WO2009116376A9 - 金属材料およびその製造方法 - Google Patents

金属材料およびその製造方法 Download PDF

Info

Publication number
WO2009116376A9
WO2009116376A9 PCT/JP2009/053664 JP2009053664W WO2009116376A9 WO 2009116376 A9 WO2009116376 A9 WO 2009116376A9 JP 2009053664 W JP2009053664 W JP 2009053664W WO 2009116376 A9 WO2009116376 A9 WO 2009116376A9
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
metal
oxide
iron
oxide layer
Prior art date
Application number
PCT/JP2009/053664
Other languages
English (en)
French (fr)
Other versions
WO2009116376A1 (ja
Inventor
均 石井
康彦 永嶋
亮助 川越
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to CN2009801074620A priority Critical patent/CN101970723B/zh
Priority to EP09721956.2A priority patent/EP2280094B1/en
Publication of WO2009116376A1 publication Critical patent/WO2009116376A1/ja
Publication of WO2009116376A9 publication Critical patent/WO2009116376A9/ja
Priority to US12/868,862 priority patent/US8318256B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the present invention relates to a metal material excellent in corrosion resistance and adhesion under a severe environment and a method for producing the same.
  • Iron-based metal materials represented by carbon steel
  • metals are most frequently used because they provide high strength and hardness and are less expensive than other metals. Since iron-based metal materials are inferior in corrosion resistance and heat resistance compared to chromium, nickel, and cobalt, problems with durability are likely to occur due to generation of rust and growth of oxide films. For this reason, the thing which gave resin coating and lining to the iron-type metal material was used in many cases.
  • Patent Document 3 which includes water, (A) 4 atoms or more of F, and atoms selected from Ti, Zr, Hf, Si, Al, and B.
  • a fluorometalate anion having at least one atom and having at least one ionizable hydrogen atom and / or at least one oxygen atom as a selective component; (B) Co, Mg, Mn, Zn, Ni, Sn, Cu, Zr , Fe, Sr, a divalent or tetravalent cation, (C) one or both of an inorganic oxyanion and phosphonate anion containing P, (D) a water-soluble and / or water-dispersible organic polymer and / or A composition for post-treatment of a chemical conversion film characterized by containing a polymer-forming resin is described.
  • the heat resistance problem cannot be avoided. Therefore, when the coating is baked or exposed to a high temperature in a use environment after painting, an iron phosphate film treatment is often employed as a coating base. Since the iron phosphate coating is amorphous, it has superior heat resistance compared to the zinc phosphate coating and is widely used. However, the iron phosphate film also has insufficient heat resistance and acid resistance at high temperatures, and the corrosion resistance after coating is significantly lower than that of the zinc phosphate film, so it cannot withstand severe corrosive environments.
  • the applicant of the present application previously comprises a compound containing at least one metal element selected from Ti, Zr, Hf and Si, and at least one element selected from Ag, Al, Cu, Fe, Mn, Mg, Ni, Co and Zn.
  • a metal surface treatment composition containing a compound containing a seed or the like has been proposed (see Patent Documents 5 and 6).
  • the inventor of the present application in the course of research, comprises a compound containing at least one metal element selected from Ti, Zr, Hf and Si, and Ag, Al, Cu, Fe, Mn, Mg, Ni, Co and Zn.
  • a metal containing a compound containing at least one selected element the adhesion between a base metal such as iron and a dissimilar metal oxide film such as ZrO 2 formed on the surface is as follows: I found that it was not always enough. This is thought to be because the atomic matching between the metal substrate and the dissimilar metal oxide is not good.
  • the present invention solves the above-described problems of the prior art, that is, realizes a metal material excellent in adhesion, heat resistance, conductivity, and corrosion resistance with respect to an iron-based metal material, and the realization thereof. It aims at providing the manufacturing method of the metal material which can be performed.
  • the present inventor has an iron-based metal material and an oxide layer formed as an inorganic film on the surface of the iron-based metal material, and the oxide A metal material containing at least one metal (A) selected from the group consisting of Zr, Ti, and Hf and Fe as an oxide has excellent adhesion, heat resistance, conductivity, and corrosion resistance.
  • a metal material containing at least one metal (A) selected from the group consisting of Zr, Ti, and Hf and Fe as an oxide has excellent adhesion, heat resistance, conductivity, and corrosion resistance.
  • the metal material of the present invention is excellent in adhesion, corrosion resistance, heat resistance, and conductivity. According to the method for producing a metal material of the present invention, a metal material having excellent adhesion, corrosion resistance, heat resistance, and conductivity can be produced.
  • the metal material of the present invention is An iron-based metal material, and an oxide layer formed on the surface of the iron-based metal material,
  • the oxide layer is a metal material containing at least one metal (A) selected from the group consisting of Zr, Ti, and Hf and Fe as oxides.
  • a surface-treated iron-based metal material can be used as the iron-based metal material.
  • the method for surface treatment of the iron-based metal material is not particularly limited.
  • the iron-based metal material is degreased with an alkaline degreasing solution and washed with water; after the surface of the iron-based metal material is roughened with an etching solution, the film is peeled off.
  • Pre-treatment After the film chemical conversion treatment with a phosphate such as a manganese phosphate-based surface treatment agent, the pre-treatment for peeling the film and roughening the surface can be performed.
  • the adhesion can be enhanced by further adding a process of roughening the surface of the iron-based metal material by a physical or chemical method.
  • Physical surface roughening methods include sand blasting, shot blasting, wet blasting, electromagnetic barrel polishing, and WPC treatment, and any of them can be used.
  • a chemical method A polycrystalline film such as phosphate or oxalate is formed by chemical conversion or anodic electrolysis, and a stripping solution such as hydrochloric acid or nitric acid is used. A method of peeling the film is preferred.
  • the oxide layer of the metal material of the present invention is formed on the surface of an iron-based metal material, and contains at least one metal (A) selected from the group consisting of Zr, Ti, and Hf and Fe as oxides. .
  • the oxide layer of the metal material of the present invention is not particularly limited as long as it contains at least one metal (A) selected from the group consisting of Zr, Ti, and Hf and Fe as oxides.
  • the oxide includes a hydroxide and a composite oxide in addition to the metal oxide.
  • iron oxides include iron oxides such as FeO, Fe 2 O 3 , ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , and Fe 3 O 4 ; Fe (OH) 2 and Fe (OH) 3 And a composite oxide with at least one metal (A) selected from Zr, Ti and Hf, such as FeTiO 3 , FeZrO 3 , and FeHfO 3 .
  • Fe is preferably iron oxide from the viewpoint of excellent heat resistance, adhesion, and conductivity, and ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , and Fe 3 O 4 are more preferable.
  • Iron oxide has the effect of preventing crystal transformation of the metal (A) oxide crystal, improving high temperature stability and adhesion, imparting heat resistance, imparting conductivity to the film, and reducing contact resistance. It is more preferable to impart conductivity to the coating because it has the effect of improving the grounding property of static electricity and enhancing the current-carrying performance when used as a battery or fuel cell member by increasing the electron conductivity with the bonding partner material. .
  • the oxide layer contains at least one metal (A) selected from Zr, Ti, and Hf as an oxide.
  • at least one metal (A) selected from Zr, Ti, and Hf as an oxide includes a hydroxide and a composite oxide with Fe in addition to the metal oxide (A). Shall be.
  • the metal (A) as an oxide may be hereinafter referred to as “metal (A) oxide”. Of these, at least one metal (A) selected from Zr, Ti and Hf is preferably Ti from the viewpoint of excellent conductivity.
  • metal (A) oxide of at least one metal (A) selected from Zr, Ti and Hf examples include metal oxides (A) such as TiO 2 , ZrO 2 and HfO 2 ; Ti (OH) 2 , Zr (OH) 2 , metal (A) hydroxides such as Hf (OH) 2 ; and complex oxides with Fe.
  • metal oxides (A) such as TiO 2 , ZrO 2 and HfO 2
  • Ti (OH) 2 , Zr (OH) 2 metal (A) hydroxides such as Hf (OH) 2
  • complex oxides with Fe Specific examples of the composite oxide with Fe are as defined above.
  • composition in the oxide layer examples include a mixed hydroxide of Zr (OH) 4 , Ti (OH) 4, Hf (OH) 4, etc. and Fe (OH) 3, etc .; a crystal of FeTiO 3 , FeZrO 3, etc. Composite oxides; mixed oxides of ZrO 2 , TiO 2, HfO 2, etc. and Fe 2 O 3, Fe 3 O 4, etc .; and combinations thereof.
  • the oxide layer is preferably a dense crystalline material from the viewpoint of superior adhesion and heat resistance.
  • the oxide or composite oxide preferably contains a crystalline oxide, and more preferably a crystalline iron oxide.
  • the crystalline iron oxide include ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , and Fe 3 O 4 . Since iron oxide improves corrosion resistance and heat resistance and has excellent crystal lattice matching between the iron-based metal material (iron base) and the oxide, it has excellent adhesion to the iron-based metal material. Moreover, since iron oxide forms fine unevenness
  • the thickness of the oxide layer is preferably 0.02 to 2 ⁇ m, more preferably 0.05 to 1 ⁇ m, from the viewpoints of excellent adhesion, heat resistance, and conductivity and excellent adhesion to an adhesive or a primer. More preferably.
  • the thickness of the oxide layer is an average value of the thickness of the oxide layer.
  • the thickness (average value) of the oxide layer is obtained by taking a cross-section of the metal material using a transmission electron microscope, and in the photograph taken, the thickness of the oxide layer is 0.1 ⁇ m on the surface of the iron-based metal material. It is the value obtained by measuring the thickness of the oxide layer at 10 places having an interval and obtaining the average of the measured values at 10 places.
  • the amount of Fe in the portion 0.01 ⁇ m deep from the surface of the oxide layer is 1 to 5 atomic percent. It is preferably 2 to 4 atomic percent.
  • the oxide layer is at least one selected from the group consisting of Zr, Ti, and Hf from the viewpoints of excellent adhesion, heat resistance, and electrical conductivity and excellent adhesion to an adhesive or a primer. It is preferable to have an upper layer containing at least a metal (A) oxide of the seed metal (A) and a lower layer containing at least an iron oxide. In this case, the lower layer is located between the upper layer and the ferrous metal material.
  • the upper layer of the oxide layer is not particularly limited as long as it includes at least one metal (A) oxide of metal (A) selected from the group consisting of Zr, Ti and Hf.
  • a metal (A) oxide is synonymous with the above.
  • a metal (A) oxide can be used individually or in combination of 2 types or more, respectively.
  • the thickness of the upper layer is preferably 0.02 to 2 ⁇ m, more preferably 0.05 to 1 ⁇ m, from the viewpoints of excellent adhesion, heat resistance, and conductivity and excellent adhesion with an adhesive or a primer. Is more preferable.
  • the thickness of the upper layer is an average value of the thicknesses of the upper layers.
  • the thickness (average value) of the upper layer is determined by taking a cross-section of the metal material using a transmission electron microscope, and in the photograph taken, an interval of 0.1 ⁇ m on the surface of the iron-based metal material. It is the value obtained by measuring the thickness of the upper layer at 10 locations having the average of the measured values at 10 locations.
  • the measurement method of the thickness (average value) of the lower layer is the same as that of the upper layer.
  • the lower layer of the oxide layer is not particularly limited as long as it contains at least iron oxide. Corrosion resistance and adhesion can be further improved by the iron oxide contained in the lower layer. Iron oxide has the same meaning as above.
  • the lower layer is preferably a crystalline iron oxide from the viewpoint of better adhesion, heat resistance, and conductivity.
  • the crystallinity and structure of the oxide layer (oxide film) can be determined by a cross-sectional TEM or X-ray diffraction method.
  • the kind of crystalline iron oxide is not particularly limited, and may be a complex oxide containing other metals. Of these, ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , Fe 3 O 4 and the like are preferable from the viewpoint of excellent adhesion, heat resistance, and conductivity.
  • the amount of Fe in the lower layer is 2 to 30 atomic percent from the viewpoint of excellent adhesion, heat resistance, and conductivity and excellent adhesion to an adhesive or a primer. Is preferred, with 3 to 10 atomic percent being more preferred.
  • the oxide layer has an upper layer and a lower layer, it is excellent in adhesion, heat resistance, and conductivity, and in a portion having a depth of 0.01 ⁇ m from the surface of the oxide layer from the viewpoint of excellent adhesion with an adhesive or a primer.
  • the amount of Fe is preferably 1-5 atomic percent, more preferably 2-4 atomic percent.
  • the thickness of the lower layer is preferably 0.02 to 0.5 ⁇ m from the viewpoint of being excellent in adhesion, heat resistance, and conductivity and excellent in adhesion with an adhesive or a primer, and 0.05 to 0. More preferably, it is 3 ⁇ m. In the present invention, the thickness of the lower layer is an average value of the thickness of the lower layer.
  • the amount of the metal (A) contained in the oxide layer is excellent in corrosion resistance, heat resistance, adhesion, and conductivity, and from the viewpoint that the film strength is high, the total in terms of AO 2 It is preferably 10 to 1,000 mg / m 2 , more preferably 30 to 300 mg / m 2 .
  • the adhesion amount of the metal (A) is 10 mg / m 2 or more as a total in terms of AO 2 , the corrosion resistance and heat resistance are excellent. Also. In the case of about 1000 mg / m 2 or less, cracks are unlikely to occur in the coating, and the strength of the coating is high.
  • the iron oxide is intermediate between the iron-based metal material (base metal) and the upper layer (metal (A) oxide layer) from the viewpoint of being superior in heat resistance, adhesion, and conductivity. It is preferable to exist as crystalline iron oxides such as ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , and Fe 3 O 4 . The presence of iron oxide can be confirmed by X-ray diffraction, a transmission electron microscope, GDS, or the like.
  • the oxide layer preferably has a contact resistance of 200 ⁇ or less.
  • the oxide layer contains an iron oxide and the adhesion amount of the metal (A) is approximately 1000 mg / m 2 or less as a total in terms of AO 2 , a low contact resistance value of approximately 200 ⁇ or less can be obtained.
  • the contact resistance value can be measured using a commercially available surface resistance meter conforming to JIS K 7194: 1994 (for example, MCP-T360 type [two-point type] manufactured by Mitsubishi Chemical Corporation). Due to the low contact resistance, it can also be used for current-carrying members such as battery contacts and fuel cell materials, and members requiring antistatic properties such as lubricating coating bases, various machines and automobiles.
  • inorganic primer and adhesive for example, metal alkoxide (sol-gel), water glass, phosphate, peroxo compound, polysilazane, etc. can be used. Zr, Ti, Al, Si, B Those containing any of the above in the component are more preferred.
  • the ceramic or resin coating layer preferably further includes conductive particles from the viewpoint of superior conductivity.
  • conductive particles for example, nickel, stainless steel, antimony, zinc, aluminum, graphite particles, carbon fibers, carbon nanotubes, zinc oxide, tin oxide, ITO, lanthanum chromite and the like are preferable.
  • the metal material of the present invention is not particularly limited for its production.
  • it can be produced by the film forming method shown in the following (1) to (3).
  • Coating method + oxidation method in which at least one metal (A) oxide selected from Zr, Ti, and Hf or a precursor thereof is applied to the surface of an iron-based metal material and then oxidized after drying.
  • An electrolytic method in which electrolytic treatment is performed in a metal (A) oxide dispersion or a precursor solution thereof
  • a reaction method chemical conversion treatment method in which a film is deposited by contacting and reacting an iron-based metal material with an acidic aqueous solution containing metal (A) ions, Fe ions, and oxidant ions. Is mentioned.
  • it is preferable to perform an oxidation treatment such as heating the metal material in an oxidizing atmosphere after washing and drying.
  • examples of the manufacturing method include a chemical conversion treatment method; an oxidation treatment in which post-oxidation treatment such as heat oxidation is performed after film formation. Law.
  • a metal material excellent in corrosion resistance, adhesion, conductivity and heat resistance can be produced.
  • it can be produced by the film forming method shown in the following (1) to (4).
  • Coating method + oxidation method in which at least one metal (A) oxide selected from Zr, Ti, and Hf or a precursor thereof is applied to the surface of an iron-based metal material and then oxidized after drying.
  • An electrolytic method + oxidation method in which after the electrolytic treatment in the metal (A) oxide dispersion or its precursor solution, an oxidation treatment is performed after drying.
  • a reaction method chemical conversion treatment
  • a film is deposited by contacting and reacting an iron-based metal material with an acidic aqueous solution containing metal (A) ions, Fe ions, and oxidant ions
  • a chemical conversion treatment method + an oxidation treatment method in which an oxidation treatment such as heating in an oxidizing atmosphere after washing and drying is performed after the chemical conversion treatment method.
  • the oxidation treatment method can be performed before the coating method, the electrolytic method, and the chemical conversion treatment method.
  • Examples of the oxidation treatment method include a method of heating at a high temperature of 200 ° C. or higher in an air atmosphere, a method of heating in a strong alkaline aqueous solution containing an oxidizing agent, and a method of treating at 400 ° C. or higher in an oxidizing molten salt bath. It is done.
  • a layer containing iron oxide can be efficiently formed on the iron-based metal material.
  • the metal material of the present invention has a coating layer
  • its production is not particularly limited.
  • at least one selected from the group consisting of a primer, a curable primer, and an adhesive is applied on an oxide layer of a metal material, and is heated and cured to form a coating layer.
  • the method for using the metal material of the present invention is not particularly limited.
  • high corrosion resistance coating, lubrication coating, lining, ceramic coating, and resin coating can be applied to the metal material of the present invention. Since the metal material of the present invention can exhibit excellent performance and durability as an organic / inorganic adhesion base, its practical value is high.
  • the use of the metal material of the present invention is not particularly limited.
  • the metal material of the present invention can maintain the corrosion resistance, adhesion, and conductivity of an iron-based metal material even in a severer environment than before.
  • Examples of the use of the metal material of the present invention include sliding members and heat-resistant members such as industrial machines, transport machines and transport devices; battery members such as battery contacts; fuel cell members such as separators, current collectors and electrodes; Current-carrying members such as fuel cell materials; members that require antistatic properties such as lubricating coating bases, various machines, and automobiles.
  • Examples of the fuel cell include those for automobiles, homes, businesses, stationary, and portable devices.
  • the oxide layer included in the metal material of the present invention is not easily attacked by acid or alkali and has a chemically stable property.
  • the pH decreases at the anode where the metal elution occurs, and the pH increases at the cathode where the reduction reaction occurs. Therefore, the surface treatment film inferior in acid resistance and alkali resistance dissolves in a corrosive environment and loses its effect.
  • the oxide layer of the metal material of the present invention is hardly affected by acid or alkali, excellent effects are maintained even in a corrosive environment.
  • the method for producing the metal material of the present invention comprises: The surface of the iron-based metal material is coated or electrodeposited with at least one metal (A) metal (A) oxide or precursor thereof selected from the group consisting of Zr, Ti and Hf, and the iron-based metal A metal (A) oxide adhesion step in which the material is an iron-based metal material having a metal (A) oxide film; And an oxidation treatment step of heating the iron-based metal material having the metal (A) oxide film to produce the metal material of the present invention.
  • a method for producing a metal material according to the first aspect of the present invention may be referred to as “a method for producing a metal material according to the first aspect of the present invention”.
  • the metal (A) oxide adhesion step is performed on the surface of the iron-based metal material by at least one metal selected from the group consisting of Zr, Ti and Hf ( A step of applying or electrodepositing a metal (A) oxide of A) or a precursor thereof to make the iron-based metal material an iron-based metal material having a metal (A) oxide film.
  • the ferrous metal material used in the metal (A) oxide adhesion step is not particularly limited.
  • the same thing as the above is mentioned.
  • the iron-based metal material is preferably stainless steel.
  • a pretreatment for peeling off the film after the treatment, a pretreatment for peeling off the film; after a film chemical conversion treatment with a phosphate such as a manganese phosphate surface treating agent, a pretreatment for peeling off the film and roughening the surface can be performed.
  • the adhesion can be enhanced by further adding a step of roughening the surface of the ferrous metal material by a physical or chemical method.
  • Physical surface roughening methods include sand blasting, shot blasting, wet blasting, electromagnetic barrel polishing, and WPC treatment, and any of them can be used.
  • a chemical method A polycrystalline film such as phosphate or oxalate is formed by chemical conversion or anodic electrolysis, and a stripping solution such as hydrochloric acid or nitric acid is used. A method of peeling the film is preferred.
  • the film is formed by containing metal ions such as zinc ions, manganese ions, nickel ions, cobalt ions, calcium ions, and phosphate ions, and adjusting the pH of the aqueous solution in the range of 1 to 5. It is more preferable to roughen the surface by a method of forming a film and etching holes by treating at 40 to 100 ° C. as a film treatment solution, and then peeling with the acid solution.
  • the ferrous metal material (base material) is stainless steel, it is preferable to remove the film or smut with acid after treating with a solution containing ferric chloride or oxalic acid.
  • Examples of the metal (A) oxide of at least one metal (A) selected from Zr, Ti, and Hf used in the metal (A) oxide deposition step include TiO 2 , ZrO 2 , and HfO.
  • Metal oxide (A) such as 2 ;
  • Metal (A) hydroxide such as Ti (OH) 2 , Zr (OH) 2 , and Hf (OH) 2 ; and complex oxides with Fe.
  • Specific examples of the composite oxide with Fe are as defined above.
  • As a metal (A) oxide, crystalline sol, amorphous sol, etc. can be used, for example.
  • the particle diameter is preferably 1 to 200 nm.
  • the precursor of the metal (A) oxide of at least one metal (A) selected from Zr, Ti and Hf used in the metal (A) oxide deposition step is not particularly limited.
  • the metal (A) oxide precursor (metal compound raw material) include inorganic compounds such as metal (A) alkoxide, chloride, nitrate, fluoride; oxalic acid, acetic acid, citric acid, maleic acid, tartaric acid, Chelates such as glycolic acid, lactic acid, gluconic acid, ⁇ -diketone, organic salts, hydrogen peroxide complex, and the like are preferable. More preferable examples include basic zirconium carbonate solution, peroxotitanic acid solution, Zr—Hf alkoxide hydrolyzate alcohol solution, and the like.
  • the metal (A) oxide or precursor thereof used in the metal (A) oxide adhesion step can be used as an acidic aqueous solution.
  • the method for applying the metal (A) oxide or its precursor to the surface of the iron-based metal material is not particularly limited.
  • a conventionally well-known thing is mentioned. Specific examples include dipping and spin coating.
  • the method for electrodepositing the metal (A) oxide or its precursor on the surface of the iron-based metal material is not particularly limited.
  • the metal (A) oxide or a precursor thereof can be deposited as an oxide on the surface of the iron-based metal material by electrolysis at a voltage of about several volts to several tens of volts.
  • a solution for example, an aqueous solution
  • a metal (A) oxide or a precursor thereof or a sol of the metal (A) oxide or a precursor thereof is diluted as necessary into an electrolytic cell.
  • electrodeposition electrolytic deposition of the metal (A) oxide or its precursor as an oxide on the surface of an iron-based metal material Can do. Electrodeposition is preferably performed at a metal (A) concentration of 0.1 to 5%, a temperature of 10 to 70 ° C., and a current density of 0.02 to 5 A / dm 2 .
  • Fe in the iron-based metal material (base material) is introduced into the metal (A) oxide film as iron oxide, or the formation of the lower layer (iron oxide layer) is promoted Therefore, it is more preferable than cathodic electrolysis because it has the effect of further improving the adhesion.
  • the iron-based metal material can be an iron-based metal material having a metal (A) oxide film.
  • the oxidation treatment step of the method for producing a metal material according to the first aspect of the present invention is to heat the iron-based metal material having a metal (A) oxide film to produce the metal material of the present invention.
  • the heating temperature in the oxidation treatment step is preferably 100 to 700 ° C, more preferably 200 to 500 ° C.
  • the metal (A) oxide can be made into a metal oxide (A) such as TiO 2 , ZrO 2 , and HfO 2 by heating and drying.
  • the oxidation treatment process diffuses Fe ions from the surface of the iron-based metal material (base metal) into the oxide layer, and the interface between the iron-based metal material (base metal) and the metal (A) oxide film.
  • an iron oxide layer is formed to further improve corrosion resistance and adhesion.
  • the oxide layer tends to be an oxide layer having a multilayer structure in which an upper layer containing a metal (A) oxide and a lower layer containing an iron oxide are present.
  • the oxidation treatment method that can be used to form the lower layer is not particularly limited. For example, after formation of a metal (A) oxide film, a method of heating in air at a high temperature of 200 ° C. or higher, a method of heating in a strong alkaline aqueous solution of 100 ° C. or higher containing an oxidizing agent, and an oxidizing molten salt bath The method of processing at 400 degreeC or more is mentioned.
  • Corrosion resistance, adhesion and heat resistance can be further improved by the oxidation treatment step.
  • the kind of iron oxide obtained by an oxidation treatment process is not specifically limited.
  • iron oxides such as ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , and Fe 3 O 4 are preferable.
  • the metal material of the present invention can be obtained.
  • the surface of the obtained metal material can be degreased and cleaned in advance if necessary.
  • the method is not particularly limited, and a conventional method can be used.
  • the manufacturing method of the metal material of the 1st aspect of this invention can have the coating process which provides a ceramic or resin further on the oxide layer which the said metal material has after an oxidation treatment process.
  • the ceramic or resin used in the coating process is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • a coating layer can be formed by applying a ceramic or a resin on the oxide layer of the metal material and curing the ceramic or the resin by heating to 150 to 500 ° C., for example.
  • a metal material having a coating layer (a primer, a curable primer or an adhesive layer) and an oxide layer are adhered to each other, and a coating layer formed using a ceramic or a resin is further formed on the oxide layer. Obtainable.
  • the method for producing a metal material according to the second aspect of the present invention includes: The iron-based metal material is contacted with an acidic aqueous solution containing at least one metal (A) ion selected from the group consisting of Zr, Ti, and Hf, Fe ions of 30 ppm or more, and an oxidizer ion. It has the chemical conversion treatment process which manufactures the metal material of this invention by making it.
  • A metal
  • the iron-based metal material used is not particularly limited.
  • the thing synonymous with the iron-type metal material used in the manufacturing method of the metal material of the 1st aspect of this invention is mentioned.
  • what pre-processed as an iron-type metal material can be used.
  • the acidic aqueous solution used is a metal (A) of at least one metal (A) selected from the group consisting of Zr, Ti and Hf. ) Ions, Fe ions of 30 ppm or more, and oxidant ions.
  • the supply source of Zr ions contained in the acidic aqueous solution is not particularly limited as long as it is a soluble zirconium compound or a zirconium compound that can be made water-soluble by adding some acid component.
  • the supply source of Ti ions contained in the acidic aqueous solution is not particularly limited as long as it is a soluble titanium compound or a titanium compound that can be water-solubilized by adding some acid component.
  • TiCl 4 , Ti (SO 4 ) 2 , TiOSO 4 , Ti (NO 3 ), TiO (NO 3 ) 2 , TiO 2 OC 2 O 4 , H 2 TiF 6 , H 2 TiF 6 salt, TiO 2 , TiF 4 is mentioned.
  • the source of Hf ions contained in the acidic aqueous solution is not particularly limited as long as it is a soluble hafnium compound or a hafnium compound that can be made water-soluble by adding some acid component.
  • examples thereof include HfCl 4 , Hf (SO 4 ) 2 , Hf (NO 3 ), HfO 2 OC 2 O 4 , H 2 HfF 6 , a salt of H 2 HfF 6 , HfO 2 , and HfF 4 .
  • Examples of the supply source of Fe ions contained in the acidic aqueous solution include ferric nitrate, iron fluoride, iron citrate, and iron oxalate.
  • the concentration of Fe ions in the acidic aqueous solution is 30 ppm or more from the viewpoint of excellent adhesion, conductivity, and heat resistance.
  • concentration of Fe ion in acidic aqueous solution is 30 ppm or more, it is excellent in heat-resistant adhesiveness.
  • the concentration of Fe ions in the acidic aqueous solution is preferably 30 to 300 ppm, more preferably 40 to 150 ppm, from the viewpoint of excellent adhesion and heat-resistant adhesion.
  • the acidic aqueous solution is at least one selected from the group consisting of Zr, Ti and Hf from the viewpoint of superior adhesion, heat resistance, corrosion resistance, and conductivity. It preferably contains an amorphous hydroxide of the seed metal (A).
  • the amorphous hydroxide of the metal (A) is not particularly limited as long as it is amorphous. Examples of the metal (A) amorphous hydroxide include Ti (OH) 2 , Zr (OH) 2 , and Hf (OH) 2 . From the viewpoint that the amorphous hydroxide of the metal (A) increases the deposition rate of the metal (A) and is excellent in corrosion resistance, the shape is preferably particulate.
  • the acidic aqueous solution (treatment liquid) Due to the presence of metal (A) hydroxide particles in the liquid, the acidic aqueous solution (treatment liquid) is always kept in a state where these metal hydroxides are close to saturation, and the oxide layer (film) is most efficiently formed. It can be kept in a state of being performed well and stably.
  • Amorphous hydroxide particles in acidic aqueous solution (treatment liquid) can be dissolved and deposited reversibly in response to fluctuations in pH, temperature and fluorine ion concentration, so the treatment bath can be managed stably. can do.
  • the amount and size of the metal (A) amorphous hydroxide present in the acidic aqueous solution (acidic solution) are not particularly limited.
  • the particle diameter of the metal (A) amorphous hydroxide is preferably about 0.02 to 10 ⁇ m from the viewpoint of excellent adhesion, heat resistance, electrical conductivity, and corrosion resistance.
  • the number of particles of the metal (A) amorphous hydroxide is preferably 100 / mL or more from the viewpoint of excellent adhesion, heat resistance, conductivity, and corrosion resistance.
  • the pH of the acidic aqueous solution is preferably 3 to 6, and preferably 3.5 to 5.5. Is more preferable.
  • the concentration of Fe ions in the acidic aqueous solution is preferably 30 to 150 ppm, More preferably, it is 120 ppm.
  • Amorphous hydroxide particles of the metal (A) are obtained by adding ammonia water, NaOH, or a solution of a water-soluble metal salt of the metal (A) (for example, a source of Zr ion, Ti ion, or Hf ion). It can be obtained by adding a solution of an alkali metal hydroxide such as KOH at a low temperature (0 to 40 ° C.) and stirring well.
  • a water-soluble metal salt of the metal (A) for example, a source of Zr ion, Ti ion, or Hf ion.
  • An oxidizing agent is used as a source of oxidizing agent ions contained in the acidic aqueous solution.
  • the oxidizing agent that can be used include at least one selected from the group consisting of HClO 3 , HBrO 3 , HNO 2 , HMnO 4 , HVO 3 , H 2 O 2 , H 2 WO 4, and H 2 MoO 4. Or at least one selected from these oxyacid salts.
  • Oxygen acid or a salt thereof acts as an oxidizing agent for the metal material to be treated, and promotes deposition of the oxide film.
  • the concentration of these oxygen acids or salts thereof in the acidic aqueous solution is preferably about 10 to 5000 ppm in order to exhibit a sufficient effect as an oxidizing agent.
  • nitric acid is one of the most preferred acids because it has an oxidizing power and thus has an effect of promoting precipitation of an oxide layer (oxide film layer).
  • the concentration of nitric acid in the aqueous solution for the purpose of promoting the precipitation of the oxide layer (surface treatment film layer) is preferably 1000 to 100,000 ppm, more preferably 1000 to 80,000 ppm.
  • the production of the acidic aqueous solution is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • the method for bringing the acidic aqueous solution into contact with the iron-based metal material (metal material to be treated) is not particularly limited.
  • spray treatment in which an acidic aqueous solution is sprayed on the surface of the iron-based metal material (metal material to be treated)
  • iron-based Examples include immersion treatment in which a metal material is immersed in an acidic aqueous solution, and pouring treatment in which the acidic aqueous solution is poured onto the surface of the iron-based metal material.
  • the temperature of the acidic aqueous solution is preferably 20 to 80 ° C., and preferably 30 to 60 ° C. from the viewpoint of excellent adhesion. Is more preferable.
  • the acidic aqueous solution and the iron-based metal material are brought into contact with each other to cause the acidic aqueous solution and the iron-based metal material to react with each other on the surface of the iron-based metal material (metal material to be treated).
  • An oxide layer containing at least one metal (A) element selected from Hf and Fe as oxides is obtained.
  • the method for producing a metal material according to the second aspect of the present invention can further include an oxidation treatment step of heating the metal material after the chemical conversion treatment step.
  • the oxidation treatment step in the metal material production method of the second aspect of the present invention is synonymous with the oxidation treatment step in the metal material production method of the first aspect of the present invention.
  • the manufacturing method of the metal material of the 2nd aspect of this invention can have the coating process which provides the coating layer of a ceramic or resin further on the oxide layer which a metal material has after an oxidation treatment process.
  • the coating process in the manufacturing method of the metal material of the 2nd aspect of this invention is synonymous with the coating process in the manufacturing method of the metal material of the 1st aspect of this invention.
  • the method for producing a metal material according to the first aspect of the present invention and the method for producing the metal material according to the second aspect of the present invention are collectively referred to as a method for producing a metal material according to the present invention.
  • the acidic aqueous solution that can be used in the method for producing a metal material of the present invention can further contain fluorine.
  • the acidic aqueous solution can be formulated with fluorine as ions or complex ions.
  • hydrofluoric acid HF
  • H 2 ZrF 6 H 2 ZrF 6 salt
  • H 2 TiF 6 H 2 TiF 6 salt
  • H 2 SiF 6 H 2 SiF 6 salt
  • HBF 4 HBF 4 salt
  • NaHF 2 , KHF 2 NH 4 HF 2 , NaF, KF, and NH 4 F
  • HBF 4 salt NaHF 2 , KHF 2 , NH 4 HF 2 , NaF, KF, and NH 4 F
  • the molar concentration ratio of fluorine to metal (A) [(B) / (A)] is preferably 6 or more.
  • the ratio of the molar concentration of fluorine (B) to metal (A) is 6 or more, at least one metal selected from Zr, Ti and Hf (which is easy to precipitate an oxide layer and has high stability in acidic aqueous solution) A) hardly precipitates in an acidic aqueous solution and is suitable for continuous operation in actual industrial applications.
  • the acidic aqueous solution that can be used in the method for producing a metal material of the present invention can further contain a water-soluble organic compound.
  • the metal material obtained by the method for producing a metal material of the present invention has sufficient adhesion, heat resistance, corrosion resistance, and the like, but if further performance is required, depending on the desired performance
  • a water-soluble organic compound can be appropriately selected and contained in an aqueous solution to modify the physical properties of the oxide layer.
  • the water-soluble organic compound is not particularly limited as long as it is an organic compound that can be dissolved or dispersed in water.
  • a polymer compound commonly used for metal surface treatment can be used.
  • polyvinyl alcohol poly (meth) acrylic acid, a copolymer of acrylic acid and methacrylic acid, a copolymer of ethylene and an acrylic monomer such as (meth) acrylic acid or (meth) acrylate.
  • a step of bringing the oxide layer into contact with an aqueous solution containing a water-soluble organic compound is performed, whereby the oxide A water-soluble organic compound layer can also be deposited on the layer.
  • the acidic aqueous solution can further contain an alkaline earth metal and a rare earth metal from the viewpoint of further improving heat resistance and adhesion.
  • Alkaline earth metals and rare earth metals can be mentioned as one of preferred embodiments to be added together with a chelating agent such as EDTA.
  • the acidic aqueous solution can further contain an additive.
  • the additive include a surfactant and an organic inhibitor.
  • the acidic aqueous solution preferably has a pH of 2 to 6, more preferably a pH of 3 to 5.
  • examples of the pH adjuster include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides and oxides; ammonia; Alkali components such as amine compounds can be used.
  • one or more inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid and / or acetic acid, oxalic acid, tartaric acid, citric acid, succinic acid, gluconic acid,
  • organic acids such as phthalic acid
  • the acidic aqueous solution can further contain a surfactant such as a nonionic surfactant, an anionic surfactant, and a cationic surfactant.
  • a surfactant such as a nonionic surfactant, an anionic surfactant, and a cationic surfactant.
  • an aqueous solution containing at least one selected from the group consisting of these surfactants is brought into contact with an iron-based metal material (metal material to be treated) in a state where an oil component is adhered without performing a degreasing process in advance.
  • an iron-based metal material metal material to be treated
  • a metal material having an oxide layer as a single layer or multiple layers can be produced.
  • the method for producing a metal material of the present invention includes an oxidation treatment step, a metal material having an oxide layer as a multilayer can be produced.
  • test plate metal material
  • 70 ⁇ 150 mm (plate thickness: 0.8 mm) stainless steel plate (SUS430) and cold-rolled steel plate (SPC) were used as the metal material substrate (iron-based metal material).
  • the steel plate used for the test was degreased with an alkaline degreasing solution (FC-4360 20 g / L, manufactured by Nihon Parkerizing Co., Ltd.) at 60 ° C. for 120 seconds and washed with water.
  • FC-4360 20 g / L manufactured by Nihon Parkerizing Co., Ltd.
  • SUS430 was subjected to surface roughening treatment at 40 ° C. for 3 minutes with an etching solution obtained by adding 10 g / L of hydrochloric acid to 100 g / L of ferric chloride, and then with 20% nitric acid. What peeled off was used as a metal material base material.
  • Examples 4 and 10 and Comparative Example 1 a manganese phosphate surface treatment agent (Palphos M1A, manufactured by Nihon Parkerizing Co., Ltd.) was diluted with water to a concentration of 14% by mass, and the total acidity and acid ratio (total acidity / (Free acidity) and iron concentration were adjusted to the standard concentration of the catalog value, and an aqueous solution heated to 96 ° C was prepared. After this SPC film was formed using this aqueous solution, the film was peeled off with 5% hydrochloric acid for 5 minutes. Then, the surface roughened material was used as a metal material base material.
  • a manganese phosphate surface treatment agent Palphos M1A, manufactured by Nihon Parkerizing Co., Ltd.
  • the oxide layer was formed by the following method.
  • Example 1 An aqueous solution obtained by diluting titanium chloride to 50% with water was further diluted about 10 times, and ammonia water was added to make it weakly alkaline to form a titanium hydroxide precipitate. This was thoroughly washed with deionized water and then dissolved in hydrogen peroxide to prepare a 1.3% peroxotitanic acid solution. This solution was dip-coated on a SUS430 test plate (metal (A) oxide adhesion step) and baked at 400 ° C. for 60 minutes (oxidation treatment step) to obtain a metal material.
  • metal (A) oxide adhesion step metal (A) oxide adhesion step
  • the amount of TiO 2 deposited on the metal material obtained with a fluorescent X-ray analyzer was 160 mg / m 2 . Further, from the oxide layer (coating layer) of the metal material obtained by X-ray diffraction (performed using an X-ray diffraction analyzer (X'PERT-MRD, manufactured by Philips), the same applies hereinafter), ⁇ -Fe 2 O 3 was detected.
  • Example 2 A coating solution was prepared by diluting a zirconium carbonate solution (20% by mass as ZrO 2 ) with water to 2% by mass. This solution was dip coated on an SPC test plate and dried at 180 ° C. for 20 minutes to obtain a metal material.
  • Was 220 mg / m 2 was measured coating weight of ZrO 2 in the metal material obtained by the fluorescent X-ray analyzer.
  • ⁇ -Fe 2 O 3 was detected from the oxide layer (film layer) of the metal material obtained by X-ray diffraction. Further, from the TEM observation of the cross section of the obtained metal material, ⁇ -Fe 2 O 3 was detected at the boundary portion between the base material and the Zr oxide film.
  • Example 3 A coating liquid was prepared by diluting a solution obtained by adding 1/10 mol of hafnium oxalate to a zirconium carbonate solution (20 mass% as ZrO 2 ) to 2 mass% with water. This solution was dip coated on an SPC test plate and dried at 180 ° C. for 20 minutes to obtain a metal material.
  • Was 220 mg / m 2 was measured coating weight of ZrO 2 in the metal material obtained by the fluorescent X-ray analyzer.
  • ⁇ -Fe 2 O 3 was detected from the oxide layer (film layer) of the metal material obtained by X-ray diffraction. Further, from the TEM observation of the cross section of the obtained metal material, ⁇ -Fe 2 O 3 was detected at the boundary portion between the base material and the Zr—Hf oxide film.
  • Example 4 A coating solution was prepared by diluting a zirconium carbonate solution (20% by mass as ZrO 2 ) with water to 2% by mass. This solution was dip-coated on an SPC test plate whose surface was roughened in advance by peeling off manganese phosphate-hydrochloric acid and dried at 180 ° C. for 20 minutes to obtain a metal material.
  • a zirconium carbonate solution (20% by mass as ZrO 2 ) with water to 2% by mass.
  • This solution was dip-coated on an SPC test plate whose surface was roughened in advance by peeling off manganese phosphate-hydrochloric acid and dried at 180 ° C. for 20 minutes to obtain a metal material.
  • Was 270 mg / m 2 was measured coating weight of ZrO 2 in the metal material obtained by the fluorescent X-ray analyzer.
  • ⁇ -Fe 2 O 3 was detected from the oxide layer (film layer) of the metal material obtained by X-ray diffraction.
  • Example 5 The 1.3% peroxotitanic acid solution used in Example 1 was diluted twice with water and placed in an electrolytic cell. A platinized titanium plate was used as a counter electrode, and a SUS430 test plate was subjected to anodic electrolysis for 15 V ⁇ 60 seconds. Deposition of peroxotitanate gel was observed on the test plate after anodic electrolysis. The test plate after anodic electrolysis was dried and then fired at 450 ° C. for 60 minutes to form a titanium oxide film to obtain a metal material. The amount of TiO 2 deposited on the metal material obtained by the fluorescent X-ray analyzer was measured and found to be 330 mg / m 2 . Further, ⁇ -Fe 2 O 3 was detected from the oxide layer (film layer) of the metal material obtained by X-ray diffraction.
  • Example 6 Using an aqueous hexafluorotitanate (IV) solution, ferric nitrate, aluminum nitrate solution, citric acid, and hydrofluoric acid, the Ti concentration was 1500 ppm, the Fe concentration was 50 ppm, the aluminum concentration was 300 ppm, A chemical conversion treatment solution having an acid concentration of 50 ppm was prepared. Next, the aqueous solution was heated to 55 ° C. and then adjusted to pH 2.5 with aqueous ammonia to obtain a chemical conversion treatment solution. As a result of collecting the chemical conversion treatment liquid and observing under a microscope, hydroxide particles were not observed in the treatment liquid.
  • IV aqueous hexafluorotitanate
  • this chemical conversion treatment solution was used, and a SUS430 test plate whose surface was previously roughened with a ferric chloride etching solution was immersed and reacted for 120 seconds to obtain a metal material.
  • the amount of TiO 2 deposited on the metal material obtained by the fluorescent X-ray analyzer was measured and found to be 80 mg / m 2 .
  • the metal material was baked at 450 ° C. for 60 minutes in the oxidation treatment step. From the oxide layer (film layer) of the metal material obtained after the oxidation treatment step, ⁇ -Fe 2 O 3 was detected by X-ray diffraction.
  • Example 7 A chemical conversion treatment solution having a zirconium concentration of 5 ppm and an Fe concentration of 35 ppm was prepared using zirconium oxynitrate, ferric nitrate and hydrochloric acid. Next, the aqueous solution was heated to 45 ° C. and then adjusted to pH 4.8 with an aqueous ammonia reagent to obtain a chemical conversion treatment solution. As a result of collecting the chemical conversion treatment liquid and observing under a microscope, transparent particles of hydroxide hydroxide having a particle diameter of 5 to 30 ⁇ m were observed in the whole treatment liquid. In this chemical conversion treatment step, this chemical conversion treatment solution was used, and an SPC test plate was immersed and reacted for 120 seconds to obtain a metal material.
  • the amount of ZrO 2 deposited on the metal material obtained with the fluorescent X-ray analyzer was measured and found to be 180 mg / m 2 .
  • the metal material was baked at 250 ° C. for 30 minutes in the oxidation treatment step. From the oxide layer (film layer) of the metal material obtained after the oxidation treatment step, ⁇ -Fe 2 O 3 was detected by X-ray diffraction.
  • Example 8 Using a zirconium oxynitrate, ferric nitrate, a magnesium nitrate solution, and hydrofluoric acid, a chemical conversion treatment solution having a zirconium concentration of 5 ppm, an Fe concentration of 80 ppm, and a magnesium concentration of 300 ppm was prepared. Next, the aqueous solution was heated to 45 ° C. and then adjusted to pH 4.4 with an aqueous ammonia reagent to obtain a chemical conversion treatment solution. As a result of collecting the chemical conversion treatment liquid and observing under a microscope, transparent particles of hydroxide hydroxide having a particle diameter of 1 to 20 ⁇ m were observed in the whole treatment liquid.
  • this chemical conversion treatment solution was used, and an SPC test plate was immersed and reacted for 120 seconds to obtain a metal material.
  • the amount of ZrO 2 deposited on the metal material obtained with the fluorescent X-ray analyzer was measured and found to be 210 mg / m 2 .
  • the metal material was baked at 250 ° C. for 30 minutes in the oxidation treatment step. From the oxide layer (film layer) of the metal material obtained after the oxidation treatment step, ⁇ -Fe 2 O 3 was detected by X-ray diffraction.
  • FIG. 1 is a photograph of a cross section of an example of the metal material of the present invention taken with a transmission electron microscope.
  • the metal material 1 has an oxide layer 3 on the surface of the iron-based metal material 2. It was confirmed that the lower layer 5 was formed of iron oxide and the upper layer 4 was formed of zirconium oxide.
  • the iron oxide in the lower layer 5 was crystalline iron oxide. From the results shown in FIG. 1, it is confirmed that the upper layer 4 is a metal (A) oxide having a thickness of 0.2 to 0.3 ⁇ m, and the lower layer 5 is made of an iron oxide having a thickness of 0.02 to 0.15 ⁇ m. did. As is clear from the results in FIG. 1, the lower layer 5 forms fine irregularities on the surface of the iron-based metal material 2 (see FIG. 1). For this reason, the adhesion between the upper layer 4 and the lower layer 5 is excellent due to the throwing effect by the fine unevenness of the lower layer 5.
  • Example 9 Using a zirconium oxynitrate solution, a magnesium nitrate solution, ferric nitrate, and a hydrofluoric acid reagent, the zirconium concentration is 5 ppm, the magnesium concentration is 300 ppm, the ascorbic acid is 50 ppm, and the Fe concentration is 40 ppm.
  • a chemical conversion treatment solution was prepared. Then, 50 ppm of a polyallylamine aqueous solution (PAA-05, manufactured by Nitto Boseki Co., Ltd.) was added to the aqueous solution and heated to 50 ° C., and then adjusted to pH 4.5 with an aqueous ammonia reagent to obtain a chemical conversion treatment solution.
  • PAA-05 polyallylamine aqueous solution
  • Example 10 Using hexafluorozirconic acid (IV) aqueous solution, hexafluorotitanic acid (IV) aqueous solution, ferric nitrate, citric acid, and magnesium nitrate solution, zirconium concentration is 200 ppm, titanium concentration is 50 ppm, citric acid A chemical conversion solution having a concentration of 100 ppm, an Fe concentration of 80 ppm, and a magnesium concentration of 14000 ppm was prepared.
  • a diallylamine copolymer aqueous solution (PAS-92, manufactured by Nittobo Co., Ltd.) was added to the aqueous solution and heated to 50 ° C., and then adjusted to pH 4.5 with an aqueous ammonia reagent to obtain a chemical conversion treatment solution.
  • PAS-92 diallylamine copolymer aqueous solution
  • pH 4.5 an aqueous ammonia reagent
  • This chemical conversion treatment solution was used in the chemical conversion treatment step, and the SPC test plate was immersed in an SPC test plate that had been surface-roughened in advance by peeling off manganese phosphate-hydrochloric acid to react for 120 seconds to obtain a metal material.
  • the adhesion amount of ZrO 2 and TiO 2 in the metal material obtained with the fluorescent X-ray analyzer was measured, the adhesion amount of ZrO 2 was 170 mg / m 2 and the adhesion amount of TiO 2 was 130 mg / m 2 .
  • the metal material was baked at 180 ° C. for 30 minutes in the oxidation treatment step. From the oxide layer (film layer) of the metal material obtained after the oxidation treatment step, ⁇ -Fe 2 O 3 was detected by X-ray diffraction.
  • a coating solution was prepared by diluting a zirconium carbonate solution (20% by mass as ZrO 2 ) with water to 2% by mass. This solution was dip coated on a SUS430 test plate and dried at 30 ° C. for 20 minutes to obtain a metal material.
  • Was 220 mg / m 2 was measured coating weight of ZrO 2 in the metal material obtained by the fluorescent X-ray analyzer.
  • Fe oxide was not detected from the oxide layer (coating layer) of the metal material obtained from X-ray diffraction and XPS.
  • the amount of ZrO 2 deposited on the metal material obtained with the fluorescent X-ray analyzer was measured and found to be 110 mg / m 2 .
  • the metal material was dried at 60 ° C. for 10 minutes in the oxidation treatment step. No Fe oxide was detected from the coating layer by X-ray diffraction and XPS from the oxide layer (coating layer) of the metal material after the oxidation treatment step.
  • the amount of Fe in the oxide layer was measured by XPS (X-ray photoelectron spectroscopy) using an XPS analyzer ESCA manufactured by Shimadzu Corporation. It was measured for each film depth by analysis.
  • XPS X-ray photoelectron spectroscopy
  • ESCA XPS analyzer
  • FIG. 2 is a graph showing an XPS narrow spectrum obtained as a result of analyzing each element contained in an oxide layer as an example of the metal material of the present invention using XPS (X-ray photoelectron spectroscopy).
  • FIG. 3 shows the amount of each element (unit: atomic percent) obtained as a result of analysis using XPS (X-ray photoelectron spectroscopy) for each element contained in the oxide layer of an example of the metal material of the present invention. Is a graph showing the depth profile. Note that the depth profile shown in FIG. 3 is created based on the XPS narrow spectrum data shown in FIG.
  • the portion of the oxide layer corresponding to an etching time of 0.2 minutes corresponds to the upper layer.
  • the Fe atomic percentage at an etching time of 1.2 minutes was about 20 atomic%.
  • the portion of the oxide layer corresponding to an etching time of 1.2 minutes corresponds to the lower layer.
  • the boundary between the upper layer and the lower layer was not clear, but the average Fe atomic percentage in the oxide layer including the upper layer and the lower layer was 8.2 atomic%.
  • the average Fe content in the depth direction in the oxide layer was in the range of 2 to 30 atomic percent in all of the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 鉄系金属材料に対し、密着性、耐熱性、導電性、耐食性のいずれにも優れる金属材料、およびこれを実現することができる金属材料の製造方法の提供。鉄系金属材料と、前記鉄系金属材料の表面に形成されている酸化物層とを有し、前記酸化物層が、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含む金属材料、およびこれを製造する金属材料の製造方法。

Description

金属材料およびその製造方法
 本発明は、厳しい環境下での耐食性、密着性に優れた金属材料およびその製造方法に関するものである。
 金属、特に炭素鋼に代表される鉄系金属材料は、高い強度や硬度が得られ、他の金属より安価であることから最も多く使用されている。
 鉄系金属材料は、クロム、ニッケル、コバルトに比較して耐食性、耐熱性が劣るため錆の発生や酸化膜の成長により耐久性に問題が生じやすい。
 このため、鉄系金属材料に樹脂塗装やライニングを施したものが使用される場合が多かった。
 しかし、鉄本来が持つ耐熱性や耐磨耗性、電気伝導性(帯電防止性)などを生かすためには、耐食性や導電性などの課題を解決する必要があった。
 一方、樹脂塗装やライニングが適さない用途では、クロム、ニッケル、モリブデン等を合金化したステンレス鋼がこれまで多く使用されてきた。
 しかしながら、これらの合金の使用は近年、資源価格の高騰により経済的理由から採用が困難な場合が増えている。
 鉄系金属材料における耐食性、耐熱性、密着性等の問題点を補う従来技術としては、リン酸塩処理のほかクロム酸による処理が有効であった。
 しかしながら、近年の世界的な環境規制によりクロム酸は使用が困難な状況となってきている。
 このような状況に対し、特許文献1には、鉄鋼又は亜鉛鍍金鋼板の燐酸塩処理工程で燐酸塩処理後、シランカップリング剤の溶液に浸漬、もしくは塗布することを特徴とする燐酸塩被膜の後処理方法が記載されている。
 また、特許文献2には、鋼板、亜鉛若しくは亜鉛合金メッキ鋼板、アルミニウム又はアルミニウム合金の表面をリン酸塩水溶液で皮膜化成し、その後電着塗装をするにあたり、皮膜化成後電着塗装前に、Cuイオンを1~100ppm含有しpHが1~4である水溶液で処理することを特徴とする金属表面処理方法が記載されている。
 また、本願出願人は以前に特許文献3を提案し、特許文献3には、水、(A)Fを4原子以上有し、Ti、Zr、Hf、Si、Al、Bから選ばれる原子を1原子以上有し、選択成分としてイオン化可能な水素原子を1原子以上およびまたは酸素原子を1原子以上有するフルオロ金属酸アニオン、(B)Co,Mg,Mn,Zn,Ni,Sn,Cu,Zr,Fe,Srから選ばれる2価又は4価のカチオン、(C)Pを含有する無機オキシアニオン、ホスフォネイトアニオンの一方あるいは双方、(D)水溶性およびまたは水分散性の有機ポリマーおよびまたはポリマー生成樹脂を含有する事を特徴とする化成皮膜の後処理用組成物が記載されている。
 しかしながら、上述したいずれの方法においても、リン酸亜鉛処理皮膜の塗装後の耐食性や密着性が改善されるが、皮膜の耐熱性や密着性を実現するものではなかった。
 また、塗装時の密着性を改善する方法として、特許文献4においては、表面がりん酸塩処理液で処理された金属材料を、一般式(I)により表される1種以上の重合単位を2~50の平均重合度で含む1種以上のフェノール化合物誘導体からなる成分を含む水溶液で処理し乾燥後、次いで粉体塗装をすることを特徴とする金属材料の塗装方法が提案されている。
 しかしながら、塗装下地処理としてリン酸亜鉛処理皮膜を用いている限り、高温焼き付け時のリン酸亜鉛皮膜結晶からの脱水反応による皮膜破壊は避けられず、耐熱性において根本的な原因を解決するには至っていない。
 また、特許文献4中に記載はないが、固体潤滑塗装に上記方法を適用した場合には、塗装後の使用環境下において塗膜表面が高面圧、高加重、更には高温下にさらされるため、下地であるリン酸亜鉛皮膜結晶の破壊が起こり、塗膜のはく離が生じることがある。
 上述したとおり、リン酸亜鉛処理を用いる限り、耐熱性の問題を避けて通ることはできない。
 そこで、塗装焼き付けや、塗装後の使用環境において高温下にさらされる場合には、塗装下地としてリン酸鉄皮膜処理が採用されることが多い。リン酸鉄皮膜は非晶質であるため、リン酸亜鉛皮膜と比較すると耐熱性に優れており、広く用いられている。
 しかしながら、リン酸鉄皮膜もまた高温での耐熱性や耐酸性が十分ではなく、塗装後の耐食性がリン酸亜鉛皮膜よりも著しく低いため、厳しい腐食環境には耐えられなかった。
 また、リン酸カルシウム皮膜結晶も、リン酸亜鉛皮膜結晶よりも耐熱性に優れ、リン酸マンガン皮膜結晶は機械的強度に優れる特性を持っている。
 しかしながら、いずれの処理方法も塗装下地処理用のリン酸亜鉛処理と比較すると耐食性に劣り、密着性に関しても改良の余地を残している。また皮膜も導電性に劣り、電池、電気部品や帯電防止を要求される用途では使用できなかった。
 このように、下地金属と異なる種類の金属酸化物を高温環境下など厳しい環境下でも耐食性、密着性が良く、導電性も併せ持つ皮膜を形成した実用性のある金属材料とその製造方法はこれまで見出されていない。
 一方、酸化ジルコニウムや酸化チタンなどの特定の金属酸化物は耐熱性や耐薬品性が非常に優れている。
 本願出願人は以前Ti、Zr、Hf及びSiから選ばれる少なくとも1種の金属元素を含む化合物、およびAg、Al、Cu、Fe、Mn、Mg、Ni、Co及びZnから選ばれる元素の少なくとも1種を含む化合物などを含有する金属の表面処理用組成物を提案している(特許文献5、6参照)。
特開昭52-80239号公報 特開平7-150393号公報 特開平11-6077号公報 特開2001-9365号公報 国際公開第2002/103080号パンフレット 特開2005-264230号公報
 本願発明者は、研究を進める中で、Ti、Zr、Hf及びSiから選ばれる少なくとも1種の金属元素を含む化合物、およびAg、Al、Cu、Fe、Mn、Mg、Ni、Co及びZnから選ばれる元素の少なくとも1種を含む化合物などを含有する金属の表面処理用組成物について、鉄などの下地金属と、その表面に形成されたZrO等の異種金属酸化物膜との密着性は必ずしも十分ではないことを見出した。この原因としては金属基材と異種金属酸化物との原子の整合性が良くないためと考えられる。
 したがって、本発明は、上記従来技術の問題を解決すること、即ち、鉄系金属材料に対し、密着性、耐熱性、導電性、耐食性のいずれにも優れる金属材料、およびこれを実現することができる金属材料の製造方法を提供することを目的とする。
 そして、本発明者は、上記目的を達成すべく鋭意研究の結果、鉄系金属材料と、前記鉄系金属材料の表面に無機皮膜として形成されている酸化物層とを有し、前記酸化物層が、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含む金属材料が、密着性、耐熱性、導電性、耐食性のいずれにも優れることを見出した。
 また、本願発明者は、上記の金属材料を製造することができる金属材料の製造方法を見出し、本願発明を完成させた。
 即ち、本発明は、以下の(1)~(17)を提供する。
(1)鉄系金属材料と、前記鉄系金属材料の表面に形成されている酸化物層とを有し、
 前記酸化物層が、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含む金属材料。
(2)前記酸化物層が、
 Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物を少なくとも含む上層と、
 鉄酸化物を少なくとも含む下層とを有する上記(1)に記載の金属材料。
(3)前記酸化物が、γ-Fe、α-FeおよびFeからなる群から選ばれる少なくとも1種の酸化鉄を含む上記(1)または(2)に記載の金属材料。
(4)前記酸化物層が、前記Feを2~30原子パーセント含む上記(1)~(3)のいずれかに記載の金属材料。
(5)前記下層の厚さが、0.02~0.5μmである上記(2)~(4)のいずれかに記載の金属材料。
(6)前記酸化物層中に含まれる前記金属(A)の量が、AO換算の合計として、10~1,000mg/mである上記(1)~(5)のいずれかに記載の金属材料。
(7)前記酸化物層は、その接触抵抗が200Ω以下である上記(1)~(6)のいずれかに記載の金属材料。
(8)前記酸化物層の上に、さらに、セラミックまたは樹脂を用いて形成される被覆層を有する上記(1)~(7)のいずれかに記載の金属材料。
(9)鉄系金属材料の表面に、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物またはその前駆体を塗布または電析して、前記鉄系金属材料を金属(A)酸化物の皮膜を有する鉄系金属材料とする金属(A)酸化物付着工程と、
 前記金属(A)酸化物の皮膜を有する鉄系金属材料を加熱して上記(1)~(8)のいずれかに記載の金属材料を製造する酸化処理工程とを有することを特徴とする金属材料の製造方法。
(10)前記酸化処理工程の後、さらに、前記金属材料が有する酸化物層の上にセラミックまたは樹脂を付与する被覆工程を有する上記(9)に記載の金属材料の製造方法。
(11)鉄系金属材料を、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)イオンと、30ppm以上のFeイオンと、酸化剤イオンとを含む酸性水溶液に接触させることによって上記(1)~(8)のいずれかに記載の金属材料を製造する化成処理工程を有することを特徴とする金属材料の製造方法。
(12)前記酸性水溶液が、さらに、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)のアモルファス水酸化物を含む上記(11)記載の金属材料の製造方法。
(13)前記化成処理工程の後、さらに金属材料を加熱する酸化処理工程を有する上記(11)または(12)に記載の金属材料の製造方法。
(14)前記酸化処理工程の後、さらに、前記金属材料が有する酸化物層の上にセラミックまたは樹脂の被覆層を付与する被覆工程を有する上記(13)に記載の金属材料の製造方法。
(15)前記酸性水溶液が、さらに、フッ素を含む上記(11)~(14)のいずれかに記載の金属材料の製造方法。
(16)前記酸性水溶液が、さらに、水溶性有機化合物を含む上記(11)~(15)のいずれかに記載の金属材料の製造方法。
(17)前記鉄系金属材料が、ステンレス鋼である上記(9)~(16)のいずれかに記載の金属材料の製造方法。
 また、本願発明者は、鉄系金属材料と、前記鉄系金属材料の表面に形成されている酸化物層とを有し、前記酸化物層が、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含む金属材料が、接着剤、プライマー、塗料との密着性に優れることを見出した。
 本発明の金属材料は、密着性、耐食性、耐熱性、導電性に優れる。
 本発明の金属材料の製造方法によれば、密着性、耐食性、耐熱性、導電性に優れる金属材料を製造することができる。
図1は、本発明の金属材料の一例の断面を透過型電子顕微鏡で撮影した写真である。 図2は、本発明の金属材料の一例の酸化物層中に含まれる各元素に関し、XPS(X線光電子分光)を用いて分析された結果得られたXPSナロウスペクトルを示すグラフである。 図3は、本発明の金属材料の一例の酸化物層中に含まれる各元素に関し、XPS(X線光電子分光)を用いて分析された結果得られた各元素の量(単位:原子パーセント)をデプスプロファイルとして示すグラフである。
符号の説明
  1   金属材料
  2   鉄系金属材料
  3   酸化物層
  4   上層
  5   下層
 以下、本発明の内容について詳細に説明する。
 まず本発明の金属材料について説明する。
 本発明の金属材料は、
 鉄系金属材料と、前記鉄系金属材料の表面に形成されている酸化物層とを有し、
 前記酸化物層が、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含む金属材料である。
 鉄系金属材料について以下に説明する。
 本発明の金属材料に使用される鉄系金属材料は、鉄を含有するものであれば特に制限されない。
 鉄系金属材料としては、例えば、純鉄、炭素鋼、鋳鉄、合金鋼、ステンレス鋼等が挙げられる。
 なかでも、耐熱性に優れるという観点から、ステンレス鋼が好ましく、フェライト系ステンレス鋼がより好ましい。
 鉄系金属材料の形態としては、例えば、冷間圧延鋼板、熱間圧延鋼板等の鋼板;棒綱、形綱、綱帯、鋼管、線材、鋳鍛造品、軸受綱等が挙げられる。
 本発明において鉄系金属材料として鉄系金属材料を表面処理したものを使用することができる。
 鉄系金属材料を表面処理する方法は特に制限されない。例えば、酸化物層を形成する工程の前工程において、鉄系金属材料をアルカリ脱脂液で脱脂し、水洗する前処理;鉄系金属材料をエッチング液で表面粗化処理を行ったのち、皮膜剥離する前処理;リン酸マンガン系表面処理剤のようなリン酸塩で皮膜化成処理したのち、皮膜剥離して表面粗化処理する前処理を行うことができる。
 また、酸化物層を形成する工程の前工程として、物理的または化学的方法によって鉄系金属材料を表面粗化する工程をさらに加えることにより密着性を高めることもできる。物理的な表面粗化の方法としては、サンドブラスト、ショットブラスト、ウエットブラスト、電磁バレル研磨、WPC処理などがあり、何れも使用できる。衝撃に弱い部材や量産性を高めるためには、化学的方法によることが好ましく、リン酸塩や蓚酸塩などの多結晶皮膜を化成処理や陽極電解によって形成し、塩酸、硝酸等の剥離液で皮膜剥離する方法が好ましい。この場合の皮膜形成には、亜鉛イオン、マンガンイオン、ニッケルイオン、コバルトイオン、カルシウムイオン等の金属イオンと、りん酸イオンを含有し、かつ水溶液のpHを1~5の範囲に調整したものを皮膜処理液として40~100℃で処理して皮膜とエッチング孔を形成し、次いで前記酸溶液で剥離する方法が表面粗化するのがより好ましい。鉄系金属材料(基材)がステンレス鋼の場合は、塩化第二鉄や蓚酸を含む溶液で処理したのち酸で皮膜やスマットを除去することが好ましい。
 鉄系金属材料はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 酸化物層について以下に説明する。
 本発明の金属材料が有する酸化物層は、鉄系金属材料の表面に形成され、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含むものである。
 本発明の金属材料が有する酸化物層は、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含むものであれば特に制限されない。
 本発明において、酸化物は、酸化金属の他に、水酸化物、複合酸化物を含むものとする。
 酸化物層が、例えば、(1)Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)と、Feとを含み、金属(A)とFeとが酸化物として(例えば、複合酸化物、酸化金属および水酸化物からなる群から選ばれる少なくとも1種として)実質的に同一層内に共存している場合、(2)Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物を少なくとも含む上層と、鉄酸化物を少なくとも含む下層とを有する場合が挙げられる。
 酸化物層が上層と下層とを有する場合、上層は実質的にFeを含まないようにすることができる。
 酸化物としてのFeについて以下に説明する。
 本発明の金属材料において、酸化物層は、酸化物としてのFeを含むことが必要である。
 本発明において、酸化物としてのFe(以下これを「鉄酸化物」ともいう。)は、酸化鉄のほか、水酸化物、Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)との複合酸化物を含むものとする。
 Feは、酸化物層中において、化学的安定性に優れるという観点から、2価または3価のFeとして存在することが好ましい。
 鉄酸化物としては、FeO、Fe、γ-Fe、α-Fe、Feのような酸化鉄;Fe(OH)、Fe(OH)のようなFe水酸化物;FeTiO、FeZrO、FeHfOのようなZr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)との複合酸化物が挙げられる。
 Feは、耐熱性、密着性、導電性により優れるという観点から、酸化鉄であるのが好ましく、γ-Fe、α-Fe、Feがより好ましい。
 鉄酸化物は金属(A)酸化物結晶の結晶変態を防止して高温安定性、密着性を高め、耐熱性を付与するとともに、皮膜に導電性を与え、接触抵抗も低減させる効果を持つ。皮膜への導電性の付与は、接合相手材との間で電子伝導性を高めることにより静電気のアース性の向上や電池、燃料電池部材として使用した場合の通電性能を高める効果があるためより好ましい。
 酸化物としての金属(A)について以下に説明する。
 本発明の金属材料において、酸化物層は、酸化物としての、Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)を含む。
 本発明において、酸化物としての、Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)は、酸化金属(A)のほかに、水酸化物、Feとの複合酸化物を含むものとする。
 酸化物としての金属(A)を以下「金属(A)酸化物」ということがある。
 Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)は、なかでも、導電性に優れるという観点から、Tiが好ましい。
 Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)の金属(A)酸化物としては、TiO、ZrO、HfOのような酸化金属(A);Ti(OH)、Zr(OH)、Hf(OH)のような金属(A)の水酸化物;Feとの複合酸化物が挙げられる。Feとの複合酸化物の具体例は上記と同義である。
 酸化物層における組成としては、例えば、Zr(OH)、Ti(OH)またはHf(OH)などとFe(OH)などとの混合水酸化物;FeTiO、FeZrOなどの結晶性複合酸化物;ZrO、TiOまたはHfOなどとFeまたはFeなどとの混合酸化物;およびこれらの組合せが挙げられる。
 酸化物層は、密着性、耐熱性により優れるという観点から、緻密な結晶質であることが好ましい。
 酸化物層において、密着性、耐熱性により優れるという観点から、酸化物または複合酸化物が、結晶性酸化物を含むのが好ましく、結晶性鉄酸化物であるのがより好ましい。
 結晶性鉄酸化物としては、例えば、γ-Fe、α-Fe、Feが挙げられる。
 鉄酸化物は、耐食性、耐熱性を向上させるとともに鉄系金属材料(鉄基材)と酸化物との結晶格子の整合性に優れるため鉄系金属材料との密着性に優れる。
 また、鉄酸化物は、微細な凹凸を形成するため、投錨効果により金属(A)酸化物との接着性も優れたものとなる。
 酸化物層は、アモルファス成分を含むことができる。酸化物層における、アモルファス成分や水酸化物は、本発明の金属材料を製造する際における酸化処理工程や使用環境下で加熱されることによりしだいに結晶化が進行し、緻密化するため好ましい。
 なかでも、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、酸化物層がFeを2~30原子パーセント含むのが好ましく、3~10原子パーセント含むのがより好ましい。
 Feの量が30原子パーセント以内である場合、耐薬品性に優れる。
 酸化物層中のFe含有率はXPS(X線光電子分光)による表面分析によって皮膜の深さごとに測定することができる。
 酸化物層の厚さは、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、0.02~2μmであるのが好ましく、0.05~1μmであるのがより好ましい。
 なお、本発明において、酸化物層の厚さは酸化物層の厚さの平均値とする。
 本発明では、酸化物層の厚さ(平均値)は、金属材料の断面を透過型電子顕微鏡を用いて撮影し、撮影された写真において、鉄系金属材料の表面上で0.1μmごとの間隔を有する10箇所で酸化物層の厚さを測定し、10箇所の測定値の平均として得られた値である。
 また、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、酸化物層の表面から深さ0.01μmの部分におけるFeの量が1~5原子パーセントであるのが好ましく、2~4原子パーセントであるのがより好ましい。
 本発明の金属材料において、酸化物層は、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物を少なくとも含む上層と、鉄酸化物を少なくとも含む下層とを有するのが好ましい。
 なおこの場合下層は上層と鉄系金属材料との間に位置する。
 酸化物層が有する上層は、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物を少なくとも含むものであれば特に制限されない。
 金属(A)酸化物は上記と同義である。
 金属(A)酸化物はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 上層の厚さは、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、0.02~2μmであるのが好ましく、0.05~1μmであるのがより好ましい。
 なお、本発明において、上層の厚さは上層の厚さの平均値とする。
 本発明では、上層の厚さ(平均値)は、金属材料の断面を透過型電子顕微鏡を用いて撮影し、撮影された写真において、鉄系金属材料の表面上で0.1μmごとの間隔を有する10箇所で上層の厚さを測定し、10箇所の測定値の平均として得られた値である。
 下層の厚さ(平均値)の測定方法は上層と同様である。
 酸化物層が有する下層は鉄酸化物を少なくとも含むものであれば特に制限されない。
 下層に含まれる鉄酸化物によってさらに耐食性、密着性を向上させることができる。
 鉄酸化物は上記と同義である。
 下層(鉄酸化物層)は、密着性、耐熱性、導電性により優れるという観点から、結晶性の鉄酸化物であることが好ましい。酸化物層(酸化物皮膜)の結晶性や構造は断面TEMやX線回折法によって判断できる。
 結晶性の鉄酸化物の種類は特に限定されず、他の金属を含む複合酸化物であってもかまわない。
 なかでも、密着性、耐熱性、導電性により優れるという観点から、γ-Fe、α-Fe、Feなどが好ましい。
 鉄酸化物は、耐食性、耐熱性を向上させるとともに鉄系金属材料(鉄基材)と酸化物との結晶格子の整合性に優れるため鉄系金属材料との密着性に優れる。
 また、結晶性の鉄酸化物は、鉄系金属材料の表面で微細な凹凸を形成するため、投錨効果により金属(A)酸化物との接着性も優れたものとなる。
 鉄酸化物はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 下層は、単層または2層以上とすることができる。
 酸化物層が上層および下層を有する場合、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、下層におけるFeの量が2~30原子パーセントであるのが好ましく、3~10原子パーセントであるのがより好ましい。
 酸化物層が上層および下層を有する場合、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、酸化物層の表面から深さ0.01μmの部分におけるFeの量が1~5原子パーセントであるのが好ましく、2~4原子パーセントであるのがより好ましい。
 下層の厚さは、密着性、耐熱性、導電性により優れ、接着剤やプライマーとの密着性に優れるという観点から、0.02~0.5μmであるのが好ましく、0.05~0.3μmであるのがより好ましい。
 なお、本発明において、下層の厚さは下層の厚さの平均値とする。
 本発明の金属材料において、酸化物層中に含まれる金属(A)の量は、耐食性、耐熱性、密着性、導電性により優れ、皮膜の強度が高いという観点から、AO換算の合計として、10~1,000mg/mであるのが好ましく、30~300mg/mであるのがより好ましい。
 金属(A)の付着量が、AO換算の合計として10mg/m以上の場合、耐食性、耐熱性により優れる。また。概ね1000mg/m以下の場合、皮膜に亀裂がはいりにくく皮膜の強度が高い。
 本発明の金属材料において、酸化物層中に鉄酸化物が存在することによって、耐熱性、密着性に優れ、電気伝導性が高くなる。
 本発明の金属材料において、鉄酸化物は、耐熱性、密着性、導電性により優れるという観点から、鉄系金属材料(基材金属)と上層(金属(A)の酸化物層)との中間にγ-Fe、α-Fe、Feなどの結晶性鉄酸化物として存在することが好ましい。
 鉄酸化物の存在は、X線回折や、透過型電子顕微鏡、GDS等によって確認することができる。
 本発明の金属材料において、酸化物層は、その接触抵抗が200Ω以下であるのが好ましい。
 酸化物層が鉄酸化物を含有し、金属(A)の付着量が、AO換算の合計として概ね1000mg/m以下である場合、ほぼ200Ω以下の低い接触抵抗値を得ることができる。
 接触抵抗値は、JIS K 7194:1994準拠の市販の表面抵抗計(例えば三菱化学社製MCP-T360型[2点式])を使用して測定することができる。
 接触抵抗が低いことにより、電池接点、燃料電池材料などの通電部材や、潤滑塗装下地や各種機械、自動車などの帯電防止が求められる部材に使用することもできる。
 本発明の金属材料は、酸化物層の上に、さらに、セラミックまたは樹脂を用いて形成される被覆層を有することができる。
 酸化物層の表面に、セラミックまたは樹脂の被覆層を設けることにより、さらに耐食性を高めたり、他の部材と接合する場合の密着性を高めることが可能である。
 セラミックまたは樹脂の被覆層の形成は、有機または無機の皮膜成分を含む液体またはペースト状の硬化性プライマーや接着剤の塗布によって行われるのが好ましい。
 有機系材料としては、有機系樹脂、エラストマーが好ましく、これらにシランカップリング剤を含むものも好ましい。
 有機系樹脂、エラストマーとしては特に限定されない。例えば、ゴム、合成ゴム、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリエステル樹脂、ポリエーテル樹脂、ABS樹脂、メラミン樹脂、PPS樹脂、PEEK樹脂、塩化ビニル樹脂、アクリル樹脂、導電性ポリマー等が挙げられる。
 なかでも、耐熱性および密着性により優れるという観点から、エポキシ樹脂系、フェノール樹脂系、ポリイミド樹脂系、ポリアミド樹脂系、シリコーン樹脂系が好ましい。
 有機系材料が含有することができるシランカップリング剤としては、例えば、官能基として、ビニル基、エポキシ基、メタクリル基、アミノ基、メルカプト基のうち何れかを持つものが好ましく、これらのモノマーを重合したものや前記樹脂に配合したものを使用することもできる。
 無機系プライマー、接着剤としては、例えば、金属アルコキシド系(ゾル-ゲル系)、水ガラス系、リン酸塩系、ペルオキソ化合物系、ポリシラザン系などが使用でき、Zr、Ti、Al、Si、Bの何れかを成分中に含むものがより好ましい。
 セラミックまたは樹脂の被覆層は、導電性により優れるという観点から、さらに導電性粒子を含むことが好ましい。
 導電性粒子としては、例えば、ニッケル、ステンレス、アンチモン、亜鉛、アルミ、グラファイト粒子、カーボンファイバー、カーボンナノチューブ、酸化亜鉛、酸化すず、ITO、ランタンクロマイトなどが好ましい。
 本発明の金属材料はその製造について特に制限されない。
 例えば、下記(1)~(3)に示す皮膜形成方法によって製造することができる。
(1)鉄系金属材料表面にZr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)酸化物またはその前駆体を塗布した後、乾燥後に酸化処理する、塗布法+酸化処理法、
(2)金属(A)酸化物分散液やその前駆体溶液中で電解処理を行う電解法、
(3)金属(A)イオンと、Feイオンと、酸化剤イオンとを含む酸性水溶液に鉄系金属材料を接触、反応させることにより皮膜を析出形成する反応法(化成処理法)
が挙げられる。
 (3)化成処理法は、さらに水洗、乾燥後に金属材料を酸化雰囲気中で加熱するなどの酸化処理を行うことが好ましい。
 本発明の金属材料において酸化物層が上層と下層(鉄酸化物層)とを有する場合、その製造方法としては、例えば、化成処理法;皮膜形成後に加熱酸化などの後酸化処理をする酸化処理法が挙げられる。これらの処理により、耐食性、密着性、導電性および耐熱性に優れる金属材料を製造することができる。
 具体的には、例えば、下記(1)~(4)に示す皮膜形成方法によって製造することができる。
(1)鉄系金属材料表面にZr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)酸化物またはその前駆体を塗布した後、乾燥後に酸化処理する、塗布法+酸化処理法、
(2)金属(A)酸化物分散液やその前駆体溶液中で電解処理をした後、乾燥後に酸化処理する、電解法+酸化処理法、
(3)金属(A)イオンと、Feイオンと、酸化剤イオンとを含む酸性水溶液に鉄系金属材料を接触、反応させることにより皮膜を析出形成する反応法(化成処理法)、
(4)(3)化成処理法の後、さらに水洗、乾燥後に酸化雰囲気中で加熱するなどの酸化処理を行う、化成処理法+酸化処理法
が挙げられる。
 なお酸化処理法は、塗布法、電解法、化成処理法の前に行うことができる。
 酸化処理法としては、例えば、空気雰囲気中で200℃以上の高温で加熱する方法、酸化剤を含む強アルカリ性水溶液中で加熱する方法、酸化性溶融塩浴で400℃以上で処理する方法が挙げられる。
 酸化処理法を使用する場合、効率的に鉄系金属材料の上に鉄酸化物を含む層を形成することができる。
 本発明の金属材料が被覆層を有する場合、その製造について特に制限されない。例えば、金属材料の酸化物層の上にプライマー、硬化性プライマーおよび接着剤からなる群から選ばれる少なくとも1種を塗布し、加熱硬化させて被覆層を形成し、被覆層(プライマー、硬化性プライマーや接着剤の層)と酸化物層とを密着させる方法が挙げられる。
 本発明の金属材料の使用方法については特に制限されない。本発明の金属材料に対して、例えば、高耐食塗装、潤滑塗装、ライニング、セラミックコーティング、樹脂塗装を施すことができる。
 本発明の金属材料は有機/無機密着下地としても優れた性能と耐久性を発揮することができるため、その実用的価値は高い。
 本発明の金属材料は、その用途について特に制限されない。
 本発明の金属材料は、従来よりも厳しい環境下でも鉄系金属材料の耐食性、密着性および導電性を保持することができる。
 本発明の金属材料の用途としては、例えば、産業機械、輸送機械や搬送装置などの摺動部材や耐熱部材;電池接点等の電池部材、セパレータ、集電体、電極のような燃料電池部材、燃料電池材料などの通電部材;潤滑塗装下地や各種機械、自動車などの帯電防止が求められる部材が挙げられる。燃料電池としては例えば自動車用、家庭用、業務用、定置用、携帯機器用が挙げられる。
 本発明の金属材料が有する酸化物層は、酸やアルカリに侵されにくく、化学的に安定な性質を有している。
 実際の金属の腐食環境では、金属の溶出が起こるアノード部ではpHの低下が、また、還元反応が起こるカソード部ではpHの上昇が起こる。したがって、耐酸性および耐アルカリ性に劣る表面処理皮膜は、腐食環境下で溶解しその効果が失われていく。
 これに対して、本発明の金属材料が有する酸化物層は、酸やアルカリに侵されにくいため、腐食環境下においても優れた効果が持続する。
 次に本発明の金属材料の製造方法について説明する。
 本発明の金属材料の製造方法は、
 鉄系金属材料の表面に、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物またはその前駆体を塗布または電析して、前記鉄系金属材料を金属(A)酸化物の皮膜を有する鉄系金属材料とする金属(A)酸化物付着工程と、
 前記金属(A)酸化物の皮膜を有する鉄系金属材料を加熱して本発明の金属材料を製造する酸化処理工程とを有するものである。
 以下これを「本発明の第1の態様の金属材料の製造方法」ということがある。
 金属(A)酸化物付着工程について以下に説明する。
 本発明の第1の態様の金属材料の製造方法において、金属(A)酸化物付着工程は、鉄系金属材料の表面に、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物またはその前駆体を塗布または電析して、前記鉄系金属材料を金属(A)酸化物の皮膜を有する鉄系金属材料とする工程である。
 金属(A)酸化物付着工程において使用される鉄系金属材料は特に制限されない。例えば、上記と同義のものが挙げられる。
 なかでも耐食性に優れるという観点から、鉄系金属材料がステンレス鋼であるのが好ましい。
 鉄系金属材料について、酸化物層を形成する工程の前に前工程において、例えば、鉄系金属材料をアルカリ脱脂液で脱脂し、水洗する前処理;鉄系金属材料をエッチング液で表面粗化処理を行ったのち、皮膜剥離する前処理;リン酸マンガン系表面処理剤のようなリン酸塩で皮膜化成処理したのち、皮膜剥離して表面粗化処理する前処理を行うことができる。
 また、酸化物層を形成する工程の前工程として、物理的または化学的方法によって鉄系金属材料を表面粗化する工程をさらに加えることにより密着性を高めることもできる。物理的な表面粗化の方法としては、サンドブラスト、ショットブラスト、ウエットブラスト、電磁バレル研磨、WPC処理などがあり、何れも使用できる。衝撃に弱い部材や量産性を高めるためには、化学的方法によることが好ましく、リン酸塩や蓚酸塩などの多結晶皮膜を化成処理や陽極電解によって形成し、塩酸、硝酸等の剥離液で皮膜剥離する方法が好ましい。この場合の皮膜形成には、亜鉛イオン、マンガンイオン、ニッケルイオン、コバルトイオン、カルシウムイオン等の金属イオンと、りん酸イオンを含有し、かつ水溶液のpHを1~5の範囲に調整したものを皮膜処理液として40~100℃で処理して皮膜とエッチング孔を形成し、次いで前記酸溶液で剥離する方法で表面粗化するのがより好ましい。鉄系金属材料(基材)がステンレス鋼の場合は、塩化第二鉄や蓚酸を含む溶液で処理したのち酸で皮膜やスマットを除去することが好ましい。
 金属(A)酸化物付着工程において使用される、Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)の金属(A)酸化物としては、例えば、TiO、ZrO、HfOのような酸化金属(A);Ti(OH)、Zr(OH)、Hf(OH)のような金属(A)の水酸化物;Feとの複合酸化物が挙げられる。Feとの複合酸化物の具体例は上記と同義である。
 金属(A)酸化物としては、例えば、結晶性ゾル、アモルファスゾルなどが使用できる。その粒子径は1~200nmが好ましい。
 金属(A)酸化物付着工程において使用される、Zr、TiおよびHfの中から選ばれる少なくとも1種の金属(A)の金属(A)酸化物の前駆体としては特に限定されない。
 金属(A)酸化物の前駆体(金属化合物原料)として、例えば、金属(A)のアルコキシド、塩化物、硝酸塩、フッ化物などの無機化合物;シュウ酸、酢酸、クエン酸、マレイン酸、酒石酸、グリコール酸、乳酸、グルコン酸、β-ジケトンなどのキレートや有機塩類、過酸化水素錯体などが好ましい。より好ましい例としては塩基性炭酸ジルコニウム溶液、ペルオキソチタン酸溶液、Zr-Hfアルコキシド加水分解物アルコール溶液などが挙げられる。
 金属(A)酸化物付着工程において使用される、金属(A)酸化物またはその前駆体は酸性水溶液として使用することができる。
 金属(A)酸化物付着工程において、鉄系金属材料の表面に金属(A)酸化物またはその前駆体を塗布する方法は特に制限されない。例えば、従来公知のものが挙げられる。具体的にはディッピング法、スピンコーティング法が挙げられる。
 金属(A)酸化物付着工程において、鉄系金属材料の表面に金属(A)酸化物またはその前駆体を電析させる方法は特に制限されない。
 電析において数V~数十V程度の電圧の電解によって金属(A)酸化物またはその前駆体を酸化物として鉄系金属材料の表面に析出させることができる。
 電解析出させる場合は、金属(A)酸化物またはその前駆体や金属(A)酸化物またはその前駆体のゾルを含有する溶液(例えば、水溶液)を必要に応じて希釈して電解槽にいれ、不溶解または溶解性の対極を設置して電解処理を行うことによって、金属(A)酸化物またはその前駆体を酸化物として鉄系金属材料の表面に電析(電解析出)させることができる。
 電析は、金属(A)濃度が0.1~5%の濃度で、10~70℃の温度で、電流密度が0.02~5A/dmの範囲で行うことが好ましい。
 電析において陽極電解を利用する場合、鉄系金属材料(基材)中のFeを鉄酸化物として金属(A)酸化物皮膜中に導入したり、下層(鉄酸化物層)の形成を促進して密着性をより高める効果があるため陰極電解よりも好ましい。
 金属(A)酸化物付着工程において鉄系金属材料を金属(A)酸化物の皮膜を有する鉄系金属材料とすることができる。
 酸化処理工程について以下に説明する。
 本発明の第1の態様の金属材料の製造方法が有する酸化処理工程は、金属(A)酸化物の皮膜を有する鉄系金属材料を加熱して本発明の金属材料を製造するものである。
 酸化処理工程における加熱温度は、100~700℃であるのが好ましく、200~500℃であるのがより好ましい。加熱乾燥させることにより金属(A)酸化物をTiO、ZrO、HfOのような酸化金属(A)とすることができる。
 また、酸化処理工程により、鉄系金属材料(基材金属)表面からFeイオンが酸化物層中に拡散し、鉄系金属材料(基材金属)と金属(A)酸化物の皮膜との界面に鉄酸化物層が形成されてさらに耐食性、密着性が向上する。
 この場合、酸化物層は、金属(A)酸化物を含む上層と鉄酸化物とを含む下層が存在する複層構造の酸化物層となりやすい。
 下層を形成するために使用することができる酸化処理方法は特に限定されない。例えば、金属(A)酸化物の皮膜の形成後に、空気中で200℃以上の高温で加熱する方法、酸化剤を含む100℃以上の強アルカリ性水溶液中で加熱する方法、酸化性溶融塩浴で400℃以上で処理する方法が挙げられる。
 酸化処理工程により、耐食性、密着性および耐熱性をさらに向上させることができる。
 酸化処理工程によって得られる鉄酸化物の種類は特に限定されない。例えば、γ-Fe、α-Fe、Feのような酸化鉄が好ましい。
 酸化処理工程において、本発明の金属材料を得ることができる。
 得られた金属材料の表面は、必要に応じて、あらかじめ脱脂処理し清浄化することができる。その方法は、特に限定されず、常法を用いることができる。
 本発明の第1の態様の金属材料の製造方法は、酸化処理工程の後、さらに、前記金属材料が有する酸化物層の上にセラミックまたは樹脂を付与する被覆工程を有することができる。
 被覆工程において使用されるセラミックまたは樹脂は特に制限されない。例えば、従来公知のものが挙げられる。
 被覆工程において、金属材料の酸化物層の上にセラミックまたは樹脂を塗布し、例えば、150~500℃に加熱してセラミックまたは樹脂を硬化させて被覆層を形成することができる。
 被覆工程において、被覆層(プライマー、硬化性プライマーや接着剤の層)と酸化物層とを密着させ、酸化物層の上にさらにセラミックまたは樹脂を用いて形成される被覆層を有する金属材料を得ることができる。
 次に、本発明の第2の態様の金属材料の製造方法について以下に説明する。
 本発明の第2の態様の金属材料の製造方法は、
 鉄系金属材料を、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)イオンと、30ppm以上のFeイオンと、酸化剤イオンとを含む酸性水溶液に接触させることによって本発明の金属材料を製造する化成処理工程を有するものである。
 本発明の第2の態様の金属材料の製造方法が有する化成処理工程において、使用される鉄系金属材料は特に制限されない。例えば、本発明の第1の態様の金属材料の製造方法において使用される鉄系金属材料と同義のものが挙げられる。また、鉄系金属材料として前処理をしたものを使用することができる。
 本発明の第2の態様の金属材料の製造方法が有する化成処理工程において、使用される酸性水溶液は、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)イオンと、30ppm以上のFeイオンと、酸化剤イオンとを含む。
 酸性水溶液に含まれるZrイオンの供給源は、可溶性のジルコニウム化合物、または、何らかの酸成分を加えることによって水溶化が可能なジルコニウム化合物であれば特に限定されない。例えば、ZrCl、ZrOCl、Zr(SO、ZrOSO、Zr(NO、ZrO(NO、HZrF、HZrFの塩、ZrO、ZrOBr、ZrFが挙げられる。
 酸性水溶液に含まれるTiイオンの供給源は、可溶性のチタン化合物、または、何らかの酸成分を加えることによって水溶化が可能なチタン化合物であれば特に限定されない。例えば、TiCl、Ti(SO、TiOSO、Ti(NO)、TiO(NO、TiOOC、HTiF、HTiFの塩、TiO、TiFが挙げられる。
 酸性水溶液に含まれるHfイオンの供給源は、可溶性のハフニウム化合物、または、何らかの酸成分を加えることによって水溶化が可能なハフニウム化合物であれば特に限定されない。例えば、HfCl、Hf(SO、Hf(NO)、HfOOC、HHfF、HHfFの塩、HfO、HfFが挙げられる。
 酸性水溶液におけるZr、Ti、およびHfから選ばれる少なくとも1種の金属元素(A)の合計濃度は、5~5000ppm、好ましくは10~3000ppmである。
 酸性水溶液に含まれるFeイオンの供給源としては、例えば、硝酸第二鉄、フッ化鉄、くえん酸鉄、シュウ酸鉄が挙げられる。
 酸性水溶液におけるFeイオンの濃度は、密着性、導電性、耐熱性に優れるという観点から、30ppm以上である。
 また、酸性水溶液におけるFeイオンの濃度が30ppm以上である場合、耐熱密着性に優れる。
 また、酸性水溶液におけるFeイオンの濃度は、密着性、耐熱密着性により優れるという観点から、30~300ppmであるのが好ましく、40~150ppmであるのがより好ましい。
 本発明の第2の態様の金属材料の製造方法において、密着性、耐熱性、耐食性、導電性により優れるという観点から、酸性水溶液が、さらに、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)のアモルファス水酸化物を含むことが好ましい。
 金属(A)のアモルファス水酸化物は、非晶質であれば特に制限されない。
 金属(A)のアモルファス水酸化物としては、例えば、Ti(OH)、Zr(OH)、Hf(OH)が挙げられる。
 金属(A)のアモルファス水酸化物は金属(A)の析出速度を増加させ、耐食性に優れるという観点から、その形状が粒子状であるのが好ましい。
 金属(A)の水酸化物粒子が液中に存在することにより酸性水溶液(処理液)は常にこれらの金属水酸化物が飽和に近い状態に保たれ、最も酸化物層(皮膜)形成が効率良く安定して行われる状態に保つことができる。酸性水溶液(処理液)中のアモルファス水酸化物粒子はpHの変動や温度、フッ素イオン濃度の変動に対して溶解したり析出したりを可逆的に繰り返すことができるため、処理浴を安定に管理することができる。
 アモルファス水酸化物粒子が浴中に全く存在しない状態で処理を行う場合、成膜や析出量が不安定となり、全く析出しない不具合が起こりうる可能性がある。
 酸性水溶液(酸性溶液)中に存在する金属(A)のアモルファス水酸化物はその量やサイズは特に限定されない。
 金属(A)のアモルファス水酸化物の粒子径は、密着性、耐熱性、導電性、耐食性により優れるという観点から、0.02~10μm程度が好ましい。
 金属(A)のアモルファス水酸化物の粒子の個数は密着性、耐熱性、導電性、耐食性により優れるという観点から、100個/mL以上が好ましい。
 金属(A)のアモルファス水酸化物が被処理金属材料に付着する場合もあるが、析出皮膜と一体化し、密着性も良好なため、性能に悪影響を及ぼすことはない。
 金属(A)のアモルファス水酸化物の粒子を安定して得ることができ、耐食性に優れるという観点から、酸性水溶液のpHは3~6であるのが好ましく、3.5~5.5であるのがより好ましい。
 また、金属(A)のアモルファス水酸化物の粒子を安定して得ることができ、密着性に優れるという観点から、酸性水溶液中のFeイオンの濃度は30~150ppmであるのが好ましく、40~120ppmであるのがより好ましい。
 金属(A)のアモルファス水酸化物粒子は、金属(A)の水溶性金属塩(例えば、Zrイオン、Tiイオン、Hfイオンの供給源が挙げられる。)の溶液に、アンモニア水や、NaOH、KOHのようなアルカリ金属水酸化物の溶液を低温(0~40℃)で添加し、良く撹拌することによって得ることができる。
 酸性水溶液に含まれる酸化剤イオンの供給源としては酸化剤を使用する。
 使用することができる酸化剤としては、例えば、HClO、HBrO、HNO、HMnO、HVO、H、HWOおよびHMoOからなる群から選ばれる少なくとも1種の酸素酸、または、これらの酸素酸の塩の中から選ばれる少なくとも1種が挙げられる。
 酸素酸またはその塩は、被処理金属材料に対する酸化剤として作用し、酸化物皮膜の析出を促進する。
 この場合、酸性水溶液におけるこれらの酸素酸またはその塩の濃度は、酸化剤として十分な効果を発揮するためには、10~5000ppm程度であるのが好ましい。
 これらの中で、硝酸は、酸化力を有するため酸化物層(酸化物皮膜層)の析出を促進する作用もあるため最も好ましい酸の1種である。酸化物層(表面処理皮膜層)の析出を促進させる目的で水溶液中に含有させる際の硝酸濃度は、1000~100000ppmであるのが好ましく、1000~80000ppmであるのがより好ましい。
 酸性水溶液の製造は特に制限されない。例えば、従来公知のものが挙げられる。
 酸性水溶液と鉄系金属材料(被処理金属材料)とを接触させる方法は、特に限定されず、例えば、酸性水溶液を鉄系金属材料(被処理金属材料)の表面に噴霧するスプレー処理、鉄系金属材料を酸性水溶液に浸漬させる浸漬処理、酸性水溶液を鉄系金属材料の表面へ流しかける、流しかけ処理が挙げられる。
 酸性水溶液と鉄系金属材料(被処理金属材料)とを接触させる際、酸性水溶液の温度は、密着性に優れるという観点から、20~80℃であるのが好ましく、30~60℃であるのがより好ましい。
 いずれの処理を用いても、酸性水溶液と鉄系金属材料とを接触させることによって、酸性水溶液と鉄系金属材料とを反応させ鉄系金属材料(被処理金属材料)の表面にZr、TiおよびHfから選ばれる少なくとも1種の金属(A)元素とFeとを酸化物として含む酸化物層が得られる。
 本発明の第2の態様の金属材料の製造方法は、化成処理工程の後、さらに金属材料を加熱する酸化処理工程を有することができる。
 本発明の第2の態様の金属材料の製造方法における酸化処理工程は、本発明の第1の態様の金属材料の製造方法における酸化処理工程と同義である。
 本発明の第2の態様の金属材料の製造方法は、酸化処理工程の後、さらに、金属材料が有する酸化物層の上にセラミックまたは樹脂の被覆層を付与する被覆工程を有することができる。
 本発明の第2の態様の金属材料の製造方法における被覆工程は、本発明の第1の態様の金属材料の製造方法における被覆工程と同義である。
 以下、本発明の第1の態様の金属材料の製造方法と本発明の第2の態様の金属材料の製造方法とを合わせて、本発明の金属材料の製造方法という。
 本発明の金属材料の製造方法において使用することができる酸性水溶液は、さらに、フッ素を含むことができる。
 酸性水溶液はフッ素をイオンまたは錯イオンとして配合することができる。例えば、フッ化水素酸(HF)、HZrF、HZrFの塩,HTiF、HTiFの塩、HSiF、HSiFの塩、HBF、HBFの塩、NaHF、KHF、NHHF、NaF、KF、NHFとして添加することが好ましい。
 酸性水溶液においては、金属(A)に対するフッ素のモル濃度の比[(B)/(A)]は6以上が好ましい。
 金属(A)に対するフッ素(B)のモル濃度の比が6以上である場合、酸化物層を析出させやすく、酸性水溶液の安定性が高くZr、TiおよびHfから選ばれる少なくとも1種の金属(A)が酸性水溶液中で析出しにくく、実際の工業的用途における連続操業に適している。
 本発明の金属材料の製造方法に使用することができる酸性水溶液は、更に、水溶性有機化合物を含有することができる。
 本発明の金属材料の製造方法によって得られる金属材料は十分な密着性、耐熱性、および耐食性等の性能を有しているが、更なる性能が必要な場合には、所望の性能に応じて水溶性有機化合物を適宜選択して水溶液に含有させ、酸化物層の物性を改質することができる。
 水溶性有機化合物は、水中に溶解または分散することができる有機化合物であれば特に限定されない。例えば、金属の表面処理に常用されている高分子化合物を用いることができる。具体的には例えば、ポリビニルアルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル酸との共重合体、エチレンと(メタ)アクリル酸、(メタ)アクリルレート等のアクリル系単量体との共重合体、エチレンと酢酸ビニルとの共重合体、ポリウレタン、ポリビニルアミン、ポリアリルアミン、アミノ変性フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、キトサンおよびその誘導体、タンニンならびにタンニン酸およびその塩、フィチン酸が挙げられる。
 また、必要に応じて、金属(A)酸化物付着工程または化成処理工程後、被覆工程前に、酸化物層と水溶性有機化合物を含有する水溶液とを接触させる工程を行うことによって、酸化物層の上に水溶性有機化合物層を析出させることもできる。
 酸性水溶液は、さらに耐熱性、密着性を向上させることができるという観点から、さらに、アルカリ土類金属、希土類金属を含むことができる。アルカリ土類金属、希土類金属はEDTA等のキレート剤とともに添加するのが好ましい態様の1つとして挙げられる。
 酸性水溶液は、さらに添加剤を含有することができる。添加剤としては、例えば、界面活性剤、有機インヒビターが挙げられる。
 酸性水溶液は、pH2~6であるのが好ましく、pH3~5であるのがより好ましい。
 水溶液のpHをアルカリ側へ調整する場合には、pH調節剤として、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;アルカリ土類金属の水酸化物や酸化物;アンモニア;アミン化合物等のアルカリ成分を用いることができる。
 水溶液のpHを酸側へ調整する場合には、pH調節剤として、硝酸、硫酸、塩酸等の無機酸の1種以上および/または酢酸、シュウ酸、酒石酸、クエン酸、コハク酸、グルコン酸、フタル酸等の有機酸の1種以上を用いることができる。
 酸性水溶液は、更に、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤等の界面活性剤を含有することができる。この場合、これらの界面活性剤からなる群から選ばれる少なくとも1種を含有する水溶液と、あらかじめ脱脂処理を行わず油分が付着した状態の鉄系金属材料(被処理金属材料)とを接触させることによって、脱脂処理と酸化物層(酸化物皮膜層)の析出とを同時に行うことが可能である。
 本発明の金属材料の製造方法によれば、酸化物層を単層または複層として有する金属材料を製造することができる。
 本発明の金属材料の製造方法が酸化処理工程を有する場合、酸化物層を複層として有する金属材料を製造することができる。
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限られるものではない。
1.試験板の作製
(金属材料)
 試験には、金属材料基材(鉄系金属材料)として70×150mm(板厚:0.8mm)のステンレス鋼板(SUS430)および冷延鋼板(SPC)を使用した。
(前工程)
 試験に使用する鋼板は、アルカリ脱脂液(日本パーカライジング社製 FC-4360 20g/L)で60℃×120秒間脱脂し、水洗した。
 実施例6および比較例2については、SUS430を、塩化第二鉄100g/Lに塩酸を10g/L添加したエッチング液にて40℃×3分間表面粗化処理を行ったのち、20%硝酸で皮膜剥離したものを金属材料基材として使用した。
 また、実施例4、10および比較例1については、リン酸マンガン系表面処理剤(パルフォスM1A、日本パーカライジング社製)を水で14質量%濃度に希釈し、全酸度、酸比(全酸度/遊離酸度)および鉄分濃度をカタログ値の標準濃度に調整し、更に96℃に加温した水溶液を準備し、この水溶液を用いてSPCを皮膜化成処理したのち、5%塩酸で5分間皮膜剥離して表面粗化処理したものを金属材料基材として使用した。
(酸化物層の形成)
 以下の方法で酸化物層の形成を行った。
(実施例1)
 塩化チタンを水で50%に希釈した水溶液をさらに約10倍に希釈し、アンモニア水を加えて弱アルカリ性とし、水酸化チタンの沈殿を生成した。これを脱イオン水で良く洗浄したのち、過酸化水素水で溶解して1.3%のペルオキソチタン酸溶液を調製した。
 この溶液をSUS430試験板にディップコートし(金属(A)酸化物付着工程)、400℃で60分間焼成し(酸化処理工程)、金属材料を得た。
 蛍光X線分析装置(システム3270、理学電気工業(株)製、以下同様。)で得られた金属材料におけるTiOの付着量を測定したところ160mg/mであった。また、X線回折(X線回折分析装置(X’PERT-MRD、フィリップス社製)を用いて実施。以下同様。)により得られた金属材料の酸化物層(皮膜層)からはγ-Feが検出された。
(実施例2)
 炭酸ジルコニウム溶液(ZrOとして20質量%)を水で2質量%に希釈したコーティング液を調製した。
 この溶液をSPC試験板にディップコートし、180℃で20分間乾燥し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ220mg/mであった。また、X線回折により得られた金属材料の酸化物層(皮膜層)からはγ-Feが検出された。また、得られた金属材料の断面のTEM観察からはγ-Feが基材とZr酸化物皮膜との境界部分に検出された。
(実施例3)
 炭酸ジルコニウム溶液(ZrOとして20質量%)に、シュウ酸ハフニウムを1/10モル添加した液を水で2質量%に希釈したコーティング液を調製した。
 この溶液をSPC試験板にディップコートし、180℃で20分間乾燥し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ220mg/mであった。また、X線回折により得られた金属材料の酸化物層(皮膜層)からはγ-Feが検出された。また、得られた金属材料の断面のTEM観察からはγ-Feが基材とZr-Hf酸化物皮膜との境界部分に検出された。
(実施例4)
 炭酸ジルコニウム溶液(ZrOとして20質量%)を水で2質量%に希釈したコーティング液を調製した。
 この溶液を、リン酸マンガン-塩酸剥離によりあらかじめ表面粗化したSPC試験板にディップコートし、180℃で20分間乾燥し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ270mg/mであった。また、X線回折により得られた金属材料の酸化物層(皮膜層)からはγ-Feが検出された。
(実施例5)
 実施例1で使用した1.3%のペルオキソチタン酸溶液を水で2倍に希釈して電解槽にいれ、白金めっきチタン板を対極とし、SUS430試験板を15V×60秒間陽極電解した。陽極電解後の試験板にはペルオキソチタン酸ゲルの析出が観察された。
 陽極電解後の試験板を乾燥後に450℃で60分間焼成して酸化チタン皮膜を形成し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるTiOの付着量を測定したところ330mg/mであった。また、X線回折により得られた金属材料の酸化物層(皮膜層)からはγ-Feが検出された。
(実施例6)
 ヘキサフルオロチタン酸(IV)水溶液と、硝酸第二鉄と、硝酸アルミニウム溶液と、クエン酸と、フッ化水素酸とを用いて、Ti濃度が1500ppm、Fe濃度が50ppm、アルミニウム濃度が300ppm、クエン酸濃度が50ppmの化成処理液を調製した。ついで、水溶液を55℃に加温した後、アンモニア水でpH2.5に調整し化成処理液とした。
 化成処理液を採取して顕微鏡観察した結果、処理液中には水酸化物粒子は観察されなかった。
 化成処理工程においてこの化成処理液を使用し、あらかじめ塩化第二鉄エッチング液にて表面粗化したSUS430試験板を浸漬して120秒間反応処理し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるTiOの付着量を測定したところ80mg/mであった。
 化成処理工程後、酸化処理工程において金属材料を450℃で60分間焼成した。
 酸化処理工程後に得られた金属材料の酸化物層(皮膜層)からはX線回折によりγ-Feが検出された。
(実施例7)
 オキシ硝酸ジルコニウムと、硝酸第二鉄と塩酸を用いて、ジルコニウム濃度が5ppm、Fe濃度が35ppmの化成処理液を調製した。ついで、水溶液を45℃に加温した後、アンモニア水試薬でpH4.8に調整し化成処理液とした。化成処理液を採取して顕微鏡観察した結果、処理液中には粒子径が5~30μmの水酸化物ジルコニウムの透明粒子が全体に観察された。
 化成処理工程においてこの化成処理液を使用し、SPC試験板を浸漬して120秒間反応処理し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ180mg/mであった。
 化成処理工程後、酸化処理工程において金属材料を250℃で30分間焼成した。
 酸化処理工程後得られた金属材料の酸化物層(皮膜層)からはX線回折によりγ-Feが検出された。
(実施例8)
 オキシ硝酸ジルコニウムと、硝酸第二鉄と、硝酸マグネシウム溶液と、フッ化水素酸とを用いて、ジルコニウム濃度が5ppm、Fe濃度が80ppm、マグネシウム濃度が300ppmの化成処理液を調製した。ついで、水溶液を45℃に加温した後、アンモニア水試薬でpH4.4に調整し化成処理液とした。化成処理液を採取して顕微鏡観察した結果、処理液中には粒子径が1~20μmの水酸化物ジルコニウムの透明粒子が全体に観察された。
 化成処理工程においてこの化成処理液を使用し、SPC試験板を浸漬して120秒間反応処理し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ210mg/mであった。
 化成処理工程後、酸化処理工程において金属材料を250℃で30分間焼成した。
 酸化処理工程後得られた金属材料の酸化物層(皮膜層)からはX線回折によりγ-Feが検出された。
 実施例8の金属材料について、酸化物層(皮膜)の断面の構造を確認するため、実施例8で得られた金属材料の断面を透過型電子顕微鏡(倍率:10万倍、日立製作所社製 H-9000)で撮影した。結果を図1に示す。
 図1は、本発明の金属材料の一例の断面を透過型電子顕微鏡で撮影した写真である。
 図1に示す結果およびEDS分析等による結果から明らかなように、図1において、金属材料1は、鉄系金属材料2の表面に酸化物層3を有し、酸化物層3は上層4と下層5とを有し、下層5は酸化鉄によって形成され、上層4は酸化ジルコニウムで形成されていることが確認できた。
 また、下層5における酸化鉄は、結晶性の酸化鉄であった。
 図1に示す結果から、上層4は厚みが0.2~0.3μmの金属(A)酸化物であり、下層5は厚みが0.02~0.15μmの鉄酸化物からなることを確認した。
 図1における結果から明らかなように、下層5は、鉄系金属材料2の表面(図1参照)で微細な凹凸を形成している。このため、下層5が有する微細な凹凸による投錨効果によって、上層4と下層5との密着性が優れたものとなっている。
(実施例9)
 オキシ硝酸ジルコニウム溶液と、硝酸マグネシウム溶液と、硝酸第二鉄と、フッ化水素酸試薬とを用いて、ジルコニウム濃度が5ppm、マグネシウム濃度が300ppmであり、アスコルビン酸が50ppmであり、Fe濃度が40ppmである化成処理液を調製した。ついで、水溶液にポリアリルアミン水溶液(PAA-05、日東紡績(株)製)を50ppm添加し50℃に加温した後、アンモニア水試薬でpH4.5に調整し化成処理液とした。化成処理液を採取して顕微鏡観察した結果、処理液中には粒子径が1~20μmの水酸化物ジルコニウムの透明粒子が全体に観察された。粒子が水酸化ジルコニウムであることの確認は、ミクロフィルターでろ過後純水で水洗し、乾燥物を蛍光X線により確認した。
 化成処理工程においてこの化成処理液を使用し、SPC試験板を浸漬して120秒間反応処理し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ180mg/mであった。
 化成処理工程後、酸化処理工程において金属材料を250℃で30分間焼成した。
 酸化処理工程後得られた金属材料の酸化物層(皮膜層)からはX線回折によりγ-Feが検出された。
(実施例10)
 ヘキサフルオロジルコン酸(IV)水溶液と、ヘキサフルオロチタン酸(IV)水溶液と、硝酸第二鉄と、クエン酸と、硝酸マグネシウム溶液とを用いて、ジルコニウム濃度が200ppm、チタン濃度が50ppm、クエン酸濃度が100ppm、Fe濃度が80ppm、マグネシウム濃度が14000ppmである化成処理液を調製した。ついで、水溶液にジアリルアミン共重合体水溶液(PAS-92、日東紡績(株)製)を50ppm添加し50℃に加温した後、アンモニア水試薬でpH4.5に調整し化成処理液とした。化成処理液を採取して顕微鏡観察した結果、処理液中には粒子径が1~20μmの水酸化物ジルコニウムの透明粒子が全体に観察された。粒子が水酸化ジルコニウムであることの確認は、ミクロフィルターでろ過後純水で水洗し、乾燥物を蛍光X線により確認した。
 化成処理工程においてこの化成処理液を使用し、リン酸マンガン-塩酸剥離によりあらかじめ表面粗化したSPC試験板にSPC試験板を浸漬して120秒間反応処理し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOおよびTiOの付着量を測定したところ、ZrOの付着量が170mg/mでTiOの付着量が130mg/mであった。
 化成処理工程後、酸化処理工程において金属材料を180℃で30分間焼成した。
 酸化処理工程後得られた金属材料の酸化物層(皮膜層)からはX線回折によりγ-Feが検出された。
(比較例1)
 実施例と同様に脱脂したSPC試験板を、リン酸マンガン系表面処理剤(パルフォスM1A、日本パーカライジング(株)製)を水で14質量%濃度に希釈し、全酸度、酸比(全酸度/遊離酸度)および鉄分濃度をカタログ値の標準濃度に調整し、更に96℃に加温した水溶液で皮膜化成処理したのち、5%塩酸で5分間皮膜剥離して表面粗化処理したものをそのまま金属材料として使用した。
(比較例2)
 実施例と同様に脱脂したSUS430試験板を、更に塩化第二鉄100g/Lに塩酸を10g/L添加したエッチング液にて40℃×3分間表面粗化処理を行ったのち、20%硝酸で10分間皮膜剥離して表面粗化処理したものをそのまま金属材料として使用した。
(比較例3)
 リン酸マンガン系表面処理剤(パルフォスM1A、日本パーカライジング(株)製)を水で14質量%濃度に希釈し、全酸度、酸比(全酸度/遊離酸度)および鉄分濃度をカタログ値の中心に調整し、更に96℃に加温した水溶液を表面処理用処理液とした。
 脱脂後に水洗を施した炭素綱鋼材丸綱(略号S45C:JIS G 4051、φ10mm×35mm、表面粗さRzjis2μm)を、前記表面処理用処理液に120秒間浸漬して表面処理皮膜層を析出させた。ついで、水洗、イオン交換水洗、更に乾燥を行い、炭素綱鋼材丸綱表面の表面処理用処理液および水分を除去した。
(比較例4)
 炭酸ジルコニウム溶液(ZrOとして20質量%)を水で2質量%に希釈したコーティング液を調製した。この溶液をSUS430試験板にディップコートし、30℃で20分間乾燥し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ220mg/mであった。また、X線回折およびXPSからは得られた金属材料の酸化物層(皮膜層)からFe酸化物は検出されなかった。
(比較例5)
 オキシ硝酸ジルコニウムと、硝酸マグネシウム溶液と、フッ化水素酸とを用いて、ジルコニウム濃度が5ppm、マグネシウム濃度が300ppmの化成処理液を調製した。ついで、水溶液を45℃に加温した後、アンモニア水試薬でpH3.0に調整し化成処理液とした。化成処理液を採取して顕微鏡観察した結果、処理液中には水酸化物ジルコニウムの粒子が観察されなかった。
 化成処理工程においてこの化成処理液を使用し、SPC試験板を浸漬して120秒間反応処理し金属材料を得た。
 蛍光X線分析装置で得られた金属材料におけるZrOの付着量を測定したところ110mg/mであった。
 化成処理工程後、酸化処理工程において金属材料を60℃で10分間乾燥した。
 酸化処理工程後の金属材料の酸化物層(皮膜層)からはX線回折およびXPSによっても皮膜層からFe酸化物が検出されなかった。
2.酸化物層(表面処理皮膜層)の性状の分析
 下記に示す方法で、酸化物層中のFeの量、金属(A)付着量、酸化物層中の酸化物の構造を分析した。
 酸化物層中のFeの量、金属(A)付着量の結果を表1に示す。
 金属(A)付着量、酸化物層中の酸化物の構造の結果は、各実施例において記載した。
(1)酸化物層(表面処理皮膜層)の金属(A)付着量の測定
 酸化物層(表面処理皮膜層)の金属(A)付着量を蛍光X線分析装置(システム3270、理学電気工業(株)製)で測定した。
(2)酸化物層(表面処理皮膜層)の酸化物の構造解析
 実施例で得られた金属材料の酸化物層(表面処理皮膜層)を、X線回折分析装置(X’PERT-MRD、フィリップス社製)を用いて、薄膜分析法(入射角0.5°)で分析し、酸化物の構造を解析した。
(3)酸化物層中のFeの量
 実施例で得られた金属材料の酸化物層中のFeの量を、島津製作所社製XPS分析装置ESCAを用いてXPS(X線光電子分光)による表面分析によって皮膜の深さごとに測定した。
 なお、実施例8で得られた金属材料の酸化物層に関し、XPS(X線光電子分光)による表面分析の結果を添付の図面(図2、図3)に示す。
 図2は、本発明の金属材料の一例の酸化物層中に含まれる各元素に関し、XPS(X線光電子分光)を用いて分析された結果得られたXPSナロウスペクトルを示すグラフである。
 図3は、本発明の金属材料の一例の酸化物層中に含まれる各元素に関し、XPS(X線光電子分光)を用いて分析された結果得られた各元素の量(単位:原子パーセント)をデプスプロファイルとして示すグラフである。
 なお、図3に示すデプスプロファイルは、図2に示すXPSナロウスペクトルのデータをもとに作成されたものである。
 実施例8で得られた金属材料の酸化物層に関し、XPS(X線光電子分光)による表面分析は、最表面からスパッタリングを行いながら下層方向に分析することによって行った。
 図3において、分析を開始してから酸化物層における酸素の原子パーセントが40%未満となる(つまり、スパッタリングが鉄系金属材料まで到達する。)までの各元素の平均パーセントを酸化物層における各元素の含有率として示した。
 図3において示す結果から明らかなように、平均のFe原子パーセント(酸化物層におけるFe含有率)は酸化物層の上層と下層で異なった。
 すなわち、図3において、エッチングタイム0.2分におけるFe原子パーセントは3原子%であった。エッチングタイム0.2分にあたる酸化物層の部分は上層に該当する。
 また、図3において、エッチングタイム1.2分におけるFe原子パーセントは約20原子%であった。エッチングタイム1.2分にあたる酸化物層の部分は下層に該当する。
 なお、上層と下層との境界は明確ではなかったが、上層と下層をあわせた酸化物層中の平均Fe原子パーセントは8.2原子%であった。
 酸化物層における深さ方向における平均のFe含有率は実施例の全てにおいて2~30原子パーセントの範囲内であった。
3.酸化物層(皮膜)性能の評価
 得られた金属材料について、接触抵抗、耐食性試験、密着性試験、耐熱密着性試験を、以下に示す方法で行い、以下に示す評価基準で評価した。結果を表1に示す。
(接触抵抗)
 処理を行ったSPC試験板及びSUS430試験板について、表面抵抗計(三菱化学(株)製MCP-T360型[2点式標準プローブ使用])を用いて得られた金属材料の接触抵抗を測定した。
 (耐食性試験)
 処理を行ったSPC試験板及びSUS430試験版を塩水噴霧試験法(JIS Z 2371)で1000時間試験し、試験後の、錆発生の程度を以下の基準で評価した。
   5:錆発生が認められない
   4:錆面積1%未満
   3:錆面積1%以上5%未満
   2:錆面積5%以上20%未満
   1:錆面積20%以上
(密着性試験)
 処理を行ったSPC試験板及びSPC試験板の表面に、A液およびB液を1:1で十分混合した2液型エポキシ接着剤(セメダイン社製、ハイスーパー5)を約100g/mの塗布量で塗布し、24時間放置した。さらに、この接着剤が塗布されたSPC試験板またはSPC試験板を、60℃に加熱した5%NaOH水溶液中に60分間浸漬し、水洗乾燥してから、試料の一端を万力で固定して、接着剤の塗布面を外側にして中央部で90度の角度まで折り曲げ、折り曲げ部の剥離状態を以下のように評価した。
   5:剥離なし
   4:剥離なし、亀裂あり
   3:剥離20%未満、亀裂あり
   2:剥離20%以上50%未満、亀裂大
   1:剥離50%以上
(耐熱密着性試験)
 処理を行ったSPC試験板及びSPC試験板の表面に、耐熱導電性無機接着剤(Cotronics社製Resbond954)を約100g/mの塗布量で塗布し、室温で乾燥させたのち、電気炉で1000℃で2時間大気雰囲気下で高温酸化処理した。試験後の板は室温に冷却したのち、粘着テープを貼り付け、引き剥がして剥離の有無を評価した。
   5:剥離なし
   4:剥離1%未満
   3:剥離1%以上5%未満
   2:剥離5%以上30%未満
   1:剥離30%以上
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなように、実施例1~10は、耐食性、導電性、密着性および耐熱性(耐熱密着性)がともに従来技術である比較例1~5よりも優れており、本発明の効果が明らかであることがわかる。

Claims (17)

  1.  鉄系金属材料と、前記鉄系金属材料の表面に形成されている酸化物層とを有し、
     前記酸化物層が、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)とFeとを酸化物として含む金属材料。
  2.  前記酸化物層が、
     Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物を少なくとも含む上層と、
     鉄酸化物を少なくとも含む下層とを有する請求項1に記載の金属材料。
  3.  前記酸化物が、γ-Fe、α-FeおよびFeからなる群から選ばれる少なくとも1種の酸化鉄を含む請求項1または2に記載の金属材料。
  4.  前記酸化物層が、前記Feを2~30原子パーセント含む請求項1~3のいずれかに記載の金属材料。
  5.  前記下層の厚さが、0.02~0.5μmである請求項2~4のいずれかに記載の金属材料。
  6.  前記酸化物層中に含まれる前記金属(A)の量が、AO換算の合計として、10~1,000mg/mである請求項1~5のいずれかに記載の金属材料。
  7.  前記酸化物層は、その接触抵抗が200Ω以下である請求項1~6のいずれかに記載の金属材料。
  8.  前記酸化物層の上に、さらに、セラミックまたは樹脂を用いて形成される被覆層を有する請求項1~7のいずれかに記載の金属材料。
  9.  鉄系金属材料の表面に、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)酸化物またはその前駆体を塗布または電析して、前記鉄系金属材料を金属(A)酸化物の皮膜を有する鉄系金属材料とする金属(A)酸化物付着工程と、
     前記金属(A)酸化物の皮膜を有する鉄系金属材料を加熱して請求項1~8のいずれかに記載の金属材料を製造する酸化処理工程とを有することを特徴とする金属材料の製造方法。
  10.  前記酸化処理工程の後、さらに、前記金属材料が有する酸化物層の上にセラミックまたは樹脂を付与する被覆工程を有する請求項9に記載の金属材料の製造方法。
  11.  鉄系金属材料を、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)の金属(A)イオンと、30ppm以上のFeイオンと、酸化剤イオンとを含む酸性水溶液に接触させることによって請求項1~8のいずれかに記載の金属材料を製造する化成処理工程を有することを特徴とする金属材料の製造方法。
  12.  前記酸性水溶液が、さらに、Zr、TiおよびHfからなる群から選ばれる少なくとも1種の金属(A)のアモルファス水酸化物を含む請求項11記載の金属材料の製造方法。
  13.  前記化成処理工程の後、さらに金属材料を加熱する酸化処理工程を有する請求項11または12に記載の金属材料の製造方法。
  14.  前記酸化処理工程の後、さらに、前記金属材料が有する酸化物層の上にセラミックまたは樹脂の被覆層を付与する被覆工程を有する請求項13に記載の金属材料の製造方法。
  15.  前記酸性水溶液が、さらに、フッ素を含む請求項11~14のいずれかに記載の金属材料の製造方法。
  16.  前記酸性水溶液が、さらに、水溶性有機化合物を含む請求項11~15のいずれかに記載の金属材料の製造方法。
  17.  前記鉄系金属材料が、ステンレス鋼である請求項9~16のいずれかに記載の金属材料の製造方法。
PCT/JP2009/053664 2008-02-27 2009-02-27 金属材料およびその製造方法 WO2009116376A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801074620A CN101970723B (zh) 2008-02-27 2009-02-27 金属材料及其制备方法
EP09721956.2A EP2280094B1 (en) 2008-02-27 2009-02-27 Metallic material and manufacturing method thereof
US12/868,862 US8318256B2 (en) 2008-02-27 2010-08-26 Metallic material and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-046566 2008-02-27
JP2008046566A JP5166912B2 (ja) 2008-02-27 2008-02-27 金属材料およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/868,862 Continuation US8318256B2 (en) 2008-02-27 2010-08-26 Metallic material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
WO2009116376A1 WO2009116376A1 (ja) 2009-09-24
WO2009116376A9 true WO2009116376A9 (ja) 2009-11-19

Family

ID=41090783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053664 WO2009116376A1 (ja) 2008-02-27 2009-02-27 金属材料およびその製造方法

Country Status (5)

Country Link
US (1) US8318256B2 (ja)
EP (1) EP2280094B1 (ja)
JP (1) JP5166912B2 (ja)
CN (1) CN101970723B (ja)
WO (1) WO2009116376A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101418919B1 (ko) 2009-03-30 2014-07-15 가부시끼가이샤 도시바 내식성 부재와 그 제조 방법
JP5980677B2 (ja) 2010-05-28 2016-08-31 東洋製罐株式会社 表面処理浴、この表面処理浴を用いた表面処理鋼板の製造方法及びこの製造方法から成る表面処理鋼板
KR20130126658A (ko) 2010-12-07 2013-11-20 니혼 파커라이징 가부시키가이샤 지르코늄, 구리 및 금속 킬레이트화제를 함유하는 금속 전처리 조성물 및 금속 기판 상의 관련 코팅
SG193303A1 (en) * 2011-03-08 2013-10-30 Merck Patent Gmbh Aluminium oxide pastes and method for the use thereof
JP5906583B2 (ja) * 2011-05-20 2016-04-20 株式会社豊田中央研究所 金属系部材の製造方法
WO2014035690A1 (en) 2012-08-29 2014-03-06 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
EP3293287A1 (en) 2012-08-29 2018-03-14 PPG Industries Ohio, Inc. Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
JP6106416B2 (ja) * 2012-11-30 2017-03-29 三菱重工業株式会社 構造部材の表面処理方法
JP5671566B2 (ja) * 2013-02-27 2015-02-18 東洋鋼鈑株式会社 表面処理鋼板の製造方法
JP6526944B2 (ja) * 2014-03-26 2019-06-05 イビデン株式会社 構造体
WO2016111693A1 (en) 2015-01-09 2016-07-14 Apple Inc. Processes to reduce interfacial enrichment of alloying elements under anodic oxide films and improve anodized appearance of heat treatable alloys
JP6016987B1 (ja) 2015-05-29 2016-10-26 日新製鋼株式会社 電池外装用ステンレス箔、およびその製造方法
JP6016988B1 (ja) * 2015-05-29 2016-10-26 日新製鋼株式会社 電池外装用ステンレス箔、およびその製造方法
JP2017039974A (ja) * 2015-08-19 2017-02-23 株式会社神戸製鋼所 被覆鋼材及びその製造方法
JP6566798B2 (ja) * 2015-09-04 2019-08-28 日本パーカライジング株式会社 表面処理剤、表面処理方法及び表面処理金属材料
WO2017065256A1 (ja) * 2015-10-14 2017-04-20 株式会社豊田中央研究所 金属樹脂接合部材およびその製造方法
US11352708B2 (en) 2016-08-10 2022-06-07 Apple Inc. Colored multilayer oxide coatings
RU2729485C1 (ru) 2016-08-24 2020-08-07 Ппг Индастриз Огайо, Инк. Железосодержащая композиция очистителя
US11242614B2 (en) 2017-02-17 2022-02-08 Apple Inc. Oxide coatings for providing corrosion resistance on parts with edges and convex features
CA3065510A1 (en) * 2017-06-01 2018-12-06 Lumishield Technologies Incorporated Methods and compositions for electrochemical deposition of metal rich layers in aqueous solutions
WO2018225861A1 (ja) * 2017-06-09 2018-12-13 Jfeスチール株式会社 多層構造体および多層構造体の製造方法
JP6334048B1 (ja) * 2017-10-31 2018-05-30 日本パーカライジング株式会社 複層皮膜の製造方法
MX2020007755A (es) * 2018-01-30 2020-09-24 Nissan Motor Perno y estructura fijada.
JP7058160B2 (ja) * 2018-03-28 2022-04-21 三井化学株式会社 金属用下塗り剤、積層体、電池および包装体
JP7059810B2 (ja) * 2018-05-30 2022-04-26 株式会社デンソー 表面被覆部材及びその製造方法
US11549191B2 (en) 2018-09-10 2023-01-10 Apple Inc. Corrosion resistance for anodized parts having convex surface features
US20220064070A1 (en) * 2020-08-28 2022-03-03 Korea Institute Of Science And Technology Method for forming high heat-resistant coating film using liquid ceramic composition and high heat-resistant coating film prepared thereby
CN113480183B (zh) * 2021-06-28 2022-07-05 江西沃格光电股份有限公司 高铝玻璃蒙砂粉、高铝玻璃的蒙砂方法和蒙砂玻璃及应用
DE102021206711A1 (de) * 2021-06-29 2022-12-29 Aktiebolaget Skf Bauteil
CN113981298A (zh) * 2021-09-11 2022-01-28 绩溪麦克威自动化科技有限公司 一种模锻滑架的制备工艺
CN116230621B (zh) * 2023-05-08 2023-07-11 四川科尔威光电科技有限公司 一种铁氧体基薄膜电路产品制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280239A (en) 1975-12-27 1977-07-05 Nippon Steel Corp Finishing process for phosphate coating
US4322254A (en) * 1980-09-22 1982-03-30 Uop Inc. Regeneration of electrical conductivity of metallic surfaces
JPH07150393A (ja) 1993-11-25 1995-06-13 Nippon Paint Co Ltd 金属表面処理方法
US5885373A (en) 1997-06-11 1999-03-23 Henkel Corporation Chromium free, low organic content post-rinse for conversion coatings
JP3471258B2 (ja) 1999-06-25 2003-12-02 関西ペイント株式会社 金属材料の粉体塗装方法
AUPQ633200A0 (en) * 2000-03-20 2000-04-15 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface I
TWI268965B (en) 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
US20040185261A1 (en) * 2001-11-14 2004-09-23 Shigeru Umino Surface-treated metal sheet and surface-treating agent
JP4081276B2 (ja) * 2002-01-11 2008-04-23 日本パーカライジング株式会社 水性下地処理剤、下地処理方法および下地処理された材料
JP2003213456A (ja) * 2002-01-23 2003-07-30 Kansai Paint Co Ltd 樹脂被覆金属管材およびその製造方法
ES2316707T3 (es) * 2002-12-24 2009-04-16 Chemetall Gmbh Agente de revestimiento de conversion quimica y metal tratado en superficie.
JP4067103B2 (ja) * 2002-12-24 2008-03-26 日本ペイント株式会社 脱脂兼化成処理剤及び表面処理金属
JP4989842B2 (ja) * 2002-12-24 2012-08-01 日本ペイント株式会社 塗装前処理方法
ATE412073T1 (de) * 2002-12-24 2008-11-15 Chemetall Gmbh Verfahren zur vorbehandlung vor der beschichtung
JP2004285395A (ja) * 2003-03-20 2004-10-14 Nippon Steel Corp Tig溶接の溶け込み特性に優れた鋼板
JP3952197B2 (ja) * 2003-07-17 2007-08-01 日本ペイント株式会社 金属表面処理方法及び亜鉛めっき鋼板
JP4344222B2 (ja) * 2003-11-18 2009-10-14 新日本製鐵株式会社 化成処理金属板
JP4402991B2 (ja) * 2004-03-18 2010-01-20 日本パーカライジング株式会社 金属表面処理用組成物、金属表面処理用処理液、金属表面処理方法および金属材料
ES2391870T3 (es) * 2007-02-12 2012-11-30 Henkel Ag & Co. Kgaa Procedimiento para tratar superficies metálicas

Also Published As

Publication number Publication date
EP2280094A4 (en) 2012-05-02
EP2280094B1 (en) 2018-06-27
US20110076505A1 (en) 2011-03-31
JP5166912B2 (ja) 2013-03-21
CN101970723B (zh) 2013-03-13
JP2009203519A (ja) 2009-09-10
EP2280094A1 (en) 2011-02-02
WO2009116376A1 (ja) 2009-09-24
CN101970723A (zh) 2011-02-09
US8318256B2 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
JP5166912B2 (ja) 金属材料およびその製造方法
JP5420354B2 (ja) クロムフリー黒色表面処理鉄系金属材料及びその製造方法
WO2010001861A1 (ja) 金属構造物用化成処理液および表面処理方法
JP5251078B2 (ja) 容器用鋼板とその製造方法
EP2314735B1 (en) Finishing agent and member having overcoat formed from the finishing agent
JP5157487B2 (ja) 容器用鋼板とその製造方法
JPWO2002103080A1 (ja) 金属の表面処理用処理液及び表面処理方法
JP2006255540A (ja) 金属材料の塗装方法
CN101545107A (zh) 表面处理液、表面处理方法及经表面处理的镀锡钢板
JP2010090407A (ja) 金属表面処理液、および金属表面処理方法
JP2008261035A (ja) 亜鉛系金属材料用表面処理液および亜鉛系金属材料の表面処理方法
CA2835085C (en) Chemical conversion treatment agent for surface treatment of metal substrate and method for surface treatment of metal substrate using the same
KR100921116B1 (ko) 표면처리 금속재료
JP5186814B2 (ja) 容器用鋼板とその製造方法
JP5186817B2 (ja) 容器用鋼板
JP5661238B2 (ja) 表面処理亜鉛系めっき鋼板
JP5671210B2 (ja) 金属表面処理方法
JP4349149B2 (ja) 導電性に優れる表面処理鋼板の製造方法
JP2010111898A (ja) 化成処理金属板およびその製造方法
TWI568885B (zh) 金屬表面處理液、金屬基材之表面處理方法及由該方法所製得之金屬基材
JP2011127141A (ja) 電着塗装用表面処理金属材料、および化成処理方法
JP5186815B2 (ja) 容器用鋼板
JP4701546B2 (ja) 耐食性に優れた表面処理鋼板の製造方法
JP2002080975A (ja) モーターケース用表面処理鋼板
JP2015052168A (ja) 表面処理金属材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107462.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009721956

Country of ref document: EP