WO2009119624A1 - 熱可塑性樹脂組成物の製造方法 - Google Patents

熱可塑性樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2009119624A1
WO2009119624A1 PCT/JP2009/055880 JP2009055880W WO2009119624A1 WO 2009119624 A1 WO2009119624 A1 WO 2009119624A1 JP 2009055880 W JP2009055880 W JP 2009055880W WO 2009119624 A1 WO2009119624 A1 WO 2009119624A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin
resin composition
kneading
producing
Prior art date
Application number
PCT/JP2009/055880
Other languages
English (en)
French (fr)
Inventor
定之 小林
松岡 英夫
斎藤 真希子
秋田 大
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US12/934,484 priority Critical patent/US8188188B2/en
Priority to CN2009801192951A priority patent/CN102046704B/zh
Priority to EP09724478.4A priority patent/EP2270073B1/en
Priority to JP2009514575A priority patent/JP4788824B2/ja
Publication of WO2009119624A1 publication Critical patent/WO2009119624A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/47Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using discs, e.g. plasticising the moulding material by passing it between a fixed and a rotating disc that are coaxially arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • B29C48/645Screws with two or more threads neighbouring threads and channels having identical configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92561Time, e.g. start, termination, duration or interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • thermoplastic resin composition containing a compound having a reactive functional group when produced by reactive processing, it is a characteristic that could not be achieved by conventional production methods by melt kneading while stretching and flowing.
  • L screw length
  • D screw diameter
  • the viscoelasticity of the material significantly increases as the deformation speed increases, and the maximum viscosity applied to the object even when subjected to high loads and high speed impacts.
  • the present invention relates to a production method for obtaining a thermoplastic resin composition having a shock absorbing property that absorbs a large energy without causing a breakage due to a low load.
  • the reactive processing method is a method in which a processing machine that melts and kneads a polymer is used for the reaction.
  • so-called “reactive extrusion processing”, particularly using an extruder has high industrial added value, and its use is very active worldwide.
  • the extruder When reactive processing is performed in an extruder, the extruder is required to control temperature, ensure reaction time (residence time), uniformly disperse the catalyst, removability of by-products, etc. Ensuring the reaction time (residence time) is one of the extremely important factors in controlling the reaction in the extruder. Therefore, as one method for ensuring the reaction time (residence time) in the extruder, a method using an extruder having a long ratio (L / D) of the screw length (L) to the screw diameter (D). For example, a method of reactive processing of L / D with an extruder of 50 or more is disclosed (see Patent Document 1).
  • an extruder with a long L / D has difficulty in equipment maintenance and long-time continuous operation, and a simpler production method has been desired.
  • Patent Document 2 describes a new melt-kneading apparatus using elongational flow for the purpose of reducing screw wear, suppressing shear heat generation during melt-kneading, and improving filler dispersibility. There is no disclosure or suggestion about its application to reactive processing using.
  • an extruder with a long L / D is required for equipment maintenance.
  • thermoplastic resin composition containing a compound having a reactive functional group when produced by reactive processing, it is a characteristic that could not be achieved by conventional production methods by melt kneading while stretching and flowing.
  • a method for producing a thermoplastic resin composition having a balance of heat resistance, impact resistance, etc. is provided, and a unique viscoelastic property that the elastic modulus decreases and becomes flexible as the deformation speed increases is remarkably exhibited.
  • a method for producing a thermoplastic resin composition having a shock absorption characteristic that absorbs a large energy without causing breakage because the maximum load applied to an object is low even when subjected to a large load and a high speed impact. This is the issue.
  • the present inventors have conducted melt-kneading while stretching and flowing when producing a thermoplastic resin composition containing a compound having a reactive functional group by reactive processing.
  • the present inventors have found that it is possible to produce a thermoplastic resin composition having characteristics (such as a balance between heat resistance and impact resistance) that could not be achieved by the conventional production methods.
  • the screw length (L) Even if a general-purpose extruder with a short screw diameter (D) ratio (L / D) is used, the specific viscoelastic property that the elastic modulus decreases and becomes flexible as the deformation speed increases is remarkably expressed.
  • thermoplastic resin composition with impact absorption characteristics that absorbs a large amount of energy without causing breakage because the maximum load applied to the object is low even when subjected to a heavy load and high speed impact.
  • the heading has led to the completion of the present invention.
  • thermoplastic resin composition of the following (I) or (II), a method for producing a thermoplastic resin composition characterized by melting and kneading while stretching and flowing, (I) Thermoplastic resin (A) and thermoplastic resin composition formed by blending resin (B) having a reactive functional group (II) Thermoplastic resin (A), heat different from thermoplastic resin (A) A thermoplastic resin composition comprising a plastic resin (C) and a compound (D) having a reactive functional group; (2) When producing a thermoplastic resin composition, the inflow effect pressure drop before and after the zone (extension flow zone) in which melt-kneading is carried out by an extruder and melt-kneading while stretching is 10 to 1000 kg / cm 2 A method for producing a thermoplastic resin composition as described in (1) above, (3) When the thermoplastic resin composition is produced, the ratio of the total length of the zone (extension flow zone) in which the melt is kneaded by an extruder
  • thermoplastic resin (A) is at least one selected from polyamide resin, polyester resin, polyphenylene sulfide resin, polyacetal resin, styrene resin, polyphenylene oxide resin, polycarbonate resin, polylactic acid resin, and polypropylene resin.
  • thermoplastic resin (C) is different from the thermoplastic resin (A), polyamide resin, polyester resin, polyphenylene sulfide resin, polyacetal resin, styrene resin, polyphenylene oxide resin, polycarbonate resin, polylactic acid resin, and The method for producing a thermoplastic resin composition according to any one of the above (1) to (5), wherein the thermoplastic resin composition is at least one selected from polypropylene resins, (7) The thermoplastic resin composition as described in any one of (1) to (6) above, wherein the resin (B) having a reactive functional group is a rubbery polymer having a reactive functional group Manufacturing method, (8) The reactive functional group of the resin (B) having a reactive functional group is at least one selected from an amino group, a carboxyl group, a carboxyl metal salt, an epoxy group, an acid anhydride group, and an oxazoline group.
  • the reactive functional group of the compound (D) having a reactive functional group is at least one selected from an amino group, a carboxyl group, a carboxyl metal salt, an epoxy group, an acid anhydride group, and an oxazoline group.
  • thermoplastic resin (A) is a polyamide resin
  • E (V1) or E (V2) in the tensile test E (V1)> E when V1 ⁇ V2.
  • thermoplastic resin composition (V2), the method for producing a thermoplastic resin composition according to any one of the above (1) to (10), (12) In the tensile test, when the tensile breaking elongation at the tensile speeds V1 and V2 is ⁇ (V1) and ⁇ (V2) in the tensile test, when V1 ⁇ V2, ⁇ (V1) ⁇
  • the method for producing a thermoplastic resin composition according to any one of the above (1) to (11), characterized by being ⁇ (V2), and (13) any one of the above (1) to (9) The thermoplastic resin composition obtained by the production method described above, (14) a molded product comprising the thermoplastic resin composition described in (13) above, and (15) the molded product is a film or sheet (14) The molded product according to the description.
  • thermoplastic resin composition containing a compound having a reactive functional group when a thermoplastic resin composition containing a compound having a reactive functional group is produced by reactive processing, it cannot be achieved by the conventional production method by melt kneading while stretching and flowing. It is possible to produce a thermoplastic resin composition having excellent characteristics (heat resistance, impact resistance balance, etc.), and the ratio of the screw length (L) to the screw diameter (D) (L / D). Even when a general-purpose extruder with a short length is used, the unique viscoelastic property that the modulus of elasticity decreases and becomes flexible as the deformation speed increases, even when subjected to heavy loads and high speed impacts. It is possible to produce a thermoplastic resin composition having a shock absorbing property that absorbs a large amount of energy without causing breakage because the maximum load applied to the object is low.
  • thermoplastic resin composition of the present invention is (I) A thermoplastic resin composition comprising a thermoplastic resin (A) and a resin (B) having a reactive functional group, or (II) a thermoplastic resin (A), a thermoplastic resin different from the thermoplastic resin (A) A thermoplastic resin composition comprising (C) and a compound (D) having a reactive functional group.
  • thermoplastic resin (A) used in the present invention is not particularly limited as long as it is a resin that can be molded by heating and melting.
  • It can be used as at least one resin selected from resins, polypropylene resins, styrene resins such as polystyrene resins and ABS resins, rubbery polymers, polyalkylene oxide resins and the like.
  • thermoplastic resins shown above polyamide resins, polyester resins, polyphenylene sulfide resins, polyacetal resins, styrene resins, polyphenylene oxide resins, polycarbonate resins, polylactic acid resins, and polypropylene resins are preferred.
  • Polyamide resins, polyphenylene sulfide resins, polyester resins, and polyphenylene oxide resins have high terminal group reactivity, and are preferably polyamide, and most preferably used.
  • the polyamide resin used in the present invention is a resin composed of a polymer having an amide bond, and is mainly composed of amino acids, lactams or diamines and dicarboxylic acids.
  • Representative examples of the raw materials include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactams such as ⁇ -caprolactam and ⁇ -laurolactam, tetramethylenediamine, penta Methylenediamine, hexamethylenediamine, 2-methylpentamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylene Diamine, metaxylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-
  • a particularly useful polyamide resin is a polyamide resin having a crystal melting temperature of 150 ° C. or more and excellent in heat resistance and strength.
  • Specific examples thereof include polycaproamide (polyamide 6), polyhexamethylene azide.
  • Particularly preferable examples include polyamide 6, polyamide 66, polyamide 56, polyamide 610, polyamide 510, polyamide 612, polyamide 6/66, polyamide 66 / 6T, polyamide 66 / 6I / 6, polyamide 6T / 5T and the like. Furthermore, it is also practically preferable to use these polyamide resins as a mixture depending on required properties such as moldability, heat resistance, toughness, and surface properties. Among these, polyamide 6 and polyamide 66 are the most suitable. preferable.
  • the terminal group concentration of these polyamide resins is not particularly limited, but those having a terminal amino group concentration of 3 ⁇ 10 ⁇ 5 mol / g or more are those having a reactive functional group (B), or reactive functional groups. It is preferable in terms of reactivity with the compound (D).
  • the terminal amino group concentration herein can be measured by dissolving a sample in an 85% phenol-ethanol solution, using thymol blue as an indicator, and titrating with an aqueous hydrochloric acid solution.
  • the degree of polymerization of these polyamide resins is not particularly limited, and the relative viscosity measured at 25 ° C. in a 98% concentrated sulfuric acid solution having a sample concentration of 0.01 g / ml is in the range of 1.5 to 5.0, particularly 2. A range of 0 to 4.0 is preferable.
  • the polyester resin used in the present invention is a thermoplastic resin composed of a polymer having an ester bond in the main chain, and is a dicarboxylic acid (or an ester-forming derivative thereof) and a diol (or an ester-forming derivative thereof). ) And a polymer obtained by a condensation reaction having as a main component, a copolymer, or a mixture thereof.
  • dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, and 4,4′-diphenyl ether dicarboxylic acid.
  • aromatic dicarboxylic acids such as 5-sodiumsulfoisophthalic acid
  • aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc.
  • alicyclic dicarboxylic acids and ester-forming derivatives thereof are examples of aromatic dicarboxylic acids and ester-forming derivatives thereof.
  • the diol component includes aliphatic glycols having 2 to 20 carbon atoms, that is, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol. , Cyclohexanedimethanol, cyclohexanediol, and the like, or long-chain glycols having a molecular weight of 400 to 6000, that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, and the like, and ester-forming derivatives thereof.
  • Preferred examples of these polymers or copolymers include polybutylene terephthalate, polybutylene (terephthalate / isophthalate), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), Polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / 5-sodium sulfoisophthalate), polybutylene (terephthalate / 5-sodium sulfoisophthalate), polyethylene Examples include naphthalate and polycyclohexanedimethylene terephthalate.
  • polyester compositions To polybutylene terephthalate, polybutylene (terephthalate / adipate), polybutylene (terephthalate / decane dicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate / adipate), polyethylene naphthalate, polycyclohexanedimethylene terephthalate, etc. Particularly preferred and most preferred is polybutylene terephthalate (polybutylene terephthalate resin).
  • the polybutylene terephthalate resin preferably has an intrinsic viscosity measured at 25 ° C. using an o-chlorophenol solvent in the range of 0.36 to 1.60, particularly 0.52 to 1.25.
  • polybutylene terephthalate resins having different intrinsic viscosities may be used in combination, and the intrinsic viscosity is preferably in the range of 0.36 to 1.60.
  • these polybutylene terephthalate resins are durable if the COOH end group amount obtained by potentiometric titration of m-cresol solution with an alkaline solution is in the range of 1 to 50 eq / t (end group amount per ton of polymer). It can be preferably used from the viewpoint of the property and the effect of suppressing anisotropy.
  • polyphenylene oxide resin used in the present invention examples include poly (2,6-dimethyl-1,4-phenylene oxide), poly (2-methyl-6-ethyl-1,4-phenylene oxide), and poly (2,6-dimethyl-1,4-phenylene oxide).
  • poly(2,6-diphenyl-1,4-phenylene oxide) examples include poly (2-methyl-6-phenyl-1,4-phenylene oxide), poly (2,6-dichloro-1,4-phenylene oxide), etc.
  • a copolymer such as a copolymer of 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol).
  • poly (2,6-dimethyl-1,4-phenylene oxide) and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable, and in particular, poly (2,6-dimethyl) -1,4-phenylene oxide) is preferred.
  • the polyphenylene oxide resin preferably has a reduced viscosity (0.5 g / dl chloroform solution) measured at 30 ° C. in the range of 0.15 to 0.70.
  • the method for producing such a polyphenylene oxide resin is not particularly limited, and those obtained by known methods can be used. For example, it can be easily produced by oxidative polymerization using as a catalyst a complex of cuprous salt and amine by Hay described in US Pat. No. 3,306,874.
  • the polyphenylene oxide resin obtained as described above is further subjected to various treatments such as modification or activation with a functional group-containing compound such as an acid anhydride group, an epoxy group, or an isocyanate group. It is of course possible to use it.
  • the resin (B) having a reactive functional group of the present invention is a resin having a reactive functional group in a molecular chain.
  • the resin serving as the base of the resin (B) having a reactive functional group of the present invention is not particularly limited.
  • thermoplastic resin (A) selected from styrenic resins such as resin and ABS resin, rubber polymer, polyalkylene oxide resin and the like It is possible to have.
  • polyethylene resins polypropylene resins, styrene resins, and rubbery polymers are preferable from the viewpoint of easy introduction of reactive functional groups, and rubber polymers are more preferable from the viewpoint of impact resistance and toughness improvement effect.
  • Such a rubbery polymer generally contains a polymer having a glass transition temperature lower than room temperature, and some of the molecules are bound to each other by covalent bonds, ionic bonds, van der Waals forces, entanglement, etc. It refers to a polymer.
  • Ethylene-unsaturated carboxylic acid ester copolymers acrylic acid ester-butadiene copolymers, acrylic elastic polymers such as butyl acrylate-butadiene copolymer, and ethylene-vinyl acetate and other ethylene-fatty acid copolymers.
  • Polymer, Eth Ethylene-propylene non-conjugated diene terpolymers such as ethylene-propylene-ethylidene norbornene copolymer, ethylene-propylene-hexadiene copolymer, butylene-isoprene copolymer, chlorinated polyethylene, polyamide elastomer, polyester elastomer, etc.
  • Preferred examples include thermoplastic elastomers. Among these, when a polyamide resin is used as the thermoplastic resin (A), an ethylene-unsaturated carboxylic acid ester copolymer is preferably used from the viewpoint of compatibility.
  • the unsaturated carboxylic acid ester in the ethylene-unsaturated carboxylic acid ester copolymer is a (meth) acrylic acid ester, preferably an ester of (meth) acrylic acid and an alcohol.
  • Specific examples of the unsaturated carboxylic acid ester include (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and stearyl (meth) acrylate. Examples include esters.
  • the weight ratio of the ethylene component to the unsaturated carboxylic acid ester component in the copolymer is not particularly limited, but is preferably in the range of 90/10 to 10/90, more preferably 85/15 to 15/85.
  • the number average molecular weight of the ethylene-unsaturated carboxylic acid ester copolymer is not particularly limited, but is preferably in the range of 1000 to 70000 from the viewpoint of fluidity and mechanical properties.
  • the thermoplastic resin (C) of the present invention is not particularly limited as long as it is a resin that can be molded by heating and melting.
  • a resin that can be molded by heating and melting for example, polyamide resin, polyester resin, polyphenylene sulfide resin , Polyacetal resin, polyphenylene oxide resin, polycarbonate resin, polylactic acid resin, polysulfone resin, polytetrafluoroethylene resin, polyetherimide resin, polyamideimide resin, polyimide resin, polyethersulfone resin, polyetherketone resin, polythioetherketone resin
  • the thermoplastic resin (A) selected from polyether ether ketone resin, polyethylene resin, polypropylene resin, styrenic resin such as polystyrene resin and ABS resin, rubber polymer, polyalkylene oxide resin, etc. That can be used as at least one or more resins.
  • the compound (D) having a reactive functional group of the present invention is a compound having a reactive functional group in a molecular chain.
  • Such a compound may be a low molecular weight body or a high molecular weight body.
  • the reactive functional group present in the resin (B) having a reactive functional group or the compound (D) having a reactive functional group according to the present invention refers to the thermoplastic resin (A) or the thermoplastic resin (C).
  • the thermoplastic resin (A) or the thermoplastic resin (C) There is no particular limitation as long as it reacts with existing functional groups, but examples include amino groups, carboxyl groups, carboxyl metal salts, hydroxyl groups, acid anhydride groups, epoxy groups, isocyanate groups, mercapto groups, oxazoline groups, sulfonic acids. There may be mentioned at least one selected from groups and the like. Of these, amino groups, carboxyl groups, carboxyl metal salts, epoxy groups, acid anhydride groups, and oxazoline groups are preferably used because of their high reactivity and low side reactions such as decomposition and crosslinking.
  • Examples of the acid anhydride in the acid anhydride group described above include maleic anhydride, itaconic anhydride, endic acid anhydride, citraconic acid anhydride, 1-butene-3,4-dicarboxylic acid anhydride and the like. Two or more of these may be used simultaneously. Of these, maleic anhydride and itaconic anhydride are preferably used.
  • the method can be carried out by a generally known technique and is not particularly limited.
  • the acid anhydride group and the raw material for the rubbery polymer can be used.
  • a method of copolymerizing with a monomer, a method of grafting an acid anhydride onto a rubber polymer, and the like can be used.
  • an epoxy group when introduced into a rubbery polymer, the method can be carried out by a generally known technique and is not particularly limited.
  • a vinyl monomer having an epoxy group is added to a rubbery polymer.
  • a method of copolymerizing with a monomer that is a raw material of a coalescence, a method of polymerizing a rubbery polymer using a polymerization initiator or a chain transfer agent having the above functional group, a method of grafting an epoxy compound onto a rubbery polymer, etc. Can be used.
  • Examples of the vinyl monomer having an epoxy group include glycidyl ester compounds of ⁇ , ⁇ -unsaturated acids such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and glycidyl itaconate.
  • the method can be carried out by a generally known technique, and is not particularly limited.
  • 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2 A method of copolymerizing a vinyl monomer having an oxazoline group such as -acryloyl-oxazoline or 2-styryl-oxazoline with a monomer that is a raw material of a rubbery polymer can be used.
  • the method can be performed by a generally known technique and is not particularly limited.
  • an unsaturated carboxylic acid-based monomer having a carboxyl group For example, a method of copolymerizing the body with a monomer that is a raw material of the resin serving as a base of (B) can be used.
  • Specific examples of the unsaturated carboxylic acid include (meth) acrylic acid.
  • the resin (B) having a reactive functional group include ethylene-unsaturated carboxylic acid copolymers such as ethylene-acrylic acid and ethylene-methacrylic acid.
  • a carboxyl metal salt in which a part of the carboxyl group is a metal salt is effective as a reactive functional group, and examples thereof include (meth) acrylic acid metal salts.
  • the metal of a metal salt is not specifically limited, Preferably, alkali metals, such as sodium, alkaline-earth metals, such as magnesium, zinc etc. are mentioned.
  • the resin (B) having a reactive functional group include ethylene-unsaturated carboxylic acid-unsaturated carboxylic acid metal salt copolymers such as ethylene-acrylic acid-acrylic acid metal salt and ethylene-methacrylic acid-methacrylic acid metal salt. Etc.
  • the weight ratio of the unsaturated carboxylic acid component to the unsaturated carboxylic acid metal salt component in the copolymer is not particularly limited, but is preferably 95/5 to 5/95, more preferably 90/10 to 10/90. is there. *
  • the number average molecular weight of the ethylene-unsaturated carboxylic acid ester copolymer is not particularly limited, but is preferably in the range of 1000 to 70000 from the viewpoint of fluidity and mechanical properties.
  • the number of functional groups per molecular chain is not particularly limited, but usually 1 to 10 is preferable, such as crosslinking. In order to reduce side reactions, 1 to 5 are preferable. Moreover, although the molecule
  • thermoplastic resin (A) and the resin (B) which has a reactive functional group in this invention (weight of (A)) / (weight of (B)) is 5 /
  • the range of 95 to 95/5 is preferable, the range of 10/90 to 90/10 is more preferable, and the range of 15/85 to 85/15 is most preferable.
  • the blending ratio of the thermoplastic resin (A) and the thermoplastic resin (C) in the present invention is not particularly limited, but (weight of (A)) / (weight of (C)) is 5/95 to 95 / A range of 5 is preferred, a range of 10/90 to 90/10 is more preferred, and a range of 15/85 to 85/15 is most preferred.
  • the addition amount of the compound (D) having a reactive functional group with respect to 100 parts by weight of the sum of the weights of the thermoplastic resin (A) and the thermoplastic resin (C) in the present invention is not particularly limited, but is preferably 0.1 -50 parts by weight, more preferably 0.2-40 parts by weight, still more preferably 0.3-30 parts by weight.
  • the extension flow is a flow method in which molten resin is stretched in two flows flowing in opposite directions.
  • generally used shear flow is a flow method in which molten resin undergoes deformation in two flows having different velocities in the same direction.
  • the extension flow has a higher dispersion efficiency than the shear flow generally used during melt-kneading, so that the reaction can proceed efficiently, especially in the case of alloying with a reaction such as reactive processing. It becomes.
  • melt kneading using an extruder is preferably used.
  • the extruder include a single screw extruder, a twin screw extruder, and a multi-screw extruder having three or more axes.
  • a single screw extruder and a twin screw extruder are preferably used, and a twin screw extruder is particularly preferably used.
  • the screw of such a twin screw extruder is not particularly limited, and a fully meshed type, an incomplete meshed type, a non-meshed type screw, etc. can be used. It is a type.
  • the rotation direction of the screw may be either the same direction or a different direction, but from the viewpoint of kneading property and reactivity, the rotation direction is preferably the same direction.
  • the most preferred screw is a co-rotating fully meshed type.
  • the inflow effect pressure drop before and after the zone for melt kneading while stretching and flowing (extension flow zone) is preferably 10 to 1000 kg / cm 2. .
  • the inflow effect pressure drop before and after the zone (extension flow zone) for melt kneading while stretching and flowing means the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) before the extension flow zone. It can be obtained by subtracting.
  • the inflow effect pressure drop before and after the extension flow zone is less than 10 kg / cm 2, it is preferable because the rate of extension flow formation in the extension flow zone is low and the pressure distribution becomes non-uniform. Absent.
  • the inflow effect pressure drop before and after the extension flow zone is larger than 1000 kg / cm 2 , the back pressure in the extruder becomes too large, and it is not preferable because stable production becomes difficult.
  • the inflow effect pressure drop before and after the zone of melt kneading while stretching and flowing (extension and flow zone) is preferably in the range of 30 to 600 kg / cm 2 , more preferably in the range of 50 to 600 kg / cm 2 , and even more preferably 100 A range of ⁇ 500 kg / cm 2 is most preferred.
  • a zone for melting and kneading while stretching and flowing with respect to the full length of the screw of the extruder is preferably in the range of 5 to 60%, more preferably in the range of 10 to 55%, and still more preferably in the range of 15 to 50%.
  • the length of one melt flow kneading zone (extension flow zone) in the screw of the extruder is Lk, and the screw diameter is D.
  • Lk / D is preferably 0.2 to 10. More preferably, it is 0.3-9, and still more preferably 0.5-8.
  • the zone (extension flow zone) in which the twin-screw extruder melts and kneads while stretching and flowing is preferably not disposed unevenly at a specific position in the screw.
  • the zone (extension flow zone) in which melt-kneading while stretching and flowing is arranged at three or more locations in the extruder screw.
  • the specific method of the zone for melt kneading while stretching and flowing includes a kneading disk, and the top and rear surfaces of the kneading disk at the disk front end side.
  • a resin passage with a reduced cross-sectional area from the screw front side to the rear end side is formed in the part, or a resin passage in which the cross-sectional area through which the molten resin passes in the extruder is temporarily reduced Is a preferred example.
  • the amount of extrusion of the thermoplastic resin composition with respect to 1 rpm of the screw is preferably 0.01 kg / h or more.
  • the extrusion amount is an extrusion rate of the thermoplastic resin composition discharged from the extruder, and is a weight (kg) extruded per hour. If the amount of extrusion of the thermoplastic resin composition with respect to 1 rpm of the screw is less than 0.01 kg / h, the amount of extrusion with respect to the number of rotations is not sufficient, and the residence time in the extruder becomes too long, causing thermal deterioration.
  • the rotational speed of the screw is not particularly limited as long as it is within the above range, but is usually 10 rpm or more, preferably 50 rpm or more, and more preferably 80 rpm or more.
  • the amount of extrusion is not particularly limited as long as it is within the above range, but is usually 0.1 kg / h or more, preferably 0.15 kg / h or more, more preferably 0.2 kg / h or more.
  • the residence time of the thermoplastic resin composition in the extruder is preferably 0.1 to 20 minutes.
  • the residence time means that the thermoplastic resin composition is extruded from the discharge port of the extruder from the position of the screw base to which the raw material is supplied, and the colorant and the like are added together with the raw material. This is the time until the maximum degree of coloration of the extrudate by the colorant.
  • the residence time is less than 0.1 minute, the reaction time in the extruder is short, the reaction is not sufficiently promoted, and the properties of the thermoplastic resin composition (balance of heat resistance, impact resistance, etc.) are improved.
  • the residence time in the present invention is preferably 0.3 to 15 minutes, more preferably 0.5 to 5 minutes.
  • thermoplastic resin composition obtained by the present invention remarkably exhibits the non-viscoelastic property that it becomes more flexible as it is deformed at high speed, and the maximum load applied to the object even when subjected to a large load or high-speed impact. It can absorb large energy without causing destruction.
  • the thermoplastic resin composition produced according to the present invention has an elastic modulus of E (V1) and E (V2) at a tensile velocity of V1 and V2, and when V1 ⁇ V2, E (V1 )> E (V2).
  • the tensile test in this case is performed according to a method specified in the standard.
  • the tensile elastic modulus indicates the slope of the initial straight line portion of the stress-strain curve.
  • the thermoplastic resin composition produced according to the present invention has an elongation at break of ⁇ (V1) and ⁇ (V2) at tensile speeds V1 and V2, and when V1 ⁇ V2, ⁇ ( It is preferable that V1) ⁇ (V2).
  • the tensile elongation at break indicates the elongation at the moment of fracture.
  • the above relational expression is preferably established for all V1 and V2 within the range of the tensile speed of 10 mm / min to 500 mm / min, and more preferably any V1 within the range of 1 mm / min to 1000 mm / min. , V2 is preferably established.
  • thermoplastic resin composition produced according to the present invention a resin as a base of the resin (B) having another reactive functional group is blended as necessary within the range not impairing the characteristics. Can do. Two or more types of resins as the base of the resin (B) having such a reactive functional group can be used in combination.
  • the blending amount is not particularly limited, but is preferably 1 to 400 parts by weight with respect to 100 parts by weight of the thermoplastic resin composition.
  • a filler may be used as necessary to improve strength, dimensional stability, and the like.
  • the filler may be fibrous or non-fibrous, or a combination of fibrous filler and non-fibrous filler may be used.
  • the filler examples include glass fiber, glass milled fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone-kow fiber, metal Fibrous fillers such as fibers, wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate and other silicates, alumina, silicon oxide, magnesium oxide, zirconium oxide, Metal compounds such as titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, hydroxides such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide, Rasubizu, ceramic beads, non-fibrous fillers such as boron nitride and silicon carbide and the like, which may be hollow, it is also possible to further combination of these fill
  • these fibrous and / or non-fibrous fillers are pretreated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, an epoxy compound, It is preferable in terms of obtaining superior mechanical strength.
  • a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, an epoxy compound
  • the amount of the filler is not particularly limited, but is usually 0.1 to 400 parts by weight based on 100 parts by weight of the thermoplastic resin composition. .
  • thermoplastic resin composition produced according to the present invention other thermoplastic resins, rubbers, and various additives can be blended as needed within the range not impairing the characteristics.
  • Such rubbers include, for example, polybutadiene, polyisoprene, styrene-butadiene random copolymers and block copolymers, hydrogenated products of the block copolymers, acrylonitrile-butadiene copolymers, butadiene-isoprene copolymers, and the like.
  • ethylene-propylene random copolymer and block copolymer ethylene-butene random copolymer and block copolymer, ethylene and ⁇ -olefin copolymer
  • ethylene-acrylic acid ethylene -Ethylene-unsaturated carboxylic acid copolymers such as methacrylic acid, ethylene-acrylic acid esters, ethylene-unsaturated carboxylic acid ester copolymers such as ethylene-methacrylic acid esters, and some unsaturated carboxylic acids are metal salts.
  • ethylene-acrylic acid-gold acrylate Salt ethylene-unsaturated carboxylic acid-unsaturated carboxylic acid metal salt copolymer such as ethylene-methacrylic acid-methacrylic acid metal salt, acrylic ester-butadiene copolymer such as butyl acrylate-butadiene copolymer
  • Ethylene-propylene non-conjugated diene ternary copolymer such as ethylene-propylene-ethylidene norbornene copolymer, ethylene-propylene-hexadiene copolymer, ethylene-propylene copolymer such as ethylene-vinyl acetate
  • Preferred examples include polymers, butylene-isoprene copolymers, thermoplastic elastomers such as chlorinated polyethylene, polyamide elastomer, and polyester elastomer, and modified products thereof. Two or more kinds of such rubbers can be used in combination. When such rubbers are used,
  • Such various additives are preferably crystal nucleating agents, anti-coloring agents, hindered phenols, hindered amines, hydroquinone-based, phosphite-based and substituted products thereof, copper halides, iodide compounds and the like, Stabilizers, resorcinol-based, salicylate-based, benzotriazole-based, benzophenone-based, hindered amine-based weathering agents, aliphatic alcohols, aliphatic amides, aliphatic bisamides, release agents such as ethylenebisstearylamide and higher fatty acid esters, p -Plasticizers such as octyl oxybenzoate and N-butylbenzenesulfonamide, lubricants, dyes such as nigrosine and aniline black, pigments such as cadmium sulfide, phthalocyanine and carbon black, alkyl sulfate type anionic antistatic agents Agent, 4th grade
  • a hindered phenol compound and a phosphorus compound are preferably used.
  • the hindered phenol compound include triethylene glycol-bis [3-t-butyl- (5-methyl-4 -Hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), tetrakis [methylene-3- (3 ′, 5′-di-t- Butyl-4′-hydroxyphenyl) propionate] methane, pentaerythrityltetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate], 1,3,5-tris (3 , 5-Di-t-butyl-4-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) -tri 1,1,3-tris (2-methyl-4-hydroxy-5-tert-
  • ester type polymer hindered phenol type is preferable, and specifically, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, pentaerythrityl. Tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate], 3,9-bis [2- (3- (3-t-butyl-4-hydroxy-5- Methylphenyl) propionyloxy) -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane and the like are preferably used.
  • antioxidant phosphorus compounds include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, bis (2,4-di-t-butyl). Phenyl) pentaerythritol-di-phosphite, bis (2,4-di-cumylphenyl) pentaerythritol-di-phosphite, tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4- Di-t-butylphenyl) -4,4'-bisphenylene phosphite, di-stearyl pentaerythritol di-phosphite, triphenyl phosphite, 3,5-di-butyl-4-hydroxybenzyl phosphonate diethyl Examples include esters. Two or more kinds of such antioxidants can be used
  • thermoplastic resins, rubbers, and various additives can be blended at any stage for producing the thermoplastic resin composition of the present invention.
  • Method of adding simultaneously method of adding two-component resin by means of side feed during melt-kneading, method of adding after two-component resin is melt-kneaded in advance, or first adding to one resin and melting The method of mix
  • mixing is mentioned.
  • the molding method of the thermoplastic resin composition produced according to the present invention can be any method, and the molding shape can be any shape.
  • the molding method include extrusion molding, injection molding, hollow molding, calendar molding, compression molding, vacuum molding, foam molding, etc., and pellets, plates, films or sheets, pipes, hollows, boxes It can be formed into a shape such as a shape.
  • the molded product of the thermoplastic resin composition produced according to the present invention is used for connectors, coils, sensors, LED lamps, sockets, resistors, relay cases, small switches, coil bobbins, capacitors, variable capacitor cases, optical pickups. , Oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, semiconductor, liquid crystal, FDD carriage, FDD chassis, motor brush holder, parabolic antenna
  • electronic parts such as computer-related parts, generators, motors, transformers, current transformers, voltage regulators, rectifiers, inverters, relays, power contacts, switches, circuit breakers, Knife switch, other pole rod
  • Electrical equipment parts such as electronic parts cabinets, VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio / laser discs (registered trademark) / compact discs, DVDs, etc.
  • thermoplastic resin composition produced according to the present invention is also suitable for film and sheet applications, and is suitably used for soft members for automobile interiors, packaging films, desk mats and the like.
  • A-1 Polyamide resin (Polyamide 6) “CM1017” (manufactured by Toray Industries, Inc.)
  • A-2 Polyamide 6 resin
  • A-3 Polyamide resin (polyamide 66) “CM3001N” (manufactured by Toray Industries, Inc.) with a relative viscosity of 2.35 at a melting point of 225 ° C.
  • A-4 Polyamide 56 resin obtained in Reference Example 1 below
  • A-5 Polyamide 6T / 66 resin A-6 obtained in Reference Example 2 below
  • A-6 Polyamide 66 / 6I / 6 obtained in Reference Example 3 below
  • Resin A-7 Polybutylene terephthalate resin “1401” (manufactured by Toray Industries, Inc.)
  • A-8 Polyphenylene sulfide resin “A900” (manufactured by Toray Industries, Inc.)
  • A-9 Polyethylene terephthalate resin “SA-135” (Mitsui Chemicals)
  • A-10 Aromatic polycarbonate resin “Toughlon A2500” (manufactured by Idemitsu Kosan Co., Ltd.)
  • A-11 Melting point 170 ° C., weight average molecular weight 210,000 (gel permeation chromatography method, 1,1,1,3,3,3-hexafluoro-2-propanol eluent, converted to PMMA
  • A-12 Polyphenylene ether resin “PX-100F” (Mitsubishi Engineering Plastics)
  • B-1 Glycidyl methacrylate-modified polyethylene copolymer “Bond First BF-7L” (manufactured by Sumitomo Chemical Co., Ltd.)
  • B-2 Glycidyl methacrylate-modified polyethylene copolymer “Bond First BF-7M” (manufactured by Sumitomo Chemical Co., Ltd.)
  • B-3 Glycidyl methacrylate-modified polyethylene copolymer “Bond First BF-E” (manufactured by Sumitomo Chemical Co., Ltd.)
  • B-4 Maleic anhydride-modified ethylene-1-butene copolymer “Tuffmer MH7020” (manufactured by Mitsui Chemicals)
  • B-5 Ethylene / methacrylic acid / zinc methacrylate copolymer “Himiran 1706” (Mitsui / DuPont Polychemicals)
  • C-1 Ethylene /
  • the obtained polyamide resin had a relative solution viscosity of 2.76 measured at 25 ° C. and a concentration of 0.01 g / ml in 98% concentrated sulfuric acid, and an amino end group content of 8.12 ⁇ 10 ⁇ 5 eq / g, The amount of carboxyl end groups was 5.21 ⁇ 10 ⁇ 5 eq / g. Tm measured by a finger scanning calorimeter was 254 ° C.
  • the polymerization was completed by reacting at 270 ° C. for 10 minutes under a reduced pressure of ⁇ 160 mmHg. Thereafter, the polymer discharged into the water bath was pelletized with a strand cutter to obtain a polyamide resin (A-6).
  • the relative viscosity of the obtained polyamide measured at 25 ° C. and a concentration of 0.01 g / ml in 98% by weight concentrated sulfuric acid was 2.03.
  • the melting point measured with a differential scanning calorimeter was 233 ° C.
  • Example 1 Polyamide 6 (A-1: CM1017, manufactured by Toray Industries, Inc.) was used as the thermoplastic resin (A), and glycidyl methacrylate-modified polyethylene copolymer (B-1) was used as the resin (B) having a reactive functional group. The mixture is mixed at the blending ratio shown in FIG.
  • the ratio (%) of the total length of the zone (extension flow zone) for melt kneading while stretching and flowing with respect to the total length of the screw is defined as (total length of the extension flow zone) / (total length of the screw) ⁇ 100, 29 %.
  • a twist kneading disk having a spiral angle ⁇ of 20 ° in the direction of half rotation of the screw was provided (this screw configuration is designated as A-1).
  • A-1 the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • Example 3 Polyamide 6 (A-1: CM1017, manufactured by Toray Industries, Inc.) is used as the thermoplastic resin (A), and a glycidyl methacrylate-modified polyethylene copolymer is used as the resin (B) having a reactive functional group.
  • the ratio (%) of the total length of the zone (extension flow zone) in which melt kneading while stretching and flowing with respect to the total length of the screw is defined as (total length of extension flow zone) / (total length of screw) ⁇ 100, 31 %.
  • a twist kneading disk having a spiral angle ⁇ of 20 ° in the half-rotation direction of the screw was provided (this screw configuration was designated as B-1). Further, by subtracting the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) in front of the twist kneading disc, the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • the inflow effect pressure drop before and after the extension flow zone was found to be 120 kg / cm 2 .
  • thermoplastic resin (A) and the resin (B) having a reactive functional group as shown in Table 3 melt-kneading was carried out in the same manner as in Example 1.
  • the pressure difference ( ⁇ P 0 ) in the extension flow zone was obtained by subtracting the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) in front of the twist kneading disc, the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • Example 14-17 Melt kneading was carried out in the same manner as in Example 1 except that the thermoplastic resin (A) and the resin (B) having a reactive functional group were used as shown in Table 4 and the cylinder temperature was 280 ° C. In addition, by subtracting the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) in front of the twist kneading disc, the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • Example 18 Melt kneading was carried out in the same manner as in Example 1 except that the thermoplastic resin (A) and the resin (B) having a reactive functional group were used as shown in Table 4 and the cylinder temperature was 320 ° C. In addition, by subtracting the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) in front of the twist kneading disc, the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • thermoplastic resin (A) and the resin (B) having a reactive functional group as shown in Table 5 melt-kneading was carried out in the same manner as in Example 1.
  • the pressure difference ( ⁇ P 0 ) in the extension flow zone was obtained by subtracting the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) in front of the twist kneading disc, the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • Examples 26-27 Melt kneading was carried out in the same manner as in Example 1 except that the thermoplastic resin (A) and the resin (B) having a reactive functional group were used as shown in Table 6 and the cylinder temperature was 280 ° C.
  • the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • Example 28 As other additives (E), heat-resistant agents (E-1: IR1098, manufactured by Ciba Specialty Chemicals) (E-2: IR1010, manufactured by Ciba Specialty Chemicals) were used as shown in Table 6 and Examples In the same manner as in No. 1, melt kneading was performed.
  • E-1 heat-resistant agents
  • E-2 IR1010, manufactured by Ciba Specialty Chemicals
  • Example 29 As other additives (E), a heat resistance agent (E-1: IR1098, manufactured by Ciba Specialty Chemicals) (E-2: IR1010, manufactured by Ciba Specialty Chemicals) and a release agent (E-3: Rico) Using the wax OP (manufactured by Clariant Japan) as shown in Table 6, melt-kneading was carried out in the same manner as in Example 1.
  • E-1 heat resistance agent
  • E-2 IR1010, manufactured by Ciba Specialty Chemicals
  • E-3 Rico
  • the inflow effect pressure drop before and after the kneading zone was determined by subtracting the pressure difference ( ⁇ P 0 ) in the kneading zone from the pressure difference ( ⁇ P) before the kneading disc. It was less than 2 .
  • the inflow effect pressure drop before and after the kneading zone was determined by subtracting the pressure difference ( ⁇ P 0 ) in the kneading zone from the pressure difference ( ⁇ P) before the kneading disc. It was less than 2 .
  • test specimens for evaluation were prepared under the following conditions, and various characteristics were evaluated.
  • Example 28 is 280 ° C.
  • Example 18 is 320 ° C.
  • mold temperature 80 ° C.
  • injection pressure lower limit pressure + 5 kgf / cm 2 JIS-5A dumbbell type test piece (length 75 mm (effective measurement length 50 mm)) X end width 12.5 mm (effective measurement width 4 mm) x thickness 2 mm), and used for a tensile tester (Tensilon UTA-2.5T) manufactured by Orientec Co., Ltd., the distance between chucks is 50 mm, 100 mm / min
  • the tensile test was carried out at a speed of 500 mm / min and 1000 mm / min, and the tensile elastic modulus and the tensile elongation at break at each speed were evaluated.
  • the tensile elongation at break was the elongation at break based on an effective measurement length of 50 mm.
  • thermoplastic resin composition comprising a thermoplastic resin (A) and a resin (B) having a reactive functional group
  • a unique viscoelasticity is obtained by melt-kneading while stretching and flowing. It was revealed that the characteristics were remarkably exhibited and the shock absorption was excellent.
  • Example 30 Polybutylene terephthalate resin is used as the thermoplastic resin (A), glycidyl methacrylate-modified polyethylene copolymer is used as the resin (B) having a reactive functional group, mixed at a blending ratio shown in Table 7, and volatile matter by a vacuum pump.
  • rotating complete mesh type twin screw extruder Toshiba Machine Co., Ltd., TEM-37
  • melt kneading was performed at a cylinder temperature of 260 ° C., a screw rotation number and an extrusion amount shown in Table 7, and the mixture was discharged from a discharge port.
  • the coloring agent was added together with the raw materials, and the time during which the coloring of the extrudate was maximized was measured as the residence time.
  • the residence time is shown in Table 7.
  • the ratio (%) of the total length of the zone (extension flow zone) in which melt kneading while stretching and flowing with respect to the total length of the screw is defined as (total length of extension flow zone) / (total length of screw) ⁇ 100, 19 %.
  • a twist kneading disk having a spiral angle ⁇ of 20 ° in the half-rotation direction of the screw was provided (this screw configuration is A-1).
  • this screw configuration is A-1.
  • the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • a twist kneading disk with a 20 ° angle is provided (this screw configuration is designated as A-2), and the ratio (%) of the total length of the zone (extension flow zone) in which melt kneading is performed while stretching and flowing relative to the total length of the screw is 9
  • Melting and kneading was carried out in the same manner as in Example 30 except that the content was set to 0.5%.
  • the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • a zone in which a resin passage (clearance is reduced to 3.5 mm or 1 mm) is provided this screw configuration is designated as B), and a melt kneading zone (extension flow zone) while extending and flowing over the entire length of the screw ) was subjected to melt-kneading in the same manner as in Example 30 except that the ratio (%) of the total length was 19%. Further, by subtracting the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) in front of the twist kneading disc, the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • Example 33 Melt kneading was performed in the same manner as in Example 30 except that polyphenylene sulfide resin was used as the thermoplastic resin (A) and the cylinder temperature was 310 ° C.
  • thermoplastic resin (A) and the resin (B) having a reactive functional group as shown in Table 8 and carrying out melt-kneading in the same manner as in Example 30, except that only the cylinder temperature of Example 38 was 220 ° C. did.
  • the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • the inflow effect pressure drop before and after the kneading zone was determined by subtracting the pressure difference ( ⁇ P 0 ) in the kneading zone from the pressure difference ( ⁇ P) before the kneading disc. It was less than 2 .
  • the inflow effect pressure drop before and after the kneading zone was determined by subtracting the pressure difference ( ⁇ P 0 ) in the kneading zone from the pressure difference ( ⁇ P) before the kneading disc. It was less than 2 .
  • the inflow effect pressure drop before and after the kneading zone was determined by subtracting the pressure difference ( ⁇ P 0 ) in the kneading zone from the pressure difference ( ⁇ P) before the kneading disc. It was less than 2 .
  • test specimens for evaluation were prepared under the following conditions, and various characteristics were evaluated.
  • thermoplastic resin composition comprising a thermoplastic resin (A) and a resin (B) having a reactive functional group, by kneading while being stretched and flowing, impact resistance is achieved. It was clarified that it was excellent in heat resistance and heat resistance, remarkably developed unique viscoelastic properties, and excellent in shock absorption.
  • Example 41 Table 11 shows a polyamide resin as the thermoplastic resin (A), a polyphenylene ether resin as the thermoplastic resin (C), and a styrene-maleic anhydride copolymer as the compound (D) having a reactive functional group.
  • the ratio (%) of the total length of the zone (extension flow zone) in which melt kneading while stretching and flowing with respect to the total length of the screw is defined as (total length of extension flow zone) / (total length of screw) ⁇ 100, 19 %.
  • a twist kneading disk having a spiral angle ⁇ of 20 ° in the half-rotation direction of the screw was provided (this screw configuration is A-1).
  • the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • a twist kneading disk with a 20 ° angle is provided (this screw configuration is designated as A-2), and the ratio (%) of the total length of the zone (extension flow zone) in which melt kneading is performed while stretching and flowing relative to the total length of the screw is 9
  • Melting and kneading was carried out in the same manner as in Example 41 except that the content was changed to 0.5%.
  • the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • a zone in which a resin passage (clearance is reduced to 3.5 mm or 1 mm) is provided this screw configuration is designated as B), and a melt kneading zone (extension flow zone) while extending and flowing over the entire length of the screw ) was subjected to melt kneading in the same manner as in Example 41 except that the ratio (%) of the total length was 19%. Further, by subtracting the pressure difference ( ⁇ P 0 ) in the extension flow zone from the pressure difference ( ⁇ P) in front of the twist kneading disc, the inflow effect pressure drop before and after the extension flow zone was obtained. cm 2 .
  • the ratio (%) of the total length of the kneading disc (shearing zone, kneading zone) to the total screw length is defined as (total kneading zone length) / (total screw length) ⁇ 100, 16% It was.
  • melt kneading zones this screw configuration is designated as D
  • a zone extension flow zone
  • melt kneading was carried out in the same manner as in Example 41 except that the total length ratio (%) was 0%, and melt kneading was performed without stretching and kneading while stretching and flowing.
  • the inflow effect pressure drop before and after the kneading zone was determined by subtracting the pressure difference ( ⁇ P 0 ) in the kneading zone from the pressure difference ( ⁇ P) before the kneading disc. It was less than 2 .
  • test specimens for evaluation were prepared under the following conditions, and various characteristics were evaluated.
  • thermoplastic resin composition comprising a thermoplastic resin (A), a thermoplastic resin (C), and a compound (D) having a reactive functional group was prepared, and melt-kneaded while stretching and flowing. As a result, it was revealed that the material is excellent in impact resistance and heat resistance.
  • thermoplastic resin composition containing a compound having a reactive functional group When a thermoplastic resin composition containing a compound having a reactive functional group is produced by reactive processing, by melting and kneading while stretching and flowing, characteristics (heat resistance, A thermoplastic resin composition having a balance of impact resistance, etc., and a unique viscoelastic property that the higher the deformation rate is, the lower the elastic modulus is and the softer it is, the more pronounced it is. Even when it is received, it becomes possible to produce a thermoplastic resin composition having a shock absorbing characteristic that absorbs a large energy without causing a breakage because the maximum load applied to the object is low.

Abstract

下記(I)または(II)の熱可塑性樹脂組成物を製造する際、伸張流動しつつ溶融混練することを特徴とする熱可塑性樹脂組成物の製造方法であり、好ましくは、熱可塑性樹脂組成物を製造する際、押出機により溶融混練し、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下が10~1000kg/cmであることを特徴とする上記(1)記載の熱可塑性樹脂組成物の製造方法。 (I)熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)を配合してなる熱可塑性樹脂組成物 (II)熱可塑性樹脂(A)、熱可塑性樹脂(A)とは異なる熱可塑性樹脂(C)および反応性官能基を有する化合物(D)を配合してなる熱可塑性樹脂組成物

Description

熱可塑性樹脂組成物の製造方法
 本発明は、反応性官能基を有する化合物を包含する熱可塑性樹脂組成物をリアクティブプロセッシングにより製造する際、伸張流動しつつ溶融混練することにより、これまでの製造方法では成し得なかった特性(耐熱性、耐衝撃性のバランス等)を有する熱可塑性樹脂組成物を得る製造方法、スクリューの長さ(L)とスクリューの直径(D)の比(L/D)の短い汎用の押出機を使用しても変形速度が大きいほど弾性率が低下して柔軟になるという特異な粘弾性特性を顕著に発現させ、大荷重、高速度の衝撃を受けた際にも、対象物に与える最大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収特性を有する熱可塑性樹脂組成物を得る製造方法に関するものである。
 リアクティブ・プロセッシング法は、ポリマーを溶融混練する加工機を反応の場に利用する方法である。その中で、特に押出機を使用する、いわゆる“リアクティブ・エクストルージョン・プロセッシング”は、工業的な付加価値が高く、世界的にも、その利用がきわめて活発である。
 リアクティブプロセッシングを押出機中で行う場合、押出機には、温度のコントロール、反応時間(滞留時間)の確保、触媒の均一分散化、副生成物の除去性などが求められるが、中でも、特に反応時間(滞留時間)の確保は、押出機中での反応を制御する上で、極めて重要な因子の一つである。そこで押出機中での反応時間(滞留時間)を確保する方法の一つとして、スクリューの長さ(L)とスクリューの直径(D)の比(L/D)が長い押出機を使用する方法が試みられており、例えばL/Dを50以上の押出機でリアクティブ・プロセッシングする方法が開示されている(特許文献1参照)。
 また一方で、溶融混練時に一般的に用いられる剪断流動ではなく、伸張流動を利用した製造方法が提案されている(特許文献2参照)。
 また、スクリューの長さ(L)とスクリューの直径(D)の比(L/D)が長い押出機を用いることで反応性を高め、引張速度を速くするにつれて弾性率が低下し柔軟になるという樹脂組成物および衝撃吸収部材が開示されている(特許文献3参照)。
特開2006-347151号公報 特開2006-66025号公報 特開2006-89701号公報
 特許文献1には、熱可塑性樹脂と反応性官能基を有する樹脂とのアロイの製造において、L/D=100の押出機を用いることで、反応性を高めた結果、耐衝撃性と耐熱性を向上し得ることが記載されているが、L/Dの長い押出機は機器整備の点や、長時間の連続運転に際し難があり、より簡便な製造方法が要望されていた。
 一方、特許文献2には、スクリュー摩耗の低減、溶融混練時の剪断発熱の抑制、フィラーの分散性向上を目的として、伸張流動を利用した新たな溶融混練装置が記載されているが、本装置を用いたリアクティブプロセッシングへの適用については開示も示唆も一切されていない。
 また、特許文献3には、L/D=100の押出機を用いることで、耐衝撃性を向上し衝撃吸収することが記載されているが、L/Dの長い押出機は機器整備の点や、長時間の連続運転に際し難があり、より簡便な製造方法が要望されていた。
 本発明は、反応性官能基を有する化合物を包含する熱可塑性樹脂組成物をリアクティブプロセッシングにより製造する際、伸張流動しつつ溶融混練することにより、これまでの製造方法では成し得なかった特性(耐熱性、耐衝撃性のバランス等)を有する熱可塑性樹脂組成物の製造方法を提供し、また変形速度が大きいほど弾性率が低下して柔軟になるという特異な粘弾性特性を顕著に発現させ、大荷重、高速度の衝撃を受けた際にも、対象物に与える最大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収特性を有する熱可塑性樹脂組成物の製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、反応性官能基を有する化合物を包含する熱可塑性樹脂組成物をリアクティブプロセッシングにより製造する際、伸張流動しつつ溶融混練することにより、これまでの製造方法では成し得なかった特性(耐熱性、耐衝撃性のバランス等)を有する熱可塑性樹脂組成物を製造可能であることを見出し、さらにはスクリューの長さ(L)とスクリューの直径(D)の比(L/D)の短い汎用の押出機を使用しても変形速度が大きいほど弾性率が低下して柔軟になるという特異な粘弾性特性を顕著に発現させ、大荷重、高速度の衝撃を受けた際にも、対象物に与える最大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収特性を有する熱可塑性樹脂組成物を製造可能であることを見出し、本発明を完成させるに至った。
 すなわち本発明は、
(1)下記(I)または(II)の熱可塑性樹脂組成物を製造する際、伸張流動しつつ溶融混練することを特徴とする熱可塑性樹脂組成物の製造方法、
(I)熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)を配合してなる熱可塑性樹脂組成物
(II)熱可塑性樹脂(A)、熱可塑性樹脂(A)とは異なる熱可塑性樹脂(C)および反応性官能基を有する化合物(D)を配合してなる熱可塑性樹脂組成物、
(2)熱可塑性樹脂組成物を製造する際、押出機により溶融混練し、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下が10~1000kg/cmであることを特徴とする上記(1)記載の熱可塑性樹脂組成物の製造方法、
(3)熱可塑性樹脂組成物を製造する際、押出機により溶融混練し、さらに押出機のスクリューの全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計の長さの割合が、5~60%であることを特徴とする上記(1)~(2)いずれか記載の熱可塑性樹脂組成物の製造方法、
(4)押出機のスクリューにおける一つの伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の長さをLkとし、スクリュー直径をDとすると、Lk/D=0.2~10を満たすことを特徴とする上記(3)記載の熱可塑性樹脂組成物の製造方法、
(5)熱可塑性樹脂(A)が、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、およびポリプロピレン樹脂から選ばれる少なくとも1種であることを特徴とする上記(1)~(4)のいずれか記載の熱可塑性樹脂組成物の製造方法、
(6)熱可塑性樹脂(C)が、熱可塑性樹脂(A)とは異なる、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、およびポリプロピレン樹脂から選ばれる少なくとも1種であることを特徴とする上記(1)~(5)のいずれか記載の熱可塑性樹脂組成物の製造方法、
(7)反応性官能基を有する樹脂(B)が、反応性官能基を有するゴム質重合体であることを特徴とする上記(1)~(6)のいずれか記載の熱可塑性樹脂組成物の製造方法、
(8)反応性官能基を有する樹脂(B)の反応性官能基が、アミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、およびオキサゾリン基から選ばれる少なくとも1種であることを特徴とする上記(1)~(7)のいずれか記載の熱可塑性樹脂組成物の製造方法、
(9)反応性官能基を有する化合物(D)の反応性官能基が、アミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、およびオキサゾリン基から選ばれる少なくとも1種であることを特徴とする上記(1)~(8)のいずれか記載の熱可塑性樹脂組成物の製造方法、
(10)熱可塑性樹脂(A)が、ポリアミド樹脂であることを特徴とする上記(1)~(9)のいずれか記載の熱可塑性樹脂組成物の製造方法、
(11)熱可塑性樹脂組成物が、引張試験において、引張速度V1、V2のときの引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)であることを特徴とする上記(1)~(10)のいずれか記載の熱可塑性樹脂組成物の製造方法、
(12)熱可塑性樹脂組成物が、引張試験において、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)であることを特徴とする上記(1)~(11)のいずれか記載の熱可塑性樹脂組成物の製造方法であり、また
(13)上記(1)~(9)のいずれか記載の製造方法により得られる熱可塑性樹脂組成物であり、また
(14)上記(13)記載の熱可塑性樹脂組成物からなる成形品であり、また
(15)成形品がフィルムまたはシートである上記(14)記載の成形品である。
 本発明によれば、反応性官能基を有する化合物を包含する熱可塑性樹脂組成物をリアクティブプロセッシングにより製造する際、伸張流動しつつ溶融混練することにより、これまでの製造方法では成し得なかった特性(耐熱性、耐衝撃性のバランス等)を有する熱可塑性樹脂組成物を製造することが可能となり、またスクリューの長さ(L)とスクリューの直径(D)の比(L/D)の短い汎用の押出機を使用しても変形速度が大きいほど弾性率が低下して柔軟になるという特異な粘弾性特性を顕著に発現させ、大荷重、高速度の衝撃を受けた際にも、対象物に与える最大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収特性を有する熱可塑性樹脂組成物を製造することが可能となる。
 以下、本発明をさらに詳細に説明する。
 本発明の熱可塑性樹脂組成物は、
(I)熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)からなる熱可塑性樹脂組成物または
(II)熱可塑性樹脂(A)、熱可塑性樹脂(A)とは異なる熱可塑性樹脂(C)および反応性官能基を有する化合物(D)からなる熱可塑性樹脂組成物である。
 本発明で用いる熱可塑性樹脂(A)とは、加熱溶融により成形可能な樹脂であれば特に制限されるものではないが、例えばポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂やABS樹脂等のスチレン系樹脂、ゴム質重合体、ポリアルキレンオキサイド樹脂等から選ばれる少なくとも1種以上の樹脂として用いることが出来る。
 上記に示した熱可塑性樹脂の中で好ましく用いられるのは、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリプロピレン樹脂であり、とりわけポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、ポリフェニレンオキシド樹脂は末端基の反応性が高く、好ましく、さらに最も好ましく用いられるのは、ポリアミドである。
 本発明で用いるポリアミド樹脂とは、アミド結合を有する高分子からなる樹脂のことであり、アミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる原料とするものである。その原料の代表例としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ω-ラウロラクタムなどのラクタム、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、メタキシレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、2,6-ナフタレンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられ、本発明においては、これらの原料から誘導されるポリアミドホモポリマーまたはコポリマーを各々単独または混合物の形で用いることができる。
 本発明において、特に有用なポリアミド樹脂は、150℃以上の結晶融解温度を有する耐熱性や強度に優れたポリアミド樹脂であり、具体的な例としてはポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ポリアミド6/66)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド66/6I/6)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリデカンアミドコポリマー(ポリアミド6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリキシリレンアジパミド(ポリアミドXD6)、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/M5T)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/5T)、ポリペンタメチレンテレフタルアミド/ポリペンタメチレンアジパミドコポリマー(5T/56)、ポリノナメチレンテレフタルアミド(ポリアミド9T)およびこれらの混合物ないし共重合体などが挙げられる。
 とりわけ好ましいものとしては、ポリアミド6、ポリアミド66、ポリアミド56、ポリアミド610、ポリアミド510、ポリアミド612、ポリアミド6/66、ポリアミド66/6T、ポリアミド66/6I/6、ポリアミド6T/5Tなどの例を挙げることができ、更にこれらのポリアミド樹脂を成形性、耐熱性、靱性、表面性などの必要特性に応じて混合物として用いることも実用上好適であるが、これらの中でポリアミド6、ポリアミド66が最も好ましい。
 これらポリアミド樹脂の末端基濃度には特に制限はないが、末端アミノ基濃度が3×10-5mol/g以上であるものが、反応性官能基を有する樹脂(B)、若しくは反応性官能基を有する化合物(D)との反応性の面で好ましい。ここでいう末端アミノ基濃度とは、85%フェノール-エタノール溶液にサンプルを溶解し、チモールブルーを指示薬として使用し、塩酸水溶液で滴定することで測定できる。
 これらポリアミド樹脂の重合度には特に制限がなく、サンプル濃度0.01g/mlの98%濃硫酸溶液中、25℃で測定した相対粘度が、1.5~5.0の範囲、特に2.0~4.0の範囲のものが好ましい。
 また、本発明で用いるポリエステル樹脂とは、主鎖にエステル結合を有する高分子からなる熱可塑性樹脂のことであり、ジカルボン酸(あるいは、そのエステル形成性誘導体)とジオール(あるいはそのエステル形成性誘導体)とを主成分とする縮合反応により得られる重合体ないしは共重合体、あるいはこれらの混合物が挙げられる。
 上記ジカルボン酸としてはテレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸およびこれらのエステル形成性誘導体などが挙げられる。またジオール成分としては炭素数2~20の脂肪族グリコールすなわち、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオールなど、あるいは分子量400~6000の長鎖グリコール、すなわちポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコールなどおよびこれらのエステル形成性誘導体などが挙げられる。
 これらの重合体ないしは共重合体の好ましい例としては、ポリブチレンテレフタレート、ポリブチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリブチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリエチレンナフタレ-ト、ポリシクロヘキサンジメチレンテレフタレートなどが挙げられ、ポリエステル組成物の成形性からポリブチレンテレフタレート、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/アジペート)、ポリエチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレートなどが特に好ましく、最も好ましいのはポリブチレンテレフタレート(ポリブチレンテレフタレート樹脂)である。
 また、ポリブチレンテレフタレート樹脂は、o-クロロフェノール溶媒を用いて25℃で測定した固有粘度が0.36~1.60、特に0.52~1.25の範囲にあるものが好適である。また、固有粘度の異なるポリブチレンテレフタレート樹脂を併用しても良く、固有粘度が0.36~1.60の範囲にあることが好ましい。
 更に、これらポリブチレンテレフタレート樹脂は、m-クレゾール溶液をアルカリ溶液で電位差滴定して求めたCOOH末端基量が1~50eq/t(ポリマー1トン当りの末端基量)の範囲にあるものが耐久性、異方性抑制効果の点から好ましく使用できる。
 また、本発明で用いるポリフェニレンオキシド樹脂の具体例としては、ポリ(2,6-ジメチル-1,4-フェニレンオキシド)、ポリ(2-メチル-6-エチル-1,4-フェニレンオキシド)、ポリ(2,6-ジフェニル-1,4-フェニレンオキシド)、ポリ(2-メチル-6-フェニル-1,4-フェニレンオキシド)、ポリ(2,6-ジクロロ-1,4-フェニレンオキシド)などを挙げることができ、さらに2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール)との共重合体のごとき共重合体が挙げられる。中でも、ポリ(2,6-ジメチル-1,4-フェニレンオキシド)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、特に、ポリ(2,6-ジメチル-1,4-フェニレンオキシド)が好ましい。
 また、ポリフェニレンオキシド樹脂は、30℃で測定した還元粘度(0.5g/dlクロロホルム溶液)が、0.15~0.70の範囲にあるものが好適である。
 かかるポリフェニレンオキシド樹脂の製造方法は、特に限定されるものではなく、公知の方法で得られるものを用いることができる。例えば、USP3306874号明細書記載のHayによる第一銅塩とアミンのコンプレックスを触媒として、酸化重合することにより容易に製造できる。本発明においては、上記のようにして得られたポリフェニレンオキシド樹脂を、さらに酸無水物基、エポキシ基、イソシアネート基などの官能基含有化合物により、変性または活性化など種々の処理を施した上で使用することももちろん可能である。
 本発明の反応性官能基を有する樹脂(B)とは、反応性官能基を分子鎖中に有する樹脂のことである。
 本発明の反応性官能基を有する樹脂(B)のベースとなる樹脂としては、特に制限されないが、例えばポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリスルホン樹脂、ポリアセタール樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂やABS樹脂等のスチレン系樹脂、ゴム質重合体、ポリアルキレンオキサイド樹脂等から選ばれる、前述の熱可塑性樹脂(A)とは異なる少なくとも1種以上の樹脂として用いることが出来る。
 中でも反応性官能基の導入の容易さから、ポリエチレン樹脂、ポリプロピレン樹脂、スチレン系樹脂、ゴム質重合体が好ましく、さらに耐衝撃特性・靭性改良効果の観点から、ゴム質重合体がより好ましい。
 かかるゴム質重合体とは、一般的にガラス転移温度が室温より低い重合体を含有し、分子間の一部が共有結合・イオン結合・ファンデルワールス力・絡み合い等により、互いに拘束されている重合体のことを指す。例えばポリブタジエン、ポリイソプレン、スチレン-ブタジエンのランダム共重合体およびブロック共重合体、該ブロック共重合体の水素添加物、アクリロニトリル-ブタジエン共重合体、ブタジエン-イソプレン共重合体などのジエン系ゴム、エチレン-プロピレンのランダム共重合体およびブロック共重合体、エチレン-ブテンのランダム共重合体およびブロック共重合体、エチレンとα-オレフィンとの共重合体、エチレン-アクリル酸エステル、エチレン-メタクリル酸エステルなどのエチレン-不飽和カルボン酸エステル共重合体、アクリル酸エステル-ブタジエン共重合体、例えばブチルアクリレート-ブタジエン共重合体などのアクリル系弾性重合体、エチレン-酢酸ビニルなどのエチレンと脂肪酸ビニルとの共重合体、エチレン-プロピレン-エチリデンノルボルネン共重合体、エチレン-プロピレン-ヘキサジエン共重合体などのエチレン-プロピレン非共役ジエン3元共重合体、ブチレン-イソプレン共重合体、塩素化ポリエチレン、ポリアミドエラストマー、ポリエステルエラストマーなどの熱可塑性エラストマーなどが好ましい例として挙げられる。これらの中でも熱可塑性樹脂(A)としてポリアミド樹脂を用いる場合には、相溶性の観点から、エチレン-不飽和カルボン酸エステル共重合体が好ましく用いられる。
 エチレン-不飽和カルボン酸エステル共重合体における不飽和カルボン酸エステルとは、(メタ)アクリル酸エステル好ましくは(メタ)アクリル酸とアルコールとのエステルである。不飽和カルボン酸エステルの具体的な例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステルが挙げられる。
 共重合体中のエチレン成分と不飽和カルボン酸エステル成分の重量比は特に制限は無いが、好ましくは90/10~10/90、より好ましくは85/15~15/85の範囲である。
 エチレン-不飽和カルボン酸エステル共重合体の数平均分子量は特に制限されないが、流動性、機械的特性の観点から1000~70000の範囲が好ましい。
 本発明の熱可塑性樹脂(C)は、熱可塑性樹脂(A)とは異なり、加熱溶融により成形可能な樹脂であれば特に制限されるものではないが、例えばポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂やABS樹脂等のスチレン系樹脂、ゴム質重合体、ポリアルキレンオキサイド樹脂等から選ばれる、熱可塑性樹脂(A)とは異なる、少なくとも1種以上の樹脂として用いることが出来る。
 本発明の反応性官能基を有する化合物(D)とは、反応性官能基を分子鎖中に有する化合物のことである。かかる化合物は、低分子量体でも高分子量体でも構わない。
 本発明の反応性官能基を有する樹脂(B)または反応性官能基を有する化合物(D)中に存在する反応性官能基とは、熱可塑性樹脂(A)あるいは熱可塑性樹脂(C)中に存在する官能基と互いに反応するものであれば特に制限されないが、例えば、アミノ基、カルボキシル基、カルボキシル金属塩,水酸基、酸無水物基、エポキシ基、イソシアネート基、メルカプト基、オキサゾリン基、スルホン酸基等から選ばれる少なくとも1種以上が挙げられる。この中でもアミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、オキサゾリン基は反応性が高く、しかも分解、架橋などの副反応が少ないため好ましく用いられる。
 上記記載の酸無水物基における酸無水物とは、無水マレイン酸、無水イタコン酸、無水エンディック酸、無水シトラコン酸、1-ブテン-3,4-ジカルボン酸無水物等を挙げることができる。これらは2種類以上同時に併用しても差し支えない。このうち、無水マレイン酸、無水イタコン酸が好適に用いられる。
 酸無水物基をゴム質重合体に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば、酸無水物とゴム質重合体の原料である単量体とを共重合する方法、酸無水物をゴム質重合体にグラフトさせる方法などを用いることが出来る。
 また、エポキシ基をゴム質重合体に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば、エポキシ基を有するビニル系単量体をゴム質重合体の原料である単量体と共重合する方法、上記官能基を有する重合開始剤または連鎖移動剤を用いてゴム質重合体を重合する方法、エポキシ化合物をゴム質重合体にグラフトさせる方法などを用いることができる。
 エポキシ基を有するビニル系単量体としては、例えばアクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジルなどのα,β-不飽和酸のグリシジルエステル化合物を挙げることができる。
 また、オキサゾリン基をゴム質重合体に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリン、2-スチリル-オキサゾリンなどのオキサゾリン基を有するビニル系単量体をゴム質重合体の原料である単量体と共重合する方法などを用いることができる。
 カルボキシル基を(B)のベースとなる樹脂に導入する場合、その方法としては、通常公知の技術で行うことができ、特に制限はないが、例えば、カルボキシル基を有する不飽和カルボン酸系単量体を(B)のベースとなる樹脂の原料である単量体と共重合する方法などを用いることができる。不飽和カルボン酸の具体的な例としては、(メタ)アクリル酸などが挙げられる。反応性官能基を有する樹脂(B)としては、エチレン-アクリル酸、エチレン-メタクリル酸などのエチレン-不飽和カルボン酸共重合体などが挙げられる。
 また前記カルボキシル基の一部を金属塩としたカルボキシル金属塩も反応性官能基として有効であり、例えば、(メタ)アクリル酸金属塩などが挙げられる。金属塩の金属は、特に限定されないが、好ましくは、ナトリウムなどのアルカリ金属やマグネシウムなどのアルカリ土類金属、亜鉛などが挙げられる。反応性官能基を有する樹脂(B)としては、エチレン-アクリル酸-アクリル酸金属塩、エチレン-メタクリル酸-メタクリル酸金属塩などのエチレン-不飽和カルボン酸-不飽和カルボン酸金属塩共重合体などが挙げられる。
 共重合体中の不飽和カルボン酸成分と不飽和カルボン酸金属塩成分の重量比は特に制限されないが、好ましくは95/5~5/95、より好ましくは90/10~10/90の範囲である。 
 エチレン-不飽和カルボン酸エステル共重合体の数平均分子量は特に制限されないが、流動性、機械的特性の観点から1000~70000の範囲が好ましい。
 反応性官能基を有する樹脂(B)および反応性官能基を有する化合物(D)における、一分子鎖当りの官能基の数については、特に制限はないが通常1~10個が好ましく、架橋等の副反応を少なくする為に1~5個が好ましい。また、官能基を全く有さない分子が含まれていても構わないが、その割合は少ない程好ましい。
 本発明における熱可塑性樹脂(A)と反応性官能基を有する樹脂(B)との配合比について、特に制限はないが、((A)の重量)/((B)の重量)は5/95~95/5の範囲が好ましく、10/90~90/10の範囲はより好ましく、15/85~85/15の範囲が最も好ましい。
 本発明における熱可塑性樹脂(A)および熱可塑性樹脂(C)との配合比について、特に制限はないが、((A)の重量)/((C)の重量)は5/95~95/5の範囲が好ましく、10/90~90/10の範囲はより好ましく、15/85~85/15の範囲が最も好ましい。
 本発明における熱可塑性樹脂(A)と熱可塑性樹脂(C)の重量の和100重量部に対する反応性官能基を有する化合物(D)の添加量は、特に制限されないが、好ましくは、0.1~50重量部、より好ましくは、0.2~40重量部、さらに好ましくは、0.3~30重量部である。
 本発明の熱可塑性樹脂組成物を製造する際には、伸張流動しつつ溶融混練することが必要である。伸張流動とは、反対方向に流れる2つの流れの中で、溶融した樹脂が引き伸ばされる流動方法のことである。一方、一般的に用いられる剪断流動とは、同一方向で速度の異なる2つの流れの中で、溶融した樹脂が変形を受ける流動方法のことである。
 伸張流動では、溶融混練時に一般的に用いられる剪断流動と比較し、分散効率が高いことから、特にリアクティブプロセッシングの様に反応を伴うアロイ化の場合、反応が効率的に進行することが可能となる。
 かかる伸張流動しつつ溶融混練させる方法としては、押出機を用いた溶融混練が好ましく用いられ、押出機の例としては、単軸押出機、二軸押出機、三軸以上の多軸押出機が挙げられるが、中でも単軸押出機と二軸押出機が好ましく用いられ、特に二軸押出機が好ましく用いられる。またかかる二軸押出機のスクリューとしては、特に制限はなく、完全噛み合い型、不完全噛み合い型、非噛み合い型等のスクリューが使用できるが、混練性、反応性の観点から、好ましくは、完全噛み合い型である。また、スクリューの回転方向としては、同方向、異方向どちらでも良いが、混練性、反応性の観点から、好ましくは同方向回転である。本発明において、最も好ましいスクリューは、同方向回転完全噛み合い型である。また、本発明において、押出機を用いて溶融混練を行う場合、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下が10~1000kg/cmであることが好ましい。かかる伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下とは、伸張流動ゾーン手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで求めることができる。伸張流動ゾーンの前後での流入効果圧力降下が10kg/cm未満である場合には、伸張流動ゾーン内での伸張流動の形成される割合が低く、また圧力分布の不均一化が生じるため好ましくない。また伸張流動ゾーンの前後での流入効果圧力降下が1000kg/cmより大きい場合には、押出機内での背圧が大きくなりすぎるため安定的な製造が困難となるため好ましくない。また伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下は、30~600kg/cmの範囲が好ましく、50~600kg/cmの範囲がより好ましく、さらには100~500kg/cmの範囲が最も好ましい。
 また、本発明において、押出機を用いて溶融混練を行う場合、リアクティブプロセッシングに適した伸張流動場を付与するためには、押出機のスクリューの全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計の長さの割合が、5~60%の範囲が好ましく、より好ましくは10~55%、さらに好ましくは、15~50%の範囲である。
 また、本発明において、押出機を用いて溶融混練を行う場合、押出機のスクリューにおける一つの伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の長さをLkとし、スクリュー直径をDとすると、混練性、反応性の観点から、Lk/D=0.2~10であることが好ましい。より好ましくは0.3~9、さらに好ましくは0.5~8である。また、本発明において、二軸押出機の伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)は、スクリュー内の特定の位置に偏在することなく、全域に渡って配置されることが好ましい。特に伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)は押出機スクリュー内の3箇所以上に配置されることが混練性、反応性の観点からより好ましい。
 本発明において、押出機を用いて溶融混練を行う場合、伸張流動しつつ溶融混練するゾーンの具体的な方法としては、ニーディングディスクよりなり、かかるニーディングディスクのディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に0°<θ<90°の範囲内にあるツイストニーディングディスクであることや、フライトスクリューからなり、かかるフライトスクリューのフライト部にスクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路が形成されていることや、押出機中に溶融樹脂の通過する断面積が暫時減少させた樹脂通路からなることが好ましい例として挙げられる。
 また、本発明において、押出機を用いて溶融混練を行う場合、スクリュー1rpmに対する熱可塑性樹脂組成物の押出量が、0.01kg/h以上であることが好ましい。かかる押出量とは、押出機から吐出される熱可塑性樹脂組成物の押出速度のことであり、1時間当たりに押出される重量(kg)のことである。スクリュー1rpmに対する熱可塑性樹脂組成物の押出量が、0.01kg/h未満であると、回転数に対する押出量が十分ではなく、押出機中での滞留時間が長くなりすぎて、熱劣化の原因となると共に、押出機中での樹脂の充満率が小さくなり、十分な混練ができないという問題が生じる可能性がある。また、スクリューの回転速度としては、上記範囲内であれば特に制限はないが、通常10rpm以上、好ましくは50rpm以上、さらに好ましくは80rpm以上である。また、押出量としては、上記範囲内であれば特に制限はないが、通常0.1kg/h以上、好ましくは0.15kg/h以上、さらに好ましくは0.2kg/h以上である。
 また、本発明において、押出機を用いて溶融混練を行う場合、熱可塑性樹脂組成物の押出機中での滞留時間が0.1~20分であることが好ましい。かかる滞留時間とは、原料が供給されるスクリュー根本の位置から、原料と共に、着色剤等を投入し、着色剤等を投入した時点から、熱可塑性樹脂組成物が押出機の吐出口より押出され、その押出物への着色剤による着色度が最大となる時点までの時間のことである。滞留時間が0.1分未満である場合、押出機中での反応時間が短く、十分に反応が促進されず、熱可塑性樹脂組成物の特性(耐熱性、耐衝撃性のバランス等)の向上や、特異な粘弾性特性を顕著に発現させた衝撃を吸収する特性の向上が実現されにくい。滞留時間が20分より長い場合、滞留時間が長いことによる樹脂の熱劣化が起こるという問題が生じる可能性がある。本発明における滞留時間としては、好ましくは0.3~15分、さらに好ましくは0.5~5分である。
 本発明により得られる熱可塑性樹脂組成物は、高速変形ほど柔軟になるという非粘弾性特性が顕著に発現し、大荷重、高速度の衝撃を受けた際にも、対象物に与える最大荷重が低く破壊を起こさずに大きなエネルギーを吸収することができる。
 本発明により製造される熱可塑性樹脂組成物は、引張試験において、引張速度V1、V2のときの引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)であることが好ましい。この場合の引張試験とは、規格に明記された方法に従って行われる。引張弾性率とは、応力-歪み曲線の初期直線部分の勾配を示す。
 本発明により製造される熱可塑性樹脂組成物は、引張試験において、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)であることが好ましい。引張破断伸度とは、破壊の瞬間における伸びを示す。上記関係式は、引張速度10mm/min以上500mm/min以下の範囲内における、あらゆるV1、V2に対して成立することが好ましく、さらには1mm/min以上1000mm/min以下の範囲内における、あらゆるV1、V2に対して成立することが好ましい。
 また本発明により製造される熱可塑性樹脂組成物中においては、その特性を損なわない範囲で、必要に応じて、他の反応性官能基を有する樹脂(B)のベースとなる樹脂を配合することができる。かかる反応性官能基を有する樹脂(B)のベースとなる樹脂は2種類以上併用することも可能である。その配合量は、特に制限はないが、熱可塑性樹脂組成物100重量部に対して、1~400重量部配合されることが好ましい。
 本発明においては、必要に応じその他の成分を添加しても構わない。その他の成分として、例えば、強度及び寸法安定性等を向上させるため、必要に応じて充填材を用いてもよい。充填材の形状としては繊維状であっても非繊維状であってもよく、繊維状の充填材と非繊維状充填材を組み合わせて用いてもよい。かかる充填材としては、ガラス繊維、ガラスミルドファイバー、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填剤、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素および炭化珪素などの非繊維状充填剤が挙げられ、これらは中空であってもよく、さらにはこれら充填剤を2種類以上併用することも可能である。また、これら繊維状および/または非繊維状充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
 強度および寸法安定性等を向上させるため、かかる充填剤を用いる場合、その配合量は特に制限はないが、通常熱可塑性樹脂組成物100重量部に対して0.1~400重量部配合される。
 さらに本発明により製造される熱可塑性樹脂組成物中においては、その特性を損なわない範囲内で、必要に応じて他の熱可塑性樹脂類、ゴム類、各種添加剤類を配合することができる。
 かかるゴム類とは、例えばポリブタジエン、ポリイソプレン、スチレン-ブタジエンのランダム共重合体およびブロック共重合体、該ブロック共重合体の水素添加物、アクリロニトリル-ブタジエン共重合体、ブタジエン-イソプレン共重合体などのジエン系ゴム、エチレン-プロピレンのランダム共重合体およびブロック共重合体、エチレン-ブテンのランダム共重合体およびブロック共重合体、エチレンとα-オレフィンとの共重合体、エチレン-アクリル酸、エチレン-メタクリル酸などのエチレン-不飽和カルボン酸共重合体、エチレン-アクリル酸エステル、エチレン-メタクリル酸エステルなどのエチレン-不飽和カルボン酸エステル共重合体、不飽和カルボン酸の一部が金属塩である、エチレン-アクリル酸-アクリル酸金属塩、エチレン-メタクリル酸-メタクリル酸金属塩などのエチレン-不飽和カルボン酸-不飽和カルボン酸金属塩共重合体、アクリル酸エステル-ブタジエン共重合体、例えばブチルアクリレート-ブタジエン共重合体などのアクリル系弾性重合体、エチレン-酢酸ビニルなどのエチレンと脂肪酸ビニルとの共重合体、エチレン-プロピレン-エチリデンノルボルネン共重合体、エチレン-プロピレン-ヘキサジエン共重合体などのエチレン-プロピレン非共役ジエン3元共重合体、ブチレン-イソプレン共重合体、塩素化ポリエチレン、ポリアミドエラストマー、ポリエステルエラストマーなどの熱可塑性エラストマーおよびそれらの変性物などが好ましい例として挙げられる。かかるゴム類は2種類以上併用することも可能である。かかるゴム類を用いる場合、その配合量は、特に制限はないが、通常熱可塑性樹脂組成物100重量部に対して、1~400重量部配合される。
 かかる各種添加剤類は、好ましくは、結晶核剤、着色防止剤、ヒンダードフェノール、ヒンダードアミン、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ化化合物などの酸化防止剤や熱安定剤、レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系などの耐候剤、脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、エチレンビスステアリルアミドや高級脂肪酸エステルなどの離型剤、p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミドなどの可塑剤、滑剤、ニグロシン、アニリンブラックなどの染料系、硫化カドミウム、フタロシアニン、カーボンブラックなどの顔料系の着色剤、アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせなどの難燃剤、発泡剤などが挙げられる。
 かかる酸化防止剤としては、ヒンダードフェノール系化合物、リン系化合物が好ましく用いられ、ヒンダードフェノール系化合物の具体例としては、トリエチレングリコール-ビス[3-t-ブチル-(5-メチル-4-ヒドロキシフェニル)プロピオネート]、N、N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナミド)、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシ-フェニル)プロピオネート、3,9-ビス[2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼンなどが挙げられる。
 中でも、エステル型高分子ヒンダードフェノールタイプが好ましく、具体的には、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが好ましく用いられる。
 かかる酸化防止剤のリン系化合物の具体例としては、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,4-ジ-クミルフェニル)ペンタエリスリトール-ジ-ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビスフェニレンホスファイト、ジ-ステアリルペンタエリスリトール-ジ-ホスファイト、トリフェニルホスファイト、3,5-ジ-ブチル-4-ヒドロキシベンジルホスフォネートジエチルエステルなどが挙げられる。かかる酸化防止剤類は2種類以上併用することも可能である。かかる酸化防止剤類を用いる場合、その配合量は、特に制限はないが、熱可塑性樹脂組成物100重量部に対して、0.01~20重量部配合されることが好ましい。
 これらの熱可塑性樹脂類、ゴム類、各種添加剤類は、本発明の熱可塑性樹脂組成物を製造する任意の段階で配合することが可能であり、例えば、2成分の樹脂を配合する際に同時に添加する方法や、2成分の樹脂を溶融混練中にサイドフィード等の手法により添加する方法や、予め2成分の樹脂を溶融混練した後に添加する方法や、始めに片方の樹脂に添加し溶融混練後、残りの樹脂を配合する方法が挙げられる。
 本発明により製造される熱可塑性樹脂組成物の成形方法は、任意の方法が可能であり、成形形状は、任意の形状が可能である。成形方法としては例えば、押出成形、射出成形、中空成形、カレンダ成形、圧縮成形、真空成形、発泡成形等が可能であり、ペレット状、板状、フィルム又はシート状、パイプ状、中空状、箱状等の形状に成形することが出来る。
 本発明により製造される熱可塑性樹脂組成物の成形体の用途は、コネクター、コイルをはじめとして、センサー、LEDランプ、ソケット、抵抗器、リレーケース、小型スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品等に代表される電子部品用途に適している他、発電機、電動機、変圧器、変流器、電圧調整器、整流器、インバーター、継電器、電力用接点、開閉器、遮断機、ナイフスイッチ、他極ロッド、電気部品キャビネットなどの電気機器部品用途、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスク、DVD等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品等に代表される家庭、事務電気製品部品;オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライターなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター,ICレギュレーター、ライトディマー用ポテンシオメーターベース、排気ガスバルブ等の各種バルブ、燃料関係・冷却系・ブレーキ系・ワイパー系・排気系・吸気系各種パイプ・ホース・チューブ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ワイヤーハーネスコネクター、SMJコネクター、PCBコネクター、ドアグロメットコネクター、ヒューズ用コネクター等の各種コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、トルクコントロールレバー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、インストルメントパネル、エアバッグ周辺部品、ドアパッド、ピラー、コンソールボックス、各種モーターハウジング、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアパネル、ルーフパネル、フードパネル、トランクリッド、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプベゼル、ドアハンドル、ドアモール、リアフィニッシャー、ワイパー等の自動車・車両関連部品等々に適用できる。
 また本発明により製造される熱可塑性樹脂組成物はフィルムおよびシート用途としても好適であり、自動車内装用の軟質部材、包装フィルム 、デスクマット等に好適に使用される。
 以下、実施例を挙げて本発明の効果をさらに説明する。
特に断りのない限り、原料は下記に記したものを使用した。
A-1:ポリアミド樹脂(ポリアミド6) 「CM1017」(東レ社製)
A-2:融点225℃、98%硫酸中0.01g/mlでの相対粘度2.35のポリアミド6樹脂
A-3:ポリアミド樹脂(ポリアミド66)「CM3001N」(東レ社製)
A-4:下記参考例1で得られたポリアミド56樹脂
A-5:下記参考例2で得られたポリアミド6T/66樹脂
A-6:下記参考例3で得られたポリアミド66/6I/6樹脂
A-7:ポリブチレンテレフタレート樹脂 「1401」(東レ社製)
A-8:ポリフェニレンスルフィド樹脂  「A900」(東レ社製)
A-9:ポリエチレンテレフタレート樹脂 「SA-135」(三井化学社製)
A-10:芳香族ポリカーボネート樹脂   「タフロン A2500」(出光興産社製)
A-11:融点170℃、重量平均分子量21万(ゲルパーミエーションクロマトグラフィー法、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール溶離液、PMMA換算)、D体含有率1.2%のポリL乳酸樹脂。
A-12:ポリフェニレンエーテル樹脂「PX-100F」(三菱エンジニアリングプラスチックス社製)
A-13:融点160℃、MFR=0.5g/10分(230℃、2.16kg荷重)、密度0.910g/cmのポリプロピレン樹脂100重量部と無水マレイン酸1重量部とラジカル発生剤(パーヘキサ25B:日本油脂製)0.1重量部をドライブレンドし、シリンダー温度230℃で溶融混練して得た水分率100ppmのポリプロピレン樹脂。
B-1:グリシジルメタクリレート変性ポリエチレン共重合体「ボンドファースト BF-7L」(住友化学社製)
B-2:グリシジルメタクリレート変性ポリエチレン共重合体「ボンドファースト BF-7M」(住友化学社製)
B-3:グリシジルメタクリレート変性ポリエチレン共重合体「ボンドファースト BF-E」(住友化学社製)
B-4:無水マレイン酸変性エチレン-1-ブテン共重合体「タフマー MH7020」(三井化学社製)
B-5:エチレン-メタクリル酸-メタクリル酸亜鉛塩共重合体「ハイミラン1706」(三井・デュポンポリケミカル社製)
C-1:エチレン・1-ブテン共重合体「タフマー TX-610」(三井化学社製)
C-2:未変性ポリエチレン共重合体「LOTRYL29MA03」(アルケマ社製)
C-3:ポリフェニレンエーテル樹脂「PX-100F」(三菱エンジニアリングプラスチックス社製)
D-1:スチレン-無水マレイン酸共重合体「ダイラーク332」(ノヴァケミカル社製)
E-1:耐熱剤「IR1098」(チバ・スペシャリティ・ケミカルズ社製)
E-2:耐熱剤「IR1010」(チバ・スペシャリティ・ケミカルズ社製)
E-3:離型剤「リコワックスOP」(クラリアントジャパン社製)。
 参考例1
 1,5-ジアミノペンタンとアジピン酸の等モル塩(56塩)の50重量%水溶液に、1,5-ジアミノペンタンを14倍mol/kmol塩添加して重合缶に仕込み、重合缶内を充分に窒素置換した後、撹拌しながら加温を開始した。缶内圧力が17.5kg/cmに到達した後、水分を系外へ放出させながら、缶内圧力を17.5kg/cmで一定に保った。この状態で2時間保持した後、1時間かけて徐々に常圧に戻し到達温度を270℃とした。更に-160mmHgの減圧下、270℃で30分間反応させ重合を完了した。その後水浴中に吐出したポリマーをストランドカッターでペレタイズしポリアミド樹脂(A-4)を得た。得られたポリアミド樹脂の98%濃硫酸中、25℃、0.01g/ml濃度で測定した相対溶液粘度は2.76であり、アミノ末端基量は8.12×10-5eq/g、カルボキシル末端基量は5.21×10-5eq/gであった。指差走査熱量計で測定したTmは254℃であった。
 参考例2
 テレフタル酸とヘキサメチレンジアミンからなる等モル塩(6T塩)を45重量%、ヘキサメチレンジアミンとアジピン酸の等モル塩(66塩、Rhodia製)を55重量%、安息香酸(シグマアルドリッチジャパン製)を10倍mol/kmol塩、さらに全仕込量に対して水含有量が30重量%になるように、水を重合缶に仕込み、重合缶内を充分に窒素置換した後、撹拌しながら加温を開始した。缶内圧力が25kg/cmに到達した後、水分を系外へ放出させながら、缶内圧力を25kg/cm、240℃で2時間保持し、その後、クーリングベルト上に吐出した。これを120℃で24時間真空乾燥して低次縮合物を得、得られた低次縮合物を240℃、0.3torrで3時間固相重合しポリアミド樹脂(A-5)を得た。得られたポリアミド樹脂の98%濃硫酸中、25℃、0.01g/ml濃度で測定した相対溶液粘度は2.6であった。指差走査熱量計で測定したTmは290℃であった。
 参考例3
 ヘキサメチレンジアミンとアジピン酸の等モル塩(66塩)を75重量%、ヘキサメチレンジアミンとイソフタル酸の等モル塩(6I塩)を20wt%、およびεカプロラクタム5重量%、さらに全仕込量に対して水含有量が50重量%になるように水を重合缶に仕込み、重合缶内を充分に窒素置換した後、撹拌しながら加温を開始した。缶内圧力が20kg/cmに到達した後、水分を系外へ放出させながら、缶内圧力を20kg/cmで一定に保った。この状態で2時間保持した後、1時間かけて徐々に常圧に戻し到達温度を270℃とした。更に-160mmHgの減圧下、270℃で10分間反応させ重合を完了した。その後水浴中に吐出したポリマーをストランドカッターでペレタイズしポリアミド樹脂(A-6)を得た。得られたポリアミドの98重量%濃硫酸中、25℃、0.01g/ml濃度で測定した相対溶液粘度は2.03であった。指差走査熱量計で測定した融点は233℃であった。
 実施例1
 熱可塑性樹脂(A)としてポリアミド6(A-1:CM1017、東レ社製)、反応性官能基を有する樹脂(B)としてグリシジルメタクリレート変性ポリエチレン共重合体(B-1)を使用し、表1に示す配合割合で混合し、真空ポンプによる揮発分の除去および窒素フローを行いながら、スクリュー径30mm、L/D=45の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX-30α):スクリューは2条ネジの2本のスクリューを使用し、シリンダー温度を260℃、表1に示すスクリュー回転数、押出量で溶融混練を行い、吐出口より吐出した。その際、原料と共に着色剤を投入し、押出物への着色が最大となる時間を滞留時間として測定し、その滞留時間を表1に示した。また、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100と定義し、29%とした。また、スクリュー構成として、L/D=14、23、30の位置から、それぞれ、Lk/D=4.0、4.0、5.0としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設けた(本スクリュー構成をA-1とした)。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例2
 スクリュー構成として、L/D=14、23、30、35の位置から、Lk/D=4.0、2.0、2.0、1.0としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設け(本スクリュー構成をA-2とした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を20%とした以外は、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、180kg/cmであった。
 実施例3
 熱可塑性樹脂(A)としてポリアミド6(A-1:CM1017、東レ社製)、反応性官能基を有する樹脂(B)としてグリシジルメタクリレート変性ポリエチレン共重合体を使用し、表1に示す配合割合で混合し、真空ポンプによる揮発分の除去および窒素フローを行いながら、スクリュー径30mm、L/D=35の同方向回転完全噛み合い型二軸押出機(日本製鋼所社製、TEX-30α):スクリューは2条ネジの2本のスクリューを使用し、シリンダー温度を260℃、表1に示すスクリュー回転数、押出量で溶融混練を行い、吐出口より吐出した。その際、原料と共に着色剤を投入し、押出物への着色が最大となる時間を滞留時間として測定し、その滞留時間を表1に示した。また、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100と定義し、31%とした。また、スクリュー構成として、L/D=12、17、22の位置から、それぞれ、Lk/D=3.0、4.0、4.0としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設けた(本スクリュー構成をB―1とした)。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、150kg/cmであった。
 実施例4
 スクリュー構成として、L/D=12、17、21、25の位置から、Lk/D=3.0、2.0、2.0、1.0としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設け(本スクリュー構成をB-2とした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を23%とした以外は、実施例3と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、120kg/cmであった。
 実施例5~9
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表2に示す通り用い、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例10~13
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表3に示す通り用い、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例14~17
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表4に示す通り用い、シリンダー温度を280℃とした以外は、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例18
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表4に示す通り用い、シリンダー温度を320℃とする以外は、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例19~25
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表5に示す通り用い、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例26~27
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表6に示す通り用い、シリンダー温度を280℃にする以外は、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例28
 その他の添加剤(E)として耐熱剤(E-1:IR1098、チバ・スペシャリティ・ケミカルズ社製)(E-2:IR1010、チバ・スペシャリティ・ケミカルズ社製)を表6に示す通り用い、実施例1と同様にして溶融混練を実施した。
 実施例29
 その他の添加剤(E)として耐熱剤(E-1:IR1098、チバ・スペシャリティ・ケミカルズ社製)(E-2:IR1010、チバ・スペシャリティ・ケミカルズ社製)と離型剤(E-3:リコワックスOP、クラリアントジャパン社製)を表6に示す通り用い、実施例1と同様にして溶融混練を実施した。
 比較例1
 スクリュー構成として、L/D=14、23、30の位置から、一般のニーディングディスク(L/D=4.0、4.0、5.0)を設け(本スクリュー構成をC-1とした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を0%とし、伸張流動しつつ溶融混練することなく溶融混練した以外は、実施例1と同様にして溶融混練を実施した。また、ニーディングディスクの手前の圧力差(ΔP)から、ニーディングゾーン内での圧力差(ΔP)を差し引くことで、ニーディングゾーン前後での流入効果圧力降下を求めた結果、5kg/cm未満であった。
 比較例2
 スクリュー構成として、L/D=22、28の位置から、一般のニーディングディスク(L/D=3.8)を設け(本スクリュー構成をC-2とした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を0%とし、伸張流動しつつ溶融混練することなく溶融混練した以外は、実施例5と同様にして溶融混練を実施した。また、ニーディングディスクの手前の圧力差(ΔP)から、ニーディングゾーン内での圧力差(ΔP)を差し引くことで、ニーディングゾーン前後での流入効果圧力降下を求めた結果、5kg/cm未満であった。
 比較例3~4
 反応性官能基を有する樹脂(B)の替わりに、反応性官能基を有さない樹脂(C)を表6に示す通り用いた以外は、実施例1と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 また、吐出されたストランド状の溶融樹脂を、冷却バスを通過させて冷却し、ペレタイザーにより巻取りながら裁断することにより、ペレット状のサンプルを得た。該サンプルを乾燥後、以下の条件で評価用試験片を作成し、各種特性を評価した。
 (1)衝撃強度
  住友重機械工業社製射出成形機(SG75H-MIV)を用いて、成形温度:260℃(実施例10、14~17、27~28は280℃、実施例18は320℃)、金型温度:80℃、射出圧力:下限圧+5kgf/cmの条件により短冊型試験片(幅10mm×長さ80mm×厚さ4mm)を作成し、東洋精機社製シャルピー衝撃試験機611に供し、ISO179に従い、23℃、50%RHにおけるシャルピー衝撃試験を実施した。
 (2)荷重たわみ温度
 住友重機械工業社製射出成形機(SG75H-MIV)を用いて、成形温度:260℃(実施例10、14~17、27~28は280℃、実施例18は320℃)、金型温度:80℃、射出圧力:下限圧+5kgf/cmの条件により短冊型試験片(幅10mm×長さ80mm×厚さ4mm)を作成し、23℃、50%RHの条件で48時間調湿したサンプルについて、ISO75-1,2に従い荷重たわみ温度(荷重0.45MPa)を測定した。
 (3)引張試験による引張弾性率および引張破断伸度の評価
 住友重機械工業社製射出成形機(SG75H-MIV)を用いて、成型温度:260℃(実施例10、14~17、27~28は280℃、実施例18は320℃)、金型温度:80℃、射出圧力:下限圧+5kgf/cmの条件によりJIS-5Aダンベル型試験片(長さ75mm(有効測定長さ50mm)×端部幅12.5mm(有効測定幅4mm)×厚さ2mm)を作成し、オリエンテック社製引張試験機(テンシロンUTA-2.5T)に供し、チャック間距離を50mmとし、100mm/min、500mm/min、1000mm/minの速度で、引張試験を実施し、各速度における引張弾性率および引張破断伸度を評価した。なお、引張破断伸度は、有効測定長さ50mmを基準とした破断伸度とした。
 実施例1~18より、熱可塑性樹脂(A)と反応性官能基を有する樹脂(B)からなる熱可塑性樹脂組成物を作製するにあたり、伸張流動しつつ溶融混練することで、特異な粘弾性特性を顕著に発現させ、衝撃吸収性に優れることが明らかとなった。
 比較例1、2の様に、伸張流動ゾーンがない場合や、比較例3~4の様に、反応性官能基を有する樹脂(B)の替わりに反応性官能基を有さない樹脂を用いた場合、実施例19~29と比較し、耐衝撃性および耐熱性に劣ることが明らかになった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例30
 熱可塑性樹脂(A)としてポリブチレンテレフタレート樹脂を、反応性官能基を有する樹脂(B)としてグリシジルメタクリレート変性ポリエチレン共重合体を使用し、表7に示す配合割合で混合し、真空ポンプによる揮発分の除去および窒素フローを行いながら、スクリュー径37mm、L/D=40の同方向回転完全噛み合い型二軸押出機(東芝機械社製、TEM-37):スクリューは2条ネジの2本のスクリューを使用し、シリンダー温度を260℃、表7に示すスクリュー回転数、押出量で溶融混練を行い、吐出口より吐出した。その際、原料と共に着色剤を投入し、押出物への着色が最大となる時間を滞留時間として測定し、その滞留時間を表7に示した。また、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100と定義し、19%とした。また、スクリュー構成として、L/D=22、28の位置から、それぞれ、Lk/D=3.8、3.8としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設けた(本スクリュー構成をA-1とした)。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例31
 スクリュー構成として、L/D=28の位置から、Lk/D=3.8としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設け(本スクリュー構成をA-2とした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を9.5%とした以外は、実施例30と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例32
 スクリュー構成として、L/D=22、28の位置から、それぞれ、Lk/D=3.8、3.8としたフライトスクリューのフライト部にスクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路(クリアランスが、3.5mmか1mmに縮小)が形成されているスクリューを設け(本スクリュー構成をBとした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を19%とした以外は、実施例30と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、150kg/cmであった。
 実施例33
 熱可塑性樹脂(A)としてポリフェニレンスルフィド樹脂を用い、シリンダー温度を310℃とした以外は、実施例30と同様にして溶融混練を実施した。
 実施例34~40
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表8に示す通り用い、実施例38のみシリンダー温度を220℃とした以外は、実施例30と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 比較例5
 スクリュー構成として、L/D=22、28の位置から、一般のニーディングディスク(L/D=3.8)を設け(本スクリュー構成をCとした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を0%とし、伸張流動しつつ溶融混練することなく溶融混練した以外は、実施例30と同様にして溶融混練を実施した。また、ニーディングディスクの手前の圧力差(ΔP)から、ニーディングゾーン内での圧力差(ΔP)を差し引くことで、ニーディングゾーン前後での流入効果圧力降下を求めた結果、5kg/cm未満であった。
 比較例6
 反応性官能基を有する樹脂(B)の替わりに、反応性官能基を有さない未変性ポリエチレンを用いた以外は、実施例30と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 比較例7
 スクリュー構成として、L/D=22、28の位置から、一般のニーディングディスク(L/D=3.8)を設け(本スクリュー構成をCとした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を0%とし、伸張流動しつつ溶融混練することなく溶融混練した以外は、実施例33と同様にして溶融混練を実施した。また、ニーディングディスクの手前の圧力差(ΔP)から、ニーディングゾーン内での圧力差(ΔP)を差し引くことで、ニーディングゾーン前後での流入効果圧力降下を求めた結果、5kg/cm未満であった。
 比較例8~14
 熱可塑性樹脂(A)、反応性官能基を有する樹脂(B)を表10に示す通り用い、比較例12のみシリンダー温度を220℃とし、スクリュー構成として、L/D=22、28の位置から、一般のニーディングディスク(L/D=3.8)を設け(本スクリュー構成をCとした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を0%とし、伸張流動しつつ溶融混練することなく溶融混練した以外は、実施例34~40と同様にして溶融混練を実施した。また、ニーディングディスクの手前の圧力差(ΔP)から、ニーディングゾーン内での圧力差(ΔP)を差し引くことで、ニーディングゾーン前後での流入効果圧力降下を求めた結果、5kg/cm未満であった。
 また、吐出されたストランド状の溶融樹脂を、冷却バスを通過させて冷却し、ペレタイザーにより巻取りながら裁断することにより、ペレット状のサンプルを得た。該サンプルを乾燥後、以下の条件で評価用試験片を作成し、各種特性を評価した。
 (1)衝撃強度
 日精樹脂工業社製射出成形機(NP7-1F)を用いて、成形温度:260℃(実施例33、比較例7は310℃)、金型温度:80℃(実施例33,比較例7は130℃)、射出圧力:下限圧+5kgf/cmの条件により短冊型試験片(幅10mm×長さ80mm×厚さ4mm)を作成し、東洋精機社製シャルピー衝撃試験機611に供し、ISO179に従い、23℃、50%RHにおけるシャルピー衝撃試験を実施した。
 (2)荷重撓み温度
 日精樹脂工業社製射出成形機(NP7-1F)を用いて、成形温度:260℃(実施例33、比較例7は310℃)、金型温度:80℃(実施例33,比較例7は130℃)、射出圧力:下限圧+5kgf/cmの条件により短冊型試験片(幅10mm×長さ80mm×厚さ4mm)を作成し、23℃、50%RHの条件で48時間調湿したサンプルについて、ISO75-1,2に従い荷重撓み温度(荷重0.45MPa)を測定した。
 (3)引張試験による引張弾性率および引張破断伸度の評価
 日精樹脂工業社製射出成形機(NP7-1F)を用いて、成形温度:260℃、金型温度:80℃、射出圧力:下限圧+5kgf/cmの条件によりJIS-5Aダンベル型試験片(長さ75mm(有効測定長さ50mm)×端部幅12.5mm(有効測定幅4mm)×厚さ2mm)を作成し、オリエンテック社製引張試験機(テンシロンUTA-2.5T)に供し、チャック間距離を50mmとし、100mm/min、500mm/min、1000mm/minの速度で、引張試験を実施し、各速度における引張弾性率および引張破断伸度を評価した。なお、引張破断伸度は、有効測定長さ50mmを基準とした破断伸度とした。
 実施例34、36~40より、熱可塑性樹脂(A)と反応性官能基を有する樹脂(B)からなる熱可塑性樹脂組成物を作製するにあたり、伸張流動しつつ溶融混練することで、耐衝撃性および耐熱性に優れ、また特異な粘弾性特性を顕著に発現させ、衝撃吸収性に優れることが明らかとなった。
 比較例8、10~14の様に、伸張流動ゾーンがない場合、実施例34、36~40と比較し、耐衝撃性および耐熱性に劣り、また特異な粘弾性特性が発現しないことが明らかになった。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 実施例41
 熱可塑性樹脂(A)としてポリアミド樹脂を、熱可塑性樹脂(C)としてポリフェニレンエーテル樹脂を、反応性官能基を有する化合物(D)としてスチレン-無水マレイン酸共重合体を使用し、表11に示す配合割合で混合し、真空ポンプによる揮発分の除去および窒素フローを行いながら、スクリュー径37mm、L/D=40の同方向回転完全噛み合い型二軸押出機(東芝機械社製、TEM-37):スクリューは2条ネジの2本のスクリューを使用し、シリンダー温度を290℃、表11に示すスクリュー回転数、押出量で溶融混練を行い、吐出口より吐出した。その際、原料と共に着色剤を投入し、押出物への着色が最大となる時間を滞留時間として測定し、その滞留時間を表11に示した。また、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を、(伸張流動ゾーンの合計長さ)÷(スクリュー全長)×100と定義し、19%とした。また、スクリュー構成として、L/D=22、28の位置から、それぞれ、Lk/D=3.8、3.8としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設けた(本スクリュー構成をA-1とした)。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例42
 スクリュー構成として、L/D=28の位置から、Lk/D=3.8としたニーディングディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に20°としたツイストニーディングディスクを設け(本スクリュー構成をA-2とした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を9.5%とした以外は、実施例41と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、200kg/cmであった。
 実施例43
 スクリュー構成として、L/D=22、28の位置から、それぞれ、Lk/D=3.8、3.8としたフライトスクリューのフライト部にスクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路(クリアランスが、3.5mmか1mmに縮小)が形成されているスクリューを設け(本スクリュー構成をBとした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を19%とした以外は、実施例41と同様にして溶融混練を実施した。また、ツイストニーディングディスクの手前の圧力差(ΔP)から、伸張流動ゾーン内での圧力差(ΔP)を差し引くことで、伸張流動ゾーン前後での流入効果圧力降下を求めた結果、150kg/cmであった。
 比較例15
 真空ポンプによる揮発分の除去および窒素フローを行いながら、スクリュー径37mm、L/D=100の同方向回転完全噛み合い型二軸押出機(東芝機械社製、TEM-37BS-26/2V):スクリューは2条ネジの2本のスクリューを使用し、シリンダー温度を290℃、表11に示すスクリュー回転数、押出量で溶融混練を行い、吐出口より吐出した。その際、原料と共に着色剤を投入し、押出物への着色が最大となる時間を滞留時間として測定し、その滞留時間を表11に示した。また、スクリュー全長に対するニーディングディスク(剪断賦与ゾーン、ニーディングゾーン)の合計長さの割合(%)を、(ニーディングゾーンの合計長さ)÷(スクリュー全長)×100と定義し、16%とした。また、スクリュー構成として、L/D=22、28、43、55、69、77、93の位置から、それぞれ、Lk/D=1.8、1.8、2.3、2.3、2.3、2.3、3.0とした剪断賦与ゾーン(ニーディングゾーン)を設けた(本スクリュー構成をDとした)、スクリュー全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計長さの割合(%)を0%とし、伸張流動しつつ溶融混練することなく溶融混練した以外は、実施例41と同様にして溶融混練を実施した。また、ニーディングディスクの手前の圧力差(ΔP)から、ニーディングゾーン内での圧力差(ΔP)を差し引くことで、ニーディングゾーン前後での流入効果圧力降下を求めた結果、5kg/cm未満であった。
 また、吐出されたストランド状の溶融樹脂を、冷却バスを通過させて冷却し、ペレタイザーにより巻取りながら裁断することにより、ペレット状のサンプルを得た。該サンプルを乾燥後、以下の条件で評価用試験片を作成し、各種特性を評価した。
 (1)衝撃強度
 日精樹脂工業社製射出成形機(NP7-1F)を用いて、成形温度:290℃、金型温度:80℃、射出圧力:下限圧+5kgf/cmの条件により短冊型試験片(幅10mm×長さ80mm×厚さ4mm)を作成し、東洋精機社製シャルピー衝撃試験機611に供し、ISO179に従い、23℃、50%RHにおけるシャルピー衝撃試験を実施した。
 (2)荷重撓み温度
 日精樹脂工業社製射出成形機(NP7-1F)を用いて、成形温度:290℃、金型温度:80℃、射出圧力:下限圧+5kgf/cmの条件により短冊型試験片(幅10mm×長さ80mm×厚さ4mm)を作成し、23℃、50%RHの条件で48時間調湿したサンプルについて、ISO75-1,2に従い荷重撓み温度(荷重1.80MPa)を測定した。
 実施例41~43より、熱可塑性樹脂(A)、熱可塑性樹脂(C)と反応性官能基を有する化合物(D)からなる熱可塑性樹脂組成物を作製するにあたり、伸張流動しつつ溶融混練することで、耐衝撃性および耐熱性に優れることが明らかとなった。
 ここで比較例15の様に、伸張流動ゾーンがなく、L/D=100と長くした製造法と比較しても、伸張流動しつつ溶融混練することで、耐衝撃性および耐熱性に優れることが明らかとなった。
Figure JPOXMLDOC01-appb-T000011
 反応性官能基を有する化合物を包含する熱可塑性樹脂組成物をリアクティブプロセッシングにより製造する際、伸張流動しつつ溶融混練することにより、これまでの製造方法では成し得なかった特性(耐熱性、耐衝撃性のバランス等)を有する熱可塑性樹脂組成物や、変形速度が大きいほど弾性率が低下して柔軟になるという特異な粘弾性特性を顕著に発現させ、大荷重、高速度の衝撃を受けた際にも、対象物に与える最大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収特性を有する熱可塑性樹脂組成物を製造することが可能となる

Claims (15)

  1. 下記(I)または(II)の熱可塑性樹脂組成物を製造する際、伸張流動しつつ溶融混練することを特徴とする熱可塑性樹脂組成物の製造方法。
    (I)熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)を配合してなる熱可塑性樹脂組成物
    (II)熱可塑性樹脂(A)、熱可塑性樹脂(A)とは異なる熱可塑性樹脂(C)および反応性官能基を有する化合物(D)を配合してなる熱可塑性樹脂組成物
  2. 熱可塑性樹脂組成物を製造する際、押出機により溶融混練し、伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の前後での流入効果圧力降下が10~1000kg/cmであることを特徴とする請求項1記載の熱可塑性樹脂組成物の製造方法。
  3. 熱可塑性樹脂組成物を製造する際、押出機により溶融混練し、さらに押出機のスクリューの全長に対する伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の合計の長さの割合が、5~60%であることを特徴とする請求項1~2いずれか記載の熱可塑性樹脂組成物の製造方法。
  4. 押出機のスクリューにおける一つの伸張流動しつつ溶融混練するゾーン(伸張流動ゾーン)の長さをLkとし、スクリュー直径をDとすると、Lk/D=0.2~10を満たすことを特徴とする請求項3記載の熱可塑性樹脂組成物の製造方法。
  5. 熱可塑性樹脂(A)が、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、およびポリプロピレン樹脂から選ばれる少なくとも1種であることを特徴とする請求項1~4のいずれか記載の熱可塑性樹脂組成物の製造方法。
  6. 熱可塑性樹脂(C)が、熱可塑性樹脂(A)とは異なる、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、およびポリプロピレン樹脂から選ばれる少なくとも1種であることを特徴とする請求項1~5のいずれか記載の熱可塑性樹脂組成物の製造方法。
  7. 反応性官能基を有する樹脂(B)が、反応性官能基を有するゴム質重合体であることを特徴とする請求項1~6のいずれか記載の熱可塑性樹脂組成物の製造方法。
  8. 反応性官能基を有する樹脂(B)の反応性官能基が、アミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、およびオキサゾリン基から選ばれる少なくとも1種であることを特徴とする請求項1~7のいずれか記載の熱可塑性樹脂組成物の製造方法。
  9. 反応性官能基を有する化合物(D)の反応性官能基が、アミノ基、カルボキシル基、カルボキシル金属塩、エポキシ基、酸無水物基、およびオキサゾリン基から選ばれる少なくとも1種であることを特徴とする請求項1~8のいずれか記載の熱可塑性樹脂組成物の製造方法。
  10. 熱可塑性樹脂(A)が、ポリアミド樹脂であることを特徴とする請求項1~9のいずれか記載の熱可塑性樹脂組成物の製造方法。
  11. 熱可塑性樹脂組成物が、引張試験において、引張速度V1、V2のときの引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)であることを特徴とする請求項1~10のいずれか記載の熱可塑性樹脂組成物の製造方法。
  12. 熱可塑性樹脂組成物が、引張試験において、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)であることを特徴とする請求項1~11のいずれか記載の熱可塑性樹脂組成物の製造方法。
  13. 請求項1~9のいずれか記載の製造方法により得られる熱可塑性樹脂組成物。
  14. 請求項13記載の熱可塑性樹脂組成物からなる成形品。
  15. 成形品がフィルムまたはシートである請求項14記載の成形品。
PCT/JP2009/055880 2008-03-27 2009-03-25 熱可塑性樹脂組成物の製造方法 WO2009119624A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/934,484 US8188188B2 (en) 2008-03-27 2009-03-25 Process for producing thermoplastic resin composition
CN2009801192951A CN102046704B (zh) 2008-03-27 2009-03-25 热塑性树脂组合物的制备方法
EP09724478.4A EP2270073B1 (en) 2008-03-27 2009-03-25 Process for producing thermoplastic resin composition and thermoplastic resin composition
JP2009514575A JP4788824B2 (ja) 2008-03-27 2009-03-25 熱可塑性樹脂組成物の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008083460 2008-03-27
JP2008-083460 2008-03-27
JP2008123378 2008-05-09
JP2008-123378 2008-05-09
JP2008206494 2008-08-11
JP2008-206494 2008-08-11

Publications (1)

Publication Number Publication Date
WO2009119624A1 true WO2009119624A1 (ja) 2009-10-01

Family

ID=41113816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055880 WO2009119624A1 (ja) 2008-03-27 2009-03-25 熱可塑性樹脂組成物の製造方法

Country Status (7)

Country Link
US (1) US8188188B2 (ja)
EP (1) EP2270073B1 (ja)
JP (1) JP4788824B2 (ja)
KR (1) KR101097137B1 (ja)
CN (1) CN102046704B (ja)
TW (1) TWI448498B (ja)
WO (1) WO2009119624A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053505A1 (ja) 2010-10-20 2012-04-26 東レ株式会社 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物および成形品
WO2012086192A1 (ja) * 2010-12-20 2012-06-28 花王株式会社 ポリ乳酸樹脂組成物の製造方法
WO2013015111A1 (ja) * 2011-07-25 2013-01-31 東レ株式会社 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
WO2014038508A1 (ja) 2012-09-06 2014-03-13 東レ株式会社 衝撃吸収部材
WO2018003700A1 (ja) * 2016-06-29 2018-01-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品
JP2018058235A (ja) * 2016-10-03 2018-04-12 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
JP2020500681A (ja) * 2016-12-05 2020-01-16 カッシート オーソペディックス リミテッド 熱可塑性整形外科装置
JP7409900B2 (ja) 2019-04-19 2024-01-09 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024455B2 (en) 2010-05-26 2015-05-05 Hitachi Chemical Company, Ltd. Semiconductor encapsulation adhesive composition, semiconductor encapsulation film-like adhesive, method for producing semiconductor device and semiconductor device
TWI477540B (zh) 2009-03-16 2015-03-21 Toray Industries 纖維強化樹脂組成物、成形材料及纖維強化樹脂組成物之製造方法
CA2766350C (en) * 2009-07-01 2014-04-15 The Procter & Gamble Company Method of making a dryer bar
US10753023B2 (en) 2010-08-13 2020-08-25 Kimberly-Clark Worldwide, Inc. Toughened polylactic acid fibers
US8936740B2 (en) 2010-08-13 2015-01-20 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
CN103160105A (zh) * 2011-12-19 2013-06-19 海洋王(东莞)照明科技有限公司 聚碳酸酯复合材料及灯具
US8975305B2 (en) 2012-02-10 2015-03-10 Kimberly-Clark Worldwide, Inc. Rigid renewable polyester compositions having a high impact strength and tensile elongation
US8637130B2 (en) 2012-02-10 2014-01-28 Kimberly-Clark Worldwide, Inc. Molded parts containing a polylactic acid composition
US9040598B2 (en) 2012-02-10 2015-05-26 Kimberly-Clark Worldwide, Inc. Renewable polyester compositions having a low density
US10858762B2 (en) 2012-02-10 2020-12-08 Kimberly-Clark Worldwide, Inc. Renewable polyester fibers having a low density
US8980964B2 (en) 2012-02-10 2015-03-17 Kimberly-Clark Worldwide, Inc. Renewable polyester film having a low modulus and high tensile elongation
WO2016085712A1 (en) 2014-11-26 2016-06-02 Kimberly-Clark Worldwide, Inc. Annealed porous polyolefin material
TWI630295B (zh) * 2014-12-23 2018-07-21 財團法人紡織產業綜合研究所 耐磨組成物及耐磨纖維
EP3112421A4 (en) * 2015-02-27 2017-03-29 Toray Industries, Inc. Polyamide resin composition for molded article to be in contact with high-pressure hydrogen, and molded article obtained therefrom
TW201728680A (zh) * 2015-10-30 2017-08-16 宇部興產股份有限公司 聚醯胺樹脂組成物及薄膜
JP6149995B1 (ja) * 2016-09-28 2017-06-21 富士ゼロックス株式会社 非架橋樹脂組成物、及び非架橋樹脂成形体
WO2018215045A1 (en) * 2017-05-22 2018-11-29 Electrolux Appliances Aktiebolag Refrigerator appliance having at least one inner plastic liner and method for manufacturing the liner
DE102018220262A1 (de) * 2018-11-26 2020-05-28 Robert Bosch Gmbh Fahrzeugkomponente und Verwendung eines Kunststoffcompounds
WO2023202910A1 (de) * 2022-04-19 2023-10-26 Covestro Deutschland Ag Verfahren zur herstellung einer plastischen masse mit verbesserten eigenschaften

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
JPH07227836A (ja) * 1994-02-17 1995-08-29 Bridgestone Corp ゴム状物の混練装置
JPH07237218A (ja) * 1994-02-25 1995-09-12 Bridgestone Corp ゴム状物の押出し混練機
JP2003147625A (ja) * 2001-11-09 2003-05-21 Teijin Ltd 伸長混合方法、及び伸長混合装置
JP2005035212A (ja) * 2003-07-17 2005-02-10 Japan Steel Works Ltd:The ニーディングディスク、ディスクおよび混練方法
JP2005187809A (ja) * 2003-12-02 2005-07-14 Toray Ind Inc 樹脂組成物およびその製造方法
JP2006089701A (ja) 2004-08-27 2006-04-06 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
JP2006347151A (ja) * 2005-03-29 2006-12-28 Toray Ind Inc 熱可塑性樹脂組成物の製造方法
JP2007237679A (ja) * 2006-03-10 2007-09-20 Japan Steel Works Ltd:The プラスチック原料の可塑化混練押出機
WO2007108501A1 (ja) * 2006-03-23 2007-09-27 Toray Industries, Inc. 熱可塑性樹脂組成物、その製造方法および成形品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037764A (ja) 1998-07-23 2000-02-08 Asahi Chem Ind Co Ltd 押出機及びそれを用いた方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
JPH07227836A (ja) * 1994-02-17 1995-08-29 Bridgestone Corp ゴム状物の混練装置
JPH07237218A (ja) * 1994-02-25 1995-09-12 Bridgestone Corp ゴム状物の押出し混練機
JP2003147625A (ja) * 2001-11-09 2003-05-21 Teijin Ltd 伸長混合方法、及び伸長混合装置
JP2005035212A (ja) * 2003-07-17 2005-02-10 Japan Steel Works Ltd:The ニーディングディスク、ディスクおよび混練方法
JP2005187809A (ja) * 2003-12-02 2005-07-14 Toray Ind Inc 樹脂組成物およびその製造方法
JP2006089701A (ja) 2004-08-27 2006-04-06 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
JP2006347151A (ja) * 2005-03-29 2006-12-28 Toray Ind Inc 熱可塑性樹脂組成物の製造方法
JP2007237679A (ja) * 2006-03-10 2007-09-20 Japan Steel Works Ltd:The プラスチック原料の可塑化混練押出機
WO2007108501A1 (ja) * 2006-03-23 2007-09-27 Toray Industries, Inc. 熱可塑性樹脂組成物、その製造方法および成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2270073A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982824B2 (ja) * 2010-10-20 2016-08-31 東レ株式会社 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物および成形品
KR101821619B1 (ko) * 2010-10-20 2018-01-24 도레이 카부시키가이샤 열가소성 수지 조성물의 제조방법, 열가소성 수지 조성물 및 성형품
CN103154140A (zh) * 2010-10-20 2013-06-12 东丽株式会社 热塑性树脂组合物的制造方法、热塑性树脂组合物和成型品
WO2012053505A1 (ja) 2010-10-20 2012-04-26 東レ株式会社 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物および成形品
JPWO2012053505A1 (ja) * 2010-10-20 2014-02-24 東レ株式会社 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物および成形品
EP2631274A4 (en) * 2010-10-20 2016-09-07 Toray Industries PROCESS FOR PRODUCING THERMOPLASTIC RESIN COMPOSITION, THERMOPLASTIC RESIN COMPOSITION AND MOLDED PRODUCT THEREFOR
CN103154140B (zh) * 2010-10-20 2015-02-04 东丽株式会社 热塑性树脂组合物的制造方法、热塑性树脂组合物和成型品
US9290662B2 (en) 2010-10-20 2016-03-22 Toray Industries, Inc. Method for producing thermoplastic resin composition, thermoplastic resin composition, and molded article
WO2012086192A1 (ja) * 2010-12-20 2012-06-28 花王株式会社 ポリ乳酸樹脂組成物の製造方法
JP2012131072A (ja) * 2010-12-20 2012-07-12 Kao Corp ポリ乳酸樹脂組成物の製造方法
JP5278621B1 (ja) * 2011-07-25 2013-09-04 東レ株式会社 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
US9334482B2 (en) 2011-07-25 2016-05-10 Toray Industries, Inc. Thermoplastic resin composition for impact absorbing member and method for producing same
WO2013015111A1 (ja) * 2011-07-25 2013-01-31 東レ株式会社 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
WO2014038508A1 (ja) 2012-09-06 2014-03-13 東レ株式会社 衝撃吸収部材
US9452596B2 (en) 2012-09-06 2016-09-27 Toray Industries, Inc. Impact-absorbing member
WO2018003700A1 (ja) * 2016-06-29 2018-01-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品
US10577501B2 (en) 2016-06-29 2020-03-03 Toray Industries, Inc. Polyphenylene sulfide resin composition and hollow forming products using the same
JP2018058235A (ja) * 2016-10-03 2018-04-12 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
JP2020500681A (ja) * 2016-12-05 2020-01-16 カッシート オーソペディックス リミテッド 熱可塑性整形外科装置
JP7409900B2 (ja) 2019-04-19 2024-01-09 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法

Also Published As

Publication number Publication date
EP2270073A4 (en) 2012-02-29
TW200948880A (en) 2009-12-01
CN102046704B (zh) 2013-11-20
JPWO2009119624A1 (ja) 2011-07-28
US20110021707A1 (en) 2011-01-27
EP2270073B1 (en) 2013-05-22
TWI448498B (zh) 2014-08-11
JP4788824B2 (ja) 2011-10-05
CN102046704A (zh) 2011-05-04
KR101097137B1 (ko) 2011-12-22
US8188188B2 (en) 2012-05-29
KR20100131489A (ko) 2010-12-15
EP2270073A1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4788824B2 (ja) 熱可塑性樹脂組成物の製造方法
JP5124932B2 (ja) 熱可塑性樹脂組成物の製造方法
JP4600015B2 (ja) 樹脂組成物およびその製造方法
JP5278621B1 (ja) 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP5625588B2 (ja) 熱可塑性樹脂組成物の製造方法
JP4600016B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP5391509B2 (ja) ポリアミド樹脂組成物
JPWO2009069725A1 (ja) ポリアミド樹脂組成物および成形品
JP5200989B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP5292854B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP2007254567A (ja) 熱可塑性樹脂組成物およびその製造方法
JP3739954B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP3724174B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形体
JP2013028751A (ja) 熱可塑性樹脂組成物の製造方法
JPH10298431A (ja) ポリフェニレンスルフィド樹脂組成物
JP4032563B2 (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法およびそれからなる成形品
JP2008156604A (ja) 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP6464746B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP5286630B2 (ja) 熱可塑性樹脂組成物の製造方法
JP4720567B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP5228568B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP2014231594A (ja) ポリエチレンテレフタレート樹脂組成物および成形品
JP4894167B2 (ja) ポリアミド樹脂組成物およびその製造方法
JP2012072221A (ja) 熱可塑性樹脂組成物およびその製造方法
JP2013053289A (ja) ポリプロピレン樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119295.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009514575

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12934484

Country of ref document: US

Ref document number: PI 2010004460

Country of ref document: MY

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009724478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107022863

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6707/CHENP/2010

Country of ref document: IN