WO2017065256A1 - 金属樹脂接合部材およびその製造方法 - Google Patents

金属樹脂接合部材およびその製造方法 Download PDF

Info

Publication number
WO2017065256A1
WO2017065256A1 PCT/JP2016/080483 JP2016080483W WO2017065256A1 WO 2017065256 A1 WO2017065256 A1 WO 2017065256A1 JP 2016080483 W JP2016080483 W JP 2016080483W WO 2017065256 A1 WO2017065256 A1 WO 2017065256A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
oxide layer
resin
metal
iron oxide
Prior art date
Application number
PCT/JP2016/080483
Other languages
English (en)
French (fr)
Inventor
梅本 和彦
岡本 浩孝
金子 裕治
ジュシン トウ
祐介 八木
健 宇山
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Priority to US15/746,961 priority Critical patent/US11633892B2/en
Priority to JP2017545477A priority patent/JP6436243B2/ja
Publication of WO2017065256A1 publication Critical patent/WO2017065256A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined
    • B29C66/30322Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined in the form of rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/04Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a metal-resin bonded member obtained by bonding a metal and a resin and a method for manufacturing the same.
  • Patent Document 1 and Patent Document 2 describe a composite body in which a stainless steel plate and a thermoplastic resin (PPS or the like) are joined by insert molding. These are to bond the stainless steel plate and the resin mechanically or physically using the anchor effect by pre-chemically roughening the surfaces to be joined of the stainless steel plate. is suggesting.
  • PPS thermoplastic resin
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a metal-resin bonding member that can exhibit high bonding strength and the like, and a method for manufacturing the same, by a method different from the conventional one.
  • the metal resin joining member of the present invention is joined to a metal body having an iron oxide layer formed on the surface of an iron-based substrate made of iron or an iron alloy, and the metal body via the iron oxide layer.
  • the iron oxide layer has a thickness of 50 nm to 10 ⁇ m, Fe: 60 to 40 at% and O: 40 to 60 at% at least on the outermost surface side. And at least magnetite (Fe 3 O 4 ).
  • the metal resin bonding member of the present invention (simply referred to as “bonding member”) can be used for various members in various fields because the metal body and the resin body are firmly bonded via the iron oxide layer. It is.
  • the joining member of the present invention can exhibit high joining strength without depending on a physical coupling force such as a conventional anchor effect. From this, it is considered that a chemical bonding force is generated between the iron oxide layer and the resin body. Factors (chemical factors) that cause chemical bond strength include van der Waals force, hydrogen bond, covalent bond, ionic bond, etc., but since the bonding member of the present invention has high bonding strength, iron oxide It is considered that a strong bond such as a covalent bond occurs at least partially between the layer and the resin body. Although the mechanism by which such coupling occurs is not clear, it is presumed as follows at present.
  • the iron oxide layer according to the present invention is not simply formed naturally on the surface of the metal body in the air atmosphere, but has at least the above-mentioned thickness, component composition and structure (structure). Such an iron oxide layer is in an electron-deficient state and is considered to be in an active state with high energy. For this reason, the iron oxide layer formed on the surface of the metal body is chemically bonded to C, O, H, N, P, S, or the like in the vicinity of the bonded surface of the resin body. It is considered that the metal body and the resin body are firmly bonded.
  • the present invention can be grasped not only as a joining member but also as a manufacturing method thereof. That is, the present invention includes a joining step of joining a metal body and a resin body via an iron oxide layer, and the iron oxide layer has a thickness of 50 nm to 10 ⁇ m and Fe: 60 to 40 at least on the outermost surface side. %, O: 40 to 60 at%, and can also be grasped as a method for producing a metal-resin bonding member containing at least magnetite (Fe 3 O 4 ).
  • the present invention provides an oxidation step of forming an iron oxide layer on the surface of an iron-based substrate made of iron or an iron alloy, and a metal body and a resin body having the iron-based substrate at least on the surface to be joined.
  • a bonding step of bonding the iron oxide layer through the iron oxide layer, and the oxidation step is also grasped as a method for manufacturing a metal resin bonding member, which is a heating step of heating at least the surface of the iron-based substrate in an oxidizing atmosphere. it can.
  • the ratio between the amount and the content of other iron oxides (such as Fe 2 O 3 ) is not limited.
  • “red rust” made of Fe 2 O 3 has very brittle properties, and therefore, when the content of Fe 2 O 3 increases, it tends to be undesirable for bonding. Therefore, it is preferable that Fe 2 O 3 is not substantially contained in the iron oxide layer or the content thereof is small.
  • x to y in this specification includes the lower limit value x and the upper limit value y.
  • a range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.
  • SEM scanning electron microscope
  • EPMA electron beam microanalyzer
  • XRD X-ray diffraction
  • a component related to the manufacturing method can also be a component related to an object. Note that which embodiment is the best depends on the target, required performance, and the like.
  • the iron oxide layer according to the present invention is mainly composed of Fe and O, and at least at the outermost surface portion, Fe: 60 to 40 at%, 55 to 40 at%, further 55 to 45 at%, and O: 40 to It is preferably 60 at%, 45 to 60 at%, and more preferably 45 to 55 at%.
  • the composition of the outermost surface part of the iron oxide layer as used in this specification is obtained by observing the cross section of an iron oxide layer with an electron beam microanalyzer (EPMA) and performing quantitative analysis.
  • the amount of each element is calculated by setting the total composition within the range to 100 at%.
  • At% is an atomic ratio, which is a value calculated by multiplying the X-ray intensity ratio (k%) by a ZAF correction coefficient.
  • k% is a value calculated by multiplying the X-ray intensity ratio (k%) by a ZAF correction coefficient.
  • the value obtained by dividing the X-ray count detected from the sample by the X-ray count when the pure iron that is a standard sample for Fe is measured is expressed as a percentage.
  • the correction coefficient is a value obtained by determining the behavior of the electron beam and the characteristic X-ray in the sample for each of the three items of the absorption effect, the atomic number effect, and the fluorescence excitation effect.
  • the Fe amount and the O amount measured and analyzed in three substantially equal places in the depth direction (depth: 1 ⁇ m) within the range (1 ⁇ m ⁇ 1 ⁇ m) are arithmetically averaged.
  • the composition of the iron oxide layer (Fe and O).
  • the iron oxide layer examples include various types such as wustite (FeO), hematite (Fe 2 O 3 / ⁇ type, ⁇ type, ⁇ type, ⁇ type, etc.), magnetite (Fe 3 O 4 ), and the like. It can consist of iron oxide.
  • the iron oxide layer according to the present invention may be a mixture of one or two or more kinds of iron oxide, or may contain iron oxide in which O is partially deficient (deficient). Further, the iron oxide layer may include iron (ferrite) or an iron alloy that is not iron oxide. However, as described above, it is considered preferable that the iron oxide layer contains at least Fe 3 O 4 and does not contain much Fe 2 O 3 because a high bonding strength is obtained (see Table 1 and FIGS. 4A to 4C). reference).
  • the iron oxide layer is usually formed on the surface of an iron-based substrate made of iron or an iron alloy.
  • the iron oxide layer may contain elements other than Fe and O according to the composition of the iron-based substrate.
  • the iron-based substrate may be a metal body itself, or may be separately formed on a surface to be joined of a metal body made of different metals having different compositions (iron plating or the like).
  • the iron base material only needs to have a composition in which an iron oxide layer effective for improving the bonding strength is easily formed, and is not limited to pure iron but may be an iron alloy such as carbon steel or alloy steel. As long as the iron oxide layer bonded to the resin body is formed, the iron-based substrate may be made of stainless steel or the like.
  • the characteristics (composition, structure, structure, etc.) of the iron oxide layer effective for improving the bonding strength, the formation conditions thereof, and the like may vary depending on the component composition of the iron-based substrate.
  • the influence of the C content (rate) in the iron-based substrate is considered to be large.
  • the iron-based substrate is pure iron, low carbon steel, or the like, an iron oxide layer effective for improving the bonding strength is easily formed under a wide range of oxidation conditions.
  • the range of preferable oxidation conditions can be gradually narrowed as the C content in the iron-based substrate increases. Therefore, the iron-based substrate is 100% by mass (simply referred to as “%”), and the C content is 1% or less, 0.95% or less, 0.7% or less, 0.5% or less, It is preferable that it is 0.3% or less.
  • the iron oxide layer is intentionally formed, not an oxide film or the like that is naturally formed in air at room temperature, and its thickness (layer thickness) is 50 nm to 10 ⁇ m, 80 nm to 6 ⁇ m. Further, it is preferably 160 nm to 400 nm.
  • the thickness of the iron oxide layer as used in this specification is the distance from the outermost surface to the deepest part when a cross section of the iron oxide layer is observed with a scanning electron microscope (SEM).
  • the iron oxide layer has an oxygen peak X-ray count of 1500 to 13000 cps, 2000 to 12000 cps, or even 3000 to 6000 cps. It is preferable to improve the bonding strength.
  • This X-ray count is analyzed using an accelerating voltage: 15 kV, beam current: 100 nA, beam diameter: 100 ⁇ m ⁇ , and using apparatus: field emission electron probe microanalyzer (JXA-8500F, manufactured by JEOL Ltd.). Can be obtained.
  • the iron oxide layer according to the present invention can be formed by various methods such as heating using a heating furnace or laser irradiation.
  • oxidation treatment oxidation step
  • the oxidation step can be performed, for example, as a heating step in which at least the surface of the iron-based substrate is heated in an oxidizing atmosphere (including an air atmosphere).
  • the heating temperature is preferably 200 to 850 ° C., more preferably 250 to 600 ° C.
  • the heating time is preferably 0.01 to 20 hours, 0.05 to 15 hours, more preferably 0.1 to 10 hours.
  • the heating temperature is preferably 250 to 450 ° C., more preferably 300 to 400 ° C.
  • the heating time is preferably 0.1 to 2 hours, more preferably 0.1 to 1.5 hours.
  • the heating conditions are adjusted by, for example, the C content in the iron-based substrate.
  • the heating temperature is 200 to 850 ° C.
  • the temperature is preferably 225 to 650 ° C, more preferably 250 to 450 ° C.
  • the heating time is preferably 0.05 to 10 hours, 0.1 to 5 hours, more preferably 0.1 to 2 hours.
  • the heating temperature is 200 to 600 ° C., 225 to 500 ° C., or 250 It is preferable that the temperature is ⁇ 400 ° C.
  • the heating time is preferably 0.05 to 5 hours, more preferably 0.1 to 2 hours.
  • the heating temperature is 200 to 500 ° C., further 225 to 400 ° C. And preferred.
  • the heating time is preferably 0.05 to 20 hours, more preferably 0.1 to 13 hours.
  • the iron oxide layer obtained by such oxidation treatment is a modified layer on the surface of the iron-based substrate (metal body). Unlike a thin film or the like separately formed on the surface, the iron-based substrate (metal) Body) is not easily peeled off. Therefore, the metal body and the resin body can be more firmly and stably joined through the iron oxide layer (modified layer) obtained by the oxidation treatment.
  • the resin body that is firmly bonded to the metal body via the iron oxide layer can be made of various resins.
  • a resin may be a thermosetting resin or a thermoplastic resin such as general-purpose plastic, general-purpose engineering plastic, or super-engineering plastic.
  • the resin body is sufficient if the resin to be bonded to the iron oxide layer is present on the surface to be bonded (iron oxide layer side), and the entire resin body does not necessarily need to be made of the same type of resin.
  • thermoplastic resins include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene copolymers, acrylonitrile-styrene copolymers, polymethyl methacrylate, polyvinyl alcohol, and polyvinylidene chloride. , Polybutadiene, polyethylene terephthalate, and the like.
  • General-purpose engineering plastics include polyamides such as nylon 6, nylon 66 and nylon 12, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene and the like.
  • Super engineering plastics include polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamideimide, polyetherimide, polyetheretherketone, thermoplastic polyimide, liquid crystal polymer, and fluororesin such as polytetrafluoroethylene.
  • the resin body according to the present invention is preferably such that polyamide such as nylon 6, nylon 66, nylon 12, or polyphenylene sulfide (PPS) is at least on the iron oxide layer side (bonded surface side). .
  • polyamide such as nylon 6, nylon 66, nylon 12, or polyphenylene sulfide (PPS) is at least on the iron oxide layer side (bonded surface side).
  • Such resins may be used alone or in combination of two or more.
  • a known filler, a known additive, a known resin reinforcing material, and the like may be appropriately blended with such a resin.
  • the resin body may contain reinforcing fibers such as glass fibers and carbon fibers as a reinforcing material.
  • additives may be blended with the resin according to the present invention as long as the effects of the present invention are not impaired.
  • Additives improve the elastic modulus of the resin (effect due to inorganic fillers such as carbon fiber and glass fiber), change in polarity (effect due to rubber, elastomer, other resins), suppression of deterioration, delay of decomposition reaction ( (Effects of antioxidants, etc.), etc., further improvement of joint strength, improvement of resin-metal interface leakage, further improvement of interfacial adhesion, long-term stability (heat resistance, heat and humidity resistance, water resistance, etc.) ) Can be expected to improve.
  • additives there are no particular restrictions on such additives, but examples include flame retardants, antioxidants, UV absorbers, hydrolysis inhibitors, light stabilizers, UV absorbers, antistatic agents, lubricants, mold release agents, and crystals.
  • organic type additives such as rubber
  • organic additives such as rubber
  • an excessive amount of organic additives is added, the high temperature rigidity and the deflection temperature under load can be lowered.
  • Such an additive is not particularly limited. However, the compatibility of the resin with a component that does not extremely decrease the compatibility with the resin, or with the addition of a chemical modifier or a compatibilizing agent even when the compatibility is decreased. Improved ingredients are preferred. Moreover, such an additive may be used individually by 1 type, or may use 2 or more types together.
  • the joining step may include a supplying step for supplying a softened or melted resin to the iron oxide layer and a solidifying step for solidifying the resin to form a resin body.
  • the supplying step is to store or set a metal body having an iron oxide layer in a mold, and inject a softened or melted resin so as to come into contact with the iron oxide layer into the mold. It can be carried out. It is efficient when the metal body and the resin body are joined together by such so-called insert molding.
  • the resin body may be molded by any of injection molding, extrusion molding, blow molding, vacuum molding, transfer molding, compression molding, and the like.
  • the joining step may be performed by separately thermally welding a resin body already molded into a desired shape to a metal body.
  • the bonding step may include a heating step for heating the bonded portion of the resin body and a cooling step for cooling the bonded portion in contact (or pressure contact) with the iron oxide layer of the metal body.
  • the heating step the bonded portion of the resin body can be partially heated and softened or melted or activated.
  • the heating step can be performed, for example, by applying ultrasonic vibration or the like to the bonded portion of the resin body pressed against the iron oxide layer of the metal body to generate frictional heat near the bonding interface.
  • the joining member of the present invention can be used for various products in various fields.
  • the joining member of the present invention can strongly join a metal body and a resin body without depending on an adhesive or the like, a structural component (material) such as an outer plate or an inner / outer surface used in the automobile field, It is suitable for functional parts (materials) constituting units such as a control system and a drive system.
  • the joining member of the present invention is used for fixing a reinforcing material made of a metal body in the field of construction and civil engineering, or a resin body and a high-strength metal having a high degree of freedom in production and excellent design in the home appliance field. It is preferable to be used for parts and products combined with the body.
  • test material obtained by integrally molding a metal with an iron oxide layer and a resin was manufactured, and the joint strength was evaluated (Example 1). Moreover, the iron oxide layer was analyzed from various viewpoints (Example 2). Through these, the present invention will be described more specifically.
  • Iron-based substrate metal body
  • pure iron purity: 99.99%) mainly having different C content, carbon steel (JIS S45C / C: 0.42 to 0.48%, Si: 0.15 to 0.35) %, Mn: 0.6 to 0.9%, balance: Fe) or tool steel (JIS SK5 / C: 0.80 to 0.90%, Si: 0.1 to 0.35%, Mn: 0.0.
  • a plurality of iron-based substrates (10 mm ⁇ 50 mm ⁇ t1 mm) made of 10 to 0.05% and the balance: Fe) were prepared.
  • the composition of the iron-based substrate was simply indicated by “%” with the whole being 100 mass%.
  • Each iron-based substrate was degreased with an organic solvent (acetone) and then heated in an electric furnace to be oxidized (oxidation step).
  • the heating atmosphere was an air atmosphere.
  • the heating temperature was either 250 ° C., 350 ° C., 550 ° C. or 750 ° C.
  • the heating time was either 0.1 hour (hr), 1 hour or 10 hours.
  • the bonding strength of each test material was measured as follows. A jig is pressed against the resin body to apply a shearing force between the iron-based substrate and the resin body. The shearing force when peeling at the bonding interface or when the resin body was destroyed was measured. The joint strength obtained by dividing the shearing force thus obtained by the joint area between the iron-based substrate and the resin body is shown in Table 1 and FIGS. 1A to 1C for each iron-based substrate. ").
  • the heating temperature or the heating time shown in each figure is an oxidation treatment condition applied to each iron-based substrate.
  • Example 2 Based on the above-described results, the surface layers of samples (iron-based substrates before joining with the resin body) obtained by oxidizing various iron-based substrates under various conditions were respectively measured by SEM, EPMA, and XRD. Observed or analyzed. As a comparative example, a sample (BK) made of an iron base material not treated with oxidation was similarly observed and analyzed.
  • the thickness of the modified layer is preferably about 50 to 600 nm, more preferably about 100 to 500 nm, from an SEM image of a sample oxidized at 350 ° C. for 1 hour, in which a large bonding strength is stably obtained.
  • FIG. 3 shows the X-ray count number of the oxygen peak obtained by qualitatively analyzing the cross section of the surface layer portion of each sample using an iron-based substrate made of pure iron by EPMA.
  • the X-ray count of the oxygen peak obtained by EPMA analysis of the modified layer from the results of the sample oxidized at 350 ° C. for 1 hour, in which particularly high bonding strength is stably obtained, is 3000 to 9000 cps, and more preferably 4000 to It can be said that it is preferable to be about 8000 cps.
  • Table 2 shows the atomic ratio (at%) of Fe and O obtained by quantitatively analyzing the cross section of the surface layer portion of each sample using an iron-based substrate made of pure iron by EPMA. From this result, it became clear that the modified layer is an iron oxide layer formed by oxidizing the surface portion of the iron-based substrate.
  • the iron oxide layer formed by the oxidation treatment at 350 ° C. for 1 hour in which a large bonding strength is stably obtained, has a composition on the outermost layer side of Fe: 40 to 60 at%, further 41 to 55 at%, O: 60 to 40 at%, further 59 to 45 at%.
  • the composition of the modified layer is an average value calculated for a depth of 1 ⁇ m from the resurface.
  • the iron oxide layer formed by the oxidation treatment at 350 ° C. for 1 hour has an Fe content higher than the O content, and thus is considered to contain iron oxide in which O is partially deficient (deficient).
  • the reason why such iron oxide is formed is that the thickness of the iron oxide layer is about 100 nm at most, and therefore, it is considered that Fe existing on the substrate side (lower layer side of the iron oxide layer) has an influence.
  • the iron oxide layer formed by the oxidation treatment at 350 ° C. for 10 hours is presumed to be mainly magnetite from the atomic ratio of Fe and O.
  • the iron oxide layer formed by the oxidation treatment at 350 ° C. for 1 hour with respect to this iron oxide layer has the same heating temperature and only a short heating time. From these things, the iron oxide layer formed by the oxidation process of 350 degreeC x 1 hour is also estimated as the magnetite in the middle of growth.
  • the iron oxide layer formed by the oxidation treatment at 550 ° C. ⁇ 1 hour or 750 ° C. ⁇ 1 hour tended to have less Fe content than the magnetite composition. From this, it is thought that oxides (hematite etc.) other than magnetite increased in those iron oxide layers. These considerations were derived in consideration of the analysis by XRD of the sample surface described later.

Abstract

製造が容易であると共に接合強度が高い金属樹脂接合部材を提供する。 本発明の金属樹脂接合部材は、酸化鉄層を表面に有する金属体と、酸化鉄層を介して金属体と接合された樹脂体とからなる。酸化鉄層は、厚さが50nm~10μmであり、少なくとも最表面側でFe:60~40at%、O:40~60at%であると共に、少なくともマグネタイト(Fe)を含む。酸化鉄層は、例えば、鉄系基板の少なくとも表面を、酸化雰囲気中で200~850℃で加熱して形成される。樹脂体、例えば、ポリフェニレンサルファイド(PPS)からなる。酸化鉄層を介した金属体と樹脂体の接合は、インサート成形や摩擦発熱を利用した熱溶着等により行える。

Description

金属樹脂接合部材およびその製造方法
 本発明は、金属と樹脂を接合した金属樹脂接合部材とその製造方法に関する。
 近年、自動車分野や航空機分野における軽量化ニーズ等に伴い、高信頼性の金属と樹脂の接合部材が求められている。また、電子機器やパワーデバイスの多くは、樹脂で封止されてパッケージ化されるため、筐体などの金属と封止樹脂との間でも、高温耐久性等に優れた接合が求められている。金属と樹脂は一般的に接着剤を用いて接合されるが、接着剤の使用は経年劣化による剥離等を生じるため信頼性に欠ける。接着剤の使用は、環境負荷物質である接着溶剤の使用等を伴うことも多いため、あまり好ましくない。そこで、接着剤を用いないで金属と樹脂を接合する提案が種々なされており、例えば、下記の特許文献に関連する記載がある。
特開2009-292034号公報 特開2011-168017号公報
 特許文献1および特許文献2には、インサート成形により、ステンレス鋼板と熱可塑性樹脂(PPS等)とを接合した複合体に関する記載がある。これらは、ステンレス鋼板の被接合面を、その接合前に予め化学的に粗面化しておくことにより、アンカー効果を利用して、ステンレス鋼板と樹脂とを機械的または物理的に接合することを提案している。
 本発明はこのような事情下で為されたものであり、従来とは異なる手法により、高い接合強度等を発揮し得る金属樹脂接合部材と、その製造方法を提供することを目的とする。
 本発明者はこの課題を解決すべく鋭意研究した結果、従来とは異なり、金属と樹脂を化学的に接合し得ることを見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。
《金属樹脂接合部材》
(1)本発明の金属樹脂接合部材は、鉄または鉄合金からなる鉄系基材の表面に形成された酸化鉄層を有する金属体と、該酸化鉄層を介して該金属体と接合された樹脂体とを備える金属樹脂接合部材であって、前記酸化鉄層は、厚さが50nm~10μmであり、少なくとも最表面側でFe:60~40at%、O:40~60at%であると共に、少なくともマグネタイト(Fe)を含む。
(2)本発明の金属樹脂接合部材(単に「接合部材」という。)は、酸化鉄層を介して金属体と樹脂体が強固に接合されているため、各種分野の様々な部材に利用可能である。
 ところで、本発明の接合部材は、従来のアンカー効果等のような物理的な結合力に依るまでもなく、高い接合強度を発揮し得る。このことから、酸化鉄層と樹脂体との間には化学的な結合力が生じていると考えられる。化学的な結合力を生じる要因(化学的要因)には、ファンデルワールス力、水素結合、共有結合、イオン結合等が考えられるが、本発明の接合部材は接合強度が大きいことから、酸化鉄層と樹脂体の間で共有結合のような強固な結合が少なくとも部分的に生じていると考えられる。このような結合が生じるメカニズムは定かではないが、現状では次のように推察される。
 本発明に係る酸化鉄層は、大気雰囲気中にある金属体の表面に単に自然に形成されたものではなく、少なくとも上記のような厚さ、成分組成および構造(組織)を有するものである。このような酸化鉄層は、電子不足気味な状態にあり、エネルギー的に高い活性状態にあると考えられる。このため、金属体の表面に形成された酸化鉄層は、樹脂体の被接合面近傍にあるC、O、H、N、PまたはS等と化学的に結合するようになり、結果的に、金属体と樹脂体が強固に接合されるようになったと考えられる。
 なお、金属体の表面に形成された酸化鉄層の少なくとも最表面が微細な凹凸構造である場合、それによる表面積(ひいては接合界面の面積)の増大が、副次的に、接合強度をより向上させ得る。
《金属樹脂接合部材の製造方法》
(1)本発明は接合部材としてのみならず、その製造方法としても把握できる。すなわち本発明は、金属体と樹脂体とを酸化鉄層を介して接合する接合工程を備え、前記酸化鉄層は、厚さが50nm~10μmであり、少なくとも最表面側でFe:60~40at%、O:40~60at%であると共に、少なくともマグネタイト(Fe)を含む金属樹脂接合部材の製造方法としても把握できる。
(2)さらに本発明は、鉄または鉄合金からなる鉄系基材の表面に酸化鉄層を形成する酸化工程と、該鉄系基材を少なくとも被接合面側に有する金属体と樹脂体とを該酸化鉄層を介して接合する接合工程とを備え、前記酸化工程は、前記鉄系基材の少なくとも表面を酸化雰囲気中で加熱する加熱工程である金属樹脂接合部材の製造方法としても把握できる。
《その他》
(1)本明細書でいう「少なくともマグネタイト(Fe)を含む」とは、酸化鉄層中にFeが含まれていればよく、酸化鉄層中におけるFe含有量と他の酸化鉄(Fe等)の含有量との比率は問わない。なお、一般的にFeから成る「赤さび」は非常にもろい性質を有するため、Feの含有量が増加すると接合には好ましくない傾向となり易い。従って酸化鉄層中にFeは実質的に含有されていないか、その含有量が少ないと好ましい。
(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。
純鉄と樹脂の接合強度と、純鉄の酸化条件との関係を示す棒グラフである。 炭素鋼と樹脂の接合強度と、炭素鋼の酸化処理条件との関係を示す棒グラフである。 工具鋼と樹脂の接合強度と、工具鋼の酸化処理条件との関係を示す棒グラフである。 種々の酸化処理を施した純鉄の表層部を観察した走査型電子顕微鏡(SEM)像である。 種々の酸化処理を施した純鉄の表層部を電子線マイクロアナライザ(EPMA)分析して得られた酸素ピークのX線カウント数を示すグラフである。 純鉄(BK)とそれを種々の条件で酸化処理してできた酸化鉄層とに係るX線回折(XRD)パターンである。 炭素鋼(BK)とそれを種々の条件で酸化処理してできた酸化鉄層とに係るXRDパターンである。 工具鋼(BK)とそれを種々の条件で酸化処理してできた酸化鉄層とに係るXRDパターンである。
 本明細書で説明する内容は、本発明の接合部材のみならず、その製造方法にも適宜該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。製造方法に関する構成要素は、物に関する構成要素ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《酸化鉄層》
(1)本発明に係る酸化鉄層は、主にFeとOからなり、少なくとも最表面部では、Fe:60~40at%、55~40at%さらには55~45at%であり、O:40~60at%、45~60at%さらには45~55at%であると好ましい。
 なお、本明細書でいう酸化鉄層の最表面部の組成は、酸化鉄層の断面を電子線マイクロアナライザ(EPMA)で観察して定量分析することにより求まる。その範囲内の全体組成を100at%として、各元素量を算出する。at%とは原子比のことで、X線強度比(k%)にZAF補正係数を乗じて算出した値である。k%は、例えばFeの場合、試料から検出されたX線カウント数をFe用の標準試料である純鉄を測定した際のX線カウント数で除した値をパーセント表示した値であり、ZAF補正係数は試料中で電子線と特性X線のふるまいを吸収効果、原子番号効果、蛍光励起効果の3つの項目毎に求めた値である。具体的には、その範囲内(1μm×1μm)で深さ方向(深さ:1μm)のほぼ均等な3箇所で測定・分析したFe量とO量を、相加平均して本発明に係る酸化鉄層の組成(FeとO)とする。
 酸化鉄層は、例えば、ウスタイト(FeO)、ヘマタイト(Fe/α型に限らず、β型、γ型、ε型等でもよい。)、マグネタイト(Fe)等の種々の酸化鉄からなり得る。本発明に係る酸化鉄層は、一種または二種以上の酸化鉄が混在したものでもよいし、Oが部分的に欠乏(欠損)した酸化鉄を含んでいてもよい。さらに酸化鉄層は、酸化鉄となっていない鉄(フェライト)または鉄合金を含むものでもよい。但し、上述したように、酸化鉄層は少なくともFeを含み、Feをあまり含まない方が高い接合強度が得られて好ましいと考えられる(表1および図4A~図4Cを参照)。
 酸化鉄層は、通常、鉄または鉄合金からなる鉄系基板の表面に形成される。この際、酸化鉄層は、鉄系基材の組成等に応じて、FeおよびO以外の元素を含んでもよい。また、その鉄系基材は、金属体自体でもよいし、組成が異なる異種金属からなる金属体の被接合面側に別途形成されたもの(鉄めっき等)でもよい。
 鉄系基材は、接合強度の向上に有効な酸化鉄層が形成され易い組成であればよく、純鉄に限らず、炭素鋼、合金鋼等の鉄合金でもよい。樹脂体と接合する酸化鉄層が形成される限り、鉄系基材はステンレス鋼等からなってもよい。
 但し、鉄系基材の成分組成によって、接合強度の向上に有効な酸化鉄層の特徴(組成、組織、構造等)や、その形成条件等は変化し得る。特に、鉄系基材中のC含有量(率)の影響が大きいと考えられる。具体的にいうと、鉄系基材が純鉄や低炭素鋼等であるとき、幅広い酸化条件下で接合強度の向上に有効な酸化鉄層が形成され易い。一方、鉄系基材中のC含有量が増加するほど、好ましい酸化条件の範囲は徐々に狭くなり得る。そこで、鉄系基材は、その全体を100質量%(単に「%」という。)として、C含有量が1%以下、0.95%以下、0.7%以下、0.5%以下、0.3%以下であると好ましい。
(2)酸化鉄層は、常温の大気中で自然に形成される酸化膜等ではなく、意図的に形成されるものであり、その厚さ(層厚)は、50nm~10μm、80nm~6μmさらには160nm~400nmであると好ましい。
 その厚さが過大になると、マグネタイトの他にヘマタイト等の酸化鉄も酸化鉄層中に多く含まれるようになり、Feの酸化状態と構造の両方で不均一になって、その剥離や接合強度の低下が生じ得る。一方、その厚さが過小では、樹脂体との間で十分な接合強度が得難い。なお、本明細書でいう酸化鉄層の厚さは、酸化鉄層の断面を走査型電子顕微鏡(SEM)で観察し、最表面から最深部までの距離である。
 ちなみに酸化鉄層は、その最表面側から深さ1μmまでの範囲をEPMAで定性分析した際に、酸素ピークのX線カウント数が1500~13000cps、2000~12000cpsさらには3000~6000cpsであると、接合強度の向上を図れて好ましい。なお、このX線カウント数は、加速電圧:15kV、ビーム電流:100nA、ビーム径:100μmφとして、使用装置:フィールドエミッション電子プローブマイクロアナライザ(JXA-8500F、日本電子株式会社製)を用いて分析することにより得られる。
(3)本発明に係る酸化鉄層は、加熱炉やレーザー照射を用いた加熱など、種々の方法により形成され得る。例えば、金属体の少なくとも被接合面側にある鉄または鉄合金からなる鉄系基材の表面を酸化処理すること(酸化工程)により形成すると、簡易で好ましい。酸化工程は、例えば、鉄系基材の少なくとも表面を、酸化雰囲気(大気雰囲気を含む)中で加熱する加熱工程として行える。加熱温度は200~850℃さらには250~600℃、加熱時間は0.01~20時間、0.05~15時間さらには0.1~10時間とすると好ましい。特に、加熱温度を250~450℃さらには300~400℃とし、加熱時間を0.1~2時間さらには0.1~1.5時間とすると好ましい。このように加熱温度と加熱時間を調整することにより、酸化鉄層の厚さ、組成等の調整が可能となり、ひいては樹脂体に応じた接合強度の調整も可能となる。
 また加熱条件は、例えば、鉄系基材中のC含有量により調整されると好ましい。具体的にいうと、鉄系基材全体を100%としたときのC含有量が0.25%未満、0.2%以下さらには0.1%以下のとき、加熱温度は200~850℃、225~650℃さらには250~450℃であると好ましい。また加熱時間は0.05~10時間、0.1~5時間さらには0.1~2時間であると好ましい。
 鉄系基材中のC含有量が0.25%以上で0.65%未満さらには0.3%~0.5%のとき、加熱温度は200~600℃、225~500℃さらには250~400℃であると好ましい。また加熱時間は0.05~5時間さらには0.1~2時間であると好ましい。
 鉄系基材中のC含有量が0.65%以上、0.75%以上、0.9%以上さらには1%以上のとき、加熱温度は200~500℃さらには225~400℃であると好ましい。また加熱時間は0.05~20時間さらには0.1~13時間であると好ましい。
 このような酸化処理により得られた酸化鉄層は、鉄系基材(金属体)表面の改質層となっており、その表面に別途形成した薄膜等とは異なり、鉄系基材(金属体)から容易に剥離等することはない。従って、酸化処理して得られた酸化鉄層(改質層)を介することにより、金属体と樹脂体をより強固に安定的に接合し得る。
《樹脂体》
 酸化鉄層を介して金属体と強固に接合する樹脂体は、種々の樹脂からなり得る。このような樹脂は、熱硬化性樹脂でも、汎用プラスチック、汎用エンジニアリングプラスチック、スーパーエンジニアリングプラスチック等の熱可塑性樹脂でもよい。なお、樹脂体は、酸化鉄層と接合する樹脂が被接合面部(酸化鉄層側)に存在すれば足り、必ずしも全体が同一種の樹脂からなる必要はない。
 ちなみに、熱可塑性樹脂である汎用プラスチックには、ポリエチレン、ポリプロピレンといったポリオレフィン、ポリ塩化ビニル、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、ポリメチルメタクリレート、ポリビニルアルコール、ポリ塩化ビニリデン、ポリブタジエン、ポリエチレンテレフタレート等がある。汎用エンジニアリングプラスチックには、ナイロン6、ナイロン66、ナイロン12といったポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン等がある。スーパーエンジニアリングプラスチックには、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、熱可塑性ポリイミド、液晶ポリマー、ポリテトラフロロエチレンといったフッ素樹脂等がある。
 特に本発明に係る樹脂体は、熱可塑性樹脂の中でも、ナイロン6、ナイロン66、ナイロン12などのポリアミド、またはポリフェニレンサルファイド(PPS)が、少なくとも酸化鉄層側(被接合面側)にあると好ましい。
 このような樹脂は単独で使用されても2種以上が混合されてもよい。また、このような樹脂には、公知の充填材や公知の添加剤、公知の樹脂強化材などが適宜配合されてもよい。さらに樹脂体は、ガラスファイバーやカーボンファイバーなどの強化繊維を強化材として含むものでもよい。
 また、本発明に係る樹脂には、本発明の効果を損なわない範囲で各種添加剤を配合してもよい。添加剤を配合することにより、樹脂の弾性率の向上(炭素繊維、ガラス繊維といった無機フィラーによる効果)、極性変化(ゴム、エラストマー、他の樹脂による効果)、劣化抑制、分解反応の遅延化(酸化防止剤等による効果)などの効果により、接合強度の更なる向上、樹脂-金属界面の漏れ性の向上、界面接着性の更なる向上、長期安定性(耐熱性、耐湿熱性、耐水性など)の向上などが期待できる。
 このような添加剤としては特に制限はないが、例えば、難燃剤、酸化防止剤、紫外線吸収剤、加水分解抑制剤、光安定剤、紫外線吸収剤、帯電防止剤、滑剤、離型剤、結晶核剤、粘度調整剤、着色剤、染料、抗菌剤、シランカップリング剤などの表面処理剤;グラファイト、カーボンナノファイバー、カーボンナノチューブ、カーボンナノプレートレット、(単層)グラフェン、複層(多層)グラフェン、ナノグラファイト(グラフェンナノリボンなど)、ナノグラフェン、カーボンナノホーン、カーボンナノコーン、カーボンナノコイル、フラーレンといったカーボン系ナノフィラー、ガラス繊維、炭素繊維、アラミド繊維といった合成繊維、セルロース、キチン、キトサンといった天然繊維などの繊維状物質;雲母(マイカ)鉱物およびカオリン鉱物といった層状ケイ酸塩、炭酸カルシウム、リン酸カルシウム、酸化チタン、シリカ、ウイスカー、アルミナ、窒化ホウ素、窒化アルミ、窒化ケイ素、炭化ケイ素、ダイヤモンド、酸化亜鉛といった無機充填剤などが挙げられる。なお、これらの添加剤を過多に加えると衝撃強度の低下を招き得る。また、ゴム、エラストマー、軟質樹脂成分及び/又は可塑剤などの有機系添加剤を加えてもよい。ただし、有機系添加剤を過多に加えると高温剛性率及び荷重たわみ温度の低下を招き得る。
 このような添加剤の種類は特に限定されないが、樹脂との相容性が極端に低下しない成分、もしくは相容性が低下しても化学的変性や相容化剤の添加により相容性が改善される成分が好ましい。また、このような添加剤は1種を単独で使用しても、2種以上を併用してもよい。
《製造方法》
 金属体と樹脂体の接合工程は、種々考えられる。例えば、接合工程は、酸化鉄層へ軟化または溶融した樹脂を供給する供給工程と、樹脂を固化させて樹脂体とする固化工程とを有するものでもよい。供給工程は、具体的にいうと、酸化鉄層を有する金属体を成形型内へ収容またはセットし、その酸化鉄層と接触するように軟化または溶融した樹脂をその成形型内へ注入して行うことができる。このような、いわゆるインサート成形により、金属体と樹脂体の接合が併せてなされると効率的である。なお、樹脂体の成形は、射出成形、押出成形、ブロー成形、真空成形、トランスファー成形、圧縮成形等のいずれによりなされてもよい。
 接合工程は、既に所望形状に成形されている樹脂体を金属体に、別途、熱溶着してなされてもよい。例えば、接合工程は、樹脂体の被接合部を加熱する加熱工程と、被接合部を金属体の酸化鉄層に接触(または圧接)させた状態で冷却する冷却工程とを有するものでもよい。加熱工程により、樹脂体の被接合部が、部分的に加熱されて軟化または溶融したり、活性化し得る。加熱工程は、例えば、金属体の酸化鉄層に圧接した樹脂体の被接合部へ超音波振動等を印加して、接合界面近傍に摩擦発熱を生じさることにより行える。
《接合部材》
 本発明の接合部材は、種々の分野における様々な製品に利用可能である。特に本発明の接合部材は、接着剤等に依ることなく、金属体と樹脂体の強固な接合が可能であるため、自動車分野で用いられる外板、内外装のような構造部品(材料)、制御系、駆動系等のユニットを構成する機能性部品(材料)に好適である。また本発明の接合部材は、建築・土木分野において、金属体からなる補強材の固定化に用いられたり、家電分野において、生産自由度が高くて意匠性に優れた樹脂体と高強度の金属体とを組み合わせた部品や製品等に用いられると好ましい。
 酸化鉄層が形成された金属と樹脂とを一体成形した接合体(供試材)を製造し、それぞれの接合強度を評価した(実施例1)。また、その酸化鉄層を種々の観点から分析した(実施例2)。これらを通じて、本発明をより具体的に説明する。
[実施例1]
《試料の製造》
(1)鉄系基材(金属体)
 鉄系基材として、主にC含有量が異なる純鉄(純度:99.99%)、炭素鋼(JIS S45C/C:0.42~0.48%、Si:0.15~0.35%、Mn:0.6~0.9%、残部:Fe)または工具鋼(JIS SK5/C:0.80~0.90%、Si:0.1~0.35%、Mn:0.10~0.05%、残部:Fe)からなる鉄系基板(10mm×50mm×t1mm)をそれぞれ複数用意した。なお、鉄系基板の組成は、その全体を100質量%として、単に「%」で示した。
 各鉄系基板は、その表面を有機溶剤(アセトン)で脱脂した後、電気炉で加熱して酸化処理した(酸化工程)。加熱雰囲気は大気雰囲気とした。加熱温度は、250℃、350℃、550℃または750℃のいずれかとした。加熱時間は、0.1時間(hr)、1時間または10時間のいずれかとした。
(2)樹脂体
 各基板を配置した成形金型内へ、330℃に加熱して溶融した樹脂(PPS)を射出した(供給工程)。その後、成形金型を冷却して樹脂を固化させた(固化工程)。こうして鉄系基板に樹脂体をインサート成形した複数の供試材(金属樹脂接合部材)を製造した。なお、その樹脂体は、10mm×40mm×t2mmとし、鉄系基板との接触領域(接合部)は10mm×5mmとした。
 また、比較例として、上述した酸化処理をしていない各種の鉄系基板を用いて、同様にインサート成形した供試材も用意した。なお、このような酸化未処理の鉄系基板からなる試料または供試材を、適宜、「BK」という。
《接合強度》
 各供試材の接合強度を次のように測定した。樹脂体に治具を押し当てて、鉄系基板と樹脂体との間に剪断力を加える。接合界面で剥離するか、樹脂体が破壊されたときの剪断力を測定した。こうして得られた剪断力を、鉄系基板と樹脂体との接合面積で割って求めた接合強度を、各鉄系基板毎に表1および図1A~図1C(これらを併せて単に「図1」という。)にそれぞれ示した。なお、各図に示した加熱温度または加熱時間は、各鉄系基板に施した酸化処理条件である。
《評価》
(1)表1から明らかなように、酸化処理していない鉄系基板を用いた場合、金属樹脂接合部材の接合強度は、いずれも0 MPaであり、鉄系基板と樹脂は全く接合しなかった。
(2)一方、表1および図1から明らかなように、適切な酸化処理を施した鉄系基板を用いると、十分に高い接合強度が得られることがわかった。鉄系基板の組成により多少異なるが、特に、350℃×1時間の加熱(酸化処理)を行った鉄系基板を用いると、いずれの場合でも、高い接合強度が得られた。これらのことから、鉄系基材の種類に依らず、その酸化処理条件は、例えば、200~450℃さらには250~400℃で、0.05~5時間さらには0.1~2時間程度であると好ましいといえる。
[実施例2]
 上述した結果を踏まえて、各種の鉄系基板を種々の条件で酸化処理して得られた試料(樹脂体との接合前の鉄系基材)の表層を、SEM、EPMAおよびXRDにより、それぞれ観察または分析した。なお、比較例として、酸化未処理の鉄系基材からなる試料(BK)も同様に観察および分析を行った。
《SEM》
 純鉄からなる鉄系基板を用いた各試料の表層部の断面に係るSEM像を図2に示す。また、各SEM像から求めた酸化鉄層の厚さを表2に示した。さらに、各SEM像を分析して得られた酸化鉄層中におけるFeの有無も表2に併せて示した。
 先ず、図2および表2から明らかなように、酸化処理を施すことにより、未処理の場合には観察されなかった十分な厚さを有する改質層が鉄系基板の表面に形成されていることが確認された。この改質層は、加熱温度の上昇または加熱時間の増加と共に厚くなることもわかった。特に、加熱温度が高くなると、急激に厚さが増大することもわかった。特に大きな接合強度が安定して得られる350℃×1時間で酸化処理した試料のSEM像から、改質層の厚さは、50~600nmさらには100~500nm程度であると好ましいといえる。
 次に、表1および表2から明らかなように、接合強度が生じている各試料の酸化鉄層には、いずれもマグネタイト(Fe)が含まれていることも確認された。
《EPMA》 
(1)純鉄からなる鉄系基板を用いた各試料の表層部の断面をEPMAにより定性分析して得られた酸素ピークのX線カウント数を図3に示す。特に大きな接合強度が安定して得られる350℃×1時間で酸化処理した試料の結果から、改質層をEPMA分析して得られる酸素ピークのX線カウント数は、3000~9000cpsさらには4000~8000cps程度であると好ましいといえる。
(2)純鉄からなる鉄系基板を用いた各試料の表層部の断面をEPMAにより定量分析して求めたFeとOの原子比率(at%)を表2に示した。この結果から、改質層は、鉄系基板の表面部分が酸化されてできた酸化鉄層であることが明らかとなった。特に大きな接合強度が安定して得られる350℃×1時間の酸化処理により形成された酸化鉄層は、その最表層側の組成が、Fe:40~60at%さらには41~55at%であり、O:60~40at%さらには59~45at%であった。なお、既述したように、改質層の組成は、その再表面から深さ1μmについて算出した平均値である。
 350℃×1時間の酸化処理で形成された酸化鉄層は、Fe含有量がO含有量よりも多いことから、Oが部分的に欠乏(欠損)した酸化鉄を含んでいると考えられる。このような酸化鉄が形成される理由として、酸化鉄層の厚さは高々100nm程度であるため、基板側(酸化鉄層の下層側)に存在するFeが影響しているとも考えられる。
 さらに、350℃×10時間の酸化処理で形成された酸化鉄層は、FeとOの原子比から主にマグネタイトと推定される。この酸化鉄層に対して、350℃×1時間の酸化処理で形成された酸化鉄層は、加熱温度が同じで加熱時間が短いだけである。これらのことから、350℃×1時間の酸化処理で形成された酸化鉄層も、成長途中のマグネタイトと推定される。
 一方、550℃×1時間または750℃×1時間の酸化処理で形成された酸化鉄層は、マグネタイト組成よりもFe含有量が少ない傾向にあった。このことから、それらの酸化鉄層には、マグネタイト以外の酸化物(ヘマタイト等)が増加したと考えられる。これらの考察は、後述する試料表面のXRDによる分析を加味して導き出した。
《XRD》
 各試料の酸化鉄層(またはBK)の表面をXRDにより分析して得られたX線回折パターン(CuKα線/波長λ=1.5418Å)を図4A~図4C(これらを併せて単に「図4」という。)に示した。接合強度が高い試料(特に350℃×1時間で酸化処理した試料)から明らかなように、それらの酸化鉄層は、少なくともマグネタイトを含み、ヘマタイト等をあまり含まない方が好ましいといえる。なお、今回用いたXRD測定の検出限界は1質量%程度である。
 以上のことから、適切な酸化鉄層を金属体の表面に形成して、その酸化鉄層を介して金属体と樹脂体を接合すると、接合強度や信頼性に優れた金属樹脂接合部材が得られることが確認できた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  鉄または鉄合金からなる鉄系基材の表面に形成された酸化鉄層を有する金属体と、
     該酸化鉄層を介して該金属体と接合された樹脂体と、
     を備える金属樹脂接合部材であって、
     前記酸化鉄層は、厚さが50nm~10μmであり、
     少なくとも最表面側でFe:60~40at%、O:40~60at%であると共に、
     少なくともマグネタイト(Fe)を含む金属樹脂接合部材。
  2.  前記酸化鉄層は、前記鉄系基材表面の改質層からなる請求項1に記載の金属樹脂接合部材。
  3.  前記樹脂体は、少なくとも前記酸化鉄層側にポリフェニレンサルファイド(PPS)を含む請求項1または2に記載の金属樹脂接合部材。
  4.  金属体と樹脂体とを酸化鉄層を介して接合する接合工程を備え、
     前記酸化鉄層は、厚さが50nm~10μmであり、
     少なくとも最表面側でFe:60~40at%、O:40~60at%であると共に、
     少なくともマグネタイト(Fe)を含む金属樹脂接合部材の製造方法。
  5.  鉄または鉄合金からなる鉄系基材の表面に酸化鉄層を形成する酸化工程と、
     該鉄系基材を少なくとも被接合面側に有する金属体と樹脂体とを該酸化鉄層を介して接合する接合工程とを備え、
     前記酸化工程は、前記鉄系基材の少なくとも表面を酸化雰囲気中で加熱する加熱工程である金属樹脂接合部材の製造方法。
  6.  前記鉄系基材は、該鉄系基材全体を100%としてC含有量が0.25%未満であり、
     前記加熱工程は、加熱温度が200~850℃である請求項5に記載の金属樹脂接合部材の製造方法。
  7.  前記鉄系基材は、該鉄系基材全体を100%としてC含有量が0.25%以上で0.65%未満であり、
     前記加熱工程は、加熱温度が200~600℃である請求項5に記載の金属樹脂接合部材の製造方法。
  8.  前記鉄系基材は、該鉄系基材全体を100%としてC含有量が0.65%以上であり、
     前記加熱工程は、加熱温度が200~500℃である請求項5に記載の金属樹脂接合部材の製造方法。
  9.  前記加熱工程は、加熱温度が250~450℃であり、加熱時間が0.1~10時間である請求項5~8のいずれかに記載の金属樹脂接合部材の製造方法。
  10.  前記接合工程は、前記酸化鉄層へ軟化または溶融した樹脂を供給する供給工程と、
     該樹脂を固化させて前記樹脂体とする固化工程と、
     を有する請求項4~9のいずれかに記載の金属樹脂接合部材の製造方法。
  11.  前記接合工程は、前記樹脂体の被接合部を加熱する加熱工程と、
     該被接合部を前記金属体の酸化鉄層に接触させて冷却する冷却工程と、
     を有する請求項4~9のいずれかに記載の金属樹脂接合部材の製造方法。
PCT/JP2016/080483 2015-10-14 2016-10-14 金属樹脂接合部材およびその製造方法 WO2017065256A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/746,961 US11633892B2 (en) 2015-10-14 2016-10-14 Metal-resin bonded member and method of manufacturing the same
JP2017545477A JP6436243B2 (ja) 2015-10-14 2016-10-14 金属樹脂接合部材およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-202590 2015-10-14
JP2015202590 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017065256A1 true WO2017065256A1 (ja) 2017-04-20

Family

ID=58517292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080483 WO2017065256A1 (ja) 2015-10-14 2016-10-14 金属樹脂接合部材およびその製造方法

Country Status (3)

Country Link
US (1) US11633892B2 (ja)
JP (1) JP6436243B2 (ja)
WO (1) WO2017065256A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097624A1 (ja) * 2017-11-16 2019-05-23 睦月電機株式会社 金属部材、金属部材の製造方法、金属樹脂接合体及び金属樹脂接合体の製造方法
WO2019194259A1 (ja) * 2018-04-03 2019-10-10 ジオネーション株式会社 樹脂炭素鋼接合体及びその製造法
JP2020522430A (ja) * 2017-06-08 2020-07-30 イェスタムプ・ハードテック・アクチエボラーグ 鋼板にcfrpパッチを形成する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269487A (en) * 1975-12-08 1977-06-09 Mitsui Petrochem Ind Ltd Laminates with peel resistance to salt water
JPS5710374A (en) * 1980-06-20 1982-01-19 Toyo Seikan Kaisha Ltd Welded can with coated joint made of tin free steel and its production
JPH04225866A (ja) * 1990-12-26 1992-08-14 Mitsubishi Heavy Ind Ltd ポリエチレン粉体ライニングの下地処理方法
JP2009292034A (ja) * 2008-06-05 2009-12-17 Taisei Plas Co Ltd 金属合金と樹脂の複合体の製造方法
JP2014208459A (ja) * 2013-03-22 2014-11-06 マツダ株式会社 異種部材の接合方法及び接合体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756169A (en) * 1950-10-19 1956-07-24 John A Roebling S Sons Corp Method of heat treating hot rolled steel rods
US3408252A (en) * 1965-03-31 1968-10-29 Chrysler Corp Process of bonding organic compositions to ferrous metal surfaces and article produced thereby
US3783035A (en) * 1972-05-15 1974-01-01 Olin Corp Coating ferrous metals
JPS6049425B2 (ja) * 1980-06-12 1985-11-01 東洋製罐株式会社 継目を被覆したテイン・フリ−・スチ−ル製溶接罐
US4496401A (en) * 1981-10-15 1985-01-29 Lucas Industries Corrosion resistant steel components and method of manufacture thereof
US4425383A (en) * 1982-07-06 1984-01-10 Xerox Corporation Process for oxidation of carrier particles
US4810590A (en) * 1987-02-19 1989-03-07 Phillips Petroleum Company Poly(arylene sulfide) encapsulation process and article
US5015686A (en) * 1987-02-24 1991-05-14 Phillips Petroleum Company Coatings of arylene sulfide polymers
US5964103A (en) * 1995-10-06 1999-10-12 Hitachi, Ltd. Absorption refrigerator and production method thereof
DE10002642A1 (de) * 2000-01-21 2001-08-16 Ticona Gmbh Metall- und Kunststoffverbund aus langfaserverstärkten Thermoplasten
US20060175381A1 (en) * 2005-02-10 2006-08-10 Pei-Chung Wang Friction stir nut and method of joining therewith
CN101568420B (zh) * 2006-12-28 2014-06-25 大成普拉斯株式会社 金属和树脂的复合体及其制造方法
WO2009011398A1 (ja) * 2007-07-17 2009-01-22 Taisei Plas Co., Ltd. 金属と樹脂の複合体とその製造方法
JP5166912B2 (ja) * 2008-02-27 2013-03-21 日本パーカライジング株式会社 金属材料およびその製造方法
US20110008644A1 (en) * 2008-03-17 2011-01-13 Taisei Plas Co., Ltd. Bonded body of galvanized steel sheet and adherend, and manufacturing method thereof
CN102652153B (zh) * 2009-12-10 2014-10-08 宝理塑料株式会社 聚芳硫醚系树脂组合物及嵌入成型品
JP5501026B2 (ja) 2010-02-22 2014-05-21 日新製鋼株式会社 ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体、およびその製造方法
SG190948A1 (en) * 2010-12-02 2013-07-31 Toray Industries Method for producing metal composite, and chassis for electronic equipment
CN105980723A (zh) * 2014-02-06 2016-09-28 Ntn株式会社 滑动轴承
JP2016176515A (ja) * 2015-03-19 2016-10-06 Ntn株式会社 複合摺動部材及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269487A (en) * 1975-12-08 1977-06-09 Mitsui Petrochem Ind Ltd Laminates with peel resistance to salt water
JPS5710374A (en) * 1980-06-20 1982-01-19 Toyo Seikan Kaisha Ltd Welded can with coated joint made of tin free steel and its production
JPH04225866A (ja) * 1990-12-26 1992-08-14 Mitsubishi Heavy Ind Ltd ポリエチレン粉体ライニングの下地処理方法
JP2009292034A (ja) * 2008-06-05 2009-12-17 Taisei Plas Co Ltd 金属合金と樹脂の複合体の製造方法
JP2014208459A (ja) * 2013-03-22 2014-11-06 マツダ株式会社 異種部材の接合方法及び接合体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522430A (ja) * 2017-06-08 2020-07-30 イェスタムプ・ハードテック・アクチエボラーグ 鋼板にcfrpパッチを形成する方法
WO2019097624A1 (ja) * 2017-11-16 2019-05-23 睦月電機株式会社 金属部材、金属部材の製造方法、金属樹脂接合体及び金属樹脂接合体の製造方法
JPWO2019097624A1 (ja) * 2017-11-16 2020-10-01 睦月電機株式会社 金属部材、金属部材の製造方法、金属樹脂接合体及び金属樹脂接合体の製造方法
US11090908B2 (en) 2017-11-16 2021-08-17 Mutsuki Electric Co., Ltd. Metal member, method for producing metal member, metal-resin joined body and method for producing metal-resin joined body
WO2019194259A1 (ja) * 2018-04-03 2019-10-10 ジオネーション株式会社 樹脂炭素鋼接合体及びその製造法
JP2019183194A (ja) * 2018-04-03 2019-10-24 ジオネーション株式会社 樹脂炭素鋼接合体及びその製造法

Also Published As

Publication number Publication date
US11633892B2 (en) 2023-04-25
JPWO2017065256A1 (ja) 2018-04-26
JP6436243B2 (ja) 2018-12-12
US20180264696A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
Ning et al. Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf
Lim et al. Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes
Khoramishad et al. The effect of graphene oxide nano‐platelets on fracture behavior of adhesively bonded joints
JP6436243B2 (ja) 金属樹脂接合部材およびその製造方法
JP5554483B2 (ja) 金属と樹脂の複合体及びその製造方法
JP5094849B2 (ja) ステンレス鋼複合体
Kumar et al. MWCNTs toward superior strength of epoxy adhesive joint on mild steel adherent
Salam et al. Improvement in mechanical and thermo-mechanical properties of epoxy composite using two different functionalized multi-walled carbon nanotubes
Bisht et al. Investigating the role of 3D network of carbon nanofillers in improving the mechanical properties of carbon fiber epoxy laminated composite
Ning et al. Toughening effect of CB-epoxy interleaf on the interlaminar mechanical properties of CFRP laminates
WO2012132639A1 (ja) 金属と熱可塑性樹脂の複合体
JP2009078434A (ja) 金属−樹脂複合成形品及びその製造方法
JP4005005B2 (ja) 炭素繊維複合材料及びその製造方法、並びに炭素繊維複合成形品及びその製造方法
Mourad et al. Impact of nanofillers incorporation on laminated nanocomposites performance
JP2011006544A (ja) 1液性エポキシ接着剤及び接着方法
JP2021191639A (ja) 3dプリンティング用組成物
Sarath Kumar et al. Synergistic effect of carbon fabric and multiwalled carbon nanotubes on the fracture, wear and dynamic load response of epoxy-based multiscale composites
Shivamurthy et al. Tribology and mechanical properties of carbon fabric/MWCNT/epoxy composites
Mourad et al. Wet lay-up technique for manufacturing of advanced laminated composites
Mohan et al. Tribo-mechanical behaviour of SiC filled glass-epoxy composites at elevated temperatures
Prolongo et al. Nanoreinforced adhesives
TW201540490A (zh) 金屬樹脂複合體
Bal et al. Fabrication and characterization of carbon nanofiber (CNF) based epoxy composites
Song Synergistic effect of carbon nanofiber decorated with iron oxide in enhancing properties of styrene butadiene rubber nanocomposites
KR102616752B1 (ko) 유전물질의 유도발열을 활용한 고분자 복합재 성형용 몰드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545477

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15746961

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855509

Country of ref document: EP

Kind code of ref document: A1