WO2009119321A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2009119321A1
WO2009119321A1 PCT/JP2009/054674 JP2009054674W WO2009119321A1 WO 2009119321 A1 WO2009119321 A1 WO 2009119321A1 JP 2009054674 W JP2009054674 W JP 2009054674W WO 2009119321 A1 WO2009119321 A1 WO 2009119321A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
converter
commutation
mode
Prior art date
Application number
PCT/JP2009/054674
Other languages
English (en)
French (fr)
Inventor
憲一 榊原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2009801108133A priority Critical patent/CN101981798B/zh
Priority to EP09724823.1A priority patent/EP2262090B1/en
Priority to AU2009230285A priority patent/AU2009230285B2/en
Priority to KR1020107020631A priority patent/KR101129901B1/ko
Priority to US12/934,915 priority patent/US8450961B2/en
Publication of WO2009119321A1 publication Critical patent/WO2009119321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This invention relates to a power converter, and more particularly to a clamp circuit (including a snubber) direct AC power converter.
  • a so-called indirect AC power conversion circuit As a typical main circuit configuration of an inverter, a so-called indirect AC power conversion circuit is generally used.
  • AC is rectified and converted to DC via a smoothing circuit, and an AC output is obtained by a voltage converter.
  • a direct AC power converter represented by a matrix converter is known as a method for obtaining an AC output directly from an AC voltage.
  • Direct AC power converters do not require large capacitors and reactors that smooth voltage pulsations due to commercial frequencies, and therefore can be expected to be smaller in size, and are attracting attention as next-generation power converters in recent years. .
  • Patent Documents 1 to 4 disclose techniques for directly converting AC to AC without using a smoothing circuit in the DC link.
  • Patent Documents 3 and 4 it is possible to simplify the control of the converter and the inverter by determining the commutation timing of the converter based on the comparison result of three trapezoidal waves whose phases are mutually shifted by 120 degrees and the carrier. Is intended.
  • Patent Document 5 discloses a technique that employs a clamp circuit that uses an element with a small required withstand voltage and that intends to solve the problem of regenerative current in a direct AC power converter.
  • Patent Documents 6, 7, and 8 are listed as related to the present application.
  • Patent Document 6 discloses a technique for reducing an error in estimating the rotational position of a motor by increasing the supplied current and delaying the current.
  • Patent Document 7 discloses a technique for dealing with instantaneous power interruption / restart in an indirect AC power conversion circuit.
  • Patent Document 8 describes power conversion using a diode bridge equivalent to a natural commutation mode of a converter.
  • Non-Patent Documents 1 to 6 are further cited as documents related to the present application.
  • Patent Documents 3 and 4 are applied to a direct AC power converter connected in the order of current source converter-DC link-voltage source inverter, the converter cannot reverse the voltage of the DC link. Therefore, when the load power factor is low, the regenerative current cannot be processed, and an overvoltage is generated in the DC link.
  • Patent Document 5 it is conceivable that a regenerative current can be absorbed by adopting a clamp circuit having a capacitor. More specifically, the charging voltage of the capacitor increases due to the charging of the two capacitors connected in series, the discharge current from the parallel connection increases, the current circulates, and the clamp voltage is balanced (Patent Document 5). (See FIG. 3).
  • the clamp voltage can be 1.4 times or less of the peak value of the power supply voltage (see FIG. 7 of Patent Document 5). It has been shown that the load power factor can be sufficiently accommodated.
  • an object of the present invention is to achieve both absorption of regenerative current and direct AC power conversion in a power converter.
  • the power converter according to the present invention includes three input terminals (Pr, Ps, Pt) to which three-phase AC phase voltages are input, three output terminals (Pu, Pv, Pw), first and first Two DC power supply lines (LH, LL), three switching elements (Qrp, Qsp, Qtp) connected between each of the input terminals and the first DC power supply line, and each of the input terminals And a current source converter (4) having a first switching element group including three switching elements (Qrn, Qsn, Qtn) connected between the first DC power supply line and each of the output terminals, Three switching elements (Qup, Qvp, Qwp) connected between the first DC power supply line and three switching elements connected between each of the output terminals and the second DC power supply line Elements (Qun, Qvn, Q n), a voltage source inverter (6) having a second switching element group, a clamp diode (Dcl) including an anode and a cathode respectively connected to the first and second
  • the converter has a first commutation mode and 120 determined by a comparison result of three trapezoidal waves each having a period of 360 degrees and phases shifted from each other by 120 degrees. Commutation according to one of the current conduction modes.
  • each of the trapezoidal waves has a pair of flat sections continuing in a 120-degree section and a pair of inclined areas of 60-degree sections connecting the pair of flat sections.
  • the converter performs commutation by comparing the trapezoidal wave that transitions between the pair of flat sections and the carrier.
  • the 120 degree energization mode is adopted when the shorting switch is turned on in the state where the first commutation mode is adopted, and the first and after the time point when the shorting switch is turned off.
  • the commutation mode is adopted.
  • the 2nd mode of the power converter concerning this invention is the 1st mode, Comprising: When the power factor of the load (7) connected to the above-mentioned output end falls below a predetermined value, the above-mentioned short circuit switch Conduct.
  • a third aspect of the power conversion device according to the present invention is the second aspect thereof, wherein the load (7) is a rotating machine, and the converter (4) according to the 120-degree energization mode for a predetermined period at the beginning of startup. ) Commutates.
  • a fourth aspect of the power converter according to the present invention is the first aspect, wherein the shorting switch has a direct current voltage between the first and second direct current power lines (LH, LL). Conduction occurs when the threshold value of 1 or less is maintained for a predetermined period. Alternatively, in the short-circuit switch, an average value obtained by averaging the DC voltage between the first and second DC power supply lines (LH, LL) within one cycle of the carrier is equal to or less than a first threshold value. It becomes conductive when there is.
  • the short-circuit switch has a DC voltage between the first and second DC power supply lines (LH, LL) exceeding a second threshold not less than the first threshold.
  • the first commutation mode is adopted when the value is maintained for a predetermined period and becomes non-conductive, and the shorting switch becomes non-conductive.
  • the shorting switch has a second threshold value that a DC voltage between the first and second DC power supply lines (LH, LL) is not less than the first threshold value. It becomes non-conducted when it exceeds.
  • the first commutation mode is adopted when the shorting switch becomes non-conductive.
  • the first commutation mode is employed after a predetermined period has elapsed since the short-circuit switch is turned off.
  • a fifth aspect of the power converter according to the present invention is any one of the first to fourth aspects, wherein in the clamp circuit (5), the capacitors are connected in series to each other. It is divided into a capacitor (51) and a second capacitor (52), the anode of the clamp diode (Dcl) is connected to the first DC power supply line (LH) via the first capacitor, and the cathode is The clamp circuit is connected to the second DC power supply line (LL) through the second capacitor, and the clamp circuit is connected to the anode of the clamp diode and to the first DC power supply line.
  • a first diode (53) having a connected cathode, a cathode connected to the anode of the clamp diode, and a second DC power line; Further comprising a a second diode (54) having an anode.
  • a sixth aspect of the power converter according to the present invention is any one of the first to fifth aspects, wherein the 120-degree conduction mode is a second commutation mode, and the second commutation mode is In the mode, each of the trapezoidal waves has a pair of flat sections continuous in a 180 degree section, and in the second commutation mode, the converter transitions between the pair of flat sections in the trapezoidal wave. And commutation by comparison with the carrier.
  • a seventh aspect of the power conversion device is any one of the first to fifth aspects, wherein the 120-degree conduction mode is a natural commutation in which all of the first switching element groups are conducted. Mode.
  • the shorting switch is turned on in order to cope with a decrease in the power factor of the load connected to the output terminal and an instantaneous voltage decrease of the power supply connected to the input terminal. Even if the original function of the clamp circuit is stopped and the original function of the clamp circuit is exhibited without conducting the shorting switch, the commutation mode of the converter is appropriately set. It is possible to change both absorption of regenerative current and direct AC power conversion.
  • the malfunction of the first commutation mode due to the regenerative current that increases due to the power factor reduction is avoided.
  • the third aspect of the power conversion device of the present invention it is possible to cope with a decrease in power factor caused by a current that is delayed so as to detect the position of the rotating machine at the beginning of startup.
  • the malfunction of the first commutation mode due to the drop in the DC voltage is avoided.
  • the shorting switch when the shorting switch is non-conductive, the first and second capacitors are charged through a path connected in series, and the first and second Therefore, the withstand voltage required for the first and second capacitors is small.
  • the shorting switch When the shorting switch is conductive, the first and second capacitors are charged and discharged through a path connected in series, and the function as a clamp circuit is stopped.
  • the converter commutates by comparing the trapezoidal wave and the carrier in both the first and second commutation modes. There is no need to design individually according to the mode.
  • the seventh aspect of the power conversion device of the present invention it is not necessary to compare the trapezoidal wave and the carrier in the 120-degree conduction mode.
  • FIG. 6 It is a graph which illustrates the correction value for performing amplitude modulation correction in the 2nd commutation mode. It is a graph explaining the operation
  • FIG. 1 is a circuit diagram illustrating the configuration of a direct power converter 9 according to the present application.
  • the direct power converter 9 includes a converter 4, a clamp circuit 5, and an inverter 6 connected in this order.
  • the direct power converter 9 includes three input terminals Pr, Ps, and Pt to which a three-phase AC phase voltage is input from the power supply 1, and three output terminals Pu, Pv, and Pw to which a load 7 is connected. ing.
  • the direct power conversion device 9 also includes DC power supply lines LH and LL that are DC links. Due to the function of the converter 4, the DC power supply line LH has a higher potential than the DC power supply line LL.
  • Converter 4 includes six switching elements Qrp, Qsp, Qtp, Qrn, Qsn, and Qtn. For convenience of explanation, these may be referred to as a first switching element group. Switching elements Qrp, Qsp, Qtp are respectively connected between input terminals Pr, Ps, Pt and DC power supply line LH, and switching elements Qrn, Qsn, Qtn are respectively connected to input terminals Pr, Ps, Pt and DC power supply line LL. Connected between. Converter 4 constitutes a so-called current source converter, and includes six diodes Drp, Dsp, Dtp, Drn, Dsn, and Dtn. These may be referred to as a first diode group for convenience of explanation.
  • Diodes Drp, Dsp, Dtp, Drn, Dsn, and Dtn all have their cathodes arranged on the DC power supply line LH side and their anodes arranged on the DC power supply line LL side.
  • the diode Drp is connected in series with the switching element Qrp between the input terminal Pr and the DC power supply line LH.
  • the diodes Dsp, Dtp, Drn, Dsn, Dtn are connected in series with the switching elements Qsp, Qtp, Qrn, Qsn, Qtn, respectively.
  • the inverter 6 includes six switching elements Qup, Qvp, Qwp, Qun, Qvn, and Qwn. These may be referred to as a second switching element group for convenience of explanation.
  • the switching elements Qup, Qvp, Qwp are respectively connected between the output terminals Pu, Pv, Pw and the DC power supply line LH, and the switching elements Qun, Qvn, Qwn are respectively connected to the output terminals Pu, Pv, Pw and the DC power supply line LL. Connected between.
  • the inverter 6 constitutes a so-called voltage source inverter and includes six diodes Dup, Dvp, Dwp, Dun, Dvn, and Dwn. These may be referred to as a second diode group for convenience of explanation.
  • the diodes Dup, Dvp, Dwp, Dun, Dvn, and Dwn all have a cathode disposed on the DC power supply line LH side and an anode disposed on the DC power supply line LL side.
  • the diode Dup is connected in parallel with the switching element Qup between the output terminal Pu and the DC power supply line LH.
  • the diodes Dvp, Dwp, Dun, Dvn, Dwn are respectively connected in parallel with the switching elements Qvp, Qwp, Qun, Qvn, Qwn.
  • a clamp diode Dcl and capacitors 51 and 52 are connected between the DC power supply lines LH and LL.
  • the clamp diode Dcl has an anode connected to the DC power supply line LH side and a cathode connected to the DC power supply line LL side via capacitors 51 and 52, respectively.
  • a shorting switch Qcl is connected in parallel with the clamp diode Dcl.
  • diodes 53 and 54 may be provided so that the capacitors 51 and 52 are connected in parallel during discharging.
  • the anode and cathode of the diode 53 are connected to the cathode of the clamp diode Dcl and the DC power supply line LH, respectively.
  • the anode and cathode of the diode 54 are connected to the DC power supply line LL and the anode of the clamp diode Dcl, respectively.
  • an IGBT insulated gate bipolar transistor
  • IGBT insulated gate bipolar transistor
  • the clamp circuit 5 can be configured as a so-called CD snubber with the clamp diode Dcl if the series connection of the capacitors 51 and 52 is regarded as a group.
  • a CD snubber is included in the clamp circuit (see [Technical field] in the specification).
  • a reactor group 2 and a capacitor group 3 are interposed between the power source 1 and the input terminals Pr, Ps, and Pt. Resistors are connected in parallel to the reactors constituting the reactor group 2, but these resistors can be omitted. Since the functions of the reactor group 2 and the capacitor group 3 are well known and have no direct relationship with the present invention, the description of the reactor group 2 and the capacitor group 3 is omitted in the present application.
  • the load 7 is a rotating machine, for example, and is illustrated by an equivalent circuit indicating an inductive load.
  • Converter 4 performs commutation in accordance with a first commutation mode, a second commutation mode, and a natural commutation mode, which will be described in detail below.
  • the commutation timing is determined based on a comparison result between three trapezoidal waves having a period of 360 degrees and phases shifted from each other by 120 degrees.
  • each of the trapezoidal waves has a pair of flat sections continuing in a 120-degree section and a pair of inclined areas of 60-degree sections connecting the pair of flat sections.
  • each of the trapezoidal waves has a pair of flat sections continuous at 180 degrees and is substantially a rectangular wave. Since the concept of “trapezoid” generally includes “rectangular”, in this application, the rectangular wave used in the second commutation mode in comparison with the carrier is similar to the trapezoidal wave compared with the carrier in the first commutation mode. This is called a trapezoidal wave.
  • Both the first commutation mode and the second commutation mode are commutated by comparing a trapezoidal wave that transitions between a pair of flat sections and a carrier.
  • the first commutation mode is the commutation technique already shown in Patent Documents 3 and 4.
  • Converter 4 commutates based on the comparison result between the inclined region of the 60-degree section in the trapezoidal wave and the carrier.
  • FIG. 2 is a graph illustrating the trapezoidal wave. The horizontal axis represents the phase angle of 360 degrees.
  • each of the substantially triangular regions in which the phase voltage vectors V4, V6, V2, V3, V1, and V5 are shown indicates the ratio of the switching pattern corresponding to the phase voltage vector.
  • phase voltage vector V4 only switching corresponding to the phase voltage vector V4 is executed at a phase angle of 0 degrees, and switching corresponding to the phase voltage vector V4 and switching corresponding to the phase voltage vector V4 are performed at a ratio of 1: 1 at a phase angle of 30 degrees. At the phase angle of 60 degrees, only switching corresponding to the phase voltage vector V6 is executed.
  • each digit of a three-digit number obtained by converting a number added to the phase voltage vector into a binary number indicates conduction / non-conduction for each phase of the switching element group in the virtual voltage source converter.
  • the phase voltage vector V4 shows a pattern in which the virtual converter gives the r-phase voltage of the power supply to the DC power supply line LH and the s-phase voltage and the t-phase voltage to the DC power supply line LL.
  • the command value of the current source converter to be compared with the carrier is the phase voltage commands Vr * and Vs * of the virtual voltage source converter because of the duality between current and voltage . , Vt * and the carrier.
  • the slope region of the 60-degree section of the trapezoidal wave is compared with the carrier. Therefore, it is only necessary to extract a phase voltage command Vr * , Vs * , Vt * corresponding to a so-called intermediate phase that does not take the maximum value or the minimum value, as a comparison target with the carrier. .
  • phase voltage commands Vr *, Vs *, Vt * from the resulting line voltage commands Vrs *, Vst *, and Vtr *, line current command of the current-source converter Is equivalent to
  • FIG. 3 is a graph showing line voltage commands Vrs * , Vst * , Vtr * .
  • Non-Patent Document 1 and Patent Documents 3 and 4 the line current becomes almost sinusoidal by commutating the converter in the first commutation mode, but the average value of the DC link voltage pulsates. . Specifically, the average value takes a local maximum value at the center of every 60 ° section, and the value of ⁇ 3 / 2 of the local maximum value is set as a minimum value at both ends of the section. In Non-Patent Document 1 and Patent Documents 3 and 4, since the amplitude of the pulsating voltage is 3/2 of the phase voltage, the minimum value is based on the DC link voltage to which the line voltage of the three-phase voltage is applied. Is ⁇ 3 / 2 of the maximum value.
  • FIG. 20 is a graph showing envelopes E1, E2 of the DC link voltage Vdc and an average value Vdc1 of the DC link voltage Vdc.
  • Envelopes E1 and E2 correspond to the difference between the maximum phase voltage and the minimum phase voltage and the difference between the intermediate phase voltage and the minimum phase voltage, respectively.
  • the average value Vdc1 is a value obtained by removing fluctuation due to pulse width modulation from the DC link voltage Vdc.
  • the DC link voltage Vdc is omitted because it changes between the envelopes E1 and E2 by switching of the converter 4.
  • the average value Vdc1 is expressed by ( ⁇ 3 / 2) Em / Vm (refer to Non-Patent Document 1 and Patent Documents 3 and 4 for detailed derivation).
  • Em is the maximum value of the difference between the maximum phase voltage and the minimum phase voltage
  • Vm is the absolute value of the maximum phase voltage
  • the average value Vdc1 is a value obtained by averaging the DC link voltage Vdc within one period of the carrier of the converter.
  • FIG. 4 is a graph illustrating correction values for performing such amplitude modulation correction. Such correction is exemplified in Non-Patent Document 1, for example.
  • FIG. 5 is a graph for explaining the operation of the converter 4 and the inverter 6 in the first commutation mode.
  • the carrier C used for the commutation of the converter 4 the value varies from 0 to drt + dst, and a triangular wave (which may be a sawtooth wave) having a period ts is adopted.
  • the switching element Qrp conducts when the carrier C takes a value of 0 to drt
  • the switching element QSp conducts when the carrier C takes a value of drt to drt + dst.
  • the ratio with the period in which the element Qsp is conductive can be drt: dst.
  • the input currents Ir, Is, It indicate the current flowing into the input terminals Pr, Ps and the current flowing out of the input terminal Pt, respectively.
  • the DC link current Idc is a current flowing through the DC link portion, and here, it is a current flowing through the DC power supply lines LH and LL, ignoring the current flowing through the clamp circuit 5.
  • the carrier C used for commutation on the inverter 6 side is also shared with the carrier C used for commutation of the converter 4.
  • the case where the commutation of the inverter 6 repeatedly adopts the voltage vectors V0, V4, V6 is illustrated in FIG. However, there is no direct relationship between the voltage vector at the inverter 6 (FIG. 5) and the virtual phase voltage vector (FIG. 2) employed in the commutation of the converter 4.
  • Each digit of a three-digit number obtained by converting a number added to a voltage vector employed in commutation of the inverter 6 into a binary number indicates conduction / non-conduction for each phase of the second switching element group.
  • the voltage vector V4 indicates a pattern in which the inverter 6 connects the DC power supply line LH to the output terminal Pu and connects the DC power supply line LL to the output terminals Pv and Pw.
  • the carrier C Takes a voltage vector V0 in a period in which it takes values drt (1-d0) to drt + dst ⁇ d0, and a period in which carrier C takes a value drt + dst ⁇ d0 to drt + dst (d0 + d4) and values drt (1 ⁇ d0 ⁇ d4) to drt (
  • the voltage vector V4 is taken in the period in which 1 ⁇ d0) is taken
  • the voltage vector V6 is taken in the period in which the carrier C takes the value 0 to drt (1 ⁇ d0 ⁇ d4) and the value drt + dst (d0 + d4) to drt +
  • the conduction pattern of the second switching element may be switched when the carrier C takes the values drt (1 ⁇ d0 ⁇ d4), drt (1 ⁇ d0), drt + dst ⁇ d0, drt + dst (d0 + d4). .
  • the switching elements Qup, Qvp, Qwp, Qun, Qvn, and Qwn are indicated as active / inactive (high potential / low potential on the graph) of the switching signals Sup, Svp, Swp, Sun, Svn, and Swn in FIG. ) To conduct / non-conduct respectively.
  • the switching element Qwp is always non-conductive and the switching element Qwn is always conductive. Therefore, the switching signals Swp and Swn are shown as inactive and active, respectively.
  • FIG. 6 is a graph illustrating the trapezoidal wave.
  • the horizontal axis is taken in the same manner as in FIG. 2, and the phase voltage vectors V4, V6, V2, V3, V1, and V5 are shown.
  • the phase angle of 0 to 30 degrees only switching corresponding to the phase voltage vector V4 is executed, and at the phase angle of 30 to 90 degrees, only switching corresponding to the phase voltage vector V6 is executed.
  • the values adopted at the phase angles of 0 to 30 degrees as the line voltage commands Vrs * , Vst * , Vtr * obtained from the phase voltage commands Vr * , Vs * , Vt * in the second commutation mode are as shown in FIG. Is a value adopted at a phase angle of 0 degrees. Further, the value adopted at the phase angle of 30 to 90 degrees is the value adopted at the phase angle of 60 degrees in FIG. In this way, the line voltage commands Vrs * , Vst * , Vtr * are rectangular waves as shown in the graph of FIG.
  • FIG. 8 is a graph illustrating correction values for performing such amplitude modulation correction. Such correction is exemplified in Patent Document 8, for example.
  • 9 and 10 are graphs for explaining the operation of the converter 4 and the inverter 6 in the second commutation mode. 9 and 10 show the operation at 0 to 30 degrees and the operation at a phase angle of 30 to 90 degrees, respectively, in terms of the phase angle shown in FIGS. 6 to 8.
  • the maximum value of the carrier C is expressed as drt.
  • the maximum value of the carrier C4 is expressed as dst.
  • the value drt is commonly adopted as the command value in the phase angle of 0 to 90 degrees in the converter 4, but as a result, the commutation of the converter 4 does not require comparison between the carrier C and the value drt, and the phase angle
  • the voltage vector V0 is taken in the period from 1-d0) to drt
  • the voltage vector V4 is taken in the period in which the carrier C takes the value drt (1-d0-d4) to drt (1-d0)
  • the carrier C has the value 0.
  • the voltage vector V6 may be used in a period in which .about.drt (1-d0-d4) is used.
  • the conduction pattern of the second switching element may be switched when the carrier C takes the values drt (1-d0-d4) and drt (1-d0).
  • the voltage vector V0 is taken in the period in which the values 0 to dst ⁇ d0 are taken
  • the voltage vector V4 is taken in the period in which the carrier C takes the values dst ⁇ d0 to dst (d0 + d4)
  • the carrier C takes the values dst (d0 + d4) to dst. What is necessary is just to take voltage vector V6 in a period.
  • the conduction pattern of the second switching element may be switched when the carrier C takes the values dst ⁇ d0, dst (d0 + d4).
  • the case where the voltage vector V0 is adopted is illustrated here, so that the DC link current Idc becomes zero during the period when the voltage vector V0 is adopted. Accordingly, the input currents Ir, Is, It are zero without depending on the commutation of the converter 4.
  • the switching elements Qup, Qvp, Qwp are always non-conductive, and the switching element Qwn is always conductive. Become. Therefore, the switching signals Sup, Svp, and Swp are shown as inactive, and the switching signal Swn is shown as active.
  • the switching elements Qun, Qvn, and Qwp are always non-conductive, and the switching element Qwn is always conductive. Therefore, the switching signals Sun, Svn, and Swp are inactive, and the switching signal Swn is active. Yes.
  • the natural commutation mode is a mode in which rectification is performed only by the first diode group without comparing with the carrier when all of the first switching element group is conducted.
  • the commutation of the converter 4 in the second commutation mode does not depend on the operation of the first switching element group as a result.
  • the line voltage commands Vrs * , Vst * , and Vtr * shown in FIG. 7 corresponding to the line current command of the converter 4 have a rectangular wave pattern commonly called 120-degree energization. Therefore, the mode of rectification by the pattern is equivalent to the mode in which all the first switching element groups are made conductive and rectified only by the first diode group. Therefore, the natural commutation mode and the second commutation mode are common in that both are 120-degree energization and can be substituted for each other.
  • the commutation mode of the converter 6 that realizes the 120-degree energization in this way is referred to as a 120-degree energization mode.
  • the control of the power conversion device by energization at 120 degrees is also introduced in Non-Patent Document 6.
  • the commutation of the converter 6 in the natural commutation mode does not require comparison between the carrier C and the value drt as a result.
  • FIG. 11 is a block diagram illustrating a conceptual example of the control unit 8 for performing commutation of the converter 4 and commutation of the inverter 6.
  • the control unit 8 is roughly classified into a converter commutation signal generation unit 81, an inverter commutation signal generation unit 82, and a switching signal generation unit 83.
  • the converter commutation signal generation unit 81 receives the voltage Vr (particularly its phase) at the input terminal Pr and outputs switching signals Srp, Ssp, Stp, Srn, Ssn, Stn.
  • Each of the switching elements Qrp, Qsp, Qtp, Qrn, Qsn, Qtn is turned on / off by the activation / inactivation of the switching signals Srp, Ssp, Stp, Srn, Ssn, Stn, respectively.
  • the inverter commutation signal generator 82 receives the voltage Vr (particularly its phase) and the operation frequency command value f *, and outputs the switching signals Sup, Svp, Swp, Sun, Svn, Swn.
  • the switching signal generator 83 generates the switching signal Scl based on the DC link voltage Vdc (preferably the average value obtained by removing fluctuation due to pulse width modulation from the DC link voltage Vdc) that is a voltage between the DC power supply lines LH and LL. To do.
  • the shorting switch Qcl is turned on / off according to whether the switching signal Scl is active or inactive.
  • the converter commutation signal generation unit 81 includes a trapezoidal voltage command generation unit 11, a comparator 12, and a current source gate logic conversion unit 13. Since these operations are well-known techniques in Patent Documents 3 and 4, detailed description is omitted, but the outline is as follows.
  • the trapezoidal voltage command generation unit 11 generates phase voltage commands Vr * , Vs * , and Vt * that exhibit a trapezoidal wave, for example, based on a predetermined table.
  • the slope region of the trapezoidal wave adopted in the first commutation mode is represented by ⁇ ⁇ 3 ⁇ tan ( ⁇ ) by normalizing the amplitude ( ⁇ is determined for each phase with reference to the phase of the voltage Vr).
  • the phase is ⁇ / 6 ⁇ ⁇ ⁇ ⁇ / 6).
  • the phase voltage commands Vr * , Vs * , Vt * employed in the second commutation mode have a steep slope in the vicinity where the values change.
  • the comparator 12 outputs a result of comparing the carrier C with the phase voltage commands Vr * , Vs * , Vt *, and based on these results, the current source gate logic converter 13 causes the switching signals Srp, Ssp, Stp, Srn, Ssn, and Stn are generated. This generation is described below.
  • FIG. 12 is a circuit diagram showing the configuration of a virtual inverter examined here.
  • the inverter is for examining the switching of the converter 4 and is not directly related to the inverter 6, so the names of a phase, b phase, and c phase are adopted for three-phase alternating current.
  • the inverter has a switch element Qap on the a-phase high arm side and a switch element Qan on the low arm side.
  • the inverter has switching elements Qbp and Qbn in the b phase and switching elements Qcp and Qcn in the c phase, respectively.
  • the a-phase line current is obtained from the difference between the phase current ica between the a-phase and the c-phase and the phase current iba between the b-phase and the a-phase, the a-phase current can be obtained only when switching is performed to pass these pair of phase currents. Flows. The same applies to the line currents of the other phases. Therefore, the symbol Sjk represents whether or not the phase current ijk flows to the upper arm side switch element, and the symbol SjkB represents whether or not the phase current ijk flows to the lower arm side switch element.
  • the symbols j and k are different from each other, but represent the symbols a, b, and c.
  • the symbols Sjk and SjkB take the binary logic “1” / “0”, so that the phase current ijk “flows” / It shall indicate “no flow”.
  • the logical value on the right side of each of the above formulas is the result of comparing the phase voltage and the carrier in the voltage source inverter.
  • the command value of the phase current ijk corresponds to the command value of the phase voltage Vj. Therefore, the logic of the symbol Sjk coincides with the logic of making the switch element Qjp conductive by comparing the phase voltage command Vj * and the carrier, and the logic of the symbol SjkB makes the switch element Qjn conductive by comparing the phase voltage command Vj * and the carrier. It matches the logic.
  • the logic of the symbol SbaB coincides with the logic of making the switch elements Qap and Qbp conductive / non-conductive by comparing the phase voltage command Vb and the carrier, respectively, and the logic of the symbol Sba is the switch element Qbp by comparing the phase voltage command Vb and the carrier. , Qap respectively match the logic for conducting / non-conducting. More specifically, when the phase voltage command Vb is equal to or lower than the carrier C, the switch element Sap is turned on. In the above case, the switch element Qbp is turned on.
  • Symbols Sa + and Sb + indicate periods during which the switch elements Qap and Qbp are turned on when a line current flows.
  • the a-phase, b-phase, and c-phase are read as r-phase, s-phase, and t-phase, respectively, and when the phase voltage command Vs * is equal to or lower than the carrier C, the switch element Qrp becomes conductive, In this case, the switch element Qsp becomes conductive.
  • the minimum value of the carrier C is 0, the value of the voltage command signal Vs corresponds to a period during which the switch element Qrp is turned on.
  • the value of the phase voltage command Vs becomes the reference value drt when obtaining the command value to be compared with the carrier C.
  • the reference value drt defines the commutation timing at which the switching elements Qrp and Qsp of the converter 4 are alternately turned on in a period proportional to the ratio of the values drt and dst.
  • the above description is valid for the values of the voltage commands Vr * and Vt * at other phase angles as well.
  • the result obtained by comparing the phase voltage commands Vr * , Vs * , and Vt * determined as described above with the carrier C is transferred from the comparison unit 12 to the current source gate logic conversion unit 13.
  • the switching signals Srp, Ssp, Stp, Srn, Ssn, Stn are obtained by performing conversion according to the conversion expression shown in the above conversion expression.
  • the carrier generation unit 14 that generates the carrier C may be provided in the converter commutation signal generation unit 81, may be provided in the inverter commutation signal generation unit 82 described below, or belongs to either of them. You may grasp.
  • the inverter commutation signal generation unit 82 includes an output voltage command generation unit 21, an intermediate phase detection unit 22, a command value correction unit 23, a comparator 24, and a logic operation unit 25. Since the operation of the inverter commutation signal generator 82 is also known from Patent Documents 3 and 4, only a brief description will be given.
  • the intermediate phase detection unit 22 determines which of the phase voltage commands Vr * , Vs * , and Vt * corresponds to a so-called intermediate phase.
  • the phase voltage command Vs * corresponds to the intermediate phase at the phase angle of 0 to 60 ° illustrated in FIG.
  • the ratio drt: dst is determined, and the values drt and dst are given to the command value correction unit 23. Since these ratios differ depending on which phase voltage command corresponds to the intermediate phase, in FIG. 11, the values corresponding to the values drt and dst are corrected, including the case where the phase voltage commands Vr * and Vt * are the intermediate phase.
  • the values were described as dx and dy. This expression is adopted below.
  • the line voltage commands Vrs * , Vst * , Vtr * uniquely determined from the phase voltage commands Vr * , Vs * , Vt * is an intermediate phase.
  • the line voltage command Vst * becomes an intermediate phase at a phase angle of 0 to 30 degrees, and the value dst is set to 0 at this time.
  • the line voltage command Vrs * becomes an intermediate phase, and the value drt is set to 0 at this time.
  • the intermediate phase detection unit 22 may be provided in the inverter commutation signal generation unit 82, may be provided in the converter commutation signal generation unit 81 described above, or may be recognized as belonging to either of them. Good.
  • the output voltage command generation unit 21 receives the voltage Vr (particularly its phase) and the operation frequency command value f *, and generates the voltage command values Vu * , Vv * , Vw * of the inverter 6.
  • the generation of such voltage command values Vu * , Vv * , Vw * is a well-known technique and will not be described.
  • the command value correction unit 23 generates a value to be compared with the carrier C for the commutation of the inverter 6 based on the voltage command values Vu * , Vv * , Vw * and the correction values dx, dy.
  • the command value correction unit 23 determines a value based on the voltage command values Vu * , Vv * , Vw *.
  • the command value correction unit 23 also outputs the values 0 and drt + dst. These values are compared with the carrier C in the comparator 24, and the result is input to the logical operation unit 25. Then, the logic operation unit 25 performs an operation based on the comparison result in the comparator 24 to generate the switching signals Sup, Svp, Swp, Sun, Svn, Swn.
  • the switching signal generation unit 83 includes a switching command generation unit 31 and a switching signal generation unit 32.
  • the switching command generation unit 31 determines switching between the first commutation mode and the second commutation mode (or natural commutation mode) based on the DC link voltage Vdc in accordance with a reference to be described later, and issues a switching command J. Generate.
  • the trapezoidal voltage command generation unit 11 switches the type of trapezoidal wave exhibited by the output phase voltage commands Vr * , Vs * , Vt * .
  • the intermediate phase detection in the intermediate phase detection unit 22 is substantially performed by changing the intermediate phase of the phase voltage commands Vr * , Vs * , Vt * to the second phase in the first commutation mode. In the commutation mode, it is preferable to detect intermediate phases of the line voltage commands Vrs * , Vst * , and Vtr * , respectively. Therefore, the intermediate phase detection unit 22 may switch between the phase voltage command and the line voltage command in accordance with the switching command J.
  • the switching signal generator 83 does not need to function as described above, and all the switching signals Srp, Ssp, Stp, Srn, Ssn, Stn may be activated.
  • a switching command J is given to the current source gate logic conversion unit 13.
  • the current source gate logic conversion unit 13 performs the above-described operation.
  • the current source gate logic conversion unit 13 outputs the activated switching signals Srp, Ssp, Stp, Srn, Ssn, Stn.
  • the waveform of the phase voltage commands Vr * , Vs * , Vt * is generated for the second commutation mode, rather than causing the switching signal generator 83 to perform such a special operation for the natural commutation mode.
  • This has the advantage of being easier from the viewpoint of device design. That is, in both the first and second commutation modes, the converter 4 is commutated by comparing the trapezoidal wave and the carrier, so that it is not necessary to design individually according to these commutation modes.
  • the switching signal generator 32 deactivates the switching signal Scl. Further, when the second commutation mode or the natural commutation mode is set as the commutation mode of the converter 4, the switching signal generator 32 activates the switching signal Scl.
  • the switching command J sets the first commutation mode / second commutation mode (or natural commutation mode) will be described below.
  • FIG. 13 is a graph showing the relationship between the clamp voltage supported by the clamp circuit 5 and the load power factor when the shorting switch Qcl is not conducting.
  • the power supply voltage was 415 V (error ⁇ 10%).
  • the horizontal axis represents the load phase angle which is the arctangent value of the load power factor.
  • the capacitors 51 and 52 are connected in series with each other during charging and are connected in parallel with each other during discharging. Therefore, the clamp voltage is shown by two graphs.
  • the regenerative current becomes approximately the same as the current during power running, and the charging current to the clamp circuit 5 increases, and the clamp voltage during discharge becomes the peak value of the power supply voltage. It reaches about 650V which is close to.
  • the shorting switch Qcl it is desirable to make the shorting switch Qcl conductive. This is because the current function during powering and the regenerative current are circulated by stopping the original function of the clamp circuit 5 and simply connecting the clamp circuit 5 to the capacitors 51 and 52 in series.
  • the line voltage command illustrated in FIG. 3 employed in the first commutation mode corresponds to the line current command of the converter 4 as described above, but two switching patterns are mixed. is doing. For example, when the phase angle is 0 to 60 °, switching patterns corresponding to the line voltage commands Vrs * and Vst * are mixed. In this case, if the series connection of the capacitors 51 and 52 is charged to a potential higher than the lower one of the potentials of the input terminals Pr and Ps, the function of the diodes Drp and Dsp of the clamp circuit 5 allows the converter 4 Therefore, it becomes difficult to supply current from the inverter 6 to the inverter 6.
  • the short-circuit switch Qcl is made conductive and the second commutation mode (or natural commutation mode) is employed. More specifically, the second commutation mode or the natural commutation mode is employed when the short-circuit switch Qcl is turned on in the state where the first commutation mode is employed. Note that the first commutation mode is adopted after the time point when the shorting switch Qcl becomes non-conductive.
  • the load power factor can be estimated by detecting the clamp voltage supported by the capacitor, as understood from FIG.
  • the fluctuation of the clamp voltage affects the magnitude of the DC link voltage Vdc, so that the load power factor can be estimated by detecting the DC link voltage Vdc. Therefore, as shown in FIG. 11, the switching command generation unit 31 inputs the DC link voltage Vdc (or clamp voltage), obtains an average value Vdc1 therefrom, and the average value Vdc1 corresponds to the predetermined value for the load power factor.
  • the switching command J can be generated in comparison with the threshold value to be used.
  • the phase angle at which the current polarity is inverted with respect to the current phase angle is delayed by ⁇ / 6.
  • the phase angle of the output voltage of the inverter since the phase angle of the output voltage of the inverter is known, the phase of the load current is detected from the difference between these phase angles, and the power factor based on this is detected.
  • the size can be estimated. That is, instead of the DC link voltage Vdc shown in FIG. 11, the inverter output current zero cross and the inverter output voltage are input as the input to the switching command generator 31, and the phase difference between them and the predetermined value of the load power factor are input. And a switching command J can be generated. As FIG.
  • FIG.6 (d) (e) of patent document 5 was shown.
  • Graphs I_V4 and I_V6 indicate DC currents flowing when the inverter adopts voltage vectors V4 and V6, respectively, and graphs t4 and t6 indicate time ratios when the inverter adopts voltage vectors V4 and V6, respectively.
  • the short-circuit switch Qcl is turned on at the beginning of startup, and this is used as a trigger for the second commutation. It is also preferable to adopt a mode or a natural commutation mode.
  • the converter 4 is commutated in accordance with the second commutation mode or the natural commutation mode until the predetermined period elapses, and the short-circuit switch Qcl is turned off after the predetermined period elapses.
  • the first commutation mode may be adopted after this point. In this way, when the load 7 is a rotating machine, it is possible to cope with a decrease in power factor due to a current that is delayed so that position detection can be performed at the beginning of the load 7.
  • the clamp circuit 5 does not include the diodes 53 and 54, and a so-called CD snubber can be employed.
  • the load power factor is not more than ⁇ 3 / 2
  • the clamp circuit 5 does not function effectively even if the shorting switch Qcl is made non-conductive. Therefore, it is desirable to wait for the switching command J to select the first commutation mode until the load power factor becomes ⁇ 3 / 2 or more.
  • FIG. 15 is a graph showing the relationship between the clamp voltage supported by the clamp circuit 5 and the load power factor when the shorting switch Qcl is not conducting, as in FIG. However, since the power supply voltage is lower than that shown in FIG. 13, the clamp voltage is also low.
  • the clamp circuit 5 discharges the capacitors 51 and 52 connected in parallel, so the clamp voltage is halved.
  • the decrease in the clamp voltage weakens the linkage flux of the rotating machine, and there is a possibility that the current increases and the inverter 6 stops or the operation is stopped due to step-out.
  • FIG. 16 is a graph showing the operation when the clamp circuit 5 is functioning even during an instantaneous power failure.
  • the power supply voltage generated by the power supply 1 is 50 Hz 400 V, and the case where a power failure occurs for a quarter period is illustrated.
  • the power supply phase voltages Vr, Vs, and Vt are voltages at the input terminals Pr, Ps, and Pt, respectively, and the power supply line currents Ir, Is, and It are currents that flow from the capacitor group 3 to the input terminals Ir, Is, and It, respectively.
  • the series voltage Vc is the sum of the voltages supported by the capacitors 51 and 52 in the clamp circuit 5
  • the DC link voltage Vdc is the voltage between the DC power supply lines LH and LL
  • the load line voltage is at the output terminals Pu, Pv and Pw.
  • the difference between the applied voltages Vu, Vv, and Vw (however, the difference between the voltages Vu and Vv is shown in the figure), and the load line currents Iu, Iv, and Iw are respectively obtained from the output terminals Pu, Pv, and Pw.
  • the current flowing out to the load 7 is shown.
  • the switching signal Scl is activated when the average value Vcd1 of the DC link voltage Vdc falls below a first threshold (for example, 400 V).
  • a first threshold for example, 400 V.
  • FIG. 17 and 18 both activate the switching signal Scl as described above.
  • the switching signal Scl is activated, the commutation mode of the converter 4 is set to the 120-degree conduction mode (second commutation mode or natural commutation mode).
  • FIG. 6 is a graph showing an operation when the commutation mode of the converter 4 is set to the first commutation mode when the switching signal Scl is inactive.
  • the power supply voltage generated by the power supply 1 is 50 Hz 400 V, and the case where a power failure occurs for a quarter period is illustrated.
  • the capacitors 51 and 52 are connected in series between the DC power supply lines LH and LL while the switching signal Scl is activated, the DC link voltage Vdc matches the clamp circuit series voltage Vc.
  • FIG. 17 exemplifies a case where the switching signal Scl is deactivated by maintaining a value for which the DC link voltage Vdc exceeds the second threshold (which is equal to or higher than the first threshold, for example, 450 V) for a predetermined period.
  • FIG. 18 illustrates a case where the switching signal Scl is deactivated when the DC link voltage Vdc exceeds a second threshold value (which is equal to or higher than the first threshold value, for example, 600 V).
  • the operation shown in FIG. 17 has an advantage that the DC link voltage Vdc at the time of shifting to the first commutation mode does not become excessive, and the DC link voltage Vdc does not easily become excessive thereafter.
  • the operation shown in FIG. 18 has an advantage that the number of ringing occurring in the power supply line currents Ir, Is, It is small.
  • FIG. 19 is also a graph showing an operation associated with an instantaneous power failure. Similarly to the operation shown in FIGS. 17 and 18, this operation also activates the switching signal Scl when the average value Vdc1 of the DC link voltage Vdc falls below a first threshold (for example, 400 V). The operation shown in FIG. 19 is also in that the switching signal Scl is deactivated when the DC link voltage Vdc exceeds a second threshold value (which is equal to or higher than the first threshold value, for example, 600 V). The operation is the same as that shown in FIG.
  • a delay is provided for a predetermined time from when the switching signal Scl is deactivated to when the operation mode is changed to the 120-degree energization mode. That is, the operations shown in FIGS. 17 to 19 are common in that the first commutation mode is adopted after the point when the shorting switch Qcl becomes non-conductive, but is shown in FIG. The operation is different from the operations shown in FIGS. 17 and 18 in that the first commutation mode is adopted after a predetermined time after the short-circuiting switch Qcl is turned off. .
  • Such a delay of the predetermined time can be realized by counting time in the trapezoidal voltage command generation unit 11 even if the switching command J sets the first commutation mode.
  • the 120-degree energization mode is employed for commutation of the converter 4 from the time when the switching signal Scl is deactivated until the transition to the 120-degree energization mode.
  • the power supply line currents Ir, Is, It are greatly disturbed, but the DC link voltage Vdc is not impaired. .
  • the DC link voltage Vdc may be detected to detect a power failure, and the converter may be commutated using the 120-degree conduction mode at the time of the power failure.
  • the timing for activating the switching signal Scl may be determined not only using the average value Vdc1 but also using the DC link voltage Vdc itself. As shown in FIG. 16 and as described with reference to FIG. 20, the DC link voltage Vdc transitions between envelopes by switching of the converter 4. Therefore, for example, when the first threshold is set to 400 V as described above, the DC link voltage Vdc is discretely set to a value smaller than the first threshold even during normal operation.
  • the sensitivity of the switching command generator 31 with respect to the DC link voltage Vdc may be reduced. Specifically, a long time is required for the switching command generation unit 31 to recognize the magnitude of the DC link voltage Vdc. For example, when the DC link voltage Vdc is maintained below the first threshold value for a predetermined period, the switching command J is generated and the shorting switch Qcl is turned on.
  • comparing the average value Vdc1 with the first threshold value is advantageous in that it is not necessary to continuously measure the DC link voltage Vdc for a predetermined period.
  • the function for obtaining the average value Vdc1 from the DC link voltage Vdc may be performed by the switching command generator 31.
  • the function may be assigned to a separately provided calculation unit or integration circuit, and the average value Vdc1 may be input to the switching command generation unit 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 電力変換装置において回生電流の吸収と直接形交流電力変換とを両立する。クランプ回路(5)を介在してコンバータ(4)とインバータ(6)とが接続される。コンバータ(4)は台形波とキャリアとを比較する第1の転流モードと、120度通電モードとのいずれかに則って転流する。クランプ回路(5)のダイオード(Dcl)は短絡用スイッチ(Qcl)によって短絡される。力率低下、電源電圧の低下に際して、短絡用スイッチ(Qcl)が導通し、クランプ回路(5)のコンデンサ(51),(52)は直流電源線(LL,LH)の間で直列に接続される。短絡用スイッチ(Qcl)が導通する間は、コンバータ(4)は第1の転流モードに則らず、120度通電モードに則って転流する。

Description

電力変換装置
 この発明は電力変換装置に関し、特にクランプ回路(スナバも含む)直接形交流電力変換装置に関する。
 インバータの代表的な主回路構成として、いわゆる間接形交流電力変換回路が一般に用いられている。間接形交流電力変換回路では交流を整流し、平滑回路を介して直流に変換し、電圧形変換器により交流出力が得られる。
 一方、交流電圧から直接に交流出力を得る方式として、マトリックスコンバータを代表とする直接形交流電力変換装置が知られている。直接形交流電力変換装置は、商用周波数による電圧脈動を平滑する大型のコンデンサや、リアクトルが不要となることから、変換器の小型化が期待でき、次世代の電力変換器として近年注目されつつある。
 例えば特許文献1乃至4には、直流リンクに平滑回路を介することなく交流から直接交流へ変換する技術が開示されている。特に特許文献3,4では、コンバータが転流するタイミングを、相互に位相が120度ずれる三つの台形波とキャリアとの比較結果によって決定することで、コンバータとインバータの制御を簡易にすることが企図されている。
 また特許文献5には、要求される耐圧が小さな素子を用いたクランプ回路を採用し、直接形交流電力変換装置における回生電流の問題の解決を企図する技術が開示されている。
 なお、本願に関連するものとして特許文献6,7,8を挙げる。特許文献6には、供給される電流を大きくかつ遅相にして、モータの回転位置推定の誤差を削減する技術が開示されている。特許文献7には、間接形交流電力変換回路において電源の瞬停/再起動に対応する技術が開示されている。特許文献8には、コンバータの自然転流モードと等価なダイオードブリッジを用いた電力変換について記載されている。
 なお、本願に関連する文献として更に非特許文献1乃至6を挙げておく。
特開2004-222337号公報 特開2004-266972号公報 特開2007-312589号公報 国際公開第2007/123118号 特開2007-295686号公報 特許第3806872号公報 特開平5-56682号公報 特許第2524771号公報 Lixiang Wei, Thomas A Lipo,"A Novel Matrix Converter Topology With Simple Commutation", IEEE IAS 2001, vol.3, 2001, pp1749-1754. 伊藤里絵、高橋勲、「マトリクスコンバータにおける入出力無効電力の非干渉制御法」、電気学会半導体電力変換研究会SPC-01-121,2001 加藤康司、伊藤淳一、「昇圧形AC/DC/AC直接形電力変換器の波形改善」、平成19年電気学会全国大会4-098(2007)、第4分冊153~154頁 加藤康司、伊藤淳一、「入力電流に着目した昇圧形AC/DC/AC直接形電力変換器の波形改善」、平成19年電気学会産業応用部門大会1-31,I-279~282頁 竹下隆晴、外山浩司、松井信行、「電流形三相インバータ・コンバータの三角波比較方式PWM制御」、電気学会論文誌D、vol.116、No.1、第106~107頁、1996 Siyoung Kim, Seung-Ki Sul, Thomas A. Lipo, "AC/AC Power Conversion Based on Matrix Converter Topology with Unidirectional Switches", IEEE trans. on Industry applications, vol.36,No.1, 2000, pp139-145.
 電流形コンバータ-直流リンク-電圧形インバータの順に接続された直接形交流電力変換装置に特許文献3,4に示される技術を適用すると、コンバータが直流リンクの電圧を反転させることができない。よって、負荷力率が低い場合には回生電流を処理できなくなり、直流リンクに過電圧が発生する。
 そこで、特許文献5で採用されるように、コンデンサを有するクランプ回路を採用することにより、これに回生電流を吸収させることが考えられる。より具体的には二つのコンデンサの直列接続に対する充電によってコンデンサの充電電圧が上昇し、並列接続からの放電電流が大きくなって電流が環流し、クランプ電圧の平衡化が行われる(特許文献5の図3参照)。
 この方式は、負荷力率が0.5以上であれば、クランプ電圧を電源電圧の波高値の1.4倍以下とすることができ(特許文献5の図7参照)、定常運転における電動機の負荷力率には十分対応できることが示されている。
 しかし、特許文献6に示されるような位置検出方法を採用して、力率が大幅に低下した運転が行われる場合においては、特許文献5のクランプ回路で十分に対応できない。そして通常、起動時に位置検出が実行されることに鑑みれば、直流リンクにおけるクランプ電圧が過電圧となり、起動が困難となる可能性もある。
 また、特許文献7に示されるような電源の瞬停が発生した場合には、クランプ電圧の不足によって運転の継続が困難となる可能性もある。特許文献3,4に示される技術を適用することにより、コンバータへと電源電圧が正常に供給されている場合に直流リンクに対して最大相と最小相との電位差、最大相又は最小相と中間相との電位差、のいずれかが印加される。しかしながら電源の瞬停が発生するとこれらの電位差が小さくなり、クランプ電圧は小さくなる。この傾向は、クランプ回路から放電電流が流れるときに二つのコンデンサが並列接続されることで顕著となる。
 そこで本願にかかる発明は、電力変換装置において回生電流の吸収と直接形交流電力変換とを両立することを目的としている。
 この発明にかかる電力変換装置は、それぞれ三相交流の相電圧が入力される3つの入力端(Pr,Ps,Pt)と、3つの出力端(Pu,Pv,Pw)と、第1及び第2の直流電源線(LH,LL)と、前記入力端の各々と前記第1の直流電源線との間に接続された3つのスイッチング素子(Qrp,Qsp,Qtp)と、前記入力端の各々と前記第2の直流電源線との間に接続された3つのスイッチング素子(Qrn,Qsn,Qtn)とを含む第1スイッチング素子群を有する電流形コンバータ(4)と、前記出力端の各々と前記第1の直流電源線との間に接続された3つのスイッチング素子(Qup,Qvp,Qwp)と、前記出力端の各々と前記第2の直流電源線との間に接続された3つのスイッチング素子(Qun,Qvn,Qwn)とを含む第2スイッチング素子群を有する電圧形インバータ(6)と、前記第1及び第2の直流電源線にそれぞれ接続されたアノード及びカソードを含むクランプダイオード(Dcl)と、前記第1及び第2の直流電源線において前記クランプダイオードと直列に接続されたコンデンサ(51;52;51,52)及び前記クランプダイオードに並列に接続された短絡用スイッチ(Qcl)とを有するクランプ回路(5)とを備える。
 そしてその第1の態様では、前記コンバータは、いずれもが360度周期であって互いに位相が120度ずれる三つの台形波とキャリアとの比較結果によって決定される、第1の転流モードと120度通電モードのいずれかに従って転流する。前記第1の転流モードにおいて前記台形波の各々は、120度区間で連続する平坦区間の一対と、これら一対の平坦区間をつなぐ60度区間の傾斜領域の一対を有する。前記コンバータは、前記第1の転流モードにおいては、前記平坦区間の一対の間で遷移する前記台形波と前記キャリアとの比較によって転流する。前記第1の転流モードが採用されている状態で前記短絡用スイッチが導通することを契機として、前記120度通電モードが採用され、前記短絡用スイッチが非導通となる時点以降で前記第1の転流モードが採用される。
 この発明にかかる電力変換装置の第2の態様は、その第1の態様であって、前記短絡用スイッチは、前記出力端に接続される負荷(7)の力率が所定値を下回るときに導通する。
 この発明にかかる電力変換装置の第3の態様は、その第2の態様であって、前記負荷(7)は回転機であり、起動当初の所定期間は前記120度通電モードに従って前記コンバータ(4)が転流する。
 この発明にかかる電力変換装置の第4の態様は、その第1の態様であって、前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧が第1の閾値以下を所定期間維持するときに導通する。あるいは前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧を前記キャリアの一周期内で平均して得られた平均値が、第1の閾値以下であるときに導通する。
 例えば電力変換装置の第4の態様において、前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧が前記第1の閾値以上の第2の閾値を超える値を所定期間維持したことを以て非導通となり、前記短絡用スイッチが非導通となったことを契機として前記第1の転流モードが採用される。
 あるいは例えば電力変換装置の第4の態様において、前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧が前記第1の閾値以上の第2の閾値を超えたことを契機として非導通となる。
 そして好ましくは前記短絡用スイッチが非導通となったことを契機として前記第1の転流モードが採用される。あるいは前記短絡用スイッチが非導通となってから所定期間が経過後に前記第1の転流モードが採用される。
 この発明にかかる電力変換装置の第5の態様は、その第1乃至第4の態様のいずれかであって、前記クランプ回路(5)において、前記コンデンサは相互に直列に接続される第1のコンデンサ(51)と第2のコンデンサ(52)とに区分され、前記クランプダイオード(Dcl)の前記アノードは前記第1のコンデンサを介して前記第1の直流電源線(LH)に、前記カソードは前記第2のコンデンサを介して前記第2の直流電源線(LL)に、それぞれ接続され、前記クランプ回路は、前記クランプダイオードの前記カソードに接続されたアノードと、前記第1の直流電源線に接続されたカソードとを有する第1のダイオード(53)と前記クランプダイオードの前記アノードに接続されたカソードと、前記第2の直流電源線に接続されたアノードとを有する第2のダイオード(54)とを更に有する。
 この発明にかかる電力変換装置の第6の態様は、その第1乃至第5の態様のいずれかであって、前記120度通電モードは第2の転流モードであり、前記第2の転流モードにおいて前記台形波の各々は、180度区間で連続する平坦区間の一対を有し、前記コンバータは、前記第2の転流モードにおいては、前記平坦区間の一対の間で遷移する前記台形波と前記キャリアとの比較によって転流する。
 この発明にかかる電力変換装置の第7の態様は、その第1乃至第5の態様のいずれかであって、前記120度通電モードは、前記第1スイッチング素子群の全てが導通する自然転流モードである。
 この発明にかかる電力変換装置の第1の態様によれば、出力端に接続される負荷の力率の低下や入力端に接続される電源の瞬時電圧低下に対応するために短絡用スイッチを導通させてクランプ回路の本来的な機能を停止させる場合であっても、短絡用スイッチを導通させずにクランプ回路の本来的な機能を発揮させる場合であっても、コンバータの転流モードを適切に変更し、回生電流の吸収と直接形交流電力変換とを両立できる。
 この発明にかかる電力変換装置の第2の態様によれば、力率低下によって増大する回生電流に起因した第1の転流モードの機能不全を回避する。
 この発明にかかる電力変換装置の第3の態様によれば、起動当初において回転機の位置検出を行うべく遅相となる電流に起因した力率の低下に対処する。
 この発明にかかる電力変換装置の第4の態様によれば、直流電圧の低下に起因した第1の転流モードの機能不全を回避する。
 この発明にかかる電力変換装置の第5の態様によれば、短絡用スイッチが非導通しているときは、第1及び第2のコンデンサが直列接続された経路で充電され、第1及び第2のコンデンサが並列接続された経路で放電されるので、第1及び第2のコンデンサに要求される耐圧が小さくて足りる。また短絡用スイッチが導通しているときは、第1及び第2のコンデンサが直列接続された経路で充放電され、クランプ回路としての機能が停止される。
 この発明にかかる電力変換装置の第6の態様によれば、コンバータは、第1及び第2の転流モードのいずれにおいても台形波と前記キャリアとの比較によって転流するので、これらの転流モードに応じて個別に設計を行う必要がない。
 この発明にかかる電力変換装置の第7の態様によれば、120度通電モードにおいて台形波とキャリアの比較を行う必要はない。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本願にかかる直接形電力変換器の構成を例示する回路図である。 第1の転流モードに採用される台形波を例示するグラフである。 第1の転流モードにおける線間電圧指令を示すグラフである。 第1の転流モードにおいて振幅変調補正を行うための補正値を例示するグラフである。 第1の転流モードにおけるコンバータとインバータの動作を説明するグラフである。 第2の転流モードに採用される台形波を例示するグラフである。 第2の転流モードにおける線間電圧指令を示すグラフである。 第2の転流モードにおいて振幅変調補正を行うための補正値を例示するグラフである。 第2の転流モードにおけるコンバータとインバータの動作を説明するグラフである。 第2の転流モードにおけるコンバータとインバータの動作を説明するグラフである。 コンバータやインバータの転流を行うための制御部の概念的な一例を示すブロック図である。 仮想的なインバータの構成を示す回路図である。 クランプ回路5が支持するクランプ電圧と、負荷力率との関係を示すグラフである。 特許文献5の図6(d)(e)を示す図である。 クランプ回路5が支持するクランプ電圧と、負荷力率との関係を示すグラフである。 瞬時停電のときにもクランプ回路が機能している場合の動作を示すグラフである。 コンバータの転流モードを切り替えた動作を示すグラフである。 コンバータの転流モードを切り替えた動作を示すグラフである。 コンバータの転流モードを切り替えた動作を示すグラフである。 直流リンク電圧及びその平均値を示すグラフである。
 図1は本願にかかる直接形電力変換装置9の構成を例示する回路図である。直接形電力変換装置9は、コンバータ4、クランプ回路5、インバータ6をこの順に接続して備えている。
 直接形電力変換装置9は、電源1から三相交流の相電圧が入力される3つの入力端Pr,Ps,Ptと、負荷7が接続される3つの出力端Pu,Pv,Pwとを備えている。直接形電力変換装置9は、直流リンクとなる直流電源線LH,LLをも備えている。コンバータ4の機能により、直流電源線LHは直流電源線LLよりも高電位となる。
 コンバータ4は6つのスイッチング素子Qrp,Qsp,Qtp,Qrn,Qsn,Qtnを含む。これらは説明の都合上、第1スイッチング素子群と称することもある。スイッチング素子Qrp,Qsp,Qtpはそれぞれ入力端Pr,Ps,Ptと直流電源線LHとの間に接続され、スイッチング素子Qrn,Qsn,Qtnはそれぞれ入力端Pr,Ps,Ptと直流電源線LLとの間に接続される。コンバータ4はいわゆる電流形コンバータを構成し、6つのダイオードDrp,Dsp,Dtp,Drn,Dsn,Dtnを含む。これらは説明の都合上、第1ダイオード群と称することもある。
 ダイオードDrp,Dsp,Dtp,Drn,Dsn,Dtnはいずれもそのカソードが直流電源線LH側に、そのアノードが直流電源線LL側に配置される。ダイオードDrpは、入力端Prと直流電源線LHとの間で、スイッチング素子Qrpと直列に接続される。同様にして、ダイオードDsp,Dtp,Drn,Dsn,Dtnは、それぞれスイッチング素子Qsp,Qtp,Qrn,Qsn,Qtnと直列に接続される。
 インバータ6は6つのスイッチング素子Qup,Qvp,Qwp,Qun,Qvn,Qwnを含む。これらは説明の都合上、第2スイッチング素子群と称することもある。スイッチング素子Qup,Qvp,Qwpはそれぞれ出力端Pu,Pv,Pwと直流電源線LHとの間に接続され、スイッチング素子Qun,Qvn,Qwnはそれぞれ出力端Pu,Pv,Pwと直流電源線LLとの間に接続される。インバータ6はいわゆる電圧形インバータを構成し、6つのダイオードDup,Dvp,Dwp,Dun,Dvn,Dwnを含む。これらは説明の都合上、第2ダイオード群と称することもある。
 ダイオードDup,Dvp,Dwp,Dun,Dvn,Dwnはいずれもそのカソードが直流電源線LH側に、そのアノードが直流電源線LL側に配置される。ダイオードDupは、出力端Puと直流電源線LHとの間で、スイッチング素子Qupと並列に接続される。同様にして、ダイオードDvp,Dwp,Dun,Dvn,Dwnは、それぞれスイッチング素子Qvp,Qwp,Qun,Qvn,Qwnと並列に接続される。
 クランプ回路5では、クランプダイオードDclと、コンデンサ51,52が直流電源線LH,LLの間に接続される。具体的にはクランプダイオードDclのアノードが直流電源線LH側に、カソードが直流電源線LL側に、それぞれコンデンサ51,52を介して接続される。そしてクランプダイオードDclと並列に短絡用スイッチQclが接続される。
 なお、放電時にコンデンサ51,52が並列に接続されるべく、ダイオード53,54を設けてもよい。具体的には、ダイオード53のアノード及びカソードが、それぞれクランプダイオードDclのカソード及び直流電源線LHに接続される。またダイオード54のアノード及びカソードが、それぞれ直流電源線LL及びクランプダイオードDclのアノードに接続される。
 短絡用スイッチQclが非導通しているときは、コンデンサ51,52は両者が直列接続された経路で充電され、両者が並列接続された経路で放電されるので、これらのコンデンサに要求される耐圧が小さくて足りる(特許文献5参照)。短絡用スイッチが導通しているときは、コンデンサ51,52は両者が直列接続された経路で充放電され、クランプ回路5はその本来的な機能が停止される。
 例えば第1スイッチング素子群及び第2のスイッチング素子群のそれぞれのスイッチング素子や短絡用スイッチQclにはIGBT(絶縁ゲート型バイポーラトランジスタ)が採用される。
 なお、ダイオード53,54を設けない場合、クランプ回路5は、コンデンサ51,52の直列接続を一纏めとして捉えれば、これとクランプダイオードDclとで、いわゆるCDスナバとしての構成を呈することになる。本願ではかかるCDスナバもクランプ回路に含めて把握する(当該明細書の[技術分野]参照)。
 電源1と入力端Pr,Ps,Ptとの間にはリアクトル群2とコンデンサ群3とが介在する。リアクトル群2を構成する各々のリアクトルには並列に抵抗が接続されているが、これらの抵抗は省略できる。リアクトル群2とコンデンサ群3の機能は周知であり、本願発明と直接的な関係は薄いので、本願ではリアクトル群2とコンデンサ群3の説明を省略する。
 負荷7は例えば回転機であり、誘導性負荷であることを示す等価回路で図示されている。
 コンバータ4は、以下で詳述する第1の転流モード、第2の転流モード、自然転流モードに従って転流する。
 第1の転流モード、第2の転流モードのいずれも、360度周期であって互いに位相が120度ずれる三つの台形波とキャリアとの比較結果によって転流のタイミングを決定する。第1の転流モードにおいて台形波の各々は、120度区間で連続する平坦区間の一対と、これら一対の平坦区間をつなぐ60度区間の傾斜領域の一対を有する。
 第2の転流モードにおいて台形波の各々は、180度で連続する平坦区間の一対を有し、実質的には矩形波である。一般に「台形」という概念は「矩形」を含むため、本願ではキャリアとの比較において第2の転流モードで用いる矩形波も、第1の転流モードでキャリアと比較される台形波と同様に、台形波と呼称する。
 第1の転流モード、第2の転流モードのいずれも、平坦区間の一対の間で遷移する台形波とキャリアとの比較によって転流する。
 <第1の転流モード>
 第1の転流モードは既に特許文献3,4において示された転流技術である。台形波の内で60度区間の傾斜領域とキャリアとの比較結果に基づいてコンバータ4が転流する。図2は当該台形波を例示するグラフである。横軸には位相角360度分を示した。当該グラフにおいて相電圧ベクトルV4,V6,V2,V3,V1,V5が記された略三角形の領域のそれぞれは、記された当該相電圧ベクトルが対応するスイッチングのパターンの割合を示す。つまり位相角0度では相電圧ベクトルV4に相当するスイッチングのみが実行され、位相角30度では相電圧ベクトルV4に相当するスイッチングと、相電圧ベクトルV4に相当するスイッチングとが1:1の割合で実行され、位相角60度では相電圧ベクトルV6に相当するスイッチングのみが実行される。
 なお、相電圧ベクトルに付記された数字を二進数に変換して得られる三桁の数字の各桁は、仮想的な電圧形コンバータにおけるスイッチング素子群の相毎の導通/非導通を示す。例えば相電圧ベクトルV4は仮想的なコンバータが電源のr相電圧を直流電源線LHへと、s相電圧及びt相電圧を直流電源線LLへと、それぞれ与えるパターンを示している。
 既に特許文献3,4において示されたとおり、キャリアと比較されるべき電流形コンバータの指令値は、電流と電圧との双対性から、仮想的な電圧形コンバータの相電圧指令Vr*,Vs*,Vt*とキャリアとの比較に基づいて行うことができる。上述のように、キャリアと比較されるのは台形波のうち、60度区間の傾斜領域である。よってキャリアとの比較対象として、相電圧指令Vr*,Vs*,Vt*のうち、最大値を採るものでもなければ最小値を採るものでもない、いわゆる中間相に相当するものを抽出すればよい。
 より具体的にはこれらの相電圧指令Vr*,Vs*,Vt*から得られる線間電圧指令Vrs*,Vst*,Vtr*と、電流形コンバータの線電流指令(例えば非特許文献1参照)とが等価である。よって相電圧指令Vr*,Vs*,Vt*から非特許文献5に基づく論理演算を適用して、電流形コンバータの指令値を求めることができる。図3は線間電圧指令Vrs*,Vst*,Vtr*を示すグラフである。
 既に非特許文献1や特許文献3,4において示されたとおり、第1の転流モードでコンバータを転流させることにより線電流はほぼ正弦波形となるものの、直流リンク電圧の平均値が脈動する。具体的には当該平均値は、60度区間毎にその中央で極大値を採り、その極大値の√3/2の値を最小値として当該区間の両端に呈する。なお非特許文献1や特許文献3,4においては、脈動する電圧の振幅は相電圧の3/2であるので、三相電圧の線間電圧が印加される直流リンク電圧を基準とすると最小値は極大値の√3/2となる。
 図20は直流リンク電圧Vdcの包絡線E1,E2及び直流リンク電圧Vdcの平均値Vdc1を示すグラフである。包絡線E1,E2は、それぞれ最大相電圧と最小相電圧の差、中間相電圧と最小相電圧の差に相当する。平均値Vdc1は、直流リンク電圧Vdcからパルス幅変調による変動を除いた値である。直流リンク電圧Vdcは包絡線E1,E2の間をコンバータ4のスイッチングによって遷移するため、省略している。そして平均値Vdc1は(√3/2)Em/Vmで表される(詳細な導出は非特許文献1や特許文献3,4参照)。ここでEmは最大相電圧と最小相電圧の差の最大値であり、Vmは最大相電圧の絶対値である。平均値Vdc1はコンバータのキャリアの一周期内で直流リンク電圧Vdcを平均した値となる。
 この平均値Vcd1の脈動を補正して三相平衡を実現するためには、線間電圧指令に対して振幅変調補正を行うことが望ましい。図4はかかる振幅変調補正を行うための補正値を例示するグラフである。かかる補正は例えば非特許文献1に例示されている。
 今、コンバータ4のスイッチング素子Qtnが導通しつつ、スイッチング素子Qtp,Qrn,Qsnが非導通であって、スイッチング素子Qrp,Qspが相補的に導通する状況を考える。スイッチング素子Qrpが導通する期間と、スイッチング素子Qspが導通する期間との比は、それぞれ図3の線間電圧指令Vrs*の値と線間電圧指令Vst*の値との比に等しい。よってスイッチング素子Qrpが導通する期間と、スイッチング素子Qspが導通する期間との比をdrt:dstとして説明を続ける。
 図5は第1の転流モードにおけるコンバータ4とインバータ6の動作を説明するグラフである。ここではコンバータ4の転流に用いられるキャリアCとして、その値が0~drt+dstまで変動し、周期tsの三角波(鋸歯波でもよい)を採用する。キャリアCが0~drtの値を採るときにスイッチング素子Qrpが導通し、drt~drt+dstの値を採るときにスイッチング素子QSpが導通する制御を行うことにより、スイッチング素子Qrpが導通する期間と、スイッチング素子Qspが導通する期間との比をdrt:dstにできる。
 入力電流Ir,Is,Itはそれぞれ入力端Pr,Psに流れ込む電流及び入力端Ptから流れ出す電流を示している。またDCリンク電流Idcは直流リンク部を流れる電流であり、ここではクランプ回路5に流れる電流を無視して考えて、直流電源線LH,LLを流れる電流である。
 インバータ6側の転流に用いられるキャリアCも、コンバータ4の転流に用いられるキャリアCと共有する。インバータ6の転流が電圧ベクトルV0,V4,V6を繰り返して採用する場合が図5に例示されている。但し、インバータ6での電圧ベクトル(図5)とコンバータ4の転流で採用される仮想的な相電圧ベクトル(図2)とは直接の関係はない。インバータ6の転流で採用される電圧ベクトルに付記された数字を二進数に変換して得られる三桁の数字の各桁は、第2のスイッチング素子群の相毎の導通/非導通を示す。例えば電圧ベクトルV4はインバータ6が直流電源線LHを出力端Puに接続し、直流電源線LLを出力端Pv,Pwへと接続するパターンを示している。
 この場合、電圧ベクトルV0,V4,V6を採る期間の比をそれぞれd0,d4,d6(但しd6=1-d0-d4)で示せば、既に特許文献3,4において示されたとおり、キャリアCが値drt(1-d0)~drt+dst・d0を採る期間で電圧ベクトルV0を採り、キャリアCが値drt+dst・d0~drt+dst(d0+d4)を採る期間及び値drt(1-d0-d4)~drt(1-d0)を採る期間で電圧ベクトルV4を採り、キャリアCが値0~drt(1-d0-d4)を採る期間及び値drt+dst(d0+d4)~drt+dstを採る期間で電圧ベクトルV6を採ればよい。
 換言すればキャリアCが値drt(1-d0-d4),drt(1-d0),drt+dst・d0,drt+dst(d0+d4)を採る時点を契機として、第2のスイッチング素子の導通パターンを切り替えればよい。
 なお、スイッチング素子Qup,Qvp,Qwp,Qun,Qvn,Qwnは、図5のスイッチング信号Sup,Svp,Swp,Sun,Svn,Swnの活性/非活性(グラフ上では高電位/低電位として示される)によって、それぞれ導通/非導通するとした。
 ここではインバータ6の転流が電圧ベクトルV0,V4,V6を採用して繰り返される場合を例示しているため、スイッチング素子Qwpは常に非導通、スイッチング素子Qwnは常に導通となる。よってスイッチング信号Swp,Swnはそれぞれ非活性、活性として示されている。
 また、電圧ベクトルV0が採用されている期間はスイッチング素子Qwnを除いて第2のスイッチング素子の全てが非導通となるので、DCリンク電流Idcは当該期間で零となる。これに伴い、コンバータ4がキャリアCが値drtを採る時点で転流するにも拘わらず、入力電流Ir,Is,Itは零となっている。
 <第2の転流モード>
 第2の転流モードでキャリアと比較される台形波は、実質的に矩形波であるので、平坦区間の一対の間で遷移する期間は非常に短い。
 図6は当該台形波を例示するグラフである。図6では図2と同様にして横軸を採り、相電圧ベクトルV4,V6,V2,V3,V1,V5を記載した。位相角0~30度では相電圧ベクトルV4に相当するスイッチングのみが実行され、位相角30度~90度では相電圧ベクトルV6に相当するスイッチングのみが実行される。
 よって第2の転流モードにおいて相電圧指令Vr*,Vs*,Vt*から得られる線間電圧指令Vrs*,Vst*,Vtr*として位相角0~30度において採用される値は、図3において位相角0度で採用される値となる。また位相角30~90度において採用される値は、図3において位相角60度で採用される値となる。このようにして、線間電圧指令Vrs*,Vst*,Vtr*は、図7のグラフで示されるように、矩形波となる。
 従って電流形コンバータでキャリアと比較される値は位相角0~30度においてdst=0となり、位相角30~90度においてdrt=0となる。
 なお、第2の転流モードでは、詳細な説明は省略するが、中間相の相電圧は直流リンクに印加されないために直流リンク電圧の平均値の脈動が最大相電圧と最小相電圧の差の脈動となる。この脈動は従って、第1の転流モードのそれとは波形の山谷が反対となる。そしてその振幅を補正して三相平衡を実現するため、線間電圧指令に対して振幅変調補正を行うことが望ましい。図8はかかる振幅変調補正を行うための補正値を例示するグラフである。かかる補正は例えば特許文献8に例示されている。
 図9及び図10は、第2の転流モードにおけるコンバータ4とインバータ6の動作を説明するグラフである。図9及び図10は、図6乃至図8で示された位相角に換算して、それぞれ0~30度における動作と、位相角30~90度における動作とを示している。
 上述のように位相角0~30度においてコンバータ4でキャリアCと比較される値はdst=0となるので、キャリアCの最大値はdrtと表される。また位相角30~90度においてコンバータ4でキャリアCと比較される値はdrt=0となるので、キャリアC4の最大値はdstと表される。つまりコンバータ4では位相角0~90度において共通して値drtが指令値として採用されるが、結果的にはコンバータ4の転流はキャリアCと値drtとの比較を必要とせず、位相角0~30度において入力電流Ir=It,Is=0となり、位相角30~90度において入力電流Is=It,Ir=0となる。
 よって位相角0~30度におけるインバータ6側の転流(図9)では、第1の転流モードにおける電圧側インバータの比較(図5参照)においてdst=0とおいて、キャリアCが値drt(1-d0)~drtを採る期間で電圧ベクトルV0を採り、キャリアCが値drt(1-d0-d4)~drt(1-d0)を採る期間で電圧ベクトルV4を採り、キャリアCが値0~drt(1-d0-d4)を採る期間で電圧ベクトルV6を採ればよい。
 換言すればキャリアCが値drt(1-d0-d4),drt(1-d0)を採る時点を契機として、第2のスイッチング素子の導通パターンを切り替えればよい。
 同様にして、位相角30~90度におけるインバータ6側の転流(図10)では、第1の転流モードにおける電圧側インバータの比較(図5参照)においてdrt=0とおいて、キャリアCが値0~dst・d0を採る期間で電圧ベクトルV0を採り、キャリアCが値dst・d0~dst(d0+d4)を採る期間で電圧ベクトルV4を採り、キャリアCが値dst(d0+d4)~dstを採る期間で電圧ベクトルV6を採ればよい。
 換言すればキャリアCが値dst・d0,dst(d0+d4)を採る時点を契機として、第2のスイッチング素子の導通パターンを切り替えればよい。
 また第1の転流モードと同様に、ここでも電圧ベクトルV0を採用する場合を例示したので、電圧ベクトルV0が採用される期間においてはDCリンク電流Idcが零となる。これに伴い、コンバータ4の転流に依存せずに入力電流Ir,Is,Itは零となっている。
 またインバータ6の転流が電圧ベクトルV0,V4,V6を採用して繰り返される場合を例示しているため、図9ではスイッチング素子Qup,Qvp,Qwpは常に非導通、スイッチング素子Qwnは常に導通となる。よってスイッチング信号Sup,Svp,Swpは非活性として、スイッチング信号Swnは活性として、それぞれ示されている。また図10ではスイッチング素子Qun,Qvn,Qwpは常に非導通、スイッチング素子Qwnは常に導通となるので、スイッチング信号Sun,Svn,Swpは非活性として、スイッチング信号Swnはは活性として、それぞれ示されている。
 <自然転流モード>
 自然転流モードは、第1スイッチング素子群の全てが導通することにより、キャリアとの比較を行わずに第1ダイオード群のみで整流するモードである。
 上述の説明から明白なように、第2の転流モードでのコンバータ4の転流は、結果的には第1のスイッチング素子群の動作に依存しない。具体的には、コンバータ4の線電流指令に相当する図7で示された線間電圧指令Vrs*,Vst*,Vtr*が120度通電と通称されるパターンの矩形波を呈している。よって当該パターンによる整流のモードは、全ての第1のスイッチング素子群を導通させて、第1ダイオード群のみで整流するモードと等価である。よって自然転流モードと第2の転流モードとは、いずれも120度通電である点で共通し、相互に代替可能である。本願ではこのように120度通電を実現するコンバータ6の転流モードを120度通電モードと称する。なお、120度通電による電力変換装置の制御は非特許文献6にも紹介されている。
 自然転流モードにおけるコンバータ6の転流も、第2の転流モードと同様に、結果的にはキャリアCと値drtとの比較を必要としない。
 次に、上述のスイッチングを行うための具体的な構成を例示的に説明する。図11はコンバータ4の転流やインバータ6の転流を行うための制御部8の概念的な一例を示すブロック図である。制御部8は大別してコンバータ転流信号生成部81と、インバータ転流信号生成部82と、切り替え信号生成部83とに区分される。
 <コンバータ4の転流>
 コンバータ転流信号生成部81は、入力端Prの電圧Vr(特にその位相)を入力し、スイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnを出力する。スイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnの活性/非活性により、それぞれスイッチング素子Qrp,Qsp,Qtp,Qrn,Qsn,Qtnの各々が導通/非導通する。
 インバータ転流信号生成部82は、電圧Vr(特にその位相)と運転周波数の指令値f*を入力し、スイッチング信号Sup,Svp,Swp,Sun,Svn,Swnを出力する。
 切り替え信号生成部83は、直流電源線LH,LLの間の電圧である直流リンク電圧Vdc(望ましくは直流リンク電圧Vdcからパルス幅変調による変動を除いた平均値)に基づいて切り替え信号Sclを生成する。切り替え信号Sclの活性、非活性に応じて、短絡用スイッチQclがそれぞれ導通/非導通する。
 コンバータ転流信号生成部81は、台形状電圧指令生成部11と、比較器12と、電流形ゲート論理変換部13とを有する。これらの動作は特許文献3,4で公知な技術であるので詳細な説明は省略するが、概略は以下の通りである。
 台形状電圧指令生成部11は例えば所定のテーブルに基づいて、台形波を呈する相電圧指令Vr*,Vs*,Vt*を生成する。例えば第1の転流モードで採用される台形波の傾斜領域は、その振幅を正規化して±√3・tan(θ)で示される(θは電圧Vrの位相を基準として各相毎に定まる位相であって-π/6≦θ≦π/6)。また第2の転流モードで採用される相電圧指令Vr*,Vs*,Vt*は、その値が遷移する近傍において急峻な傾斜を有する。
 比較器12は、キャリアCと相電圧指令Vr*,Vs*,Vt*とを比較した結果を出力し、これらの結果に基づいて電流形ゲート論理変換部13がスイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnを生成する。この生成について以下に述べる。
 前掲した非特許文献5には、電圧形インバータの相電圧と電流形インバータの相電流との双対性、及び電圧形インバータの線間電圧と電流形インバータの相電流との双対性に鑑みて、線電流指令値に基づくスイッチングと相電流指令値に基づくスイッチングとの対応関係について教示している。
 図12はここで検討する仮想的なインバータの構成を示す回路図である。当該インバータは、コンバータ4のスイッチングについて検討するためのものであり、インバータ6とは直接には関係ないので、三相交流についてa相、b相、c相との名称を採用する。当該インバータはa相のハイアーム側にスイッチ素子Qapを、ローアーム側にスイッチ素子Qanを、それぞれ有している。当該インバータは同様にして、b相においてスイッチ素子Qbp,Qbnを、c相においてスイッチ素子Qcp,Qcnを、それぞれ有している。
 a相の線電流は、a相-c相間の相電流icaとb相-a相間の相電流ibaとの差で求まるため、これらの一対の相電流を流すスイッチングを行う場合のみ、a相電流が流れる。他の相の線電流についても同様である。そこで、相電流ijkが上アーム側のスイッチ素子に流れるか否かを記号Sjkで、下アーム側のスイッチ素子に流れるか否かを記号SjkBで表すことにする。ここで記号j,kは相互に異なりつつも記号a,b,cを代表し、記号Sjk,SjkBが二値論理“1”/“0”をとることで、相電流ijkが「流れる」/「流れない」を示すこととする。
 インバータが相電圧指令とキャリアとの比較に基づいて線電流を流すときに、ハイアーム側のスイッチ素子Qjp、ローアーム側のスイッチ素子Qjnの導通/非導通を制御するスイッチ指令を、それぞれ記号Sj+,Sj-で示すと、非特許文献5に示す内容は次の変換式で示される:Sa+=Sac・SbaB,Sb+=Sba・ScbB,Sc+=Scb・SacB,Sa-=Sba・SacB,Sb-=Scb・SbaB,Sc-=Sac・ScbB。
 ここで更に、電圧形インバータの相電圧と電流形インバータの相電流との双対性に鑑みれば、上記の各式の右辺の論理値は、電圧形インバータでの相電圧とキャリアとの比較結果として得られることが分かる。非特許文献5によれば、相電流ijkの指令値が相電圧Vjの指令値と対応する。よって記号Sjkの論理は相電圧指令Vj*とキャリアとの比較によってスイッチ素子Qjpを導通させる論理と一致し、記号SjkBの論理は相電圧指令Vj*とキャリアとの比較によってスイッチ素子Qjnを導通させる論理と一致する。
 記号SbaBの論理は相電圧指令Vbとキャリアとの比較によってスイッチ素子Qap,Qbpをそれぞれ導通/非導通させる論理と一致し、記号Sbaの論理は相電圧指令Vbとキャリアとの比較によってスイッチ素子Qbp,Qapをそれぞれ導通/非導通させる論理と一致する。より具体的には、相電圧指令VbがキャリアC以下の場合にはスイッチ素子Sapを導通させ、以上の場合にはスイッチ素子Qbpを導通させる。そして記号Sa+、Sb+は線電流を流すときにそれぞれスイッチ素子Qap,Qbpを導通させる期間を示す。
 今、図2で示された相電圧指令Vr*,Vs*,Vt*を電圧指令Va*,Vb*,Vc*と読み替えて、位相角0~60度の範囲における電圧指令Va*,Vb*,Vc*を説明する。電圧指令Va*,Vc*はそれぞれ値1,-1を採るので、Sac=1,SacB=0,Scb=0,ScbB=1となる。これにより、Sa+=SbaB,Sb+=Sba,Sc+=Sa-=Sb-=0となる。
 換言すれば、a相,b相,c相をそれぞれr相、s相、t相と読み替えて、相電圧指令Vs*がキャリアC以下の場合にはスイッチ素子Qrpが導通し、キャリアC以上の場合にはスイッチ素子Qspが導通する。キャリアCの最小値が0であることに鑑みれば、電圧指令信号Vsの値がスイッチ素子Qrpを導通させる期間に相当する。
 以上のことから相電圧指令Vsの値は、キャリアCと比較される指令値を求める際の基準値drtとなる。基準値drtはコンバータ4のスイッチ素子Qrp,Qspを値drt,dstの比に比例する期間で交互に導通させる転流のタイミングを規定する。他の位相角においても同様に、電圧指令Vr*,Vt*の値についても上記の説明が妥当する。
 図11に戻り、上述のようにして決定される相電圧指令Vr*,Vs*,Vt*とキャリアCとの比較によって得られた結果は、比較部12から電流形ゲート論理変換部13へと与えられる。そして上の変換式で示された変換式に則った変換が行われることにより、スイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnが求められる。
 キャリアCを生成するキャリア生成部14はコンバータ転流信号生成部81に設けられてもよいし、次に説明するインバータ転流信号生成部82に設けられてもよいし、両者のいずれに属すると把握してもよい。
 <インバータ6の転流>
 インバータ転流信号生成部82は、出力電圧指令生成部21と、中間相検出部22と、指令値補正部23と、比較器24と、論理演算部25とを有する。インバータ転流信号生成部82の動作も特許文献3,4で公知であるので、簡単な説明に留める。
 中間相検出部22は、相電圧指令Vr*,Vs*,Vt*のうちのいずれが、いわゆる中間相に相当するかを判断する。第1の転流モードについてみれば、図2に例示された位相角0~60°においては相電圧指令Vs*が中間相に相当する。そして相電圧指令Vs*の値に鑑み、比drt:dstが決定され、値drt,dstが指令値補正部23に与えられる。これらの比はどの相電圧指令が中間相に相当するかによって異なるので、図11では相電圧指令Vr*,Vt*が中間相である場合も含め、値drt,dstに相当する値をそれぞれ補正値dx,dyとして記載した。以下でもこの表現を採用する。
 但し、第2の転流モード、あるいは自然転流モードを採用する場合、中間相が存在する期間が非常に短い。よって実質的には、相電圧指令Vr*,Vs*,Vt*から一意に決定される線間電圧指令Vrs*,Vst*,Vtr*の、いずれが中間相であるかを抽出することになる。そして例えば位相角0~30度において線間電圧指令Vst*が中間相となり、このとき値dstが0に設定される。また位相角30~90度において線間電圧指令Vrs*が中間相となり、このとき値drtが0に設定される。
 中間相検出部22はインバータ転流信号生成部82に設けられてもよいし、先に説明したコンバータ転流信号生成部81に設けられてもよいし、両者のいずれに属すると把握してもよい。
 出力電圧指令生成部21は電圧Vr(特にその位相)と運転周波数の指令値f*とを入力し、インバータ6の電圧指令値Vu*,Vv*,Vw*を生成する。このような電圧指令値Vu*,Vv*,Vw*の生成は周知の技術であるので説明を省略する。
 指令値補正部23は、電圧指令値Vu*,Vv*,Vw*と、補正値dx,dyとに基づいて、インバータ6の転流のためにキャリアCと比較すべき値を生成する。図5に即して言えば(即ち相電圧指令Vs*が中間相である場合を例に採れば)、指令値補正部23は、電圧指令値Vu*,Vv*,Vw*に基づいて値d0,d4,d6(=1-d0-d4)を計算し、これと値drt,dstとに基づいて、値drt(1-d0-d4),drt(1-d0),drt+dst・d0,drt+dst(d0+d4)を生成する。指令値補正部23は、また値0,drt+dstも出力する。これらの値は比較器24においてキャリアCと比較され、その結果が論理演算部25に入力される。そして論理演算部25は比較器24における比較結果に基づいて演算を行ってスイッチング信号Sup,Svp,Swp,Sun,Svn,Swnを生成する。
 <転流モードの切り替え>
 切り替え信号生成部83は切り替え指令生成部31と、切り替え信号発生部32とを有している。切り替え指令生成部31は、後述する基準に従って、直流リンク電圧Vdcに基づいて第1の転流モードと、第2の転流モード(若しくは自然転流モード)の切替えを判断して切り替え指令Jを生成する。
 台形状電圧指令生成部11は切り替え指令Jに従って、その出力する相電圧指令Vr*,Vs*,Vt*が呈する台形波の種類を切り替える。また、上述のように、中間相検出部22における中間相検出は、実質的には、第1の転流モードにおいては相電圧指令Vr*,Vs*,Vt*の中間相を、第2の転流モードにおいては線間電圧指令Vrs*,Vst*,Vtr*の中間相を、それぞれ検出することが好適である。よって中間相検出部22は切り替え指令Jに従って、相電圧指令、線間電圧指令のいずれの中間相を検出するかを切り替えてもよい。
 なお、第2の転流モードに替えて自然転流モードが採用される場合、第1スイッチング素子群の全てが導通するため、実質的にコンバータ転流信号生成部81、インバータ転流信号生成部82、切り替え信号生成部83が上記のように機能する必要はなく、スイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnを全て活性化させてもよい。例えば図11において破線矢印で示すように、電流形ゲート論理変換部13に切り替え指令Jを与える。切り替え指令Jが第1の転流モードを設定する場合には、電流形ゲート論理変換部13は上述の動作をする。切り替え指令Jが自然転流モードを設定する場合には、電流形ゲート論理変換部13が、いずれも活性化したスイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnを出力する。
 但し、そのような、自然転流モードのための特別な動作を切り替え信号生成部83に行わせるよりも、相電圧指令Vr*,Vs*,Vt*の波形を第2転流モード用に生成する方が、装置設計の観点からは容易であるという利点がある。つまり第1及び第2の転流モードのいずれにおいても台形波とキャリアとの比較によってコンバータ4が転流するので、これらの転流モードに応じて個別に設計を行う必要がない。
 他方、120度通電モードに自然転流モードを採用すれば台形波とキャリアの比較を行う必要はないという利点がある。
 切り替え指令Jが、コンバータ4の転流モードとして第1の転流モードを設定する場合に、切り替え信号発生部32は切り替え信号Sclを非活性にする。またコンバータ4の転流モードとして第2の転流モード若しくは自然転流モードを設定する場合に、切り替え信号発生部32は切り替え信号Sclを活性にする。
 以上のことから、短絡用スイッチQclを導通させてクランプ回路5の本来的な機能を停止させる場合であっても、短絡用スイッチQclを導通させずにクランプ回路5の本来的な機能を発揮させる場合であっても、コンバータ4の転流モードを適切に変更し、回生電流の吸収と直接形交流電力変換とを両立できる。
 具体的にどのような場合に切り替え指令Jが第1の転流モード/第2の転流モード(もしくは自然転流モード)のいずれを設定するかについて、以下に説明する。
 <出力端に接続される負荷の力率の低下>
 まず出力端Pu,Pv,Pwに接続される負荷7(図1参照)の力率(以下、単に「負荷力率」と称す)が低下したときに、コンバータ4の転流モードとして第2の転流モード(もしくは自然転流モード)を採用する技術について説明する。
 特許文献6に示されるように、遅相にして回転機の回転位置推定の誤差を削減する場合、力率は低下する。図13は短絡用スイッチQclが導通していないときの、クランプ回路5が支持するクランプ電圧と、負荷力率との関係を示すグラフである。但し電源電圧を415V(誤差±10%)とした。横軸には負荷力率の逆正接値たる負荷位相角を採った。またクランプ回路5ではコンデンサ51,52が、その充電時に相互に直列に接続され、放電時には並列に接続されるため、クランプ電圧は二本のグラフで示されている。
 負荷力率が0.5以上であれば、充電時のクランプ電圧を、線間電圧の波高値415×√3×√2=1000(V)以下とすることができる(放電時のクランプ電圧も電源電圧の波高値以下となる)。
 しかしながら、負荷力率が0.2と大幅に低くなると、回生電流が力行時の電流と同程度となってクランプ回路5への充電電流が増大し、放電時のクランプ電圧が電源電圧の波高値に近い650V程度に達してしまう。このような状態を避けるため、負荷力率が低い場合には、短絡用スイッチQclを導通させることが望ましい。クランプ回路5の本来的な機能を停止させてクランプ回路5をコンデンサ51、52の単なる直列接続とすることで、力行時の電流、回生電流を環流させるためである。
 しかしながら、クランプ回路5をコンデンサ51、52の単なる直列接続とした場合、コンバータ4が第1の転流モードで転流しても、電流を出力することが困難となる。クランプ回路5の放電時の電圧すら低くすることができないからである。
 より具体的には、第1の転流モードで採用される、図3に例示された線間電圧指令は、上述のようにコンバータ4の線電流指令に相当するが、二つのスイッチングパターンが混在している。例えば位相角0~60°についてみれば、線間電圧指令Vrs*,Vst*にそれぞれ対応したスイッチングパターンが混在する。そしてこの場合、入力端Pr,Psのいずれか電位が低い方よりも高い電位までコンデンサ51,52の直列接続が充電されていれば、クランプ回路5のダイオードDrp,Dsp等の機能により、コンバータ4からインバータ6へと電流を供給することが困難となる。
 これに対して第2の転流モードや自然転流モードでは、120度通電のパターンで電流が流れるため、入力端Pr,Ps,Ptのいずれかのうち最大相に対応する相電圧が印加されるものが直流電源線LHに接続される。よってコンバータ4からインバータ6へと電離を供給することが確保できる。つまり力率低下によって増大する回生電流に起因した第1の転流モードの機能不全を回避し、以て直接形交流電力変換が実現できる。
 従って、負荷力率が所定値を下回った場合に短絡用スイッチQclを導通させ、かつ第2の転流モード(若しくは自然転流モード)を採用することが望ましい。より詳細には、第1の転流モードが採用されている状態で短絡用スイッチQclが導通することを契機として、第2の転流モード若しくは自然転流モードが採用される。なお、短絡用スイッチQclが非導通となる時点以降で第1の転流モードを採用する。
 負荷力率は、図13を見ても了解されるように、コンデンサが支持するクランプ電圧を検出して推測できる。あるいはクランプ電圧の変動は直流リンク電圧Vdcの大きさを左右するので、直流リンク電圧Vdcを検出することにより、負荷力率を推測できる。よって図11に示されたように切り替え指令生成部31が直流リンク電圧Vdc(あるいはクランプ電圧)を入力し、これから平均値Vdc1を求め、当該平均値Vdc1を負荷力率についての上記所定値に相当する閾値と比較し、切り替え指令Jを生成することができる。
 あるいは、特許文献5の図6(d)に示されるように、電流位相角に対して、電流極性が反転する位相角はπ/6で遅相する。特許文献5の図6(e)に示されるように、インバータの出力電圧の位相角は既知であるので、これらの位相角の差から負荷電流の位相を検出し、これに基づいて力率の大きさを推定することができる。つまり切り替え指令生成部31への入力として、図11に示された直流リンク電圧Vdcに代えて、インバータ出力電流のゼロクロス、インバータの出力電圧を入力し、両者の位相差と負荷力率の所定値に相当する閾値とを比較し、切り替え指令Jを生成することができる。図14として、特許文献5の図6(d)(e)を示した。グラフI_V4,I_V6はそれぞれインバータが電圧ベクトルV4,V6を採るときに流れる直流電流を示し、グラフt4,t6はそれぞれインバータが電圧ベクトルV4,V6を採る時比率を示す。
 あるいは遅相にして回転機の回転位置推定の誤差を削減する運転は、起動当初において採用されることに鑑みれば、起動当初に短絡用スイッチQclを導通させ、これを契機として第2の転流モード若しくは自然転流モードを採用することも好適である。そして所定期間が経過するまでは第2の転流モード若しくは自然転流モードに従ってコンバータ4が転流し、所定期間が経過した後に短絡用スイッチQclを非導通とさせる。この時点以降で第1の転流モードを採用すればよい。このようにして、負荷7が回転機である場合、その起動当初において位置検出を行うべく遅相となる電流に起因した力率の低下に対処できる。
 なお、上述のように、クランプ回路5でダイオード53,54を設けず、いわゆるCDスナバを採用することができる。しかしこの場合、負荷力率が√3/2以上でないと短絡用スイッチQclを非導通とさせてもクランプ回路5が効果的に機能しない。よって切り替え指令Jが第1転流モードを選択する時期を、負荷力率が√3/2以上となるまで待つことが望ましい。
 <入力端に接続される電源の瞬時電圧低下>
 図15は図13と同様に、短絡用スイッチQclが導通していないときの、クランプ回路5が支持するクランプ電圧と、負荷力率との関係を示すグラフである。但し電源電圧は図13に示された場合よりも低いため、クランプ電圧も低くなっている。
 瞬時停電によりコンバータ4に入力する三相交流電圧が消失すると、クランプ回路5ではコンデンサ51,52が並列接続されて放電するので、クランプ電圧は半減する。特に負荷7が回転機である場合、クランプ電圧の減少は回転機の鎖交磁束を弱め、電流が多くなってインバータ6が停止したり、脱調によって運転停止を招くおそれがある。
 図16は瞬時停電のときにもクランプ回路5が機能している場合の動作を示すグラフである。電源1が発生する電源電圧は50Hz400Vであり、停電は1/4周期だけ発生した場合を例示している。
 電源相電圧Vr,Vs,Vtはそれぞれ入力端Pr,Ps,Ptにおける電圧を、電源線電流Ir,Is,Itはそれぞれ入力端Ir,Is,Itへとコンデンサ群3から流れ込む電流を、クランプ回路直列電圧Vcはクランプ回路5においてコンデンサ51,52が支持する電圧の和を、直流リンク電圧Vdcは直流電源線LH,LLの間の電圧を、負荷線間電圧は出力端Pu,Pv,Pwに印加されている電圧Vu,Vv,Vwの差を(但し図示しているのは電圧Vu,Vvの差Vuvである)、負荷線電流Iu,Iv,Iwはそれぞれ出力端Pu,Pv,Pwから負荷7へと流れ出す電流を、それぞれ示している。
 電源相電圧Vr,Vs,Vtが全て零となることにより、電源線電流Ir,Is,Itはリンギングを伴って零に収束し、直流リンク電圧Vdcはコンデンサ51,52の各々が支持する電圧が維持されるだけであって低下する。これに伴い、負荷線間電圧Vuvも半減し、負荷線電流Iu,Iv,Iwは大きく乱れる。
 そこで、瞬時停電を契機として短絡用スイッチQclを短絡することが望ましい。具体的には直流リンク電圧Vdcの平均値Vcd1が第1の閾値(例えば400V)を下回るときを契機として切り替え信号Sclを活性化させる。この場合の切り替え指令Jの生成については前述した。
 図17及び図18は、いずれも上述のように切り替え信号Sclを活性化させ、切り替え信号Sclが活性化しているときにはコンバータ4の転流モードを120度通電モード(第2転流モードまたは自然転流モード)とし、切り替え信号Sclが非活性化しているときにはコンバータ4の転流モードを第1転流モードとした場合の、動作を示すグラフである。図16と同様に、電源1が発生する電源電圧は50Hz400Vであり、停電は1/4周期だけ発生した場合を例示した。
 いずれも切り替え信号Sclが活性化している間は、コンデンサ51,52が直流電源線LH,LL間で直列に接続されるので、直流リンク電圧Vdcがクランプ回路直列電圧Vcと一致する。
 そして切り替え信号Sclが活性化している間は120度通電モードでコンバータ4が転流するので、やがてクランプ電圧Vc(直流リンク電圧Vdc)は上昇する。
 但し図17は、直流リンク電圧Vdcが第2の閾値(これは第1の閾値以上で例えば450V)を超えた値を所定期間維持したことを以て、切り替え信号Sclを非活性化させる場合を例示している。また図18は、直流リンク電圧Vdcが第2の閾値(これは第1の閾値以上で例えば600V)を超えたことを契機として、切り替え信号Sclを非活性化させる場合を例示している。
 図17に示された動作では第1の転流モードに移行する際の直流リンク電圧Vdcが過大とならず、その後も直流リンク電圧Vdcが過大になりにくいという利点がある。図18に示された動作では、電源線電流Ir,Is,Itに生じるリンギングが生じる回数が少ないという利点がある。
 図19も瞬時停電に伴う動作を示すグラフである。当該動作も、図17及び図18に示された動作と同様に、直流リンク電圧Vdcの平均値Vdc1が第1の閾値(例えば400V)を下回るときを契機として切り替え信号Sclを活性化させる。そして図19に示された動作も、直流リンク電圧Vdcが第2の閾値(これは第1の閾値以上で例えば600V)を超えたことを契機として、切り替え信号Sclを非活性化させる点で、図18に示された動作と同様である。
 但し、図19に示された動作では、切り替え信号Sclを非活性化させてから120度通電モードへと移るまでに、所定時間だけ遅延を設ける。つまり、図17乃至図19に示された動作は、いずれも短絡用スイッチQclが非導通となる時点以降で第1の転流モードが採用される点で共通するが、図19に示された動作では、短絡用スイッチQclが非導通となった時点以降であって所定時間が経過してから第1の転流モードが採用される点で図17、図18に示された動作と相違する。このような所定時間の遅延は、切り替え指令Jが第1の転流モードを設定しても、台形状電圧指令生成部11において計時することによって実現できる。
 図19に示された動作では、切り替え信号Sclを非活性化させてから120度通電モードへと移るまでの間、コンバータ4の転流には120度通電モードが採用される。このように、クランプ回路が機能している場合に120度通電モードを採用してコンバータを転流させると、電源線電流Ir,Is,Itは大きく乱れるが、直流リンク電圧Vdcを損なうものではない。
 従って、短絡用スイッチQclを設けない場合であっても、直流リンク電圧Vdcを検出し、以て停電を検出し、当該停電時には120度通電モードを採用してコンバータを転流させてもよい。
 なお、切り替え信号Sclを活性化させるタイミングは平均値Vdc1を用いるのみならず、直流リンク電圧Vdc自体を用いて決定してもよい。図16において示されるように、また図20を用いて説明したように、直流リンク電圧Vdcはコンバータ4のスイッチングにより包絡線間を遷移する。よって例えば上述のように第1の閾値を400Vに設定すると、正常運転時においても直流リンク電圧Vdcは第1の閾値よりも小さい値を離散的に採っている。
 よって単に直流リンク電圧Vdcを用いて切り替え信号Sclを活性化させるタイミングを決定するには、切り替え指令生成部31の直流リンク電圧Vdcに対する感度を低下させればよい。具体的には切り替え指令生成部31が直流リンク電圧Vdcの大きさを認識するのに必要な時間を長く採ればよい。例えば直流リンク電圧Vdcが第1の閾値以下を所定期間維持するときに切り替え指令Jが生成され、短絡用スイッチQclが導通する。
 もちろん平均値Vdc1と第1の閾値とを比較する方が、直流リンク電圧Vdcを所定期間継続して計測する必要がない点で有利である。
 直流リンク電圧Vdcから平均値Vdc1を求める機能は、切り替え指令生成部31が担ってもよい。あるいは当該機能は別途に設ける演算部あるいは積分回路に担わせ、切り替え指令生成部31には平均値Vdc1が入力されてもよい。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (12)

  1.  それぞれ三相交流の相電圧が入力される3つの入力端(Pr,Ps,Pt)と、
     3つの出力端(Pu,Pv,Pw)と、
     第1及び第2の直流電源線(LH,LL)と、
     前記入力端の各々と前記第1の直流電源線との間に接続された3つのスイッチング素子(Qrp,Qsp,Qtp)と、前記入力端の各々と前記第2の直流電源線との間に接続された3つのスイッチング素子(Qrn,Qsn,Qtn)とを含む第1スイッチング素子群を有する電流形コンバータ(4)と、
     前記出力端の各々と前記第1の直流電源線との間に接続された3つのスイッチング素子(Qup,Qvp,Qwp)と、前記出力端の各々と前記第2の直流電源線との間に接続された3つのスイッチング素子(Qun,Qvn,Qwn)とを含む第2スイッチング素子群を有する電圧形インバータ(6)と、
     前記第1及び第2の直流電源線にそれぞれ接続されたアノード及びカソードを含むクランプダイオード(Dcl)と、前記第1及び第2の直流電源線において前記クランプダイオードと直列に接続されたコンデンサ(51;52;51,52)及び前記クランプダイオードに並列に接続された短絡用スイッチ(Qcl)とを有するクランプ回路(5)と
    を備え、
     前記コンバータは、いずれもが360度周期であって互いに位相が120度ずれる三つの台形波とキャリアとの比較結果によって決定される、第1の転流モードと120度通電モードのいずれかに従って転流し、
     前記第1の転流モードにおいて前記台形波の各々は、120度区間で連続する平坦区間の一対と、これら一対の平坦区間をつなぐ60度区間の傾斜領域の一対を有し、
     前記コンバータは、前記第1の転流モードにおいては、前記平坦区間の一対の間で遷移する前記台形波と前記キャリアとの比較によって転流し、
     前記第1の転流モードが採用されている状態で前記短絡用スイッチが導通することを契機として、前記120度通電モードが採用され、
     前記短絡用スイッチが非導通となる時点以降で前記第1の転流モードが採用される、電力変換装置。
  2.  前記短絡用スイッチは、前記出力端に接続される負荷(7)の力率が所定値を下回るときに導通する、請求項1記載の電力変換装置。
  3.  前記負荷(7)は回転機であり、起動当初の所定期間は前記120度通電モードに従って前記コンバータ(4)が転流する、請求項2記載の電力変換装置。
  4.  前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧が第1の閾値以下を所定期間維持するときに導通する、請求項1記載の電力変換装置。
  5.  前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧を前記キャリアの一周期内で平均して得られた平均値が、第1の閾値以下であるときに導通する、請求項1記載の電力変換装置。
  6.  前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧が前記第1の閾値以上の第2の閾値を超える値を所定期間維持したことを以て非導通となり、
     前記短絡用スイッチが非導通となったことを契機として前記第1の転流モードが採用される、請求項4又は請求項5記載の電力変換装置。
  7.  前記短絡用スイッチは、前記第1及び第2の直流電源線(LH,LL)間の直流電圧が前記第1の閾値以上の第2の閾値を超えたことを契機として非導通となる、請求項4又は請求項5記載の電力変換装置。
  8.  前記短絡用スイッチが非導通となったことを契機として前記第1の転流モードが採用される、請求項7記載の電力変換装置。
  9.  前記短絡用スイッチが非導通となってから所定期間が経過後に前記第1の転流モードが採用される、請求項7記載の電力変換装置。
  10.  前記クランプ回路(5)において、
     前記コンデンサは相互に直列に接続される第1のコンデンサ(51)と第2のコンデンサ(52)とに区分され、
     前記クランプダイオード(Dcl)の前記アノードは前記第1のコンデンサを介して前記第1の直流電源線(LH)に、前記カソードは前記第2のコンデンサを介して前記第2の直流電源線(LL)に、それぞれ接続され、
     前記クランプ回路は、
     前記クランプダイオードの前記カソードに接続されたアノードと、前記第1の直流電源線に接続されたカソードとを有する第1のダイオード(53)と
     前記クランプダイオードの前記アノードに接続されたカソードと、前記第2の直流電源線に接続されたアノードとを有する第2のダイオード(54)と
    を更に有する、請求項1記載の電力変換装置。
  11.  前記120度通電モードは第2の転流モードであり、
     前記第2の転流モードにおいて前記台形波の各々は、180度区間で連続する平坦区間の一対を有し、
     前記コンバータは、前記第2の転流モードにおいては、前記平坦区間の一対の間で遷移する前記台形波と前記キャリアとの比較によって転流する、請求項1記載の電力変換装置。
  12.  前記120度通電モードは、前記第1スイッチング素子群の全てが導通する自然転流モードである、請求項1記載の電力変換装置。
PCT/JP2009/054674 2008-03-28 2009-03-11 電力変換装置 WO2009119321A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801108133A CN101981798B (zh) 2008-03-28 2009-03-11 电力变换装置
EP09724823.1A EP2262090B1 (en) 2008-03-28 2009-03-11 Power conversion device
AU2009230285A AU2009230285B2 (en) 2008-03-28 2009-03-11 Power conversion device
KR1020107020631A KR101129901B1 (ko) 2008-03-28 2009-03-11 전력 변환 장치
US12/934,915 US8450961B2 (en) 2008-03-28 2009-03-11 Power converting apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-086354 2008-03-28
JP2008086354 2008-03-28
JP2008-294180 2008-11-18
JP2008294180A JP5304192B2 (ja) 2008-03-28 2008-11-18 電力変換装置

Publications (1)

Publication Number Publication Date
WO2009119321A1 true WO2009119321A1 (ja) 2009-10-01

Family

ID=41113519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054674 WO2009119321A1 (ja) 2008-03-28 2009-03-11 電力変換装置

Country Status (7)

Country Link
US (1) US8450961B2 (ja)
EP (1) EP2262090B1 (ja)
JP (1) JP5304192B2 (ja)
KR (1) KR101129901B1 (ja)
CN (1) CN101981798B (ja)
AU (1) AU2009230285B2 (ja)
WO (1) WO2009119321A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127960A1 (ja) * 2017-01-05 2018-07-12 株式会社日立産機システム 電力変換装置
US20230179114A1 (en) * 2020-04-30 2023-06-08 Siemens Aktiengesellschaft Energy converter

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645614B (zh) * 2008-08-05 2012-09-19 鸿富锦精密工业(深圳)有限公司 缓启动电路
JP4506891B2 (ja) * 2008-12-23 2010-07-21 ダイキン工業株式会社 電流形電力変換回路
EP2472708B1 (en) * 2009-08-26 2018-12-19 Daikin Industries, Ltd. Power conversion device and control method therefor
JP5150981B2 (ja) * 2009-11-20 2013-02-27 ダイヤモンド電機株式会社 インダイレクトマトリクスコンバータ
JP4951053B2 (ja) * 2009-11-20 2012-06-13 ダイヤモンド電機株式会社 インダイレクトマトリクスコンバータ
CN101826720B (zh) * 2010-05-27 2012-07-11 中南大学 双级矩阵变换器箝位吸收一体化电路
JP4877411B1 (ja) * 2010-09-30 2012-02-15 ダイキン工業株式会社 リンク電圧測定方法
JP5437334B2 (ja) * 2011-09-06 2014-03-12 日産自動車株式会社 電力変換装置
JP5299555B2 (ja) * 2011-11-28 2013-09-25 ダイキン工業株式会社 電力変換制御装置
JP5772583B2 (ja) * 2011-12-28 2015-09-02 ダイキン工業株式会社 空気調和機
JP5435057B2 (ja) * 2012-03-02 2014-03-05 ダイキン工業株式会社 電力変換装置
US9490722B2 (en) * 2012-09-21 2016-11-08 Daikin Industries, Ltd. Method of controlling direct power converter
US9246411B2 (en) * 2012-10-16 2016-01-26 Rockwell Automation Technologies, Inc. Regenerative voltage doubler rectifier, voltage sag/swell correction apparatus and operating methods
JP5794273B2 (ja) * 2013-10-07 2015-10-14 ダイキン工業株式会社 直接形電力変換装置の制御方法
EP3100346B1 (en) * 2014-01-31 2021-11-03 Eaton Intelligent Power Limited Unidirectional matrix converter with regeneration system
DE102014209332A1 (de) * 2014-05-16 2015-11-19 Senvion Gmbh Windenergieanlage mit verbessertem Überspannungsschutz
CN106663940B (zh) * 2014-06-27 2019-08-06 施耐德电气It公司 三级电力拓扑
JP5930108B2 (ja) * 2014-09-25 2016-06-08 ダイキン工業株式会社 電力変換装置
JP5946880B2 (ja) * 2014-09-26 2016-07-06 ファナック株式会社 Lclフィルタ保護機能を有するモータ制御装置
US9748857B2 (en) * 2015-08-12 2017-08-29 General Electric Company Method and system for a gas tube-based current source high voltage direct current transmission system
CN106549592B (zh) * 2017-01-11 2018-08-28 合肥工业大学 一种直流侧电压不对称的三电平逆变器调制方法
US10153710B1 (en) * 2017-07-25 2018-12-11 Delta Electronics, Inc. Power supply and control method thereof
EP3726719A1 (en) * 2019-04-15 2020-10-21 Infineon Technologies Austria AG Power converter and power conversion method
CN110784114B (zh) * 2019-11-14 2021-03-23 杭州必易微电子有限公司 一种用于非隔离式ac-dc电压变换系统的电压变换电路及变换方法
US11545892B2 (en) * 2020-03-20 2023-01-03 Delta-Q Technologies Corp. Apparatus and method for single-phase and three-phase power factor correction
CN113422531B (zh) * 2021-08-24 2021-12-03 中国南方电网有限责任公司超高压输电公司广州局 Mmc中子模块电容均压方法与装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556682A (ja) 1991-08-20 1993-03-05 Hitachi Ltd 電力変換システム及びその制御方法
JP2524771B2 (ja) 1987-09-30 1996-08-14 勲 高橋 周波数変換装置
JP2000341967A (ja) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd インバータ装置
JP2004222337A (ja) 2003-01-09 2004-08-05 Fuji Electric Holdings Co Ltd 交流−交流電力変換装置
JP2004266972A (ja) 2003-03-04 2004-09-24 Fuji Electric Holdings Co Ltd 交流−交流電力変換装置
JP3806872B2 (ja) 2001-11-08 2006-08-09 ダイキン工業株式会社 モータ駆動方法およびその装置
WO2007123118A1 (ja) 2006-04-20 2007-11-01 Daikin Industries, Ltd. 電力変換装置および電力変換装置の制御方法
JP2007295686A (ja) 2006-04-24 2007-11-08 Daikin Ind Ltd 直接形交流電力変換装置
JP2007312589A (ja) 2006-04-20 2007-11-29 Daikin Ind Ltd 電力変換装置および電力変換装置の制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890001475B1 (ko) * 1986-01-11 1989-05-04 한국과학 기술원 교류 전동기 구동을 위한 동시회생 환류형 전류원 인버터
US4779034A (en) * 1986-08-07 1988-10-18 Shepard Jr Francis H Forced commutation for variable speed motor
US4864483A (en) * 1986-09-25 1989-09-05 Wisconsin Alumni Research Foundation Static power conversion method and apparatus having essentially zero switching losses and clamped voltage levels
US4823068A (en) * 1987-06-23 1989-04-18 General Electric Company Cross tie for induction motor drive
US6064579A (en) * 1998-06-15 2000-05-16 Northrop Grumman Corporation Shifted drive inverter for multiple loads
JP4135027B2 (ja) * 2006-04-20 2008-08-20 ダイキン工業株式会社 電力変換装置および電力変換装置の制御方法
JP4240141B1 (ja) * 2007-10-09 2009-03-18 ダイキン工業株式会社 直接形交流電力変換装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524771B2 (ja) 1987-09-30 1996-08-14 勲 高橋 周波数変換装置
JPH0556682A (ja) 1991-08-20 1993-03-05 Hitachi Ltd 電力変換システム及びその制御方法
JP2000341967A (ja) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd インバータ装置
JP3806872B2 (ja) 2001-11-08 2006-08-09 ダイキン工業株式会社 モータ駆動方法およびその装置
JP2004222337A (ja) 2003-01-09 2004-08-05 Fuji Electric Holdings Co Ltd 交流−交流電力変換装置
JP2004266972A (ja) 2003-03-04 2004-09-24 Fuji Electric Holdings Co Ltd 交流−交流電力変換装置
WO2007123118A1 (ja) 2006-04-20 2007-11-01 Daikin Industries, Ltd. 電力変換装置および電力変換装置の制御方法
JP2007312589A (ja) 2006-04-20 2007-11-29 Daikin Ind Ltd 電力変換装置および電力変換装置の制御方法
JP2007295686A (ja) 2006-04-24 2007-11-08 Daikin Ind Ltd 直接形交流電力変換装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KOJI KATO; JUN-ICHI ITOH: "Improvement of Waveform for a Boost type AC/DC/AC Direct Converter Focused on Input Current", YEAR 2007 IEEJ INDUSTRY APPLIED SECTION MEETING 1-31, pages 279 - 282
KOJI KATO; JUN-ICHI ITOH: "Improvement of Waveform for a Boost type AC/DC/AC Direct Converter", YEAR 2007 IEEJ NATIONAL CONVENTION, vol. 4-098, 2007, pages 153 - 154
LIXIANG WEI; THOMAS A. LIPO: "A Novel Matrix Converter Topology with Simple Commutation", IEEE IAS, vol. 3, 2001, pages 1749 - 1754
RIE ITOH; ISAO TAKAHASHI: "Decoupling Control of Input and Output Reactive Power of the Matrix Converter", IEEJ TECHNICAL MEETING ON SEMICONDUCTOR POWER CONVERTER, 2001
SIYOUNG KIM; SEUNG-KI SUL; THOMAS A. LIPO: "AC/AC Power Conversion Based on Matrix Converter Topology with Unidirectional Switches", IEEE TRANS. ON INDUSTRY APPLICATIONS, vol. 36, no. 1, 2000, pages 139 - 145, XP011022701
TAKAHARU TAKESHITA; KOJI TOYAMA; NOBUYUKI MATSUI: "PWM Scheme for Current Source Three-Phase Inverters and Converters", IEEJ TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 116, no. 1, 1996, pages 106 - 107

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127960A1 (ja) * 2017-01-05 2018-07-12 株式会社日立産機システム 電力変換装置
JPWO2018127960A1 (ja) * 2017-01-05 2019-11-07 株式会社日立産機システム 電力変換装置
US20230179114A1 (en) * 2020-04-30 2023-06-08 Siemens Aktiengesellschaft Energy converter

Also Published As

Publication number Publication date
AU2009230285A1 (en) 2009-10-01
EP2262090B1 (en) 2019-11-27
US20110025246A1 (en) 2011-02-03
EP2262090A4 (en) 2017-10-18
KR101129901B1 (ko) 2012-03-29
KR20100117115A (ko) 2010-11-02
JP2009261219A (ja) 2009-11-05
CN101981798A (zh) 2011-02-23
EP2262090A1 (en) 2010-12-15
JP5304192B2 (ja) 2013-10-02
US8450961B2 (en) 2013-05-28
CN101981798B (zh) 2013-06-26
AU2009230285B2 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5304192B2 (ja) 電力変換装置
JP4766181B2 (ja) 電力変換装置
JP5930108B2 (ja) 電力変換装置
JP5223711B2 (ja) 無停電電源装置
JP5299555B2 (ja) 電力変換制御装置
JP4850279B2 (ja) 電力変換装置
WO2013035383A1 (ja) 電力変換装置
JP5429316B2 (ja) インダイレクトマトリックスコンバータ
US20120092910A1 (en) Switching power supply apparatus
JP6107860B2 (ja) インバータの制御装置
JP5842534B2 (ja) インバータ制御装置
JP2012191761A (ja) 交流−直流変換回路
JP7213166B2 (ja) 電力変換装置およびプレス装置
BR112021003972A2 (pt) conversor de energia direta e dispositivo de controle
JP2013176173A (ja) 電源装置
WO2017115621A1 (ja) 電力変換装置
JP6016836B2 (ja) 電力変換装置、および電力変換制御方法
JP6094615B2 (ja) インバータの制御装置
JP2010098848A (ja) 直接形交流電力変換装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110813.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107020631

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009230285

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12934915

Country of ref document: US

Ref document number: 2009724823

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009230285

Country of ref document: AU

Date of ref document: 20090311

Kind code of ref document: A