WO2009125787A1 - インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法 - Google Patents

インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法 Download PDF

Info

Publication number
WO2009125787A1
WO2009125787A1 PCT/JP2009/057179 JP2009057179W WO2009125787A1 WO 2009125787 A1 WO2009125787 A1 WO 2009125787A1 JP 2009057179 W JP2009057179 W JP 2009057179W WO 2009125787 A1 WO2009125787 A1 WO 2009125787A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusing agent
agent composition
solvent
mass
composition
Prior art date
Application number
PCT/JP2009/057179
Other languages
English (en)
French (fr)
Inventor
敏郎 森田
克也 谷津
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to US12/934,248 priority Critical patent/US8748301B2/en
Priority to DE112009000792.9T priority patent/DE112009000792B4/de
Priority to CN2009801128688A priority patent/CN101990700B/zh
Publication of WO2009125787A1 publication Critical patent/WO2009125787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a diffusing agent composition for inkjet, an electrode using the composition, a method for manufacturing a solar cell, and a solar cell manufactured by the above manufacturing method.
  • a method of forming a layer (diffusion agent composition layer) containing an impurity diffusion component called a dopant by using an inkjet method has been used in the manufacture of semiconductors, particularly solar cells.
  • This method is expected to contribute to a reduction in manufacturing cost because a pattern can be easily formed without requiring a complicated process as compared with a lithography method or the like conventionally performed.
  • the diffusing agent composition can be applied only at a desired location, and compared with a conventional method of applying the diffusing agent composition by spin coating or the like, The amount used can be greatly reduced.
  • the conventional diffusing agent composition mainly composed of ethanol or isopropyl alcohol is dried.
  • ejection stability such as clogging at the head part due to its high performance. Therefore, the discharge stability of the diffusing agent composition is prevented by adding 20 to 40% by volume of glycerin and dimethylformamide (DMF) to a conventional diffusing agent composition mainly composed of ethanol or isopropyl alcohol.
  • DMF dimethylformamide
  • the surface of the substrate to which the diffusing agent composition is applied is a material that does not soak in the diffusing agent composition, and as described in Patent Document 1, the diffusing agent composition has a high boiling point such as glycerin or dimethylformamide.
  • the coating solution is difficult to dry, and the pattern after coating may spread or spread, and a new problem has been found that the applied pattern becomes unclear over time.
  • the present invention is an inkjet diffusing agent composition (hereinafter referred to as “diffusing agent composition”) that can selectively form a diffusing agent composition layer by applying an diffusing agent composition using an inkjet method. It is an object of the present invention to provide an electrode and a solar cell manufacturing method using the composition, and a solar cell manufactured by the above manufacturing method.
  • the present inventors have found that the above problems can be solved by adjusting the type and content of the solvent contained in the diffusing agent composition, and have completed the present invention.
  • a diffusing agent composition comprising a silicon compound (a), an impurity diffusing component (b) and a solvent (c), wherein the solvent (c) has a boiling point of 100 ° C. or lower. (C1) and a solvent (c2) having a boiling point of 180 to 230 ° C., the proportion of the solvent (c1) in the entire composition is 70 to 90% by mass, and the proportion of the solvent (c2) is 1 to 20% by mass
  • a diffusing agent composition is provided.
  • the step of forming the pattern by ejecting the above composition on the semiconductor substrate by the inkjet method, and diffusing the impurity diffusion component (b) in the pattern into the semiconductor substrate comprising: a step.
  • a method for manufacturing a solar cell including the above method for manufacturing an electrode.
  • a solar cell manufactured by the above solar cell manufacturing method.
  • the diffusing agent composition even when the diffusing agent composition is applied to the surface of a material that does not soak the diffusing agent composition, a pattern can be formed without causing bleeding or the like. As a result, a pattern faithful to the originally intended pattern can be formed on the substrate. Furthermore, according to the present invention, by including the solvent (c2) having a boiling point of 180 to 230 ° C., it is possible to prevent occurrence of uneven coating of the diffusing agent composition layer formed after coating.
  • FIG. 4 is a diagram showing a part of a layer formed using the diffusing agent composition of Example 3.
  • FIG. It is a figure which shows a part of layer formed using the diffusing agent composition of Example 4.
  • the present invention provides, as a first aspect, a diffusing agent composition
  • a diffusing agent composition comprising a silicon compound (a), an impurity diffusion component (b) and a solvent (c), wherein the solvent (c) has a boiling point of 100 ° C. or less.
  • the silicon compound (a), the impurity diffusion component (b) and the solvent (c) are as follows.
  • the silicon compound (hereinafter also referred to as “component (a)”) may be a conventionally known compound for forming a silicon-based coating on a semiconductor substrate, such as for forming an interlayer insulating film, and is not particularly limited.
  • the diffusing agent composition can have heat resistance. Examples of such component (a) include inorganic or organic silicon-containing compounds.
  • Inorganic silicon-containing compound As an inorganic silicon containing compound, the inorganic silicon containing compound used as a conventionally well-known inorganic filler in manufacture of a semiconductor is mentioned. For example, a compound having (—O—Si—O—) n as a skeleton is generally preferable.
  • Organic silicon-containing compound a compound for forming a silica-based film by a conventionally known SOG (spin-on-glass) method can be used, and a siloxane polymer is preferable.
  • a siloxane polymer for example, a reaction product obtained by hydrolyzing at least one selected from alkoxysilanes represented by the following general formula (I) is used.
  • R 4-n Si (OR ′) n (I) (Wherein R represents a hydrogen atom, an alkyl group or a phenyl group, R ′ represents an alkyl group or a phenyl group, and n represents an integer of 2 to 4.
  • R represents a hydrogen atom, an alkyl group or a phenyl group
  • R ′ represents an alkyl group or a phenyl group
  • n represents an integer of 2 to 4.
  • the alkyl group as R is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 4 carbon atoms. At least one of R is an alkyl group or a phenyl group.
  • the alkyl group as R ′ is preferably a linear or branched alkyl group having 1 to 5 carbon atoms.
  • the alkyl group as R ′ preferably has 1 or 2 carbon atoms from the viewpoint of hydrolysis rate.
  • the reaction product obtained by hydrolyzing the silane compound includes a low molecular weight hydrolyzate and a condensate (siloxane oligomer) produced by causing a dehydration condensation reaction between molecules simultaneously with the hydrolysis reaction. It's okay.
  • the siloxane polymer in this specification refers to the whole including these hydrolyzate or condensate.
  • the mass average molecular weight (Mw) of the siloxane polymer is preferably 1000 to 3000.
  • a more preferable range is 1200 to 2700, and a further preferable range is 1500 to 2000.
  • silane compound (i) when n in the general formula (I) is 4 is represented by the following general formula (II).
  • R 1 , R 2 , R 3 and R 4 each independently represent the same alkyl group or phenyl group as R ′ above.
  • silane compound (ii) when n in the general formula (I) is 3 is represented by the following general formula (III).
  • R 5 represents the same hydrogen atom, alkyl group or phenyl group as R.
  • R 6 , R 7 and R 8 each independently represents the same alkyl group or phenyl group as R ′ above.
  • silane compound (iii) when n in the general formula (I) is 2 is represented by the following general formula (IV).
  • R 9 R 10 Si (OR 11 ) h (OR 12 ) i (IV) (In the formula, R 9 and R 10 represent the same hydrogen atom, alkyl group, or phenyl group as R. However, at least one of R 9 and R 10 represents an alkyl group or a phenyl group.
  • silane compound (i) examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxy.
  • silane compound (ii) examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltripentyloxysilane, ethyltrimethoxysilane, ethyltripropoxysilane, ethyltripentyloxysilane, ethyltripentylsilane.
  • silane compound (iii) examples include methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethylmethoxypropoxy.
  • the silane compound used to obtain the reaction product can be appropriately selected from the silane compounds (i) to (iii).
  • the silane compound (i) is most preferable.
  • a more preferable combination is a combination of a silane compound (i) and a silane compound (ii).
  • the use ratio of the silane compound (i) is preferably 10 to 60 mol%, and the silane compound (ii) is preferably within the range of 90 to 40 mol%. More preferably, the silane compound (i) is 15 to 50 mol% and the silane compound (ii) is 85 to 50 mol%.
  • the silane compound (ii) is more preferably one in which R 5 in the general formula (III) is an alkyl group or a phenyl group, preferably an alkyl group.
  • the reaction product is prepared, for example, by a method in which one or more selected from the silane compounds (i) to (iii) are hydrolyzed and condensed in the presence of an acid catalyst, water, and an organic solvent. Can do.
  • the acid catalyst can be either an organic acid or an inorganic acid.
  • the inorganic acid sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid and the like can be used, among which phosphoric acid and nitric acid are preferable.
  • the organic acid include carboxylic acids such as formic acid, oxalic acid, fumaric acid, maleic acid, glacial acetic acid, acetic anhydride, propionic acid, and n-butyric acid, and organic acids having sulfur-containing acid residues.
  • the organic acid having a sulfur-containing acid residue include organic sulfonic acids, and examples of esterified products thereof include organic sulfates and organic sulfites.
  • an organic sulfonic acid for example, a compound represented by the following general formula (V) is preferable.
  • R 13 -X (V) (In the formula, R 13 is a hydrocarbon group which may have a substituent, and X is a sulfonic acid group.)
  • the hydrocarbon group as R 13 is preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group may be saturated, unsaturated, or linear. , Branched or annular.
  • an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, and an anthryl group is preferable, and among them, a phenyl group is preferable.
  • One or more hydrocarbon groups having 1 to 20 carbon atoms may be bonded as a substituent to the aromatic ring in the aromatic hydrocarbon group.
  • the hydrocarbon group as a substituent on the aromatic ring may be saturated or unsaturated, and may be linear, branched or cyclic.
  • the hydrocarbon group as R 13 may have one or more substituents, and examples of the substituent include halogen atoms such as fluorine atoms, sulfonic acid groups, carboxyl groups, hydroxyl groups, amino Group, cyano group and the like.
  • halogen atoms such as fluorine atoms, sulfonic acid groups, carboxyl groups, hydroxyl groups, amino Group, cyano group and the like.
  • the organic sulfonic acid represented by the general formula (V) nonafluorobutane sulfonic acid, methane sulfonic acid, trifluoromethane sulfonic acid, dodecylbenzene sulfonic acid, or these are particularly preferable from the viewpoint of the shape improvement effect at the bottom of the resist pattern. A mixture or the like is preferred.
  • the acid catalyst acts as a catalyst when hydrolyzing the silane compound in the presence of water.
  • the amount of the acid catalyst used is 1 to 1000 ppm, particularly 5 to 800 ppm, in the reaction system of the hydrolysis reaction. It is good to adjust so that it is in the range.
  • the amount of water added is determined according to the hydrolysis rate to be obtained because the hydrolysis rate of the siloxane polymer changes accordingly.
  • the hydrolysis rate of the siloxane polymer refers to the number of water molecules relative to the number of alkoxy groups (in moles) in the silane compound present in the reaction system of the hydrolysis reaction for synthesizing the siloxane polymer ( The number of moles) (unit:%).
  • the hydrolysis rate of the siloxane polymer is preferably 50 to 200%, more preferably 75 to 180%.
  • Examples of the organic solvent in the reaction system of the hydrolysis reaction include monohydric alcohols such as methanol, ethanol, propanol, isopropanol (IPA), n-butanol, methyl-3-methoxypropionate, and ethyl-3-ethoxypropionate.
  • monohydric alcohols such as methanol, ethanol, propanol, isopropanol (IPA), n-butanol, methyl-3-methoxypropionate, and ethyl-3-ethoxypropionate.
  • Alkyl carboxylic acid esters such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol and other polyhydric alcohols, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol mono Butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether , Diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, monoethers of polyhydric alcohols such as propylene glycol monobutyl ether or their monoacetates, methyl acetate, ethyl acetate, acetic acid Esters such as butyl, ketones such as acetone, methyl ethyl ketone, methyl
  • a siloxane polymer is obtained by a hydrolysis reaction in such a reaction system.
  • the hydrolysis reaction is usually completed in about 5 to 100 hours, but in order to shorten the reaction time, it is preferable to heat in a temperature range not exceeding 80 ° C.
  • a synthesized siloxane polymer and a reaction solution containing the organic solvent used for the reaction are obtained.
  • the siloxane polymer can be obtained by separating from an organic solvent by a conventionally known method and drying.
  • the compounding amount of the silicon compound in the diffusing agent composition according to the present invention is preferably 2 to 10% by mass in terms of SiO 2 with respect to the whole composition. By blending in the above range, a film without cracks can be formed, and a good impurity diffusion effect can be obtained. In particular, 2 to 5% by mass is preferable.
  • impurity diffusion component (b) As the impurity diffusion component (hereinafter, also referred to as “component (b)”), a compound that has generally been used in the manufacture of solar cells as a dopant can be used.
  • a component (b) contains a Group III element oxide or a Group V element compound, so that a p-type or n-type diffusion region can be formed in the silicon substrate in the step of forming an electrode.
  • a p-type diffusion region can be selected from a group III element compound
  • an n-type diffusion region can be selected from a group v element compound.
  • any combination of a group III element compound and a group V element compound may be used.
  • group III element and group V element compounds examples include B 2 O 3 , Al 2 O 3 , Bi 2 O 3 , P 2 O 5, etc., and component (b) includes diffusion. One or more of these are included depending on whether the region is p-type or n-type.
  • Such a group III element compound or group V element compound is preferably contained in an amount of 0.1% by mass or more, more preferably 1.0% by mass or more, based on the diffusing agent composition.
  • the impurity diffusion effect is important for the balance between the compounding amount of the silicon compound (a) and the compounding amount of the impurity diffusion component (b).
  • the compounding amount of the silicon compound (a) is 2 to 5% by mass, and When the compounding amount of the impurity diffusion component (b) is in the range of 1.5 to 3.0% by mass, a good diffusion effect can be obtained.
  • the solvent includes a solvent (c1) having a boiling point of 100 ° C. or less and a solvent (c2) having a boiling point of 180 to 230 ° C.
  • the solvent having a boiling point of 100 ° C. or lower may be any organic solvent as long as the boiling point at normal pressure meets the above conditions.
  • component (c1) include methanol, ethanol, ethyl acetate, methyl acetate, methyl ethyl ketone, and acetone. Of these, ethanol is preferred.
  • the component (c1) is preferably contained in the range of 70 to 90% by mass, particularly 72 to 80% by mass of the diffusing agent composition. Furthermore, the component (c1) may be used alone or as a mixture of two or more types of components (c1).
  • the solvent having a boiling point of 180 to 230 ° C. may be any organic solvent as long as the boiling point satisfies the above conditions.
  • component (c2) include polyhydric alcohols such as propylene glycol and ethylene glycol. Of these, propylene glycol is preferred.
  • the component (c2) is preferably contained in the range of 1 to 20% by mass, particularly 2 to 10% by mass of the diffusing agent composition.
  • the difference in film thickness of the diffusing agent composition layer formed after coating can be made 0.1 ⁇ m or less.
  • the solute component mainly the total amount of the silicon compound (a) and the impurity diffusion component (b)
  • the total mass of the component (c2) and dipropylene glycol described later is the composition.
  • a content of 10% by mass or less, preferably 8% by mass or less of the entire product is preferable because a good film without pattern bleeding can be formed.
  • (c2) component may be used individually or in mixture of 2 or more types of (c2) component.
  • the component (c) can further contain dipropylene glycol, which is a conventional solvent, in order to prevent clogging of the head part of an inkjet discharger or the like, and dipropylene glycol is particularly preferable.
  • the amount of dipropylene glycol blended in the diffusing agent composition is preferably in the range of 1 to 10% by mass, particularly 2 to 7% by mass.
  • the diffusing agent composition according to the present invention may further contain a surfactant (hereinafter also referred to as “component (d)”).
  • component (d) component By including (d) component, applicability
  • coating can be reduced.
  • a component (d) a conventionally known one can be used, and a silicone-based surfactant is preferable.
  • the component (d) is preferably contained in the range of 500 to 3000 ppm by mass, particularly 600 to 2500 ppm by mass with respect to the entire diffusing agent composition. Furthermore, it is preferable that it is 2000 mass ppm or less because of excellent peelability of the diffusing agent composition layer after the diffusion treatment.
  • the component (d) may be used alone or in combination.
  • the diffusing agent composition according to the present invention can be used for manufacturing an electrode for a solar cell, as will be described later.
  • a semiconductor substrate frequently used in solar cells is a silicon substrate, and fine irregularities of about 2 ⁇ m called texture are formed on the surface of the silicon substrate.
  • the layer of the applied diffusing agent composition becomes too thick at the locations where the difference in unevenness is large, and cracks may occur when the applied diffusing agent composition shrinks by heating.
  • the layer of the diffusing agent composition formed after the application may float from the substrate and the diffusion efficiency of the impurity diffusing agent component may decrease.
  • coating diffusing agent composition can further be contained.
  • Such additives include porogen or colloidal silica. By containing porogen or colloidal silica, when the formed diffusing agent composition layer is heated, generation of cracks and lifting of the diffusing agent composition layer from the substrate can be prevented.
  • porogen is a material that is decomposed during firing of the diffusing agent composition layer to form pores in the finally formed silicon compound film.
  • this porogen include polyalkylene glycol and terminal alkylated products thereof; monosaccharides or derivatives thereof such as glucose, fructose, galactose; disaccharides or derivatives thereof such as sucrose, maltose, lactose; and polysaccharides or derivatives thereof Can do.
  • polyalkylene glycol is preferable, and polypropylene glycol is more preferable.
  • the mass average molecular weight of the porogen is preferably 300 to 10,000, and more preferably 500 to 5,000.
  • the mass average molecular weight By setting the mass average molecular weight to 300 or more, decomposition and volatilization when the diffusing agent composition is applied and dried can be suppressed, and porogen can sufficiently act during thermal diffusion treatment. On the other hand, when the mass average molecular weight is 10000 or less, decomposition easily occurs during thermal diffusion treatment, and porogen can sufficiently act.
  • colloidal silica can be used instead of borogen.
  • the colloidal silica is preferably dispersed in an organic solvent.
  • organic solvents are not particularly limited as long as they do not affect the effect of the component (c) described above, but examples thereof include methanol, ethanol, isopropanol (IPA), n-butanol, isobutanol and the like.
  • lower aliphatic alcohols ethylene glycol derivatives such as ethylene glycol, ethylene glycol monobutyl ether and ethylene glycol monoethyl ether, diethylene glycol derivatives such as diethylene glycol and diethylene glycol monobutyl ether, and diacetone alcohol.
  • One or more selected from the group can be used. Furthermore, in combination with these organic solvents, one or more of toluene, xylene, hexane, ethyl heptane acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl ethyl ketoxime and the like can be used.
  • the particle diameter of the silica particles is not particularly limited as long as it does not cause clogging of the head part of an inkjet discharger or the like, but is preferably 10 to 50 nm.
  • the content of porogen or colloidal silica is preferably 10% by mass or less of the entire solid content or 1% by mass or less of the entire diffusing agent composition.
  • the diffusing agent composition according to the present invention can be prepared by mixing the above-described components by a conventionally known method so as to form a uniform solution in an arbitrary order. At this time, it is preferable to prepare so that the total solid content concentration is 6% by mass or less. By setting such a concentration, the pattern formed after ejection can be adjusted to an appropriate thickness.
  • the present invention provides a step of forming a pattern by discharging the diffusing agent composition on a semiconductor substrate by an inkjet method, and diffusing the impurity diffusion component (b) in the pattern into the semiconductor substrate. And a method of manufacturing an electrode. About each process, it is as follows.
  • the pattern may be formed by discharging the diffusing agent composition using an ink jet discharge machine and depositing it on the semiconductor substrate.
  • an inkjet discharger any of a piezoelectric discharger that uses a piezoelectric element (piezoelectric element) that deforms when a voltage is applied and a thermal discharger that uses bubbles generated by heating can be used.
  • a conventionally known means such as an oven.
  • the thickness of the formed pattern, that is, the diffusing agent composition layer is preferably 0.1 to 0.6 ⁇ m.
  • the component (b) can be efficiently diffused into the semiconductor substrate. Further, as described above, by including the component (c2), the difference in thickness of the diffusing agent composition layer formed after coating can be made 0.1 ⁇ m or less.
  • the step of diffusing the impurity diffusion component (b) in the pattern into the semiconductor substrate can be performed using a conventionally known method and is not particularly limited. For example, by baking using a diffusion furnace such as an electric furnace. It can be carried out. Firing may be performed in an inert gas atmosphere or an air atmosphere. The firing temperature is preferably 800 ° C to 1000 ° C. Moreover, it may replace with a diffusion furnace and may be heated by irradiation of a conventional laser. In this way, the component (b) diffuses into the semiconductor substrate, and a p-type or n-type diffusion region is formed according to the added element. Thereafter, an electrode can be formed by providing an n region or p region contact hole in a conventional manner at a location where the component (b) of the semiconductor substrate is diffused.
  • This invention provides the manufacturing method of the solar cell containing the manufacturing method of said electrode as a 3rd aspect, and the solar cell manufactured by said manufacturing method as a 4th aspect.
  • the solar cell can be formed by a method such as attaching a conducting wire to the electrode formed as described above by a conventionally known method.
  • the electrode manufacturing method according to the present invention requires a complicated process as compared with the conventional method because an impurity diffusion region can be selectively provided at a desired location by using ink jet printing.
  • a solar cell can be manufactured without using a large amount of the diffusing agent composition.
  • Example 1 >> ⁇ Preparation of diffusing agent composition>
  • a silicon compound 9.0 mass% tetraethoxysilane hydrolysis product (molecular weight (Mw) of about 2000) in terms of SiO 2 , 1.0 mass% of diphosphorus pentoxide (P 2 O 5 ), ethanol (boiling point 78.78). 3%) 75% by mass, dipropylene glycol (boiling point 232 ° C) 5.0% by mass, propylene glycol (boiling point 187 ° C) 10.0% by mass, uniformly mixed and filtered through a 0.45 ⁇ m membrane filter An agent composition was prepared.
  • FIG. 1 shows the results of Example 2
  • FIG. 2 shows the results of Example 3
  • FIG. 3 shows the results of Example 4.
  • ⁇ Diffusion efficiency test >> Using the diffusing agent compositions of Examples 5 to 7, an n-type diffusion layer was formed as described above, and sheet resistance was measured. The sheet resistance was measured as follows. ⁇ Measuring method of sheet resistance> The silicon substrate coated with the diffusing agent composition as described above was baked in an electric furnace at 950 ° C. for 30 minutes in a nitrogen atmosphere to form an n-type diffusion layer. The sheet resistance value of the n-type diffusion layer thus formed was measured using a sheet resistance measuring device “VR-70” (product name, manufactured by Kokusai Denki Co., Ltd.) by a four probe method. Table 3 shows the measured resistance values.
  • FIGS. 4A to 4C show the results of Example 8
  • FIGS. 5A to 5C show the results of Example 9, respectively.
  • a composition (comparative sample) was prepared in the same manner as the composition of Example 8 except that PPG was not blended in Example 8, and the results of the above observation were shown in FIG. Shown in (c).
  • FIG. 4A, FIG. 5A and FIG. 6A an elliptical portion indicates the occurrence of a crack.
  • FIG. 6 (a) it can be seen that there are significantly more oval parts than the other two figures.
  • 4 (b), 5 (b), and 6 (b) are cross-sectional views of a part of a film formed using the diffusing agent composition.
  • FIG. 6B shows that the formed film is broken.
  • FIGS. 4C, 5C, and 6C are cross-sectional views of other portions of the film formed using the diffusing agent composition.
  • FIG. 6C it can be seen that the formed film is lifted compared to the other two figures. From the above, it has been found that the inclusion of porogen or colloidal silica in the diffusing agent composition according to the present invention can prevent the occurrence of cracks and lifting of the formed film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Paints Or Removers (AREA)

Abstract

 インクジェット用拡散剤組成物、当該拡散剤組成物を用いた電極及び太陽電池の製造方法並びに上記製造方法により製造した太陽電池を提供する。インクジェット用拡散剤組成物は、ケイ素化合物(a)、不純物拡散成分(b)及び溶剤(c)を含むインクジェット用拡散剤組成物であって、前記溶剤(c)が沸点100°C以下の溶剤(c1)と沸点180~230°Cの溶剤(c2)とを含有し、組成物全体に占める溶剤(c1)の割合が70~90質量%、溶剤(c2)の割合が1~20質量%である。

Description

インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法
 本発明は、インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法並びに上記製造方法により製造した太陽電池に関する。
 近年、半導体、特に太陽電池の製造において、インクジェット方式を用いてドーパントと呼ばれる不純物拡散成分を含む層(拡散剤組成物層)を形成する方法が用いられるようになった。この方法は、従来行われてきたリソグラフィー法等と比較して複雑な工程を必要とせず、容易にパターンを形成することができるため、製造コストの削減に貢献するものと期待されている。特に、インクジェット印刷を用いることにより、拡散剤組成物を所望の場所にのみ塗布することができ、従来行われてきたスピンコート法等による拡散剤組成物の塗布方法に比べ、拡散剤組成物の使用量を大きく削減することが可能になる。
 このように、インクジェット方式を使用することにより、パターンを形成する作業が容易になり、拡散剤組成物の使用量も削減できるが、従来のエタノール又はイソプロピルアルコールを主体とする拡散剤組成物では乾燥性が高すぎてヘッド部で目詰まりを起こしてしまう等、吐出安定性に問題があった。そこで、従来のエタノール又はイソプロピルアルコールを主体とする拡散剤組成物に、20~40体積%のグリセリンとジメチルホルムアミド(DMF)とを添加することによって目詰まりを防ぐ等、拡散剤組成物の吐出安定性をより向上させる方法が提案されている(特許文献1)。
特開2005-038997号公報
 しかしながら、拡散剤組成物を塗布する基板の表面が当該拡散剤組成物を染み込まない材質であり、特許文献1に記載されるように、当該拡散剤組成物中にグリセリンやジメチルホルムアミド等の高沸点溶剤を多く含む場合には、塗布液が乾きにくく、塗布後のパターンが滲むことや広がることがあり、塗布したパターンが時間の経過と共に不鮮明になってしまうという問題が新たに見つかった。
 このような事情にかんがみ、本発明は、インクジェット方式を用いて、選択的に拡散剤組成物を塗布して拡散剤組成物層を形成できるインクジェット用拡散剤組成物(以下、「拡散剤組成物」という。)、当該組成物を用いた電極及び太陽電池の製造方法並びに上記製造方法により製造した太陽電池を提供することを目的とする。
 本発明者らは、拡散剤組成物に含有される溶剤の種類と含有量とを調整することによって上記の課題が解決できることを見出し、本発明を完成するに至った。
 本発明の第一の態様によれば、ケイ素化合物(a)、不純物拡散成分(b)及び溶剤(c)を含む拡散剤組成物であって、前記溶剤(c)が沸点100℃以下の溶剤(c1)と沸点180~230℃の溶剤(c2)とを含み、組成物全体に占める溶剤(c1)の割合が70~90質量%、溶剤(c2)の割合が1~20質量%であることを特徴とする拡散剤組成物を提供する。
 本発明の第二の態様によれば、半導体基板上にインクジェット方式により上記の組成物を吐出してパターンを形成する工程と、前記パターン中の不純物拡散成分(b)を前記半導体基板に拡散させる工程と、を有する電極の製造方法を提供する。
 本発明の第三の態様によれば、上記の電極の製造方法を含む太陽電池の製造方法を提供する。
 本発明の第四の態様によれば、上記の太陽電池の製造方法により製造された太陽電池を提供する。
 本発明によれば、拡散剤組成物を、当該拡散剤組成物を染み込まない材質の表面に塗布しても、滲み等を発生させることなくパターンを形成することができる。これにより、当初企図したパターンに忠実なパターンを基材上に形成することができるようになる。さらに、本発明によれば、沸点180~230℃の溶剤(c2)を含むことにより、塗布後に形成される拡散剤組成物層の塗りムラの発生を防止することができる。
実施例2の拡散剤組成物を用いて形成した層の一部を示す図である。 実施例3の拡散剤組成物を用いて形成した層の一部を示す図である。 実施例4の拡散剤組成物を用いて形成した層の一部を示す図である。 実施例8の拡散剤組成物を用いて形成した層の一部を示す図である。 実施例9の拡散剤組成物を用いて形成した層の一部を示す図である。 比較試料の拡散剤組成物を用いて形成した層の一部を示す図である。
 本発明の実施形態について以下に記載するが、これに限定するものではない。
 本発明は、第一の態様として、ケイ素化合物(a)、不純物拡散成分(b)及び溶剤(c)を含む拡散剤組成物であって、前記溶剤(c)が沸点100℃以下の溶剤(c1)と沸点180~230℃の溶剤(c2)とを含み、組成物全体に占める溶剤(c1)の割合が70~90質量%、溶剤(c2)の割合が1~20質量%であることを特徴とする拡散剤組成物を提供するが、上記のケイ素化合物(a)、不純物拡散成分(b)及び溶剤(c)については、次のとおりである。
<<ケイ素化合物(a)>>
 ケイ素化合物(以下、「(a)成分」ともいう。)は、例えば層間絶縁膜形成用のもの等、半導体基板上へのケイ素系被覆形成用の従来公知の化合物でよく、特に限定されない。(a)成分を用いることにより、拡散剤組成物が耐熱性を有することができる。このような(a)成分としては、無機又は有機ケイ素含有化合物が挙げられる。
<無機ケイ素含有化合物>
 無機ケイ素含有化合物としては、半導体の製造において従来公知の無機充填物として用いられる無機ケイ素含有化合物が挙げられる。例えば、一般に骨格として(-O-Si-O-)を有する化合物が好ましい。
<有機ケイ素含有化合物>
 有機ケイ素含有化合物としては従来公知のSOG(スピンオングラス)法によるシリカ系被膜形成用の化合物を用いることができるが、シロキサンポリマーが好ましい。このようなシロキサンポリマーとして、例えば、下記一般式(I)で表されるアルコキシシランから選択される少なくとも1種を加水分解反応させて得られる反応生成物が用いられる。
 R4-nSi(OR’)・・・(I)
(式中、Rは水素原子、アルキル基又はフェニル基を表し、R’はアルキル基又はフェニル基を表し、nは2~4の整数を表す。Siに複数のRが結合している場合、該複数のRは同じであっても異なっていてもよい。またSiに結合している複数の(OR’)基は同じであっても異なっていてもよい。)
 Rとしてのアルキル基は、好ましくは炭素数1~20の直鎖状又は分岐状のアルキル基であり、より好ましくは炭素数1~4の直鎖状又は分岐状のアルキル基である。Rのうち少なくとも1つはアルキル基又はフェニル基である。
 R’としてのアルキル基は、好ましくは炭素数1~5の直鎖状又は分岐状のアルキル基である。R’としてのアルキル基は、特に加水分解速度の点から炭素数1又は2が好ましい。
 上記シラン化合物を加水分解反応させて得られる反応生成物には、低分子量の加水分解物、及び加水分解反応と同時に分子間で脱水縮合反応を生じて生成された縮合物(シロキサンオリゴマー)を含んでよい。本明細書におけるシロキサンポリマーとは、かかる加水分解物又は縮合物を含む場合、これらをも含む全体を指す。
 シロキサンポリマーの質量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算基準、以下同様、)は、1000~3000が好ましい。より好ましい範囲は1200~2700であり、さらに好ましい範囲は1500~2000である。
 上記一般式(I)におけるnが4の場合のシラン化合物(i)は下記一般式(II)で表される。
 Si(OR(OR(OR(OR・・・(II)
(式中、R、R、R及びRは、それぞれ独立に上記R’と同じアルキル基又はフェニル基を表す。a、b、c及びdは、0≦a≦4、0≦b≦4、0≦c≦4、0≦d≦4であって、かつa+b+c+d=4の条件を満たす整数である。)
 一般式(I)におけるnが3の場合のシラン化合物(ii)は下記一般式(III)で表される。
 RSi(OR(OR(OR・・・(III)
(式中、Rは上記Rと同じ水素原子、アルキル基、又はフェニル基を表す。R、R、及びRは、それぞれ独立に上記R’と同じアルキル基又はフェニル基を表す。e、f、及びgは、0≦e≦3、0≦f≦3、0≦g≦3であって、かつe+f+g=3の条件を満たす整数である。)
 一般式(I)におけるnが2の場合のシラン化合物(iii)は下記一般式(IV)で表される。
 R10Si(OR11(OR12・・・(IV)
(式中、R及びR10は上記Rと同じ水素原子、アルキル基、又はフェニル基を表す。ただし、R及びR10のうちの少なくとも1つはアルキル基又はフェニル基を表す。R11、及びR12は、それぞれ独立に上記R’と同じアルキル基又はフェニル基を表す。h及びiは、0≦h≦2、0≦i≦2であって、かつh+i=2の条件を満たす整数である。)
 シラン化合物(i)の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシラン等のテトラアルコキシシランが挙げられ、中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
 シラン化合物(ii)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、メチルモノメトキシジエトキシシラン、エチルモノメトキシジエトキシシラン、プロピルモノメトキシジエトキシシラン、ブチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、プロピルメトキシエトキシプロポキシシラン、ブチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等が挙げられ、中でもメチルトリアルコキシシラン(特にメチルトリメトキシシラン、メチルトリエトキシシラン)が好ましい。
 シラン化合物(iii)の具体例としては、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が挙げられ、中でもメチルジメトキシシラン、メチルジエトキシシランが好ましい。
 上記反応生成物を得るのに用いるシラン化合物は、上記シラン化合物(i)~(iii)の中から適宜選択することができる。シラン化合物としてはシラン化合物(i)が最も好ましい。なお、これらのシラン化合物を混合して用いる場合、より好ましい組み合わせはシラン化合物(i)とシラン化合物(ii)との組み合わせである。シラン化合物(i)とシラン化合物(ii)とを用いる場合、これらの使用割合はシラン化合物(i)が10~60モル%で、シラン化合物(ii)が90~40モル%の範囲内が好ましく、シラン化合物(i)が15~50モル%で、シラン化合物(ii)が85~50モル%の範囲内がより好ましい。また、シラン化合物(ii)は、上記一般式(III)におけるRがアルキル基又はフェニル基、好ましくはアルキル基であるものがより好ましい。
 上記反応生成物は、例えば、上記シラン化合物(i)~(iii)の中から選ばれる1種以上を、酸触媒、水、有機溶剤の存在下で加水分解、縮合反応せしめる方法で調製することができる。
 上記酸触媒は有機酸、無機酸のいずれも使用できる。無機酸としては、硫酸、リン酸、硝酸、塩酸等が使用でき、中でも、リン酸、硝酸が好適である。上記有機酸としては、ギ酸、シュウ酸、フマル酸、マレイン酸、氷酢酸、無水酢酸、プロピオン酸、n-酪酸等のカルボン酸及び硫黄含有酸残基をもつ有機酸が用いられる。上記硫黄含有酸残基をもつ有機酸としては、有機スルホン酸が挙げられ、それらのエステル化物としては有機硫酸エステル、有機亜硫酸エステル等が挙げられる。これらの中で、特に有機スルホン酸、例えば、下記一般式(V)で表される化合物が好ましい。
 R13-X・・・(V)
(式中、R13は、置換基を有していてもよい炭化水素基、Xはスルホン酸基である。)
 上記一般式(V)において、R13としての炭化水素基は、炭素数1~20の炭化水素基が好ましく、この炭化水素基は飽和のものでも、不飽和のものでもよいし、直鎖状、分岐状、環状のいずれであってもよい。R13の炭化水素基が環状の場合、例えばフェニル基、ナフチル基、アントリル基等の芳香族炭化水素基がよく、中でもフェニル基が好ましい。この芳香族炭化水素基における芳香環には置換基として炭素数1~20の炭化水素基が1個又は複数個結合していてもよい。該芳香環上の置換基としての炭化水素基は飽和のものでも、不飽和のものでもよいし、直鎖状、分岐状、環状のいずれであってもよい。また、R13としての炭化水素基は1個又は複数個の置換基を有していてもよく、該置換基としては、例えばフッ素原子等のハロゲン原子、スルホン酸基、カルボキシル基、水酸基、アミノ基、シアノ基等が挙げられる。上記一般式(V)で表される有機スルホン酸としては、レジストパターン下部の形状改善効果の点から、特にノナフルオロブタンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ドデシルベンゼンスルホン酸又はこれらの混合物等が好ましい。
 上記酸触媒は、水の存在下でシラン化合物を加水分解するときの触媒として作用するが、使用する酸触媒の量は、加水分解反応の反応系中の濃度が1~1000ppm、特に5~800ppmの範囲になるように調整するのがよい。水の添加量は、これによってシロキサンポリマーの加水分解率が変わるので、得ようとする加水分解率に応じて決められる。本明細書におけるシロキサンポリマーの加水分解率とは、該シロキサンポリマーを合成するための加水分解反応の反応系中に存在する、シラン化合物中のアルコキシ基の数(モル数)に対する水分子の数(モル数)の割合(単位:%)である。本発明において、シロキサンポリマーの加水分解率は50~200%が好ましく、より好ましい範囲は75~180%である。
 加水分解反応の反応系における有機溶剤は、例えばメタノール、エタノール、プロパノール、イソプロパノール(IPA)、n-ブタノールのような一価アルコール、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネートのようなアルキルカルボン酸エステル、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類あるいはこれらのモノアセテート類、酢酸メチル、酢酸エチル、酢酸ブチルのようなエステル類、アセトン、メチルエチルケトン、メチルイソアミルケトンのようなケトン類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテルのような多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類等が挙げられる。上記有機溶剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 このような反応系で加水分解反応させることによりシロキサンポリマーが得られる。該加水分解反応は、通常5~100時間程度で完了するが、反応時間を短縮させるには、80℃を超えない温度範囲で加熱するのがよい。
 反応終了後、合成されたシロキサンポリマーと、反応に用いた有機溶剤を含む反応溶液とが得られる。シロキサンポリマーは、従来公知の方法により有機溶媒と分離し、乾燥することにより得ることができる。
 本発明に係る拡散剤組成物におけるケイ素化合物の配合量は、組成物全体に対してSiO換算で2~10質量%が好ましい。
 上記範囲で配合することによりクラックのない被膜を形成でき、また良好な不純物の拡散効果が得られる。特には2~5質量%が好ましい。
<<不純物拡散成分(b)>>
 不純物拡散成分(以下、「(b)成分」ともいう。)は、一般にドーパントとして太陽電池の製造に用いられてきた化合物を用いることができる。このような(b)成分は、III族元素の酸化物又はV族元素の化合物を含むことにより、電極を形成する工程においてシリコン基板内にp型又はn型拡散領域を形成することができる。例えばp型拡散領域を形成しようとすればIII族元素の化合物から、n型拡散領域を形成しようとすればV族元素の化合物から選択することができる。また、所望の拡散領域の性質に応じて、III族元素の化合物とV族元素の化合物とから任意に組み合わせて用いてもよい。このような、III族元素及びV族元素の化合物には、例えば、B、Al、Bi、P等が挙げられ、(b)成分には、拡散領域をp型にするかn型にするか所望に応じて、これらのうち1種類以上が含まれる。このようなIII族元素の化合物又はV族元素の化合物は、拡散剤組成物に対して0.1質量%以上含まれることが好ましく、1.0質量%以上含まれることがさらに好ましい。なお、不純物の拡散効果はケイ素化合物(a)の配合量と不純物拡散成分(b)の配合量とのバランスが重要で、特にケイ素化合物(a)の配合量が2~5質量%で、かつ不純物拡散成分(b)の配合量が1.5~3.0質量%の範囲の時、良好な拡散効果を得ることができる。
<<溶剤(c)>>
 溶剤(以下、「(c)成分」ともいう。)は、沸点100℃以下の溶剤(c1)と沸点180~230℃の溶剤(c2)とを含む。
<沸点100℃以下の溶剤(c1)>
 沸点100℃以下の溶剤(以下、「(c1)成分」ともいう。)は、常圧での沸点が前記の条件にあてはまるものであればいかなる有機溶剤でもよい。(c1)成分を含むことによって、拡散剤組成物の乾燥速度が速くなり、塗布後のパターンが滲みや広がりを防止することができる。このような(c1)成分の例として、メタノール、エタノール、酢酸エチル、酢酸メチル、メチルエチルケトン、アセトンが挙げられる。中でもエタノールが好ましい。また、(c1)成分は、拡散剤組成物の70~90質量%、特には72~80質量%の範囲で含まれることが好ましい。さらに、(c1)成分は、単独でも、2種類以上の(c1)成分を混合して用いてもよい。
<沸点180~230℃の溶剤(c2)>
 沸点180~230℃の溶剤(以下、「(c2)成分」ともいう。)は、沸点が前記の条件にあてはまるものであればいかなる有機溶剤でもよい。(c2)成分を含むことによって、塗布後に形成される拡散剤組成物層の塗りムラの発生を防止することができる。このような(c2)成分の例として、プロピレングリコール、エチレングリコール等の多価アルコールを挙げることができる。中でもプロピレングリコールが好ましい。また、(c2)成分は、拡散剤組成物の1~20質量%、特には2~10質量%の範囲で含まれることが好ましい。(c2)成分を上述の範囲の値で含むことにより、塗布後に形成される拡散剤組成物層の膜厚の高低差を0.1μm以下にすることができる。なお、溶質成分(主にケイ素化合物(a)と不純物拡散成分(b)の総量)が5質量%以下と非常に低い場合、(c2)成分と後述するジプロピレングリコールとの合計質量は、組成物全体の10質量%以下、好ましくは8質量%以下とすることで、パターン滲みのない良好な膜を形成できて好ましい。なお、(c2)成分は、単独でも、2種類以上の(c2)成分を混合して用いてもよい。
 (c)成分は、インクジェット吐出機等のヘッド部の目詰まりを防止するために慣用の溶剤であるジプロピレングリコール等を更に含むことができ、特にジプロピレングリコールは好ましい。ジプロピレングリコールの配合量は拡散剤組成物中に1~10質量%、特には2~7質量%の範囲で配合されることが好ましい。
<その他の成分>
{界面活性剤(d)}
 本発明に係る拡散剤組成物は、界面活性剤(以下、「(d)成分」ともいう。)を更に含んでよい。(d)成分を含むことによって、塗布性、平坦化性、展開性を向上させることができ、塗布後に形成される拡散剤組成物層の塗りムラの発生を減少することができる。このような(d)成分として、従来公知のものを用いることができるが、シリコーン系の界面活性剤が好ましい。また、(d)成分は、拡散剤組成物全体に対し、500~3000質量ppm、特には600~2500質量ppmの範囲で含まれることが好ましい。更に2000質量ppm以下であると、拡散処理後の拡散剤組成物層の剥離性に優れて好ましい。(d)成分は単独で用いてもよく、組み合わせて用いてもよい。
{ポロージェン又はコロイダルシリカ}
 本発明に係る拡散剤組成物は、後述するように、太陽電池用の電極の製造用に用いることができる。一般に、太陽電池において多用されている半導体基板はシリコン基板であり、当該シリコン基板の表面にはテクスチャと呼ばれる2μm程度の細かい凹凸が形成されている。テクスチャ上に拡散剤組成物を塗布すると、凹凸の差の大きい箇所では塗布した拡散剤組成物の層が厚くなりすぎてしまい、加熱することにより塗布した拡散剤組成物が収縮するとクラックが生じたり、塗布後形成した拡散剤組成物の層が基板から浮き上がり不純物拡散剤成分の拡散効率が低下することがある。本発明では、塗布した拡散剤組成物により形成される層中の応力を減少させる添加剤を更に含有させることができる。このような添加剤として、ポロージェン又はコロイダルシリカが挙げられる。ポロージェン又はコロイダルシリカを含有させることにより、形成した拡散剤組成物層を加熱した際に、クラックの発生と拡散剤組成物層の基板からの浮き上がりとを防止することができる。
[ポロージェン]
 本発明においてポロージェンとは、拡散剤組成物層の焼成時に分解され、最終的に形成されるケイ素化合物の被膜に空孔を形成させる材料である。このポロージェンとしては、例えばポリアルキレングリコール及びその末端アルキル化物;グルコース、フルクトース、ガラクトース等の単糖類又はその誘導体;スクロース、マルトース、ラクトース等の二糖類又はその誘導体;並びに多糖類又はその誘導体を挙げることができる。これらの有機化合物の中でも、ポリアルキレングリコールが好ましく、ポリプロピレングリコールが更に好ましい。上記ポロージェンの質量平均分子量は、300~10000であることが好ましく、500~5000であることが更に好ましい。質量平均分子量を300以上にすることにより、拡散剤組成物を塗布し、乾燥させたときの分解、揮発を抑制することができ、熱拡散処理時にポロージェンが十分に作用することができる。一方質量平均分子量を10000以下にすることにより、熱拡散処理時に分解しやすくなり、ポロージェンが十分に作用することができる。
[コロイダルシリカ]
 本発明においては、ボロージェンに代えてコロイダルシリカを使用することもできる。コロイダルシリカは有機溶媒に分散させることが好ましい。このような有機溶媒の例として、上述した(c)成分の効果に影響を与えないものであれば特に限定されないが、例えば、メタノール、エタノール、イソプロパノール(IPA)、n-ブタノール、イソブタノール等の低級脂肪族アルコール類、エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体、ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体、及びジアセトンアルコール等を挙げることができ、これらからなる群より選ばれる1種あるいは2種以上を使用することができる。更に、これらの有機溶媒と併用して、トルエン、キシレン、ヘキサン、ヘプタン酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシム等の1種あるいは2種以上のものを使用することができる。シリカ粒子の粒径は、インクジェット吐出機等のヘッド部の目詰まりを起こさなければ特に限定されないが、10~50nmが好ましい。
 ポロージェン又はコロイダルシリカの含有量は、固形分全体の10質量%以下又は拡散剤組成物全体の1質量%以下が好ましくい。このような含有量にすることにより、ポロージェンを用いた場合には(b)成分の拡散効率の低下を防ぐことができ、コロイダルシリカを用いた場合にはシリカ粒子の凝集によるインクジェット吐出機等のヘッド部の目詰まりや(a)成分の経時劣化を防止することができる。
<<拡散剤組成物の調製方法>>
 本発明に係る拡散剤組成物は、上記の各成分を従来公知の方法により、任意の順番で均一な溶液になるように混合することにより調製することができる。この際、全固形分濃度を6質量%以下になるように調製することが好ましい。このような濃度にすることにより、吐出後に形成されるパターンを適切な厚さに調整することができる。
<<電極の製造方法>>
 本発明は、第二の態様として、半導体基板上にインクジェット方式により上記の拡散剤組成物を吐出してパターンを形成する工程と、前記パターン中の不純物拡散成分(b)を前記半導体基板に拡散させる工程と、を有する電極の製造方法を提供する。それぞれの工程については、次のとおりである。
<パターンを形成する工程>
 パターンを形成する方法は、拡散剤組成物をインクジェット吐出機を用いて吐出して半導体基板上に付着させることにより、パターンが形成されればよい。インクジェット吐出機としては、電圧を加えると変形するピエゾ素子(圧電素子)を利用したピエゾ方式の吐出機や、加熱により発生する気泡を利用したサーマル方式の吐出機のいずれもが使用可能である。このようにしてパターンを形成した後は、オーブン等の従来公知の手段により拡散剤組成物層を乾燥させることが好ましい。形成されたパターン、すなわち拡散剤組成物層の厚みは0.1~0.6μmが好ましい。このような厚みのパターンを形成することにより、(b)成分を効率よく半導体基板内に拡散させることができる。また、上述のように、(c2)成分を含むことにより、塗布後に形成される拡散剤組成物層の厚みの高低差を0.1μm以下にすることができる。
<パターン中の不純物拡散成分(b)を半導体基板に拡散させる工程>
 パターン中の不純物拡散成分(b)を半導体基板に拡散させる工程は、従来公知の方法を用いて行うことができ、特に限定されないが、例えば、電気炉等の拡散炉を用いて焼成することにより行うことができる。焼成は不活性ガス雰囲気下でも大気雰囲気下でもよい。焼成温度は、800℃~1000℃が好ましい。また、拡散炉に代えて、慣用のレーザーの照射により加熱してもよい。このようにして、(b)成分が半導体基板内に拡散し、添加した元素に応じてp型又はn型拡散領域を形成する。この後、半導体基板の(b)成分を拡散させた箇所に常法によりn領域又はp領域コンタクトホールを設けることによって電極を形成することができる。
<<太陽電池の形成方法>>
 本発明は、第三の態様として上記の電極の製造方法を含む太陽電池の製造方法を、また、第四の態様として上記の製造方法により製造した太陽電池を提供する。太陽電池は、上記により形成した電極に、従来公知の方法により導線を取り付ける等の方法により形成することができる。本発明に係る電極の製造方法は、インクジェット印刷を使用することにより不純物の拡散領域を所望の場所に選択的に設けることができるため、従来の方法と比較して、複雑な工程を必要とすることなく、また、拡散剤組成物を多量に使用することなく、太陽電池を製造することができる。
 本発明について、以下の実施例により詳説する。しかしながら、この実施例は本発明について例示するものであり、本発明の範囲を限定するものではない。
<<実施例1>>
<拡散剤組成物の調製>
 ケイ素化合物としてSiO換算で9.0質量%のテトラエトキシシラン加水分解生成物(分子量(Mw)約2000)、五酸化二リン(P)1.0質量%、エタノール(沸点78.3℃)75質量%、ジプロピレングリコール(沸点232℃)5.0質量%、プロピレングリコール(沸点187℃)10.0質量%を均一に混合し、0.45μmのメンブレンフィルターで濾過して拡散剤組成物を調製した。
<<実施例2~9、比較例1~2>>
 表1に示す配合量で各成分を配合し、実施例1と同様に拡散剤組成物を調製した。表1中、EtOHはエタノール、DPGはジプロピレングリコール、PGはプロピレングリコール、PPGはポリプロピレングリコール(分子量700)、COSはコロイダルシリカ(PL-1-IPA:扶桑化学社製、全拡散剤組成物に対し3質量%のイソプロピルアルコール含有)をそれぞれ表す。単位は界面活性剤(質量ppm)を除いて、質量%である。
Figure JPOXMLDOC01-appb-T000001
注)1:SH28PA(シリコーン系界面活性剤、東レ・ダウコーニング・シリコーン(株)製)、2:SF8421EG(シリコーン系界面活性剤、東レ・ダウコーニング・シリコーン(株)製)
<<塗布された拡散剤組成物層の均一性及び形成した電極の抵抗値の測定>>
 実施例1~3並びに比較例1及び2の拡散剤組成物を用い、次により塗布された拡散剤組成物層の均一性及び形成した電極の抵抗値の測定を行った。
<パターンの形成>
 上記により調製した拡散剤組成物を、インクジェット吐出機(ローランド・ディー・ジー製フラットベットインクジェット吐出機)を用いて6インチp型シリコン基板上に吐出して塗布し、所望のパターンを得た。塗布後、乾燥機にて100℃で10分間乾燥した。乾燥後、塗布された拡散剤組成物層の厚みの高低差をサーフェイスプロファイラー(製品名:DEKTAK社製)を用いて測定した。測定した高低差の値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<評価>
 沸点180~230℃の溶剤(c2)を添加することにより、塗布された拡散剤組成物層の膜厚の高低差が少ない、すなわち、均一な層を形成できることがわかった(実施例1と比較例1との対比)。界面活性剤を添加することにより更に層を均一にできることがわかった(実施例1と実施例2との対比)。
<<パターンの滲みの観察>>
 実施例2~4の拡散剤組成物を用いて、上記により6インチp型シリコン基板上に塗布し、乾燥後のパターンの形状を光学顕微鏡(オリンパス社製)を用いて観察した。結果を図1~3に示す。ここで、図1は実施例2、図2は実施例3、図3は実施例4の結果をそれぞれ示す。
<評価>
 パターンの滲みを観察することにより、沸点180~230℃の溶剤(c2)の添加量の範囲(1~20質量%)の中では、添加量を減らす方が滲みを防げることがわかった(実施例4と実施例2及び3との対比)。
<<拡散効率試験>>
 実施例5~7の拡散剤組成物を用いて、上述によりn型拡散層を形成し、シート抵抗を測定した。なお、シート抵抗の測定は以下のようにして行った。
<シート抵抗の測定方法>
 上記により拡散剤組成物を塗布したシリコン基板を窒素雰囲気下で電気炉にて950℃で30分焼成し、n型拡散層を形成した。このようにして形成したn型拡散層のシート抵抗値を四探針法によるシート抵抗測定器「VR-70」(製品名 、国際電気社製)を用いて測定した。測定した抵抗値の値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
<評価>
 ケイ素化合物(a)と不純物拡散成分(b)との配合量を最適値にコントロールすることにより抵抗値が減少し、不純物の拡散が効率よく行われたことがわかった(実施例6及び7)。
<<クラック発生の防止及び塗布後の膜の浮き上がりの防止試験>>
 実施例8及び9の拡散剤組成物を用いてパターンを形成し、引き続き、拡散剤組成物を塗布したシリコン基板を950℃で30分焼成した後、表面の様子を走査型電子顕微鏡「S-5200」(商品名、日立ハイテクノロジーズ社製)を用いて観察した。結果を図4~5に示す。ここで、図4(a)~(c)は実施例8、図5(a)~(c)は実施例9の結果をそれぞれ示す。なお、実施例8においてPPGを配合しなかった以外は実施例8の組成物と同様にして組成物(比較試料)を調製し、それについて上記の観察を行った結果を図6(a)~(c)に示した。
<評価>
 図4(a)、図5(a)及び図6(a)において、楕円形の部分はクラックの発生を示す。図6(a)では楕円形の部分が他の2つの図に比べ著しく多いことがわかる。図4(b)、図5(b)及び図6(b)は、拡散剤組成物を用いて形成した膜の一部の断面図を示す。図6(b)では形成した膜が破断していることがわかる。また、図4(c)、図5(c)及び図6(c)は、拡散剤組成物を用いて形成した膜の別の部分の断面図を示す。図6(c)では、ほかの2つの図に比べ、形成した膜が浮き上がっていることがわかる。
 以上より、ポロージェン又はコロイダルシリカを本発明に係る拡散剤組成物に含有させることにより、クラック及び形成した膜の浮き上がりの発生が防止できることがわかった。

Claims (12)

  1.  ケイ素化合物(a)、不純物拡散成分(b)及び溶剤(c)を含むインクジェット用拡散剤組成物であって、前記溶剤(c)が沸点100℃以下の溶剤(c1)と沸点180~230℃の溶剤(c2)とを含み、組成物全体に占める溶剤(c1)の割合が70~90質量%、溶剤(c2)の割合が1~20質量%であることを特徴とするインクジェット用拡散剤組成物。
  2.  前記ケイ素化合物(a)がアルコキシシランの加水分解生成物である、請求項1に記載の組成物。
  3.  前記ケイ素化合物(a)のSiO換算濃度が2~10質量%である、請求項1又は2に記載の組成物。
  4.  前記不純物拡散成分(b)がIII族元素の化合物及び/又はV族元素の化合物を含む、請求項1~3のいずれか1項に記載の組成物。
  5.  さらに界面活性剤(d)を含む、請求項1~4のいずれか1項に記載の組成物。
  6.  膜厚の高低差が0.1μm以下である拡散剤組成物層を形成可能な請求項1~5のいずれか1項に記載の組成物。
  7.  さらに、ポロージェン又はコロイダルシリカを含有する、請求項1~6のいずれか1項に記載の組成物。
  8.  前記ポロージェン又はコロイダルシリカの含有量が、固形分全体の10質量%以下である、請求項7に記載の組成物。
  9.  半導体基板上にインクジェット方式により請求項1~8のいずれか1項に記載の組成物を吐出してパターンを形成する工程と、
     前記パターン中の不純物拡散成分(b)を前記半導体基板に拡散させる工程と、を有する電極の製造方法。
  10.  前記パターンの膜厚の高低差が0.1μm以下である、請求項9に記載の方法。
  11.  請求項9又は10に記載の方法を含む太陽電池の製造方法。
  12.  請求項11記載の方法により製造した太陽電池。
PCT/JP2009/057179 2008-04-09 2009-04-08 インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法 WO2009125787A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/934,248 US8748301B2 (en) 2008-04-09 2009-04-08 Diffusing agent composition for ink-jet, and method for production of electrode or solar battery using the composition
DE112009000792.9T DE112009000792B4 (de) 2008-04-09 2009-04-08 Tintenstrahldiffusionsmittelzusammensetzung und Verfahren zur Herstellung einer Elektrode oder Solarbatterie mittels dieser Zusammensetzung
CN2009801128688A CN101990700B (zh) 2008-04-09 2009-04-08 喷墨用扩散剂组合物、使用该组合物的电极及太阳电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-101053 2008-04-09
JP2008101053A JP5357442B2 (ja) 2008-04-09 2008-04-09 インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法

Publications (1)

Publication Number Publication Date
WO2009125787A1 true WO2009125787A1 (ja) 2009-10-15

Family

ID=41161918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057179 WO2009125787A1 (ja) 2008-04-09 2009-04-08 インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法

Country Status (6)

Country Link
US (1) US8748301B2 (ja)
JP (1) JP5357442B2 (ja)
KR (1) KR20100134720A (ja)
CN (1) CN101990700B (ja)
DE (1) DE112009000792B4 (ja)
WO (1) WO2009125787A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108072A1 (ja) * 2011-02-07 2012-08-16 日立化成工業株式会社 インクジェット用シリカ系被膜形成組成物、シリカ系被膜の形成方法、半導体デバイス及び太陽電池システム
EP2545583A1 (en) * 2010-03-08 2013-01-16 Dynaloy, LLC Methods and compositions for doping silicon substrates with molecular monolayers
WO2013125252A1 (ja) * 2012-02-23 2013-08-29 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法及び太陽電池素子の製造方法
US20140370640A1 (en) * 2010-12-14 2014-12-18 Innovalight, Inc. High fidelity doping paste and methods thereof
WO2017057349A1 (ja) * 2015-09-29 2017-04-06 東洋アルミニウム株式会社 ペースト組成物
US9620666B2 (en) 2010-11-11 2017-04-11 Tokyo Ohka Kogyo Co., Ltd. Method for forming an impurity diffusion layer by applying a diffusing agent composition

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187894A (ja) * 2010-03-11 2011-09-22 Sharp Corp リンドーパント拡散用塗布液、それにより形成された塗布膜および太陽電池の製造方法
JP5679545B2 (ja) * 2010-05-17 2015-03-04 東京応化工業株式会社 拡散剤組成物、不純物拡散層の形成方法、および太陽電池
JP5681402B2 (ja) * 2010-07-09 2015-03-11 東京応化工業株式会社 拡散剤組成物および不純物拡散層の形成方法
JP5666267B2 (ja) * 2010-11-25 2015-02-12 東京応化工業株式会社 塗布型拡散剤組成物
JP5810357B2 (ja) 2011-02-21 2015-11-11 株式会社サンケイエンジニアリング 成膜方法及び成膜装置
JP2013026524A (ja) * 2011-07-22 2013-02-04 Hitachi Chem Co Ltd n型拡散層形成組成物、n型拡散層の製造方法、太陽電池素子の製造方法、及び太陽電池
JP5935255B2 (ja) * 2011-07-22 2016-06-15 日立化成株式会社 インクジェット用不純物拡散層形成組成物、不純物拡散層の製造方法、太陽電池素子の製造方法及び太陽電池の製造方法
US8992803B2 (en) * 2011-09-30 2015-03-31 Sunpower Corporation Dopant ink composition and method of fabricating a solar cell there from
JP2013077730A (ja) * 2011-09-30 2013-04-25 Sharp Corp 半導体装置の製造方法
JP2013093563A (ja) * 2011-10-04 2013-05-16 Shin Etsu Chem Co Ltd ホウ素拡散用塗布剤
US8975170B2 (en) * 2011-10-24 2015-03-10 Honeywell International Inc. Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions
CN104094381B (zh) * 2012-02-09 2016-12-28 日产化学工业株式会社 形成膜的组合物及离子注入方法
JP5991846B2 (ja) * 2012-04-24 2016-09-14 東京応化工業株式会社 膜形成用組成物、拡散剤組成物、膜形成用組成物の製造方法、及び拡散剤組成物の製造方法
CN103387777B (zh) * 2012-05-07 2018-05-25 东京应化工业株式会社 扩散剂组合物及杂质扩散层的形成方法
US8853438B2 (en) 2012-11-05 2014-10-07 Dynaloy, Llc Formulations of solutions and processes for forming a substrate including an arsenic dopant
JP6099437B2 (ja) * 2013-03-07 2017-03-22 東京応化工業株式会社 拡散剤組成物、及び不純物拡散層の形成方法
US8945978B2 (en) * 2013-06-28 2015-02-03 Sunpower Corporation Formation of metal structures in solar cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109754A (ja) * 2001-09-27 2003-04-11 Seiko Epson Corp 有機el素子とその製造方法、及びelディスプレイ、電子機器
JP2005038997A (ja) * 2003-07-18 2005-02-10 Sharp Corp 太陽電池の製造方法
JP2008021951A (ja) * 2006-07-14 2008-01-31 Tokyo Ohka Kogyo Co Ltd 膜形成組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152886A (en) * 1977-02-28 1979-05-08 E. I. Du Pont De Nemours And Company Process for making yarn having alternate sections of greater and less bulk and product thereof
US6090448A (en) * 1997-10-31 2000-07-18 Alliedsignal Inc. Polyol-based precursors for producing nanoporous silica thin films
DE19910816A1 (de) * 1999-03-11 2000-10-05 Merck Patent Gmbh Dotierpasten zur Erzeugung von p,p+ und n,n+ Bereichen in Halbleitern
KR100412742B1 (ko) * 1999-03-30 2003-12-31 제이에스알 가부시끼가이샤 태양 전지의 제조 방법
US20090239363A1 (en) * 2008-03-24 2009-09-24 Honeywell International, Inc. Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes
JP5679545B2 (ja) * 2010-05-17 2015-03-04 東京応化工業株式会社 拡散剤組成物、不純物拡散層の形成方法、および太陽電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109754A (ja) * 2001-09-27 2003-04-11 Seiko Epson Corp 有機el素子とその製造方法、及びelディスプレイ、電子機器
JP2005038997A (ja) * 2003-07-18 2005-02-10 Sharp Corp 太陽電池の製造方法
JP2008021951A (ja) * 2006-07-14 2008-01-31 Tokyo Ohka Kogyo Co Ltd 膜形成組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094149A (ko) * 2010-03-08 2018-08-22 버슘머트리얼즈 유에스, 엘엘씨 분자 단층으로 규소 기판을 도핑하는 방법 및 조성물
EP2545583A1 (en) * 2010-03-08 2013-01-16 Dynaloy, LLC Methods and compositions for doping silicon substrates with molecular monolayers
KR102285209B1 (ko) * 2010-03-08 2021-08-02 버슘머트리얼즈 유에스, 엘엘씨 분자 단층으로 규소 기판을 도핑하는 방법 및 조성물
EP2545583A4 (en) * 2010-03-08 2014-07-30 Dynaloy Llc METHODS AND COMPOSITIONS FOR DOPING SILICON SUBSTRATES HAVING MOLECULAR MONOLAYERS
US9620666B2 (en) 2010-11-11 2017-04-11 Tokyo Ohka Kogyo Co., Ltd. Method for forming an impurity diffusion layer by applying a diffusing agent composition
US20140370640A1 (en) * 2010-12-14 2014-12-18 Innovalight, Inc. High fidelity doping paste and methods thereof
WO2012108072A1 (ja) * 2011-02-07 2012-08-16 日立化成工業株式会社 インクジェット用シリカ系被膜形成組成物、シリカ系被膜の形成方法、半導体デバイス及び太陽電池システム
JPWO2013125252A1 (ja) * 2012-02-23 2015-07-30 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法及び太陽電池素子の製造方法
JP2016027661A (ja) * 2012-02-23 2016-02-18 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法及び太陽電池素子の製造方法
WO2013125252A1 (ja) * 2012-02-23 2013-08-29 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法及び太陽電池素子の製造方法
WO2017057349A1 (ja) * 2015-09-29 2017-04-06 東洋アルミニウム株式会社 ペースト組成物
JP2017069316A (ja) * 2015-09-29 2017-04-06 東洋アルミニウム株式会社 ペースト組成物
US10446291B2 (en) 2015-09-29 2019-10-15 Toyo Aluminium Kabushiki Kaisha Paste composition

Also Published As

Publication number Publication date
CN101990700B (zh) 2013-03-06
JP2009253127A (ja) 2009-10-29
DE112009000792B4 (de) 2020-04-02
JP5357442B2 (ja) 2013-12-04
DE112009000792T5 (de) 2011-04-28
US8748301B2 (en) 2014-06-10
US20110017291A1 (en) 2011-01-27
KR20100134720A (ko) 2010-12-23
CN101990700A (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
JP5357442B2 (ja) インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法
JP5660750B2 (ja) 拡散層の形成方法及び不純物拡散方法
JP5681402B2 (ja) 拡散剤組成物および不純物拡散層の形成方法
JP5679545B2 (ja) 拡散剤組成物、不純物拡散層の形成方法、および太陽電池
JP5555469B2 (ja) 拡散剤組成物、および不純物拡散層の形成方法
EP3018699B1 (en) Impurity-diffusing composition and method for producing semiconductor element
JP5666267B2 (ja) 塗布型拡散剤組成物
JP2011187894A (ja) リンドーパント拡散用塗布液、それにより形成された塗布膜および太陽電池の製造方法
JP6099437B2 (ja) 拡散剤組成物、及び不純物拡散層の形成方法
CN103688340B (zh) 扩散剂组合物、杂质扩散层的形成方法及太阳能电池
JP5991846B2 (ja) 膜形成用組成物、拡散剤組成物、膜形成用組成物の製造方法、及び拡散剤組成物の製造方法
JP6044397B2 (ja) マスクペースト組成物、これを用いて得られる半導体素子および半導体素子の製造方法
KR20180063056A (ko) p형 불순물 확산 조성물, 그것을 사용한 반도체 소자의 제조 방법 및 태양 전지의 제조 방법
JP6108781B2 (ja) 不純物拡散成分の拡散方法、及び太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112868.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12934248

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107024721

Country of ref document: KR

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 112009000792

Country of ref document: DE

Date of ref document: 20110428

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09729594

Country of ref document: EP

Kind code of ref document: A1