでろ過することにより調製した。測定の際の温度を40℃、流量を1.0ml/min.とし、ポリマーラボラトリーズ製標準ポリメタクリル酸メチルで作製した検量線に基づいて、ポリメタクリル酸メチル換算分子量として重量平均分子量(Mw)を算出した。
(2)透過電子顕微鏡によるモルフォロジー観察
 アクリル系熱可塑性樹脂組成物を溶融混練後、冷却した。ウルトラミクロトーム(RICA社製ReichertULTRACUT-S)を用いて超薄切片を作製した。該切片を四酸化ルテニウムで電子染色し、試料を作製した。アクリル系熱可塑性樹脂組成物中のポリビニルアセタール樹脂(B)部分が染色された。こうして作製した試料のモルフォロジーを株式会社日立製作所製透過型電子顕微鏡H-800NAを用いて観察した。観察されたモルフォロジーにおいて非染色部(メタクリル系樹脂(A))が
 連続相を形成していたものを○、
 メタクリル系樹脂(A)が不連続であったものを×
として評価した。また、染色されたポリビニルアセタール樹脂(B)部分の平均分散粒子径を計測した。
(3)引張り試験における弾性率、降伏点伸度、破断伸度、靭性及び白化状態の観察
 厚さ120~200μmの薄膜成形体を、Dumb Bell Ltd.製スーパーダンベルカッターで打抜いて、JIS K6251に記載のダンベル状2号形の試験片を得た。株式会社島津製作所製オートグラフAG-5000Bを用いて、該試験片を引張り速度5mm/min.で引張り、引張弾性率、降伏点伸度および破断伸度を測定した。
 靭性は、試験片が破断するまでに要するエネルギーで評価した。なお、本発明において靭性は、本実施例に代表されるような比較的に遅い変形速度下での物性をいうものとする。
 白化状態は、破断した試験片を目視で観察することにより行った。試験片の長さ方向の白化している部分の長さが
 10mm以上であるものを×、
 1mm以上かつ10mm未満であるものを△、
 1mm未満であるものを○、
 全く白化が見られないものを◎
として評価した。
(4)引裂き試験における引裂き強度、白化状態の観察
 厚さ120~200μmの薄膜成形体を、Dumb Bell Ltd.製スーパーダンベルカッターで打抜いて、JIS K6252規格に準拠した切込みありアングル形試験片を得た。株式会社島津製作所製オートグラフAG-5000Bを用いて、試験片を引張り速度5mm/min.で引き裂き、この時の最大引裂き強さを試験片厚さ換算することによって引裂き強度(単位:N/mm)を求めた。
 白化状態は、引き裂かれた試験片を目視で観察することにより行った。試験片の長さ方向の白化している部分の長さが
 10mm以上であるものを×、
 1mm以上かつ10mm未満であるものを△、
 1mm未満であるものを○、
 全く白化が見られないものを◎
として評価した。
(5)耐衝撃性
 長さ25mm×幅25mm×厚さ200μmのフィルムを得た。東洋精機社製デュポン衝撃試験機(No.C-351601602)を用いて、0.3~1.0kgの錘を用いて落球衝撃試験を行った。落球によってフィルムが破砕しない最大衝撃(単位:J)を求めた。なお、試験に用いる錘の重さ(単位:kg)と落下する距離(単位:m)から、フィルムに与える衝撃(単位:J)を下記の計算式によって算出することができる。
 フィルムに与える衝撃[J]=
    錘の重さ[kg]×重力加速度[m/s2]×落下する距離[m]
(6)表面硬度
 JIS K5600-5-4に従って、厚さ200μmの薄膜成形体の鉛筆硬度を東洋精機社製鉛筆硬度試験機(No.C-282700200)を用いて測定した。
(7)主分散ピーク温度(Tα)
 株式会社レオロジー製DVE RHEOSPECTOLER DVE-V4を用いて、長さ20mm×幅3mm×厚さ200μmの試験片を、チャック間距離10mm、正弦波振動10Hzおよび昇温速度3℃/min.の条件で測定し、損失正接(tan δ)の主分散ピーク温度(Tα)を求めた。
(8)ヘイズ
 JIS K7136に従い、長さ10mm×幅10mm×厚さ4mmの試験片を、日本電色工業社製 ヘイズメーター NDH5000を用いて測定し、ヘイズを求めた。
(9)可視光線透過率
 株式会社島津製作所製 UV-VIS-NIR SPECTROPHOTOMETER Solidspec-3700を用いて、厚さ200μmのフィルムの波長380nmから780nmにおける透過率を測定し、JIS R3106に従って可視光線透過率を算出した。
製造例1 〔メタクリル系樹脂〕
 表1に示す割合のメタクリル酸メチル単位およびアクリル酸メチル単位からなるメタクリル系樹脂をバルク重合法によって作製した。メタクリル系樹脂の重量平均分子量(Mw)および主分散ピーク温度TαAを表1に示す。
Figure JPOXMLDOC01-appb-T000001
製造例2 〔ポリビニルアセタール樹脂〕
 ポリビニルアルコール樹脂を溶解した水溶液に、所定量のブチルアルデヒドおよび/またはアセトアルデヒドならびに塩酸を添加し、攪拌してアセタール化し、樹脂を析出させた。公知の方法に従ってpH=6になるまで水洗浄した。次いでアルカリ性にした水性媒体中に添加し撹拌して懸濁させた。再びpH=7になるまで水洗浄した。揮発分が1.0%になるまで乾燥することにより、表2に示す繰返し単位組成を有するポリビニルアセタール樹脂を得た。
 ポリビニルアセタール樹脂の組成は、13C-NMRを測定することで、炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位の全繰返し単位に対するモル%(k(BA))、炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の全繰返し単位に対するモル%(k(AA))、アセタール化されていないビニルアルコール単位の全繰返し単位に対するモル%(k(VA))、そして酢酸ビニル単位の全繰返し単位に対するモル%(k(AV))を算出した。
Figure JPOXMLDOC01-appb-T000002
実施例1
 メタクリル系樹脂(A-1)75部、及びポリビニルアセタール樹脂(B-1)25部を、東洋精機製LABO PLASTOMILL 2D30W2 二軸押出機を用いてシリンダー温度230℃、スクリュー回転数100rpmで混練し、アクリル系熱可塑性樹脂組成物を得た。混練を終える直前の樹脂温度は260℃であった。得られたアクリル系熱可塑性樹脂組成物のモルフォロジー観察を行い、これらの結果を表3に示した。
 さらに、得られたアクリル系熱可塑性樹脂組成物のペレットを東洋精機製LABO PLASTOMILL D2025を用いて押出し成形することで薄膜試料を作製した。その物性評価結果を表3に示す。
実施例2~5
 ポリビニルアセタール樹脂(B-1)に代えてポリビニルアセタール樹脂(B-2)~(B-5)を用いた以外は、実施例1と同じ方法でアクリル系熱可塑性樹脂組成物を得た。得られたアクリル系熱可塑性樹脂組成物の物性評価・モルフォロジー観察を実施例1と同じ方法で行った。これらの結果を表3に示す。
実施例6~7
 ポリビニルアセタール樹脂(B-1)に代えてポリビニルアセタール樹脂(B-2)を用い、メタクリル系樹脂(A-1)に代えてメタクリル系樹脂(A-2)または(A-3)を用いた以外は、実施例1と同じ方法でアクリル系熱可塑性樹脂組成物を得た。得られたアクリル系熱可塑性樹脂組成物の物性評価・モルフォロジー観察を実施例1と同じ方法で行った。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
実施例8~12
 メタクリル系樹脂(A-1)およびポリビニルアセタール樹脂(B-1)に代えて、メタクリル系樹脂(A-4)およびポリビニルアセタール樹脂(B-2)を表4に示す割合で用いた以外は、実施例1と同じ方法でアクリル系熱可塑性樹脂組成物を得た。得られたアクリル系熱可塑性樹脂組成物の物性評価・モルフォロジー観察を実施例1と同じ方法で行った。これらの結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
比較例1~4
 ポリビニルアセタール樹脂(B-1)に代えて、ポリビニルアセタール樹脂(B-6)~(B-9)を用いた以外は、実施例1と同じ方法でアクリル系熱可塑性樹脂組成物を得た。得られたアクリル系熱可塑性樹脂組成物の物性評価・モルフォロジー観察を実施例1と同じ方法で行った。これらの結果を表5に示す。
比較例5~8
 実施例1で得たアクリル系熱可塑性樹脂組成物に代えて、メタクリル系樹脂(A-1)~(A-4)のみからなる樹脂材料を用いた以外は、実施例1と同じ方法で試験片を作製した。得られた試験片の物性評価・モルフォロジー観察を行った。これらの結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 以上の結果から、炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が全繰返し単位に対して65~85モル%で且つ炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が90/10~0/100であるポリビニルアセタール樹脂(B)を、メタクリル系樹脂(A)に配合して得られるアクリル系熱可塑性樹脂組成物は、透明性、高い表面硬度・高剛性・耐候性・耐熱性などの特長を保持しつつ、靭性および耐衝撃性が大幅に改良されていることがわかる。

Claims (15)

  1.  メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを含有するアクリル系熱可塑性樹脂組成物であって、
     ポリビニルアセタール樹脂(B)がポリビニルアルコール樹脂を炭素数4以上のアルデヒドと炭素数3以下のアルデヒドとでアセタール化して得られたものであり、
     炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が全繰返し単位に対して65~85モル%であり、且つ
     炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が90/10~0/100であるアクリル系熱可塑性樹脂組成物。
  2.  ポリビニルアセタール樹脂(B)は、炭素数4以上のアルデヒドおよび炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の合計が全繰返し単位に対して70~85モル%であり、且つ
     炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位/炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位のモル比が40/60~0/100である請求項1に記載のアクリル系熱可塑性樹脂組成物。
  3.  メタクリル系樹脂(A)が連続相を形成している請求項1または2に記載のアクリル系熱可塑性樹脂組成物。
  4.  メタクリル系樹脂(A)の主分散ピーク温度(TαA)とポリビニルアセタール樹脂(B)の主分散ピーク温度(TαB)との間に、90℃≦TαB≦TαAまたは90℃≦TαA≦TαBの関係を持つ請求項1~3のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  5.  アクリル系熱可塑性樹脂組成物におけるメタクリル系樹脂(A)に起因する主分散ピーク温度(TαAP)と、メタクリル系樹脂(A)の主分散ピーク温度(TαA)と、ポリビニルアセタール樹脂(B)の主分散ピーク温度(TαB)との間に、TαAP<TαA、又はTαAP<TαBの関係を持つ請求項1~4のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  6.  アクリル系熱可塑性樹脂組成物の、メタクリル系樹脂(A)に起因する主分散ピーク温度TαAPとポリビニルアセタール樹脂(B)に起因する主分散ピーク温度TαBPとの間にTαAP=TαBPの関係を持つ請求項1~4のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  7.  アクリル系熱可塑性樹脂組成物におけるメタクリル系樹脂(A)に起因する主分散ピーク温度TαAPおよびポリビニルアセタール樹脂(B)に起因する主分散ピーク温度TαBPと、メタクリル系樹脂(A)の主分散ピーク温度TαAと、ポリビニルアセタール樹脂(B)の主分散ピーク温度TαBとの間に、TαB<TαAP=TαBP<TαAまたはTαA<TαAP=TαBP<TαBの関係を持つ請求項1~4のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  8.  メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)との質量比(A)/(B)が99/1~51/49である請求項1~7のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  9.  メタクリル系樹脂(A)の重量平均分子量(Mw)が40000以上である請求項1~8のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  10.  ポリビニルアルコール樹脂は、粘度平均重合度が200~4000である請求項1~9のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  11.  四酸化ルテニウムで電子染色したときに透過型電子顕微鏡にて観察される、染色された分散相の平均径が50nm以下である請求項1~10のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  12.  JIS K 7136に準拠して、厚さ4mmの試験片で測定した際のヘイズが0.3%以下である請求項1~11のいずれか1項に記載のアクリル系熱可塑性樹脂組成物。
  13.  請求項1~12のいずれか1項に記載のアクリル系熱可塑性樹脂組成物からなる成形体。
  14.  メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを混合し、樹脂温度160℃以上にまで昇温し、次いで樹脂温度120℃以下に冷却する工程を含む請求項1~12のいずれか1項に記載のアクリル系熱可塑性樹脂組成物の製法。
  15.  メタクリル系樹脂(A)とポリビニルアセタール樹脂(B)とを、樹脂温度140℃以上で溶融混練し、次いで樹脂温度120℃以下に冷却する工程を含む請求項1~12のいずれか1項に記載のアクリル系熱可塑性樹脂組成物の製法。
PCT/JP2009/001808 2008-04-22 2009-04-21 アクリル系熱可塑性樹脂組成物 WO2009130883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20090734619 EP2284221B1 (en) 2008-04-22 2009-04-21 Thermoplastic acrylic resin composition
US12/989,193 US8969474B2 (en) 2008-04-22 2009-04-21 Thermoplastic acrylic resin composition
JP2009519742A JP5568301B2 (ja) 2008-04-22 2009-04-21 アクリル系熱可塑性樹脂組成物
CN2009801139184A CN102015881B (zh) 2008-04-22 2009-04-21 丙烯酸系热塑性树脂组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008111160 2008-04-22
JP2008111161 2008-04-22
JP2008-111161 2008-04-22
JP2008-111160 2008-04-22

Publications (1)

Publication Number Publication Date
WO2009130883A1 true WO2009130883A1 (ja) 2009-10-29

Family

ID=41216624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001808 WO2009130883A1 (ja) 2008-04-22 2009-04-21 アクリル系熱可塑性樹脂組成物

Country Status (7)

Country Link
US (1) US8969474B2 (ja)
EP (1) EP2284221B1 (ja)
JP (1) JP5568301B2 (ja)
KR (1) KR101540829B1 (ja)
CN (1) CN102015881B (ja)
TW (1) TWI487741B (ja)
WO (1) WO2009130883A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089027A (ja) * 2009-10-22 2011-05-06 Kuraray Co Ltd アクリル系樹脂フィルムおよびその製造方法
JP2011088358A (ja) * 2009-10-22 2011-05-06 Kuraray Co Ltd ポリカーボネート樹脂積層体
JP2012158722A (ja) * 2011-02-02 2012-08-23 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP2012158723A (ja) * 2011-02-02 2012-08-23 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
CN102822270A (zh) * 2010-03-31 2012-12-12 可乐丽股份有限公司 热塑性聚合物组合物以及由其形成的成型体
JP2013023599A (ja) * 2011-07-21 2013-02-04 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP2013028763A (ja) * 2011-07-29 2013-02-07 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
WO2014050746A1 (ja) * 2012-09-28 2014-04-03 積水化学工業株式会社 ポリビニルアセタール系樹脂組成物
WO2014115883A1 (ja) * 2013-01-28 2014-07-31 株式会社クラレ 光学フィルム
JP2016094534A (ja) * 2014-11-14 2016-05-26 株式会社クラレ 熱可塑性樹脂フィルムとその製造方法、加飾フィルム、積層フィルム、および積層体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3053890B1 (en) * 2013-09-30 2018-03-07 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
EP3230062B1 (en) 2014-12-08 2022-08-10 3M Innovative Properties Company Acrylic polyvinyl acetal films
US10287427B2 (en) 2014-12-08 2019-05-14 3M Innovative Properties Company Compositions based on acrylic block copolymer blends
CN107108922B (zh) 2014-12-08 2020-08-18 3M创新有限公司 丙烯酸聚乙烯醇缩醛膜和组合物
US20180001600A1 (en) * 2015-03-31 2018-01-04 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
MX2017008603A (es) * 2015-03-31 2017-10-20 Sekisui Chemical Co Ltd Pelicula intermedia para vidrio laminado, y vidrio laminado.
CN108472936B (zh) 2015-12-22 2020-10-27 3M创新有限公司 包括粘合剂层的丙烯酸类聚乙烯醇缩醛膜
EP3393799A2 (en) 2015-12-22 2018-10-31 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising a second layer
CN108430770B (zh) 2015-12-22 2021-02-09 3M创新有限公司 丙烯酸类聚乙烯醇缩醛图形膜
WO2017112468A2 (en) 2015-12-22 2017-06-29 3M Innovative Properties Company Acrylic films comprising a structured layer
JP6162281B1 (ja) * 2016-03-16 2017-07-12 住友化学株式会社 フィルム巻取装置の制御方法、フィルム捲回体、フィルム巻取装置、およびフィルム捲回体の製造方法
JP7010567B2 (ja) 2016-06-07 2022-01-26 スリーエム イノベイティブ プロパティズ カンパニー 導光物品用のアクリルポリビニルアセタールフィルム
WO2018143442A1 (ja) * 2017-02-03 2018-08-09 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207010A (ja) * 2000-01-27 2001-07-31 Kawamura Inst Of Chem Res 共連続構造を有する樹脂複合体及びその製造方法
JP2003040653A (ja) 2001-07-30 2003-02-13 Kanegafuchi Chem Ind Co Ltd 合わせガラス用樹脂組成物
JP2004091493A (ja) * 2003-10-06 2004-03-25 Sekisui Chem Co Ltd 外用基材組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326543A (en) * 1940-07-27 1943-08-10 Du Pont Methyl methacrylate molding composition
US3644594A (en) * 1969-04-22 1972-02-22 Monsanto Co Polyvinyl acetal interlayers containing copolymeric additives
JPH05287233A (ja) * 1992-04-09 1993-11-02 Sekisui Chem Co Ltd 磁気記録体用結着剤及び磁気記録体
JPH06313158A (ja) * 1993-04-30 1994-11-08 Hitachi Chem Co Ltd 銅張積層板用接着剤
JP3599666B2 (ja) * 1998-12-14 2004-12-08 積水化学工業株式会社 熱現像性感光材料用ポリビニルアセタール樹脂及び熱現像性感光材料用変性ポリビニルアセタール樹脂並びに熱現像性感光材料
US20040147675A1 (en) * 2002-11-27 2004-07-29 Hofmann George H Thermoplastic elastomers from crosslinked polyvinylbutyral

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207010A (ja) * 2000-01-27 2001-07-31 Kawamura Inst Of Chem Res 共連続構造を有する樹脂複合体及びその製造方法
JP2003040653A (ja) 2001-07-30 2003-02-13 Kanegafuchi Chem Ind Co Ltd 合わせガラス用樹脂組成物
JP2004091493A (ja) * 2003-10-06 2004-03-25 Sekisui Chem Co Ltd 外用基材組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. IND. ENG. CHEM., vol. 8, no. 6, 2002, pages 530
JOURNAL OF POLYMER SCIENCE PART B, POLYMER PHYSICS, vol. 25, 1987, pages 1459
MACROMOLECULES, vol. 34, 2001, pages 4277
See also references of EP2284221A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088358A (ja) * 2009-10-22 2011-05-06 Kuraray Co Ltd ポリカーボネート樹脂積層体
JP2011089027A (ja) * 2009-10-22 2011-05-06 Kuraray Co Ltd アクリル系樹脂フィルムおよびその製造方法
CN102822270B (zh) * 2010-03-31 2015-05-13 可乐丽股份有限公司 热塑性聚合物组合物以及由其形成的成型体
CN102822270A (zh) * 2010-03-31 2012-12-12 可乐丽股份有限公司 热塑性聚合物组合物以及由其形成的成型体
JP2012158722A (ja) * 2011-02-02 2012-08-23 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP2012158723A (ja) * 2011-02-02 2012-08-23 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP2013023599A (ja) * 2011-07-21 2013-02-04 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP2013028763A (ja) * 2011-07-29 2013-02-07 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP5629393B2 (ja) * 2012-09-28 2014-11-19 積水化学工業株式会社 ポリビニルアセタール系樹脂組成物
WO2014050746A1 (ja) * 2012-09-28 2014-04-03 積水化学工業株式会社 ポリビニルアセタール系樹脂組成物
JPWO2014050746A1 (ja) * 2012-09-28 2016-08-22 積水化学工業株式会社 ポリビニルアセタール系樹脂組成物
US9512310B2 (en) 2012-09-28 2016-12-06 Sekisui Chemical Co., Ltd. Polyvinyl acetal-based resin composition
WO2014115883A1 (ja) * 2013-01-28 2014-07-31 株式会社クラレ 光学フィルム
JPWO2014115883A1 (ja) * 2013-01-28 2017-01-26 株式会社クラレ 光学フィルム
JP2016094534A (ja) * 2014-11-14 2016-05-26 株式会社クラレ 熱可塑性樹脂フィルムとその製造方法、加飾フィルム、積層フィルム、および積層体

Also Published As

Publication number Publication date
TWI487741B (zh) 2015-06-11
CN102015881B (zh) 2013-03-20
EP2284221A1 (en) 2011-02-16
EP2284221A4 (en) 2011-11-16
TW200951172A (en) 2009-12-16
KR101540829B1 (ko) 2015-07-30
JPWO2009130883A1 (ja) 2011-08-11
CN102015881A (zh) 2011-04-13
US8969474B2 (en) 2015-03-03
US20110112247A1 (en) 2011-05-12
JP5568301B2 (ja) 2014-08-06
EP2284221B1 (en) 2014-06-18
KR20110008045A (ko) 2011-01-25

Similar Documents

Publication Publication Date Title
JP5568301B2 (ja) アクリル系熱可塑性樹脂組成物
JP5535433B2 (ja) アクリル系熱可塑性樹脂組成物
JP5378692B2 (ja) アクリル系樹脂フィルムおよびその製造方法
JP5031598B2 (ja) ポリカーボネート樹脂積層体
WO2008050738A1 (fr) Composition de résine acrylique thermoplastique, film en résine acrylique et composite a base de résine acrylique
JP5345037B2 (ja) アクリル系樹脂フィルムおよびその製造方法
JP5667536B2 (ja) アクリル系熱可塑性樹脂組成物
JP5667533B2 (ja) アクリル系熱可塑性樹脂組成物
JP6297984B2 (ja) 光学フィルム
JP5184162B2 (ja) アクリル系樹脂積層体
JP6243341B2 (ja) 積層シートおよびその製造方法並びに表面保護シート
JP5292257B2 (ja) ポリカーボネート樹脂積層体
KR20110073672A (ko) 캡스톡용 폴리메틸메타크릴레이트계 수지 조성물
JP5091525B2 (ja) ポリビニルアセタール樹脂組成物及びその製造方法
JP5683300B2 (ja) アクリル系熱可塑性樹脂組成物
JP5667535B2 (ja) メタクリル系熱可塑性樹脂組成物
JP2011084606A (ja) アクリル系熱可塑性樹脂組成物
JP5683299B2 (ja) アクリル系熱可塑性樹脂組成物
JP2013023598A (ja) アクリル系熱可塑性樹脂組成物
JP5282007B2 (ja) アクリル系樹脂積層体
JP2016094535A (ja) 熱可塑性樹脂組成物とその製造方法、成形体、熱可塑性樹脂フィルム、積層フィルム、および積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113918.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009519742

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107023385

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009734619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12989193

Country of ref document: US