WO2013073461A1 - 発泡成形品およびその製造方法 - Google Patents

発泡成形品およびその製造方法 Download PDF

Info

Publication number
WO2013073461A1
WO2013073461A1 PCT/JP2012/079095 JP2012079095W WO2013073461A1 WO 2013073461 A1 WO2013073461 A1 WO 2013073461A1 JP 2012079095 W JP2012079095 W JP 2012079095W WO 2013073461 A1 WO2013073461 A1 WO 2013073461A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
base resin
styrene
mixed
weight
Prior art date
Application number
PCT/JP2012/079095
Other languages
English (en)
French (fr)
Inventor
小野寺 正明
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Priority to US14/358,804 priority Critical patent/US20140335295A1/en
Publication of WO2013073461A1 publication Critical patent/WO2013073461A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00564Details of ducts or cables of air ducts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00028Constructional lay-out of the devices in the vehicle
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00207Combined heating, ventilating, or cooling devices characterised by the position of the HVAC devices with respect to the passenger compartment
    • B60H2001/00235Devices in the roof area of the passenger compartment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing

Definitions

  • the present invention relates to a foam molded product used for, for example, an air conditioning duct for a vehicle and a manufacturing method thereof.
  • an air conditioning duct for a vehicle for allowing air-conditioned air supplied from an on-vehicle air-conditioning unit to flow to a desired part is known. Since such vehicle air conditioning ducts are required to have light weight and heat insulation properties, foamed resin molded products are generally used.
  • the technology of the present applicant uses a mixed resin containing a polypropylene-based resin for foaming and a hydrogenated styrene-based thermoplastic elastomer having a styrene content of 15 to 25 wt%, thereby reducing weight and impact resistance.
  • a mixed resin containing a polypropylene-based resin for foaming and a hydrogenated styrene-based thermoplastic elastomer having a styrene content of 15 to 25 wt%, thereby reducing weight and impact resistance.
  • Patent Document 1 attempts to mold a foam molded product that excels in the quality (for example, see Patent Document 1).
  • a curtain airbag for protecting a passenger from a side collision is arranged in the immediate vicinity. For this reason, even if the curtain airbag is deployed by the momentum of the pressurized gas, it is necessary to prevent the air conditioning duct from being scattered and cracked. For this reason, even if it is a case where a foaming ratio is made high in order to improve lightness and heat insulation, it is necessary to ensure sufficient impact strength. In addition, when the impact resistance of the air-conditioning duct is insufficient, it is necessary to take measures against scattering cracking by sticking a scattering prevention tape to the airbag side, which causes a problem of high cost.
  • the present invention has been made in view of such a situation, and while having sufficient impact resistance, it is possible to further increase the foaming ratio, and to achieve a highly lightweight and heat insulating foam molded article and It aims at providing the manufacturing method.
  • the foamed molded article according to the present invention is a molded resin containing a polypropylene resin, a styrene-ethylene-butylene-styrene block copolymer, and a polyethylene resin as a base resin.
  • the polypropylene-based resin has a long-chain branched structure, and the blending ratio is 60 to 80% of the base resin by weight,
  • the styrene-ethylene / butylene-styrene block copolymer has a styrene content of 15 to 40% and a blending ratio of 15 to 35% of the base resin by weight,
  • the polyethylene-based resin has a long-chain branched structure, a density of 0.930 g / cm 3 or less, and a blending ratio of 5 to 25% of the base resin by weight.
  • the method for producing a foam molded article according to the present invention comprises adding a foaming agent to a base resin in which a polypropylene resin, a styrene-ethylene-butylene-styrene block copolymer, and a polyethylene resin are mixed.
  • the polypropylene-based resin has a long-chain branched structure, and the blending ratio is 60 to 80% of the base resin by weight ratio
  • the styrene-ethylene / butylene-styrene block copolymer has a styrene content of 15 to 40% and a blending ratio of 15 to 35% of the base resin by weight
  • the polyethylene-based resin has a long-chain branched structure, a density of 0.930 g / cm 3 or less, and a blending ratio of 5 to 25% of the base resin by weight.
  • FIG. 1 is a perspective view showing a case where a lightweight air conditioning duct (foam molded product) for a vehicle according to the present embodiment is used as a roof side duct, and (b) is an XX ′ line arrow of (a).
  • FIG. It is sectional drawing which shows the state which attached the roof side duct of FIG. 1 to the vehicle. It is sectional drawing which shows the aspect at the time of blow molding the roof side duct of FIG. It is a perspective view showing the case where the lightweight air conditioning duct for vehicles concerning this embodiment is used as a floor duct for air conditioning.
  • the present invention is not limited to a vehicle air-conditioning duct.
  • automotive interior parts such as door panels, instrument panels, and vehicle deck boards, residential interior wall materials, housings for electronic devices, gases other than those for vehicles
  • the present invention can also be applied to other foamed molded products such as a duct for supplying a liquid.
  • 1st Embodiment shows about the case where the vehicle air-conditioning duct as embodiment of this invention is a roof side duct.
  • FIG. 1A is a perspective view showing a roof side duct as the present embodiment
  • FIG. 1B is a sectional view taken along line XX ′ in FIG.
  • the roof side duct 1 of this embodiment is for ventilating the air-conditioning air supplied from an air-conditioning unit to a desired site
  • the roof side duct 1 has a hollow polygonal column shape and is integrally formed by blow molding. The blow molding will be described later.
  • the roof side duct 1 is supported by a transverse duct 3 on a flat plate.
  • An air supply port 2 for supplying air-conditioning air is provided at one end of the transverse duct 3, and the air-conditioning air supplied from the air supply port circulates inside the transverse duct (not shown) It flows into the hollow part of the duct 1.
  • the inflowing air-conditioning air is discharged from an air discharge port 5 provided in the roof side duct 1.
  • the roof side duct 1 has an average thickness of the wall 1a of 3.5 mm or less.
  • the flow path of the conditioned air flowing through the roof side duct 1 can be set wide.
  • the average bubble diameter of the bubble cell in the thickness direction of the wall part 1a is less than 300 micrometers. In this case, there is an advantage that the mechanical strength is further increased.
  • the average cell diameter is more preferably less than 100 ⁇ m.
  • the roof side duct 1 has a closed cell structure with an expansion ratio of 3.0 times or more.
  • the expansion ratio is a value obtained by dividing the density of the thermoplastic resin used for foam blow molding by the apparent density of the wall portion 1a of the foam blow molded product.
  • the closed cell structure is a structure having a plurality of bubble cells, and means a structure having at least a closed cell ratio of 70% or more.
  • the weight can be further reduced and the heat insulating property can be further improved as compared with the case where the expansion ratio is less than 3.0 times. For this reason, even if it is a case where the air of cooling is distribute
  • the roof side duct 1 is arranged side by side with the curtain airbag 7 between the interior ceiling material 6 of the vehicle and the vehicle body panel 4. For this reason, when the curtain airbag 7 is deployed by the pressurized gas, an impact due to the deployment of the curtain airbag 7 is transmitted to the roof side duct 1 disposed behind the curtain airbag 7.
  • the roof side duct 1 is required to have an impact resistance that does not cause scattering cracking due to the impact of the deployment even when the curtain airbag 7 is deployed by the pressurized gas. If there is a possibility that scattering and cracking may occur due to an impact when the curtain airbag 7 is deployed, it becomes necessary to apply a scattering prevention tape to the curtain airbag 7, which causes an increase in cost.
  • the roof side duct 1 preferably has a tensile fracture elongation at ⁇ 10 ° C. of 40% or more, and more preferably 100% or more.
  • the tensile elongation at break is a value measured according to JIS K-7113.
  • the roof side duct 1 according to the present embodiment is obtained by adding a foaming agent to a base resin obtained by mixing a polypropylene resin for foaming, a styrene-ethylene-butylene-styrene block copolymer, and a polyethylene resin. And obtained by foam blow molding.
  • the polypropylene resin contains a propylene homopolymer having a long-chain branched structure.
  • the propylene homopolymer having a long chain branched structure is preferably a propylene homopolymer having a weight average branching index of 0.9 or less.
  • the weight average branching index g ′ is represented by V1 / V2, where V1 is the intrinsic viscosity of the branched polyolefin, and V2 is the intrinsic viscosity of a linear polyolefin having the same weight average molecular weight as that of the branched polyolefin.
  • melt tension means melt tension.
  • the polypropylene resin for foaming exhibits strain hardening and a high foaming ratio can be obtained.
  • the styrene-ethylene / butylene-styrene block copolymer preferably has a styrene content of 15 to 40%.
  • the styrene-ethylene / butylene-styrene block copolymer preferably has a melt flow rate (MFR) at 230 ° C. of 10 g / 10 min or less, more preferably 1 to 10 g / 10 min. More preferably, it is ⁇ 5 g / 10 min.
  • MFR is a value measured according to JIS K-7210. When the MFR is less than 1.0 g / 10 min, compared to the case where the MFR is within the above range, Impact resistance at low temperatures may not be obtained.
  • the polyethylene resin preferably has a long-chain branched structure. From the viewpoint of impact resistance at low temperatures, those having a density of 0.930 g / cm 3 or less are preferably used. In particular, the polyethylene resin preferably has a density of 0.920 g / cm 3 or less. Further, regarding melt tension (MT) and MFR, it is more preferable that MT ⁇ MFR is 30 (cN ⁇ g / 10 minutes) or more. In addition, it is more preferable that the polyethylene-based resin contains linear polyethylene having a long-chain branched structure at the terminal because the density is low and the value of MT ⁇ MFR is high.
  • MT uses a melt tension tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) to extrude a strand from an orifice having a diameter of 2.095 mm and a length of 8 mm at a preheating temperature of 230 ° C. and an extrusion speed of 5.7 mm / min.
  • This shows the tension when the strand is wound around a roller having a diameter of 50 mm at a winding speed of 100 rpm.
  • the weight ratio of the above-mentioned foaming polypropylene resin, styrene-ethylene-butylene-styrene block copolymer, and polyethylene resin in the base resin is based on the total amount of the base resin. Is 60 to 80 wt%, styrene-ethylene / butylene-styrene block copolymer is 15 to 35 wt%, and polyethylene resin is 5 to 25 wt%. That is, the foaming polypropylene resin, the styrene-ethylene / butylene-styrene block copolymer, and the polyethylene resin are blended so as to be within the above blending ratio range.
  • each material By adjusting the weight blending ratio of each material to be within the above range, it can be made highly foamed while maintaining impact resistance, and it is lightweight and heat insulating as a lightweight air conditioning duct for vehicles. Can be realized to a high degree.
  • the base resin is foamed using a foaming agent before being blow-molded.
  • foaming agents include inorganic foaming agents such as air, carbon dioxide gas, nitrogen gas, and water, or organic foaming agents such as butane, pentane, hexane, dichloromethane, and dichloroethane.
  • inorganic foaming agents such as air, carbon dioxide gas, nitrogen gas, and water
  • organic foaming agents such as butane, pentane, hexane, dichloromethane, and dichloroethane.
  • a supercritical fluid as the foaming method. That is, it is preferable that carbon dioxide gas or nitrogen gas is in a supercritical state to foam the mixed resin. In this case, air bubbles can be uniformly and reliably formed.
  • the supercritical fluid is nitrogen gas
  • the conditions may be a critical temperature of 149.1 ° C. and a critical pressure of 3.4 MPa or more.
  • the supercritical fluid is carbon dioxide gas
  • the conditions are a critical temperature of 31 ° C.
  • the critical pressure may be 7.4 MPa or more.
  • FIG. 3 is a cross-sectional view showing an aspect when the roof side duct as the present embodiment is blow-molded.
  • a propylene homopolymer having a long chain branch, a propylene-ethylene block copolymer, and a low density polyethylene are kneaded at a predetermined ratio in an extruder to prepare a base resin.
  • the blending ratio in the base resin is 60 to 80 wt% for the polypropylene resin for foaming, 15 to 35 wt% for the styrene-ethylene / butylene-styrene block copolymer, and polyethylene as the weight ratio with respect to the total amount of the base resin.
  • the system resin is 5 to 25 wt%.
  • the respective weight blending ratios are adjusted and determined so as to be within the above ranges for all of the foaming polypropylene resin, styrene-ethylene-butylene-styrene block copolymer, and polyethylene resin.
  • the present invention is not limited to the case where the foamed molded product is molded by blow molding, and vacuum molding in which a molded product having a predetermined shape is molded by sucking the extruded parison into a mold may be used. Moreover, you may shape
  • the roof side duct 1 is a base resin in which the foaming polypropylene resin, the styrene-ethylene-butylene-styrene block copolymer, and the polyethylene resin are mixed. Because it is formed by adding a foaming agent, it is lightweight, but even when impact is applied due to deployment of curtain airbags at low temperatures, for example, it does not require scattering prevention tape, and scattering cracking It has shock resistance that does not occur.
  • 2nd Embodiment shows about the case where the lightweight air conditioning duct for vehicles of this invention is an air conditioning duct arrange
  • FIG. 4 is a perspective view showing a floor duct as a second embodiment. As shown in FIG. 4, the floor duct 11 as this embodiment is for ventilating the air-conditioning air supplied from an air-conditioning unit to a desired site
  • the floor duct 11 is the same as the roof side duct 1 described above except that it is bent in the three-dimensional direction. That is, the floor duct 11 has a hollow polygonal column shape and is integrally formed by blow molding. The floor duct 11 is used as an open state by cutting off the closed portion 12 at one end and the other end of the floor duct 11 by post-processing after blow molding.
  • the air-conditioning air flows through the inside of the floor duct 11 and is discharged from the opened portion.
  • foaming polypropylene resins, hydrogenated styrene thermoplastic elastomers, and polyethylene resins used as examples and comparative examples are as follows.
  • PP1 Propylene homopolymer (manufactured by Borealis AG, trade name “Daploy WB140”)
  • PP2 Block polypropylene (trade name “NOBREN AH561”, manufactured by Sumitomo Chemical Co., Ltd.)
  • TPE1 Styrene-ethylene-butylene-styrene block copolymer (Asahi Kasei Chemicals Co., Ltd., trade name “Tuftec H1053”)
  • TPE2 Styrene-ethylene-butylene-styrene block copolymer (manufactured by Asahi Kasei Chemicals Corporation, trade name “Tuftec H1062”)
  • PE1 High melt strength polyethylene by low pressure slurry method (trade name “TOSOH-HMS JK17” manufactured by Tosoh Corporation)
  • PE2 linear low density polyethylene polymerized by a metallocene catalyst (manufactured by Sumitomo Chemical Co., Ltd., trade name “Excellen CB5005”)
  • PE3 linear short-chain branched polyethylene (manufactured by Sumitomo Chemical Co., Ltd., trade name “Excellen FX201”)
  • MT is a melt tension tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a preheating temperature of 230 ° C., an extrusion rate of 5.7 mm / min, and a diameter of 2
  • MFR is a value measured at a test temperature of 230 ° C. and a test load of 2.16 kg according to JIS K-7210.
  • the density is a value measured at normal temperature (23 ° C.).
  • MT uses a melt tension tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), has a preheating temperature of 160 ° C., an extrusion rate of 5.7 mm / min, and is strand from an orifice of 2.095 mm in diameter and 8 mm in length.
  • the tension when the strand is wound around a roller having a diameter of 50 mm at a winding speed of 100 rpm is shown.
  • MFR is a value measured at a test temperature of 190 ° C. and a test load of 2.16 kg according to JIS K-6922-1.
  • the density is a value measured at normal temperature (23 ° C.).
  • PP1 was mixed at 70 wt%, TPE1 was mixed at 20 wt%, and PE1 was mixed at 10 wt% to obtain a base resin. Then, supercritical nitrogen as a foaming agent, 1.5 parts by weight of 60 wt% talc master batch as a nucleating agent, and 1.5 parts by weight of 40 wt% carbon black master batch as a coloring agent are added to the base resin and foamed. A foamed resin was obtained.
  • an in-die accumulator which is a cylindrical space between the mandrel and the die outer cylinder, and extruded into a split mold as a cylindrical parison using a ring-shaped piston, after clamping Blow-molded samples were obtained by blowing air into the parison at a pressure of 0.1 MPa.
  • Example 2 PP1 was mixed with 70 wt%, TPE1 was mixed with 25 wt%, and PE1 was mixed with 5 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 3 PP1 was mixed at 70 wt%, TPE1 was mixed at 15 wt%, and PE1 was mixed at 15 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 4 PP1 was mixed with 60 wt%, TPE1 was mixed with 35 wt%, and PE1 was mixed with 5 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 5 PP1 was mixed at 60 wt%, TPE1 was mixed at 15 wt%, and PE1 was mixed at 25 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 6 PP1 was mixed at 80 wt%, TPE1 was mixed at 15 wt%, and PE1 was mixed at 5 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 7 PP1 was mixed at 75 wt%, TPE2 was mixed at 15 wt%, and PE1 was mixed at 10 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 8 PP1 was mixed at 70 wt%, TPE1 was mixed at 25 wt%, and PE2 was mixed at 5 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 9 PP1 was mixed at 70 wt%, TPE1 was mixed at 15 wt%, and PE2 was mixed at 15 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • Example 10 PP1 was mixed with 60 wt%, TPE1 was mixed with 35 wt%, and PE2 was mixed with 5 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • PP1 was mixed at 70 wt%
  • TPE2 was mixed at 20 wt%
  • PE3 was mixed at 10 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • PP1 was mixed at 70 wt%
  • TPE1 was mixed at 20 wt%
  • PE3 was mixed at 10 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • PP1 was mixed at 70 wt%
  • PP2 was mixed at 10 wt%
  • TPE2 was mixed at 20 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • PP1 was mixed with 80 wt% and TPE2 was mixed with 20 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • PP1 was mixed with 70 wt% and TPE2 was mixed with 30 wt% to obtain a base resin. Subsequent steps obtained a blow-molded sample by the same method as in Example 1.
  • the weight blending ratio of PP1 which is a high melt tension polypropylene having a long-chain branched structure, as the foaming polypropylene resin is 60 to 80 wt% in the entire base resin.
  • the weight blending ratio of TPE1 or TPE2 having a styrene content of 15 to 40% is set to 15 to 35 wt% in the entire base resin.
  • the samples of Examples 1 to 7 are polyethylene having a long-chain branched structure as the polyethylene-based resin, the density is 0.920 g / cm 3 or less, and MT ⁇ MFR.
  • PE1 having a value of 30 (cN ⁇ g / 10 min) or more is used, and the weight blending ratio of PE1 is 5 to 25 wt% in the entire base resin.
  • PE2 having a long chain branched structure and having a density of 0.930 g / cm 3 or less was used as the polyethylene resin, and the weight blending ratio of PE2 was determined based on the base material. 5 to 25 wt% of the entire resin.
  • the samples of Examples 1 to 10 have a foaming ratio exceeding 3.0 times, and the impact resistance is also cracked when a 1 kg ball is dropped at minus 10 ° C. The condition of height 120cm or more is cleared.
  • the samples of Examples 1 to 10 have sufficient impact resistance that does not require the application of anti-scattering tape to the airbag side, and the foaming ratio can be 3.0 times or more. Light weight and heat insulation can be realized.
  • Examples 1 to 7 using PE1 as a polyethylene resin examples 1 to 3, 5 to 7 have a foaming ratio exceeding 3.5 times. For this reason, while having sufficient impact resistance which does not need to stick an anti-scattering tape on the airbag side, further advanced lightweight property and heat insulation can be realized.
  • the weight blending ratio of the foaming polypropylene resin was 70 wt% in the entire base resin, and the weight blending ratio of the styrene-ethylene / butylene-styrene block copolymer was In addition to 20 wt% in the entire material resin, PE3 is used as the polyethylene resin, and the weight blending ratio of PE3 is 10 wt% in the entire base resin. This makes it possible to satisfy the above-mentioned condition that the anti-scattering tape is not required as impact resistance, but the foaming ratio cannot be increased to 3 times or more.
  • the weight blending ratio of the polypropylene resin for foaming is 80 wt% in the entire base resin, and the weight blending ratio of the styrene-ethylene / butylene-styrene block copolymer is 20 wt% in the entire base resin.
  • the above conditions for making the anti-scattering tape unnecessary for impact resistance cannot be cleared.
  • the weight blending ratio of the polypropylene resin for foaming is 70 wt% in the entire base resin, and the weight blending ratio of the styrene-ethylene / butylene-styrene block copolymer is 30 wt% in the entire base resin.
  • the weight blending ratio of the foaming polypropylene resin is 70 wt% in the entire base resin, and the weight blending ratio of PE1 or PE2 as the polyethylene resin is 30 wt% in the entire base resin.
  • the above conditions for making the anti-scattering tape unnecessary for impact resistance cannot be cleared.
  • Comparative Examples 1, 2, 3, and 5 have an expansion ratio of less than 3.0 times, and the samples of Comparative Examples 3, 4, 6, and 7 have a negative impact resistance.
  • the condition of a height of 120 cm or more at which a crack is generated when a 1 kg ball is dropped at 10 ° C. cannot be cleared.
  • Comparative Examples 1 to 7 cannot improve both foamability and impact resistance.
  • the present invention is not limited to light-weight air conditioning ducts for vehicles, but can be used for, for example, automobiles, aircrafts, vehicles / ships, building materials, housings for various electrical equipment, sports / leisure structural members, etc. Can do. Also, when used as automotive structural members such as cargo floor boards, deck boards, rear parcel shelves, roof panels, door trims, interior panels, door inner panels, platforms, hard tops, sunroofs, bonnets, bumpers, floor spacers, devia pads, etc. Since the weight reduction of an automobile can be measured, fuel consumption can be improved.
  • the foamed molded product according to the present invention can be suitably used as an air conditioning duct for vehicles, in particular, a thin and light roof side duct that is required to have impact resistance and is disposed adjacent to a curtain airbag or the like.
  • the vehicle air-conditioning duct can contribute to weight reduction of the vehicle without deteriorating various physical properties such as mechanical strength, and further, can contribute to cost reduction because it does not require a scattering prevention tape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 耐衝撃性を十分に有しながらも、発泡倍率をより高めることができ、高度な軽量性、断熱性を実現する。このため、基材樹脂として、ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂と、を混合し、ポリプロピレン系樹脂としては、長鎖分岐構造を有するものを用い、配合比率を重量比で基材樹脂の60~80%とする。スチレン-エチレン・ブチレン-スチレンブロック共重合体としては、スチレン含有量が15~40%のものを用い、配合比率を重量比で基材樹脂の15~35%とする。ポリエチレン系樹脂としては、長鎖分岐構造を有し、密度0.930g/cm以下のものを用い、配合比率を重量比で基材樹脂の5~25%とする。

Description

発泡成形品およびその製造方法
 本発明は、例えば車両用の空調ダクトなどに用いられる発泡成形品およびその製造方法に関する。
 一般に、車載のエアコンユニットより供給される空調エアを所望の部位へ通風させるための車両用の空調ダクトが知られている。
 このような車両用の空調ダクトには、軽量性、断熱性が求められるので、一般に発泡させた樹脂の成形品が用いられる。
 こうした発泡成形品について、本出願人による技術では、発泡用ポリプロピレン系樹脂と、スチレン含有量が15~25wt%である水素添加スチレン系熱可塑性エラストマーと、を含む混合樹脂により、軽量かつ耐衝撃性に優れる発泡成形品を成形しようとしたものがある(例えば、特許文献1参照)。
 また、長鎖分岐を有するプロピレンホモポリマーと、プロピレン-エチレンブロックコポリマーと、低密度ポリエチレンとを混合した基材樹脂により、安価な材料で軽量かつ耐衝撃性に優れる発泡成形品を成形しようとしたものがある(例えば、特許文献2参照)。
特開2011-51180号公報 特開2011-116804号公報
 しかしながら、例えば上述した車両用の空調ダクトなどでは、燃費の向上及び原料の低減を目的として、上述した特許文献1、2よりもさらに高度な軽量性、断熱性が求められている。
 また、車両のルーフサイドの空調ダクトでは、側面衝突から搭乗者を保護するためのカーテンエアバッグがすぐ近くに配置される。このため、カーテンエアバッグが加圧ガスの勢いにより展開された場合であっても、空調ダクトが飛散割れしないようにする必要がある。このため、軽量性、断熱性を向上させるために発泡倍率を高くする場合であっても、耐衝撃強度も十分に確保する必要がある。
 なお、空調ダクトの耐衝撃性が不足している場合、エアバッグ側に飛散防止テープを貼ることで飛散割れ対策を行う必要があり、コスト高につながる問題があった。
 本発明はこのような状況に鑑みてなされたものであり、耐衝撃性を十分に有しながらも、発泡倍率をより高めることができ、高度な軽量性、断熱性を実現できる発泡成形品およびその製造方法を提供することを目的とする。
 かかる目的を達成するために、本発明に係る発泡成形品は、ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂と、を基材樹脂として含む混合樹脂を成形して得られた発泡成形品であって、
 ポリプロピレン系樹脂は、長鎖分岐構造を有し、配合比率が重量比で基材樹脂の60~80%であり、
 スチレン-エチレン・ブチレン-スチレンブロック共重合体は、スチレン含有量が15~40%であり、配合比率が重量比で基材樹脂の15~35%であり、
 ポリエチレン系樹脂は、長鎖分岐構造を有し、密度0.930g/cm以下であり、配合比率が重量比で基材樹脂の5~25%であることを特徴とする。
 また、本発明に係る発泡成形品の製造方法は、ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂とを混合した基材樹脂に、発泡剤を添加して発泡成形する発泡成形品の製造方法であって、
 ポリプロピレン系樹脂は、長鎖分岐構造を有し、配合比率が重量比で基材樹脂の60~80%であり、
 スチレン-エチレン・ブチレン-スチレンブロック共重合体は、スチレン含有量が15~40%であり、配合比率が重量比で基材樹脂の15~35%であり、
 ポリエチレン系樹脂は、長鎖分岐構造を有し、密度0.930g/cm以下であり、配合比率が重量比で基材樹脂の5~25%であることを特徴とする。
 以上のように、本発明によれば、耐衝撃性を十分に有しながらも、発泡倍率をより高めることができ、高度な軽量性、断熱性を実現することができる。
(a)は、本実施形態に係る車両用軽量空調ダクト(発泡成形品)をルーフサイドダクトとして用いた場合を示す斜視図であり、(b)は、(a)のX-X’線矢視断面図である。 図1に記載のルーフサイドダクトを車両に取り付けた状態を示す断面図である。 図1に記載のルーフサイドダクトをブロー成形する際の態様を示す断面図である。 本実施形態に係る車両用軽量空調ダクトを空調用フロアダクトとして用いた場合を示す斜視図である。
 次に、本発明に係る発泡成形品およびその製造方法を車両用空調ダクトに適用した一実施形態について、図面を用いて詳細に説明する。
 なお、本発明は、車両用空調ダクトに限らず、例えば、ドアパネル、インストルメントパネル、車両用デッキボードなどの自動車用内装部品、住宅用内装壁材、電子機器のハウジング、車両用以外の気体や液体を供給するダクトなど、他の発泡成形品にも適用することができる。
 以下の説明では、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
〔第1の実施形態〕
 次に、本発明の第1の実施形態について説明する。第1の実施形態は、本発明の実施形態としての車両用空調ダクトがルーフサイドダクトである場合について示すものである。
 図1の(a)は、本実施形態としてのルーフサイドダクトを示す斜視図であり、(b)は、(a)のX-X’線矢視断面図である。
 図1の(a)及び(b)に示すように、本実施形態のルーフサイドダクト1は、エアコンユニットより供給される空調エアを所望の部位へ通風させるためのものである。
 かかるルーフサイドダクト1は、中空多角柱状の形状を有しており、ブロー成形により一体成形されたものである。なお、ブロー成形については後述する。
 ルーフサイドダクト1は、平板上の横断ダクト3に支持されている。
 横断ダクト3の一端には、空調エアを供給するためのエア供給口2が設けられており、該エア供給口から供給された空調エアは、横断ダクトの図示しない内部を流通して、ルーフサイドダクト1の中空部分に流入される。
 そして、流入した空調エアは、ルーフサイドダクト1に設けられたエア排出口5から排出される。
 上記ルーフサイドダクト1は、壁部1aの平均肉厚が3.5mm以下となっている。このように、ルーフサイドダクト1の壁部1aの厚さを薄くすることにより、ルーフサイドダクト1内を流通する空調エアの流路を広く設定することができる。
 また、壁部1aの厚み方向における気泡セルの平均気泡径は300μm未満であることが好ましい。この場合、機械的強度がより高まるという利点がある。なお、平均気泡径は、100μm未満であることが更に好ましい。
 ルーフサイドダクト1は、発泡倍率が3.0倍以上の独立気泡構造を有する。ここで、発泡倍率とは、発泡ブロー成形に用いた熱可塑性樹脂の密度を発泡ブロー成形品の壁部1aの見かけ密度で割った値である。また、独立気泡構造とは、複数の気泡セル有する構造であり、少なくとも独立気泡率が70%以上のものを意味する。
 発泡倍率が3.0倍以上であることにより、発泡倍率が3.0倍未満である場合と比較して、さらに軽量化することができると共に、断熱性をより高めることができる。このため、ダクト内に冷房の空気を流通させた場合であっても、結露が発生する可能性をほとんどなくすことができる。
 図2に示すように、ルーフサイドダクト1は、車両の内装天井材6と車体パネル4との間に、カーテンエアバッグ7と並べて配置される。
 このため、カーテンエアバック7が加圧ガスにより展開された際、カーテンエアバック7の背後に配置されているルーフサイドダクト1にカーテンエアバック7の展開による衝撃が伝わることになる。
 このため、ルーフサイドダクト1は、カーテンエアバッグ7が加圧ガスにより展開された際にも、展開による衝撃で飛散割れを発生させることのない耐衝撃性を有することが求められる。仮に、カーテンエアバッグ7の展開での衝撃により飛散割れが発生する可能性がある場合、カーテンエアバッグ7に飛散防止テープを貼る必要が生じてしまい、コストアップの要因となってしまう。
 このため、ルーフサイドダクト1は、-10℃における引張破壊伸びが40%以上であることが好ましく、100%以上であることがより好ましい。ここで、引張破壊伸びとは、JIS K-7113に準じて測定した値である。
 -10℃における引張破壊伸びが40%未満であると、引張破壊伸びが40%以上である場合と比較して、カーテンエアバッグ7が加圧ガスにより展開された際に、展開による衝撃で飛散割れが発生しやすくなる。
 また、本実施形態に係るルーフサイドダクト1は、発泡用ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂とを混合した基材樹脂に、発泡剤を添加して発泡ブロー成形することにより得られる。
 発泡用ポリプロピレン系樹脂としては、ポリプロピレン樹脂が長鎖分岐構造を有するプロピレン単独重合体を含むものであることが好ましい。
 長鎖分岐構造を有するプロピレン単独重合体は、0.9以下の重量平均分岐指数を有するプロピレン単独重合体であることが好ましい。また、重量平均分岐指数g’は、V1/V2で表され、V1が分岐ポリオレフィンの極限粘度数、V2が分岐ポリオレフィンと同じ重量平均分子量を有する線状ポリオレフィンの極限粘度数を示す。
 また、発泡用ポリプロピレン系樹脂は、230℃におけるメルトテンションが3~35cNの範囲内のポリプロピレンを用いることが好ましい。ここで、メルトテンションとは、溶融張力を意味する。メルトテンションが上記範囲であると、発泡用ポリプロピレン系樹脂は歪み硬化性を示し、高い発泡倍率を得ることができる。
 スチレン-エチレン・ブチレン-スチレンブロック共重合体としては、スチレン含有量が15~40%のものが好ましい。
 また、スチレン-エチレン・ブチレン-スチレンブロック共重合体は、230℃におけるメルトフローレイト(MFR)が10g/10分以下であることが好ましく、1~10g/10分であることがより好ましく、1~5g/10分であることが更に好ましい。ここで、MFRとは、JIS K-7210に準じて測定した値である。
 MFRが1.0g/10分未満であると、MFRが上記範囲内にある場合と比較して、
低温時の耐衝撃性が得られない場合がある。
 ポリエチレン系樹脂としては、長鎖分岐構造を有するものであることが好ましい。また、低温時の耐衝撃性の観点から、密度0.930g/cm以下のものが好適に用いられる。
 特に、ポリエチレン系樹脂は、密度0.920g/cm以下のものであることがより好ましい。また、メルトテンション(MT)とMFRについて、MT×MFRが30(cN・g/10分)以上であることがより好ましい。また、ポリエチレン系樹脂中に、末端に長鎖分岐構造を持つ直鎖状ポリエチレンを含むものであると、低密度で、かつ、MT×MFRの値が高くなるため、より好ましい。
 ここで、MTは、メルトテンションテスター(株式会社東洋精機製作所製)を用い、余熱温度230℃、押出速度5.7mm/分で、直径2.095mm、長さ8mmのオリフィスからストランドを押し出し、このストランドを直径50mmのローラに巻き取り速度100rpmで巻き取ったときの張力を示すものである。
 基材樹脂における上記の発泡用ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂との重量配合比率は、基材樹脂の全量に対して、発泡用ポリプロピレン系樹脂が60~80wt%、スチレン-エチレン・ブチレン-スチレンブロック共重合体が15~35wt%、ポリエチレン系樹脂が5~25wt%とする。すなわち、上記の発泡用ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂とのそれぞれについて、上記配合比率の範囲内となるように配合することとする。
 各材料の重量配合比率が全て上記範囲内となるよう調整することにより、耐衝撃性を維持しながらも、高発泡のものとすることができ、車両用軽量空調ダクトとしての軽量性、断熱性を高度に実現することができる。
 また、上記基材樹脂は、ブロー成形される前に、発泡剤を用いて発泡される。
 こうした発泡剤としては、空気、炭酸ガス、窒素ガス、水等の無機系発泡剤、又は、ブタン、ペンタン、ヘキサン、ジクロロメタン、ジクロロエタン等の有機系発泡剤が挙げられる。
 これらの中でも、発泡剤は、空気、炭酸ガス又は窒素ガスを用いることが好ましい。この場合、有体物の混入が防げるので、耐久性等の低下が抑制される。
 また、発泡方法としては、超臨界流体を用いることが好ましい。すなわち、炭酸ガス又は窒素ガスを超臨界状態とし、混合樹脂を発泡させることが好ましい。この場合、均一且つ確実に気泡することができる。
 なお、超臨界流体が窒素ガスの場合、条件は、臨界温度-149.1℃、臨界圧力3.4MPa以上とすればよく、超臨界流体が炭酸ガスの場合、条件は、臨界温度31℃、臨界圧力7.4MPa以上とすればよい。
 こうして、発泡処理された基材樹脂を公知の方法でブロー成形することにより、本実施形態としてのルーフサイドダクトを成形する。
 図3は、本実施形態としてのルーフサイドダクトをブロー成形する際の態様を示す断面図である。
 まず、押出機内で、長鎖分岐を有するプロピレンホモポリマーと、プロピレン-エチレンブロックコポリマーと、低密度ポリエチレンとを所定の割合で混練して、基材樹脂を作製する。
 このとき、基材樹脂における配合比率は、基材樹脂の全量に対する重量比として、発泡用ポリプロピレン系樹脂が60~80wt%、スチレン-エチレン・ブチレン-スチレンブロック共重合体が15~35wt%、ポリエチレン系樹脂が5~25wt%とする。これらそれぞれの重量配合比率は、発泡用ポリプロピレン系樹脂、スチレン-エチレン・ブチレン-スチレンブロック共重合体、ポリエチレン系樹脂の全てについて、上記範囲内となるように調整され、決定される。
 こうした基材樹脂に発泡剤を添加し押出機内で混合した後、ダイ内アキュムレーター(図示せず)に貯留し、続いて、所定の樹脂量が貯留された後にリング状ピストン(図示せず)を水平方向に対して垂直に押し下げる。
 そして、図3に示す押出ヘッド8のダイスリットより、押出速度700kg/時以上で円筒状のパリソン9として分割金型10同士の間に押出す。
 その後、分割金型10同士を型締めしてパリソン9を挟み込んで、パリソン9内に0.05~0.15MPaの範囲でエアを吹き込み、ルーフサイドダクト1を形成する。
 なお、上述のようにブロー成形により発泡成形品を成形する場合に限らず、押し出されたパリソンを金型に吸い付けて所定の形状の成形品を成形するバキューム成形を用いてもよい。また、エアの吹き込みや、吸引を行わず、押し出されたパリソンを金型で挟み込んで成形するコンプレッション成形を用いて、発泡成形品を成形してもよい。
 以上のように、本実施形態としてのルーフサイドダクト1は、上述のような発泡用ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂とを混合した基材樹脂に発泡剤を添加して形成されているので、軽量でありながら、例えば、低温時にカーテンエアバッグの展開等による衝撃が加わった場合であっても、飛散防止テープを必要とせず、飛散割れを起こすことのない耐衝撃性を備えるものとなっている。
〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。第2実施形態は、本発明の車両用軽量空調ダクトがフロア内に配置される空調ダクト(以下、フロアダクト)である場合について示すものである。
 図4は、第2の実施形態としてのフロアダクトを示す斜視図である。
 図4に示すように、本実施形態としてのフロアダクト11は、エアコンユニットより供給される空調エアを所望の部位へ通風させるためのものである。
 フロアダクト11は、三次元方向に屈曲していること以外は、上述したルーフサイドダクト1と同様である。すなわち、フロアダクト11は、中空多角柱状の形状を有しており、ブロー成形により一体成形されたものである。なお、フロアダクト11は、ブロー成形後の後加工によりフロアダクト11の一端および他端の閉鎖部12を切除し、開口状態として用いられる。
 フロアダクト11において、空調エアはフロアダクト11の内部を流通して、開口された部分から排出される。 
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 まず、実施例及び比較例として用いた、発泡用ポリプロピレン系樹脂、水素添加スチレン系熱可塑性エラストマー、およびポリエチレン系樹脂は以下の通りである。
<発泡用ポリプロピレン系樹脂>
PP1:プロピレン単独重合体(ポレアリス社(Borealis AG)製、商品名「Daploy WB140」)
PP2:ブロックポリプロピレン(住友化学株式会社製、商品名「ノーブレンAH561」)
<水素添加スチレン系熱可塑性エラストマー>
TPE1:スチレン-エチレン・ブチレン-スチレンブロック共重合体(旭化成ケミカルズ株式会社製、商品名「タフテックH1053」)
TPE2:スチレン-エチレン・ブチレン-スチレンブロック共重合体(旭化成ケミカルズ株式会社製、商品名「タフテックH1062」)
<ポリエチレン系樹脂>
PE1:低圧スラリー法によるハイメルトストレングス・ポリエチレン(東ソー株式会社製、商品名「TOSOH-HMS JK17」
PE2:メタロセン系触媒により重合された直鎖状低密度ポリエチレン(住友化学工業株式会社製、商品名「エクセレンCB5005」)
PE3:直鎖状短鎖分岐ポリエチレン(住友化学工業株式会社製、商品名「エクセレンFX201」)
 また、これらの樹脂の、MT(メルトテンション)(cN)、MFR(メルトフローレイト)(g/10分)、MT×MFR(cN・g/10分)、密度(g/cm)、スチレン含有量(wt%)を表1に示す。
 なお、発泡用ポリプロピレン系樹脂および水素添加スチレン系熱可塑性エラストマーについて、MTは、メルトテンションテスター(株式会社東洋精機製作所製)を用い、余熱温度230℃、押出速度5.7mm/分で、直径2.095mm、長さ8mmのオリフィスからストランドを押し出し、このストランドを直径50mmのローラに巻き取り速度100rpmで巻き取ったときの張力を示すものである。
 また、MFRは、JIS K-7210に準じて試験温度230℃、試験荷重2.16kgにて測定を行った値である。
 また、密度は、常温(23℃)で測定した値である。
 また、ポリエチレン系樹脂について、MTは、メルトテンションテスター(株式会社東洋精機製作所製)を用い、余熱温度160℃、押出速度5.7mm/分で、直径2.095mm、長さ8mmのオリフィスからストランドを押し出し、このストランドを直径50mmのローラに巻き取り速度100rpmで巻き取ったときの張力を示すものである。
 また、MFRは、JIS K-6922-1に準じて試験温度190℃、試験荷重2.16kgにて測定を行った値である。
 また、密度は、常温(23℃)で測定した値である。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 PP1を70wt%、TPE1を20wt%、PE1を10wt%、混合して、基材樹脂とした。
 そして、この基材樹脂に、発泡剤として超臨界状態の窒素、核剤として60wt%タルクマスターバッチ1.5重量部および着色剤として40wt%カーボンブラックマスターバッチ1.5重量部を添加して発泡させ発泡樹脂とした。これを、押出機で混練した後にマンドレルとダイ外筒の間の円筒状空間であるダイ内アキュムレーターに貯留し、リング状ピストンを用いて円筒状のパリソンとして分割金型に押出し、型締め後パリソン内に0.1MPaの圧力でエアを吹き込むことにより、ブロー成形されたサンプルを得た。
<実施例2>
 PP1を70wt%、TPE1を25wt%、PE1を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例3>
 PP1を70wt%、TPE1を15wt%、PE1を15wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例4>
 PP1を60wt%、TPE1を35wt%、PE1を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例5>
 PP1を60wt%、TPE1を15wt%、PE1を25wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例6>
 PP1を80wt%、TPE1を15wt%、PE1を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例7>
 PP1を75wt%、TPE2を15wt%、PE1を10wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例8>
 PP1を70wt%、TPE1を25wt%、PE2を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例9>
 PP1を70wt%、TPE1を15wt%、PE2を15wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<実施例10>
 PP1を60wt%、TPE1を35wt%、PE2を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<比較例1>
 PP1を70wt%、TPE2を20wt%、PE3を10wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<比較例2>
 PP1を70wt%、TPE1を20wt%、PE3を10wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<比較例3>
 PP1を70wt%、PP2を10wt%、TPE2を20wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<比較例4>
 PP1を80wt%、TPE2を20wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<比較例5>
 PP1を70wt%、TPE2を30wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<比較例6>
 PP1を70wt%、PE1を30wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
<比較例7>
 PP1を70wt%、PE2を30wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法によりブロー成形されたサンプルを得た。
 実施例1~10及び比較例1~7で得られたサンプルの物性を以下のように評価した。
<耐衝撃性>
 耐衝撃性は、実施例1~10および比較例1~7で得られた発泡成形品のサンプルに、マイナス10℃において、1kg球を落下させた際にひび割れが発生する高さが120cm以上である場合を〇として、他の場合を×とした。
<発泡倍率>
 実施例1~10及び比較例1~7で用いた混合樹脂の密度を、対応する発泡成形品サンプルの壁部の見かけ密度で割ることにより、発泡倍率を算出した。
<発泡性>
 上述のようにして算出された発泡倍率が3倍以上である場合を〇として、他の場合を×とした。
 実施例1~10および比較例1~7について、PP1、PP2、TPE1、TPE2、PE1~PE3の基材樹脂中における配合比率と、上述のように評価した耐衝撃性、発泡性、および発泡倍率を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~10のサンプルでは、発泡用ポリプロピレン系樹脂として、長鎖分岐構造を有する高溶融張力ポリプロピレンであるPP1の重量配合比率を、基材樹脂全体における60~80wt%としている。
 また、スチレン-エチレン・ブチレン-スチレンブロック共重合体として、スチレン含有量が15~40%であるTPE1またはTPE2の重量配合比率を、基材樹脂全体における15~35wt%としている。
 この実施例1~10の内、実施例1~7のサンプルでは、ポリエチレン系樹脂として、長鎖分岐構造を持つポリエチレンであり、密度0.920g/cm以下であり、かつ、MT×MFRの値が30(cN・g/10分)以上であるPE1を用い、そのPE1の重量配合比率を、基材樹脂全体における5~25wt%としている。
 また、実施例8~10のサンプルでは、ポリエチレン系樹脂として、長鎖分岐構造を有するポリエチレンであり、密度0.930g/cm以下であるPE2を用い、そのPE2の重量配合比率を、基材樹脂全体における5~25wt%としている。
 こうした配合比率により、実施例1~10のサンプルでは、発泡倍率が3.0倍を超えており、かつ、耐衝撃性についても、マイナス10℃で1kg球を落下させた際にひび割れが発生する高さ120cm以上の条件をクリアしている。
 このように、実施例1~10のサンプルでは、エアバッグ側に飛散防止テープを貼る必要のない十分な耐衝撃性を有すると共に、発泡倍率を3.0倍以上とすることができ、高度な軽量性、断熱性を実現することができる。
 特に、ポリエチレン系樹脂としてPE1を用いている実施例1~7の内、実施例1~3、5~7では、発泡倍率が3.5倍を超えている。このため、エアバッグ側に飛散防止テープを貼る必要のない十分な耐衝撃性を有すると共に、さらに高度な軽量性、断熱性を実現することができる。
 これに対して、比較例1、2では、発泡用ポリプロピレン系樹脂の重量配合比率を、基材樹脂全体における70wt%とし、スチレン-エチレン・ブチレン-スチレンブロック共重合体の重量配合比率を、基材樹脂全体における20wt%とすると共に、ポリエチレン系樹脂としてPE3を用い、このPE3の重量配合比率を、基材樹脂全体における10wt%としている。このことにより、耐衝撃性として飛散防止テープを不要とする上記条件をクリアできるようにはなっているが、発泡倍率を3倍以上とすることはできていない。
 比較例3、4では、発泡用ポリプロピレン系樹脂の重量配合比率を、基材樹脂全体における80wt%とし、スチレン-エチレン・ブチレン-スチレンブロック共重合体の重量配合比率を、基材樹脂全体における20wt%としているが、耐衝撃性として飛散防止テープを不要とするための上記条件をクリアすることはできていない。
 比較例5では、発泡用ポリプロピレン系樹脂の重量配合比率を、基材樹脂全体における70wt%とし、スチレン-エチレン・ブチレン-スチレンブロック共重合体の重量配合比率を、基材樹脂全体における30wt%として比較例3、4より増やすようにすることで、耐衝撃性として飛散防止テープを不要とするための上記条件をクリアできるようにしている。しかし、表面の破泡がひどくなり、結果として発泡倍率が低下してしまい、発泡倍率を3倍以上とすることはできていない。
 比較例6、7では、発泡用ポリプロピレン系樹脂の重量配合比率を、基材樹脂全体における70wt%とし、ポリエチレン系樹脂としてのPE1またはPE2の重量配合比率を、基材樹脂全体における30wt%としているが、耐衝撃性として飛散防止テープを不要とするための上記条件をクリアすることはできていない。
 以上のように、比較例1、2、3、5のサンプルは、発泡倍率が3.0倍未満であり、また、比較例3、4、6、7のサンプルは、耐衝撃性について、マイナス10℃で1kg球を落下させた際にひび割れが発生する高さ120cm以上の条件をクリアすることができていない。
 このように、比較例1~7においては、発泡性と耐衝撃性との両方を向上させることができない。
 なお、本発明は、車両用軽量空調ダクトに限らず、例えば、自動車用、航空機用、車両・船舶用、建材用、各種電気機器のハウジング用、スポーツ・レジャー用の構造部材等にも用いることができる。また、カーゴフロアボード、デッキボード、リアパーセルシェルフ、ルーフパネル、ドアトリム等の内装パネル、ドアインナーパネル、プラットフォーム、ハードトップ、サンルーフ、ボンネット、バンパー、フロアスペーサー、ディビアパッド等の自動車の構造部材として用いると、自動車の軽量化が測れるので、燃費を向上させることができる。
 本発明に係る発泡成形品は、車両用空調ダクト、特に、カーテンエアバッグ等に隣接して配置される耐衝撃性が要求される薄肉・軽量なルーフサイドダクト等として好適に利用できる。
 また、上記車両用空調ダクトは、機械的強度等の各種物性を低下させることなく車両の軽量化に貢献でき、さらに、飛散防止テープが不要でコストダウンにも貢献しうるものである。
 本出願は2011年11月18日に出願された日本出願特願2011-253000を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  ルーフサイドダクト(車両用軽量空調ダクト)
 1a  壁部
 2  エア供給口
 3  横断ダクト
 4  車体パネル
 5  エア排出口
 6  内装天井材
 7  カーテンエアバッグ
 8  押出ヘッド
 9  パリソン
 10  分割金型
 11  フロアダクト(車両用軽量空調ダクト)
 12  閉鎖部

Claims (4)

  1.  ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂と、を基材樹脂として含む混合樹脂を成形して得られた発泡成形品であって、
     前記ポリプロピレン系樹脂は、長鎖分岐構造を有し、配合比率が重量比で前記基材樹脂の60~80%であり、
     前記スチレン-エチレン・ブチレン-スチレンブロック共重合体は、スチレン含有量が15~40%であり、配合比率が重量比で前記基材樹脂の15~35%であり、
     前記ポリエチレン系樹脂は、長鎖分岐構造を有し、密度0.930g/cm以下であり、配合比率が重量比で前記基材樹脂の5~25%であることを特徴とする発泡成形品。
  2.  発泡倍率が3倍以上であることを特徴とする請求項1記載の発泡成形品。
  3.  前記ポリエチレン系樹脂は、密度0.920g/cm以下であり、かつ、メルトテンション(MT)とメルトフローレイト(MFR)が下記式を満足することを特徴とする請求項1または2記載の発泡成形品。
       MT×MFR≧30(cN・g/10分)
  4.  ポリプロピレン系樹脂と、スチレン-エチレン・ブチレン-スチレンブロック共重合体と、ポリエチレン系樹脂とを混合した基材樹脂に、発泡剤を添加して発泡成形する発泡成形品の製造方法であって、
     前記ポリプロピレン系樹脂は、長鎖分岐構造を有し、配合比率が重量比で前記基材樹脂の60~80%であり、
     前記スチレン-エチレン・ブチレン-スチレンブロック共重合体は、スチレン含有量が15~40%であり、配合比率が重量比で前記基材樹脂の15~35%であり、
     前記ポリエチレン系樹脂は、長鎖分岐構造を有し、密度0.930g/cm以下であり、配合比率が重量比で前記基材樹脂の5~25%であることを特徴とする発泡成形品の製造方法。
PCT/JP2012/079095 2011-11-18 2012-11-09 発泡成形品およびその製造方法 WO2013073461A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/358,804 US20140335295A1 (en) 2011-11-18 2012-11-09 Foam molded product and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-253000 2011-11-18
JP2011253000A JP2013107963A (ja) 2011-11-18 2011-11-18 発泡成形品およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013073461A1 true WO2013073461A1 (ja) 2013-05-23

Family

ID=48429521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079095 WO2013073461A1 (ja) 2011-11-18 2012-11-09 発泡成形品およびその製造方法

Country Status (3)

Country Link
US (1) US20140335295A1 (ja)
JP (1) JP2013107963A (ja)
WO (1) WO2013073461A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155344A (ja) * 2015-02-26 2016-09-01 東レ株式会社 ポリオレフィン樹脂発泡体を用いてなる積層体及び、自動車内装材
EP3078705A1 (en) * 2013-12-03 2016-10-12 Nissan Motor Co., Ltd. Foam molded body, duct for air conditioner, and duct for vehicle air conditioner
EP3150658A4 (en) * 2014-05-30 2018-01-24 Sekisui Techno Molding Co., Ltd. Foam-molded article and method for manufacturing same
WO2018025343A1 (ja) * 2016-08-03 2018-02-08 東レ株式会社 積層体
JP2020055942A (ja) * 2018-10-01 2020-04-09 キョーラク株式会社 発泡ダクト

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922648B1 (ko) * 2015-05-29 2018-11-27 가부시키가이샤 칸쿄 케이에이 소고 켄큐쇼 발포체
US10766339B2 (en) 2017-01-26 2020-09-08 Ford Global Technologies, Llc Vehicle structural air duct
US10137761B2 (en) * 2017-03-22 2018-11-27 Ford Global Technologies, Llc Integrated roof bow and HVAC duct with a headliner providing a close-out wall of the duct

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313342A (ja) * 2002-04-25 2003-11-06 Denki Kagaku Kogyo Kk ポリプロピレン系樹脂発泡シート及び容器
JP2008266589A (ja) * 2007-03-23 2008-11-06 Toray Ind Inc 架橋ポリオレフィン系樹脂発泡体
JP2011051180A (ja) * 2009-08-31 2011-03-17 Kyoraku Co Ltd 発泡成形品
JP2011116804A (ja) * 2009-11-30 2011-06-16 Kyoraku Co Ltd 発泡成形品の製造方法
JP2013001826A (ja) * 2011-06-17 2013-01-07 Tosoh Corp 射出発泡用樹脂組成物、射出発泡成形体及び射出発泡成形体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313342A (ja) * 2002-04-25 2003-11-06 Denki Kagaku Kogyo Kk ポリプロピレン系樹脂発泡シート及び容器
JP2008266589A (ja) * 2007-03-23 2008-11-06 Toray Ind Inc 架橋ポリオレフィン系樹脂発泡体
JP2011051180A (ja) * 2009-08-31 2011-03-17 Kyoraku Co Ltd 発泡成形品
JP2011116804A (ja) * 2009-11-30 2011-06-16 Kyoraku Co Ltd 発泡成形品の製造方法
JP2013001826A (ja) * 2011-06-17 2013-01-07 Tosoh Corp 射出発泡用樹脂組成物、射出発泡成形体及び射出発泡成形体の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078705A1 (en) * 2013-12-03 2016-10-12 Nissan Motor Co., Ltd. Foam molded body, duct for air conditioner, and duct for vehicle air conditioner
EP3078705A4 (en) * 2013-12-03 2017-04-26 Nissan Motor Co., Ltd Foam molded body, duct for air conditioner, and duct for vehicle air conditioner
US10315491B2 (en) 2013-12-03 2019-06-11 Nissan Motor Co., Ltd. Foam molded body, duct for air conditioner, and duct for vehicle air conditioner
EP3150658A4 (en) * 2014-05-30 2018-01-24 Sekisui Techno Molding Co., Ltd. Foam-molded article and method for manufacturing same
JP2016155344A (ja) * 2015-02-26 2016-09-01 東レ株式会社 ポリオレフィン樹脂発泡体を用いてなる積層体及び、自動車内装材
WO2018025343A1 (ja) * 2016-08-03 2018-02-08 東レ株式会社 積層体
CN109476139A (zh) * 2016-08-03 2019-03-15 东丽株式会社 叠层体
CN109476139B (zh) * 2016-08-03 2021-03-09 东丽株式会社 叠层体
JP2020055942A (ja) * 2018-10-01 2020-04-09 キョーラク株式会社 発泡ダクト
JP7277866B2 (ja) 2018-10-01 2023-05-19 キョーラク株式会社 発泡ダクト

Also Published As

Publication number Publication date
JP2013107963A (ja) 2013-06-06
US20140335295A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
WO2013073461A1 (ja) 発泡成形品およびその製造方法
JP5636669B2 (ja) 発泡成形品の製造方法
WO2009122734A1 (ja) 車両用軽量空調ダクト
JP5803086B2 (ja) 発泡成形体の成形方法及び発泡成形体
EP2261004B1 (en) A climate control duct and method of making it
WO2013114996A1 (ja) 発泡成形品の製造方法および発泡成形品
US9527228B2 (en) Method for producing foam-molded article, and foam-molded article
JP5428061B2 (ja) 発泡ブロー成形品
JP5422246B2 (ja) 発泡ブロー成形体及びその製造方法
EP3533823B1 (en) Resin for foam molding, foam-molded article, and production method therefor
US20110101558A1 (en) Method for manufacturing molded foam
JP5554551B2 (ja) 発泡成形体の製造方法
JP6174462B2 (ja) 発泡ブロー成形品
JP5464888B2 (ja) 車両用軽量空調ダクト
JP5601493B2 (ja) 発泡成形体の製造方法
WO2016104373A1 (ja) ブロー成形方法
JP5554538B2 (ja) 発泡成形体の製造方法
JP2020055942A (ja) 発泡ダクト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14358804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849487

Country of ref document: EP

Kind code of ref document: A1