WO2009122735A1 - 発泡ブロー成形体及びその製造方法 - Google Patents

発泡ブロー成形体及びその製造方法 Download PDF

Info

Publication number
WO2009122735A1
WO2009122735A1 PCT/JP2009/001519 JP2009001519W WO2009122735A1 WO 2009122735 A1 WO2009122735 A1 WO 2009122735A1 JP 2009001519 W JP2009001519 W JP 2009001519W WO 2009122735 A1 WO2009122735 A1 WO 2009122735A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded article
blow molded
bubble
cell
wall portion
Prior art date
Application number
PCT/JP2009/001519
Other languages
English (en)
French (fr)
Inventor
小野寺正明
武彦 鷲見
玉田輝雄
五十嵐優
大野慶詞
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP21172209.5A priority Critical patent/EP3878625A1/en
Priority to EP14188328.0A priority patent/EP2842720B8/en
Priority to US12/935,520 priority patent/US8517059B2/en
Priority to CN200980119253.8A priority patent/CN102046355B/zh
Priority to EP09728880.7A priority patent/EP2261004B1/en
Priority to ES09728880.7T priority patent/ES2527956T3/es
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Publication of WO2009122735A1 publication Critical patent/WO2009122735A1/ja
Priority to US13/949,266 priority patent/US9186955B2/en
Priority to US13/950,248 priority patent/US9340091B2/en
Priority to US15/156,297 priority patent/US10369727B2/en
Priority to US16/457,846 priority patent/US11045982B2/en
Priority to US17/326,645 priority patent/US11833723B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/35Component parts; Details or accessories
    • B29C44/352Means for giving the foam different characteristics in different directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06905Using combined techniques for making the preform
    • B29C49/0691Using combined techniques for making the preform using sheet like material, e.g. sheet blow-moulding from joined sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00564Details of ducts or cables of air ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4802Moulds with means for locally compressing part(s) of the parison in the main blowing cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/046Condition, form or state of moulded material or of the material to be shaped cellular or porous with closed cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/004Bent tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a foamed blow molded article and a method for producing the same.
  • Foam blow molding is performed by extruding a thermoplastic resin to which a foaming agent has been added as a parison into the atmosphere and then sandwiching it with a split mold (see, for example, Patent Document 1).
  • a foamed blow molded product obtained by such a method a product mainly composed of a polypropylene resin having predetermined physical properties is known (for example, see Patent Document 2).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a foamed blow molded article having a uniform cell size cell, lightweight, and having high surface smoothness, and a method for producing the same. To do.
  • the inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, they have found that the above-described problems can be solved by using the following configuration, and have completed the present invention.
  • the present invention provides (1) a foamed blow molded article comprising a wall portion formed by blow molding a thermoplastic resin mixed with a foaming agent, wherein the wall portion includes a plurality of closed cells.
  • the structure has a foaming ratio of the wall portion of 2.0 times or more, the center line average roughness Ra of the outer surface of the wall portion is less than 9.0 ⁇ m, and the bubbles of the bubble cells in the thickness direction of the wall portion It exists in the foam blow molded object whose standard deviation of a diameter is less than 40 micrometers.
  • the present invention resides in (2) the foamed blow molded article according to the above (1), wherein the thermoplastic resin is a polyolefin resin.
  • the present invention resides in (3) the foamed blow molded article according to the above (2), wherein the polyolefin resin is a propylene homopolymer having a long-chain branched structure.
  • the present invention resides in (4) the foamed blow molded article according to any one of (1) to (3) above, wherein the average cell diameter of the cell in the thickness direction of the wall is less than 300 ⁇ m.
  • the average bubble diameter of the bubble cells in the thickness direction of the wall portion is less than 100 ⁇ m, and the standard deviation of the bubble diameters of the bubble cells in the thickness direction of the wall portion is less than 30 ⁇ m. It exists in the foaming blow-molding object as described in any one of (3).
  • the present invention resides in (6) the foamed blow molded article according to any one of the above (1) to (5), which is an air conditioning duct for vehicles.
  • the present invention relates to (7) the method for producing a foamed blow molded article according to any one of the above (1) to (6), wherein a thermoplastic resin is added to a foaming agent and mixed with an extruder.
  • Mixing process to make mixed resin storing process to store mixed resin in cylindrical space between mandrel and die outer cylinder, extrusion process to extrude parison from die slit using ring-shaped piston, and parison divided into metal
  • the present invention resides in (8) the method for producing a foamed blow molded article according to the above (7), wherein the thermoplastic resin is a polyolefin resin and the foaming agent is in a supercritical state.
  • the present invention resides in (9) the method for producing a blow-molded foam according to (7) or (8), wherein the extrusion rate of the parison is 700 kg / hour or more in the extrusion step.
  • the foamed blow molded article of the present invention has a closed cell structure including a plurality of bubble cells and a wall portion with a foaming ratio within a predetermined range, thereby reducing the weight, and in the thickness direction of the wall portion.
  • a predetermined range By setting the standard deviation of the bubble diameter of the bubble cell within a predetermined range, it is possible to have a bubble cell having a uniform size, and the center line average roughness Ra of the outer surface of the wall portion is set to a predetermined value. By setting it as this range, it can be set as the thing whose surface smoothness is high. For this reason, when the said foaming blow molded object is used for the air conditioning duct for vehicles, for example, the frictional resistance with respect to distribution
  • the foamed blow molded article is excellent in flexibility when the thermoplastic resin is made of a polyolefin resin, so that impact resistance is improved.
  • the polyolefin resin is more preferably a propylene homopolymer having a long chain branched structure. In this case, it becomes easy to foam and a bubble cell is made more uniform.
  • the surface of the foamed blow molded article is more excellent in surface smoothness.
  • the average cell diameter is more preferably less than 100 ⁇ m.
  • the size of the bubble cell is homogenized by storing the mixed resin at a predetermined position, and extruded at a predetermined extrusion speed using a ring-shaped piston.
  • blow molding is performed in a state where the size of the bubble cell is maintained.
  • the foam blow molding which has a cell with a uniform magnitude
  • a bubble cell is refined
  • the size of the bubble cells is further homogenized when the extrusion speed of the parison in the extrusion process is 700 kg / hour or more.
  • FIG. 1 is a perspective view showing a first embodiment of a blow-molded foam according to the present invention.
  • FIG. 2 is a flowchart of the method for producing a foamed blow molded article according to the present invention.
  • FIG. 3 is a partial cross-sectional view showing an extrusion head used in the method for producing a blow-molded foam according to the present invention.
  • FIG. 4 is a cross-sectional view showing a blow molding aspect in the method for producing a foamed blow molded article according to the present invention.
  • FIG. 7 is an enlarged photograph of the wall surface cross section of the sample in Example 1 using a CCD camera.
  • FIG. 8 is an enlarged photograph of the wall surface cross section of the sample in Comparative Example 1 using a CCD camera.
  • FIG. 9 is a partial cross-sectional view showing a conventional extrusion head.
  • FIG. 1 is a perspective view showing a first embodiment of a blow-molded foam according to the present invention.
  • a foamed blow molded article (hereinafter also referred to as “air conditioning duct”) 1 is formed from a wall portion formed by blow molding a thermoplastic resin mixed with a foaming agent. It comprises a main body part 11, an air inflow part 13 provided at one end of the main body part 11, and an air outflow part 12 provided at the other end of the main body part 11.
  • the blow molding will be described later.
  • the air outflow part 12 cuts off the part closed by the post-process after blow molding, and is made into the open state.
  • the air conditioning duct 1 has a hollow structure with a rectangular cross section. That is, the cross section of the main body 11 has a hollow structure surrounded by the wall. Therefore, the air-conditioning duct 1 can distribute the air-conditioned air through the hollow portion.
  • the main body 11 is smoothly curved, and the air-conditioning air that has flowed in from the air inflow portion 13 is sent from the air outflow portion 12 that faces the L-shaped direction with respect to the direction in which the air-conditioning air has flowed. It performs the function of draining.
  • the air inflow portion 13 is connected to an air conditioner unit, and air conditioned air supplied from the air conditioner unit is circulated through the hollow portion and discharged from the air outflow portion 12 disposed at a desired position. be able to.
  • the wall portion has a closed cell structure including a plurality of bubble cells.
  • the closed cell structure means a structure having a plurality of bubble cells, and at least a closed cell ratio of 70% or more.
  • the wall portion has a closed cell structure, so that the surface smoothness is excellent, and the appearance, particularly in the air-conditioning duct, has the advantages of improving the blowing efficiency and reducing the occurrence of condensation.
  • the bubble cell preferably has an average bubble diameter in the thickness direction of the wall portion of less than 300 ⁇ m, and more preferably less than 100 ⁇ m.
  • the average bubble diameter means an average value of the maximum diameters of the respective bubbles in the thickness direction of the wall portion.
  • the average wall thickness is preferably 3.5 mm or less.
  • the average thickness exceeds 3.5 mm, the air flow path is reduced and the air blowing efficiency tends to be inferior as compared with the case where the average thickness is within the above range.
  • the center line average roughness Ra of the outer surface of the wall portion is less than 9.0 ⁇ m, and preferably less than 6.0 ⁇ m.
  • the center line average roughness Ra is a value measured according to JIS B0601.
  • the standard deviation of the bubble diameter of the bubble cell in the thickness direction of the wall portion is less than 40 ⁇ m.
  • the standard deviation of the bubble diameter indicates the homogeneity of the bubble cell diameter, and the smaller the standard deviation, the more uniform the cell diameter. If the standard deviation of the bubble diameter exceeds 40 ⁇ m, the variation in the bubble cell diameter tends to be large and the surface smoothness and appearance tend to be inferior.
  • the standard deviation of the bubble diameter is more preferably less than 30 ⁇ m.
  • the air conditioning duct 1 has a wall foaming ratio of 2.0 times or more.
  • the expansion ratio is a value obtained by dividing the density of the thermoplastic resin used for foam blow molding by the apparent density of the wall surface of the foam blow molded article. If the expansion ratio is less than 2.0, a lightweight foamed blow molded product cannot be obtained.
  • a foamed blow molded article (air conditioning duct) 1 is obtained by blow molding a thermoplastic resin mixed with a foaming agent.
  • thermoplastic resins include polyolefin resins such as polyethylene resins and polypropylene resins. Since the polyolefin resin is excellent in flexibility, the impact resistance of the foamed blow body is improved.
  • the thermoplastic resin preferably has a propylene unit, and specific examples include a propylene homopolymer, an ethylene-propylene block copolymer, an ethylene-propylene random copolymer, and the like. Further, among these, a propylene homopolymer having a long chain branched structure is particularly preferable. In this case, since melt tension becomes high, it becomes easy to foam and a bubble cell is made more uniform.
  • the propylene homopolymer having a long-chain branched structure is preferably a propylene homopolymer having a weight average branching index of 0.9 or less.
  • the weight average branching index g ′ is represented by V1 / V2, where V1 is the intrinsic viscosity of the branched polyolefin and V2 is the intrinsic viscosity of a linear polyolefin having the same weight average molecular weight as that of the branched polyolefin.
  • thermoplastic resin it is preferable to use a polypropylene resin having a melt tension at 230 ° C. in the range of 30 to 350 mN.
  • melt tension means melt tension.
  • the foaming polypropylene resin exhibits strain-hardening properties, and a high foaming ratio can be obtained.
  • the thermoplastic resin preferably has a melt flow rate (MFR) of 1 to 10 at 230 ° C.
  • MFR is a value measured according to JIS K-7210. If the MFR is less than 1, it tends to be difficult to increase the extrusion speed as compared with the case where the MFR is in the above range. If the MFR exceeds 10, the MFR is in the above range. In comparison, blow molding tends to be difficult due to the occurrence of drawdown or the like.
  • thermoplastic resin It is preferable to add a styrene elastomer and / or low density polyethylene to the thermoplastic resin.
  • a styrene elastomer or low density polyethylene is added, the impact strength at low temperature of the foamed blow molded article is improved.
  • styrene-type elastomer which has a styrene unit to which hydrogen was added in the molecule
  • examples thereof include hydrogenated elastomers such as styrene-ethylene / butylene-styrene block copolymers, styrene-ethylene / propylene-styrene block copolymers, and styrene-butadiene random copolymers.
  • the blending ratio of the styrene elastomer is preferably in the range of less than 40 wt% with respect to the thermoplastic resin.
  • the content of styrene in the styrene-based elastomer is preferably less than 30 wt%, more preferably less than 20 wt%, from the viewpoint of impact strength at low temperatures.
  • the low density polyethylene those having a density of 0.91 g / cm 3 or less are suitably used from the viewpoint of impact strength at low temperatures.
  • the blending ratio of the low density polyethylene is preferably in the range of less than 40 wt% with respect to the thermoplastic resin.
  • the thermoplastic resin is foamed using a foaming agent before blow molding.
  • foaming agents include inorganic foaming agents such as air, carbon dioxide gas, nitrogen gas, and water, or organic foaming agents such as butane, pentane, hexane, dichloromethane, and dichloroethane.
  • inorganic foaming agents such as air, carbon dioxide gas, nitrogen gas, and water
  • organic foaming agents such as butane, pentane, hexane, dichloromethane, and dichloroethane.
  • the mixed resin is foamed by setting the carbon dioxide gas or nitrogen gas to a supercritical state. In this case, air bubbles can be uniformly and reliably formed.
  • thermoplastic resin In addition to the styrene-based elastomer, low-density polyethylene and foaming agent, a nucleating agent, a coloring agent, and the like may be added to the thermoplastic resin.
  • the air-conditioning duct 1 (foamed blow molded article) according to the present embodiment has a closed cell structure including a plurality of bubble cells and a wall portion with a foaming ratio within a predetermined range, thereby reducing weight.
  • a predetermined range By setting the standard deviation of the bubble diameter of the bubble cell in the thickness direction of the wall portion within a predetermined range, it is possible to have a bubble cell of a uniform size, and the center line of the outer surface of the wall portion By setting the average roughness Ra within a predetermined range, the surface can be highly smooth.
  • the air conditioning duct 1 has a low frictional resistance against the circulating air, and the air blowing efficiency is improved. Thereby, the pressure loss of air-conditioning air is reduced, and the occurrence of condensation on the outside of the duct wall surface is reduced.
  • FIG. 2 is a flowchart of the method for producing a foamed blow molded article according to the present invention.
  • the manufacturing method of the foam blow molded body according to the present embodiment includes a mixing step S1 in which a thermoplastic resin is added to a foaming agent and mixed with an extruder to obtain a mixed resin, and the mandrel and the outside of the die.
  • a storage step S2 for storing the mixed resin in a cylindrical space between the cylinder, an extrusion step S3 for extruding the parison from the die slit using a ring-shaped piston, and clamping the parison between the divided molds.
  • a molding step S4 for performing blow molding by blowing air.
  • blow molding is performed while maintaining the size of the bubble cell by extruding at a predetermined extrusion speed using a ring-shaped piston.
  • the mixing step S1 is a step in which a thermoplastic resin is added to the foaming agent and mixed with an extruder to obtain a mixed resin.
  • a well-known thing is used suitably for an extruder.
  • the polyolefin resin mentioned above is used as a thermoplastic resin, and a foaming agent is used as a supercritical state. By using a foaming agent that is a supercritical fluid, the bubble cell is further refined.
  • the foaming agent is preferably carbon dioxide gas or nitrogen gas. These can be brought into a supercritical state under relatively mild conditions. Specifically, the conditions for using carbon dioxide gas as a supercritical fluid are a critical temperature of 31 ° C. and a critical pressure of 7.4 MPa or higher, and the conditions for using nitrogen gas as a supercritical fluid are the critical temperature 149.1. The critical pressure is 3.4 MPa or higher.
  • a mixed resin can be obtained by foaming the polyolefin resin using a supercritical fluid.
  • a styrene elastomer and / or low density polyethylene may be added to the polyolefin.
  • Storage process S2 is a process of storing mixed resin in the cylindrical space between the mandrel and the die outer cylinder. Such a storage process is performed using an extrusion head.
  • FIG. 3 is a partial cross-sectional view showing an extrusion head used in the method for producing a blow-molded foam according to the present invention.
  • the extrusion head 20 includes a die outer cylinder 28, a mandrel 27 disposed substantially at the center of the die outer cylinder 28, a cylindrical space 29 between the die outer cylinder 28 and the mandrel 27, A ring-shaped piston 22 for pushing the mixed resin stored in the cylindrical space 29 downward, and a die slit 21 for discharging the resin are provided.
  • the mixed resin extruded by an extruder travels around the mandrel 27 and falls into the cylindrical space 29 between the mandrel 27 and the die outer cylinder 28 and is stored.
  • the amount of resin to be stored is preferably 5 to 40 liters.
  • the size of the bubble cells is homogenized while the mixed resin is stored. It will be.
  • Extrusion process S3 is a process of extruding a parison from a die slit using a ring-shaped piston. That is, after a predetermined amount of resin is stored in the cylindrical space 29, the parison (not shown) is discharged from the die slit 21 by pushing the ring-shaped piston 22 downward.
  • the distance of the die slit 21 can be shortened.
  • the extrusion speed can also be increased. For this reason, the state of a bubble cell can be maintained.
  • the conventional extrusion head shown in FIG. 9 is a method of extruding a parison with an accumulator 35 outside the die (external die accumulator method)
  • the distance between the die slits becomes long and the extrusion speed cannot be increased.
  • rate of the parison at this time is 700 kg / hour or more. In this case, a foamed blow molded article having higher surface smoothness can be obtained.
  • the in-die accumulator used in the present invention has an injection rate of 200 cm 3 / sec or more, preferably 500 cm 3 / sec or more.
  • the molding step S4 is a step of performing blow molding by clamping the parison between the divided molds and blowing air into the parison.
  • FIG. 4 is a cross-sectional view showing a blow molding aspect in the method for producing a foam blow molded article according to the present invention.
  • the cylindrical parison 32 is extruded between the split molds 33 from a die slit (not shown). Then, the mold is clamped by the split mold 33 so that the parison 32 is sandwiched from both sides.
  • the pressure for blowing air is preferably 0.05 to 0.15 MPa from the viewpoint of maintaining the shape of the bubble cell.
  • the size of the bubble cells is homogenized by storing the mixed resin at a predetermined position, and the ring-shaped piston is used at a predetermined extrusion speed. By extruding, blow molding is performed in a state where the size of the bubble cell is maintained. As a result, a foamed blow-molded article having a uniform size cell, light weight and high surface smoothness can be obtained.
  • FIG. 5 is a perspective view showing a second embodiment of the blow-molded foam according to the present invention.
  • the foamed blow molded article (hereinafter also referred to as “panel with skin”) 3 is a wall portion formed by blow molding a thermoplastic resin mixed with a foaming agent. It has a structure having a hollow double wall structure made of and having a skin material 4 adhered to one surface of a base body 2 made of a wall portion. The skin material 4 is integrally attached simultaneously with the blow molding of the wall in the molding process.
  • the base body 2 made of a wall portion has a hollow double wall structure having a hollow portion 5, and a plurality of reinforcing ribs 6 are defined so as to partition the hollow portion 5. Is provided. Such reinforcing ribs 6 improve the strength in the vertical direction.
  • the reinforcing rib 6 is formed so as to fold the wall portion of the parison by pressing against the side surface of the parison with a projecting slide core from one direction when the parison is clamped in the molding process. Therefore, in the manufacture of the panel with the skin, the skin material 4 is adhered and the reinforcing ribs 6 are simultaneously formed in the molding process.
  • the said wall part is synonymous with the wall part in the foam blow molding which concerns on 1st Embodiment mentioned above, and a structure and a physical property are also the same, description is abbreviate
  • the manufacturing method of the foam blow molded object which concerns on 2nd Embodiment is the same as the manufacturing method of the foam blow molded object which concerns on 1st Embodiment except a formation process differing as mentioned above.
  • the panel with skin 3 (foamed blow molded article) according to the present embodiment has a closed cell structure including a plurality of bubble cells in the wall portion, and the wall portion has a foaming ratio within a predetermined range, thereby reducing weight.
  • the standard deviation of the bubble diameter of the bubble cell in the thickness direction of the wall portion within a predetermined range, it is possible to have a bubble cell of a uniform size, and the center of the outer surface of the wall portion
  • the line average roughness Ra within a predetermined range, the surface smoothness can be high.
  • the welding strength of the reinforcing ribs formed on the inside of the panel wall surface and the welding strength of the skin adhered on the outside of the panel wall surface are improved, and the rigidity and appearance are also excellent.
  • Example 1 70 wt% propylene homopolymer (thermoplastic resin, manufactured by Sun Allomer, trade name: PF814) having a long chain branched structure with an MFR of 3.0 g / min at 230 ° C. and an MFR of 0.5 g / min at 230 ° C. 30 wt% of a crystalline ethylene-propylene block copolymer (Novatec PP EC9, manufactured by Nippon Polychem Co., Ltd.) was mixed to prepare 96 parts by weight of this mixture and 3 parts of talc MB (masterbatch) as a nucleating agent. Part by weight and 1 part by weight of black MB (masterbatch) as a colorant were mixed.
  • PF814 crystalline ethylene-propylene block copolymer
  • the density of the mixed resin was 0.91 g / cm 3 .
  • carbon dioxide in a supercritical state was added as a foaming agent and foamed to obtain a mixed resin.
  • the mixed resin is stored in a cylindrical space between the mandrel and the die outer cylinder using the extrusion head shown in FIG. 3, and 1500 kg using a ring-shaped piston (in-die accumulator).
  • a cylindrical parison is extruded between the split molds shown in FIG. 4 at a speed of / hour, and after mold clamping, blown air is blown into the parison at a pressure of 0.1 MPa after mold clamping.
  • the MFR is measured with a test load of 2.16 kg according to JIS K-7210.
  • Example 2 Sample B was obtained in the same manner as in Example 1 except that the extrusion speed was 750 kg / hour.
  • Example 3 Sample C was obtained in the same manner as in Example 1 except that nitrogen gas was used instead of carbon dioxide gas.
  • Example 4 Sample D was obtained in the same manner as in Example 1 except that nitrogen gas was used instead of carbon dioxide gas and the extrusion rate was 700 kg / hour.
  • Example 5 Sample E was obtained in the same manner as in Example 1 except that nitrogen gas was used instead of carbon dioxide gas and the extrusion rate was 600 kg / hour.
  • Example 6 Sample F was obtained in the same manner as in Example 1 except that the extrusion speed was 600 kg / hour.
  • Example 1 Comparative Example 1
  • a conventional extrusion head shown in FIG. 9 was used instead of the extrusion head shown in FIG. 3. That is, the mixed resin mixed by the extruder was supplied from a horizontal accumulator cylinder (external die accumulator) provided outside the die head to the crosshead using a plunger, and extruded as a cylindrical parison from the die slit. The extrusion speed was 450 kg / hour. A sample G was obtained in the same manner as Example 1 except for these.
  • Comparative Example 2 Sample H was obtained in the same manner as in Comparative Example 1 except that nitrogen gas was used instead of carbon dioxide gas.
  • Samples A to I obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were evaluated as follows. Samples A to I were cut with a microtome (RM2145, manufactured by LEICA) at a relatively flat portion at both ends and the center in the longitudinal direction, and the cut cross section was photographed with a CCD camera (Keyence VH-630). 1. Average wall thickness (mm) The thickness of each of the three points A to I taken with a CCD camera was measured from the photograph, and the average value of each value was obtained by calculation. 2. Foaming ratio The foaming ratio was calculated by dividing the density of the mixed resin used in Samples A to I by the apparent density of the wall surfaces of the corresponding samples A to I. 3.
  • Average bubble diameter For each of the three points A to I taken with a CCD camera, the size of the bubble diameter in the thickness direction at five equally spaced points from the outside in the thickness direction of the wall surface was measured from the photograph, and the average value was calculated. 4). Centerline average roughness (Ra) ( ⁇ m) The center average roughness of samples A to I was measured according to JIS B0601 using a surface roughness measuring instrument (Surfcom 470A manufactured by Tokyo Seimitsu Co., Ltd.). The measurement site
  • part of the surface roughness of a foam blow molded object measured the outer five points of the wall surface of a foam blow molded object, and the inner five points of the wall surface, and made it the average value. 5). Standard deviation of bubble diameter ( ⁇ m) The standard deviation was obtained by calculation from the values of the bubble diameter in the thickness direction at a total of 15 points measured when calculating the average bubble diameter. The results obtained from these evaluations are shown in Table 1.
  • Samples A to F of Examples 1 to 6 can be extruded as a parison in a short time by using an in-die accumulator having a high injection rate. As a result, the standard deviation of the bubble diameter of the bubble cell is small. A foamed blow molded article having a high surface smoothness (small variation in bubble diameter distribution) could be obtained. It was also found that the cell diameter can be made smaller by using supercritical nitrogen as the foaming agent.
  • Samples G to I of Comparative Examples 1 to 3 had variations in the bubble diameter distribution of the bubble cells. This means that when an off-die accumulator is used, the molten thermoplastic resin stored in the cylinder is pushed out by changing the direction of flow by 90 degrees at the crosshead during extrusion, and is provided outside the die. This is probably because the pressure loss of the extruded thermoplastic resin increases because the distance from the cylinder to the die slit that is extruded as a parison is relatively long.
  • Peel strength A non-woven fabric (hereinafter referred to as “packing”) (thickness 3 mm, width 10 mm) with double-sided tape attached to each test piece cut out from samples A to I, and one end face of the packing was adhered to the test piece. The tensile tester was attached to the other end face. Then, the other end face of the packing was pulled with a tensile tester so as to be folded back to the one end face side, and the peel strength at that time was measured.
  • Samples A to F of Examples 1 to 6 of the present invention were superior in peel strength to Samples G to I of Comparative Examples 1 to 3. Thereby, it can be said that the foamed blow molded article of the present invention is excellent in smoothness. From these, according to the present invention, it was confirmed that a foamed blow-molded article having a uniform cell size, light weight and high surface smoothness can be obtained.
  • the foamed blow molded article according to the present invention can be applied to vehicle interior materials and the like in addition to vehicle air conditioning ducts and skin panels.
  • the foam blow molded article contributes to weight reduction of the vehicle without deteriorating various physical properties as a plastic part.
  • Air conditioning duct (foamed blow molded product) 2 ... Base 3 ... Panel with skin (foamed blow molded product) DESCRIPTION OF SYMBOLS 4 ... Skin material 5 ... Hollow part 6 ... Reinforcement rib 11 ... Main-body part 12 ... Air outflow part 13 ... Air inflow part 20 ... Extrusion head 21 ... Die slit 22 ... Ring-shaped piston 27 ... Mandrel 28 ... Die outer cylinder 29 ... Cylindrical space 32 ... Parison 33 ... Split mold 35 ... Accumulator S1 ... Mixing process S2 ... Storage process S3 ... Extrusion process S4 ... Molding process

Abstract

 均質な大きさの気泡セルを有し、軽量で、表面の平滑性が高い発泡ブロー成形体及びその製造方法を提供することを目的とする。本発明は、発泡剤を混合させた熱可塑性樹脂をブロー成形することにより形成される壁部からなる発泡ブロー成形体1において、壁部が複数の気泡セルを複数含んだ独立気泡構造であり、壁部の発泡倍率が2.0倍以上であり、壁部の外側の面の中心線平均粗さRaが9.0μm未満であり、且つ壁部の厚み方向における気泡セルの気泡径の標準偏差が40μm未満である発泡ブロー成形体1である。

Description

発泡ブロー成形体及びその製造方法
 本発明は、発泡ブロー成形体及びその製造方法に関する。
 発泡ブロー成形は、発泡剤を添加した熱可塑性樹脂をパリソンとして大気中に押し出し、その後、分割金型で挟み込むことにより行われる(例えば、特許文献1参照)。
 また、このような方法で得られる発泡ブロー成形品としては、所定の物性を有するポリプロピレン系樹脂を主成分としたものが知られている(例えば、特許文献2参照)。
 ところが、これらの発泡ブロー成形品においては、大気中に開放された際、パリソンの気泡セルが急激に拡張されて気泡が大きくなり、場合によっては破泡を起こす虞がある。
 これに対し、高い発泡倍率を維持しつつ、気泡セルの径を微細にする方法が検討されている。
 例えば、発泡剤として超臨界流体を添加した発泡ブロー成形によって成形された発泡体ダクトが挙げられる(例えば、特許文献3参照)。
特開昭63-309434号公報 特許第3745960号公報 特開2005-241157号公報
 しかしながら、気泡セルを微細化した上記特許文献3記載の発泡体ダクトは、気泡セルの径が微細化されているものの、径の大きさには、ばらつきが認められる。このため、かかる発泡体ダクトは、表面の平滑性が十分とはいえない。
 本発明は、上記事情に鑑みてなされたものであり、均質な大きさの気泡セルを有し、軽量で、表面の平滑性が高い発泡ブロー成形体及びその製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決するため鋭意検討したところ、以下の構成とすることにより、上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、(1)発泡剤を混合させた熱可塑性樹脂をブロー成形することにより形成される壁部からなる発泡ブロー成形体において、壁部が複数の気泡セルを複数含んだ独立気泡構造であり、壁部の発泡倍率が2.0倍以上であり、壁部の外側の面の中心線平均粗さRaが9.0μm未満であり、且つ壁部の厚み方向における気泡セルの気泡径の標準偏差が40μm未満である発泡ブロー成形体に存する。
 本発明は、(2)熱可塑性樹脂がポリオレフィン系樹脂からなる上記(1)記載の発泡ブロー成形体に存する。
 本発明は、(3)ポリオレフィン系樹脂が、長鎖分岐構造を有するプロピレン単独重合体である上記(2)記載の発泡ブロー成形体に存する。
 本発明は、(4)壁部の厚み方向における気泡セルの平均気泡径が300μm未満である上記(1)~(3)のいずれか一つに記載の発泡ブロー成形体に存する。
 本発明は、(5)壁部の厚み方向における気泡セルの平均気泡径が100μm未満であり、且つ壁部の厚み方向における気泡セルの気泡径の標準偏差が30μm未満である上記(1)~(3)のいずれか一つに記載の発泡ブロー成形体に存する。
 本発明は、(6)車両用空調ダクトである上記(1)~(5)のいずれか一つに記載の発泡ブロー成形体に存する。
 本発明は、(7)上記(1)~(6)のいずれか一つに記載の発泡ブロー成形体の製造方法であって、発泡剤に熱可塑性樹脂を添加し、押出機で混合して混合樹脂とする混合工程と、マンドレルとダイ外筒との間の円筒状空間に混合樹脂を貯留する貯留工程と、リング状ピストンを用いてダイスリットからパリソンを押し出す押出工程と、パリソンを分割金型間で型締めし、該パリソン内にエアを吹き込んでブロー成形を行う成形工程と、を備える発泡ブロー成形体の製造方法に存する。
 本発明は、(8)熱可塑性樹脂がポリオレフィン系樹脂であり、発泡剤が超臨界状態である上記(7)記載の発泡ブロー成形体の製造方法に存する。
 本発明は、(9)押出工程において、パリソンの押出速度が700kg/時以上である上記(7)又は(8)に記載の発泡ブロー成形体の製造方法に存する。
 本発明の発泡ブロー成形体は、壁部を複数の気泡セルを複数含んだ独立気泡構造とし、壁部の発泡倍率を所定の範囲とすることで、軽量化を図り、壁部の厚み方向における気泡セルの気泡径の標準偏差、を所定の範囲とすることで、均質な大きさの気泡セルを有するものとすることができ、壁部の外側の面の中心線平均粗さRa、を所定の範囲とすることで、表面の平滑性が高いものとすることができる。
 このため、上記発泡ブロー成形体は、例えば、車両用空調ダクトに用いた場合、流通エアに対する摩擦抵抗が低く、送風効率も向上することになる。これにより、空調エアの圧力損失が低減され、ダクト壁面の外側への結露の発生が低減される。
 また、表皮付きパネルに用いた場合、パネル壁面の内側に形成される補強リブの溶着強度及びパネル壁面の外側に貼着される表皮の溶着強度が向上し、且つ剛性、外観にも優れるものとなる。
 上記発泡ブロー成形体は、熱可塑性樹脂がポリオレフィン系樹脂からなるものであると、柔軟性に優れるので、耐衝撃性が向上する。なお、かかるポリオレフィン系樹脂は、長鎖分岐構造を有するプロピレン単独重合体であることがより好ましい。この場合、発泡しやすくなり、気泡セルもより均一化される。
 上記発泡ブロー成形体は、壁部の厚み方向における気泡セルの平均気泡径が300μm未満であると、表面の平滑性がより優れるものとなる。なお、上記平均気泡径は、100μm未満であることがより好ましい。
 本発明の発泡ブロー成形体の製造方法によれば、混合樹脂を所定の位置で貯留させることにより、気泡セルのサイズの均質化が図られ、リング状ピストンを用いて所定の押出速度で押し出すことにより、気泡セルのサイズが維持させた状態で、ブロー成形されることになる。
 これにより、上記発泡ブロー成形体の製造方法によれば、均質な大きさの気泡セルを有し、軽量で、表面の平滑性が高い発泡ブロー成形体が得られる。なお、超臨界流体である発泡剤を用いることにより、気泡セルがより微細化される。
 上記発泡ブロー成形体の製造方法においては、押出工程におけるパリソンの押出速度が700kg/時以上であると、気泡セルのサイズがより均質化される。
図1は、本発明に係る発泡ブロー成形体の第1実施形態を示す斜視図である。 図2は、本発明に係る発泡ブロー成形体の製造方法のフローチャートである。 図3は、本発明に係る発泡ブロー成形体の製造方法で用いられる押出ヘッドを示す部分断面図である。 図4は、本発明に係る発泡ブロー成形体の製造方法におけるブロー成形態様を示す断面図である。 図5は、本発明に係る発泡ブロー成形体の第2実施形態を示す斜視図である。 図6は、図5に示す発泡ブロー成形体の断面図である。 図7は、実施例1におけるサンプルの壁面断面のCCDカメラによる拡大写真である。 図8は、比較例1におけるサンプルの壁面断面のCCDカメラによる拡大写真である。 図9は、従来の押出ヘッドを示す部分断面図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
[第1実施形態]
 第1実施形態として、本発明に係る発泡ブロー成形体を空調ダクトとして用いた場合について説明する。
 図1は、本発明に係る発泡ブロー成形体の第1実施形態を示す斜視図である。
 図1に示すように、本実施形態に係る発泡ブロー成形体(以下「空調ダクト」ともいう。)1は、発泡剤を混合させた熱可塑性樹脂をブロー成形することにより形成された壁部からなるものであり、本体部11と、本体部11の一端に設けられたエア流入部13と、本体部11の他端に設けられたエア流出部12とを備える。なお、ブロー成形については後述する。また、エア流出部12は、ブロー成形後の後加工により閉鎖された部分を切除して開口状態としたものである。
 空調ダクト1は、断面が矩形の中空構造となっている。すなわち、本体部11の断面は、周囲が壁部に囲まれた中空構造となっている。
 したがって、空調ダクト1は、中空の部分に空調エアを流通させることが可能である。
 空調ダクト1においては、本体部11が滑らかに湾曲しており、エア流入部13から流入された空調エアを、空調エアが流入された方向に対してL字方向に向いたエア流出部12から流出させる機能を果たす。
 例えば、車両用空調ダクトにおいて、エア流入部13をエアコンユニットに連結し、エアコンユニットから供給される空調エアを、中空部分に流通させて、所望の位置に配置されたエア流出部12から排出させることができる。
 壁部は、複数の気泡セルを複数含んだ独立気泡構造となっている。ここで、独立気泡構造とは、複数の気泡セル有する構造であり、少なくとも独立気泡率が70%以上のものを意味する。
 空調ダクト1においては、壁部を独立気泡構造とすることにより、表面平滑性が優れ、外観性、特に空調ダクトにあっては送風効率の向上、結露発生が低減するという利点がある。
 気泡セルは、壁部の厚み方向における平均気泡径が300μm未満であることが好ましく、100μm未満であることがより好ましい。ここで、平均気泡径とは、壁部の厚み方向におけるそれぞれの気泡の最大直径の平均値を意味する。
 平均気泡径が300μm以上であると、平均気泡径が上記範囲内にある場合と比較して、表面粗さが大きくなり表面の平滑性が劣る傾向にある。
 空調ダクト1においては、壁部の平均肉厚は、3.5mm以下であることが好ましい。
 平均肉厚が3.5mmを超えると、平均肉厚が上記範囲内にある場合と比較して、エア流路が減少して送風効率が劣る傾向にある。
 空調ダクト1においては、壁部の外側の面の中心線平均粗さRaが9.0μm未満であり、6.0μm未満であることが好ましい。ここで、中心線平均粗さRaは、JIS B0601に準じて測定した値である。
 中心線平均粗さを9.0μm未満とすることにより、表面平滑性が優れ、外観性、特に空調ダクトにあっては送風効率の向上、結露発生が低減するという利点がある。
 空調ダクト1においては、壁部の厚み方向における気泡セルの気泡径の標準偏差が40μm未満である。ここで、気泡径の標準偏差とは、気泡セル径の均質さを示すもので、標準偏差が小さいほど均質なセル径を有する。
 気泡径の標準偏差が、40μmを超えると、気泡セル径のバラツキが大きくなり、表面平滑性および外観性に劣る傾向にある。なお、気泡径の標準偏差は、30μm未満であることがより好ましい。
 空調ダクト1は、壁部の発泡倍率が2.0倍以上である。ここで、発泡倍率とは、発泡ブロー成形に用いた熱可塑性樹脂の密度を発泡ブロー成形体の壁面の見かけ密度で割った値である。
 発泡倍率が2.0倍未満であると、軽量な発泡ブロー成形体を得ることができない。
 本実施形態に係る発泡ブロー成形体(空調ダクト)1は、発泡剤を混合させた熱可塑性樹脂をブロー成形して得られる。
 かかる熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン系樹脂が挙げられる。ポリオレフィン系樹脂は、柔軟性に優れるので、発泡ブロー体の耐衝撃性が向上する。
 これらの中でも、熱可塑性樹脂は、プロピレン単位を有するものであることが好ましく、具体的には、プロピレン単独重合体、エチレン-プロピレンブロック共重合体、エチレン-プロピレンランダム共重合体等が挙げられる。
 さらに、これらの中でも、長鎖分岐構造を有するプロピレン単独重合体であることが特に好ましい。この場合、溶融張力が高くなるので、発泡しやすくなり、気泡セルもより均一化される。
 なお、長鎖分岐構造を有するプロピレン単独重合体は、0.9以下の重量平均分岐指数を有するプロピレン単独重合体であることが好ましい。また、重量平均分岐指数g'は、V1/V2で表され、V1が分岐ポリオレフィンの極限粘度数、V2が分岐ポリオレフィンと同じ重量平均分子量を有する線状ポリオレフィンの極限粘度数である。
 熱可塑性樹脂は、230℃におけるメルトテンションが30~350mNの範囲内のポリプロピレン樹脂を用いることが好ましい。ここで、メルトテンションとは、溶融張力を意味する。メルトテンションが上記範囲内であると、発泡用ポリプロピレン系樹脂は歪み硬化性を示し、高い発泡倍率を得ることができる。
 熱可塑性樹脂は、230℃におけるメルトフローレイト(MFR)が1~10であることが好ましい。ここで、MFRとは、JIS K-7210に準じて測定した値である。
 MFRが1未満であると、MFRが上記範囲内にある場合と比較して、押出速度を上げることが困難となる傾向にあり、MFRが10を超えると、MFRが上記範囲内にある場合と比較して、ドローダウン等の発生によりブロー成形が困難となる傾向にある。
 上記熱可塑性樹脂には、スチレン系エラストマー及び/又は低密度のポリエチレンを添加することが好ましい。スチレン系エラストマーまたは低密度のポリチレンを添加すると、発泡ブロー成形体の低温時の衝撃強度が向上する。
 スチレン系エラストマーとしては、特に限定されないが、分子内に水素が添加されたスチレン単位を有するエラストマーであればよい。例えば、スチレン-エチレン・ブチレン-スチレンブロック共重合体、スチレン-エチレン・プロピレン-スチレンブロック共重合体、スチレン-ブタジエンランダム共重合体等の水素添加エラストマーが挙げられる。
 スチレン系エラストマーの配合割合は、熱可塑性樹脂に対して、40wt%未満の範囲であることが好ましい。
 また、スチレン系エラストマー中のスチレンの含有量は、低温時の衝撃強度の観点から、30wt%未満であることが好ましく、20wt%未満であることがより好ましい。
 低密度のポリエチレンは、低温時の衝撃強度の観点から、密度0.91g/cm以下のものが好適に用いられる。特に、メタロセン系触媒により重合された直鎖状超低密度ポリエチレンを用いることが好ましい。
 低密度のポリエチレンの配合割合は、熱可塑性樹脂に対して、40wt%未満の範囲であることが好ましい。
 上記熱可塑性樹脂は、ブロー成形される前に、発泡剤を用いて発泡される。
 かかる発泡剤としては、空気、炭酸ガス、窒素ガス、水等の無機系発泡剤、又は、ブタン、ペンタン、ヘキサン、ジクロロメタン、ジクロロエタン等の有機系発泡剤が挙げられる。
 これらの中でも、発泡剤は、空気、炭酸ガス又は窒素ガスを用いることが好ましい。この場合、有体物の混入が防げるので、耐久性等の低下が抑制される。
 また、発泡方法としては、超臨界流体を用いることが好ましい。すなわち、炭酸ガス又は窒素ガスを超臨界状態とし、混合樹脂を発泡させることが好ましい。この場合、均一且つ確実に気泡することができる。
 上記熱可塑性樹脂には、スチレン系エラストマー、低密度のポリエチレン及び発泡剤以外に、核剤、着色剤等が添加されていてもよい。
 本実施形態に係る空調ダクト1(発泡ブロー成形体)は、壁部を複数の気泡セルを複数含んだ独立気泡構造とし、壁部の発泡倍率を所定の範囲とすることで、軽量化を図り、壁部の厚み方向における気泡セルの気泡径の標準偏差、を所定の範囲とすることで、均質な大きさの気泡セルを有するものとすることができ、壁部の外側の面の中心線平均粗さRa、を所定の範囲とすることで、表面の平滑性が高いものとすることができる。
 また、上記空調ダクト1は、流通エアに対する摩擦抵抗が低く、送風効率も向上することになる。これにより、空調エアの圧力損失が低減され、ダクト壁面の外側への結露の発生が低減される。
 次に、本発明の発泡ブロー成形体の製造方法について説明する。
 図2は、本発明に係る発泡ブロー成形体の製造方法のフローチャートである。
 図2に示すように、本実施形態に係る発泡ブロー成形体の製造方法は、発泡剤に熱可塑性樹脂を添加し、押出機で混合して混合樹脂とする混合工程S1と、マンドレルとダイ外筒との間の円筒状空間に混合樹脂を貯留する貯留工程S2と、リング状ピストンを用いてダイスリットからパリソンを押し出す押出工程S3と、パリソンを分割金型間で型締めし、該パリソン内にエアを吹き込んでブロー成形を行う成形工程S4と、を備える。
 本実施形態に係る発泡ブロー成形体の製造方法によれば、リング状ピストンを用いて所定の押出速度で押し出すことにより、気泡セルのサイズが維持させた状態で、ブロー成形されることになる。
 これにより、上記発泡ブロー成形体の製造方法によれば、均質な大きさの気泡セルを有し、軽量で、表面の平滑性が高い発泡ブロー成形体が得られる。
 以下、各工程について更に詳細に説明する。
(混合工程)
 混合工程S1は、発泡剤に熱可塑性樹脂を添加し、押出機で混合して混合樹脂とする工程である。なお、押出機は公知のものが適宜用いられる。
 また、本実施形態に係る発泡ブロー成形体の製造方法においては、熱可塑性樹脂として、上述したポリオレフィン系樹脂が用いられ、発泡剤は超臨界状態として用いられる。超臨界流体である発泡剤を用いることにより、気泡セルがより微細化される。
 ここで、発泡剤は、炭酸ガス又は窒素ガスであることが好ましい。これらは、比較的温和な条件下で超臨界状態とすることができる。
 具体的には、炭酸ガスを超臨界流体とする場合の条件は、臨界温度31℃、臨界圧力7.4MPa以上であり、窒素ガスを超臨界流体とする場合の条件は、臨界温度149.1℃、臨界圧力3.4MPa以上である。
 そして、超臨界流体を用いてポリオレフィン系樹脂を発泡させることにより、混合樹脂が得られる。このとき、上述したように、ポリオレフィンには、スチレン系エラストマー及び/又は低密度のポリエチレンを添加してもよい。
(貯留工程)
 貯留工程S2は、マンドレルとダイ外筒との間の円筒状空間に混合樹脂を貯留する工程である。かかる貯留工程は、押出ヘッドを用いて行われる。
 図3は、本発明に係る発泡ブロー成形体の製造方法で用いられる押出ヘッドを示す部分断面図である。
 図3に示すように、押出ヘッド20は、ダイ外筒28と、ダイ外筒28の略中央に配置されたマンドレル27と、ダイ外筒28及びマンドレル27の間の円筒状空間29と、該円筒状空間29に貯留された混合樹脂を下方に押すためのリング状ピストン22と、樹脂を排出するダイスリット21と、を備える。
 上記貯留工程S2において、図示しない押出機によって押し出された混合樹脂は、マンドレル27の周囲を伝ってマンドレル27とダイ外筒28との間の円筒状空間29に落下し、貯留される。
 このとき、貯留させる樹脂量は、5~40リットルであることが好ましい。
 本実施形態に係る発泡ブロー成形体の製造方法においては、混合樹脂を円筒状空間9で貯留させる方式としたので、混合樹脂が貯留されている間に、気泡セルのサイズの均質化が図られることになる。
(押出工程)
 押出工程S3は、リング状ピストンを用いてダイスリットからパリソンを押し出す工程である。すなわち、円筒状空間29に所定の樹脂量が貯留された後、リング状ピストン22を下方に押し下げることにより、ダイスリット21から図示しないパリソンが排出される。
 本実施形態に係る発泡ブロー成形体の製造方法においては、ダイ内でリング状ピストン22がパリソンを押し出す方式(ダイ内アキュムレーター方式)としたので、ダイスリット21の距離を短くすることができ、押出速度も速くすることができる。このため、気泡セルの状態を維持できる。
 ちなみに、図9に示す従来の押出ヘッドは、ダイ外のアキュムレーター35でパリソンを押し出す方式(ダイ外アキュムレーター方式)であるので、ダイスリットの距離が長くなり、押出速度も速くすることができない。
 なお、このときのパリソンの押出速度は、700kg/時以上であることが好ましい。この場合、より表面の平滑性が高い発泡ブロー成形体が得られる。また、本発明に用いられるダイ内アキュムレーターは射出率が200cm/sec以上、好ましくは500cm/sec以上である。
(成形工程)
 成形工程S4は、パリソンを分割金型間で型締めし、該パリソン内にエアを吹き込んでブロー成形を行う工程である。
 図4は、本発明に係る発泡ブロー成形体の製造方法におけるブロー成形態様を示す断面図である。
 図4に示すように、円筒状のパリソン32は、図示しないダイスリットから、分割金型33の間に押出される。そして、パリソン32が両側から挟み込まれるように、分割金型33によって型締めされる。
 その後、パリソン32内にエアを吹き込んでブロー成形する。
 このとき、エアを吹き込む圧力は、気泡セルの形状維持の観点から、0.05~0.15MPaの圧力であることが好ましい。
 こうして、発泡ブロー成形体が得られる。
 本実施形態に係る発泡ブロー成形体の製造方法によれば、混合樹脂を所定の位置で貯留させることにより、気泡セルのサイズの均質化が図られ、リング状ピストンを用いて所定の押出速度で押し出すことにより、気泡セルのサイズが維持させた状態で、ブロー成形されることになる。
 これにより、均質な大きさの気泡セルを有し、軽量で、表面の平滑性が高い発泡ブロー成形体が得られる。
[第2実施形態]
 第2実施形態として、本発明に係る発泡ブロー成形体を表皮付きパネルとして用いた場合について説明する。
 図5は、本発明に係る発泡ブロー成形体の第2実施形態を示す斜視図である。
 図5に示すように、本実施形態に係る発泡ブロー成形体(以下「表皮付きパネル」ともいう。)3は、発泡剤を混合させた熱可塑性樹脂をブロー成形することにより形成された壁部からなる中空二重壁構造を有し、壁部からなる基体2の一方の面に表皮材4が貼着された構造となっている。なお、かかる表皮材4は、成形工程において、壁部のブロー成形と同時に一体に貼着される。
 図6は、図5に示す発泡ブロー成形体の断面図である。
 図6に示すように、表皮付きパネル3において、壁部からなる基体2は、中空部5を有する中空二重壁構造となっており、該中空部5を区画するように複数の補強リブ6が設けられている。かかる補強リブ6により、上下方向への強度が向上する。
 補強リブ6は、成形工程のパリソンの型締めの際に、一方向から突起状のスライドコアでパリソンの側面に押付けることにより、パリソンの壁部を折り畳むようにして形成される。
 したがって、上記表皮付きパネルの製造においては、成形工程において、表皮材4が貼着されると共に、補強リブ6も同時に形成される。
 なお、上記壁部は、上述した第1実施形態に係る発泡ブロー成形体における壁部と同義であり、構造、物性も同様であるので、説明を省略する。
 また、第2実施形態に係る発泡ブロー成形体の製造方法は、上述したように成形工程が異なる以外は、第1実施形態に係る発泡ブロー成形体の製造方法と同じである。
 本実施形態に係る表皮付きパネル3(発泡ブロー成形体)は、壁部を複数の気泡セルを複数含んだ独立気泡構造とし、壁部の発泡倍率を所定の範囲とすることで、軽量化を図り、壁部の厚み方向における気泡セルの気泡径の標準偏差、を所定の範囲とすることで、均質な大きさの気泡セルを有するものとすることができ、壁部の外側の面の中心線平均粗さRa、を所定の範囲とすることで、表面の平滑性が高いものとすることができる。
 また、パネル壁面の内側に形成される補強リブの溶着強度及びパネル壁面の外側に貼着される表皮の溶着強度が向上し、且つ剛性、外観にも優れるものとなる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 230℃におけるMFRが3.0g/分の長鎖分岐構造を導入したプロピレン単独重合体(熱可塑性樹脂、サンアロマー社製、商品名:PF814)70wt%と、230℃におけるMFRが0.5g/分の結晶性のエチレン-プロピレンブロック共重合体(日本ポリケム社製、ノバテックPP EC9)30wt%と、を混合して混合物とし、この混合物96重量部と、核剤としてタルクMB(マスターバッチ)を3重量部と、着色剤として黒色MB(マスターバッチ)1重量部と、を混合した。混合樹脂の密度は0.91g/cmであった。
 そして、これに、発泡剤として超臨界状態の炭酸ガスを添加して発泡させ混合樹脂とした。これを、押出機で混合した後、図3に示す押出ヘッドを用い、マンドレルとダイ外筒の間の円筒状空間に混合樹脂を貯留し、リング状ピストン(ダイ内アキュムレーター)を用いて1500kg/時の速度で円筒状のパリソンを図4に示す分割金型の間に押出し、型締め後、型締め後パリソン内に0.1MPaの圧力でエアを吹き込むことにより、ブロー成形されたサンプルAを得た。なお、上記MFRはJIS K-7210に準じて試験荷重2.16kgで測定したものである。
(実施例2)
 押出し速度を750kg/時としたこと以外は、実施例1と同様にしてサンプルBを得た。
(実施例3)
 炭酸ガスの代わりに窒素ガスを用いたこと以外は、実施例1と同様にしてサンプルCを得た。
(実施例4)
 炭酸ガスの代わりに窒素ガスを用い、押出し速度を700kg/時としたこと以外は、実施例1と同様にしてサンプルDを得た。
(実施例5)
 炭酸ガスの代わりに窒素ガスを用い、押出し速度を600kg/時としたこと以外は、実施例1と同様にしてサンプルEを得た。
(実施例6)
 押出し速度を600kg/時としたこと以外は、実施例1と同様にしてサンプルFを得た。
(比較例1)
 図3に示す押出ヘッドの代わりに、図9に示す従来の押出しヘッドを用いた。すなわち、押出機で混合した混合樹脂をダイヘッド外部に設けた水平方向のアキュムレータシリンダ(ダイ外アキュムレーター)から、プランジャを用いてクロスヘッドに供給し、ダイスリットより円筒状のパリソンとして押出た。また、押出し速度は450kg/時とした。
 これら以外は、実施例1と同様にしてサンプルGを得た。
(比較例2)
 炭酸ガスの代わりに窒素ガスを用いたこと以外は、比較例1と同様にしてサンプルHを得た。
(比較例3)
 押出し速度を300kg/時としたこと以外は、比較例1と同様にしてサンプルIを得た。
 実施例1~6及び比較例1~3で得られたサンプルA~Iの物性を以下のように評価した。サンプルA~Iの長手方向両端および中央の3点において比較的平坦な部分をミクロトーム(LEICA社製 RM2145)で切り出して切断断面をCCDカメラ(キーエンスVH-630)で撮影した。
1.平均肉厚(mm)
 サンプルA~IをCCDカメラで撮影した各3点について、写真より厚みを測定し、各値の平均値を計算により求めた。
2.発泡倍率
 サンプルA~Iで用いた混合樹脂の密度を、対応するサンプルA~Iの壁面の見かけ密度で割ることにより、発泡倍率を算出した。
3.平均気泡径(μm)
 サンプルA~IをCCDカメラで撮影した各3点について、写真より壁面の厚み方向外側から内側の等間隔5点における気泡径の厚み方向の大きさを測定し、平均値を計算により求めた。
4.中心線平均粗さ(Ra)(μm)
 サンプルA~Iの中心平均粗さをJIS B0601に準じ、表面粗さ測定器(株式会社東京精密製サーフコム470A)を用いて測定した。発泡ブロー成形体の表面粗さの測定部位は、発泡ブロー成形体の壁面の外側5点と壁面の内側5点を測定し、その平均値とした。
5.気泡径の標準偏差(μm)
 平均気泡径を計算する際に測定した計15点の厚み方向の気泡径の値から標準偏差を計算により求めた。
 これらの評価により、得られた結果を表1に示す。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
 実施例1~6のサンプルA~Fは、高い射出率を有するダイ内アキュムレーターを用いることで短時間にパリソンとして押出すことが可能となり、その結果として気泡セルの気泡径の標準偏差が小さく(気泡径の分布にばらつきの少ない)、表面の平滑性の高い発泡ブロー成形体を得ることができた。
 また、発泡剤として超臨界状態の窒素を用いることにより気泡セルの径をより小さくできることがわかった。
 一方、比較例1~3のサンプルG~Iは、気泡セルの気泡径の分布にばらつきが生じた。このことは、ダイ外アキュムレーターを用いた場合、シリンダ内に貯えられた溶融状態の熱可塑性樹脂が押出しの際にクロスヘッド部分で90度流れの方向を変えて押し出されると共に、ダイ外に設けられたシリンダからパリソンとして押し出されるダイスリットまでの距離が比較的長くなるので、押し出される熱可塑性樹脂の圧力損失が大きくなるためと考えられる。
 次に、実施例1~6及び比較例1~3で得られたサンプルA~Iの効果について以下のように評価した。
1.写真
 実施例1及び比較例1により得られたサンプルA及びGの長手方向の中央において比較的平坦な部分をミクロトーム(LEICA社製 RM2145)で切り出し、切断断面をCCDカメラ(キーエンスVH-6300)で撮影した。
 得られた実施例1のサンプルAの写真を図7に、比較例1のサンプルGの写真を図8に示す。
2.剥離強度(gf)
 サンプルA~Iから切り出した試験片に、両面テープが貼着された不織布(以下「パッキン」という。)(厚さ3mm、幅10mm)をそれぞれ貼り付け、パッキンの一方の端面を試験片に粘着固定し、他方の端面に引張り試験機を取り付けた。
 そして、パッキンの他方の端面を、一方の端面側に折り返すように、引張り試験機で引張り、そのときの剥離強度を測定した。なお、パッキンとしてJIS Z0237(180°引き剥がし法)による粘着力が18.6N/25mmの不織布/アクリル系粘着材(積水化学株式会社製 内装部材固定用両面テープ#5782)を用い、引張速度は、300mm/minとした。
 得られた結果を表2に示す。
3.外観
 サンプルA~Iの外観を以下の基準にしたがって、目視にて評価した。
○:表面が平滑で均質な外観を有している
△:表面は比較的に平滑であるが外観上均質さに劣る
×:表面の凹凸が目視ではっきりとわかり外観性に劣る
 得られた結果を表2に示す。
〔表2〕
Figure JPOXMLDOC01-appb-I000002
 本発明の実施例1~6のサンプルA~Fは、比較例1~3のサンプルG~Iよりも、剥離強度が優れていた。これにより、本願発明の発泡ブロー成形体は、平滑性が優れるといえる。
 これらのことにより、本発明によれば、均質な大きさの気泡セルを有し、軽量で、表面の平滑性が高い発泡ブロー成形体が得られることが確認された。
 本発明に係る発泡ブロー成形体は、車両用空調ダクト、表皮付きパネルの他、車両用内装材等に適用することができる。発泡ブロー成形体は、プラスチック部品としての各種物性を低下させることなく車両の軽量化に貢献するものである。
符号の説明
 1・・・空調ダクト(発泡ブロー成形体)
 2・・・基体
 3・・・表皮付きパネル(発泡ブロー成形体)
 4・・・表皮材
 5・・・中空部
 6・・・補強リブ
 11・・・本体部
 12・・・エア流出部
 13・・・エア流入部
 20・・・押出ヘッド
 21・・・ダイスリット
 22・・・リング状ピストン
 27・・・マンドレル
 28・・・ダイ外筒
 29・・・円筒状空間
 32・・・パリソン
 33・・・分割金型
 35・・・アキュムレーター
 S1・・・混合工程
 S2・・・貯留工程
 S3・・・押出工程
 S4・・・成形工程

Claims (9)

  1.  発泡剤を混合させた熱可塑性樹脂をブロー成形することにより形成される壁部からなる発泡ブロー成形体において、
     前記壁部が複数の気泡セルを複数含んだ独立気泡構造であり、
     前記壁部の発泡倍率が2.0倍以上であり、
     前記壁部の外側の面の中心線平均粗さRaが9.0μm未満であり、且つ
     前記壁部の厚み方向における前記気泡セルの気泡径の標準偏差が40μm未満である発泡ブロー成形体。
  2.  前記熱可塑性樹脂がポリオレフィン系樹脂からなることを特徴とする請求項1記載の発泡ブロー成形体。
  3.  前記ポリオレフィン系樹脂が、長鎖分岐構造を有するプロピレン単独重合体である請求項2記載の発泡ブロー成形体。
  4.  前記壁部の厚み方向における前記気泡セルの平均気泡径が300μm未満である請求項1~3のいずれか一項に記載の発泡ブロー成形体。
  5.  前記壁部の厚み方向における前記気泡セルの平均気泡径が100μm未満であり、且つ前記壁部の厚み方向における前記気泡セルの気泡径の標準偏差が30μm未満である請求項1~3のいずれか一項に記載の発泡ブロー成形体。
  6.  車両用空調ダクトである請求項1~5のいずれか一項に記載の発泡ブロー成形体。
  7.  請求項1~6のいずれか一項に記載の発泡ブロー成形体の製造方法であって、
     発泡剤に熱可塑性樹脂を添加し、押出機で混合して混合樹脂とする混合工程と、
     マンドレルとダイ外筒との間の円筒状空間に前記混合樹脂を貯留する貯留工程と、
     リング状ピストンを用いてダイスリットからパリソンを押し出す押出工程と、
     前記パリソンを分割金型間で型締めし、該パリソン内にエアを吹き込んでブロー成形を行う成形工程と、
    を備える発泡ブロー成形体の製造方法。
  8.  前記熱可塑性樹脂がポリオレフィン系樹脂であり、前記発泡剤が超臨界状態である請求項7記載の発泡ブロー成形体の製造方法。
  9.  前記押出工程において、前記パリソンの押出速度が700kg/時以上である請求項7又は8に記載の発泡ブロー成形体の製造方法。
PCT/JP2009/001519 2008-03-31 2009-03-31 発泡ブロー成形体及びその製造方法 WO2009122735A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP14188328.0A EP2842720B8 (en) 2008-03-31 2009-03-31 Process for producing blow-molded foam
US12/935,520 US8517059B2 (en) 2008-03-31 2009-03-31 Blow-molded foam and process for producing the same
CN200980119253.8A CN102046355B (zh) 2008-03-31 2009-03-31 发泡吹塑成形体及其制造方法
EP09728880.7A EP2261004B1 (en) 2008-03-31 2009-03-31 A climate control duct and method of making it
ES09728880.7T ES2527956T3 (es) 2008-03-31 2009-03-31 Un conducto de control climático y el método de realizarlo
EP21172209.5A EP3878625A1 (en) 2008-03-31 2009-03-31 Blow-molded foam and process for producing the same
US13/949,266 US9186955B2 (en) 2008-03-31 2013-07-24 Blow-molded foam and process for producing the same
US13/950,248 US9340091B2 (en) 2008-03-31 2013-07-24 Blow-molded foam and process for producing the same
US15/156,297 US10369727B2 (en) 2008-03-31 2016-05-16 Blow-molded foam and process for producing the same
US16/457,846 US11045982B2 (en) 2008-03-31 2019-06-28 Blow-molded foam
US17/326,645 US11833723B2 (en) 2008-03-31 2021-05-21 Blow-molded foam and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-093894 2008-03-31
JP2008093894A JP5025549B2 (ja) 2008-03-31 2008-03-31 発泡ブロー成形品およびその製造方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/935,520 A-371-Of-International US8517059B2 (en) 2008-03-31 2009-03-31 Blow-molded foam and process for producing the same
US13/949,266 Division US9186955B2 (en) 2008-03-31 2013-07-24 Blow-molded foam and process for producing the same
US13/950,248 Continuation US9340091B2 (en) 2008-03-31 2013-07-24 Blow-molded foam and process for producing the same

Publications (1)

Publication Number Publication Date
WO2009122735A1 true WO2009122735A1 (ja) 2009-10-08

Family

ID=41135135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001519 WO2009122735A1 (ja) 2008-03-31 2009-03-31 発泡ブロー成形体及びその製造方法

Country Status (6)

Country Link
US (6) US8517059B2 (ja)
EP (3) EP2261004B1 (ja)
JP (1) JP5025549B2 (ja)
CN (2) CN102046355B (ja)
ES (1) ES2527956T3 (ja)
WO (1) WO2009122735A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030498A (ja) * 2010-07-30 2012-02-16 Kyoraku Co Ltd 発泡成形体の製造方法、及び発泡成形体
CN102431146A (zh) * 2010-09-14 2012-05-02 京洛株式会社 管道的成形方法及管道
JP2012176604A (ja) * 2011-01-31 2012-09-13 Kyoraku Co Ltd 樹脂成形品の成形方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053907B2 (ja) * 2008-03-31 2012-10-24 キョーラク株式会社 軽量空調ダクト
JP5025549B2 (ja) 2008-03-31 2012-09-12 キョーラク株式会社 発泡ブロー成形品およびその製造方法
JP5796285B2 (ja) * 2010-09-14 2015-10-21 キョーラク株式会社 ダクトの成形方法
US9102093B2 (en) 2010-09-14 2015-08-11 Kyoraku Co., Ltd. Molding apparatus and molding method
JP5367884B2 (ja) * 2011-08-31 2013-12-11 キョーラク株式会社 板状部分付き管状発泡成形体及びその成形方法
CN103171123B (zh) * 2011-12-20 2017-04-12 京洛株式会社 中空发泡成形体的制造方法及中空发泡成形体
US9266259B2 (en) 2011-12-23 2016-02-23 Kyoraku Co. Ltd. Method of forming hollow blow-molded foam and such hollow blow-molded foam
MX361391B (es) * 2012-01-26 2018-12-05 Kyoraku Co Ltd Método para producir un artículo de espuma moldeada y artículo de espuma moldeada.
JP5982870B2 (ja) * 2012-02-28 2016-08-31 キョーラク株式会社 発泡ダクト
JP2013178034A (ja) * 2012-02-28 2013-09-09 Kyoraku Co Ltd 発泡ダクト
US20140113032A1 (en) * 2012-10-22 2014-04-24 Mars, Incorporated Aerated injection molded pet chew
JP6541938B2 (ja) * 2013-05-14 2019-07-10 株式会社ジェイエスピー ダクト
JP6037053B2 (ja) * 2013-12-03 2016-12-07 日産自動車株式会社 発泡成形体、空気調節装置用ダクト及び車載空気調節装置用ダクト
JP6331390B2 (ja) * 2013-12-27 2018-05-30 キョーラク株式会社 発泡成形体
JP6418767B2 (ja) * 2014-04-02 2018-11-07 ユニチカ株式会社 発泡ブロー成形用ポリアミド樹脂組成物およびそれより得られる成形体
KR101637273B1 (ko) 2014-06-13 2016-07-07 현대자동차 주식회사 폴리올레핀 수지 성형품, 그 제조방법 및 이를 이용한 에어덕트
US20150362097A1 (en) * 2014-06-17 2015-12-17 Unique Fabricating, Inc. Foam duct with captured insert for improved connectability
CN107073791B (zh) 2014-08-20 2019-11-08 托莱多制模和冲模股份有限公司 用于模制挤出聚合物泡沫的低于常压形态控制工艺及由此产生的制件
US11161285B2 (en) 2014-08-20 2021-11-02 Toledo Molding & Die, Inc. Sub-ambient pressure morphology control process for use in molding extruded polymer foams, and parts produced therefrom
WO2018079699A1 (ja) * 2016-10-31 2018-05-03 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
JP6845426B2 (ja) * 2017-02-27 2021-03-17 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
JP6920604B2 (ja) * 2016-10-31 2021-08-18 キョーラク株式会社 発泡成形体、及びその製造方法
JP6920610B2 (ja) * 2017-04-27 2021-08-18 キョーラク株式会社 発泡ダクト
US20210293358A1 (en) * 2018-07-26 2021-09-23 Kyoraku Co., Ltd. Tubular formed body, and storage structure
FR3090509B1 (fr) * 2018-12-19 2022-04-29 Valeo Systemes Thermiques Boîtier pour module de face avant d’un véhicule automobile
CN109834920A (zh) * 2018-12-26 2019-06-04 天津富松汽车零部件有限公司 中空吹塑内部发泡成型体的吹塑设备
KR102382228B1 (ko) * 2019-03-26 2022-04-04 도레이 카부시키가이샤 폴리올레핀계 수지 발포 시트
CN112339249B (zh) * 2020-10-09 2021-08-24 长沙水星包装有限公司 综合性水桶挤吹成型设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309434A (ja) 1987-06-12 1988-12-16 Ekuseru Kk 内周面上の発泡セルを破裂させた中空成形品及びその製造方法
JP2001527106A (ja) * 1997-12-19 2001-12-25 トレクセル・インコーポレーテッド 微孔性フォームの押出し/吹込み成形プロセス及びそれによって製造される製品
JP2002192601A (ja) * 2000-12-25 2002-07-10 Jsp Corp オレフィン系樹脂発泡層を有する発泡成形体の製造方法
JP2003236918A (ja) * 2002-02-15 2003-08-26 Jsp Corp 発泡成形体の製造方法及び発泡成形体
JP2004116959A (ja) * 2002-09-27 2004-04-15 Jsp Corp ダクト
JP2005241157A (ja) 2004-02-27 2005-09-08 Kyoraku Co Ltd 発泡体ダクト
JP3745960B2 (ja) 1997-11-28 2006-02-15 株式会社ジェイエスピー 発泡ブロー成形品及びその製造方法
JP2006181957A (ja) * 2004-12-28 2006-07-13 Kyoraku Co Ltd ポリプロピレン系樹脂発泡成形体

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624289A (en) * 1979-07-31 1981-03-07 Furukawa Electric Co Ltd Adiabatic pipe and its manufacture
EP0078108B1 (en) * 1981-10-22 1986-08-27 Imperial Chemical Industries Plc Production of pvc irrigation pipe
DE3708006A1 (de) * 1987-03-12 1988-09-22 Kautex Maschinenbau Gmbh Verfahren zum herstellen von hohlkoerpern aus thermoplastischem kunststoff mit einer mehrschichtigen wandung
US4931327A (en) * 1989-06-14 1990-06-05 Mobil Oil Corporation White opaque opp film for tamper evident package
US5453310A (en) * 1992-08-11 1995-09-26 E. Khashoggi Industries Cementitious materials for use in packaging containers and their methods of manufacture
ZW2894A1 (en) * 1993-02-17 1994-05-04 Khashoggi E Ind Methods and systems for manufacturing packaging materials, containers, and other articles of manufacture from hydraulically settable mixtures and highly inorganically filled compositions
US5930570A (en) * 1995-06-07 1999-07-27 Canon Kabushiki Kaisha Oriented foamed rotary member, and developing device using same
BR9610557A (pt) * 1995-09-20 1999-12-21 Uponor Bv Produtos poliméricos orientados
US5830393A (en) 1996-07-10 1998-11-03 Mitsui Chemicals, Inc. Process for preparing expanded product of thermoplastic resin
US6706223B1 (en) * 1997-12-19 2004-03-16 Trexel, Inc. Microcelluar extrusion/blow molding process and article made thereby
JP3646858B2 (ja) * 1999-08-09 2005-05-11 株式会社ジェイエスピー 多層ポリプロピレン系樹脂発泡成形体及びその製造方法、並びに容器
CN1341670A (zh) * 2000-08-10 2002-03-27 株式会社宏大化纤 改性聚丙烯、制备改性聚丙烯的方法、改性聚丙烯组合物和发泡产品
US7074027B2 (en) * 2001-02-19 2006-07-11 Starita Joseph M Extrusion die and method for forming dual wall corrugated plastic pipe and dual wall plastic pipe having a foam annular core
US6749794B2 (en) * 2001-08-13 2004-06-15 R + S Technik Gmbh Method and apparatus for molding components with molded-in surface texture
US20030051764A1 (en) * 2001-09-20 2003-03-20 Jungers Jon W. Air handling system ductwork component and method of manufacture
JP4084209B2 (ja) * 2003-02-21 2008-04-30 株式会社ジェイエスピー 発泡成形体及びその製造方法
JP4033048B2 (ja) 2003-06-11 2008-01-16 ソニー株式会社 スピーカ振動板の製造方法及びスピーカ振動板
JP2007508175A (ja) * 2003-10-08 2007-04-05 ベール ゲーエムベーハー ウント コー カーゲー 構成部品、特に車両用ハイブリッド支持体と、この種の構成部品を形成する方法と、この種の構成部品の使用
KR101233002B1 (ko) * 2005-07-13 2013-02-13 도요 세이칸 가부시키가이샤 진주와 같은 외관을 갖는 플라스틱 용기 및 그 제조 방법
BRPI0706060A2 (pt) * 2007-02-05 2011-03-22 American Fuji Seal Inc folha com espuma contraìvel por aquecimento e recipiente
US9669593B2 (en) * 2007-06-14 2017-06-06 The Boeing Company Light weight thermoplastic flex foam and hybrid duct system
CN102700111B (zh) * 2008-03-27 2015-06-24 东洋制罐株式会社 拉伸发泡塑料容器及其制造方法
JP5025549B2 (ja) * 2008-03-31 2012-09-12 キョーラク株式会社 発泡ブロー成形品およびその製造方法
JP5609423B2 (ja) * 2009-09-30 2014-10-22 キョーラク株式会社 空調ダクトの製造方法、及び空調ダクト
JP5803086B2 (ja) * 2009-10-31 2015-11-04 キョーラク株式会社 発泡成形体の成形方法及び発泡成形体
US9266259B2 (en) * 2011-12-23 2016-02-23 Kyoraku Co. Ltd. Method of forming hollow blow-molded foam and such hollow blow-molded foam
CN104093559B (zh) 2012-02-07 2015-09-09 东洋制罐集团控股株式会社 气相沉积发泡体
US9796497B2 (en) 2012-03-26 2017-10-24 Toyo Seikan Group Holdings, Ltd. Stretched and foamed plastic formed body having appearance of a metal color
KR101763497B1 (ko) * 2012-10-10 2017-07-31 교라꾸 가부시끼가이샤 발포 성형체 및 그의 성형방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309434A (ja) 1987-06-12 1988-12-16 Ekuseru Kk 内周面上の発泡セルを破裂させた中空成形品及びその製造方法
JP3745960B2 (ja) 1997-11-28 2006-02-15 株式会社ジェイエスピー 発泡ブロー成形品及びその製造方法
JP2001527106A (ja) * 1997-12-19 2001-12-25 トレクセル・インコーポレーテッド 微孔性フォームの押出し/吹込み成形プロセス及びそれによって製造される製品
JP2002192601A (ja) * 2000-12-25 2002-07-10 Jsp Corp オレフィン系樹脂発泡層を有する発泡成形体の製造方法
JP2003236918A (ja) * 2002-02-15 2003-08-26 Jsp Corp 発泡成形体の製造方法及び発泡成形体
JP2004116959A (ja) * 2002-09-27 2004-04-15 Jsp Corp ダクト
JP2005241157A (ja) 2004-02-27 2005-09-08 Kyoraku Co Ltd 発泡体ダクト
JP2006181957A (ja) * 2004-12-28 2006-07-13 Kyoraku Co Ltd ポリプロピレン系樹脂発泡成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2261004A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030498A (ja) * 2010-07-30 2012-02-16 Kyoraku Co Ltd 発泡成形体の製造方法、及び発泡成形体
CN102431146A (zh) * 2010-09-14 2012-05-02 京洛株式会社 管道的成形方法及管道
EP2428350A3 (en) * 2010-09-14 2014-09-17 Kyoraku Co., Ltd. Duct molding method and duct
JP2012176604A (ja) * 2011-01-31 2012-09-13 Kyoraku Co Ltd 樹脂成形品の成形方法

Also Published As

Publication number Publication date
EP2261004A4 (en) 2013-01-09
US9186955B2 (en) 2015-11-17
US20130313749A1 (en) 2013-11-28
US10369727B2 (en) 2019-08-06
JP2009241528A (ja) 2009-10-22
ES2527956T3 (es) 2015-02-02
EP3878625A1 (en) 2021-09-15
EP2261004A1 (en) 2010-12-15
US11045982B2 (en) 2021-06-29
CN102046355B (zh) 2014-08-27
US20160257040A1 (en) 2016-09-08
US8517059B2 (en) 2013-08-27
US9340091B2 (en) 2016-05-17
JP5025549B2 (ja) 2012-09-12
EP2842720B8 (en) 2021-09-01
EP2261004B1 (en) 2014-12-17
US20190322009A1 (en) 2019-10-24
CN104015340A (zh) 2014-09-03
EP2842720B1 (en) 2021-06-16
CN102046355A (zh) 2011-05-04
US20110048571A1 (en) 2011-03-03
US20130323448A1 (en) 2013-12-05
US20210276232A1 (en) 2021-09-09
EP2842720A1 (en) 2015-03-04
CN104015340B (zh) 2019-03-08
US11833723B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2009122735A1 (ja) 発泡ブロー成形体及びその製造方法
WO2009122734A1 (ja) 車両用軽量空調ダクト
JP5422246B2 (ja) 発泡ブロー成形体及びその製造方法
EP2628990B1 (en) Molded foam
WO2013073461A1 (ja) 発泡成形品およびその製造方法
US20110127688A1 (en) Method for manufacturing molded foam
JP5428061B2 (ja) 発泡ブロー成形品
JP5554551B2 (ja) 発泡成形体の製造方法
JP5554538B2 (ja) 発泡成形体の製造方法
JPH02269033A (ja) 熱可塑性樹脂製中空体とその製造方法
JP6174462B2 (ja) 発泡ブロー成形品
JP5464888B2 (ja) 車両用軽量空調ダクト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119253.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009728880

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2165/MUMNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12935520

Country of ref document: US